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Critical Energy of Torus Knots

Fred Hickling&Wesley Davis
Department ofMathematics and Computer Science

Heather Woolverton
Department of Physics and Astronomy

University of Central Arkansas
Conway, AR72035

Abstract

The energy of a smoothly parameterized knot y(t) is defined as

rr \ i i lp7 \\dn dsdtJo Jo \||7M-7(0f (D(t(s),T(t))) 2 j\\ds \\dt
where D (y (s), y(t)) is the arc length between the two points y (s) and y(t) on the curve. Simple calculus based arguments
are used to locate critical values of the energy functional for torus knots. Explicitly the curves given parametrically by
°(«*)W = (V2°iSri).JSSBe V2

Cs7nS are CriticalP
°intS °fthe energy functional whenever a and b are relatively prime.

Introduction

One of the earliest appearances of knots inphysics
occured in 1867 when Lord Kelvin put forward the idea
that atoms were vortex tubes. More recently, knot theory
is being studied as a possible means of quantizing gravity
(Baez and Munian 1994). An early attempt to define the
energy of a knot was done by Fukuhara (1988). This was
based on the usual y potential of electrostatics.
Unfortunately, this potential doesn't give a finite energy
when passing to a continuous charge distribution. Italso
isn't strong enough to prevent various parts of the knot
from touching. More recently O'Hara (1991, 1992) has
described a number ofrenormalized "energies" for knots.
Freedman et al., have shown one of these energy func-
tionals to be both scale and conformally invariant. They
then used this to show that the least energy configuration
over allknot types is the round circle. This energy func-
tional for a smoothly parameterised knot y(t) is defined as

f
7n

f
2"j 1 1 1 IIrf-y11 cf-yII

(1) Jo Jo \||7(5)-7(t)H 2 ~(^(7(s),7(0)) 2 J ll^ll dSdt

where D(y(s),y(t)) is the arc length between the two
points y (s) and y (t) on the curve. The terms ||^| and
ll^l should be thought of as the charges ina small bit of
arc length assuming there is a uniform charge distribu-
tion of one on the curve. The second term is the renor-
malization factor while the 2nd power is used instead of
the first to provide for a stronger potential.

The problem of minimizing the energy of various
knot types is amenable to the basic calculus tools avail-

able to any good undergraduate. Most of the basic calcu-
lations in this paper were done by the second author dur-
ing his senior year as part of a SILO undergraduate
research grant. The simplest knots after the round circle
are the torus knots. The first to study the energy of torus
knots were Kimand Kusner (1993). Inthis paper we show
that the (a, £)-torus knot given parametrically by a (t)=

(cos(2ant) sin(2a7tt) cos(2bnt) \
V2-sin(2&7B)- V2-sin(2fat)' V2-sin(2A«) /

is a critical point of the energy functional (1). This is
done by recognizing that G (t) is the sterographic projec-
tion of the curve y(t) = (cos {2atn), sin (2atn), cos (2btn),
sin (2btn)) in R4. This curve lies on S3. Since the energy
functional (1) is conformally invariant, ify(t) is a critical
point of (1) its stereographic projection c(t) is a critical
point of (1). y(t) ¦ (cos {2atn), sin (2atK), cos (2btn) t sin
\2btn)) is shown to be a critical point of the energy func-
tional (1) by approximating it as a discrete set ofcharged
points [pk ]

= {(cos (2akn/n), sin (2bkn/n), sin
(2bk7t/n))}^i connected by straight line edges and then
letting n

—> °°. Since any C1 curve can be approximated
using a polygonal path, any C1 curve near y(t) can be
approximated by perturbing the points ph. It is known
that the energy functional (1) is continuous for C1

-
1curves

(corollary 6.3, Freedman et al., 1994). This result can be
extended to piecewise C1

-
1 curves, which the various

piecewise linear curves used inapproximating y(t) are, as
is y(t). Since all our curves have constant speed, to show
that the first variation of the energy is zero at y(t), it suf-
fices to show that the gradiant of the discrete model of
the energy is zero inthe limitas n

—*«>.
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Calculations

In(1) the analytic potential assumes a uniform charge
denisty of one. The analogue for the discrete case has the
charge at each point equial to 1/2 of the sum of the
lengths of the two edges which meet at that point. The
energy in the discrete case is obtained as the double sum

v^ QsQt QsQt

s£^l\\Ps-Pt\\ 2 D(P*,Pt)2(2)

where ps and pt are the positions of two of the charged
points, qs and qt their charges, and D[p9pt) is the length of
the shortest edge path between the twopoints ps and pt.

Since the configuration of the points {pk)k-\ is sym-
metric, ifitcan be shown that the four partials associated
to varying the single point (1,0,1,0) are all zero in the
limitas n

—> °°, then all the partials associated to varying
any point willalso be zero in the limit,and so the gradi-
ent willbe zero. Symmetry shows that the partials in the y
= x2 and w = x4 directions are zero, since sin (2(w0") = sin
(^p). The choice of the points pk also shows that the calcu-
lation of the derivative in the z = x5 direction is identical
to the calculation in the x = xx direction with the roles of
a and b reversed. To show that the gradient is zero in the
limit as n -> oo, it suffices to vary only the point (1,0,1,0)
in the x-direction and see that inthe limitthis partial goes
to zero.

Note: forantipodal points on the circle there are two

shortest connecting paths on the circle. So when model-
ing the circle by a discrete number of points, it is best to

use an odd number of points to avoid having to choose a
shortest path.

To begin the calculation of the energy for the discrete
model the followingsimplifying notations are used

rk is the distance between the points (x.O.l.O) and pk
(l<k<n-l)

rkjis the distance frompk and pj(l<k*j<n-l)
q is the distance from two adjacent points ifneither is

(*,0,l,0).
q is chosen for this last distance because the charge at all
but the points pu pnA, and (x,0,l,0) is q. The charge at
(x,0,l,0) is riwhile the charge at both/jj, and/?,,.] is 1/2 (rj

Since the charges are different at different points, the
calculation of the energy is broken down into the follow-
ing cases: the potential between the point (x,0,l,0) and
the points {pk)k-2> tne potential between (x,0,l,0) and
both pi, and pn.i, the potential between both pi, and pn.i
and the points {/>*}£!;tne potential between p x,and pn_i,

and finally the potential between pairs of the points
{pk)^- The various parts of the energy are given as fol-
lows. The part of the energy associated to the charges at

the point (x,0,l,0) and charges at the points {pk)k?2 *s
given by

1/ \ n-2 / \

2Y"f— rW \ 2 y^ (riq H? \

The 2 multiplying each of the sums is there because the
sum in equation (2) has each pair of points appearing
twice. Using the symmetry of pk and pn.k this can be sim-
plified further to

£i\n (ri+(k-l)q)2)'(3)

The potential associated with adjacent points in the
model does not contribute to the energy since the dis-
tance between adjacent points and the distance along the
curve between them is the same, and thus the renormal-
ization factor cancels the ~fc potential. Because of this
there is no contribution to the potential from the points
piand/?,,.! with the point (#,0,1,0).

Symmetry shows the potential between the points px
and pnA and the points {p*}£2 is twice that between the
points pi and the points {pk\k~2 • The potential between
the points p\ and the points {pk breaks into two cases
depending on whether the shortest arc length path goes
through the point (x,0,l,0) or not. Itdoesn't for the points
{pk }(

k-2
V2and does for the Points {pk )k-(n*3)/2' So the

potential associated with the points pi and pn.iand the
points {piSk-2 is

fc=3 \ »•* 9 / fc= n£3
A(ri+<?)<? j(r!+g)q \
V rlk

'

(2ri+(n-l-k)q)2)'
Here the sum starts at k = 3 because p Y is adjacent to p2
and the 4 appears because each pair of points is counted
twice in sum (2) and then this is doubled to take into
account the potential with the point />B.j.

The potential between p x and/> n.!is

V r?.n-, (2r,)J )'(5)

Again the 2 appears to take into account that the pairs of
points appear twice inequation (2).

The potential between a pair of the points {pk)k-2
depends on whether the shortest are length path goes
through the point (x,0,l,0) or not. Looking at only the
points pk, 2 < k < (n

-
l)/2, the points for which the

shortest path doesn't pass through (x,0,l,0) are pj for 2 <
;< (!|I)+k. Thus for the point ph

,2 < k < (n -l)/2, the ener-
gy associated with it and the pj,j*1,n -1 or (x,0,l,0) is

2 ¦*¦* / 2 2 \ n
—

2

V<7 (2r1+(n+fc-j-2) q)^>
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When summing up over all the pk
,2 < k < (n

-
2), one . aji n

_
2

must be careful not to double count the points. So in the +ili±fl*l+ 2lr* + *\ dr > _ fo+ridr, + g<?2 £
case of the first sum above, one should restrict oneself to 9' * ''

fc=2j=i4i+fc

looking at only those jwith k <j< -^Sp+ ft. Also the largest —
j.

value of k for which there are points in the second sum n+(n+ fc
-
j
-

2) g)

is -^jjr- (this is because all potentials with (x,0,l,0) and pn.i
have already been taken into account). Summing the When evaluating this derivative at x = 1, note that
potential associated to the points pk

,2 < k < (n
- l)/2 with (a) rl\ xml

=q, and (b) rjh \ xml
=
r \̂ xml

,
the points pk,2 < k < (n

-
2) gets all the potential between Using these to simplify (8) gives

pairs of the points pk
,2 <k < (n

- 2), except for that asso- QE *fj/ ,
2 ,. 2 §

. . \

ciated with pairs of points in (n + l)/2 < *< ( n
- 2). (9) = 4g • £ I

- +
-jj^y

~
jpp I

Taking these into account and summarizing all of this J^2 k
'

giveS
+2o V"( dr> dri \ !2g V

2S j£,It"mv j+2S .=5+fc f*l+ 8<?-^
/^_ ,3 2 V-

2 f_iL q? \ V*-1 (("+ l-^)<7)3 ((n + l-k)q)2J
[rlj (2rl+(n+k-j-2) qf)+

\^.^X^~~U-kfq^)-
|

(2g)rfn
(

dr, , g 2 S dn
Since x is only found inrk, the only terms for which r\ (2q) j~f . ~[ ((n+ k

- j)q)3

the partial derivative of the energy with respect to x will
"

be non-zero are The symmetry of the problem gives that
a-i n^i (c)rn.kUi

-
»*Ui,and (d) drk\ = drn.k \

4 y* fug r»g \ v (iil>+£)9 _ +<?)«? N These can be used to reindex the sums giving

T-l do) dE -u T*(dri 2qdrk
1

2qdri dri \
k=«pK r* k (2ri+(n-l-*)«)V+2^ rfiB.t (2r,)» J

-27 F «?
2 \ o S^fdri drx \ _ fdrx Sq ¦ drx dr x \

The derivative of this is
/>y\ n

—
5 n

—
1

L ,2.7-rfn dr t ?; dn
X (driq rl-riq-2rkdrk dr xq ¦ (r,+(fc - 1) q)2 -r,, ¦ 2(r,+(fc

-
1)<?)rfr^ rg

"*"
2(3 Z^ 2_^ jfc3-

'

+21(tf"(^W) Recognizing that 8 .£ ± =S.^ih^D.
+2 V fiii- Jr'g '(2r| +(n "1 ~ fc)<7)

'
~ (r'+«>«- 2(;r» +("

-
i
- fc)^)Mr,N and reorganizing to combine like terms gives

1 ft(n•»«)*! _ 2 (r,+,)ifr,• (2r,)2 -(r,+9)" • 2 (2r,)2drA (11)
H r?.n-, (2r,)4 J n-, a_i

Reorganizing this gives /dri \ dri K/rfriN .- S/drA
(8)

'6 fcl^;+ 2 h\^) "&w

4< Sl?'^~ +
(r. +(^i),r(r,+(^-i),)'J *£W+""Sw aw 1

+29.V* f _ r' j which upon starting all the terms in the sums at the same
jt=3 \

r*.i (fc-1) 92/ place becomes

kh~Vli (2ri+(n-l-k)q)3 (2r, +(n
-

1
-

*)q)*) (U)
-J£

= 8g • J2 ( ~?T ) ~ 'Z, ( )
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d7'i dr\ dr\ dr\ dr\ Since the terms inside the sum are all bounded, the sum
47 9<7 2g 87 ~27q ' itself is on the order of n/2b, so (16) is of order 1/w, thus

its limitis zero, that is
This reduces to (17)

n-j. IIn/2fc)l -2 (bkjL)c;in2 (SJL) -«*in2 (*&¦) sin2 (te\
(13> =8* • £ ( 3 J •

—
£ (sin2(S) T sin2 (^))2

For A > n/26, since a and & are relatively prime, the
Evaluating at x= 1and using denominator for

1
=

V/(cos(^)-l) 2 -fs^( )̂+ (cos(^)-l)2 -fsin'( )̂ (»-l)/2 /***) /„)
_

sin2 /ofcrj 2 (M)

_2sinV«AM fc=[[n/2b]]+l lsm l-^-)+Sin l^TJ)
ar*ll=l

— —
% ana

»"iU=i -q is bounded away from zero, so
(n-l)

(13) becomes (19) lim f* sin {£)
n—00

'
2 , _:_2 /6fcir\\2 ~

n
—

oo

sin2 (^^)sin2 (2i) < !• i. V
= 4 V^ /sin'(^).si^(^)-sinM^)-sin 2(^)^ mE

jh

"
"-»C

t,|| b̂||+1

fc=2 V (sin ( n j+sin (
—

jj y -t-1 /airxVn-lN nsin
2 I— ) < Hm > ( — ) < lim ( — ) ——- =0.

It remains to show in the limit as n -» ~ that this is Vn/ "^
k-\ln/2b)]+i

n "-^ooVn/ \ 2 J
zero. This is done by breaking the sum (14) into two Similarly
parts. Ifa < b split the sum for k < n/2b and k > n/2b, ifa< (20) (n-n

b split the sum between k < n/2a and k >n/2a. sin2 (^)sin2 (^)
Assuming a < b, and since sin (x) > 2x/n for 0 < x < n-^o 2-** (c-2 fakir \ , •_ 2 /6fc7r\\ 2

"

7C/2, we have that *-Hn/2fc]]+i l«" l~J +sm l~ij

so (19) and (20) combine to give
(15) 'Ms in2(^)sin2 (^)-Sin2(^)Sin2 (^)

& (sin2 (^)+ sin2 (^))2 {2l) _
rr.11 ,. TIT Sin2 (^)sin2(^)-sin2(^)sin2 (^)

2 ( )̂ sin2 ( )̂ -sin2 ( )̂sin2 ( )̂ £*. E L^L^)^ *
ft ((a^ )2 + (2^)2)2 2"l]+i (sm (—)+sin (

—
))

11^1 sin2 (^)sin2 (^)- sin2 {sjjl)sin2(^) (17) and (21) combine to give

fc=2 \~) + v^r^ (22)

""f
"'

«in'(to) rin»(y)- rin»(linL)«|n»(te) a£ _ l
dn»(fa )riB.(y)- l̂»(ito)rin«(te)

fe 16(a«+M)*«
•

..-i^.r .'-"-A. (sin8(lto) +»in»(Si£))»

Using the Taylor expansion for sin (x) in (15) gives (22) together with the symmetry of our discrete

(16) n« ifrffii(*fr-i(^)y.yte-^^
16(a« +64 ) 2-^ ik^

"
16(a 4+6«) 1L> k*

n4

"
n/^bH (aa fca 64+a 4 fc4 i>3-62 fcao 4 -b 4 fc4a a)^+liieher order in 1/n""

16(a 4 +6 4 ) it4^

7T
6 IIn^b11 (a2 fe2b 4 +a Ak4 b2 -b2k2a4 -b 4 fc4a2) + • • •

~
48(a 4 + 6 4)n2 Jt 4
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model shows, in the limit as the number of points in the
model goes to infinity, that all the partials of the energy
for this configuration are zero. Since the energy function-
al is continuous at y(t), the first variation of the energy for
the curve y(t) = (cos(2atn), sin (2atn), cos (2btTt), sin
(2btn)) is zero. Thus this curve is a critical point of the
energy. Projecting this curve to i?3 gives the curve

, v _ / cos(2a7tt) s'm(2a7tt) cos(2bitt) \
CW

"
\ V2-sin(2**)» <2-s\n(2bmy V2-sin(26«) /

?

Using the conformal property of the energy functional
i (1) shows that the curve o(t) is a critical point of the ener-
V gy-'
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