


spatial correlation coefficient in the 1-D and 2-D networks.the figure,e = 102 is used for
both 1-D and 2-D networks wheM is large. For both the 1-D and 2-D networks, the optimum
node density decreases @sncreases. For a fixed, the optimum node density increasesNas
increases, and it is upper bounded by the asymptotic resudtrefore, the 1-D and 2-D networks
have similar performance trends. For a giyerthe optimum node density of the 2-D network is
slightly higher than its 1-D counterpart.

From Figs. 2.7 — 2.9, it is observed that the performance eDan2twork has similar trends as
that of an 1-D network. Therefore, we can use the tools andtsederived for an 1-D network to
approximately predict the performance trend of a 2-D netwespecially when the node density
or the spatial correlation coefficient is large. Since tlailts of the 1-D network are expressed in
closed-forms, using the 1-D results for the analysis of tir&etwork reduces the analysis com-

plexity, and provides similar insights on the interactibeswveen the parameters and performance.

2.6 Conclusions

In this chapter, the optimum sensor node densities for 1-D 2D WSNs with spatial source
correlation were studied. The impacts of the node densityeMSE of the data reconstructed at
the FC were investigated for both small networks with finibentoer of nodes, and large networks
with the number of nodes tending to infinity. Exact analyitegoressions of the MSE, many in
closed-forms, were obtained for the 1-D and 2-D networkse a&halytical results quantitatively
identified the interactions among the various system paemand the estimation fidelity, and the
results provide insights and guidelines on the design aftjma WSNSs.

There were three observations from the analytical and niealgesults. First, if the network
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only needs to estimate spatially discrete data, placingthxane sensor at the desired measure-
ment locations will generate the optimum performance. Beécéor the estimation of the data
at arbitrary locations in the measurement field, the optinmaahe density can be found when the
MSE-density slope is close to zero, and the optimum densityaghses as the spatial correlation co-
efficient increases. Finally, the 1-D and 2-D networks hawvélar performance trends with respect
to node density, and their performance difference dimessds the spatial correlation coefficient

increases.

2.7 Appendix of Proofs

2.7.1 Proof of Lemma 2.1

In Step 2, the MMSE vectowg that minimizesa,zl can be obtained through the orthogonal princi-

pal [18], E{[w]%s— X(n)]Xd } = 0, and the result is

Wl = ExmS] [E&KD]

= Vhiry (PnRxx+ UZZ| N)_]ng, (2.33)

where (2.2) and (2.6) are used for the second equality. Qunp{2.6), (2.8), and (2.33) leads to

(2.4).

2.7.2 Proof of Proposition 2.1

Based on Szego’s Theorem [16], when— o, (2.11) can be rewritten as

1 -1
2y 2 [2 1 Yo
05 = \im o5 = /_% [/\ss(f) * 6} af, (2:34)
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whereAgs(f) = 512 ., pl"de~In27f s the discrete-time Fourier transform (DTFT) of the seqeen

{p‘”‘d} , which are elements of the Toeplitz matRxs The DTFT,Asg( f), can be calculated by
n

1— pZd
Nss(f) = 14 p2d —2pdcog2mf)’ (2:35)
Substituting (2.35) into (2.34) leads to
1 2d d -1
5 2 [14p®—2p%cogq2mf) w
o :/%[ I +21 at (2.36)
The above integral can be solved by using the identity [18, €21553.3)]
1
2 -1 1
/_l a+bos2nt)] Hdf = ——— (2.37)

2

Combining (2.36) with (2.37) leads to (2.12).

2.7.3 Proof of Corollary 2.1

d

2 H . . .
1£p2d IS a monotonic Increasing

From (2.12), itis equivalent to show thgit(d) = (1+ yod)? + 4ypd

function ofd = %. Taking the first derivative of;(d), we have

did)=— P < g(dyp), (2.38)

(1-p2)°

wheregx(d, yo) is defined as

62(d.0) 2 (1-p%) 2<1+yoo|>+2pz‘1(1—pz")+4d log(p)p? (2.39)

From (2.38), in order to provgj(d) >0, it is sufficient to prove thag(d,0) > 0 because

02(d, yo) > g2(d, 0). Letv= p? € [0,1], thengy(d,0) can be rewritten as

g3(V) £ g2(d,0) = 1—V*+2vlog(v), 0<v<1 (2.40)
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It can be easily shown thgg’(v):2(\—1/ —1) > 0,Yve|[0,1]. Thereforegs(v) is quadratic o0, 1]
with the minimum value obtained at the solutionggfv) = —2v+2log(v) +2=0, which isv=1.
Substitutingv = 1 into (2.40), we have mifgs(v)} = 0. Thereforegz(d, o) > g2(d,0) = gs(v) >

0, and this completes the proof.

2.7.4 Proof of Proposition 2.2

The Toeplitz matrixRqs, is uniquely determined by the sequetige=[t_n_1),- - ,to, - o]’
wheret, = p2pI"Ud whenn < 0, andt, = p?p" otherwise. WherN — o, the DTFT of the

sequenceys can be calculated as

(1-p%)(1+e)
1+ p2d —2pdcog2mf)’

Nl

Nas(f)=p

(2.41)

Based on [16, Lemma 2Rgsis asymptotically equivalent to a circulant matiGys = U{| Dg<Un;,
whereUY is the unitary discrete Fourier transform (DFT) matrix witie (m, n)-th element being
(Dds)imp = ﬁ exp —jZHW] , andDys is a diagonal matrix with it&-th diagonal element
being

(Dds)kk = Nds (%1) : (2.42)

Similarly, the Toeplitz matrixRss, is asymptotically equivalent to a circulant matr@gss =
UH DssUn, WhereDssis a diagonal matrix with it&-th diagonal element bein@ss) = /\SS(%),
with Asg( f) defined in (2.35).

Based on [20, Theorem 2.1], the error correlation malﬂgg), Is asymptotically equiva-
lent to a circulant matrixCY) = Ces— Cys <Css+ %I)_lcg's = U{ DY Uy, whereDY) = Dgs—

-1
Dgs (Dss-l- %I) D'(]'S. It is apparent thaDé%) is diagonal given thaDssandDys are diagonal.
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Based on Szego’s Theorem, we have

1 2
03 = 21 Nss( f) — M df (2.43)
—3 Ass(f) + %
Substituting (2.35) and (2.41) into the above equation an@lgying leads to (2.19).
2.7.5 Proof of Corollary 2.3
The MSE in (2.19) can be alternatively represented as
1
0f = {1+ [131(8) — 13(8)] / [f{ X(8) + 13(8)] } 2. (2.44)

Sincef1(0) is a decreasing function @ and f3(d) is an increasing function a3, it is straight-
forward to show thaf f;1(8) — f3(8)] / [f;1(8) + f3()] is a decreasing function @, and this

completes the proof.

2.7.6 Proof of Proposition 2.4

According to [17, Lemma 1], the TBT matricemss andmys, are asymptotically equivalent to
circulant-block-circulant (CBC) matriceBss andBgys, respectively, where the eigenvaluesBaf
andBys are samples of\g(( f1, f2) andAj(f1, f2), respectively [17, Theorem 3]. In addition, the
CBC matricesBss andBgys, share the same orthonormal eigenvectors [21]. Once thapstic
equivalence is established, the rest of the proof follovesshme procedure as described in Ap-

pendix D for the 1-D case.
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Chapter 3

Optimum Sampling in Spatial-Temporally Correlated Wireless Sensor Networks

Ning Sun and Jingxian Wu

3.1 Abstract

The optimum sampling in the one- and two-dimensional (1-B 2/D) wireless sensor networks
(WSNs) with spatial-temporally correlated data is studrethis chapter. The impacts of the node
density in the space domain, the sampling rate in the timeaglorand the space-time data corre-
lation on the network performance are investigated asytapity by considering a large network
with infinite area but finite node density and finite tempoeahgling rate, under the constraint of
fixed power per unit area. The impact of space-time samplmgetwork performances is inves-
tigated in two cases. The first case studies the estimaticthg @pace-time samples collected by
the sensors, and the samples are discrete in both the spadien@ndomains. The second case
estimates an arbitrary data point on the space-time hygeedby interpolating the discrete sam-
ples collected by the sensors. Optimum space-time samiglioigtained by minimizing the mean
square error distortion at the network fusion center. Tlherattions among the various network
parameters, such as spatial node density, temporal saympte, measurement noise, channel fad-
ing, and their impacts on the system performance are qatawtly identified with analytical and

numerical studies.
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3.2 Introduction

Data collected by a wireless sensor network (WSN) oftenainrmedundancy due to the spatial
and temporal correlation inherent in the monitored obgctThe spatial-temporal data correla-
tions can be found in a wide range of practical applicatisnsh as environment monitoring with
temperature and humidity correlated in the space and timeadts, soil and water quality mon-
itoring with the chemical compositions correlated in thaspand time domains, and structure
health monitoring with spatial-temporally correlated raition information of the civil structure
[1], etc. The space-time redundancy/correlation is ingrdrto the performance and design of
practical WSNs, which attempt to reconstruct a spatialp@rally correlated signal field by col-
lecting the data samples from the sensors. Given a fixedirigae®n power per unit area, a higher
spatial node density or temporal sampling rate means lassmrission energy per sample, which
usually degrades performance due to a lower signal-tcenaiso (SNR) at the receiver. On the
other hand, the system performance might benefit from madie stanmples per unit area per unit
time by exploiting the space-time redundancy. Therefdres critical to identify the optimum
space-time sampling, i.e., the optimum spatial node deasi temporal sampling rate, in a WSN
with spatial-temporally correlated data.

There have been considerable works in the literature stgdyiie impacts of spatial node den-
sity on the network performance [2] — [6]. In [2], the optimumade density of a many-to-one
linear network is analyzed by using the detection probigtoli a binary event as the performance
metric. In [3], a Wiener process is used to model the spatiaktation of an one-dimensional (1-
D) field. It is demonstrated that, due to the spatial dataetation, distortion-free communication

can be achieved even if the per node throughput tends tdl6-a&s. The optimum node densities in
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both 1-D and two-dimensional (2-D) networks are obtainednyimizing the mean square error
(MSE) between the recovered information and the originarmation under a distortion-tolerant
communication framework [5],[6]. Most existing studiesfis only on the spatial data correla-
tion, and they do not consider the variation of the data irtithe domain. In reality, the physical
phenomenon under monitoring changes with respect to timtettee consecutive observations of
a sensor node are often correlated temporally [7].

There are limited works on the study of WSNs with spatialytenally correlated data [8], [12].
In [8], an arbitrary point on a continuous measurement feelestimated by performing space-time
interpolation over the samples collected by the spatialigréte sensors, and there is a finite op-
timum node density to minimize the estimation MSE over thasneement field. The model in
[8] is extended in [9] by considering realistic transmissgzchemes, such as limited transmission
range and practical network/routing parameters. In [§]f8e temporal data correlation is only
utilized to perform time domain interpolation, and they du nonsider the effects of optimum
time domain sampling. The effects of both space and time dosanpling are studied in [10] by
using the network energy as a performance metric, througlstiindy of a collision free network
protocols. All of the aforementioned studies consider anrdree communication channel be-
tween the transmitter and the receiver. The impacts of @ddithite Gaussian noise (AWGN) are
considered in [11], which obtains a lower bound on the digtoras a function of the number of
sensors and spatial-temporal communication bandwidtliveder, the analysis is only applicable
to a measurement field with finite degree-of-freedom andsgerdte in the time domain. In addi-
tion, it does not consider the optimum sampling rate in thietdomain. The optimum space-time
sampling of continuous data in an 1-D network with AWGN chealns studied in [12].

In this chapter, we investigate the optimum space-time famfor both 1-D and 2-D WSNs
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with spatial-temporally correlated data. The 1-D netwask be used to model practical WSNs
designed for highways and tunnels. The 2-D network model&l¥MBat cover a large area, such
as a farmland. There is no limitation on the statistical prtips of the field, other than that it
forms acontinuougandom process that is wide sense stationary (WSS) in betbpiiice and time
domain. Each sensor node collect samples of the field, améfdrthe information to a data fusion
center (FC) through an one-hop AWGN or fading channel. Sindhe-hop network structures are
used in [2], [5], [6], [12] — [15]. The FC attempts to reconstr the time-varying and spatially
continuous data field from the discrete sensor samples bpiérg the data correlation in both
the space and time domains with the minimum mean square (8MBSE) receiver. The impacts
of the spatial node density, the temporal sampling rate tla@dpace-time data correlation on the
reconstruction MSE are investigated asymptotically inrgdanetwork with infinite area, infinite
time period, but finite node density and finite temporal samgpiate, under the constraint of fixed
transmission power per unit area.

Compared to existing studies in the literature, this chdms the following main contributions.
First, to the best of our knowledge, this chapter is the firat explicitly quantifies the interactions
between the performance of networks with spatial-temppocalrrelated data and various system
parameters, such as spatial node density, temporal sajmpte, measurement noise, and channel
distortions, for both 1-D and 2-D networks. Second, theropth spatial-temporal sampling for
two types of networks, one needs to recover only the dis@eéee-time samples collected by
the sensors through their noisy observation, and one nee@sdver an arbitrary data point on
the space-time hyperplane, are identified through the amtio@mnalysis. Third, the impacts of
various practical factors, such as measurement noisenehtading, and random network topol-

ogy, on the performance of networks with spatial-tempygredirrelated data are studied through
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numerical analysis and simulations.

The remainder of this chapter is organized as follows. 8e@&i3 introduces the system model
and a two-step MMSE estimation method. Sections 3.4 andtBdes the impacts of spatial-
temporal sampling on 1-D and 2-D networks, respectivelyfdilowing the two-step MMSE
method. In these two sections, the optimum spatial-tenharaplings in various networks are
identified with asymptotic analysis and simulations. Boittalgtical and numerical results are
presented in Sections 3.4 and 3.5 to demonstrate the iitera@among the various system param-

eters. Section 3.6 concludes the chapter.

3.3 Problem formulation

3.3.1 System model

Consider a WSN withiNs sensor nodes uniformly placed over a measurement field. do#escted
by the sensors are spatially correlated, and they chanderespect to time. We first study a
network with a deterministic topology, where the sensoespaced over an equal-distance grid
as shown in Fig. 3.1, with the distance between two adjacetesibeingl. Such a deterministic
topology can be used to model networks that can be carefldiyned beforehand and has no
limitation on sensor locations. The performance of netwarkh deterministic topology will be
compared to those with randomly distributed nodes. Netwarikh random topology can be used
to model ad hoc networks or networks with mobile nodes. TIiselte obtained for these two
types of networks can serve as performance bounds for gaactietworks, which usually use a
combination of these two topologies.

Each sensor node collects data samples with a samplingfrateqls Hz. In the space domain,
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Figure 3.1: The spatial-temporally correlated sensor agtsy

define the spatial node densidy,as the number of nodes in a unit area. The spatial node wensit
ared = % andod = d—12 for the grid-based 1-D and 2-D networks, respectively. et [cT t]7
represent the coordinate in the space-time hyperplaneawiedenotes matrix transposeis the
coordinate vector in the space domain, amlthe time variable.

Each sensor node will measure a spatial-temporally depempdigsical quantityx(n,, ), such
as the temperature, humidity, or the vibration density afdge, etc. Itis assumed that the physical
guantities to be measured form a random process that is WiS&hrthe space and time domains.
Due to the spatial-temporal redundancy of the measurenetd} fhe spatial-temporal correlation

function between any two arbitrary data samples is assused a
E [X(n1)x(n2)] = pa® %! gl (3.1)

wheren, = ¢!, t)]T, ps € [0,1] andp € [0, 1] are defined as the spatial correlation coefficient and
the temporal correlation coefficient, respectively, &d) represents mathematical expectation.
In (3.1), thel, norm ||c; — c2|| measures the Euclidean distance between the two pointghvéth
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coordinate; andcy in the space domain.

It is assumed that sensors deliver the measured data to ttiedifgjh an orthogonal media ac-
cess control (MAC) scheme, such as the deterministic frecpueivision multiple access (FDMA),
or the random exponentially-interval MAC (EI-MAC) [16], sluthat collision-free communication

is achieved at the FC. The signal observed by the FC fromtthdata sample is

=) - X))+ 20 (32)

whereE, is the average transmission energy per saniglg;) represents the quasi-static fading
coefficient,wy, is the measurement noise with variangg andz, is the AWGN with variances?.

It is assumed that the total power per unit area is fixeehaGiven a network with a node density
0 and a sample raté, the transmission energy per sample can be calculaté&g, as%. Itis
assumed here that the sensor-FC distance is much largethinaansor-sensor distance, such that
all the sensors have approximately the same distance toGhé& lkerefore, signals from all the

sensors experience similar pathloss, such that they calogtie same transmission energy.

3.3.2 Optimum MMSE detection

The FC will obtain an estimate of the spatial-temporally tomrous quantityx(n), Vi € Q,
by usingN = NsN; discrete space-time samples received at the FC, wiere the number of
the sensor nodes amd is the number of time-domain samples collected by each rioefne the
space-time data sample vectorgs= Xy ,...,x\ T € Z"*1, wherex; = [Xi1,...,Xn]" € Z™M x 1
is the time domain sample vector collected byithesensor node, and is the set of real numbers.
The corresponding signal observed by the FC can then beseqesl ay = [y1,...,y{]" €

2N, withyi = [yin,....yin) T € 2™
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The MSE forx(n) is

a5 =ER(n) —x(n)],n € Qy (3.3)

wherex(n) is the estimate af(n) based ory at the FC.

The optimum linear receiver that minimize% is the MMSE receiver described as follows

) = | —=n R | _En g H o EnOw koo - (3.4)
V=15 (11 T T1ta2 ZIN| Y '

wherer,, = E[x(n)xs] € 2N, R=E [xsixtt | €N N with the element defined in (3.1), and!

[17]

denotes the matrix Hermitian operation. The channel céeffienatrix,H € #N*N, is a diagonal

i Wi : ; T T Nx1 C_h Nex 1
matrix with the diagonal elements beihg= [h;,...,hy ] € €7*, whereh; = hily, € €™
with h; corresponding to the fading coefficient betweenithenode and the FQy, is a sizeMN
identity matrix, ands is the set of complex numbers.

With the optimum MMSE receiver given in (3.4), the M&l?7 can be calculated as
2 H 2 2,600 h -1 -
0,,7 :EH 1—r,,7 Rxx+ UW+(1+ O-W)%(H H) rn R (35)

wherey = g—g is the signal-to-noise ratio (SNR) per unit area with AWGNddhe expectation
operation is performed with respecttio The MSEO,ZI givenin (3.5) is a function of the space-time
coordinaten, the SNRyp, the measurement noise variamz;ﬁ the spatial correlation coefficient
ps, the temporal correlation coefficiept, the spatial node densidy, the temporal sampling rate
0, and the fading coefficiert.

Given a fixed transmission power per unit area, the spampbral sampling rate) and 9,
play a critical role on the MSIB%. A smaller node density and/or temporal sampling rate means
more transmission energy per sample, thus a better SNR p@lesavhich can benefit the system
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performance. On the other hand, a smaller node density msaiapling rate means less samples
per unit area per unit time, thus a smaller correlation antbaglata collected by the nodes, and
this might degrade the estimation performance.

In order to distinguish the opposite impacts of the spaé&ailporal sampling rates, we use an
equivalent two-step MMSE method [6].

Lemma 3.1The optimum MMSE given in (3.4) is equivalent to the two-St@dSE described
as follows.

1) The FC first obtains an estimate of tNediscrete space-time sampleg;, with a linear

MMSE receiver as
st = WHy, (3.6)

whereXs; € ZN*1 is the MMSE estimate aofs.. The MMSE matrixWy € 2NN is designed to

minimize the average MSE per sample:
2 1 o 2
OgtN = NE [[[Rst — Xst]|”] - (3.7)

2) The FC obtains an estimate of the data at an arbitraryiwtad(n), Vn € Q,,, by interpo-

lating Xs; with the MMSE criterion,
%(17) = Wi %st, (3.8)

where the vectomg € N1, is designed to minimize the MS& = E [X(n) —x(n)]*.

Decomposing the optimum MMSE of (3.4) into the two-step MM&IBws us to study the two
opposite effects of spatial-temporal sampling on the MSfasaely. In the following two sections,
we will investigate, respectively, the impacts of the no@asity on 1-D and 2-D networks by
following the two-step MMSE.
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3.4 Optimum space-time sampling in one-dimensional netwés

In this section, we study the optimum space-time sampliraqit-D network, where thids sensor
nodes are evenly distributed over a lengthrear section as shown in Fig. 3.1(a). In this WSN,
the space-time coordinate of tth data sample collected by tite sensor can then be represented
as[(i —1)d, (j — 1)Tg. The spatial-temporal correlation matrRy = E [xsix5] € 2NN, can be

expressed as
Rxx = Rs® Rt (3-9)

where® denotes the Kronecker product, aRd € Z2"s*Ns andR; € 2NN are the correlation
matrices in the space domain and time domain, respectiVelyspace domain correlation matrix,
Rs, has the form of a symmetric Toeplitz matrix with the first ranwd first column beings =

T
[1, pg, ey S(Ns_l)d . Similarly, the time domain correlation matrik;, is a symmetric Toeplitz

matrix with the first row and first column being= [1, ptTS, ce pt(Nt_l)TS

T
] . The matrix,Ryx, has
the form of a Toeplitz-block-Toeplitz (TBT) matrix [18] 6., Rxx is a block Toeplitz matrix, and

each sub-matrix is also a Toeplitz matrix.

3.4.1 MMSE estimation of the discrete samples

For the MMSE estimation described in (3.6), the optimimthat minimizes the MSEO’S?LN, can

be found through the orthogonal principEI[(:%st — xst)yH} =0. Theresultis

| E E Eno2 1
wh = [ _RH" L_HRH™ + W HHM + 62| 3.10
X 1+av%/ XX {l_l_av% XX +1+av%/ +zN 5 ( )
The conditional error correlation matriR,ggH = E [esef![H], with &5 = st — Xst, can then be
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calculated as

65, 17"
R((;;)H = Rux— RuH" [HRXXHH-l-aV%,HHH-l—(l-l—aV%,)WIN] HRxx

-1
R4 HHH
O oRHHR 4+ (1+03) %Iy |

(3.11)

where the orthogonal principal is used in the first equadihyg the second equality is based on the
identity D~ +D~!C(A —BD~1C)~!BD! = (D~ CA~'B)~L. The MSE can then be calculated
as

OGN = %EH [trace (R((;;)Hﬂ (3.12)

where tracéA) returns the trace of the matrix.

In Equations (3.11) and (3.12), the calculation of the MSElives matrix inversion, the trace
operation, and the expectation operation. The value of tB& Man be evaluated numerically. In
order to explicitly identify the impacts of the node densityd sampling rate on the MSE, we will
first focus on the analysis of system operating in the AWGNnhaleg and this will allow us to
express the MSE as a closed form expression of the node ylamsitsampling rate. The MSE
obtained under the AWGN channel will be compared to the MS&euthe fading environment

later in this section.

Proposition 3.1 WhenNs — o andN; — o while keeping bottd and® finite, the MSE of the
estimation of the discrete samples collected by the semsatsransmitted in an AWGN channel

is

| >
0% = lim o3 = n—% K < %) (3.13)
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whereK(+) is the complete elliptic integral of the first kind [19, Eqioat(8.112.1)], and

Dl

8 i m
a = — NE - . (3.14a)
O-W—l_(l-i_o-W)W 1_p55 1_pt§

2 2

F) ]
B = =+ L 1y 2P 1422 )42
2 21 (14 g2)80 2 z 2

Proof: The proof is given in Appendix 3.7.1. [ |

2
1 a
2 N
og+(1+ 08 2
(3.14b)

In Proposition 3.1, the spatial-temporal sampling affébesMSE in the form of the follow-
2 1 2 1

: : 5 5 G G

ing functions, f1(ps,8) = 2, 91(ps,8) = 2, f1(m,0) = P, g1(p,0) = 2, and
1-p¢ 1-p$ 1-p° 1-p°

f2(8,0) = ——L1——=. Among them,f1(ps, &) andgi(ps, 8) are related to the spatial correla-

02+(1+02) %

tion, and they are increasing functions &f f1(pot, 6) andgi(p, 0) are related to the temporal
correlation, and they are increasing function®ofThe functionf,(J, 8) is a decreasing function
of bothd andé.

In Proposition 3.1, if we assume that the data is spatialisetated but temporally uncorrelated,

then the MSE of the spatial samples can be simplified as fsllow

Corollary 3.1 If p; = 0, the asymptotic MSE of the estimation for the spatiallyrelated

samples is

2 5
4
2 <1+02+(1+02)@> " " 3
w W/ yo (UV%+(1+0VZV)%) (1—ps‘5)

02 = (3.15)

Proof: Settingp; = 0 leads toa = 0 andB = 0.5+ [14 2f1(ps, )] f2(5, 8) +0.52(5, 6)2.
Equation (3.15) can be obtained by substitufthigto (3.13). |
Wheng? = 0, the result in Corollary 3.1 coincides with [5, Equatio®)[L where only the spatial
samples are considered. It was shown in [5] analytically ¢tfds an increasing function id.
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Similarly, based on the symmetry between the space and timeauits, we can get the MSE of
the estimation of the temporal samples for a given node, bjiaxgingps with p;, andd with 6
in (3.15).

Fig. 3.2 shows the asymptotic MSE as a function of the spatide densityd, under various
values of the correlation coefficienig,andps, in an AWGN channel with SNy = 10 dB. Define
Yv = g%v as the measurement SNR per unit area. The temporal samaltengé = 10 sample/sec.
Data samples are assumed to be a zero-mean Gaussian prabese\auto-correlation function
given in (3.1). The simulation results are obtained by uding N; = 60 samples to approximate
infinite number of samples. Excellent match is observed éetwhe simulation results with finite
number of samples and the asymptotic results with infinitalmer of samples. As expected, the
MSE performance improves &g increases. Wheg, = 10 dB, there is only a slight difference
between the system with and without measurement noise. diti@a the MSE is an increasing
function in node density for all configurations. This indesthat the MSE for the discrete data
samples can benefit from a smaller spatial node density. efdrey;, if we only want to obtain
the data at some discrete locations, we should use a nodgydimas is as small as allowed by
the application, i.e., placing exactly one sensor at easirett measurement location will obtain
the optimum performance. Due to the symmetry between theesprad time domain, the above
analysis is also true for the relationship betwegpand 8. In addition, the MSE approaches a

constant a® — o. The result is corroborated by the following corollary.

Corollary 3.2 For the estimation of the discrete samples collected bys#msors and trans-

mitted in AWGN channels, given a sampling r&ewvhend — o, the asymptotic MSE approaches
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Figure 3.2: The asymptotic MSE of the estimated discreta samples in the 1-D network under
various values of measurement SWR(AWGN, yp = 10 dB,6 = 10 Hz).

a constant as

_1
2

1
: 2 2Yo 1+ p8
lim o3 == [1— : K(Dg), 3.16
Soseo SUT T (14 g2)8log(ps) 1—Pt% (Bs) (3.16)
1 3
2yo(1+p )2~ (1-+08)6log(ps) (1-pF )

Proof: The proof is in Appendix 3.7.2. [ |

Corollary 3.3 For the estimation of the discrete samples collected bysémsors and trans-

mitted in AWGN channels, when both— « andd — o, we have

1
2 4\ 2 4
lim =—|1+— -K — 3.17
5senfse0 n( +w) < 4+w>’ (3.17)

log(ps) log(pr) (1-+03)
s .

—

wherew =

1
Proof: Equation (3.17) can be directly proved by substitutinglimg 6 (1 — pty) = —log(pt)
into (3.45). [
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In (3.17), when bott® andd tend infinity, the limit depends on the correlation coefintgeand

the SNR. The relationship between the limit gndpt, yo is given by the following corollary.

Corollary 3.4 The limit in Corollary 3.3 is proportional tps and p;, and inversely propor-

tional to the SNRyp.

Proof: The proof is in Appendix 3.7.3. [ |

We next compare in Fig. 3.3 the MSE for systems operating irGN\¢hannels and fading chan-
nels, respectively. The MSE in fading channels is obtaingd avhybrid analytical and simulation
method, i.e., giverH, the conditional MSE can be calculated by performing theeraperation
over (3.11), and the unconditional MSE can then be obtaigeal/braging over a large number of
independent implementations |f. The parametergp and 8, are the same as those in Fig. 3.2,
and the variance of the measurement noisgZs= 0. The fading MSE is lower bounded by its
AWGN counterpart. The difference between the MSE of thesetyes of networks gradually
diminishes agps and p; increases. Wheps = p = 0.9, there is only a slight difference between
the two, especially when the node density is high. In adaljtimth of the two networks have the
same performance trend, i.e., the MSE is an increasingitumat 6. Therefore, the analytical

resultin AWGN channel can provide a rough guideline on thegteof systems with fading.

3.4.2 MMSE spatial-temporal interpolation

This section discusses the distortion performance of spaeinterpolation, i.e., the estimation
of any arbitrary point on the space-time plane by interpodptheN discrete space-time samples.
Since we are interested in the reconstruction fidelity ofehgre space-time hyperplane, the

worst case scenario is considered by estimating the daatelda the middle of the square formed
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Figure 3.3: Impacts of fading on the asymptotic MSE of thexested discrete data samples in 1-D
networks ¢p = 10 dB,6 = 10 Hz, a2 = 0).

by four neighboring samples, as shown in Fig. 3.4(a), withdhta points to be estimated being
X; =X(i—3)d,(j—3)Tg, fori=1,...,Nsandj = 1,...,N.. Define the interpolation data vector

2 / T T
asxq; = [xlT,...,x,\L] € N1, wherex| = [X, X5, ..., Xy | € 2N,

Nt [=—

d
2

(a) Space-time interpola- (b) Space interpolation (c) Time interpolation
tion

Figure 3.4: Three types of interpolations for the 1-D networ

Based on the orthogonal principﬁ],[(idt —xdt)ig] = 0, whereXg; is an estimate okgt, the

MMSE space-time interpolations can be expressed by

gt = RagRgg Rst, (3.18)
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where

o E
Rax = E(xafq) = |77 gz Rad" Wy, (3.192)
w

o E Eno?
Rz £ E(XsiXg) =W (T"UVZVHRXXHHJFﬁHHMale)WX, (3.19b)

with Rgy = E(xgixH) = RL® R being a TBT matrix. The matriRy is a Toeplitz matrix with the

g - _ q _
first row beingoZ [1,1, 08, ..., o 2NT ¢ Z2Nex2 and the first columpé[1, p9, ..., o VT ¢

Ts
N1, Similarly R} is a Toeplitz matrix with the first row being,? [1,1, ptTS,...,pt(N‘_Z)TS]T €
Is
221 and the first columm,? [1, o5, ..., o YT € %M*1. Combining (3.18) with (3.19), we

have

E E Eno? !

~ n H n H nYy H 2

Xdt = | ———RaxH sHRxxH" + ——SHH" + 071 . 3.20
dt 1—|— Oy dx |i1—|— Oy X 1—|— Oy z N} y ( )

The corresponding error correlation matrRY 2 & [(Rat — Xat) (Xat —Xat)"], can then be

calculated by
(d) H H 2y H 2, 09 -
Reed —FEH { Ryx—RgH [HRXXH +opyHH"™ + (14 GW)%I N} HRyq ¢, (3.22)

whereRyq = E(xdtxgt) = Ryx is used in the above equation, aRgy = Rg'x.

The MSE for the space-time interpolation when operatingfadang channel can be evaluated
numerically by performing the trace operation over (3.2Ij.gain more insights on the impacts
of node density and sampling rate, we next perform asynpamtalysis for systems operating in

AWGN channels.

Proposition 3.2 WhenNs — o andN; — o« while keeping bott®d and® finite, the MSE of the

spatial-temporal interpolation for a network operatingWGN channels is

1
: 1-py 5 1+cog2mf) [q—cog2mf)]?
2 A 2 . .
95 = Im, Jsin = 1+Pt% {1+/_% v—cog2mf) |p—cog2rf) df (3-22)

S
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where

2 2 1
1+p° 1 1-p° 1+p8
VZiet’ P=vr 268 f[ ' psl’
2p¢ 2<0W+(1+0W)W) pf  1-pd
2 1
1 1-p°f 1-p
q=v+—— = P 2P (3.23)
2<aw+(1+o-w)%> e 1+p8
Proof: The proof is in Appendix 3.7.4. [ |

The results in Proposition 3.2 illustrate the asymptoticBf&rformance for the MMSE inter-
polation in both the space and time domains. Even though BBE M Proposition 3.2 is expressed
as an explicit function of the correlation coefficients amel $pace-time sample rates, it is expressed
in the form of an integral and eludes a closed-form expressishould be noted that the integrand
is composed for elementary functions, and the integratioit is finite. Therefore the integral can
be easily evaluated numerically. To gain further insightt@impact of the space-time correlation
on the estimation performance, we consider in the follovgagtion the interpolation in just one

domain.

3.4.3 Interpolation in the space or time domain

In this section, we consider the MSE performance of intexfjah in the space domain as in Fig.
3.4(b) or in the time domain as in Fig. 3.4(c), but not bothudgtng the interpolation in one
domain will help quantify the impact of node density or saimgtate on the estimation MSE. The
analytical asymptotic study is performed for systems dpegan AWGN channels.

Due to the symmetry between the space and time domains uffisient to study the interpo-
lation in the space domain. From Fig. 3.4(b), the coordmatehe data to be estimated during the

spatial interpolation aré(i + 3) d, jTg], fori=0,...,Ns— 1 andj = 0,...,N; — 1. The asymptotic
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MSE of the spatial interpolation is given in the followingopiosition.

Proposition 3.3 WhenN; — c andNs — o, while keepingd and 6 finite, the MSE of the

estimated data during the spatial interpolation for a nétwperating in AWGN channels is

92 _ 2 |52 2,00] 1-pd 1
£ o [l 1ol VD@D
|- ey + = (0 3.24)

wherev, p,q are defined in (3.23),

2(p—q) r 2(p—v)
o=|—————- = ——"—, 3.25
e ver] RN e rsy (829

andrl(-) is the complete elliptic integral of the third kind [19].
Proof: The proof is in Appendix 3.7.5. [

If we assume the data samples are temporally uncorrelpted @), and perform spatial inter-
polation based on the spatially correlated but temporaltyourelated data samples, then the MSE

given in Proposition 3.3 can be simplified as follows.

Corollary 3.5 If p; =0, the asymptotic MSE of the estimation for the spatial ipdéation is

1 1
173 173
06 1-p¢ 060 1+p¢
92 = |02+ (1+02)— + p‘z 02+ (1+02)— + +p‘1 (3.26)
Yo 1+psé Yo 1_psé

Proof: Proof: Whenp, = 0, we have\(p, f2) = 1. Substituting\(p*, f») = 1 into (3.52)
directly leads to (3.26). |
Whena\,zV =0, the result in Corollary 3.5 simplifies to [6, Propositign\&here only the spatial
data correlation is considered. It was proven in [6] thatMI®E in (3.26) is a decreasing function
of the node density.
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Fig. 3.5 compares the asymptotic MSE performance betweeggétial interpolation and the
space-time interpolation. In the simulation, = 0.1 and g2 = 0 and all other parameters are
the same as those in Fig. 3.2. As expected, performing iolEipn in the space domain alone
leads to a better performance compared to interpolatioin the space and time domains. The
difference increases as the spatial correlation coefficmnincreases. Different from the results
in Fig. 3.2, it is observed that the MSE of the spatial intémpjon or space-time interpolation is a
decreasing function of the spatial node den8ity his can be intuitively explained by the fact that
the spatial interpolation depends mainly on the spatialetation among the sensor nodes, and
a higher node density means a stronger spatial correlatmmg the data samples, thus a better

estimation fidelity.

19-& \

—— asymptotic MSE of space-time interpolation
0.9 ) * simulated MSE of space-time interpolation ||
- = —asymptotic MSE of space interpolation
0.8l > O simulated MSE of space interpolation
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Figure 3.5: The asymptotic MSE of space-time interpolatod space interpolation in the 1-D
network (AWGN,y = 10 dB,02 = 0, oy = 0.1, 6 = 10 Hz).

It can be seen from Fig. 3.5 that, whén— o, the MSE approaches a lower bound, which is
stated in the following corollary.
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Corollary 3.6 The following relationship holds for the MSE of the estimatfor the data

samplessZ and the MSE of the spatial interpolatieig

1
2

N\ -
lim92=|=[1- : ‘K(Ag) | > lim o 3.27
5o © m (1+ g2)6log(ps) 1—Pt% (Ba) | = 50 U (3.27)

with A5 defined in Corollary 3.2.
Proof: The proof is in Appendix 3.7.6. [

Due to the symmetry between the space and the time domainsanvget the MSE of the time
interpolation, as shown in Fig. 3.4(c), by exchangmgvith p;, andd with 6 in Proposition 3.3,

and Corollaries 3.5 and 3.6.

3.4.4 Optimum spatial-temporal sampling

It can be seen from Fig. 3.5 that, whérns small, the MSE decreases dramaticallydscreases.
When o reaches a certain threshold, no apparent performance gaibecachieved by increasing
& further, i.e., the slope a#3 approaches zero @increase. The above statement is also true for
the sampling rat®.

In the space domain, we can find the optimum node dendityby solving the equation

094
L)

50285' with & being a small number. Fig. 3.6 shows the optimum node demsayWGN

channels as a function of the spatial correlation coefftgpggrunder various values of the sampling
rate@. The parameters agg = 0.5, 62 = 0, andes = 10~2. The results in this figure demonstrate
that the optimum node density decreases almost lineapy iasreases. Therefore, for the estima-
tion of the spatial interpolation, a smaller node densitgduired for a field with a stronger spatial

correlation. Moreover, the optimal node density convemgethe sampling raté increases, i.e.,
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Figure 3.6: The asymptotically optimum spatial node dengtsus spatial correlation coefficient
ps in the 1-D network (AWGNgZ = 0, oy = 0.5, &5 = 1079)

the optimum node densities are almost identicaléet 10 and@ = 50 Hz. This further corrob-
orates that increasing the sampling rate beyond a certeeslhtbld yields negligible performance

gain. Similar results are observed for the optimum samphitg due to the space-time symmetry.

3.5 Optimum node density in 2-D networks

The impacts of spatial-temporal sampling on the estimdiatelity in a 2-D network, as shown
in Fig. 3.1(b), are studied in this section. In the space dojiae Ns sensor nodes are located
on a square grid. In the time domain, each sensor colldcttata samples. The space-time
coordinate for the sampbem is [(i—1)d, (k—1)d,(m—1)Tg, fori,k=1,...,Ms, m=1,... /N,

with Ms = +/Ns. It should be noted that the spatial node density in a 2-Daaretwork isd = alz,
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which is different from the 1-D case.
Stacking all the spatial-temporally correlated data saspito a column vector, we hage =
X110 Xqpgr - Xpcts -+ Xime] T € 2N, whereXmym, = Xmymps - - - Xmymone] T € Z20°E. The

auto-correlation matrimy = E [£x€5 | € 2N*N, can be represented as
By = Rss® Ry (3.28)

whereRgs € ZN*Ns andR; € ZN*M are the correlation matrices in the space domain and time
domain, respectively. The matriRss, assumes the form of a TBT matrix as defined in [6, Equation
(20)] for the 2-D spatially correlated network. The matRxis a symmetric Toeplitz matrix as in
Equation (3.9). Therefore, the matrimy, is a 3-level Toeplitz matrix [20, Definition 1], i.emyy
has an outermost block Toeplitz structure, and each blos#lis block Toeplitz matrix, down to
the innermost block with the form of an ordinary Toeplitz mat

Mirroring the analysis in the 1-D case, we will study, in tle#ldwing two sections, the op-
timum spatial-temporal sampling for the MMSE estimatiortteé discrete data samples, and the

MMSE interpolation, respectively.

3.5.1 MMSE estimation of the discrete samples

With the first-step MMSE estimation in Lemma 3.1, we have thzt,N =iE [Hést—fstﬂz],

as

-1
1 HHH
2 1
= —Ey |trace | my+ : 3.29
Yan =y ( T gZHHH + (1+ avzv)%lN> (829

whereést is the MMSE estimate ofs;. The above MSE in a fading channel can be evaluated

numerically.
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Following the same procedure as in 1-D networks, we derexiplicit form of the asymptotic

MSE for the system in AWGN channels.

Proposition 3.4 WhenNs — c andN; — o, while keepingd and®@ finite, the asymptotic MSE

of the discrete space-time samples in a 2-D network tratstiihrough AWGN channels is

-1

1
£ lim _1/ / / df,d 0 £5,(3.30
l.Ust l-UstN 1)) /\ss(f]_, f2 ( Ts f3> O'2+(1—|-O'2> 0o 1y 12 3( )
whereA(a, f) is defined in (3.40) in Appendix 1, and
o & VE/E _jon(ifytkiy)
Nss(fr, f)= 5 > s e JITTKER), (3.31)
Proof: The proof is in Appendix 3.7.7. [ |

In Proposition 3.4, the impacts of the spatial-temporal @arg rate are expressed through
the term,ﬁ, and the 3-D DTFTA,( f1, f2, f3) = Aso( f1, fg)/\(p[TS, f3). The expression
of 3 eludes a closed-form. The non-closed-form expression.BOjan be easily evaluated
numerically given that the integrals are of finite limits.éivthough\)( f1, f2, f3) is expressed as
the sum of an infinite series, the valuepm/m decreases exponentially eandk increase,
thus/A\,,( f1, f2, f3) can be accurately approximated with moderate limits andk.

If we assume that the data are temporally uncorrelgted= 0), then the MSE of the data

samples in proposition 3.4 can be simplified as follows.

Corollary 3.7: If p = 0, the asymptotic MSE of the data samples in a 2-D network with

AWGN channels is

i (3

2 _
Lps_/_l/_l
2 2

where/gg( f1, f2) is defined in (3.31).

1 1
_|_
Nss(f1,f2) © of+ (1+0§) 92

dfdf, (3.32)
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Proof: Settingp; = 0in (3.40) leads toj\(ptTS, f3) =1. Substituting\(ptTS, f3) = 1linto (3.30)
and solving the integration with respectfty we can obtain (3.32). [

The result in Corollary 3.7 simplifies to [6, Proposition 3}lwo?2 = 0, where only the spatial
data correlation is considered.

The asymptotic MSE of the data samples in a 2-D network istqgdoas a function of the
temporal sampling rat@ in Fig. 3.7, under various values of temporal correlatioafioient p;
and measurement SNJR. The parameters apg = 0.5 andyy = 10 dB. For comparison, the MSE
in an 1-D network is also shown in the figure. It is interestiogote that when the measurement
SNR s low (, = 5 dB) and the time correlation is higj(= 0.9), the MSE is decreasing 81 for
all other cases, the MSE is an increasing functio.ifThis is because iiZ is large enough, the
majority of the energy is used for transmitting measuremeige. In this case, when increasing
0 for data with high temporal correlation, the benefit of daiaelation outweighs the loss due to
less energy per sample. The performance difference betyeeri0 dB ando? = 0 is very small.

In addition, 2-D MSE is larger (worse) than the 1-D MSE. Thas be explained by the fact that,
under the same spatial node density and temporal sampliegeaach node in the 2-D network
needs to cover a larger area than the node in the 1-D netviuk eads to a worse performance.

The asymptotic MSE for 2-D networks in AWGN channels is coregao that in fading chan-
nels in Fig. 3.8. Similar to the 1-D case, the MSE with fadihgmnels is worse than its AWGN
counterpart. The networks with fading channels and AWGNhok& have similar performance
trend, and the performance difference between the two gilydiliminishes aps increases. When

ps= 0.9, the performance in fading and AWGN channels are almostdhee at high node density.
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Figure 3.7: The MSE of the estimated discrete data samp@fimetwork. (AWGN,)p = 10 dB,

3.5.2 MMSE spatial-temporal interpolation
The performance of spatial-temporal interpolations in & Betwork is studied in this section.

Similar to the 1-D case, we consider the worst case by estim#ie data located in the middle

of the cube formed by eight adjacent data samples, with ttepsnts to be estimated &%, =

X
=
|
Nl =
~—
Qo
—~
=
|
Nl

)d, (m— %)Ts], fori,k=1,...,v/Ngandm=1,...,N. Correspondingly, the data
vector can be expressed &g = [X'11, .., X'tMg, -, X1 X i) T € ZN*L, wherex), i, =
/ T Ne x 1
Xrgmats -+ Xoymong)]. € 200
(d)

Following the same procedure as in the 1-D case, the errcglation matrix mee :E[(édt—sdt) (édt—Edt)H] ,

with £4; being the MMSE estimate @y;, can be calculated by
(d) (eJe) -1
By = Ey { momg,H" [HIXXHH +02HHP + (1+ UV%)%I N] Hamyg, o, (3.33)

wheremgq = E(£qi£ll) = mx is used in the above equatiomyy = E [£4:£5 ], andmg =mf,. The
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Figure 3.8: The MSE of the estimated discrete data samp&fimetwork with fading. yp = 10
dB, 6 =10 Hz,g, = 0).

cross-correlation matrixmgy, can be expressed as
By = R ®R| (3.34)

whereR), € Z2"*Ns andR; € ™M *M are the cross-correlation matrices between the data sample
and the interpolations in the space domain and time domedpectively. The matrixR;, has

the form of a non-symmetric TBT matrix as defined in [6, Equat{27)] for the 2-D spatially
correlated network. The matri{ is a Toeplitz matrix defined in Section 3.4.2. The matmix,,

is a non-symmetric 3-level Toeplitz matrix.

For the AWGN case, the asymptotic MSE is given as follows.

Proposition 3.5 WhenNs — c andN; — o, while keepingd and®@ finite, the asymptotic MSE
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of the space-time interpolations in a 2-D network with AWGMnnels is

B [Nl f1, f2, f3)]2
Nx(T1, T2, f3) + <0v2v +(1+0%) W?)

d f1d fod f5.

D

1 1 1
. 2 2 2

oa=tm odn = [ [ [ | Nadfafor o)
2 2 2

(3.35)

where/\,(f1, f2, f3) is defined in (3.55) in Appendix 7, an (1, f2, f3) is

E i .
N (1 . 1) = PEA PO +E2TE) *z UG L e Tes)
L+pf™ —2pcog2mls) 1 Swie

(3.36)

Proof: The proof is in Appendix 3.7.8. [ |

Fig. 3.9 compares the asymptotic MSE of the interpolatioa BxD network with that in an
1-D network. In the simulation, the parameters are the sabase in Fig. 3.7 excet? = 0.
In both 1-D and 2-D networks, it is observed that the inteaipoh MSE decreases monotonically
with the temporal sampling rate. Again, the 1-D asymptotisBvis smaller (better) than its 2-D
counterpart for all temporal correlation coefficiepts The performance difference between the
1-D and 2-D networks increases@sncreases.

If we just consider the spatial interpolation of the 2-D netiy for the special case of uncorre-

lated data in the time domain, we can simplify the result #evic.

Corollary 3.8 If pr = 0, the asymptotic MSE of the estimated data during the dpatexpo-

lations of the 2-D network with AWGN channels is

1.1
2_ 2 2
¢S_/_;/_;

2 2

where/gg( f1, f2) is given in (3.31), and\ys( f1, f2) is

|Adgs( f1, T2)|?

Nss f1, f2) —
so 1, f2) Assl f1, f2) + 02+ (1+ 02)

55 dfidfy, (3.37)
Yo
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Figure 3.9: The asymptotic MSE of space-time interpolaiam the 1-D and 2-D networks
(AWGN, ps=0.5,02 =0, yp = 0 dB).

+00 +00 Y k 12 5 . .
/\dS( fl, f2) :. Z Z ps\/[(l+2) +(k+3) 1/ e_lzn(lfﬁ-kfz)

|=—00 k:—oo

(3.38)

Proof: The proof is in Appendix 3.7.9. [ |
The result in Corollary 3.8 witw2 = 0 simplifies to [6, Proposition 4], where only the spatiakdat

correlation is considered.

3.5.3 Optimum spatial-temporal sampling

The asymptotically optimum spatial and temporal samplatgs in a 2-D network can be obtained
2 2

by numerically solving%| =& and|%| = &, with & and & being very small numbers. Fig.

3.10 shows the asymptotically optimum temporal samplitg s a function of the temporal cor-

relation coefficient in the 1-D and 2-D networks with AWGN ahels. In the figureps = 0.5,

72



12 T T T T T
——1-D optimum temporal sampling rate
- = =2-D optimum temporal sampling rate

10

SNR=5dB

SNR=10dB

SNR=15dB

Optimum Temporal Sampling Rate
(=2

0 I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Temporal Correlation Coefficient P,

Figure 3.10: The asymptotically optimum sampling rate i@ 1hD and 2-D networks (AWGN,
ps=0.5,02=0,c=1073).

oz =0, ande = 103 are used for both 1-D and 2-D networks. It is observed thaaglyenptoti-
cally optimum sampling rate for the 1-D and 2-D networks dneost identical, with the optimum
sampling rate in the 1-D network slightly larger.

It should be noted that the analysis methods presentedsthiaipter can be extended to high
dimensional networks by employing block multilevel To&plinatrix. In this chapter, the 1-D
and 2-D networks are used as examples to investigate thradtittns among the various network
parameters and their impacts on the system performancee$uks of high dimensional networks

can be obtained in a similar manner.

3.5.4 Randomly distributed networks

So far all the studies are for networks with deterministpaiogies. In this section, we will com-

pare the MSE performance between networks with deterngriggbology and random topology,
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respectively. The random topology follows a Poisson poiotess, i.e., the number of nodes in
a given area follows a Poisson distribution, and the coattém of each node follows a uniform
distribution in each dimension.

The MSE of the 1-D and 2-D networks with random topology careveuated numerically
through a hybrid analytical-simulation method. The MSEditianed on a particular deployment
of the nodes can be calculated by using (3.12) for the 1-D oritvor (3.29) for the 2-D network.
The elements in the autocorrelation matiiy or ®4y, depends on the actual locations of the
nodes. The unconditional MSE can then be calculated by gveya large number of random
deployments.

Fig. 3.11 compares the performance of networks with randmmology and deterministic
topology, operating in AWGN channels. The parametersgre 10 dB ando;; = 0. For both 1-

D and 2-D networks, networks with deterministic topologysistently outperform their random
topology counterparts. The difference between the twosygenetworks becomes smaller gs

and p; increase. The topology of practical networks is usually algimation of the grid-based
deterministic topology and random topology. Therefore geeformance of practical networks

will fall between the bounds delimited by the two types ofwatks.

3.6 Conclusions

In this chapter, the optimum sampling in the 1-D and 2-D WSk spatial-temporally correlated
data was studied. The impacts of the spatial node densityrentemporal sampling rate on the
network performance were investigated through asympaotatysis and numerical studies. Under

the constraint of fixed power per unit area, the MSE perfoceari various networks were studied
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Figure 3.11: The MSE of the estimated discrete data samplé€ and 2-D Possion distributed
networks (AWGN yp = 10 dB, 8 = 10 Hz,a? = 0).

through a combination of analytical and simulation methdd®e results quantitatively identified
the interactions between the estimation fidelity and a latgaber of system parameters, such as
node density, sampling rate, measurement noise, fadidgaaaom topology, etc. It was observed
that the network with a deterministic grid-based topology aperating in AWGN channels has
the best performance, yet that with a random topology andatipg in fading channels has the
worst performance. Therefore, whenever possible, a gasskth deterministic topology is preferred
over a random topology. The MSE performance of these twaostgpaetworks can serve as lower
and upper bounds for practical networks, and their diffeeegradually diminish as the correlation

coefficients increase.
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3.7 Appendix of Proofs

3.7.1 Proof of Proposition 3.1

SettingH = Iy in (3.12) and performing the eigenvalue decompositioRgf we can rewrite the

MSE as

-1

1 Ns—1N-1 /g 1

2

02\ == + : (3.39)
NN mzl k; Amk 02+ (1+ Uv%)%

whereAm, form=0,1,...,Ns—1,andk=0,1,...,N;—1, are the eigenvalues Bf. WhenNs —

oo andN; — oo, the 2-D discrete-time Fourier transform (DTFT) of the wme,{pémmpt‘km} X
m?

which are elements of the TBT matiR, can be calculated @s«( f1, f2) = A(pg, f1) x A(pt s, f2),

where

< ' 1-a?
Na, f)= Imlg—j2rmmf _ |
@0 m:zooa © 1+ a2 — 2acoq2mfy)’ (3.40)

Based on the extension of the Szego’s theorem to TBT mafti€&e3heorem 1], wheils — oo

andN; — oo, the asymptotic MSE is

11
2 2 . 2 2
O-st—,\lllm Ost N —/1/ 1
- —2772

Substituting the result ok ( f1, f2) into (3.41), and applying [19, Equation (2.553.3)], we can

-1
1 1

+
N frfo) — of+(1+03)%

d f,d fy, (3.41)

solve the inner integral as

1-pf™ [3 1
0% = 207 / _ [cog (21tf) —aycog2mfy) +by] 2y, (3.42)
2
where
_ 1 1+ pi T, .
B = |ltp+ 55 (1—p) | ", 3.43a
S R T A e e (3.432
[ 2
2(14+p%)2 14 pX y 1 p7" -
bo = 2< 2)95‘1_ S5 (1-p)+ | a5 | | - (4p°T(3.430)
aw+<1+aw)% Ps O-w“f‘(l""aw)W

Based on [19, Equation (2.580.2)] and [19, Equation (32)%2we can get the results in (3.13).
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3.7.2 Proof of Corollary 3.2

The MSE in (3.13) can be alternatively written as

02 = (3.44)

Q./%;dx
T Jo /B —asirfx

Since integration is a linear operator, we can directly flmelltimit of the integrand, and the result

is

Nl

1 1 a
| 1 B 2% 1+p’ 8 A
i () _ JEom llog<ps>— T e o

2
07\ /B —asirfx (1+07) 1—pt% 1-py

(3.45)

Substituting (3.45) into (3.44) and simplifying lead to18).

3.7.3 Proof of Corollary 3.4

The limitin (3.17) can be rewritten as

2 4\ 2 4 2 (% dw
E(“E) ‘K<\/m>:ﬁ/o Ji+ Aa—sitw) 240

Since (1 — sirfw) is a non-negative real number, the limit is an increasingtion of @, thus

proportional toos and gy, but inverse proportional to the SNIB.

3.7.4 Proof of Proposition 3.2

1,4) (Ns—1)
The Toeplitz matrixRYy, is uniquely determined by the seque cherZ'd} . Similarly,
m=—(Ns—1)
. . . : . Im+3|T, (Ne—2)
the Toeplitz matrixR{, is uniquely determined by the sequen{qyt 2 S} . Based on
m=—(Nt—1)

Imt-31d _|k+3|Ts .
[21], whenNs — o andN; — oo, the 2-D DTFT of the sequence,ps P , Which
m,k

d
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are elements of the TBT matriRqy, can be calculated asyx( 1, f2) = N (psd, f1) x (s, f2),

where

(1—a)(1+e?™)
1+a2—2acog2mnf)’

N(a, f) = a2 (3.47)

Based on [18, Lemma 1Ry is asymptotically equivalent to a circulant-block-ciraat (CBC)
matrix,Cgyx = UH DgxUN, WhereUH is the unitary discrete Fourier transform (DFT) matrix &hg

is a diagonal matrix with it&th diagonal element being

/ k_l / S k—l
(Ddx)k,k:/\ (pg’Ts) A (ptT7W)' (3.48)

Similarly, the TBT matrix,Rxx, is asymptotically equivalent to a CBC matri@yyx = UHDXXUN,
where Dyy is a diagonal matrix with it«kth diagonal element beingI)XX)Kk = /\(pg,%) .
A (pﬁﬁ,%) ,with A(p9, f) defined in (3.40).

In addition, the CBC matrice$;xx and Cqyy, Share the same orthonormal eigenvectors [22].
Based on [23, Theorem 2.1], the error correlation maRié%), is asymptotically equivalent to a

1
CBC matrix,C'd = Cyx — Cyy (CXX+ (02 + %)I) ch = UHDQUN, where the diagonal ma-

. d -1
trix D'Y =D,y — Dyy (Dxx-l—(av%—i- 9| N) DH .

Based on the extension of the Szego’s theorem to TBT mafi& S heorem 1], we have

5 3

2
3= [ [
2 2

With [19, Equation (2.559.2)], we can solve the inner indégand the result is

|Aax( f1, f2)|2
(f1, f2) + 0%+ (14 03) 92

Al 1, f2) — d f,d fy. (3.49)
/\XX

1

1 2
1 Ts 2 1(ATs 2 5
] N (ps, f N (ps, f 66 1
29521; — /_1 /\(ptTS7f) | ( T, )| | ( )>| (O—v%/ (1 O-V%/) psl/\<ptTS7f))

} AP ) A o 14 ps
1 -3
o2+ (1+ a\,%,)% + 1“’1 AP, ) df (3.50)
Yo 1-pd

78



From [19, Equation (2.558.2)], we get

1
/\/ Ts7 f 2 1— 9
/\(pth, f2> o | (p[ 2)| d f2 — pll .

(3.51)
/\(pth7 f2> 1+ plé

Substituting (3.51) into (3.50) and simplifying lead toZ3).

3.7.5 Proof of Proposition 3.3

The result in (3.24) can be proved by following a procedue ihsimilar to the proof of Proposi-
tion 3.2. Since the interpolation is performed in the spaweain alone, we can replaﬂé(ptTS, f2)

with A(ps, f2) in (3.50), and the result is

1

5 05 1—pé ’
! _
9% = [ |\ (cfv%+<1+ov%>+ . i/\(pis,b))

Yo

2 1+pd
65 5 k
1
02+ (1+02) 2+ =P B 1) | | dh (3.52)
Yo 1-pd

The above integral can be solved by using [19, Equation 324 [19, Equation (3.151.2)], and
the definition of/\(p[TS, f2) in (3.40), and the result is (3.24).
3.7.6 Proof of Corollary 3.6

Settingd — o in (3.52) leads to

1
_ 3
lim 852:/

d—00 7%

log(ps)

-
INCARAY (1— M) } df (3.53)

The above integral can be solved by using [19, Equation 324
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3.7.7 Proof of Proposition 3.4

SettingH = Iy in (3.29) and performing the eigenvalue decompositiomgofn (3.28), we have

, 1M M N/ 1 -
Y, N = Z + , (3.54)
) N < k;mzl Aikm  aF+(1+03)92

whereAjm, fori,k=1,...,Ms, andm=1,...,N;, are eigenvalues adyx. WhenNgs — o and

Ny — oo, the 3-D DTFT of the sequenc{,psV (i2+k2)/5p[m|Ts} , Which are elements of the 3-
ikm
level Toeplitz matrixmyy, can be calculated as

N f1, f2, f3) = Ass( 1, T2) X A", f3). (3.55)

The result in (3.30) follows immediately from (3.55) and [Aleorem 1], which is the exten-

sion of the Szego’s theorem to multilevel Toeplitz matrices

3.7.8 Proof of Proposition 3.5

According to [20, Lemma 2], the multilevel Toeplitz matrica,, andmyy, are asymptotically
equivalent to multilevel circulant matriceByyx andBgyy, respectively, where the eigenvalueBgf
andBgx are samples of\,( f1, f2, f3) in (3.55) and\;,(f1, f2, f3) in (3.36), respectively. In addi-
tion, the multilevel circulant matriceByx andBgy, Share the same orthonormal eigenvectors [20].
Once the asymptotic equivalence is established, the rabegiroof follows the same procedure

as described in Appendix E for the 1-D case.
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3.7.9 Proof of Corollary 3.8

WhenNs — 0 andN; — o, while keepingd and?® finite, the asymptotic MSE of spatial interpo-

lations in a 2-D network is

1 1 1
2 2 2
_1)j_1J_1
2 2 2

where/sq( f1, f2) is defined in (3.31) and\yg( f1, f2) is computed as in (3.38). Whgn = 0, we

|Ags( f1, f2)At(f3)|?

Ass( f1, T2)A¢(f3) —
S ) = o A(fe) - 02+ (14 02)

g5 | dhdfdfs.  (3.56)
Yo

have/\;(f3) = 1. Substituting\;(f3) = 1 into (3.56) directly leads to (3.37).
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Chapter 4

Distributed Joint Source and Channel Code with Correlated hformation Sources

Ning Sun, Jingxian Wu, and Hai Lin

4.1 Abstract

In this chapter, a new distributed joint source-channeed@lSCC) is proposed for a communica-
tion network with multiple correlated information sourc@dfie DJSCC is performed by puncturing
the information bits of a linear block code but leaving thétyabits intact, given the fact that the
correlation among the parity bits is usually much lower caneg to the corresponding information
bits. In recognition of the different roles of the inforn@tiand parity bits in the DJSCC scheme,
we propose to allocate unequal amounts of energy per biesettwo different types of bits. The
unequal energy allocation leads to significant performayaias over conventional equal energy
transmissions. At the receiver, the sources are jointlyoded with the iterative message pass-
ing algorithm. Simulation results demonstrate that thggpsed scheme can achieve considerable

performance gains over conventional schemes.

4.2 Introduction

The Slepian-Wolf (S-W) theorem [1] states that distribigedrces with correlated information can
perform encoding separately, yet achieve a code rate tlila¢ isame as when the information is
encoded jointly. A wide range of applications can benefirfithe S-W theorem. For example, in
a wireless sensor network, data collected by the spatiatyilouted sensors are usually correlated

due to the redundancy of the underlying monitored objec# wireless relay network, the signal
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transmitted by one source might be observed by multipleg/sekhe information to be transmitted
by which is thus correlated. However, the S-W theorem is woistructive,i.e., it provides no
practical coding scheme to achieve the optimum performance

There have been considerable works in the literature ddviotehe design of practical dis-
tributed source codes (DSC) [2]-[11]. Many practical DS@enes are designed by using the
syndromes of channel codes, such as block and trellis c@lietsifbo codes [3], and low-density
parity-check (LDPC) codes [4]. Many syndrome-based DSGgdssfocus on the asymmetric
scenarioj.e., the distributed coding is only applied to one of the soureesl the other source is
used as side-information and assumed to be known perfedtig @ecoder. Designs of symmetric
DSCs are discussed in [5]-[8], with punctured linear bloottes or LDPC codes. All of the above
work assume distortion-free communications between tlvedsr and decoder, which rely on a
separately designed ideal channel code to protect thel$ignachannel distortions. Itis shown in
[9] that the source-channel coding separation theorem wloigdsold for a multiuser network, thus
necessitates the design of distributed joint source-atlazode (DJSCC). In [10], a Raptor code
is employed for an asymmetric DJSCC over a packet erasurenehavhere a correlated video
source is assumed to be available at the receiver for degog8isymmetric DJSCC scheme over
the additive white Gaussian channel is proposed in [11].

In this chapter, we propose a new symmetric DJSCC codingwseter multiple correlated
sources. The source correlation is utilized to both redbeeshergy consumption and to protect
the information from channel distortion. The DJSCC is perfed by transmitting a subset of the
information bits and all the parity bits of a linear block eodver a noisy channel. The distor-
tions from source coding and channel impairments can béypacdovered by using the source
correlation and the parity bits. Compared to existing sageim the literature, the newly proposed

87



DJSCC scheme has the following contributions. First, a neaqual energy allocation scheme is
proposed for the delivery of the codeword from the trangntiti the receiver. The information bits
and parity bits are transmitted with different energy peéirbrecognition of their different roles in
DJSCC, and significant performance gains are achieved oveational schemes equal energy
allocation. Second, unlike many of the symmetric DSC or DOSChemes that puncture both the
information and parity bits [7] and [11], only the informaxi bits are punctured in the proposed
coding scheme. This is based on our observation that thelaban among the parity bits from
different sources are relatively low even if the correlatad the information bits is strong. There-
fore puncturing the parity bits with low mutual correlationght deteriorate the overall system
performance. Simulations are performed by using the LDRI2sas the constituent code, and the
results demonstrate significant performance gains of thidyrmaoposed DJSCC scheme.

The remainder of the chapter is organized as follows. Seecti8 introduces the proposed
DJSCC scheme with unequal energy allocation. Section 4gepits the message passing decoding

algorithm. Simulation results are given in Section 4.5, 8edtion 4.6 concludes the chapter.

4.3 Distributed Joint Source and Channel Code

Consider a network wittN spatially distributed sources transmitting to an inforimratsink. De-
note bn(k) € % as thek-th information bit from then-th source, whereZ = {0,1}. The bi-
nary information of theN sources are mutually correlated. Define the cross probabiditween
usersm and n as pmn = P{bm(Kk) # bn(k)}. If the binary information is equal probabléege.

P(bm(k) = 1) = P(bm(k) = 0) = 0.5, then the covariance coefficient betwdgy(k) and bp(k)
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E [(lbm — tm) (bn — tn)] —9
OmOn

(1= pmn) — 1, (4.1)

Pmn=

wherepy, andoy, are the mean and standard deviatiotgfk), respectively.

4.3.1 Codeword Structure

Each source encodes its own informatwithoutthe knowledge of the information from the other
sources. The proposed DJSCC is a linear block code.bjet [bn(1),---,bp(M)]T € M*1
denote a block oM information bits to be encoded at theth source. In the proposed DJSCC
schemeM is chosen to be an integer multiple of the number of useasM = KN with K being
an integer. The corresponding DJSCC codeword ofittitesource can then be represented as
]T

¢t =by [Tn,Pn] = [s1, P} (4.2)

whereT, € 2M*K is the information compression matrix wikh= ¥, P, € ZM*P is the parity
generation matrixs, = T} bp € 2¥*1 is the compressed information vectpy, = P! b, € #°*!
is the parity vector, and the matrix operations in (4.2) ssggmed in the Galois field of two
elements, GF(2). The parity generation maRjxwill generateP parity bits fromM information
bits. The code rate of the DIJSCC code is thusK%P.

The information compression matfTx, is obtained by removinl — K = K(N — 1) columns of
a sizeM identity matrixly. Denote%, = {ny,--- ,nk} C {1,2,--- ,M} as the set of th& indices
corresponding to the colummsot removed fromly, during the construction of ,, thenT,, =
ling, -+ ,in¢] With i being them-th column ofl . In the proposed DJSCC, we havg(\ Im =0,
anduwzlﬂn ={1,2,--- M}. WhenN = 1, we haveT,, = I, and the DJSCC codeword in (4.2)
degrades to a regular systematic linear block code of cddq{ﬁ%ﬁ.
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WhenN > 1, the codeword structure in (4.2) combines distributed@aode and channel
code in a unified structure. The channel code is performell tvé combination of the punctured
information and the parity vectors. The distributed sowmae is performed with the information
compression matriX, which punctures the lengti-information vectob,, into a lengthK vector
sh, with mutually exclusive puncture patterns defined by tleinset{ .7, Nzl. The information
puncture operation deliberately adds distortion to therimftion to reduce the amount of infor-
mation to be transmitted, thus reduce the overall energyirement. With mutually exclusive
puncture patterns, (k) is punctured, it is guaranteed that there exiatg n such thatby, (k)
on sourcamis transmitted. Theb, (k) can be partly recovered by using the correlation between
bm(k) andbp(k), as well as the parity vectar, (k).

In summary, for a system employing the DJSCC, the informadiigtortion comes from two
sources, the distortion deliberately added by the infoilongtuncture operation, and the channel
distortion. At the decoder, the distortions are compermksatam two aspects, the spatial corre-
lation, and the parity vector. The information correlatisrutilized to both reduce the energy
consumption and to protect the information from channdlodi®n. Therefore, the distributed
source code and channel code are jointly performed in aessigp.

In the proposed DJSCC scheme, only the information vecfaunetured and the parity vector
is transmitted in its entirety. This is because the punctimormation can be partly compensated
by the information correlation, yet the correlation amolng parity vectors from different sources
are relatively low even if the information is strongly cdated. The correlation between two parity

bits from different sources is stated in the following lemma

Lemma 4.1 If the users use different parity generation matrix, thies probability that two

90



parity bits, ppx and pmk are different isP(pnk# pmk) = 0.5. If all users share the same parity
generation matrix, and the Hamming weight of tath column of the parity generation matrix is
L, then

L

P(Pnk # Pmk) = Z dd<t) Pmn(1— pmn)lru (4.3)

Proof: If the users use different parity generation matrix, thgp and pmk are mutually
independent because the information bits are assumed twdbpandent in the time domain. If
all the users use the same parity generation matrix, theapility P(p.x # pmk) iS equal to the
probability that, for the_ bits corresponding to the non-zero positions of kit column ofPy,
there are an odd number of bits from tineth user that are not equal to their counterparts from the
n-th user. The probability that bits are not equal to each other follows a binomial distrdyuts
(5) P (1 — pmn) =Y. The result in (4.3) follows immediately. [ |

As L becomes large, the binomial distributi@b) Pmn(1— pm.n)"_u can be accurately approx-

imated by a normal distribution with me&mpm, and variancé pmn(1—pmn). Since the normal dis-

tribution is symmetric with respect topmn, the summationin (4.3) tends 31 (&) pthn (1 — Pmn) ="

0.5 whenL is large.

This is corroborated by the result in Fig. 4.1, which shovwesdtoss probability of the parity
bits, P(pnk# Pmk), @s a function ot with various values of the cross probabiliy,. The cross
probability of the parity bits is less than the cross proligtnf the corresponding information bits
under all configurations, and they tend to 0.3.ds®ecomes large.

Based on the above analysis, the parity bits across diffeisrs usually have very weak cor-
relations, even if the information bits are strongly caatetl. Therefore, puncturing the parity bits

will have very little contribution to the distributed soercode, yet it will sacrifice the performance
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Figure 4.1: Cross probability of the parity bits.

of the channel code. Therefore, we propose to puncture balinformation bits, and transmit the

parity bits at its entirety.

4.3.2 Transmission with Unequal Energy Allocation

Since the information bits and the parity bits are treatdi@dintly during the encoding process,
we propose to allocate different amounts of energy per liiteéanformation and parity bits during
transmissions.

Denotean=mod[s,| and B,=mod|pn], where mo¢b] € . maps the binary vectds to the

modulation constellation se¥’. The codeword after modulation and energy allocation is

Xn = [VEsan, /EpBri]", (4.4)

whereEsg is the energy per punctured information symbol, &gds the energy per parity symbol.

The average energy per information bit is thtgs— MIog,(S

, WhereS= |.| is the cardinality of
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the constellation se¥’.

Define the energy allocation factor Q&E—z. Intuitively, more energy per symbol should be
allocated for the punctured information bits to compengatéhe punctured bits. This intuition is
supported by our simulation results. The energy allocdtator, 0, is used to adjust the energy
allocation between the punctured information bits and @n@ybits. When6 =0, no parity bits
will be transmitted and the scheme degrades to a punctuedntission scheme without channel
code.

The unequal energy allocation between the punctured irdtbom and parity symbols is mo-
tivated by the fact that the sink can have the entire parittors from all the users, but only a
punctured version of the original information vector. Thenptured information is recovered by
using a combination of the parity bits and the informatiorrelation. Therefore, the transmitted
information bits from one user are used to recover the puedthits from the other users. There-
fore, more energy can be allocated to the unpunctured bit®ngpensate the extra distortions
introduced by the puncturing operations.

The modulated codewordy, is transmitted to the sink through an orthogonal media sxce

control (MAC) scheme. The signal received from thth user is

Yn = Xn+ Zn, (4.5)

wherez, is the additive white Gaussian noise (AWGN) with a singlgesl power spectral density
No. The received signal vector at the sink can be expressyqdzzl@gn,y;nf, whereygn, ygn are

the received signal vectors corresponding to the codedesegu,, and3,,, respectively.
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4.4 DJSCC Decoding with the Message Passing Algorithm

The sink recovers the information vector by performing ja@lacoding with the message passing
algorithm based on the received signals from allXhsources.

Before the decoding, we need to calculate the initial l&gHhood ratio (LLR) from the chan-
nel observations. The initial LLR of tHeth coded information bi, (k) = bn(nk), from the channel

observationyq4n, can be calculated by
2
ZSE,%E eXp [_Nlo ‘Yt:m(rn() -V Ess} }
2 b
Zsey”,ﬁ exp [_Nio ‘YGn(m() - Ess‘ }

where thek-th bit in a coded vector is mapped to thg = L@j modulated symbolr, = k —

(4.6)

An(ng) = log

mglog, S, 5@ C .Z is the set that contains all the symbols with theh bit in the demodulated
vector being 1, and/; = .\

Similarly, the initial LLR of thek-th parity bit, py(k), can be calculated frolyy, as
5 o5 €0~ [Yan(m0) — /Epsl?]

5T
2se iy EXp[_Nio [Yan(m) — /Eps| ]
The LLRs of the punctured bits of one user can be calculated their correlated counterparts

An(M+Kk) =log (4.7)

transmitted by a different user. Assuke %, i.e., the bitbyy is transmitted by the-th user, and

bmk is punctured at therth userYm = n. Then the LLRs of the punctured bits can be calculated

as

3 o (1— pmn)P(bn(k) = 1) + pmnP(bn(k) = 0)

Am(0)=100 B bn(K) = 1) 1 (1~ prn)P(bn(K) = 0)’ @9
whereP(bn(k) = 1) = m andP(bn(k) = 0) = 1— P(bn(k) = 1).

The initial LLR of the information and parity bits can then d&eressed by

An(k), k€ FhorM <k<M+P,
= 3 (4.9

An(k), otherwise
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The message passing will be performed on a bipartite graphedeby an extended parity
check matrixH = [P],1p]T € ZM+P)xP |t should be noted thad is not the parity check matrix
for the codeword defined in (4.2). It is the parity check mxadrfi the unpunctured codeword with
the generation matrijtm, Pp.

The tanner graph correspondingdchas(M + P) variable nodes anB check nodes. Thieth
variable node is connected to tipeth check node if thek, p)-th element ofH is 1. Denote?}
as the set of variable nodes that are connected tp-hecheck node, an@j as the set of check
nodes that are connected to téh variable nodes.

For the information from the-th user, the message from tkeh variable node to th@-th
check node during thieth iteration is

nam=aK+ S ulhm), (4.10)
p'ECi\p

whereugﬁ(n) is the message from theth check node to th&-th variable node during thieth

iteration,and it can be calculated as

(i)
. (N
uga(n)zzatanh |_| tanhnk%m (4.11)

Ke7p\k
During the first iterationygl)()(n) =0.
For the message passing algorithm [12], eqns. (4.10) afd)(4re performed iteratively for

a single codeword, and the valuesdgfk) are the same for all the iterations. At thth iteration,

then-th user will output a soft decision for its information hits

WK =K+ Y uim). (4.12)

ECk
At the final iteration, the hard decision wittiterations is obtained &s,(k) = 1 if Ir(,')(k) >0

andbn (k) = 0 otherwise.
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The iterative message passing algorithm is summarizedlas/f
) Initialization
i) Calculate the initial LLRs of the transmitted informatidits, An(k), with (4.6), for
ke Z,,n=1--- N.
ii) Calculate the initial LLRs of the parity bitsyn(M + k), with (4.7), fork =1,--- P,
n=21---,N.
iii) Calculate the LLRs of the punctured information bi,iﬁ,(k), with (4.8).

iv) Seti=1.
II) Iterations

i) Calculate the message from the variable node to the cheﬁk,nlgig(n), with (4.10),
fork=1,--- N,p=1---,P,andn=1,--- N.

i) Calculate the message from the check node to the varimmle,ugﬁ(n), with (4.11),
fork=1,---,N,p=1,---,P,andn=1--- N.

iii) Calculate the soft decision (k), with (4.12).
iv) If i <1, go back to step Il.i); otherwise go to the next step.
[Il) Detection

Make hard decision d,(k) = 1 if 15 (k) > 0 andbn (k) = 0 otherwise.

45 Simulation Results

Simulation results are presented in this section to dematesthe performance of the proposed
DJSCC scheme. In the simulation, an irregular LDPC with e&082dy-64800 parity-check matrix
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Figure 4.2: BER as a function of the energy allocation fa&dEy, /Ny of the source-sink link is
-0.65 dB).

is used to generate the DJSCC codeword. In the simulatienpdirwise covariance coefficient
between any pair of users is the same, pmn= p, Or p = Pmn, VM= n. The mutually correlated
information of theN users is generated by passing the a lemdthinary vector througN inde-
pendent and identically distributed (i.i.d.) binary synirieechannel (BSC) channels. The cross
probability of the BSC channel iso = 3 — 3/I—2p. It can be easily shown that the cross prob-
ability between the output of any pair of BSC channelp.ist should be noted that the proposed
DJSCC scheme can be applied to sources with arbitrary atioes.

We first study the impact of the unequal energy allocationhengerformance of the DJSCC
scheme in Fig. 4.2, where the bit error rate (BER) is shownfas@ion of the energy allocation
factor, 8, for a network with two users. The covariance coefficienieein the two users = 0.9.

The source-sink communication links are AWGN channels &jtfNy = —0.65 dB. It can be seen
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Figure 4.3: The performance of equal and optimum energyaforusers

that the optimum performance is achievedat 0.5, e.g., the energy of one parity bit is half of

that of one transmitted information bit. The performancgrddes significantly with equal energy
allocation atf = 1.

Fig. 4.3 shows the BER performance of the proposed DJSCQCrsxhader various values of
p. There are two users in the system. The energy allocatidarfexd = 0.6. The performances
of systems with equal energy allocation are also shown fonparison. The curve labeled as con-
ventional LDPC is obtained without DJSCC, thus its perfanogais independent of the number of
users. As expected, the performance improvegs iasreases. With unequal energy allocation and
at a BER = 104, the DJSCC obtains 0.1 dB, 0.5 dB, and 1 dB performance ga@samnven-
tional LDPC coded system at=0.7,0.8, and 0.9, respectively. The DJSCC with unequal energy

allocation outperform their equal energy counterpartshnua0.18 dB.

The impact of the number of users on the performance is showigi 4.4. The covariance
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Figure 4.4: The BER under varies number of us¢(govariance coefficiend = 0.9)
coefficient isp = 0.9. No puncture operation is employed in the= 1 case and it is the same as
the conventional LDPC code. The proposed DJSCC scheme t3einefn the presence of more
users, due to the better compression ratio of the distrilgnerce code. The DJSCC systems with
N = 2, 3, and 4 outperform the conventional LDPC coded system @#,11.9 dB, and 2.3 dB,

respectively.

4.6 Conclusion

A new DJSCC scheme based on linear block code for a commionaagtwork with correlated

information sources and operating over noisy channels wgsoged in this chapter. It was demon-
strated that the correlation among the parity bits of a lifack code was usually very low even
when the correlation among the information bits is high. réfare, the DIJISCC was performed by

puncturing the information bits but transmitting the pabits in its entirety. The information and
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parity bits were transmitted with unequal energy per bitdbhieve additional performance gain.
The message passing algorithm was used at the receiventty jo@cover the information from
all the sources. Simulation results demonstrated that tyeogsed DJSCC scheme with unequal
energy allocation can achieve significant performancesgauer conventional schemes, and the

performance improves as the number of users increases.
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Chapter 5

Distributed Joint Source-Channel Code for Spatially Corrdated Markov Sources

Ning Sun , Jingxian Wu, and Guoging Zhou

5.1 Abstract

In this chapter, a new distributed joint source-channekdq@lSCC) is proposed for a communi-
cation network with spatially correlated Markov sourcese DIJSCC is performed by puncturing
the information bits of a systematic linear block code bavieg the parity bits intact. Due to the
different roles of the information and parity bits in the @JISscheme, unequal energy is allocated
to these two different types of bits during transmission.t# receiver, the spatial data correla-
tion is exploited with a new multi-codeword message pas@iti@MP) decoding algorithm. The
MCMP decoder performs both intra- and inter-codeword sdéirmation exchange, whereas con-
ventional message passing (MP) algorithms exchangesrgofination only inside a codeword.
The inter-code soft information exchange of MCMP leads tditemhal performance gain over
the MP algorithm. In recognition that the signals at the irereare distorted observations of the
Markov source and thus can be modeled by a hidden Markov n{biiéM), we propose to add
a HMM decoding module to the MCMP decoder to exploit the terapdata correlation. The
HMM decoder iteratively exchanges soft information witlke tlCMP decoder, and this leads to

significant performance gains over conventional systems.
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5.2 Introduction

In a wireless sensor network (WSN), data collected by théapadistributed sensors are often
correlated in both the space and time domains due to theanhepace redundancy and time
variation of the monitored entities or phenomena. The aptmporal data correlation can be
exploited to significantly improve the performance of thealdss network. The Slepian-Wolf (S-
W) theorem [1] states that distributed sources with coreelanformation can perform encoding
separately, yet achieve a code rate that is the same as waenfdhmation is encoded jointly.
However, the S-W theorem is not constructive, i.e., it pdesgi no practical coding scheme to
achieve the optimum performance.

There have been considerable works in the literature ddviotehe design of practical dis-
tributed source codes (DSC) [2]-[6]. Many practical DSCesnbs are designed by using the syn-
dromes of channel codes [2], [3]. Many syndrome-based D3@de focus on the asymmetric
scenarioj.e., the distributed coding is only applied to one of the souraad the other sources are
used as side-information and assumed to be known perfddtig @ecoder. Designs of symmetric
DSCs are discussed in [4]-[7], with punctured linear bloo#tes. However, All of the above work
focus only on the spatial correlation among the sensorsttayddo not consider the variation of
the data in the time domain. In reality, the physical phenooneunder monitoring changes with
respect to time, and the consecutive observations of a sande are often correlated in the time
domain.

The temporal data correlation can be utilized during thedein process at the receiver to
improve the system performance [8]-[11]. In [8], a jointdardecoding and estimation scheme

is proposed for the estimation of a temporally correlategra® modeled by a hidden Markov
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model (HMM). It treats the trellis describing the HMM as a stituent code, which exchanges
soft information with other constituent codes during tudetection. The turbo code in [8] is
replaced by a low-density parity-check (LDPC) code in [9hanre the random nature of the LDPC
code eliminates the need of an interleaver between the HMNMstrand channel decoder, thus
it reduces the decode delay. In [10], the HMM decoding isqrened by modeling the Markov
source to a bipartite graph. All of the above works [8]-[10hsider only decoding algorithm at
the receiver. None of them considers spatial source ctioelar source code at the transmitter.
An asymmetric distributed source code for HMM source is @nésd in [11] by using a punctured
Raptor code, but the correlated source is used as a perkactiyn side information at the decoder.
In this chapter, we propose a new symmetric distributed goarce and channel code (DJSCC)
for correlated Markov sources. The data at the receiver igterted observations of the Markov
sources, and they can be modeled as HMM. At the transmitieh source performs the DJSCC
encoding by puncturing the information bits of the codevganfla systematic channel code. The
punctured bits can be partly recovered by using the sp&taporal data correlation and the par-
ity bits of the channel code. In addition, the informatiord grarity bits are transmitted over a
noisy channel with different energy to achieve additioraffgrmance gain. Two new decoders,
one for spatially correlated memoryless sources, and aneofarces correlated in both the space
and time domains, are proposed. The first decoder employw éerative multi-codeword mes-
sage passing (MCMP) algorithm. The iterative MCMP alganitberforms decoding on multiple
codewords simultaneously, and soft information are exgbdmetween the codewords throughout
the iterations. This is different from the conventional sege passing (MP) algorithm, where the
soft information is only updated inside one codeword. Theosd decoder exploits the temporal

data correlation by adding a HMM decoding module to the MCMEatler. The HMM decoding

106



module extracts tha postoriorprobability of the data by utilizing the hidden Markoviaroperty

of the data at the receiver, and it iteratively exchangesistdrmation with the MCMP decoder
to improve the decoding performance. Simulation resulteatestrate that both of two new de-
coders outperform the conventional MP decoder, and sigmifiperformance gain is achieved by

the newly proposed DJSCC scheme.

5.3 Distributed Joint Source-Channel Code

5.3.1 System Model

Consider a system with two correlated binary sourbgék) € %, for n=1 and 2, transmitting
to one information sink, wherk is the time index and”Z = {0,1}. The correlation between
the two sources can be modeledlask) = by (k) @ e(k), wheree(k) € £ is an identically and
independently distributed (i.i.d.) random process vitle(k) = 1) = po. The cross probability
between the two sources Eb; (k) # ba(k)) = po. Define the correlation coefficient between

b1 (k) andby(k) as

(bm — Hm) (bn — Ln)
OmOn

Pon=E =1-2py, (5.1)

wherepy, andoy, are the mean and standard deviatiomgfk), respectively.
The information of each source is correlated in the time dom&/ithout loss of generality, it
is assumed that the time correlation of source 1 can be nubdsla first-order Markov chain, with

the following parameters

e States: 5y =0 andS; = 1.

e Transition probabilitya;; = P(Sc= j|Sc1=1),i,] € {0,1}.
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e Initial state distributionP(S) andP(S;).

The information from source 2 is a distorted observatiorhef Markov process from source
1, thus it can be modeled as a HMM source. The data from the dwces will be separately

encoded, modulated, and transmitted to the informatidktkirough a noisy channel.

5.3.2 Codeword Structure

Each source encodes its own informatwithoutthe knowledge of the information from the other
users. The proposed DJSCC is a linear block codebjet [bn(1),---,by(M)]T € M1 denote a
block of M information bits to be encoded at theh source user. In the proposed DJSCC scheme,
M is chosen to be an integer multiple of the number of useiM as2K with K being an integer.

The corresponding DJSCC codeword of thth source can then be represented as
T
C-rl; = b-rl; [Tn,Pn] = [S:;ap-r” (5.2)

whereT, € ZM*K is the information compression matrix wikh= %, P, € ZM*P is the parity
generation matrixs, = T! b, € 2%*1 is the compressed information vectpf,= T! b, € #7*1
is the parity vector, and the matrix operations in (5.2) aggmed in the Galois field of two
elements, GF(2). The parity generation maRjxwill generateP parity bits fromM information
bits. The code rate of the DJSCC code is thus%.

The information compression matri, is obtained by removing = % columns of a size-
M identity matrixly. Denote.%, C {1,2,--- ,M} as the set of th& indices corresponding to
the columnsnot removed fromly during the construction of , thenTp = [in, - ,in] With
Nk € h, Whereiy, is them-th column ofly. In the proposed DJSCC, we havg (% = 0, and
AU T=1{1,2 M}
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The distributed source code is performed with the infororatompression matriX,, which
punctures the length information vectotby, into a lengthK vectors,, with mutually exclusive
puncture patterns defined by the index s{eﬁ}ﬁzl. With mutually exclusive puncture patterns, if
bn(K) is punctured, theb,(k) on sourcen # nis transmitted. Theb, (k) can be partly recovered
by using the correlation betwedg(k) andby(k), as well as the parity vect@r, (k).

Based on [7, Lemma 1], the parity bits across different usstslly have very weak correla-
tions, even if the information bits are strongly correlat€tderefore, puncturing the parity bits will
have very little contribution to the distributed source epget it will sacrifice the performance of
the channel code. Therefore, we propose to puncture onlintbemation bits, and transmit the

parity bits at its entirety.

5.3.3 Transmission with Unequal Energy Allocation

Since the information bits and the parity bits are treatdi@mdintly during the encoding process,
we propose to allocate different amounts of energy per iit¢onformation and parity bits during
transmission.

Denote the modulated symbols@as=mod[s,| and3,=mod[py], respectively, where mdhl] €
- maps the binary vectdrto the modulation constellation sef. The codeword after modulation

and energy allocation is

Xn = [\/Ea-nr?\/E»pﬁl-’\r]T7 (53)

where Eg is the energy per information symbol, aig is the energy per parity symbol. The

average energy per information bit is thas= o5 00,(5)

, WhereS= |.¥| is the cardinality of the

constellation set”.
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Define the energy allocation factor Q&E—z. Intuitively, more energy per symbol should be
allocated for the punctured information bits to compengatéhe punctured bits. This intuition is
supported by our simulation results. The energy allocdtator, 0, is used to adjust the energy
allocation between the punctured information bits and @n@ybits. When6 =0, no parity bits
will be transmitted and the scheme degrades to a punctuedntission scheme without channel
code.

The modulated codeword,, is transmitted to the sink user through an orthogonal media

access control (MAC) scheme. The signal received fromnitieuser is
yn — Xn +Zn, fOF n= l, 27 (54)

wherez, is the additive white Gaussian noise (AWGN) with a singlgesl power spectral density
No. The received signal vector at the sink can be expresspdﬂ@gn,ygnf, whereygn, ygn are

the received signal vectors corresponding to the codedesegu, and 3y, respectively.

5.4 DJSCC Decoding with a Multi-Codeword Message Passing @brithm

The information sink recovers the information vector byfpening joint decoding based on the
received signals from the sources. We propose two new jeicdding algorithms, which can be
utilized for correlated memoryless sources and correlstarkovian sources, respectively. The
first algorithm performs decoding by iteratively exchamgginformation between the two code-
words without utilizing the time correlation, and we dendtas the multi-codeword message
passing algorithm (MCMP). The second algorithm extendptbposed MCMP by exploiting the

Markov property of the information sources in each itermatio
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5.4.1 Joint Decoding for Correlated Memoryless Sources

We present a MCMP decoding algorithm in this subsectionciwiazian effectively improve the
performance of correlated memoryless sources.

Different from the conventional message passing (MP) @lyorwhere the LLR is exchanged
within the structure of one codeword, the proposed MCMP rdlgm will iteratively exchange
information between the codewords from the two sources.

Before decoding, we need to calculate the initial log-iikebd ratio (LLR) from the channel
observations. Assume tlketh bit is mapped to then-th modulated symbol, and it corresponds to
thery-th bit in the demodulated vector of the modulated symbathédfk-th information bit is not
punctured during the encoding, then the initial LLRpfk) from the channel observatioggn,

can be calculated by

— —L an —+Es 2
0 (k)zlogzseﬂkexp( & Yan(mo) - VEss|?) o5

Ysest exp(—Ni0 [Yan(mo) — \/ES}Z) |

where./” C . is the set that contains all the symbols with tpeh bit in the demodulated vector

being 1, and7; = .7\.%.
Similarly, the initial LLR of thek-th parity bit, p,(k), can be calculated froryg, as
2
e 7, X7 [Yon(Mo) — /B[

A
2se iy eXp<_Nio [Yan(m) — /Eps| )
The LLRs of the punctured bits of one user can be calculated their correlated counterparts

MY (M +k) = log (5.6)

transmitted by the other user. Assuke %, i.e, the bitb,y is transmitted by the-th user, and
bk IS punctured at thenth user, form= n. Then the LLRs of the punctured bits at théh

iteration can be calculated as

(1= Po)Rig (k) + Pol1— Rip (K)]
PoPlg () + (1= po) (L — P (K)]
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. (i) .

wnere = . e calculation ofA, ori>0uw e discussed later In this

hereP{ (k ;XF“[“A(,SK({H The calculation ofA\’ (k) for i > 0 will be di d later in thi
expiAn

subsection.

Define the initial LLR for tha-th iteration as

. MK, ke FhorM<k<M+P,
& (k) = (5.8)
ﬁéi_l)(k), otherwise
In (5.8), for a given user, the initial LLRs of the transmitiaformation and parity bits are obtained
from their respective channel measurements, and they kegpanged throughout the iterations.
The initial LLRs for the punctured information bits are upethas the iterations progress.

The MCMP will be performed on a bipartite graph defined by aterated parity check ma-
trix H = [PT,1p]T € 2M+P)*<P_ |t should be noted that is not the parity check matrix for the
codeword defined in (5.2). It is the parity check matrix of thgunctured codeword with the
generation matrixXl v, Pn], because the LLRs of the punctured bits can be calculated fineir
correlated counterparts transmitted by the other user.

The tanner graph correspondingHdhas(M + P) variable nodes anB check nodes. Thieth
variable node is connected to tipeth check node if thek, p)-th element ofH is 1. Denote?},
as the set of variable nodes that are connected tp-hecheck node, an@j as the set of check
nodes that are connected to théh variable node.

For the information from the-th user, the message from tkeh variable node to the-th

check node during thieth iteration is

nem ="K+ Y uhn). (5.9)
p'eci\p
Whereugﬁ(n) is the message from theth check node to th&-th variable node during thieth

iteration, and it can be calculated as
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(i)
. J(n
ugﬁ(n) = 2atanh( M tanhw) . (5.10)
Kevp\k 2
p

0.

During the first iterationyé?() (n)
For a conventional MP algorithm, egns. (5.9) and (5.10) aréopmed iteratively for a single
codeword, and the values 6£i)(k) are the same for all the iterations. In the proposed MCMP
algorithm, the iterations will be performed across the twdewords through the update@@(k)

asin (5.7) and (5.8).

At the end of tha-th iteration, then-th user will output a soft decision for its un-punctured

information bits, as

MER=a"K0+ T uhn). (5.11)

€6k
This soft decision from tha-th user will be used to update the LLRs of the punctured bitstfe
m-th user(m+ n) as described in (5.8).
Atthe final iteration, the hard decision is obtainedgg) = 1 if A" (k) > 0 andby(k) = 0 oth-
erwise. Simulation results demonstrate that the proposeMM achieves significant performance

gain over conventional MP algorithm that performs itenafior a single codeword.

5.4.2 Joint Decoding for Correlated Markovian Sources

The decoder that utilizes the spatial and temporal coroelaif the information sources is dis-
cussed in this subsection.

The joint decoder contains a MCMP decoder and a HMM decoddr [lhe MCMP decoder
is used to exploit the spatial correlation among the soy@med the HMM decoder can take ad-

vantage of the temporal correlation of the data from the ssonece. The MCMP decoder and the
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HMM decoder iteratively exchange soft information throdlgé iterations. Details of the decoding
process is described as follows.
The initial values for the joint decoder azkéo)(k), fork e J, orM < k<M + P which are the

LLRs of the unpunctured information and parity bits caltedefrom (5.5) and (5.6).

5.4.2.1 MCMP Decoding

At the (i +1)-th iteration, the soft information available at the inptittee MCMP decoder include:
)\r(,o)(k), for ke 7, or M < k <M + P, which are the LLRs of the unpunctured information and
parity bits as calculated from (5.5) and (S.MP(k), fork ¢ 7, which are the estimated LLRs of
the punctured information bits as calculated from (55714-)),(k) 2 PO (by(k) = jlyn), for j =0,1
andk=1,--- M, which are thea posterioriprobability (APP) of the data from source 1 at the
output of the HMM decoder. Whern= 0, Zj(o)(k) = 1 (k), whererr (k) is the stable probability of
the Markov process. The calculationq(f)(k), fori > 1, will be discussed later in this subsection.
It should be noted that only the APP from source 1 is availabléhe output of the HMM
decoder, because the data from source 2 is not a Markov prdoefine the APP ratio of the data

from sources 1 and 2 as

. )k
AV(k) = log Zoi ( >, (5.12a)
4" (k)
(i) (i)
- 1— k k
Podo " (K) +(1—po)dy (K)
Based on the inputs, the initial LLRs for tiv¢h iteration can be calculated as
A2 (), M<k<M+P,
&K= aP1+2%k, ke (5.13)
ATV () + AV (K), otherwise
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Please note that the parity bits do not form a Markov proceskesoutputs of the HMM decoder
are not used in the calculation of the LLRs of the parity bits.

With the initial LLRs given in (5.13), the MCMP algorithm d&goed in the previous subsec-
tion can be performed. Specifically, the message from thahlarnode to the check node is first
calculated with (5.9), then the message from the check rotheetvariable node is calculated with
(5.10). The output of the MCMP at theh iteration is calculated from (5.11), which will be used
as the input for the MCMP decoder for the next iteration a%itg). In addition, the soft output

of the MCMP will also be used as the input for the HMM decodethef current iteration.

5.4.2.2 HMM Decoding

Since the data from source 1 is a Markov process and the datasiource 2 is a hidden Markov
process, the corresponding observations at the recgjugrare hidden Markov processes.

Define the observation likelihood function of the data fraonrge 1 at the-th iteration as

. D (yar(m)|br(k) = ), ke 7,
i PV (Yar(malba(k) =), ke 7 5.1

PV (Yaa(mdlba(k) = j), ke Z.
We propose to update the observation likelihood functiotihthe soft output of the MCMP
decoder, as
v (k) =P (K), if ke 7,
¥ (k) = (1~ po)Pho () + poPly (k). if ke . (5.15)

(i)

W (K) = poPlg (K) + (1 po)PS (K), if ke 75,

- A ' !
whereP{) (k) = m andRy; (k) = 1 Big (k).

The APP,P() (b1 (k) = jlya1,Ya2), can be efficiently calculated by using a foward-backward
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recursion as [14]

_ 1 :
lrt’j(l)(k) _ [Z)wl(l)(k_ 1)a”] Vj(l)(k),k: 2, M, (5.16)
=

. 1 . .
¢j(')(k) _ %¢|(I)(k+1)ajl V|(I)(k+1),k =1, ,M-1, (5.17)
|=

where L[Jj(i)(k) = p(Ya1(1 : K),Ya2(1 : k),bi(K) = j) is the forward message and initialized by
L[Jj(i)(l) = Tf X yj<i)(1), with a(k; : ko) representing a vector formulated by using kaeh to kp-th
elements of the vectar, and(pj(i)(k) =pP(Yar(K+1:M),yg2(k+21:M)|bs(k) = j) is the backward
message and initialized lcqyjm(M) =0.5.

After the forward-backward recursion, the APP output of MM decoder is calculated by

00 = 419 x 0" k. 518

WhereCS) is a normalizing constant such tl'ta,q)(k) + Zl(i)(k) = 1. The APP output is then used
as the input to the MCMP decoder in the next iteration as desttin (5.12) and (5.13).
The iterations will be performed until convergence or theximaim number of iterations is

reached. The joint MCMP-HMM decoding algorithm is summedizas follows.
) Initialization
I) Calculate the initial LLRs of the transmitted informatibits and parity bits}\r(,o)(k)

with (5.5) and (5.6 foke Jyork=M+1,---N,andn=1,2.

ii) Calculate the estimated initial LLRs of the punctureformation bits,}A\rEO)(k), with
(5.7) fork € Iy, wherem # n.

iii) Calculate the stable probability of the Markov procesgk), fork=1,--- ;M and
j=0,1.
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iv) CalculateAl” (k) with (5.12), fork=1,---,M andn = 1,2.

v) Seti =1.
I) MCMP Decoding

i) Calculate the initial LLRSdﬁi)(k), fork=1,---,N,andn=1,2.

i) Calculate the message from the variable node to the chedk,nlgr))(n), with (5.9), for
k=21---,N,p=1,---,P,andN=1,---  N.

iii) Calculate the message from the check node to the vaiabde,ugﬁ(n), with (5.10),
fork=1,---,N,p=1,---,P,andN=1,--- ,N.

iv) Calculate the soft decisionay” (k), with (5.11).

v) Update the estimated LLR of the punctured informatiom,tﬁﬁo)(k), with (5.7) for

k € Im, wherem = n.
[I) HMM Decoding
i) Calculate the observation likelihood functiopf, (k), with (5.15), fork =1,---,N and
j=0,1.
ii) Perform the forward algorithm described in (5.16) toajbttpj(i)(k), fork=2,--- M
andj=0,1.

i)y Perform the backward algorithm described in (5.17)leong | (k), fork=1,---,M

1,andj =0,1.
iv) Calculate the APR" (k) with (5.18), fork=1,--- ,N andj =0, 1.

v) UpdateAl (k) with (5.12), fork € F, with n = m,
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Figure 5.1: The performance of MCMP for memoryless sourcekenvarious values gd.

vi) If i <1, go bakc to step I1.1); otherwise go to the next step.

[Il) Detection

Make hard decision &,(k) = 1 if Ay (k) > 0 andby(k) = 0 otherwise.

5.5 Simulation Results

In this section, the performance of proposed DJSCC schethetid MCMP and MCMP-HMM
algorithms are demonstrated with simulation results.

In the simulation, an irregular LDPC with a 508-by-1016 pagheck matrix is used to gen-
erate the DJSCC codeword. We would like to stress that thigypdreck matrix of the irregular
LDPC code has been chosen without any optimization. It ieetqal that more performance gains
can be achieved with a carefully designed parity check matim all the examples, the initial

probability of the Markov process is 0.5 for both states.
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We first study the bit error rate (BER) performance of the psgal MCMP decoding algorithm
for the network with two correlated sources, without coesiag the Markov property in the time
domain. Fig. 5.1 plots the BER of the DJSCC with MCMP decodilgprithm under various
values of the spatial correlation coefficiept, The performance of a system with the two sources
encoded separately with conventional LDPC code and the MBdid# is also shown for compar-
ison. In the simulation, the transition probabilitiag = a;; = 0.5, which means both source 1
and source 2 are memoryless. The energy allocation facteE9.5 for all cases. The iteration
number of the MCMP decoder is 20. It is observed that, withquaéenergy allocation, the BER
performance of the proposed DJSCC with MCMP decoder is it the conventional LDPC
code even ap = 0.7, and performance improves asincreases. Ap = 0.9, the DJSCC with
MCMP decoder outperforms the conventional system by 1.8tdE®R=10"3

The performances of the various decoding algorithms fatiag@mporally correlated sources
are compared in Fig. 5.2. The data from source 1 follows a Mapkocess with transition proba-
bilities agg = 0.8 anda;; = 0.7. The correlation coefficient between sources 1 angp29.8. As
expected, the MCMP-HMM algorithm has the best performarambse it exploits both the spa-
tial and temporal data correlations, compared by MCMP aed:tinventional MP algorithm. At
BER=10"3, the MCMP algorithm is about 0.2 dB better than the convexatid/P algorithm due
to the extra information exchange during the decoding m®cand the MCMP-HMM algorithm
is about 0.4 dB superior than the DJSCC with the MP algorithm.

Fig. 5.3 demonstrates the performance of the proposed MEMRF decoding algorithm
under various spatial and temporal correlations. For coisga, the simulations are performed
by considering different HMM parameters as follows:agy) = a;1 = 0.5, b) ago = a11 = 0.7, ¢)
ago = a11 = 0.8. The proposed DJSCC with the MCMP-HMM decoding can effetfi exploit
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Figure 5.2: Comparison of different iterative decodingoaithms.

the correlation in both the space and time domains, thugasing the spatial and/or temporal
correlation yields better performance. As can be seen flafitjure, wherp = 0.9 and BER =

1073, increasingagy anday 1 from 0.5 to 0.8 leads to a 0.38 dB performance gain.

5.6 Conclusion

In this chapter, we propose a new DJSCC coding scheme foce®with spatially and tempo-
rally correlated data. The DJSCC encoding is performed mciuing the information bits in
the encoder and allocating unequal energy for the infoonaind parity bits in the transmission.
Two decoding algorithms are proposed. The first algorithma MCMP algorithm, is designed for
spatially correlated memoryless sources. The secondigdggthe MCMP-HMM algorithm, can

effectively exploit the data correlation in both the spasd ime domains. The MCMP algorithm
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Figure 5.3: The performance of MCMP-HMM for HMM sources undarious values op.

performs iterative joint decoding over two correlated sesrsimultaneously, such that the soft in-
formation between the two codewords are exchanged at esatidin to obtain extra performance
gains over conventional MP algorithm, where the soft infation is only exchanged inside of one
codeword. The MCMP-HMM algorithm exchanges soft inforraatbetween the MCMP decoder
an a HMM decoder, which exploit the temporal data correfatiSimulation results demonstrate
that the proposed new DJSCC coding schemes achieve catsdiglperformance gains over con-

ventional systems.
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Chapter 6

Maximizing Spectral Efficiency for High Mobility Systems with Imperfect Channel State
Information

Ning Sun and Jingxian Wu

6.1 Abstract

This chapter studies the optimum system design that canmizxithe spectral efficiency of high
mobility wireless communication systems with imperfectichel state information (CSI). High
mobility of the wireless terminals results in fast timeyiag fading, which can be tracked at the
receiver by employing pilot-assisted channel estimatibne percentage of pilot symbols in the
transmitted symbols plays a critical role on the systemagoerénce: a higher pilot percentage
yields a more accurate channel estimation, but also momhead. The effects of pilot percentage
are quantified through the derivation of the channel estomahean square error (MSE), which is
expressed as a closed-form expression of various systeaampégers through asymptotic analysis.
It is discovered that the channel interpolation at nontpdoations can yield the same asymptotic
MSE as the channel estimation at pilot locations if the pikample the channel above its Nyquist
rate. Based on the statistical properties of the channiehason error, we quantify the impacts of
imperfect CSI on system performance by developing the &énalysymbol error rate (SER) and
a spectral efficiency lower bound of the communication syst&he optimum pilot percentage
that can maximize the spectral efficiency lower bound is tified through both analytical and

simulation results.
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6.2 Introduction

High mobility wireless communications have received iasiag attentions recently with the grow-
ing demands for applications such as high speed railwaysiatréft communications. One of the
main challenges faced by high mobility communications esfst time-varying fading caused by
the Doppler shift, which could be as high as 1,000 Hz for a Z2# Gystem operating at a speed
of 450 km/hr. In a high mobility system, the accurate estiomatnd tracking of the fast time-
varying fading are critical to reliable system operatioi@hannel estimation can be performed
either through the direct estimation of the fading coeffitsg1]-[7], or through basis expansion
models (BEMs) that transform the fading coefficients to ldwwensional transform domains [8, 9].
Many channel estimation related works focus on the desigoptimum pilot patterns that
can minimize the channel estimation mean square error (NJBE3], [9]. In [1], the optimum
pilot design for an orthogonal frequency division multilegy (OFDM) system employing the
minimum mean square error (MMSE) channel estimation isudised, and it is shown that the MSE
can be minimized by using identical equally-spaced freque&lomain pilot clusters. The MMSE
estimator requires the priori knowledge of channel siatisyet such information is not needed
by a least squares (LS) channel estimator. In [2], the optipiot pattern for the LS estimation
of quasi-static channel in OFDM systems is obtained thromgimerical convex optimizations.
The LS estimation of doubly selective channels are disclissg3] for a multiple-input multiple-
output (MIMO) OFDM system, where the pilot matrix is desigres a unitary matrix to avoid
matrix inversions during the LS channel estimation. A wiwed LS (WLS) channel estimation
with a BEM channel model is proposed in [9], and it is showrt tha estimation accuracy of

WLS can approach that of MMSE-based estimators. All abovthous are designed by using
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the MSE as a metric under the constraint of fixed pilot powet/@npilot numbers. They do
not consider how the pilot patterns or imperfect channgestgormation (CSI) will impact the
overall communication performance, such as the bit erter(BER), spectral efficiency, or energy
efficiency.

In high mobility systems, channel estimation errors are-negligible and they might have
significant impacts on the system performance and desigdifi§][4n [4], it is discovered that sys-
tems employing LS or MMSE channel estimations can achiezvséime symbol error rate (SER)
performance if the optimum receivers are designed by cernigiglthe statistics of the channel es-
timation errors. In [5], the impacts of channel estimatiomeon the BER of an ultra-wide band
(UWB) system are studied. Both [4] and [5] use system errobability as the design metric. An
information theoretic metric, a sum-rate lower bound of a-tmay relay network, is used in [6] to
evaluate the system performance in the presence of imp&®icThe sum-rate lower bound is nu-
merically maximized by considering parameters such asitrgivector structures and the number
of training symbols. A quasi-static block fading model is@®ed in [4]-[6], thus the results are
not applicable to high mobility systems. In [7], the tragkiof a time-varying channel is achieved
by using polynomial interpolations, and the results aradusequantify the BER of a two-way
relay system with analog network coding. It is demonstr#tetl polynomial interpolations might
not be sufficient to track the channel variation in high mibpgystems.

In this chapter, the optimum pilot design that maximizesdpectral efficiency of high mo-
bility wireless communication systems is studied. The fase-varying fading coefficients are
estimated and tracked through the MMSE estimation andgdaotation. The MSE of both channel
estimation at pilot locations and channel interpolatioman-pilot locations are studied through
asymptotic analysis, and the results are expressed asidimse expressions of parameters such
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as the Doppler spread, the signal-to-noise ratio (SNR)lat |mcations, and the percentage of
pilot symbols in the transmitted symbols. It is discovereattif the pilots sample the channel at
or above the Nyquist rate of the time-varying fading, them MMSE interpolation at non-pilot
locations yields the same asymptotic MSE as channel estimat pilot locations. The statistical
properties of the estimated channel coefficients are sludied the results are used develop an
analytical SER and a spectral efficiency lower bound foresystoperating with imperfect CSI. A
higher pilot percentage yields a better SER. However, al@&#R does not necessarily mean a
better overall performance, considering the fact that ¥tegsive use of pilot symbols means more
overhead. Such a tradeoff relationship is revealed in teeegy spectral efficiency. The optimum
pilot percentage that can maximize the spectral efficienayet bound is analytically identified.
The impacts of imperfect CSI on system performance areeatutirough both analytical and sim-
ulation results.

The remainder of this chapter is organized as follows. Tlséesy model and the MMSE chan-
nel estimation are presented in Section 6.3. Section 6diestihe analytical asymptotic MSE for
both channel estimation at pilot locations and channerpatation at non-pilot locations. The
impacts of the imperfect CSI on the SER are analyzed in Seéib by analyzing the statistical
properties of the estimated channel coefficients. In Se&i6, a spectral efficiency lower bound is
developed for systems with imperfect CSlI, and the optimuot gensity that maximizes the spec-
tral efficiency is identified. Numerical results are giverSection 6.7, and Section 6.8 concludes

the chapter.

128



6.3 Problem Formulation

6.3.1 System Model

Consider a system that employs pilot-assisted channel&istin and experiences fast time-varying
fading. At the transmitter, the data to be transmitted aveddd into slots, and each slot hils
modulated data symbols aft) < Ns pilot symbols. The values dfs andNp can be chosen such
thatK = “—Z is an integer. The pilot symbols are equally spaced suclet@it pair of adjacent pilot
symbols are separated Kydata symbols. Denote the symbol vectokas [xq,- - - ,xn]" € /N>,
whereN = Ns+ Np is the total number of symbols per slot; is the modulation alphabet set, and
AT represents the matrix transpose. Denotektttepilot symbol as, = P, whereiy = kK is the
index of thek-th pilot symbol, fork = 1,--- ,N,. The average energy of the symbols is normalized
to 1,E(|x,|%) = 1, whereE is the mathematical expectation operator. Define the ptagerof the
pilot symbols a®) = % et

The data and pilot symbols are transmitted over the fast-tiamging fading channel with

additive white Gaussian noise (AWGN). The signhals obseate¢de receiver is

y=+vEo-X-h+z (6.1)

wherey = [y1,--- ,yn]" € ¥N*tisthe received signat,= [z, - ,z\]" € €N*1is the AWGN with
covariance matriR, = o2ly, Iy is a sizeN identity matrix,Eg is the average transmission energy
of a symbol,h = [hy,--- ,hn]T € ¥N*Lis the channel fading coefficient vector, ad= diag(x)

is a sizeN diagonal matrix with the transmitted signal veckoon its diagonal. The time-varying

fading coefficients are correlated with cross-correlabeimng

p(m—n) = Elheh] = Jo(21tf, |m—n/Ty), (6.2)
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wheref is the maximum Doppler spread of the fading chanfigis the symbol period, andh(x)
is the zero-order Bessel function of the first kind.
It is assumed that the energy per symBgls fixed for both data and pilot symbols. Therefore,

the average transmission powepPis= %

6.3.2 MMSE Channel Estimation

Before detection, the receiver first performs the chann@inasion to obtain an estimate of the
fading channelh, over the entire slot based on distorted observations ot gymbols,y, =
[Vigs Yigs - ,yin]T e €No*1, The channel estimation is performed to minimize the meaasger-
ror (MSE) between the estimated and the actual channelsMBieof then-th channel coefficient

is
02 =E[|hn—hnl?], forn=1,--- N (6.3)

whereﬁn is then-th estimated channel fading coefficient.

The optimum linear MMSE estimator 6]‘1 is
Ao = /Eor HP" (EoPRP + 02In,) ' yp, (6.4)

wherer = E[hph] € N1, with hy = [h(i1), -+, h(in,)]T € €N being the fading coefficients
at pilot locations Rpp=E [hphtl] € ™M with its elements defined in (6.23" denotes the
matrix Hermitian operation, and the diagonal mafix- diag{[p1, -, Pn,]} € Ne>xNo contains
the transmitted pilot symbols. The channel auto-cormetathatrix Ry, is a Toeplitz matrix with
the (m, n)-th element being (27tf,|m— n|%) as defined in (6.2), wheré is the percentage of

pilot symbols.
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With the optimum MMSE estimator given in (6.4), the M8& can then be calculated as
1 ~1
o2=1-rH (th+%|,\,p) M, (6.5)

wherey = 5—22 is the signal-to-noise ratio (SNR) without fading, and tBsumption pn|®> = 1 is
used in the above equation. This assumption can be easilyyneebosing only constant amplitude
symbols, such as phase shift keying symbols, as the pilobeignit should be noted that the data
symbols do not need to be constant amplitude.

The MSEGo? given in (6.5) is a function of the symbol indexthe SNRyp, the data rat@s,
the maximum Doppler frequendly, and the pilot percentag® Intuitively, given a fixed trans-
mission power, the pilot percentagg,plays a critical role on the MSE? and the overall system
performance. A smaller pilot percentage means less overltieas a higher spectral efficiency.
On the other hand, a smaller pilot percentage might not et to track the fast time-varying
fading, and this will degrade the channel estimation aagurtn the next section, we will study

the impact of pilot percentage on the channel estimation MSE

6.4 Impacts of Pilot Percentage on Channel Estimation

In this section, the impacts of pilot percentage on the chhastimation MSE are analytically

studied through asymptotic analysis. The channel estim&iperformed in two steps: the receiver
first obtains an estimate of the channel coefficients at wh#tions, then the channel coefficients
at non-pilot locations are obtained by performing MMSE iipt#ations over the estimated CSI at
pilot locations. It has been shown in [10] that such a tw@-$8MSE estimation yields the same

performance as (6.4).
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6.4.1 MMSE Channel Estimation at Pilot Locations

The receiver first obtains an estimate of the channel faditigeapilot locations, by minimizing

the average MSEg?y, = NlpE(Hﬁp— hpl|?), as

hp=WHyp, (6.6)

whereh, = [hi, - -- ,F\in]T € ¢™o*1is an estimate dfip, andW p = v/Eg (EoPRnnP™ + 021y, ) PRy
is the MMSE estimation matrix.

The error correlation matriRee=E [epep |, with e, = hp—hp, can be calculated as
1 _1
ReeZth—th<th+ %|Np) Rhh (6.7)
where the orthogonal principat [(hp — hp)yh| =0, is used in the above equality.

The average MSE can then be calculated as

1
TN, = N—ptrace(Ree). (6.8)

From (6.7) and (6.8), the calculation of the MSE involvesnmahversion and the trace operation.
In order to explicit identify the impacts of pilot percenéagn the MSE, we resort to the asymptotic

analysis by lettingNp — o andNs — « while keeping a finite pilot percentageand data rate

Rs = Tis The results are presented as follows.

Proposition 6.1 WhenNp — o while keeping a finited andRs, the asymptotic MSEUS =

IimN‘ﬁ00 a&Np, of the estimated channel coefficient at the pilot locatisns

o _a
810 arctan( L

o, =1—-

, for 0 >

SERS

5 , (6.9)
m/(20)% - (5)?

wherea = 2mtf, Ts, Yo is the SNR without fading, and is the pilot percentage.
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Proof: The proof is in Appendix 6.9.1. [
Intuitively, the asymptotic MSE should be a decreasing fiamcin the pilot percentagé,
because a large¥y means a higher sampling rate of the time-varying channels iRtuition is

corroborated by the following corollary.

Corollary 6.1 The asymptotic MSE given in (6.9) is a monotonic decrea#imgtion in the

pilot percentag® and an increasing function in the maximum Doppler spradior 6 > %

Proof: The proof is in Appendix 6.9.2. [

6.4.2 MMSE Channel Interpolation

Once the estimates of the channel information at the pilcations are obtained, they can be
interpolated to obtain the channel estimations of the estt.

Consider the estimation of the fading coefficients with sgibdices{i, = (k—1) + u}Eﬁl,
whereu=2,--- K — 1 correspond to the indices of the non-pilot data symbolginBe¢he fading
vector to be estimated through interpolatiorhgs= [h(i7), -, h(iy,)]Te €™,

Following the orthogonal principakl [(hg —hg)h})] = 0, wherehg is an estimate ohg, the

MMSE spatial interpolation can be expressed by

hg = RgaR=hp, (6.10)

where
Rgy = E(hgh}) = /EoRanP" Wy, (6.11a)
Rif 2 E(hpht) =WH (EoPRanP™ -+ 021N, ) Wop. (6.11b)
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The cross-correlation matriRgp = E(hdﬁ'g) e 2N No is a Toeplitz matrix with its first row be-
ing [p(—K+u),p(—2K+u),---,p(—NpK+u)] and the first columfp(—K +u), p(u),---, p((Np—
2)K+u)T.

Combining (6.6), (6.10) and (6.11) yields

~ -1
ha = /EoRanP"™ (EoPRmP" + 071n,)  Yp. (6.12)

The corresponding error correlation matige 2 E [(hg — hg) (hg — hg)T], can then be calcu-

lated by

1 71
Bee = Rnh— Rah (th+ %|Np) Rhd» (6.13)
whereR4q = E(hgh{) = Rpp is used in the above equation, aRgy = RE,. The average MSE for

spatial interpolation ig2,, = = trace(mee). The asymptotic average MSE for channel estimation
p p eNp = Np

through temporal interpolation is given in the followingpposition.

Proposition 6.2 WhenNp — o while keeping a finite, if & > <, then channel estimations

through temporal interpolation yields the same asympfdi®E as channel estimations at pilot

locations, i.e.08 = liMy, e O'éNp = 0}, with 0} defined in (6.9).

Proof: The proof is in Appendix 6.9.3. [ |

The results in Proposition 6.2 state that the temporalpatetion will not degrade the channel
estimation performance, as long as the channel coefficatsampled by the pilots at a rate no
less than the Nyquist ratég > 2f,, or equivalentlyd > %. The temporal interpolation introduces
atime shiftin the correlation betweég andhp. A shiftin the time domain corresponds to a phase
shift in the frequency domain. The asymptotic MSE is onlatedl to the squared amplitude of the
frequency domain representation of the channel correlatidhere is no spectrum aliasing, then
the phase shift does not have any impact on the asymptotic MSE
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6.5 Impacts of Pilot Percentage on Symbol Error Probability

In this section, the statistical properties of the estimiatieannel are studied, and the results are

used to derive the SER in the presence of imperfect CSI.

6.5.1 Statistical Properties of the Estimated Channel

To build an explicit relationship between the channel eation MSE and the SER, we first study
the statistical properties of the estimated channel inghissection. To simplify notation, the data

symbol index is dropped in the subsequent analysis.

Proposition 6.3 For a system operating in a Rayleigh fading channel, thenattd channel
coefficient,h, is a complex Gaussian random variable (CGRV) with zero naaemfwariancejﬁ =

1— 02, i.e.,h~.#(0,1—a2), whereo? is the channel estimation MSE.
Proof: The proof is in Appendix 6.9.4. [ |

Corollary 6.2 Consider a system operating in a Rayleigh fading chanraid@ioned on the
estimated channel coefficieﬁ,tthe true channel coefficiehtis Gaussian distributed with meén

and varianca?, i.e.,.hjh~ .+ (h, g?).

Proof: The proof is in Appendix 6.9.5. [
The receiver performs detection based on the knowledgeeofdbeived samplg and the
estimated channel coefficielnt We have the following corollary regarding the likelihoamhttion,

p(y|ﬁ,x), in the presence of imperfect CSI.

Corollary 6.3 Consider a system operating in a Rayleigh fading chanfehelchannel co-
efficient is obtained through MMSE channel estimation, ttrenlikelihood functionp(y|h,x), is
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a Gaussian probability density function (pdf), with the dilonal meanu and conditional

y|x7|:1’
- 2 -
vanance,awxﬁ, given by
Ui = VEohx (6.14)
ijﬁ = Eo0|x?+ of. (6.15)

wherea? is the channel estimation MSE.

Proof: The proof is in Appendix 6.9.6. [ |

6.5.2 SER in the Presence of Imperfect CSI

The SER performance of systems with imperfect CSl is stuidiellis subsection by utilizing the
statistical properties of the channel estimation error.

For systems with equiprobable transmitted symbols and ifepeCSlI, the SER can be min-
imized by maximizing the likelihood functiorp(y|ﬁ, X), which is a Gaussian pdf with the con-
ditional mean and variance given in Corollary 6.3. From @arg 6.3, the maximum likelihood

decision rule for system witM-ary phase shift keying (MPSK) can be expressed as

|y = Uy il?
X = argmin 0273/‘“‘ :argmin{|u—x\2} (6.16)
xe.s y|x,ﬁ xe.”

where.# is the MPSK modulation alphabet set, gne- \/LE_Oﬁ*yis the decision variable for MMSE
channel estimation, with* being the complex conjugate operator.
From egn. (6.16), the SER can be calculated by finding thegimibty that the decision variable

U is outside the decision region of the transmitted symbals the SER depends on the statistical

properties ofy. Givenh and the transmitted symbg) the decision variablgl is also Gaussian
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distributed with the conditional mean and variance given by

U = [P (6.17a)
. 1
Uﬁ|x,ﬁ = |h*(af+ %>- (6.17D)

Note that the identityx|2 = 1 is used in the above derivation for the MPSK modulated syste
With the statistical properties of the decision variablegiin (6.17), the SER of MPSK mod-

ulated systems with the imperfect CSl is given in the follegvproposition.

Proposition 6.4 For an MPSK modulated system operating in fast time-vagrfdaleigh fading

channels, if the channel is estimated with an MMSE estimé#ien the SER is

-1
1 [T sirf(X)
PE:—/ 147 2M 1 g 6.18
B) =2/ [ Zsinz(go) @ (6.18)
where{ = % ando? is the asymptotic MSE of the channel estimation given in Bsitjpn 2.
)]
Proof: The proof is in Appendix 6.9.9. [

In Proposition 6.4, the SER is expressed as a function offtharel estimation MSEZ, and
the SNRyy. Since the asymptotic MSE2 is a function ofd and f,, the SER can be expressed as

an explicit function ind, f;, andyp.

Corollary 6.4 The SER given in (6.18) is a monotonically decreasing fiomcin the pilot

percentag® and an increasing function in the maximum Doppler spriador 6 > <.

Proof: Itis easy to show tha®(E) in (6.18) is an increasing function wg. The relationship
betweerP(E) andd or f, can then be obtained by using the results of corollary 6.1. |
Based on the results in corollary 6.4, a higher pilot peragatields a better SER performance.
However, more pilots means more overhead, and this migtdtivety affect the system spectral
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efficiency. This tradeoff relationship is studied througieatral efficiency analysis in the next

section.

6.6 Maximizing Spectral Efficiency with Imperfect Channel Information

In this section, we study the optimum pilot design by maxingza lower bound of the spectral
efficiency in the presence of imperfect CSI. A higher pilotgemtage yields a better channel es-
timation, thus less detection errors at the receiver. Omother hand, increasing pilot percentage
will decrease the number of data bits transmitted per uni¢ fper unit bandwidth.

Considering the presence of both pilot symbols and charstiehation error, we can calculate

the effective system spectral efficiency as

n=E; [%C(Fu] = (1-9)E; [c(h)], (6.19)

where the expectation is performed with respedh,t&(h) = MaXy(x) (Y3 X| ha) is the maximum
mutual information betweep andx given the knowledge of the estimated channel coeffidient
with p(x) being the pdf of the inpuk. C(F\) can be considered as the channel capacity in the
presence of imperfect CSlI, and it quantifies the impact ohokhestimation error on the channel
capacity.

It is difficult to obtain the exact expression of the condiabchannel capacitQ(ﬁ). A lower

bound onC(h) is given as follows.

Lemma 6.1 For a system operating in a Rayleigh fading channel witbtfksisted MMSE

channel estimation, the channel capacity conditioned er#timated channel coefficient is lower
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bounded by

- - 1
Ciow(h) = log <1+ |h|202+ : ) (6.20)

ey
Proof: The proof is in Appendix 6.9.8. [ |

Based on the results in Lemma 6.1, a lower bound on the eféesfiectral efficiency is given

by the following proposition.

Proposition 6.5 For a system that employs MMSE channel estimation and expees Rayleigh

fading, the average spectral efficiency is lower bounded by

2 1 2 1
O-e+% O-e+%
Niow = (1— 5) eXp( 1_ Gg ) r (O, 1—7092> y (6.21)

wherer (s,x) = [’ tSle"'dtis the incomplete Gamma function.

Proof: The proof is in Appendix 6.9.9. [

From Corollary 6.1,02 is a decreasing function i and an increasing function ify. It

is straightforward to show tha(d) = % is an increasing function id. The spectral effi-

e Yo

ciency lower bound in (6.45) can thus be decomposed into twaponentsg; (8) = (1— &) and

92(9) = Jo exp(—V)log <1+v;2_fi) dv. The linear functiorgy(9d) is strictly decreasing i,
e Yo

and it contributes to the spectral efficiency loss due to héigilot percentage. On the other hand,
02(0) is an increasing function ia, and it contributes to the spectral efficiency gain due to &emo
accurate channel estimation at a higder Therefore,g1(d) andgx(d) reveal the two opposite
effects of the pilot percentageon the spectral efficiency.

The spectral efficiency lower bound is shown as a functiahiofFig. 6.1 under various values
of the normalized Doppler spredgTs, whereTs is the symbol period. For a system with symbol
rate 1 Msym/s and operating at 1.9 GHz, the range of the Dopplead considered in the figure
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is between 100 Hzf( Ts = 1073) to 1 KHz (f,Ts = 10-2), which correspond to a mobile speed
in the range between 56.8 km/hr and 568.4 km/hr. It can be e, iS @ concave function
of & due to the tradeoff relationship betwegi(d) andgz(d). Whend is small,e.g, é < 0.095
for f,Ts = 0.01, niew increases . This indicates that, whed is small enough, the impacts
of channel estimation error dominates the effective speefficiency. On the other hand, when
0 becomes large enough,g, 6 > 0.095 for f,Ts = 0.01, increasin® further will degrade the
spectral efficiency because of the excessive overheadadysthe high percentage of the pilot
symbols. The optimum pilot percentage that maximize thetspleefficiency lower bound can be
obtained by solving the equati(f@'g—w = 0, which can be expressed as
2 2,1 1
exp(i_Jr ?)I’(O jj ?) [(1— J) 7(11:;?)2 (02)'—1

1
1+% 1

0Z++1-0%

—(1-9) (a2), (6.22)

where(a?)’ is the first derivative 062 given in egn. (6.30). The above equatiodinan be solved

numerically by using standard software packages, suctob&fs Matlab.

6.7 Numerical Results

Numerical and simulation results are provided in this secto verify the results obtained in this
chapter, and to demonstrate the impacts of imperfect CSh@sytstem performance.

Fig. 6.2 shows the asymptotic MSE in Proposition 6.2 as atfonof pilot percentage, under
various values of the normalized Doppler sprégds. The SNR isyp = 10 dB. The MSE obtained
from simulations is also shown in the figure. In the simulagica frame length dff = 3,000 is used
to approximate the infinite frame length. Both the MSE forrafe estimation at pilot positions and
the MSE for channel interpolation at non-pilot locationshatemporal interpolation are shown in
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Figure 6.1: The spectral efficiency as a function of the pktcentage.

the figure, and they are the same as predicted by ProposifoiEgcellent agreement is observed
between the analytical MSE obtained with infinite frame lngnd the simulation results with
finite frame length. As expected, the MSE is a decreasindgifumi 4, and an increasing function
in f,Ts.

The analytical and simulated SER of the data symbols are showig. 6.3 under various
values of the normalized Doppler sprefgls. The SNR isyp = 10 dB, and the modulation is
BPSK. The analytical results can accurately predict thead@ER in the presence of imperfect
CSI. Similar to the MSE, the SER is a decreasing functio iand an increasing function in
f,Ts. In addition, it is also observed from the Fig. 6.3 that, wideis small, the SER decreases
dramatically a®) increases. Whe# reaches a certain threshold, increasdnfyirther only yields
very small performance gains, i.e., the slope of the SERRHve approaches zero asncreases.

Therefore, the desired pilot percentage can be chosen gmoihiesuch tha%dt;—(éa‘ = ¢, with €
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Figure 6.2: The asymptotic MSE as a function of the pilot patage.

being a small number. The slope of the SERurve can be calculated as

1 S’ ({7)
oP(E) 1 /nﬁ (1+6)(98) G
0

a9 T

do (6.23)

)
[ag +i+(1-0) ji”nzz((g))] i
where(a?)’ is the first derivative obZ with respect tad, and it is given in egn. (6.30).

In Fig. 6.4, the desired pilot percentage is solved by chapsi= 10~° and shown as functions
of the the normalized Doppler spredgTs under different SNRs. The desired pilot percentage
increases a§, Ts increases. This is intuitive because a channel that chdages needs a higher
percentage of pilots.

Fig. 6.5 shows the spectral efficiency maximizing pilot petage as a function of the normal-
ized Doppler spreaf}, Ts, under various values of SNR. The optimum pilot percentagalculated

by solving (6.22). The optimum pilot percentage is a mon@@ly increasing function irf, Ts,

because more pilots per unit time are required to compettsafaster channel variation at higher
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Figure 6.3: The SER as a function of the pilot percentage

Doppler spread. At SNR = 10 dB, increasifigls from 2 x 103 to 102 will double the optimum
pilot percentage from 4% to 8%. In addition, a lower pilotqeartage is required for systems with

higher SNR due to the better channel estimation quality viherSNR is high.

6.8 Conclusions

The optimum system design for high mobility wireless comioation systems with imperfect
CSI has been studied in this chapter. The asymptotic chastiehation MSE has been quantified
as a closed-form expression of the percentage of pilots imseddMSE channel estimation. By
analyzing the statistical properties of the estimated obbeoefficients, we derive the explicit SER
and a spectral efficiency lower bound of a communicationesysiperating with imperfect CSI.

It has been shown through theoretical study that, if thet gdonples the channel at a rate no less

than the Nyquist rate of the time-varying channel, MMSE ctam®stimation at pilot locations or
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Figure 6.4: The desired pilot percentage obtained by sgl{6r23) withe = 107°.

MMSE channel interpolation at non-pilot locations yiel@ ttame MSE. In addition, the SER is
a monotonic decreasing function in pilot density, yet thecsgal efficiency is concave in the pilot

density.

6.9 Appendix of Proofs

6.9.1 Proof of Proposition 6.1

Performing eigenvalue decompositionRy, in (6.7), we can rewrite the MSE as

) 7 Ne 1\t,
O-pr — N—p Z An_ (An+ %) An

n=1
N
1 ° An
- , 6.24
Np nzl ()\nyo-l—l) ( )
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Figure 6.5: The optimum pilot percentage as a function ohtbrenalized Doppler spread.

whereA, is then-th eigenvalue oRp,. Based on Szego’s Theorem [12], wHépn— o, (6.24) can

be rewritten as

. 1M AQ)
2 _ lim g2 =
%5 = oM., Toe = 2n/_n [/\(Q)yo—i— 1} 12, (6.23)

whereA(Q) =Sp_ ., Jo(27tf, |K| Tp) € @ is the discrete-time Fourier transform (DTFT){dh (2mrf, |K %S) b
with Ty = % being the space between two pilot symbols.

The Fourier transform (FT) of the continuous-time functig(®2rtf,t) is [14]

Ae(w) = 2rectariy) (6.26)
e (2mf )2 — w?’ '

wherew = T% is the analog angular frequency with unit radians per secBaded on the sampling

theorem and (6.26), the DTHT(Q) can be written as

(6.27)

5 (o) 5 2
o) nkw/B2—(Q-2m)2’

wheref = 2mf, Tp.
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Based on the sampling theorem, whei 21, Ts, there is no spectrum aliasing in (6.27), thus

the MSE in (6.25) can be simplified to
2

1/ﬁ
2
P 2m)p |2+ /B2 Q2

It should be noted thg® < mwhend > 21, Ts.

(6.28)

By changing the integration variabfe = 3sin(x), we can solve the above integral with the

following integration

/g 4arctar<\/: ) (6.29)

[a+bcogx)]* N

NIy

where the equation is derived by combining [11, egn. (23%3vith the identity arctaqjx) =
jarctaniix) for x € # andj? = —1. The results in (6.9) can then be obtained by applying @9

(6.28).

6.9.2 Proof of Corollary 6.1

We will consider two casesd > %, and4 <o < & with yo < 3. Whend > &, the first

derivative ofaf, with respect ta can be written as

2vn—2a
902 ~—Hwa|d (2yo)2—(%)2—2c7arctan< %%H
p
35 — ; R . (6.30)
o3 [(2y0)2 — (§)%]°
Decompose (6.30) into two parts %) = —0____ andf(8)=3,/(2y0)2—(%)2—2a arctan( gy';i.‘r)
33 (2102~ (§)?]? o

It is obviousf1(5) < 0 with & > 5% Sincef;(d) = /(2))?—(5)? = 0, 2(d) is an increasing

function. As a resulfy(d) > fz(&) 0. Therefore,aé

f1(8)f2(8) < O whend > &

Wheng <5 < & andyp < J, with the identity arctafjx) = jarctanttx), the asymptotic MSE
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in (6.9) can be alternatively expressed as

520
, 8y0arctanf< q +2y0)
Op = 1-
a
m/(5)?—
for %<5§2(;0,y0<7—2T. (6.31)

(SYIS]

(SYIS)

2 _
The first derivative ob3 in (6.31) is% = f1(5) f3(3), wherefz(8)=0,/(5)% - (2yo)2—2aarctan"( +§yy§).
We havef(8) > 0when < & < 7. Sincefy(8) = | /(2w)? — (§)? > 0, f3(0) is an increasing
2
function ind. Thusf3(d) < fg(%) =0. Therefore,%p = f1(9)f3(d) <0

Similarly, we can show thatrz, is an increasing function iar, which is proportional td,.

6.9.3 Proof of Proposition 6.2

The Toeplitz matrixRqp, is uniquely determined by the sequenge= [t_n,, - ,to, - ,ter]T,

wherety = p(kKK+u) = Jo (27tf, Tolk+ & |). WhenNp — e, the DTFT of the sequendgy, can be

calculated as
. u
Adn(Q) = A(Q) x exp(jRQ> : (6.32)

whereA(Q) is defined in (6.27).

Based on [12, Lemma 2Rqn is asymptotically equivalent to a circulant matiGgp = UJ DgrUn;,
whereU{ is the unitary discrete Fourier transform (DFT) matrix wtite (m-+1,n+ 1)-th element
being(UN)mLn+l = \% exp[—jZH%‘}, andDyh, is a diagonal matrix with it&-th diagonal ele-
ment beingDan)y = Adh (552)-

Similarly, the Toeplitz matrixRpp, is asymptotically equivalent to a circulant matr&,, =
UH DnhUn, WhereDpy, is a diagonal matrix with itg-th diagonal element bein@®np),, = A\ (%) ,
with A(Q) defined in (6.27).

147



Based on [13, Theorem 2.1], the error correlation mamjyg, is asymptotically equivalent
-1
to a circulant matrix,Cee = Chn — Cqn (Chh-l- %le> cg'h = UHDeeUN, whereDge = Dy —
-1
Dgh (th+ %INP) Dgh. It is apparent thaDee is diagonal given thaDn, andDgyp, are diagonal.

Based on Szego’s Theorem, we have

o 17  Aan(Q)?
0t == /_ n[/\(Q) N+ df. (6.33)

Sinced > <, there is no spectrum aliasing f&(Q) andAgn(Q) when—T<Q < 1. As a
result, \gn(Q)|? = |A(Q)|?> when—1 < Q < 1. Therefore (6.33) can be simplified to (6.25), and
this completes the proof.

6.9.4 Proof of Proposition 6.3

Sincehp andzp, are zero mean Gaussian distributed, the received vect@aspamding to the pilot
symbols,yp, is zero mean Gaussian distributed with auto-correlatiatrimRyy = EoPRyP +
aZZINP. From (6.12), the estimated channel vedigris a linear transformation ofp, thushy is

zero mean Gaussian distributed with auto-correlationisngiven by
1\,
Rgq = Rdh | Rhh+ %le Rah- (6.34)
Combining (6.13) with (6.34) yieldR j5 = Rhh— Pee Therefore,aﬁ = StracdRy4) = 1— 02.

6.9.5 Proof of Corollary 6.2

Denote the estimation error vectey = hqy — hg. Since bothhy andhy are zero-mean Gaussian
distributed,gq is zero-mean Gaussian distributed. The cross-covariamtexnbetweeney and

hq is E(eghl) = 0 by following the orthogonal principal. Therefore, andhy are uncorrelated.
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The conditional mean can then be calculated,gs= E(hg|hg) = hg — E(eg|hg) = hg. The auto-
covariance matrix isk[(ha — Uy ) (ha — Ups) "] = E[(hg — ha) (hg — ha) ] = e The conditional

variance is th usrﬁ‘h Ltracelee= 07

6.9.6 Proof of Corollary 6.3

Sinceh conditioned orh is Gaussian distributed, it is straightforward tlyat \/Eghx+ z con-
ditioned onh andx is Gaussian distributed. The conditional mean and varigacebe directly

calculated by using the result from Corollary (6.2).

6.9.7 Proof of Proposition 6.4

Given the estimated C$land the transmitted symbgj the conditional SER equals to the proba-
bility that the decision variablg is outside of the decision region ®f Sinceu conditioned orh

andx is Gaussian distributed, the conditional error probabdén be written as [4] and [15]

. 1 lu xR 2Sil’lz(ﬁ)
P(E|h):—/ expd —Hxh do (6.35)
1 Jo aljxvﬁsmz((p)
Substituting the values of % and02| ~ from (6.17) into (6.35) yields
. m—n hI2sin?( X
PER) = 2 [ M exp| - TS dg (6.30
mJo (02+ ) sir()

The unconditional error probabilif§(E) = E[P(E|h)] can then be calculated by

e osir( )
/ / [ gg_|_ )S':/InZ((m] p|ﬁ|2(6)d9d¢7

wherep(6) is the pdf of|h|2. From Proposition 6.3y ~ €.4(0,1— 02), thus|h|? is an ex-

ponentially distributed random variable with mean @2. Changing the integration variable with

V= 1 and solving the integration efresults in (6.18).
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6.9.8 Proof of Lemma6.1

The conditional mutual information is defined as

I(y; x|7) = Exy [log p(y|x, h)] — Exy [logp(y|)] . (6.37)

From Corollary 6.3 p(y|X, F\) is a Gaussian pdf with the conditional mean and variancengive
in (6.14). Then

1
EooZ|x|2+02)e|”

Exy [logp(y|x,h)] = Ex {Iog - (6.38)

It can be easily shown that (6.38) is convexiff. Based on Jensen’s inequality, we have

B 09 e affe) > et o7 (©39)
whereE(|x|?) = 1 is used in the above inequality.
Define
Low(Y; X[ D) = log = +E {Iog . } . (6.40)
M(Eo0% + 07)e p(ylha)
Thus low(y;X|N) < I1(y;x/h).

The second term in (6.40) is the conditional differentiarepy ofy given h. Conditioned on

h, the conditional mean and varianceyadre given by

Wh = 0, (6.41a)
ajﬁ = Eo(|h2+0?) + o2 (6.41b)

Given variancenjﬁ, it is well known that the entropy (yﬂﬁ is maximized ify|ﬁ ~N (0, O'jﬁ> .In

this case,
1 _ 012 2, 2
maxE |log——~— | = log(Eg|h|* + Epof + 03) (6.42)
p(y/ha)
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Thus, (6.40) can be maximized by

. . .1
Ciow(h) = maxlow(y; x|h) = log <1+ |h|202 - ) . (6.43)
ety

since low(y; X|N) < 1(y; x|), we haveCiow(h) < C(h).

6.9.9 Proof of Proposition 6.5

Based on (6.19) and (6.20), a lower bound on the effectivetsgdesfficiency can be obtained as

oo 1
Mow = (1— 5)/ log <1+Xﬁ> p||?,‘2(X)dX, (6.44)
0 os+ m

wherepwz(x) is the pdf of the exponentially distributed random variabte| h|2 with mean 1- g2.

With the change of integration variable= ., (6.44) can be alternatively represented as

—(1—5)/mexp(—v)lo 1+v1 Te
= 0 J a2+

& =

) dv (6.45)

Solving the above integral based on the definition of thenmalete Gamma function yields (6.21).
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Chapter 7

Conclusions

This chapter summarizes the main contributions of thisetliaion and lists some possible direc-

tions for the future research.

7.1 Contributions

The contents presented in this dissertation focus on tretipahdesign of distortion-tolerant wire-
less communication systems by exploiting spatial andfopteal correlation and the main contri-
butions are summarized as follows.

First, we present the optimum sensor node density for 1-D2aDdNSNs with spatial source
correlation. The WSN is designed to minimize the MSE digtarbetween the original and the
reconstructed signals under the constraint of a fixed poweupit area. It is observed that, for
the network only needs to estimate spatially discrete ¢éaaing exactly one sensor at the desired
measurement locations will generate the optimum perfoomakor the estimation of the data at
arbitrary locations in the measurement field, the optimumendensity can be found when the
MSE-density slope is close to zero.

Second, the analysis of the optimum sampling is extended.H? and 2-D WSNs with spatial-
temporally correlated data. The impacts of the node demsttye space domain, the sampling rate
in the time domain, and the space-time data correlation emétwork performance are investi-
gated asymptotically by considering a large network witimite area but finite node density and
finite temporal sampling rate, under the constraint of fixed/gr per unit area. The impact of
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space-time sampling on network performances is investibat two cases. The first case studies
the estimations of the space-time samples collected byahgoss, and the samples are discrete
in both the space and time domains. The second case estiara@bitrary data point on the
space-time hyperplane by interpolating the discrete sasngbllected by the sensors. Optimum
space-time sampling is obtained by minimizing the mean reqaeror distortion at the network
fusion center.

Third, a new DJSCC is proposed for a communication netwotk miultiple correlated infor-
mation sources. The DJSCC is performed by puncturing tloenmdtion bits of a linear block code
but leaving the parity bits intact. Unequal amounts of epg@er bit is allocated to the information
and parity bits. At the receiver, the sources are jointlyodied with the iterative message pass-
ing algorithm. Simulation results demonstrate that theapsed scheme can achieve considerable
performance gains over conventional schemes.

Fourth, a new DJSCC coding scheme is designed for sourcbsspdttially and temporally
correlated data. At the receiver, two decoding algorithnespsoposed. The fist MCMP decod-
ing algorithm can perform both intra- and inter-codewortt sdormation exchange by using the
spatial source correlation. The second one adds a hiddekoMarodel decoding module to the
MCMP decoder to exploit the temporal data correlation. Buftthese two decoding algorithms
can lead to significant performance gains.

Finally, the optimum system design for high mobility digton-tolerant wireless communica-
tion systems with imperfect CSI has been studied. The asytothannel estimation MSE has
been quantified as a closed-form expression of the percewtagilots used for MMSE channel

estimation. Based on the statistical properties of thenegéd channel coefficients, we derive the
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explicit SER and a spectral efficiency lower bound of a comication system operating with im-
perfect CSI. Itis discovered that the pilot samples the nkbat a rate no less than the Nyquist rate
of the time-varying channel, MMSE channel estimation attddbcations or MMSE channel inter-
polation at non-pilot locations yield the same MSE. In additthe SER is a monotonic decreasing

function in pilot density, yet the spectral efficiency is caxe in the pilot density.

7.2 Future Works

We listed several possible directions for the future works.

First, in the DJSCC proposed in Chapters 4 and 5, the simulaéisults show that the per-
formance of the puncture operations is affected by the adflasonditions. If the CSl is available
at the transmitter, then the transmitter can adjust the tpung rate to obtain extra performance
gains. The CSI can be made available to the transmitter giwraufeedback channel. The design
of adaptive DIJSCC based on CSl is one of the future researettidns worth exploring.

Second, in the design of distortion-tolerant high mob#iggtems introduced in Chapter 6, the
role of the pilot is more important than data symbols, thuscae allocate unequal amounts of
energy to the pilot and data symbols. Then the pilot inforomai.e., the pilot percentage and the
energy allocation factor, can be jointly optimized to maidethe spectral efficiency or minimize
the SER.

Finally, the channel model considered in Chapter 6 is timgsng flat fading. In reality, the
channel in the high mobility case also suffers frequencgdide fading, and this determines an
operation environment of doubly-selective fading. Tharmapm designs of high mobility systems

in doubly-selective fading with imperfect CSl is anothepintant research topic.
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