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Abstract

A drift chamber type radiation detector is being used to examine design criteria for a new type of detector called a
micro Time Projection Chamber (micro TPC) which is being proposed for use in high energy nuclear physics experi-
ments. The main advantage of the micro TPC detector is its very low radiation thickness compared to its silicon counter-
part. The micro TPC is a charged-particle detector which will be optimized for good two track resolution which is needed
in a high track density environment. Such performance requires low electron diffusion and high resolution readout. The
diffusion will be reduced by limiting the drift distance to 15 cm and by using a low diffusion gas such as dimethyl ether.
High resolution will be obtained by using a new readout technology called microstrips. Microstrips are a recent develop-
ment using photolithography techniques that allow the creation of anodes a few microns in width with submicron preci-
sion. The main purpose of this test chamber is to demonstrate the feasibility of a micro TPC design using a low diffusion
gas and to insure the sufficient signal remains after electron attenuation. The drift chamber design and the proposed test-

ing procedures are described.

Introduction

In high energy nuclear physics experiments, such as
those proposed for the Relativistic Heavy Ion Collider
(RHIC), high particle density puts an extra demand on a
detector’s ability to distinguish between close pairs of
tracks. A new type of detector has been proposed
(Wieman, 1994) which will be optimized for low mass and
good two-track resolution. This detector, known as a
micro Time Projection Chamber (micro TPC), will utilize
microstrip anodes for readout.

A time projection chamber works on the principle
that radiation passing through a gas ionizes molecules in
its path and leaves a trail of electrons along the way. The
electrons are forced by means of an electric field to drift
towards anode wires at one end of the chamber. As the
electrons approach a distance of a few times the wire
radius r, the electric field felt by the electrons increases as
1/r. In this high potential region electrons accelerate
enough to ionize molecules with the new electrons in
turn accelerating and ionizing more molecules until an
avalanche forms. This avalanche is known as the amplifi-
cation or the gas gain and insures that a sufficient num-
ber of electrons are produced to obtain a detectable sig-
nal.

Traditionally, the anodes were thin wires capacitively
coupled to readout pads. Recently, however, a new tech-
nology known as the microstrip detector (Oed, 1988;
Angelini et al., 1991, 1992) has been developed which can
be used in a micro TPC as an alternative readout tech-
nique. These microstrip detectors use thin metal elec-

trodes on an insulating substrate which, by using precise
photolithography techniques, can be spaced accurately on
the order of a few microns. This distance is significantly
smaller than what one is able to accomplish with conven-
tional readouts and the position and two-track resolution
are correspondingly improved. For this project,
microstrip detectors have been fabricated at the Berkeley
Micro-Fabrication Laboratory (Gong et al., 1994).

Dimethyl ether (DME) has been chosen as a promis-
ing candidate for the drift gas of the chamber. The limits
of position resolution and two-track resolution in the
micro TPC design are set by the diffusion of the drift gas
and DME has been shown to have a very low diffusion
constant (Villa, 1983). In addition, limiting the drift
length of the chamber to 15 cm will help keep the diffu-
sion low.

One of the main concerns of using DME in the micro
TPC design is the electron attenuation due to electron
attachment coupled to the relatively slow drift velocity,
resulting in a loss of part of the signal. The number of
electrons lost increases exponentially with the drift length
and the concentration of elector-negative epollutants
(Sauli, 1977). Since the proposed drift length is relatively
long, the purity must remain exceptionally high for prop-
er functioning of the detector. Thus, the primary purpose
of this test chamber is to measure the electron attenua-
tion to insure that a sufficient number of electrons reach
the microstrip anodes. Also, if necessary, purification
methods will be studied to determine how to best mini-
mize pollutants that cause electron attenuation.
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Materials and Methods

Chamber construction.-~The test chamber consists of
an aluminum cylinder 18 cm in height and 21 cm in
diameter (see Fig. 1). It has quartz windows on one side
for the purpose of shining a laser into the gas chamber.
The laser will act as an electron point source by ionizing
gas molecules. The quartz windows are attached with
high vacuum quality flanges. The other side has two thin
aluminum windows to allow the passage of X-rays from
an %%Fe source. Also, the top of the chamber has a quartz
window to allow a laser to shine in from the top. The
position of this laser will be varied with a translation
stage for the purpose of measuring the diffusion width of
the electron cluster.

DME drift chamber _ quartz

Mll::ros‘lrl}: detectors
Fig. 1. A schematic of the 18 cm chamber used to test
dimethyl ether as the drift gas for use with micro strip
detectors. (This Fig. is provided as a courtesy by Mr. Russ
Wells of Lawrence Berkeley Laboratory.)

Inside the chamber is a field cage structure consisting
of a stack of 15 annular disks spaced 1 cm apart. This
field cage creates an electric field region for the drifting
electrons. A resistor chain connecting the plates main-
tains a uniform potential gradient down the stack.

As mentioned, microstrip detectors have been fabri-
cated and successfully tested in the lab. The microstrip
detector currently being used consists of 100 pairs of
alternating anode and cathode strips laid out on a glass
substrate. The anodes are 10 microns wide, the cathodes
are 90 microns wide and there is a 50 micron spacing
between each anode and cathode. 16 channels (anodes)
of the detector will be bonded to a preamplifier/shaper
chip. The detector and preamplifier chip will be attached

to a ceramic board which will sit at the bottom of the
chamber and define the end of the drift region. It is nec-
essary to make the PC board of ceramic material to help
preserve the purity of DME.

The DME gas flows through the chamber at a rate of
0.05 liters/minute. A NanoChem filter is used in line to
take out the majority of elector-negative impurities. Also,
a hygrometer and oxygen analyzer will be used in line to
monitor the has. DME is an excellent solvent of many
common construction materials, including several that
are often used as o-rings in gas valves (Sauli et al., 1989).
Therefore, wherever possible, all metal seals were used in
components such as valves and regulators.

Testing Procedures.--Two difference methods are
employed to test DME using this chamber. The first
method uses the 5.9 keV X-rays emitted from 35Fe. These
X-rays pass into the chamber through thin aluminum win-
dows set in the side of the chamber at different heights.
The second method utilizes an ultra-violet laser to direct-
ly ionize the gas molecules. This laser shines ultra-violet
light into the chamber via quartz windows set in the sides
and top of the chamber.

The position resolution measured using this chamber
is strongly dependent on the diffusion of the drift gas
(Basile et al., 1985). As mentioned, DME was chosen
because it is a low diffusion gas. The diffusion is mea-
sured by reading the signal height on several adjacent
anodes. The resulting shape is an approximate gaussian
distribution. The width of the gaussian is a measure of
the diffusion.

Various properties of DME have previously been mea-
sured for small drift distances, but only up to 3 cm (Basile
et al,, 1985). It is fully expected that the drift velocity and
diffusion will scale in a predictable manner for the 15 cm
drift distance. Electron attenuation, however, is not
expected to behave in a simple manner for the 15 cm dis-
tance. The attenuation is highly dependent on elector-
negative impurities and will thus depend on the chamber
being “clean.” Attenuation in the ionization-electron sig-
nal is measured using the UV laser to produce ionization
electrons at various heights within the chamber.
Depending on their different drift distances, more or less
of the electrons reach the anodes to be collected. Since
the UV laser produces the same number of ionization
electrons, within a statistical variation of roughly 10%, the
difference in collected signal directly measures electron
attenuation versus drift distance.

The length of the anodes to be used is relatively
short. Short anode length is a requirement for adequate
two-track resolution. The trade off is between electron
signal attenuation and anode length. Electron attenuation
is more of a problem with short anodes because fewer
electrons reach each anode. Only about 180 electrons/cm
will be ionized by X-rays coming from 35Fe. Therefore, for
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a 3 mm anode length, only about 60 electrons would
reach the anode. In addition, electron attenuation will
decrease this number even further. The number of elec-
trons will then be boosted by the gas gain; however, one
of the goals for this detector is to operate at as low a gain
as possible since low gain operation is more stable and
has smaller space charge effects (Gong et al., 1994). Thus,
once the extent of attenuation is known, an optimization
of the anode length can be made to maximize two-track
resolution while maintaining a sufficient signal.

Results and Discussion

In summary, a new type of detector, called a micro
TPC, has been proposed. This detector would help meet
the needs of high energy nuclear physics experiments to
track charged particles in high track density environ-
ments. The performance of the micro TPC will require a
low diffusion drift gas combined with high resolution
readout. DME has been chosen initially for the drift gas.
The test chamber described above is needed to demon-
strate the feasibility of a micro TPC design and to test the
performance of DME as a drift gas.

A simulation has been done showing the dependence
of the performance of the micro TPC on various parame-
ters such as geometry, multiplicity of particles and the
measured value of the DME diffusion constant (Wieman
et al.,, 1995). Unlike other properties of DME, however,
the value of electron attenuation at a drift length of 15
cm is very uncertain and must be measured. In addition,
measurements of the other properties of DME are being
made to confirm earlier reported measurements of its
properties. This chamber will allow the testing of differ-
ent cleaning strategies for DME in order to minimize the
attenuation of ionization-electrons within the DME. Also,
once the extent of this minimized attenuation has been
established as a function of drift length, this data will be
used in a simulation for optimizing of the exact length of
anode in order to maximize two-track resolution while
maintaining a sufficient signal.
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