


spatial correlation coefficient in the 1-D and 2-D networks.In the figure,ε = 10−3 is used for

both 1-D and 2-D networks whenN is large. For both the 1-D and 2-D networks, the optimum

node density decreases asρ increases. For a fixedρ , the optimum node density increases asN

increases, and it is upper bounded by the asymptotic result.Therefore, the 1-D and 2-D networks

have similar performance trends. For a givenρ , the optimum node density of the 2-D network is

slightly higher than its 1-D counterpart.

From Figs. 2.7 – 2.9, it is observed that the performance of a 2-D network has similar trends as

that of an 1-D network. Therefore, we can use the tools and results derived for an 1-D network to

approximately predict the performance trend of a 2-D network, especially when the node density

or the spatial correlation coefficient is large. Since the results of the 1-D network are expressed in

closed-forms, using the 1-D results for the analysis of the 2-D network reduces the analysis com-

plexity, and provides similar insights on the interactionsbetween the parameters and performance.

2.6 Conclusions

In this chapter, the optimum sensor node densities for 1-D and 2-D WSNs with spatial source

correlation were studied. The impacts of the node density onthe MSE of the data reconstructed at

the FC were investigated for both small networks with finite number of nodes, and large networks

with the number of nodes tending to infinity. Exact analytical expressions of the MSE, many in

closed-forms, were obtained for the 1-D and 2-D networks. The analytical results quantitatively

identified the interactions among the various system parameters and the estimation fidelity, and the

results provide insights and guidelines on the design of practical WSNs.

There were three observations from the analytical and numerical results. First, if the network
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only needs to estimate spatially discrete data, placing exactly one sensor at the desired measure-

ment locations will generate the optimum performance. Second, for the estimation of the data

at arbitrary locations in the measurement field, the optimumnode density can be found when the

MSE-density slope is close to zero, and the optimum density decreases as the spatial correlation co-

efficient increases. Finally, the 1-D and 2-D networks have similar performance trends with respect

to node density, and their performance difference diminishes as the spatial correlation coefficient

increases.

2.7 Appendix of Proofs

2.7.1 Proof of Lemma 2.1

In Step 2, the MMSE vectorwsl that minimizesσ2
η can be obtained through the orthogonal princi-

pal [18],E{[wT
slx̂s−x(η)]x̂T

s }= 0, and the result is

wT
sl = E[x(η)x̂T

s ]
[

E(x̂sx̂T
s )
]−1

,

=
√

Pnrη
(

PnRxx+σ2
z IN
)−1W−1

s , (2.33)

where (2.2) and (2.6) are used for the second equality. Combining (2.6), (2.8), and (2.33) leads to

(2.4).

2.7.2 Proof of Proposition 2.1

Based on Szego’s Theorem [16], whenN → ∞, (2.11) can be rewritten as

σ2
s = lim

N→∞
σ2

s,N =

∫ 1
2

− 1
2

[

1
Λss( f )

+
γ0

δ

]−1

d f, (2.34)
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whereΛss( f )=∑+∞
n=−∞ ρ |n|de− jn2π f is the discrete-time Fourier transform (DTFT) of the sequence,

{

ρ |n|d
}

n
, which are elements of the Toeplitz matrixRss. The DTFT,Λss( f ), can be calculated by

Λss( f ) =
1−ρ2d

1+ρ2d −2ρd cos(2π f )
. (2.35)

Substituting (2.35) into (2.34) leads to

σ2
s =

∫ 1
2

− 1
2

[

1+ρ2d −2ρd cos(2π f )

1−ρ2d +
γ0

δ

]−1

d f. (2.36)

The above integral can be solved by using the identity [19, eqn. (2.553.3)]

∫ 1
2

− 1
2

[a+bcos(2π f )]−1d f =
1√

a2−b2
, (2.37)

Combining (2.36) with (2.37) leads to (2.12).

2.7.3 Proof of Corollary 2.1

From (2.12), it is equivalent to show thatg1(d) = (1+γ0d)2+4γ0d ρ2d

1−ρ2d is a monotonic increasing

function ofd = 1
δ . Taking the first derivative ofg1(d), we have

g′1(d) =
2γ0

(

1−ρ2d
)2 ×g2(d,γ0), (2.38)

whereg2(d,γ0) is defined as

g2(d,γ0),
(

1−ρ2d
)2
(1+γ0d)+2ρ2d

(

1−ρ2d
)

+4d log(ρ)ρ2d (2.39)

From (2.38), in order to proveg′1(d)≥ 0, it is sufficient to prove thatg2(d,0)≥ 0 because

g2(d,γ0)≥ g2(d,0). Let v= ρ2d ∈ [0,1], theng2(d,0) can be rewritten as

g3(v), g2(d,0) = 1−v2+2vlog(v), 0≤ v≤ 1 (2.40)
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It can be easily shown thatg′′3(v)=2(1
v −1) ≥ 0,∀v∈ [0,1]. Thereforeg3(v) is quadratic on[0,1]

with the minimum value obtained at the solution ofg′3(v) =−2v+2log(v)+2=0, which isv= 1.

Substitutingv= 1 into (2.40), we have min{g3(v)}= 0. Therefore,g2(d,γ0)≥ g2(d,0) = g3(v)≥

0, and this completes the proof.

2.7.4 Proof of Proposition 2.2

The Toeplitz matrix,Rds, is uniquely determined by the sequencetds= [t−(N−1), · · · , t0, · · · , tN−1]
T ,

wheretn = ρ
d
2 ρ |n+1|d whenn < 0, andtn = ρ

d
2 ρnd otherwise. WhenN → ∞, the DTFT of the

sequencetds can be calculated as

Λds( f ) = ρ
d
2

(1−ρd)(1+ej2π f )

1+ρ2d−2ρd cos(2π f )
. (2.41)

Based on [16, Lemma 2],Rds is asymptotically equivalent to a circulant matrix,Cds=UH
NDdsUN,

whereUH
N is the unitary discrete Fourier transform (DFT) matrix withthe(m,n)-th element being

(Dds)m,n =
1√
N

exp
[

− j2π (m−1)(n−1)
N

]

, andDds is a diagonal matrix with itsk-th diagonal element

being

(Dds)k,k = Λds

(

k−1
N

)

. (2.42)

Similarly, the Toeplitz matrix,Rss, is asymptotically equivalent to a circulant matrix,Css=

UH
NDssUN, whereDss is a diagonal matrix with itsk-th diagonal element being(Dss) = Λss

(k−1
N

)

,

with Λss( f ) defined in (2.35).

Based on [20, Theorem 2.1], the error correlation matrix,R(d)
ee , is asymptotically equiva-

lent to a circulant matrix,C(d)
ee = Css−Cds

(

Css+
δ
γ0

I
)−1

CH
ds= UH

ND(d)
ee UN, whereD(d)

ee = Dss−

Dds

(

Dss+
δ
γ0

I
)−1

DH
ds. It is apparent thatD(d)

ee is diagonal given thatDss andDds are diagonal.
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Based on Szego’s Theorem, we have

σ2
d =

∫ 1
2

− 1
2

[

Λss( f )− |Λds( f )|2

Λss( f )+ δ
γ0

]

d f. (2.43)

Substituting (2.35) and (2.41) into the above equation and simplifying leads to (2.19).

2.7.5 Proof of Corollary 2.3

The MSE in (2.19) can be alternatively represented as

σ2
d =

{

1+
[

f−1
3 (δ )− f3(δ )

]

/
[

f−1
1 (δ )+ f3(δ )

]}
1
2 . (2.44)

Since f1(δ ) is a decreasing function ofδ and f3(δ ) is an increasing function ofδ , it is straight-

forward to show that
[

f−1
3 (δ )− f3(δ )

]

/
[

f−1
1 (δ )+ f3(δ )

]

is a decreasing function ofδ , and this

completes the proof.

2.7.6 Proof of Proposition 2.4

According to [17, Lemma 1], the TBT matrices,ss and ds, are asymptotically equivalent to

circulant-block-circulant (CBC) matrices,Bss andBds, respectively, where the eigenvalues ofBss

andBds are samples ofΛ′
ss( f1, f2) andΛ′

ds( f1, f2), respectively [17, Theorem 3]. In addition, the

CBC matrices,Bss andBds, share the same orthonormal eigenvectors [21]. Once the asymptotic

equivalence is established, the rest of the proof follows the same procedure as described in Ap-

pendix D for the 1-D case.
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Chapter 3

Optimum Sampling in Spatial-Temporally Correlated Wireless Sensor Networks

Ning Sun and Jingxian Wu

3.1 Abstract

The optimum sampling in the one- and two-dimensional (1-D and 2-D) wireless sensor networks

(WSNs) with spatial-temporally correlated data is studiedin this chapter. The impacts of the node

density in the space domain, the sampling rate in the time domain, and the space-time data corre-

lation on the network performance are investigated asymptotically by considering a large network

with infinite area but finite node density and finite temporal sampling rate, under the constraint of

fixed power per unit area. The impact of space-time sampling on network performances is inves-

tigated in two cases. The first case studies the estimations of the space-time samples collected by

the sensors, and the samples are discrete in both the space and time domains. The second case

estimates an arbitrary data point on the space-time hyperplane by interpolating the discrete sam-

ples collected by the sensors. Optimum space-time samplingis obtained by minimizing the mean

square error distortion at the network fusion center. The interactions among the various network

parameters, such as spatial node density, temporal sampling rate, measurement noise, channel fad-

ing, and their impacts on the system performance are quantitatively identified with analytical and

numerical studies.

44



3.2 Introduction

Data collected by a wireless sensor network (WSN) often contain redundancy due to the spatial

and temporal correlation inherent in the monitored object(s). The spatial-temporal data correla-

tions can be found in a wide range of practical applications,such as environment monitoring with

temperature and humidity correlated in the space and time domains, soil and water quality mon-

itoring with the chemical compositions correlated in the space and time domains, and structure

health monitoring with spatial-temporally correlated vibration information of the civil structure

[1], etc. The space-time redundancy/correlation is important to the performance and design of

practical WSNs, which attempt to reconstruct a spatial-temporally correlated signal field by col-

lecting the data samples from the sensors. Given a fixed transmission power per unit area, a higher

spatial node density or temporal sampling rate means less transmission energy per sample, which

usually degrades performance due to a lower signal-to-noise ratio (SNR) at the receiver. On the

other hand, the system performance might benefit from more data samples per unit area per unit

time by exploiting the space-time redundancy. Therefore, it is critical to identify the optimum

space-time sampling, i.e., the optimum spatial node density and temporal sampling rate, in a WSN

with spatial-temporally correlated data.

There have been considerable works in the literature studying the impacts of spatial node den-

sity on the network performance [2] – [6]. In [2], the optimumnode density of a many-to-one

linear network is analyzed by using the detection probability of a binary event as the performance

metric. In [3], a Wiener process is used to model the spatial correlation of an one-dimensional (1-

D) field. It is demonstrated that, due to the spatial data correlation, distortion-free communication

can be achieved even if the per node throughput tends to 0 asN→∞. The optimum node densities in
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both 1-D and two-dimensional (2-D) networks are obtained byminimizing the mean square error

(MSE) between the recovered information and the original information under a distortion-tolerant

communication framework [5],[6]. Most existing studies focus only on the spatial data correla-

tion, and they do not consider the variation of the data in thetime domain. In reality, the physical

phenomenon under monitoring changes with respect to time, and the consecutive observations of

a sensor node are often correlated temporally [7].

There are limited works on the study of WSNs with spatial-temporally correlated data [8], [12].

In [8], an arbitrary point on a continuous measurement field is estimated by performing space-time

interpolation over the samples collected by the spatially discrete sensors, and there is a finite op-

timum node density to minimize the estimation MSE over the measurement field. The model in

[8] is extended in [9] by considering realistic transmission schemes, such as limited transmission

range and practical network/routing parameters. In [8],[9], the temporal data correlation is only

utilized to perform time domain interpolation, and they do not consider the effects of optimum

time domain sampling. The effects of both space and time domain sampling are studied in [10] by

using the network energy as a performance metric, through the study of a collision free network

protocols. All of the aforementioned studies consider an error-free communication channel be-

tween the transmitter and the receiver. The impacts of additive white Gaussian noise (AWGN) are

considered in [11], which obtains a lower bound on the distortion as a function of the number of

sensors and spatial-temporal communication bandwidth. However, the analysis is only applicable

to a measurement field with finite degree-of-freedom and is discrete in the time domain. In addi-

tion, it does not consider the optimum sampling rate in the time domain. The optimum space-time

sampling of continuous data in an 1-D network with AWGN channel is studied in [12].

In this chapter, we investigate the optimum space-time sampling for both 1-D and 2-D WSNs
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with spatial-temporally correlated data. The 1-D network can be used to model practical WSNs

designed for highways and tunnels. The 2-D network models WSNs that cover a large area, such

as a farmland. There is no limitation on the statistical properties of the field, other than that it

forms acontinuousrandom process that is wide sense stationary (WSS) in both the space and time

domain. Each sensor node collect samples of the field, and forward the information to a data fusion

center (FC) through an one-hop AWGN or fading channel. Similar one-hop network structures are

used in [2], [5], [6], [12] – [15]. The FC attempts to reconstruct the time-varying and spatially

continuous data field from the discrete sensor samples by exploiting the data correlation in both

the space and time domains with the minimum mean square error(MMSE) receiver. The impacts

of the spatial node density, the temporal sampling rate, andthe space-time data correlation on the

reconstruction MSE are investigated asymptotically in a large network with infinite area, infinite

time period, but finite node density and finite temporal sampling rate, under the constraint of fixed

transmission power per unit area.

Compared to existing studies in the literature, this chapter has the following main contributions.

First, to the best of our knowledge, this chapter is the first that explicitly quantifies the interactions

between the performance of networks with spatial-temporally correlated data and various system

parameters, such as spatial node density, temporal sampling rate, measurement noise, and channel

distortions, for both 1-D and 2-D networks. Second, the optimum spatial-temporal sampling for

two types of networks, one needs to recover only the discretespace-time samples collected by

the sensors through their noisy observation, and one needs to recover an arbitrary data point on

the space-time hyperplane, are identified through the asymptotic analysis. Third, the impacts of

various practical factors, such as measurement noise, channel fading, and random network topol-

ogy, on the performance of networks with spatial-temporally correlated data are studied through
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numerical analysis and simulations.

The remainder of this chapter is organized as follows. Section 3.3 introduces the system model

and a two-step MMSE estimation method. Sections 3.4 and 3.5 studies the impacts of spatial-

temporal sampling on 1-D and 2-D networks, respectively, byfollowing the two-step MMSE

method. In these two sections, the optimum spatial-temporal samplings in various networks are

identified with asymptotic analysis and simulations. Both analytical and numerical results are

presented in Sections 3.4 and 3.5 to demonstrate the interactions among the various system param-

eters. Section 3.6 concludes the chapter.

3.3 Problem formulation

3.3.1 System model

Consider a WSN withNs sensor nodes uniformly placed over a measurement field. Datacollected

by the sensors are spatially correlated, and they change with respect to time. We first study a

network with a deterministic topology, where the sensors are placed over an equal-distance grid

as shown in Fig. 3.1, with the distance between two adjacent nodes beingd. Such a deterministic

topology can be used to model networks that can be carefully planned beforehand and has no

limitation on sensor locations. The performance of networks with deterministic topology will be

compared to those with randomly distributed nodes. Networks with random topology can be used

to model ad hoc networks or networks with mobile nodes. The results obtained for these two

types of networks can serve as performance bounds for practical networks, which usually use a

combination of these two topologies.

Each sensor node collects data samples with a sampling rate of θ = 1
Ts

Hz. In the space domain,
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Figure 3.1: The spatial-temporally correlated sensor networks.

define the spatial node density,δ , as the number of nodes in a unit area. The spatial node densities

are δ = 1
d andδ = 1

d2 for the grid-based 1-D and 2-D networks, respectively. Letη = [cT , t]T

represent the coordinate in the space-time hyperplane, whereAT denotes matrix transpose,c is the

coordinate vector in the space domain, andt is the time variable.

Each sensor node will measure a spatial-temporally dependent physical quantity,x(ηn), such

as the temperature, humidity, or the vibration density of a bridge, etc. It is assumed that the physical

quantities to be measured form a random process that is WSS inboth the space and time domains.

Due to the spatial-temporal redundancy of the measurement field, the spatial-temporal correlation

function between any two arbitrary data samples is assumed as

E [x(η1)x(η2)] = ρ‖c1−c2‖
s ·ρ |t1−t2|

t (3.1)

whereηn = [cT
n , tn]

T , ρs∈ [0,1] andρt ∈ [0,1] are defined as the spatial correlation coefficient and

the temporal correlation coefficient, respectively, andE(·) represents mathematical expectation.

In (3.1), thel2 norm‖c1−c2‖ measures the Euclidean distance between the two points withthe
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coordinatesc1 andc2 in the space domain.

It is assumed that sensors deliver the measured data to the FCthrough an orthogonal media ac-

cess control (MAC) scheme, such as the deterministic frequency division multiple access (FDMA),

or the random exponentially-interval MAC (EI-MAC) [16], such that collision-free communication

is achieved at the FC. The signal observed by the FC from thenth data sample is

yn =

√

En

1+σ2
w
·h(ηn) · [x(ηn)+wn]+zn, (3.2)

whereEn is the average transmission energy per sample,h(ηn) represents the quasi-static fading

coefficient,wn is the measurement noise with varianceσ2
w, andzn is the AWGN with varianceσ2

z .

It is assumed that the total power per unit area is fixed atP0. Given a network with a node density

δ and a sample rateθ , the transmission energy per sample can be calculated asEn = P0
θδ . It is

assumed here that the sensor-FC distance is much larger thanthe sensor-sensor distance, such that

all the sensors have approximately the same distance to the FC. Therefore, signals from all the

sensors experience similar pathloss, such that they can employ the same transmission energy.

3.3.2 Optimum MMSE detection

The FC will obtain an estimate of the spatial-temporally continuous quantity,x(η), ∀η ∈ Ωη,

by usingN = NsNt discrete space-time samples received at the FC, whereNs is the number of

the sensor nodes andNt is the number of time-domain samples collected by each node.Define the

space-time data sample vector asxst = [xT
1 , . . . ,x

T
Ns
]T ∈RN×1, wherexi = [xi1, . . . ,xiNt ]

T ∈RNt ×1

is the time domain sample vector collected by theith sensor node, andR is the set of real numbers.

The corresponding signal observed by the FC can then be represented asy = [yT
1 , . . . ,y

T
Ns
]T ∈

RN×1, with yi = [yi1, . . . ,yiNt ]
T ∈ RNt×1.
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The MSE forx(η) is

σ2
η
= E [x̂(η)−x(η)]2 ,η ∈ Ωη (3.3)

wherex̂(η) is the estimate ofx(η) based ony at the FC.

The optimum linear receiver that minimizesσ2
η is the MMSE receiver described as follows

[17]

x̂(η) =

√

En

1+σ2
w

rH
η

HH
[

En

1+σ2
w

HRxxHH +
Enσ2

w

1+σ2
w

HHH +σ2
z IN

]−1

y, (3.4)

whererη = E [x(η)xst]∈RN×1, Rxx=E
[

xstxH
st

]

∈RN×N with the element defined in (3.1), andAH

denotes the matrix Hermitian operation. The channel coefficient matrix,H ∈ C N×N, is a diagonal

matrix with the diagonal elements beingh = [hT
1 , . . . ,h

T
Ns
]T ∈ C N×1, wherehi = hi INt ∈ C Nt×1

with hi corresponding to the fading coefficient between theith node and the FC,INt is a size-Nt

identity matrix, andC is the set of complex numbers.

With the optimum MMSE receiver given in (3.4), the MSEσ2
η

can be calculated as

σ2
η
= EH

{

1− rH
η

[

Rxx+σ2
w+(1+σ2

w)
θδ
γ0

(HHH)−1
]−1

rη

}

, (3.5)

whereγ0 =
P0
σ2

z
is the signal-to-noise ratio (SNR) per unit area with AWGN, and the expectation

operation is performed with respect toH. The MSEσ2
η

given in (3.5) is a function of the space-time

coordinateη, the SNRγ0, the measurement noise varianceσ2
w, the spatial correlation coefficient

ρs, the temporal correlation coefficientρt , the spatial node densityδ , the temporal sampling rate

θ , and the fading coefficientH.

Given a fixed transmission power per unit area, the spatial-temporal sampling rate,δ andθ ,

play a critical role on the MSEσ2
η
. A smaller node density and/or temporal sampling rate means

more transmission energy per sample, thus a better SNR per sample, which can benefit the system
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performance. On the other hand, a smaller node density and/or sampling rate means less samples

per unit area per unit time, thus a smaller correlation amongthe data collected by the nodes, and

this might degrade the estimation performance.

In order to distinguish the opposite impacts of the spatial-temporal sampling rates, we use an

equivalent two-step MMSE method [6].

Lemma 3.1:The optimum MMSE given in (3.4) is equivalent to the two-stepMMSE described

as follows.

1) The FC first obtains an estimate of theN discrete space-time samples,xst, with a linear

MMSE receiver as

x̂st = WH
x y, (3.6)

wherex̂st ∈ RN×1 is the MMSE estimate ofxst. The MMSE matrixWx ∈ RN×N is designed to

minimize the average MSE per sample:

σ2
st,N =

1
N
E
[

‖x̂st−xst‖2] . (3.7)

2) The FC obtains an estimate of the data at an arbitrary location, x̂(η), ∀η ∈ Ωη, by interpo-

lating x̂st with the MMSE criterion,

x̂(η) = wH
sl x̂st, (3.8)

where the vector,wsl ∈ RN×1, is designed to minimize the MSEσ2
η
= E [x̂(η)−x(η)]2.

Decomposing the optimum MMSE of (3.4) into the two-step MMSEallows us to study the two

opposite effects of spatial-temporal sampling on the MSE separately. In the following two sections,

we will investigate, respectively, the impacts of the node density on 1-D and 2-D networks by

following the two-step MMSE.
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3.4 Optimum space-time sampling in one-dimensional networks

In this section, we study the optimum space-time sampling inan 1-D network, where theNs sensor

nodes are evenly distributed over a length-L linear section as shown in Fig. 3.1(a). In this WSN,

the space-time coordinate of thejth data sample collected by theith sensor can then be represented

as[(i −1)d,( j −1)Ts]. The spatial-temporal correlation matrix,Rxx = E
[

xstxH
st

]

∈ RN×N, can be

expressed as

Rxx = Rs⊗Rt (3.9)

where⊗ denotes the Kronecker product, andRs ∈ RNs×Ns andRt ∈ RNt×Nt are the correlation

matrices in the space domain and time domain, respectively.The space domain correlation matrix,

Rs, has the form of a symmetric Toeplitz matrix with the first rowand first column beingrs =

[

1,ρd
s , . . . ,ρ

(Ns−1)d
s

]T
. Similarly, the time domain correlation matrix,Rt , is a symmetric Toeplitz

matrix with the first row and first column beingr t =
[

1,ρTs
t , . . . ,ρ(Nt−1)Ts

t

]T
. The matrix,Rxx, has

the form of a Toeplitz-block-Toeplitz (TBT) matrix [18], i.e.,Rxx is a block Toeplitz matrix, and

each sub-matrix is also a Toeplitz matrix.

3.4.1 MMSE estimation of the discrete samples

For the MMSE estimation described in (3.6), the optimumWx that minimizes the MSE,σ2
st,N, can

be found through the orthogonal principal,E
[

(x̂st−xst)yH
]

= 0. The result is

WH
x =

√

En

1+σ2
w

RxxHH
[

En

1+σ2
w

HRxxHH +
Enσ2

w

1+σ2
w

HHH +σ2
z IN

]−1

, (3.10)

The conditional error correlation matrix,R(x)
ee|H = E

[

eseH
s |H

]

, with es = x̂st−xst, can then be
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calculated as

R(x)
ee|H = Rxx−RxxHH

[

HRxxHH +σ2
wHHH +(1+σ2

w)
θδ
γ0

IN

]−1

HRxx

=

[

R−1
xx +

HHH

σ2
wHHH +(1+σ2

w)
θδ
γ0

IN

]−1

, (3.11)

where the orthogonal principal is used in the first equality,and the second equality is based on the

identity D−1+D−1C(A −BD−1C)−1BD−1 = (D−CA−1B)−1. The MSE can then be calculated

as

σ2
st,N =

1
N
EH

[

trace
(

R(x)
ee|H

)]

(3.12)

where trace(A) returns the trace of the matrixA.

In Equations (3.11) and (3.12), the calculation of the MSE involves matrix inversion, the trace

operation, and the expectation operation. The value of the MSE can be evaluated numerically. In

order to explicitly identify the impacts of the node densityand sampling rate on the MSE, we will

first focus on the analysis of system operating in the AWGN channel, and this will allow us to

express the MSE as a closed form expression of the node density and sampling rate. The MSE

obtained under the AWGN channel will be compared to the MSE under the fading environment

later in this section.

Proposition 3.1: WhenNs→ ∞ andNt → ∞ while keeping bothδ andθ finite, the MSE of the

estimation of the discrete samples collected by the sensorsand transmitted in an AWGN channel

is

σ2
st = lim

N→∞
σ2

st,N =

√
2

π
√

β
·K
(√

α
β

)

(3.13)
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whereK(·) is the complete elliptic integral of the first kind [19, Equation (8.112.1)], and

α =
8

σ2
w+(1+σ2

w)
θδ
γ0

· ρ
1
δ
s

1−ρ
2
δ
s

· ρ
1
θ
t

1−ρ
2
θ
t

, (3.14a)

β =
1
2
+

1

σ2
w+(1+σ2

w)
θδ
γ0

·



1+
2ρ

2
δ
s

1−ρ
2
δ
s







1+
2ρ

2
θ
t

1−ρ
2
θ
t



+
1
2

[

1

σ2
w+(1+σ2

w)
θδ
γ0

]2

+
α
2
.

(3.14b)

Proof: The proof is given in Appendix 3.7.1.

In Proposition 3.1, the spatial-temporal sampling affectsthe MSE in the form of the follow-

ing functions, f1(ρs,δ ) = ρ
2
δ
s

1−ρ
2
δ

s

, g1(ρs,δ ) = ρ
1
δ
s

1−ρ
2
δ

s

, f1(ρt,θ) = ρ
2
θ

t

1−ρ
2
θ

t

, g1(ρt,θ) = ρ
1
θ

t

1−ρ
2
θ

t

, and

f2(δ ,θ) = 1
σ2

w+(1+σ2
w)

θδ
γ0

. Among them,f1(ρs,δ ) andg1(ρs,δ ) are related to the spatial correla-

tion, and they are increasing functions ofδ . f1(ρt,θ) andg1(ρt,θ) are related to the temporal

correlation, and they are increasing functions ofθ . The functionf2(δ ,θ) is a decreasing function

of bothδ andθ .

In Proposition 3.1, if we assume that the data is spatially correlated but temporally uncorrelated,

then the MSE of the spatial samples can be simplified as follows.

Corollary 3.1: If ρt = 0, the asymptotic MSE of the estimation for the spatially correlated

samples is

σ2
s =









(

1+
1

σ2
w+(1+σ2

w)
θδ
γ0

)2

+
4ρ

2
δ
s

(

σ2
w+(1+σ2

w)
θδ
γ0

)

(

1−ρ
2
δ
s

)









− 1
2

. (3.15)

Proof: Settingρt = 0 leads toα = 0 andβ = 0.5+[1+2 f1(ρs,δ )] f2(δ ,θ)+0.5 f2(δ ,θ)2.

Equation (3.15) can be obtained by substitutingβ into (3.13).

Whenσ2
w = 0, the result in Corollary 3.1 coincides with [5, Equation (12)], where only the spatial

samples are considered. It was shown in [5] analytically that σ2
s is an increasing function inδ .
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Similarly, based on the symmetry between the space and time domains, we can get the MSE of

the estimation of the temporal samples for a given node, by exchangingρs with ρt , andδ with θ

in (3.15).

Fig. 3.2 shows the asymptotic MSE as a function of the spatialnode density,δ , under various

values of the correlation coefficients,ρt andρs, in an AWGN channel with SNRγ0 = 10 dB. Define

γw = P0
σ2

w
as the measurement SNR per unit area. The temporal sampling rate isθ = 10 sample/sec.

Data samples are assumed to be a zero-mean Gaussian process with the auto-correlation function

given in (3.1). The simulation results are obtained by usingNs = Nt = 60 samples to approximate

infinite number of samples. Excellent match is observed between the simulation results with finite

number of samples and the asymptotic results with infinite number of samples. As expected, the

MSE performance improves asγw increases. Whenγw = 10 dB, there is only a slight difference

between the system with and without measurement noise. In addition, the MSE is an increasing

function in node density for all configurations. This indicates that the MSE for the discrete data

samples can benefit from a smaller spatial node density. Therefore, if we only want to obtain

the data at some discrete locations, we should use a node density that is as small as allowed by

the application, i.e., placing exactly one sensor at each desired measurement location will obtain

the optimum performance. Due to the symmetry between the space and time domain, the above

analysis is also true for the relationship betweenσ2
st andθ . In addition, the MSE approaches a

constant asδ → ∞. The result is corroborated by the following corollary.

Corollary 3.2: For the estimation of the discrete samples collected by thesensors and trans-

mitted in AWGN channels, given a sampling rateθ , whenδ → ∞, the asymptotic MSE approaches
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Figure 3.2: The asymptotic MSE of the estimated discrete data samples in the 1-D network under
various values of measurement SNRγw (AWGN, γ0 = 10 dB,θ = 10 Hz).

a constant as

lim
δ→∞

σ2
st =

2
π



1− 2γ0

(1+σ2
w)θ log(ρs)

· 1+ρ
1
θ
t

1−ρ
1
θ
t





− 1
2

·K(∆δ ), (3.16)

with ∆δ =

[

8γ0ρ
1
θ

t

2γ0(1+ρ
1
θ

t )2−(1+σ2
w)θ log(ρs)(1−ρ

2
θ

t )

]
1
2

.

Proof: The proof is in Appendix 3.7.2.

Corollary 3.3: For the estimation of the discrete samples collected by thesensors and trans-

mitted in AWGN channels, when bothθ → ∞ andδ → ∞, we have

lim
δ→∞,θ→∞

σ2
st =

2
π

(

1+
4
ϖ

)− 1
2

·K
(

√

4
4+ϖ

)

, (3.17)

whereϖ =
log(ρs) log(ρt)(1+σ2

w)
γ0

.

Proof: Equation (3.17) can be directly proved by substituting limθ→∞ θ
(

1−ρ
1
θ
t

)

=− log(ρt)

into (3.45).
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In (3.17), when bothθ andδ tend infinity, the limit depends on the correlation coefficients and

the SNR. The relationship between the limit andρs, ρt, γ0 is given by the following corollary.

Corollary 3.4: The limit in Corollary 3.3 is proportional toρs andρt , and inversely propor-

tional to the SNRγ0.

Proof: The proof is in Appendix 3.7.3.

We next compare in Fig. 3.3 the MSE for systems operating in AWGN channels and fading chan-

nels, respectively. The MSE in fading channels is obtained with a hybrid analytical and simulation

method, i.e., givenH, the conditional MSE can be calculated by performing the trace operation

over (3.11), and the unconditional MSE can then be obtained by averaging over a large number of

independent implementations ofH. The parameters,γ0 andθ , are the same as those in Fig. 3.2,

and the variance of the measurement noise isσ2
w = 0. The fading MSE is lower bounded by its

AWGN counterpart. The difference between the MSE of these two types of networks gradually

diminishes asρs andρt increases. Whenρs = ρt = 0.9, there is only a slight difference between

the two, especially when the node density is high. In addition, both of the two networks have the

same performance trend, i.e., the MSE is an increasing function in δ . Therefore, the analytical

result in AWGN channel can provide a rough guideline on the design of systems with fading.

3.4.2 MMSE spatial-temporal interpolation

This section discusses the distortion performance of space-time interpolation, i.e., the estimation

of any arbitrary point on the space-time plane by interpolating theN discrete space-time samples.

Since we are interested in the reconstruction fidelity of theentire space-time hyperplane, the

worst case scenario is considered by estimating the data located in the middle of the square formed
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Figure 3.3: Impacts of fading on the asymptotic MSE of the estimated discrete data samples in 1-D
networks (γ0 = 10 dB,θ = 10 Hz,σ2

w = 0).

by four neighboring samples, as shown in Fig. 3.4(a), with the data points to be estimated being

x′i j = x[(i − 1
2)d,( j − 1

2)Ts], for i = 1, . . . ,Ns and j = 1, . . . ,Nt . Define the interpolation data vector

asxdt =
[

x
′T
1 , . . . ,x

′T
Ns

]T
∈ RN×1, wherex′i =

[

x′i1,x
′
i2, . . . ,x

′
iNt

]T ∈ RNt×1.

d
2

Ts
2

(a) Space-time interpola-
tion

d
2

(b) Space interpolation

Ts
2

(c) Time interpolation

Figure 3.4: Three types of interpolations for the 1-D network.

Based on the orthogonal principal,E
[

(x̂dt −xdt)x̂H
st

]

= 0, wherex̂dt is an estimate ofxdt, the

MMSE space-time interpolations can be expressed by

x̂dt = Rdx̂R
−1
x̂x̂ x̂st, (3.18)
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where

Rdx̂ , E(xdtx̂
H
st) =

√

En

1+σ2
w

RdxH
HWx, (3.19a)

Rx̂x̂ , E(x̂stx̂H
st) = WH

x

(

En

1+σ2
w

HRxxHH +
Enσ2

w

1+σ2
w

HHH +σ2
z IN

)

Wx, (3.19b)

with Rdx , E(xdtxH
st) = R′

s⊗R′
t being a TBT matrix. The matrixR′

s is a Toeplitz matrix with the

first row beingρ
d
2
s [1,1,ρd

s , . . . ,ρ
(Ns−2)d|
s ]T ∈RNs×1, and the first columnρ

d
2
s [1,ρd

s , . . . ,ρ
(Ns−1)d|
s ]T ∈

RNs×1. Similarly R′
t is a Toeplitz matrix with the first row beingρ

Ts
2

t [1,1,ρTs
t , . . . ,ρ(Nt−2)Ts

t ]T ∈

RNt×1, and the first columnρ
Ts
2

t [1,ρTs
t , . . . ,ρ(Nt−1)Ts

t ]T ∈RNt×1. Combining (3.18) with (3.19), we

have

x̂dt =

√

En

1+σ2
w

RdxH
H
[

En

1+σ2
w

HRxxHH +
Enσ2

w

1+σ2
w

HHH +σ2
z IN

]−1

y. (3.20)

The corresponding error correlation matrix,R(d)
ee , E

[

(x̂dt −xdt)(x̂dt −xdt)
H
]

, can then be

calculated by

R(d)
ee ==EH

{

Rxx−RdxH
H
[

HRxxHH +σ2
wHHH +(1+σ2

w)
θδ
γ0

IN

]−1

HRxd

}

, (3.21)

whereRdd = E(xdtxH
dt) = Rxx is used in the above equation, andRxd = RH

dx.

The MSE for the space-time interpolation when operating in afading channel can be evaluated

numerically by performing the trace operation over (3.21).To gain more insights on the impacts

of node density and sampling rate, we next perform asymptotic analysis for systems operating in

AWGN channels.

Proposition 3.2: WhenNs→ ∞ andNt → ∞ while keeping bothδ andθ finite, the MSE of the

spatial-temporal interpolation for a network operating inAWGN channels is

ϑ2
st , lim

N→∞
ϑ2

st,N =
1−ρ

1
θ
t

1+ρ
1
θ
t

·
{

1+
∫ 1

2

− 1
2

1+cos(2π f )
v−cos(2π f )

·
[

q−cos(2π f )
p−cos(2π f )

]
1
2

d f

}

(3.22)
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where

v=
1+ρ

2
θ
t

2ρ
1
θ
t

, p= v+
1

2
(

σ2
w+(1+σ2

w)
θδ
γ0

) · 1−ρ
2
θ
t

ρ
1
θ
t

· 1+ρ
1
δ
s

1−ρ
1
δ
s

,

q= v+
1

2
(

σ2
w+(1+σ2

w)
θδ
γ0

) · 1−ρ
2
θ
t

ρ
1
θ
t

· 1−ρ
1
δ
s

1+ρ
1
δ
s

. (3.23)

Proof: The proof is in Appendix 3.7.4.

The results in Proposition 3.2 illustrate the asymptotic MSE performance for the MMSE inter-

polation in both the space and time domains. Even though the MSE in Proposition 3.2 is expressed

as an explicit function of the correlation coefficients and the space-time sample rates, it is expressed

in the form of an integral and eludes a closed-form expression. It should be noted that the integrand

is composed for elementary functions, and the integration limit is finite. Therefore the integral can

be easily evaluated numerically. To gain further insight onthe impact of the space-time correlation

on the estimation performance, we consider in the followingsection the interpolation in just one

domain.

3.4.3 Interpolation in the space or time domain

In this section, we consider the MSE performance of interpolation in the space domain as in Fig.

3.4(b) or in the time domain as in Fig. 3.4(c), but not both. Studying the interpolation in one

domain will help quantify the impact of node density or sampling rate on the estimation MSE. The

analytical asymptotic study is performed for systems operating in AWGN channels.

Due to the symmetry between the space and time domains, it is sufficient to study the interpo-

lation in the space domain. From Fig. 3.4(b), the coordinates of the data to be estimated during the

spatial interpolation are
[(

i + 1
2

)

d, jTs
]

, for i = 0, . . . ,Ns−1 and j = 0, . . . ,Nt −1. The asymptotic
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MSE of the spatial interpolation is given in the following proposition.

Proposition 3.3: WhenNt → ∞ andNs → ∞, while keepingδ andθ finite, the MSE of the

estimated data during the spatial interpolation for a network operating in AWGN channels is

ϑ2
s =

2
π
·
[

σ2
w+(1+σ2

w)
θδ
γ0

]

· 1−ρ
1
δ
s

1+ρ
1
δ
s

· 1
√

(p−1)(q+1)

·
[

(p−q)K(α1)+
(q−v)(p+1)

v+1
Π(β1,α1)

]

(3.24)

wherev, p,q are defined in (3.23),

α1 =

[

2(p−q)
(p−1)(q+1)

]
1
2

,β1 =
2(p−v)

(p−1)(v+1)
, (3.25)

andΠ(·) is the complete elliptic integral of the third kind [19].

Proof: The proof is in Appendix 3.7.5.

If we assume the data samples are temporally uncorrelated (ρt = 0), and perform spatial inter-

polation based on the spatially correlated but temporally uncorrelated data samples, then the MSE

given in Proposition 3.3 can be simplified as follows.

Corollary 3.5: If ρt = 0, the asymptotic MSE of the estimation for the spatial interpolation is

ϑ2
s =



σ2
w+(1+σ2

w)
δθ
γ0

+
1−ρ

1
δ
s

1+ρ
1
δ
s





1
2


σ2
w+(1+σ2

w)
δθ
γ0

+
1+ρ

1
δ
s

1−ρ
1
δ
s





− 1
2

(3.26)

Proof: Proof: Whenρt = 0, we haveΛ(ρTs
t , f2) = 1. SubstitutingΛ(ρTs

t , f2) = 1 into (3.52)

directly leads to (3.26).

Whenσ2
w = 0, the result in Corollary 3.5 simplifies to [6, Proposition 2], where only the spatial

data correlation is considered. It was proven in [6] that theMSE in (3.26) is a decreasing function

of the node densityδ .
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Fig. 3.5 compares the asymptotic MSE performance between the spatial interpolation and the

space-time interpolation. In the simulation,ρt = 0.1 andσ2
w = 0 and all other parameters are

the same as those in Fig. 3.2. As expected, performing interpolation in the space domain alone

leads to a better performance compared to interpolation in both the space and time domains. The

difference increases as the spatial correlation coefficient, ρs, increases. Different from the results

in Fig. 3.2, it is observed that the MSE of the spatial interpolation or space-time interpolation is a

decreasing function of the spatial node densityδ . This can be intuitively explained by the fact that

the spatial interpolation depends mainly on the spatial correlation among the sensor nodes, and

a higher node density means a stronger spatial correlation among the data samples, thus a better

estimation fidelity.
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Figure 3.5: The asymptotic MSE of space-time interpolationand space interpolation in the 1-D
network (AWGN,γ0 = 10 dB,σ2

w = 0, ρt = 0.1, θ = 10 Hz).

It can be seen from Fig. 3.5 that, whenδ → ∞, the MSE approaches a lower bound, which is

stated in the following corollary.
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Corollary 3.6: The following relationship holds for the MSE of the estimation for the data

samplesσ2
st and the MSE of the spatial interpolationϑ2

s

lim
δ→∞

ϑ2
s =







2
π



1− 2γ0

(1+σ2
w)θ log(ρs)

· 1+ρ
1
θ
t

1−ρ
1
θ
t





− 1
2

·K(∆δ )






≥ lim

δ→∞
σ2

st, (3.27)

with ∆δ defined in Corollary 3.2.

Proof: The proof is in Appendix 3.7.6.

Due to the symmetry between the space and the time domains, wecan get the MSE of the time

interpolation, as shown in Fig. 3.4(c), by exchangingρs with ρt , andδ with θ in Proposition 3.3,

and Corollaries 3.5 and 3.6.

3.4.4 Optimum spatial-temporal sampling

It can be seen from Fig. 3.5 that, whenδ is small, the MSE decreases dramatically asδ increases.

Whenδ reaches a certain threshold, no apparent performance gain can be achieved by increasing

δ further, i.e., the slope ofϑ2
st approaches zero asδ increase. The above statement is also true for

the sampling rateθ .

In the space domain, we can find the optimum node density,δ0, by solving the equation
∣

∣

∣

∂ϑ 2
st

∂δ

∣

∣

∣

δ0
= εs, with εs being a small number. Fig. 3.6 shows the optimum node densityin AWGN

channels as a function of the spatial correlation coefficient ρs, under various values of the sampling

rateθ . The parameters areρt = 0.5, σ2
w = 0, andεs= 10−3. The results in this figure demonstrate

that the optimum node density decreases almost linearly asρs increases. Therefore, for the estima-

tion of the spatial interpolation, a smaller node density isrequired for a field with a stronger spatial

correlation. Moreover, the optimal node density convergesas the sampling rateθ increases, i.e.,
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Figure 3.6: The asymptotically optimum spatial node density versus spatial correlation coefficient
ρs in the 1-D network (AWGN,σ2

w = 0, ρt = 0.5, εs= 10−3)

the optimum node densities are almost identical forθ = 10 andθ = 50 Hz. This further corrob-

orates that increasing the sampling rate beyond a certain threshold yields negligible performance

gain. Similar results are observed for the optimum samplingrate due to the space-time symmetry.

3.5 Optimum node density in 2-D networks

The impacts of spatial-temporal sampling on the estimationfidelity in a 2-D network, as shown

in Fig. 3.1(b), are studied in this section. In the space domain, theNs sensor nodes are located

on a square grid. In the time domain, each sensor collectsNt data samples. The space-time

coordinate for the samplexikm is [(i −1)d,(k−1)d,(m−1)Ts], for i,k= 1, . . . ,Ms, m= 1, . . . ,Nt ,

with Ms=
√

Ns. It should be noted that the spatial node density in a 2-D sensor network isδ = 1
d2 ,
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which is different from the 1-D case.

Stacking all the spatial-temporally correlated data samples into a column vector, we haveξst =

[xT
11, . . . ,x

T
1Ms

, . . . ,xT
Ms1, . . . ,x

T
MsMs

]T ∈ RN×1, wherexm1m2 = [xm1m21, . . . ,xm1m2Nt ]
T ∈ RNt×1. The

auto-correlation matrix,xx = E
[

ξstξ
H
st

]

∈ RN×N, can be represented as

xx = Rss⊗Rt (3.28)

whereRss∈ RNs×Ns andRt ∈ RNt×Nt are the correlation matrices in the space domain and time

domain, respectively. The matrix,Rss, assumes the form of a TBT matrix as defined in [6, Equation

(20)] for the 2-D spatially correlated network. The matrixRt is a symmetric Toeplitz matrix as in

Equation (3.9). Therefore, the matrix,xx, is a 3-level Toeplitz matrix [20, Definition 1], i.e.,xx

has an outermost block Toeplitz structure, and each block isstill a block Toeplitz matrix, down to

the innermost block with the form of an ordinary Toeplitz matrix.

Mirroring the analysis in the 1-D case, we will study, in the following two sections, the op-

timum spatial-temporal sampling for the MMSE estimation ofthe discrete data samples, and the

MMSE interpolation, respectively.

3.5.1 MMSE estimation of the discrete samples

With the first-step MMSE estimation in Lemma 3.1, we have the MSE,ψ2
st,N = 1

NE
[

‖ξ̂st−ξst‖2
]

,

as

ψ2
st,N =

1
N
EH



trace

(

−1
xx+

HHH

σ2
wHHH +(1+σ2

w)
θδ
γ0

IN

)−1


 , (3.29)

where ξ̂st is the MMSE estimate ofξst. The above MSE in a fading channel can be evaluated

numerically.
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Following the same procedure as in 1-D networks, we derive the explicit form of the asymptotic

MSE for the system in AWGN channels.

Proposition 3.4: WhenNs→∞ andNt →∞, while keepingδ andθ finite, the asymptotic MSE

of the discrete space-time samples in a 2-D network transmitted through AWGN channels is

ψ2
st , lim

N→∞
ψ2

st,N =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[

1

Λss( f1, f2)Λ(ρTs
t , f3)

+
1

σ2
w+(1+σ2

w)
θδ
γ0

]−1

d f1d f2d f3,(3.30)

whereΛ(a, f ) is defined in (3.40) in Appendix 1, and

Λss( f1, f2) =
+∞

∑
i=−∞

+∞

∑
k=−∞

ρ
√

(i2+k2)/δ
s e− j2π(i f1+k f2). (3.31)

Proof: The proof is in Appendix 3.7.7.

In Proposition 3.4, the impacts of the spatial-temporal sampling rate are expressed through

the term, 1
σ2

w+(1+σ2
w)

θδ
γ0

, and the 3-D DTFT,Λ′
xx( f1, f2, f3) = Λss( f1, f2)Λ(ρTs

t , f3). The expression

of ψ2
st eludes a closed-form. The non-closed-form expression in (3.30) can be easily evaluated

numerically given that the integrals are of finite limits. Even thoughΛ′
xx( f1, f2, f3) is expressed as

the sum of an infinite series, the value ofρs

√
(i2+k2)/δ decreases exponentially asi andk increase,

thusΛ′
xx( f1, f2, f3) can be accurately approximated with moderate limits oni andk.

If we assume that the data are temporally uncorrelated(ρt = 0), then the MSE of the data

samples in proposition 3.4 can be simplified as follows.

Corollary 3.7: If ρt = 0, the asymptotic MSE of the data samples in a 2-D network with

AWGN channels is

ψ2
s =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[

1
Λss( f1, f2)

+
1

σ2
w+(1+σ2

w)
θδ
γ0

]−1

d f1d f2, (3.32)

whereΛss( f1, f2) is defined in (3.31).
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Proof: Settingρt = 0 in (3.40) leads toΛ(ρTs
t , f3) = 1. SubstitutingΛ(ρTs

t , f3) = 1 into (3.30)

and solving the integration with respect tof3, we can obtain (3.32).

The result in Corollary 3.7 simplifies to [6, Proposition 3] with σ2
w = 0, where only the spatial

data correlation is considered.

The asymptotic MSE of the data samples in a 2-D network is plotted as a function of the

temporal sampling rateθ in Fig. 3.7, under various values of temporal correlation coefficient ρt

and measurement SNRγw. The parameters areρs= 0.5 andγ0 = 10 dB. For comparison, the MSE

in an 1-D network is also shown in the figure. It is interestingto note that when the measurement

SNR is low (γw = 5 dB) and the time correlation is high (ρt = 0.9), the MSE is decreasing inθ ; for

all other cases, the MSE is an increasing function inθ . This is because ifσ2
w is large enough, the

majority of the energy is used for transmitting measurementnoise. In this case, when increasing

θ for data with high temporal correlation, the benefit of data correlation outweighs the loss due to

less energy per sample. The performance difference betweenγw = 10 dB andσ2
w = 0 is very small.

In addition, 2-D MSE is larger (worse) than the 1-D MSE. This can be explained by the fact that,

under the same spatial node density and temporal sampling rate, each node in the 2-D network

needs to cover a larger area than the node in the 1-D network, thus leads to a worse performance.

The asymptotic MSE for 2-D networks in AWGN channels is compared to that in fading chan-

nels in Fig. 3.8. Similar to the 1-D case, the MSE with fading channels is worse than its AWGN

counterpart. The networks with fading channels and AWGN channels have similar performance

trend, and the performance difference between the two gradually diminishes asρs increases. When

ρs= 0.9, the performance in fading and AWGN channels are almost thesame at high node density.
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Figure 3.7: The MSE of the estimated discrete data samples in2-D network. (AWGN,γ0 = 10 dB,
ρs= 0.5).

3.5.2 MMSE spatial-temporal interpolation

The performance of spatial-temporal interpolations in a 2-D network is studied in this section.

Similar to the 1-D case, we consider the worst case by estimating the data located in the middle

of the cube formed by eight adjacent data samples, with the data points to be estimated asx′ikm =

x[(i − 1
2)d,(k− 1

2)d,(m− 1
2)Ts], for i,k= 1, . . . ,

√
Ns andm= 1, . . . ,Nt . Correspondingly, the data

vector can be expressed asξdt = [x′T11, . . . ,x
′
1Ms, . . . ,x

′T
Ms1, . . . ,x

′T
MsMs

]T ∈ RN×1, wherex′m1m2
=

[x′m1m21, . . . ,x
′
m1m2Nt)

]T ∈ RNt×1.

Following the same procedure as in the 1-D case, the error correlation matrix, (d)
ee=E

[

(ξ̂dt−ξdt)(ξ̂dt−ξdt)
H
]

,

with ξ̂dt being the MMSE estimate ofξdt, can be calculated by

(d)
ee = EH

{

xx− dxH
H
[

H xxHH +σ2
wHHH +(1+σ2

w)
θδ
γ0

IN

]−1

H xd,

}

, (3.33)

where dd = E(ξdtξ
H
dt) = xx is used in the above equation.dx = E

[

ξdtξ
H
st

]

, and xd =
H
dx. The
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cross-correlation matrix,dx, can be expressed as

dx = R′
ds⊗R′

t (3.34)

whereR′
ds∈RNs×Ns andR′

t ∈RNt×Nt are the cross-correlation matrices between the data samples

and the interpolations in the space domain and time domain, respectively. The matrix,R′
ds, has

the form of a non-symmetric TBT matrix as defined in [6, Equation (27)] for the 2-D spatially

correlated network. The matrixR′
t is a Toeplitz matrix defined in Section 3.4.2. The matrix,dx,

is a non-symmetric 3-level Toeplitz matrix.

For the AWGN case, the asymptotic MSE is given as follows.

Proposition 3.5: WhenNs→∞ andNt →∞, while keepingδ andθ finite, the asymptotic MSE
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of the space-time interpolations in a 2-D network with AWGN channels is

ϕ2
st = lim

N→∞
ϕ2

st,N =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2



Λ′
xx( f1, f2, f3)−

|Λ′
dx( f1, f2, f3)|2

Λ′
xx( f1, f2, f3)+

(

σ2
w+(1+σ2

w)
θδ
γ0

)



d f1d f2d f3.

(3.35)

whereΛ′
xx( f1, f2, f3) is defined in (3.55) in Appendix 7, andΛ′

dx( f1, f2, f3) is

Λ′
dx( f1, f2, f3) =

ρ
Ts
2

t (1−ρTs
t )(1+ej2π f3)

1+ρ2Ts
t −2ρTs

t cos(2π f3)
·

+∞

∑
i=−∞

+∞

∑
k=−∞

ρ

√

[(i+ 1
2)

2+(k+ 1
2)

2]/δ
s e− j2π(i f1+k f2).

(3.36)

Proof: The proof is in Appendix 3.7.8.

Fig. 3.9 compares the asymptotic MSE of the interpolation ina 2-D network with that in an

1-D network. In the simulation, the parameters are the same as those in Fig. 3.7 exceptσ2
w = 0.

In both 1-D and 2-D networks, it is observed that the interpolation MSE decreases monotonically

with the temporal sampling rate. Again, the 1-D asymptotic MSE is smaller (better) than its 2-D

counterpart for all temporal correlation coefficientsρt. The performance difference between the

1-D and 2-D networks increases asρt increases.

If we just consider the spatial interpolation of the 2-D network, for the special case of uncorre-

lated data in the time domain, we can simplify the result as follows.

Corollary 3.8: If ρt = 0, the asymptotic MSE of the estimated data during the spatial interpo-

lations of the 2-D network with AWGN channels is

ϕ2
s =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[

Λss( f1, f2)−
|Λds( f1, f2)|2

Λss( f1, f2)+σ2
w+(1+σ2

w)
θδ
γ0

]

d f1d f2, (3.37)

whereΛss( f1, f2) is given in (3.31), andΛds( f1, f2) is
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Λds( f1, f2) =
+∞

∑
i=−∞

+∞

∑
k=−∞

ρ

√

[(i+ 1
2)

2+(k+ 1
2)

2]/δ
s e− j2π(i f1+k f2) (3.38)

Proof: The proof is in Appendix 3.7.9.

The result in Corollary 3.8 withσ2
w = 0 simplifies to [6, Proposition 4], where only the spatial data

correlation is considered.

3.5.3 Optimum spatial-temporal sampling

The asymptotically optimum spatial and temporal sampling rates in a 2-D network can be obtained

by numerically solving|∂ϕ2
st

∂δ | = εs and|∂ϕ2
st

∂θ | = εt , with εs andεt being very small numbers. Fig.

3.10 shows the asymptotically optimum temporal sampling rate as a function of the temporal cor-

relation coefficient in the 1-D and 2-D networks with AWGN channels. In the figure,ρs = 0.5,
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σ2
w = 0, andε = 10−3 are used for both 1-D and 2-D networks. It is observed that theasymptoti-

cally optimum sampling rate for the 1-D and 2-D networks are almost identical, with the optimum

sampling rate in the 1-D network slightly larger.

It should be noted that the analysis methods presented in this chapter can be extended to high

dimensional networks by employing block multilevel Toeplitz matrix. In this chapter, the 1-D

and 2-D networks are used as examples to investigate the interactions among the various network

parameters and their impacts on the system performance. Theresults of high dimensional networks

can be obtained in a similar manner.

3.5.4 Randomly distributed networks

So far all the studies are for networks with deterministic topologies. In this section, we will com-

pare the MSE performance between networks with deterministic topology and random topology,
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respectively. The random topology follows a Poisson point process, i.e., the number of nodes in

a given area follows a Poisson distribution, and the coordinates of each node follows a uniform

distribution in each dimension.

The MSE of the 1-D and 2-D networks with random topology can beevaluated numerically

through a hybrid analytical-simulation method. The MSE conditioned on a particular deployment

of the nodes can be calculated by using (3.12) for the 1-D network, or (3.29) for the 2-D network.

The elements in the autocorrelation matrix,Rxx or Φxx, depends on the actual locations of the

nodes. The unconditional MSE can then be calculated by averaging a large number of random

deployments.

Fig. 3.11 compares the performance of networks with random topology and deterministic

topology, operating in AWGN channels. The parameters areγ0 = 10 dB andσ2
w = 0. For both 1-

D and 2-D networks, networks with deterministic topology consistently outperform their random

topology counterparts. The difference between the two types of networks becomes smaller asρs

andρt increase. The topology of practical networks is usually a combination of the grid-based

deterministic topology and random topology. Therefore theperformance of practical networks

will fall between the bounds delimited by the two types of networks.

3.6 Conclusions

In this chapter, the optimum sampling in the 1-D and 2-D WSNs with spatial-temporally correlated

data was studied. The impacts of the spatial node density andthe temporal sampling rate on the

network performance were investigated through asymptoticanalysis and numerical studies. Under

the constraint of fixed power per unit area, the MSE performance of various networks were studied
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through a combination of analytical and simulation methods. The results quantitatively identified

the interactions between the estimation fidelity and a largenumber of system parameters, such as

node density, sampling rate, measurement noise, fading, and random topology, etc. It was observed

that the network with a deterministic grid-based topology and operating in AWGN channels has

the best performance, yet that with a random topology and operating in fading channels has the

worst performance. Therefore, whenever possible, a grid-based deterministic topology is preferred

over a random topology. The MSE performance of these two types of networks can serve as lower

and upper bounds for practical networks, and their difference gradually diminish as the correlation

coefficients increase.
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3.7 Appendix of Proofs

3.7.1 Proof of Proposition 3.1

SettingH = IN in (3.12) and performing the eigenvalue decomposition ofRxx, we can rewrite the

MSE as

σ2
st,N =

1
N

Ns−1

∑
m=1

Nt−1

∑
k=1

(

1
λm,k

+
1

σ2
w+(1+σ2

w)
θδ
γ0

)−1

, (3.39)

whereλm,k, for m= 0,1, . . . ,Ns−1, andk= 0,1, . . . ,Nt −1, are the eigenvalues ofRxx. WhenNs→

∞ andNt → ∞, the 2-D discrete-time Fourier transform (DTFT) of the sequence,
{

ρ |m|d
s ρ |k|Ts

t

}

m,k
,

which are elements of the TBT matrixRxx, can be calculated asΛxx( f1, f2)=Λ(ρd
s , f1)×Λ(ρt

Ts, f2),

where

Λ(a, f ) =
+∞

∑
m=−∞

a|m|e− j2πm f =
1−a2

1+a2−2acos(2π f1)
, (3.40)

Based on the extension of the Szego’s theorem to TBT matrices[18, Theorem 1], whenNs→∞

andNt → ∞, the asymptotic MSE is

σ2
st = lim

N→∞
σ2

st,N =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

[

1
Λxx( f1, f2)

+
1

σ2
w+(1+σ2

w)
θδ
γ0

]−1

d f1d f2, (3.41)

Substituting the result ofΛxx( f1, f2) into (3.41), and applying [19, Equation (2.553.3)], we can

solve the inner integral as

σ2
st =

1−ρ2Ts
t

2ρTs
t

∫ 1
2

− 1
2

[

cos2(2π f2)−a2cos(2π f2)+b2
]− 1

2 f2, (3.42)

where

a2 =

[

1+ρ2Ts
t +

1

σ2
w+(1+σ2

w)
θδ
γ0

· 1+ρ2d
s

1−ρ2d
s

· (1−ρ2Ts
t )

]

·ρ−Ts
t , (3.43a)

b2 =





2(1+ρ2Ts
t )2

σ2
w+(1+σ2

w)
θδ
γ0

· 1+ρ2d
s

1−ρ2d
s

· (1−ρ4Ts
t )+

(

1−ρ2Ts
t

σ2
w+(1+σ2

w)
θδ
γ0

)2


 · (4ρ−2Ts
t ).(3.43b)

Based on [19, Equation (2.580.2)] and [19, Equation (3.152.2)], we can get the results in (3.13).
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3.7.2 Proof of Corollary 3.2

The MSE in (3.13) can be alternatively written as

σ2
st =

√
2

π
·
∫ π

2

0

1
√

β −α sin2x
dx (3.44)

Since integration is a linear operator, we can directly find the limit of the integrand, and the result

is

lim
δ→∞





1
√

β −α sin2x



=
√

2log(ρs)



log(ρs)−
2γ0

θ(1+σ2
w)

· 1+ρ
1
θ
t

1−ρ
1
θ
t

− 8γ0

θ(1+σ2
w)

· ρ
1
θ
t

1−ρ
2
θ
t

sin2x





− 1
2

.

(3.45)

Substituting (3.45) into (3.44) and simplifying lead to (3.16).

3.7.3 Proof of Corollary 3.4

The limit in (3.17) can be rewritten as

2
π

(

1+
4
ϖ

)− 1
2

·K
(

√

4
4+ϖ

)

=
2
π

∫ π
2

0

dw
√

1+ 4
ϖ (1−sin2w)

. (3.46)

Since(1− sin2w) is a non-negative real number, the limit is an increasing function of ϖ , thus

proportional toρs andρt , but inverse proportional to the SNRγ0.

3.7.4 Proof of Proposition 3.2

The Toeplitz matrix,R′
s, is uniquely determined by the sequence

{

ρ |m+ 1
2 |d

s

}(Ns−1)

m=−(Ns−1)
. Similarly,

the Toeplitz matrix,R′
t , is uniquely determined by the sequence,

{

ρ |m+ 1
2 |Ts

t

}(Nt−1)

m=−(Nt−1)
. Based on

[21], whenNs → ∞ andNt → ∞, the 2-D DTFT of the sequence,

{

ρ |m+ 1
2 |d

s ρ |k+ 1
2 |Ts

t

}

m,k
, which
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are elements of the TBT matrixRdx, can be calculated asΛdx( f1, f2) = Λ′(ρs
d, f1)×Λ′(ρt

Ts, f2),

where

Λ′(a, f ) = a
1
2

(1−a)(1+ej2π f )

1+a2−2acos(2π f )
. (3.47)

Based on [18, Lemma 1],Rdx is asymptotically equivalent to a circulant-block-circulant (CBC)

matrix,Cdx=UH
NDdxUN, whereUH

N is the unitary discrete Fourier transform (DFT) matrix andDdx

is a diagonal matrix with itskth diagonal element being

(Ddx)k,k = Λ′
(

ρd
s ,

k−1
Ns

)

·Λ′
(

ρTs
t ,

k−1
Nt

)

. (3.48)

Similarly, the TBT matrix,Rxx, is asymptotically equivalent to a CBC matrix,Cxx = UH
NDxxUN,

where Dxx is a diagonal matrix with itskth diagonal element being(Dxx)k,k = Λ
(

ρd
s ,

k−1
Ns

)

·

Λ
(

ρTs
t , k−1

Nt

)

, with Λ(ρd, f ) defined in (3.40).

In addition, the CBC matrices,Cxx andCdx, share the same orthonormal eigenvectors [22].

Based on [23, Theorem 2.1], the error correlation matrix,R(d)
ee , is asymptotically equivalent to a

CBC matrix,C(d)
ee = Cxx−Cdx

(

Cxx+(σ2
w+ θδ

γ0
)I
)−1

CH
dx = UH

ND(d)
ee UN, where the diagonal ma-

trix D(d)
ee =Dxx−Ddx

(

Dxx+(σ2
w+

θδ
γ0
)IN

)−1
DH

dx.

Based on the extension of the Szego’s theorem to TBT matrices[18, Theorem 1], we have

ϑ2
st =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[

Λxx( f1, f2)−
|Λdx( f1, f2)|2

Λxx( f1, f2)+σ2
w+(1+σ2

w)
θδ
γ0

]

d f1d f2. (3.49)

With [19, Equation (2.559.2)], we can solve the inner integral, and the result is

ϑ2
st =

∫ 1
2

− 1
2






Λ(ρTs

t , f )− |Λ′(ρTs
t , f )|2

Λ(ρTs
t , f )

+
|Λ′(ρTs

t , f )|2

Λ(ρTs
t , f )



σ2
w+(1+σ2

w)
θδ
γ0

+
1−ρ

1
δ
s

1+ρ
1
δ
s

Λ(ρTs
t , f )





1
2



σ2
w+(1+σ2

w)
θδ
γ0

+
1+ρ

1
δ
s

1−ρ
1
δ
s

Λ(ρTs
t , f )





− 1
2





d f (3.50)
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From [19, Equation (2.558.2)], we get

∫ 1
2

− 1
2

[

Λ(ρTs
t , f2)−

|Λ′(ρTs
t , f2)|2

Λ(ρTs
t , f2)

]

d f2 =
1−ρ

1
θ
t

1+ρ
1
θ
t

. (3.51)

Substituting (3.51) into (3.50) and simplifying lead to (3.22).

3.7.5 Proof of Proposition 3.3

The result in (3.24) can be proved by following a procedure that is similar to the proof of Proposi-

tion 3.2. Since the interpolation is performed in the space domain alone, we can replaceΛ′(ρTs
t , f2)

with Λ(ρTs
t , f2) in (3.50), and the result is

ϑ2
s =

∫ 1
2

− 1
2






Λ(ρTs

t , f2)



σ2
w+(1+σ2

w)
θδ
γ0

+
1−ρ

1
δ
s

1+ρ
1
δ
s

Λ(ρTs
t , f2)





1
2



σ2
w+(1+σ2

w)
θδ
γ0

+
1+ρ

1
δ
s

1−ρ
1
δ
s

·Λ(ρTs
t , f2)





− 1
2





d f2 (3.52)

The above integral can be solved by using [19, Equation (3.147.2)], [19, Equation (3.151.2)], and

the definition ofΛ(ρTs
t , f2) in (3.40), and the result is (3.24).

3.7.6 Proof of Corollary 3.6

Settingδ → ∞ in (3.52) leads to

lim
δ→∞

ϑ2
s =

∫ 1
2

− 1
2



Λ(ρTs
t , f2) ·

(

1− Λ(ρTs
t , f2)

log(ρs)

)− 1
2


d f2 (3.53)

The above integral can be solved by using [19, Equation (3.147.2)].
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3.7.7 Proof of Proposition 3.4

SettingH = IN in (3.29) and performing the eigenvalue decomposition ofxx in (3.28), we have

ψ2
st,N =

1
N

Ms

∑
i=1

Ms

∑
k=1

Nt

∑
m=1

(

1
λikm

+
1

σ2
w+(1+σ2

w)
θδ
γ0

)−1

, (3.54)

whereλikm, for i,k = 1, . . . ,Ms, andm= 1, . . . ,Nt , are eigenvalues ofxx. WhenNs → ∞ and

Nt → ∞, the 3-D DTFT of the sequence,

{

ρ
√

(i2+k2)/δ
s ρ |m|Ts

t

}

ikm
, which are elements of the 3-

level Toeplitz matrix xx, can be calculated as

Λ′
xx( f1, f2, f3) = Λss( f1, f2)×Λ(ρTs

t , f3). (3.55)

The result in (3.30) follows immediately from (3.55) and [20, Theorem 1], which is the exten-

sion of the Szego’s theorem to multilevel Toeplitz matrices.

3.7.8 Proof of Proposition 3.5

According to [20, Lemma 2], the multilevel Toeplitz matrices, xx and dx, are asymptotically

equivalent to multilevel circulant matrices,Bxx andBdx, respectively, where the eigenvalues ofBxx

andBdx are samples ofΛ′
xx( f1, f2, f3) in (3.55) andΛ′

dx( f1, f2, f3) in (3.36), respectively. In addi-

tion, the multilevel circulant matrices,Bxx andBdx, share the same orthonormal eigenvectors [20].

Once the asymptotic equivalence is established, the rest ofthe proof follows the same procedure

as described in Appendix E for the 1-D case.
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3.7.9 Proof of Corollary 3.8

WhenNs → ∞ andNt → ∞, while keepingδ andθ finite, the asymptotic MSE of spatial interpo-

lations in a 2-D network is

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[

Λss( f1, f2)Λt( f3)−
|Λds( f1, f2)Λt( f3)|2

Λss( f1, f2)Λt( f3)+σ2
w+(1+σ2

w)
θδ
γ0

]

d f1d f2d f3. (3.56)

whereΛss( f1, f2) is defined in (3.31) andΛds( f1, f2) is computed as in (3.38). Whenρt = 0, we

haveΛt( f3) = 1. SubstitutingΛt( f3) = 1 into (3.56) directly leads to (3.37).
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Chapter 4

Distributed Joint Source and Channel Code with Correlated Information Sources

Ning Sun , Jingxian Wu, and Hai Lin

4.1 Abstract

In this chapter, a new distributed joint source-channel code (DJSCC) is proposed for a communica-

tion network with multiple correlated information sources. The DJSCC is performed by puncturing

the information bits of a linear block code but leaving the parity bits intact, given the fact that the

correlation among the parity bits is usually much lower compared to the corresponding information

bits. In recognition of the different roles of the information and parity bits in the DJSCC scheme,

we propose to allocate unequal amounts of energy per bit to these two different types of bits. The

unequal energy allocation leads to significant performancegains over conventional equal energy

transmissions. At the receiver, the sources are jointly decoded with the iterative message pass-

ing algorithm. Simulation results demonstrate that the proposed scheme can achieve considerable

performance gains over conventional schemes.

4.2 Introduction

The Slepian-Wolf (S-W) theorem [1] states that distributedsources with correlated information can

perform encoding separately, yet achieve a code rate that isthe same as when the information is

encoded jointly. A wide range of applications can benefit from the S-W theorem. For example, in

a wireless sensor network, data collected by the spatially distributed sensors are usually correlated

due to the redundancy of the underlying monitored object; ina wireless relay network, the signal
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transmitted by one source might be observed by multiple relays, the information to be transmitted

by which is thus correlated. However, the S-W theorem is not constructive,i.e., it provides no

practical coding scheme to achieve the optimum performance.

There have been considerable works in the literature devoted to the design of practical dis-

tributed source codes (DSC) [2]-[11]. Many practical DSC schemes are designed by using the

syndromes of channel codes, such as block and trellis codes [2], turbo codes [3], and low-density

parity-check (LDPC) codes [4]. Many syndrome-based DSC designs focus on the asymmetric

scenario,i.e., the distributed coding is only applied to one of the sources, and the other source is

used as side-information and assumed to be known perfectly at the decoder. Designs of symmetric

DSCs are discussed in [5]–[8], with punctured linear block codes or LDPC codes. All of the above

work assume distortion-free communications between the encoder and decoder, which rely on a

separately designed ideal channel code to protect the signal from channel distortions. It is shown in

[9] that the source-channel coding separation theorem doesnot hold for a multiuser network, thus

necessitates the design of distributed joint source-channel code (DJSCC). In [10], a Raptor code

is employed for an asymmetric DJSCC over a packet erasure channel, where a correlated video

source is assumed to be available at the receiver for decoding. A symmetric DJSCC scheme over

the additive white Gaussian channel is proposed in [11].

In this chapter, we propose a new symmetric DJSCC coding scheme for multiple correlated

sources. The source correlation is utilized to both reduce the energy consumption and to protect

the information from channel distortion. The DJSCC is performed by transmitting a subset of the

information bits and all the parity bits of a linear block code over a noisy channel. The distor-

tions from source coding and channel impairments can be partly recovered by using the source

correlation and the parity bits. Compared to existing schemes in the literature, the newly proposed
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DJSCC scheme has the following contributions. First, a new unequal energy allocation scheme is

proposed for the delivery of the codeword from the transmitter to the receiver. The information bits

and parity bits are transmitted with different energy per bit in recognition of their different roles in

DJSCC, and significant performance gains are achieved over conventional schemes equal energy

allocation. Second, unlike many of the symmetric DSC or DJSCC schemes that puncture both the

information and parity bits [7] and [11], only the information bits are punctured in the proposed

coding scheme. This is based on our observation that the correlation among the parity bits from

different sources are relatively low even if the correlation of the information bits is strong. There-

fore puncturing the parity bits with low mutual correlationmight deteriorate the overall system

performance. Simulations are performed by using the LDPC codes as the constituent code, and the

results demonstrate significant performance gains of the newly proposed DJSCC scheme.

The remainder of the chapter is organized as follows. Section 4.3 introduces the proposed

DJSCC scheme with unequal energy allocation. Section 4.4 presents the message passing decoding

algorithm. Simulation results are given in Section 4.5, andSection 4.6 concludes the chapter.

4.3 Distributed Joint Source and Channel Code

Consider a network withN spatially distributed sources transmitting to an information sink. De-

note bn(k) ∈ B as thek-th information bit from then-th source, whereB = {0,1}. The bi-

nary information of theN sources are mutually correlated. Define the cross probability between

usersm and n as pmn = P{bm(k) 6= bn(k)}. If the binary information is equal probable,i.e.

P(bm(k) = 1) = P(bm(k) = 0) = 0.5, then the covariance coefficient betweenbm(k) and bn(k)
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is

ρmn=
E [(bm−µm)(bn−µn)]

σmσn
= 2(1− pmn)−1, (4.1)

whereµm andσm are the mean and standard deviation ofbm(k), respectively.

4.3.1 Codeword Structure

Each source encodes its own informationwithoutthe knowledge of the information from the other

sources. The proposed DJSCC is a linear block code. Letbn = [bn(1), · · · ,bn(M)]T ∈ BM×1

denote a block ofM information bits to be encoded at then-th source. In the proposed DJSCC

scheme,M is chosen to be an integer multiple of the number of usersN asM = KN with K being

an integer. The corresponding DJSCC codeword of then-th source can then be represented as

cT
n = bT

n [Tn,Pn] =
[

sT
n ,p

T
n

]T
(4.2)

whereTn ∈ BM×K is the information compression matrix withK = M
N , Pn ∈ BM×P is the parity

generation matrix,sn = TT
n bn ∈ BK×1 is the compressed information vector,pn = PT

n bn ∈ BP×1

is the parity vector, and the matrix operations in (4.2) are performed in the Galois field of two

elements, GF(2). The parity generation matrixPn will generateP parity bits fromM information

bits. The code rate of the DJSCC code is thusr = M
K+P.

The information compression matrixTn is obtained by removingM−K =K(N−1) columns of

a size-M identity matrixIM. DenoteTn = {n1, · · · ,nK} ⊆ {1,2, · · · ,M} as the set of theK indices

corresponding to the columnsnot removed fromIM during the construction ofTn, thenTn =

[in1, · · · , inK ] with im being them-th column ofIM. In the proposed DJSCC, we haveTn
⋂

Tm = /0,

and
⋃N

n=1Tn = {1,2, · · · ,M}. WhenN = 1, we haveTn = IM, and the DJSCC codeword in (4.2)

degrades to a regular systematic linear block code of code rate M
M+P.
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WhenN > 1, the codeword structure in (4.2) combines distributed source code and channel

code in a unified structure. The channel code is performed with the combination of the punctured

information and the parity vectors. The distributed sourcecode is performed with the information

compression matrixTn, which punctures the length-M information vectorbn into a length-K vector

sn, with mutually exclusive puncture patterns defined by the index set{Tn}N
n=1. The information

puncture operation deliberately adds distortion to the information to reduce the amount of infor-

mation to be transmitted, thus reduce the overall energy requirement. With mutually exclusive

puncture patterns, ifbn(k) is punctured, it is guaranteed that there existsm 6=n such thatbm(k)

on sourcem is transmitted. Thenbn(k) can be partly recovered by using the correlation between

bm(k) andbn(k), as well as the parity vectorpn(k).

In summary, for a system employing the DJSCC, the information distortion comes from two

sources, the distortion deliberately added by the information puncture operation, and the channel

distortion. At the decoder, the distortions are compensated from two aspects, the spatial corre-

lation, and the parity vector. The information correlationis utilized to both reduce the energy

consumption and to protect the information from channel distortion. Therefore, the distributed

source code and channel code are jointly performed in a single step.

In the proposed DJSCC scheme, only the information vector ispunctured and the parity vector

is transmitted in its entirety. This is because the punctured information can be partly compensated

by the information correlation, yet the correlation among the parity vectors from different sources

are relatively low even if the information is strongly correlated. The correlation between two parity

bits from different sources is stated in the following lemma.

Lemma 4.1: If the users use different parity generation matrix, then the probability that two
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parity bits, pnk and pmk are different isP(pnk 6= pmk)= 0.5. If all users share the same parity

generation matrix, and the Hamming weight of thek-th column of the parity generation matrix is

L, then

P(pnk 6= pmk) =
L

∑
u=1,u odd

(

L
u

)

pu
mn(1− pmn)

L−u (4.3)

Proof: If the users use different parity generation matrix, thenpnk and pmk are mutually

independent because the information bits are assumed to be independent in the time domain. If

all the users use the same parity generation matrix, the probability P(pnk 6= pmk) is equal to the

probability that, for theL bits corresponding to the non-zero positions of thek-th column ofPn,

there are an odd number of bits from them-th user that are not equal to their counterparts from the

n-th user. The probability thatu bits are not equal to each other follows a binomial distribution as

(L
u

)

pu
mn(1− pmn)

L−u. The result in (4.3) follows immediately.

As L becomes large, the binomial distribution
(L

u

)

pu
mn(1−pmn)

L−u can be accurately approx-

imated by a normal distribution with meanLpmn and varianceLpmn(1−pmn). Since the normal dis-

tribution is symmetric with respect toLpmn, the summation in (4.3) tends to1
2 ∑L

u=1

(L
u

)

pu
mn(1− pmn)

L−u=

0.5 whenL is large.

This is corroborated by the result in Fig. 4.1, which shows the cross probability of the parity

bits, P(pnk 6= pmk), as a function ofL with various values of the cross probabilitypmn. The cross

probability of the parity bits is less than the cross probability of the corresponding information bits

under all configurations, and they tend to 0.5 asL becomes large.

Based on the above analysis, the parity bits across different users usually have very weak cor-

relations, even if the information bits are strongly correlated. Therefore, puncturing the parity bits

will have very little contribution to the distributed source code, yet it will sacrifice the performance
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Figure 4.1: Cross probability of the parity bits.

of the channel code. Therefore, we propose to puncture only the information bits, and transmit the

parity bits at its entirety.

4.3.2 Transmission with Unequal Energy Allocation

Since the information bits and the parity bits are treated differently during the encoding process,

we propose to allocate different amounts of energy per bit tothe information and parity bits during

transmissions.

Denoteαn=mod[sn] andβn=mod[pn], where mod[b] ∈ S maps the binary vectorb to the

modulation constellation setS . The codeword after modulation and energy allocation is

xn = [
√

Esα
T
n ,
√

Epβ
T
n ]

T , (4.4)

whereEs is the energy per punctured information symbol, andEp is the energy per parity symbol.

The average energy per information bit is thusEb =
EsK+EpP
M log2(S)

, whereS= |S | is the cardinality of
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the constellation setS .

Define the energy allocation factor asθ=Ep
Es

. Intuitively, more energy per symbol should be

allocated for the punctured information bits to compensatefor the punctured bits. This intuition is

supported by our simulation results. The energy allocationfactor,θ , is used to adjust the energy

allocation between the punctured information bits and the parity bits. Whenθ =0, no parity bits

will be transmitted and the scheme degrades to a punctured transmission scheme without channel

code.

The unequal energy allocation between the punctured information and parity symbols is mo-

tivated by the fact that the sink can have the entire parity vectors from all the users, but only a

punctured version of the original information vector. The punctured information is recovered by

using a combination of the parity bits and the information correlation. Therefore, the transmitted

information bits from one user are used to recover the punctured bits from the other users. There-

fore, more energy can be allocated to the unpunctured bits tocompensate the extra distortions

introduced by the puncturing operations.

The modulated codeword,xn, is transmitted to the sink through an orthogonal media access

control (MAC) scheme. The signal received from then-th user is

yn = xn+zn, (4.5)

wherezn is the additive white Gaussian noise (AWGN) with a single-sided power spectral density

N0. The received signal vector at the sink can be expressed asyn = [yT
αn,y

T
βn]

T , whereyαn, yβn are

the received signal vectors corresponding to the coded sequenceαn andβn, respectively.
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4.4 DJSCC Decoding with the Message Passing Algorithm

The sink recovers the information vector by performing joint decoding with the message passing

algorithm based on the received signals from all theN sources.

Before the decoding, we need to calculate the initial log-likelihood ratio (LLR) from the chan-

nel observations. The initial LLR of thek-th coded information bitsn(k)=bn(nk), from the channel

observation,yαn, can be calculated by

λn(nk) = log
∑s∈S

−
rk

exp
[

− 1
N0

∣

∣yαn(mk)−
√

Ess
∣

∣

2
]

∑s∈S
+
rk

exp
[

− 1
N0

∣

∣yαn(mk)−
√

Ess
∣

∣

2
] , (4.6)

where thek-th bit in a coded vector is mapped to themk = b k
log2Sc modulated symbol,rk = k−

mk log2S, S +
rk

⊂ S is the set that contains all the symbols with therk-th bit in the demodulated

vector being 1, andS −
rk

= S \S +
rk

.

Similarly, the initial LLR of thek-th parity bit,pn(k), can be calculated fromyβn as

λn(M+k) = log
∑s∈S

−
rk

exp
[

− 1
N0

∣

∣yβn(mk)−
√

Eps
∣

∣

2
]

∑s∈S
+
rk

exp
[

− 1
N0

∣

∣yβn(mk)−
√

Eps
∣

∣

2
] . (4.7)

The LLRs of the punctured bits of one user can be calculated from their correlated counterparts

transmitted by a different user. Assumek∈ Tn, i.e., the bitbnk is transmitted by then-th user, and

bmk is punctured at them-th user,∀m 6= n. Then the LLRs of the punctured bits can be calculated

as

λ̂m(k)=log
(1− pmn)P(bn(k) = 1)+ pmnP(bn(k) = 0)
pmnP(bn(k) = 1)+(1− pmn)P(bn(k) = 0)

, (4.8)

whereP(bn(k) = 1) = 1
1+exp[λn(k)]

andP(bn(k) = 0) = 1−P(bn(k) = 1).

The initial LLR of the information and parity bits can then beexpressed by

δn(k) =















λn(k), k∈ Tn or M < k≤ M+P,

λ̂n(k), otherwise,

(4.9)
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The message passing will be performed on a bipartite graph defined by an extended parity

check matrixH = [PT
n , IP]

T ∈ B(M+P)×P. It should be noted thatH is not the parity check matrix

for the codeword defined in (4.2). It is the parity check matrix of the unpunctured codeword with

the generation matrix[IM,Pn].

The tanner graph corresponding toH has(M+P) variable nodes andP check nodes. Thek-th

variable node is connected to thep-th check node if the(k, p)-th element ofH is 1. DenoteVp

as the set of variable nodes that are connected to thep-th check node, andCk as the set of check

nodes that are connected to thek-th variable nodes.

For the information from then-th user, the message from thek-th variable node to thep-th

check node during thei-th iteration is

η(i)
kp(n) = δn(k)+ ∑

p′∈Ck\p

µ(i−1)
p′k (n), (4.10)

whereµ(i)
pk(n) is the message from thep-th check node to thek-th variable node during thei-th

iteration,and it can be calculated as

µ(i)
pk(n) = 2atanh ∏

k′∈Vp\k

tanh
η(i)

k′p(n)

2
(4.11)

During the first iteration,µ(0)
pk (n) = 0.

For the message passing algorithm [12], eqns. (4.10) and (4.11) are performed iteratively for

a single codeword, and the values ofδn(k) are the same for all the iterations. At thei-th iteration,

then-th user will output a soft decision for its information bits, as

l (i)n (k) = δn(k)+ ∑
p′∈Ck

µ(i)
p′k(n). (4.12)

At the final iteration, the hard decision withI iterations is obtained aŝbn(k) = 1 if l (I)n (k) > 0

andb̂n(k) = 0 otherwise.
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The iterative message passing algorithm is summarized as follows.

I) Initialization

i) Calculate the initial LLRs of the transmitted information bits, λn(k), with (4.6), for

k∈ Tn, n= 1, · · · ,N.

ii) Calculate the initial LLRs of the parity bits,λn(M + k), with (4.7), for k = 1, · · · ,P,

n= 1, · · · ,N.

iii) Calculate the LLRs of the punctured information bits,λ̂m(k), with (4.8).

iv) Set i = 1.

II) Iterations

i) Calculate the message from the variable node to the check node,η(i)
kp(n), with (4.10),

for k= 1, · · · ,N, p= 1, · · · ,P, andn= 1, · · · ,N.

ii) Calculate the message from the check node to the variablenode,µ(i)
pk(n), with (4.11),

for k= 1, · · · ,N, p= 1, · · · ,P, andn= 1, · · · ,N.

iii) Calculate the soft decisions,l (i)n (k), with (4.12).

iv) If i < I , go back to step II.i); otherwise go to the next step.

III) Detection

Make hard decision aŝbn(k) = 1 if l (I)n (k)> 0 andb̂n(k) = 0 otherwise.

4.5 Simulation Results

Simulation results are presented in this section to demonstrate the performance of the proposed

DJSCC scheme. In the simulation, an irregular LDPC with a 32400-by-64800 parity-check matrix
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Figure 4.2: BER as a function of the energy allocation factorθ (Eb/N0 of the source-sink link is
-0.65 dB).

is used to generate the DJSCC codeword. In the simulation, the pairwise covariance coefficient

between any pair of users is the same,i.e., ρmn= ρ , or p= pmn, ∀m 6= n. The mutually correlated

information of theN users is generated by passing the a length-M binary vector throughN inde-

pendent and identically distributed (i.i.d.) binary symmetric channel (BSC) channels. The cross

probability of the BSC channel isp0 =
1
2 − 1

2

√
1−2p. It can be easily shown that the cross prob-

ability between the output of any pair of BSC channels isp. It should be noted that the proposed

DJSCC scheme can be applied to sources with arbitrary correlations.

We first study the impact of the unequal energy allocation on the performance of the DJSCC

scheme in Fig. 4.2, where the bit error rate (BER) is shown as afunction of the energy allocation

factor,θ , for a network with two users. The covariance coefficient between the two users isρ =0.9.

The source-sink communication links are AWGN channels withEb/N0 =−0.65 dB. It can be seen
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Figure 4.3: The performance of equal and optimum energy for two users

that the optimum performance is achieved atθ = 0.5, e.g., the energy of one parity bit is half of

that of one transmitted information bit. The performance degrades significantly with equal energy

allocation atθ = 1.

Fig. 4.3 shows the BER performance of the proposed DJSCC scheme under various values of

ρ . There are two users in the system. The energy allocation factor is θ = 0.6. The performances

of systems with equal energy allocation are also shown for comparison. The curve labeled as con-

ventional LDPC is obtained without DJSCC, thus its performance is independent of the number of

users. As expected, the performance improves asρ increases. With unequal energy allocation and

at a BER = 10−4, the DJSCC obtains 0.1 dB, 0.5 dB, and 1 dB performance gains over conven-

tional LDPC coded system atρ = 0.7,0.8, and 0.9, respectively. The DJSCC with unequal energy

allocation outperform their equal energy counterparts by about 0.18 dB.

The impact of the number of users on the performance is shown in Fig. 4.4. The covariance
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Figure 4.4: The BER under varies number of usersN (covariance coefficientρ = 0.9)

coefficient isρ = 0.9. No puncture operation is employed in theN = 1 case and it is the same as

the conventional LDPC code. The proposed DJSCC scheme benefits from the presence of more

users, due to the better compression ratio of the distributed source code. The DJSCC systems with

N = 2, 3, and 4 outperform the conventional LDPC coded system by 1dB, 1.9 dB, and 2.3 dB,

respectively.

4.6 Conclusion

A new DJSCC scheme based on linear block code for a communication network with correlated

information sources and operating over noisy channels was proposed in this chapter. It was demon-

strated that the correlation among the parity bits of a linear block code was usually very low even

when the correlation among the information bits is high. Therefore, the DJSCC was performed by

puncturing the information bits but transmitting the parity bits in its entirety. The information and
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parity bits were transmitted with unequal energy per bit to achieve additional performance gain.

The message passing algorithm was used at the receiver to jointly recover the information from

all the sources. Simulation results demonstrated that the proposed DJSCC scheme with unequal

energy allocation can achieve significant performance gains over conventional schemes, and the

performance improves as the number of users increases.
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Chapter 5

Distributed Joint Source-Channel Code for Spatially Correlated Markov Sources

Ning Sun , Jingxian Wu, and Guoqing Zhou

5.1 Abstract

In this chapter, a new distributed joint source-channel code (DJSCC) is proposed for a communi-

cation network with spatially correlated Markov sources. The DJSCC is performed by puncturing

the information bits of a systematic linear block code but leaving the parity bits intact. Due to the

different roles of the information and parity bits in the DJSCC scheme, unequal energy is allocated

to these two different types of bits during transmission. Atthe receiver, the spatial data correla-

tion is exploited with a new multi-codeword message passing(MCMP) decoding algorithm. The

MCMP decoder performs both intra- and inter-codeword soft information exchange, whereas con-

ventional message passing (MP) algorithms exchanges soft information only inside a codeword.

The inter-code soft information exchange of MCMP leads to additional performance gain over

the MP algorithm. In recognition that the signals at the receiver are distorted observations of the

Markov source and thus can be modeled by a hidden Markov model(HMM), we propose to add

a HMM decoding module to the MCMP decoder to exploit the temporal data correlation. The

HMM decoder iteratively exchanges soft information with the MCMP decoder, and this leads to

significant performance gains over conventional systems.
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5.2 Introduction

In a wireless sensor network (WSN), data collected by the spatially distributed sensors are often

correlated in both the space and time domains due to the inherent space redundancy and time

variation of the monitored entities or phenomena. The spatial-temporal data correlation can be

exploited to significantly improve the performance of the wireless network. The Slepian-Wolf (S-

W) theorem [1] states that distributed sources with correlated information can perform encoding

separately, yet achieve a code rate that is the same as when the information is encoded jointly.

However, the S-W theorem is not constructive, i.e., it provides no practical coding scheme to

achieve the optimum performance.

There have been considerable works in the literature devoted to the design of practical dis-

tributed source codes (DSC) [2]–[6]. Many practical DSC schemes are designed by using the syn-

dromes of channel codes [2], [3]. Many syndrome-based DSC designs focus on the asymmetric

scenario,i.e., the distributed coding is only applied to one of the sources, and the other sources are

used as side-information and assumed to be known perfectly at the decoder. Designs of symmetric

DSCs are discussed in [4]–[7], with punctured linear block codes. However, All of the above work

focus only on the spatial correlation among the sensors, andthey do not consider the variation of

the data in the time domain. In reality, the physical phenomenon under monitoring changes with

respect to time, and the consecutive observations of a sensor node are often correlated in the time

domain.

The temporal data correlation can be utilized during the detection process at the receiver to

improve the system performance [8]–[11]. In [8], a joint turbo decoding and estimation scheme

is proposed for the estimation of a temporally correlated source modeled by a hidden Markov
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model (HMM). It treats the trellis describing the HMM as a constituent code, which exchanges

soft information with other constituent codes during turbodetection. The turbo code in [8] is

replaced by a low-density parity-check (LDPC) code in [9], where the random nature of the LDPC

code eliminates the need of an interleaver between the HMM trellis and channel decoder, thus

it reduces the decode delay. In [10], the HMM decoding is performed by modeling the Markov

source to a bipartite graph. All of the above works [8]–[10] consider only decoding algorithm at

the receiver. None of them considers spatial source correlation or source code at the transmitter.

An asymmetric distributed source code for HMM source is presented in [11] by using a punctured

Raptor code, but the correlated source is used as a perfectlyknown side information at the decoder.

In this chapter, we propose a new symmetric distributed joint source and channel code (DJSCC)

for correlated Markov sources. The data at the receiver are distorted observations of the Markov

sources, and they can be modeled as HMM. At the transmitter, each source performs the DJSCC

encoding by puncturing the information bits of the codewords of a systematic channel code. The

punctured bits can be partly recovered by using the spatial-temporal data correlation and the par-

ity bits of the channel code. In addition, the information and parity bits are transmitted over a

noisy channel with different energy to achieve additional performance gain. Two new decoders,

one for spatially correlated memoryless sources, and one for sources correlated in both the space

and time domains, are proposed. The first decoder employs a new iterative multi-codeword mes-

sage passing (MCMP) algorithm. The iterative MCMP algorithm performs decoding on multiple

codewords simultaneously, and soft information are exchanged between the codewords throughout

the iterations. This is different from the conventional message passing (MP) algorithm, where the

soft information is only updated inside one codeword. The second decoder exploits the temporal

data correlation by adding a HMM decoding module to the MCMP decoder. The HMM decoding
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module extracts thea postoriorprobability of the data by utilizing the hidden Markovian property

of the data at the receiver, and it iteratively exchanges soft information with the MCMP decoder

to improve the decoding performance. Simulation results demonstrate that both of two new de-

coders outperform the conventional MP decoder, and significant performance gain is achieved by

the newly proposed DJSCC scheme.

5.3 Distributed Joint Source-Channel Code

5.3.1 System Model

Consider a system with two correlated binary sources,bn(k) ∈ B, for n = 1 and 2, transmitting

to one information sink, wherek is the time index andB = {0,1}. The correlation between

the two sources can be modeled asb2(k) = b1(k)⊕ e(k), wheree(k) ∈ B is an identically and

independently distributed (i.i.d.) random process withP(e(k) = 1) = p0. The cross probability

between the two sources isP(b1(k) 6= b2(k)) = p0. Define the correlation coefficient between

b1(k) andb2(k) as

ρmn= E

[

(bm−µm)(bn−µn)

σmσn

]

= 1−2p0, (5.1)

whereµm andσm are the mean and standard deviation ofbm(k), respectively.

The information of each source is correlated in the time domain. Without loss of generality, it

is assumed that the time correlation of source 1 can be modeled as a first-order Markov chain, with

the following parameters

• States:S0 = 0 andS1 = 1.

• Transition probability:ai j = P(Sk = j|Sk−1 = i), i, j ∈ {0,1}.
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• Initial state distribution:P(S0) andP(S1).

The information from source 2 is a distorted observation of the Markov process from source

1, thus it can be modeled as a HMM source. The data from the two sources will be separately

encoded, modulated, and transmitted to the information sink through a noisy channel.

5.3.2 Codeword Structure

Each source encodes its own informationwithoutthe knowledge of the information from the other

users. The proposed DJSCC is a linear block code. Letbn = [bn(1), · · · ,bn(M)]T ∈BM×1 denote a

block ofM information bits to be encoded at then-th source user. In the proposed DJSCC scheme,

M is chosen to be an integer multiple of the number of users asM = 2K with K being an integer.

The corresponding DJSCC codeword of then-th source can then be represented as

cT
n = bT

n [Tn,Pn] =
[

sT
n ,p

T
n

]T
(5.2)

whereTn ∈ BM×K is the information compression matrix withK = M
2 , Pn ∈ BM×P is the parity

generation matrix,sn = TT
n bn ∈ BK×1 is the compressed information vector,pn = TT

n bn ∈ BP×1

is the parity vector, and the matrix operations in (5.2) are performed in the Galois field of two

elements, GF(2). The parity generation matrixPn will generateP parity bits fromM information

bits. The code rate of the DJSCC code is thusr = 2M
M+2P.

The information compression matrixTn is obtained by removingK = M
2 columns of a size-

M identity matrix IM. DenoteTn ⊂ {1,2, · · · ,M} as the set of theK indices corresponding to

the columnsnot removed fromIM during the construction ofTn, thenTn = [in1, · · · , inK ] with

nk ∈ Tn, whereim is them-th column ofIM. In the proposed DJSCC, we haveT1
⋂

T2 = /0, and

T1
⋃

T2 = {1,2, · · · ,M}.
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The distributed source code is performed with the information compression matrixTn, which

punctures the length-M information vectorbn into a length-K vectorsn, with mutually exclusive

puncture patterns defined by the index sets{Tn}2
n=1. With mutually exclusive puncture patterns, if

bn(k) is punctured, thenbm(k) on sourcem 6= n is transmitted. Thenbn(k) can be partly recovered

by using the correlation betweenbm(k) andbn(k), as well as the parity vectorpn(k).

Based on [7, Lemma 1], the parity bits across different usersusually have very weak correla-

tions, even if the information bits are strongly correlated. Therefore, puncturing the parity bits will

have very little contribution to the distributed source code, yet it will sacrifice the performance of

the channel code. Therefore, we propose to puncture only theinformation bits, and transmit the

parity bits at its entirety.

5.3.3 Transmission with Unequal Energy Allocation

Since the information bits and the parity bits are treated differently during the encoding process,

we propose to allocate different amounts of energy per bit tothe information and parity bits during

transmission.

Denote the modulated symbols asαn=mod[sn] andβn=mod[pn], respectively, where mod[b]∈

S maps the binary vectorb to the modulation constellation setS . The codeword after modulation

and energy allocation is

xn = [
√

Esα
T
n ,
√

Epβ
T
n ]

T , (5.3)

whereEs is the energy per information symbol, andEp is the energy per parity symbol. The

average energy per information bit is thusEb =
EsK+EpP
M log2(S)

, whereS= |S | is the cardinality of the

constellation setS .
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Define the energy allocation factor asθ=Ep
Es

. Intuitively, more energy per symbol should be

allocated for the punctured information bits to compensatefor the punctured bits. This intuition is

supported by our simulation results. The energy allocationfactor,θ , is used to adjust the energy

allocation between the punctured information bits and the parity bits. Whenθ =0, no parity bits

will be transmitted and the scheme degrades to a punctured transmission scheme without channel

code.

The modulated codeword,xn, is transmitted to the sink user through an orthogonal media

access control (MAC) scheme. The signal received from then-th user is

yn = xn+zn, for n= 1,2, (5.4)

wherezn is the additive white Gaussian noise (AWGN) with a single-sided power spectral density

N0. The received signal vector at the sink can be expressed asyn = [yT
αn,y

T
βn]

T , whereyαn, yβn are

the received signal vectors corresponding to the coded sequenceαn andβn, respectively.

5.4 DJSCC Decoding with a Multi-Codeword Message Passing Algorithm

The information sink recovers the information vector by performing joint decoding based on the

received signals from the sources. We propose two new joint decoding algorithms, which can be

utilized for correlated memoryless sources and correlatedMarkovian sources, respectively. The

first algorithm performs decoding by iteratively exchanging information between the two code-

words without utilizing the time correlation, and we denoteit as the multi-codeword message

passing algorithm (MCMP). The second algorithm extends theproposed MCMP by exploiting the

Markov property of the information sources in each iteration.
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5.4.1 Joint Decoding for Correlated Memoryless Sources

We present a MCMP decoding algorithm in this subsection, which can effectively improve the

performance of correlated memoryless sources.

Different from the conventional message passing (MP) algorithm where the LLR is exchanged

within the structure of one codeword, the proposed MCMP algorithm will iteratively exchange

information between the codewords from the two sources.

Before decoding, we need to calculate the initial log-likelihood ratio (LLR) from the channel

observations. Assume thek-th bit is mapped to themk-th modulated symbol, and it corresponds to

the rk-th bit in the demodulated vector of the modulated symbol. Ifthek-th information bit is not

punctured during the encoding, then the initial LLR ofbn(k) from the channel observation,yαn,

can be calculated by

λ (0)
n (k) = log

∑s∈S
−
rk

exp
(

− 1
N0

∣

∣yαn(mk)−
√

Ess
∣

∣

2
)

∑s∈S
+
rk

exp
(

− 1
N0

∣

∣yαn(mk)−
√

Ess
∣

∣

2
) , (5.5)

whereS +
rk

⊂S is the set that contains all the symbols with therk-th bit in the demodulated vector

being 1, andS −
rk

= S \S +
rk

.

Similarly, the initial LLR of thek-th parity bit,pn(k), can be calculated fromyβn as

λ (0)
n (M+k) = log

∑s∈S
−
rk

exp
(

− 1
N0

∣

∣yβn(mk)−
√

Eps
∣

∣

2
)

∑s∈S
+
rk

exp
(

− 1
N0

∣

∣yβn(mk)−
√

Eps
∣

∣

2
) . (5.6)

The LLRs of the punctured bits of one user can be calculated from their correlated counterparts

transmitted by the other user. Assumek ∈ Tn, i.e., the bitbnk is transmitted by then-th user, and

bmk is punctured at them-th user, form 6= n. Then the LLRs of the punctured bits at thei-th

iteration can be calculated as

λ̂ (i)
m (k) = log

(1− p0)P
(i)
n0 (k)+ p0[1−P(i)

n0 (k)]

p0P(i)
n0 (k)+(1− p0)[1−P(i)

n0 (k)]
, (5.7)
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whereP(i)
n0 (k)=

exp[λ (i)
n (k)]

1+exp[λ (i)
n (k)]

. The calculation ofλ (i)
n (k) for i > 0 will be discussed later in this

subsection.

Define the initial LLR for thei-th iteration as

δ (i)
n (k) =















λ (0)
n (k), k∈ Tn or M < k≤ M+P,

λ̂ (i−1)
n (k), otherwise,

(5.8)

In (5.8), for a given user, the initial LLRs of the transmitted information and parity bits are obtained

from their respective channel measurements, and they keep unchanged throughout the iterations.

The initial LLRs for the punctured information bits are updated as the iterations progress.

The MCMP will be performed on a bipartite graph defined by an extended parity check ma-

trix H = [PT
n , IP]

T ∈ B(M+P)×P. It should be noted thatH is not the parity check matrix for the

codeword defined in (5.2). It is the parity check matrix of theunpunctured codeword with the

generation matrix[IM,Pn], because the LLRs of the punctured bits can be calculated from their

correlated counterparts transmitted by the other user.

The tanner graph corresponding toH has(M+P) variable nodes andP check nodes. Thek-th

variable node is connected to thep-th check node if the(k, p)-th element ofH is 1. DenoteVp

as the set of variable nodes that are connected to thep-th check node, andCk as the set of check

nodes that are connected to thek-th variable node.

For the information from then-th user, the message from thek-th variable node to thep-th

check node during thei-th iteration is

η(i)
kp(n) = δ (i)

n (k)+ ∑
p′∈Ck\p

µ(i−1)
p′k (n), (5.9)

whereµ(i)
pk(n) is the message from thep-th check node to thek-th variable node during thei-th

iteration, and it can be calculated as
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µ(i)
pk(n) = 2atanh



 ∏
k′∈Vp\k

tanh
η(i)

k′p(n)

2



 . (5.10)

During the first iteration,µ(0)
pk (n) = 0.

For a conventional MP algorithm, eqns. (5.9) and (5.10) are performed iteratively for a single

codeword, and the values ofδ (i)
n (k) are the same for all the iterations. In the proposed MCMP

algorithm, the iterations will be performed across the two codewords through the update ofδ (i)
n (k)

as in (5.7) and (5.8).

At the end of thei-th iteration, then-th user will output a soft decision for its un-punctured

information bits, as

λ (i)
n (k) = δ (i)

n (k)+ ∑
p′∈Ck

µ(i)
p′k(n). (5.11)

This soft decision from then-th user will be used to update the LLRs of the punctured bits for the

m-th user(m 6= n) as described in (5.8).

At the final iteration, the hard decision is obtained asb̂n(k)= 1 if λ (I)
n (k)> 0 andb̂n(k)= 0 oth-

erwise. Simulation results demonstrate that the proposed MCMP achieves significant performance

gain over conventional MP algorithm that performs iteration for a single codeword.

5.4.2 Joint Decoding for Correlated Markovian Sources

The decoder that utilizes the spatial and temporal correlation of the information sources is dis-

cussed in this subsection.

The joint decoder contains a MCMP decoder and a HMM decoder [12]. The MCMP decoder

is used to exploit the spatial correlation among the sources, and the HMM decoder can take ad-

vantage of the temporal correlation of the data from the samesource. The MCMP decoder and the
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HMM decoder iteratively exchange soft information throughthe iterations. Details of the decoding

process is described as follows.

The initial values for the joint decoder areλ (0)
n (k), for k∈Tn or M < k≤ M+P which are the

LLRs of the unpunctured information and parity bits calculated from (5.5) and (5.6).

5.4.2.1 MCMP Decoding

At the(i+1)-th iteration, the soft information available at the input of the MCMP decoder include:

λ (0)
n (k), for k ∈ Tn or M < k ≤ M +P, which are the LLRs of the unpunctured information and

parity bits as calculated from (5.5) and (5.6);λ̂ (i)
n (k), for k /∈ Tn, which are the estimated LLRs of

the punctured information bits as calculated from (5.7);ζ (i)
j (k) , P(i)(b1(k) = j|yn), for j = 0,1

andk = 1, · · · ,M, which are thea posterioriprobability (APP) of the data from source 1 at the

output of the HMM decoder. Wheni = 0, ζ (0)
j (k) = π j(k), whereπ j(k) is the stable probability of

the Markov process. The calculation ofζ (i)
j (k), for i ≥ 1, will be discussed later in this subsection.

It should be noted that only the APP from source 1 is availableat the output of the HMM

decoder, because the data from source 2 is not a Markov process. Define the APP ratio of the data

from sources 1 and 2 as

∆(i)
1 (k) = log

ζ (i)
0 (k)

ζ (i)
1 (k)

, (5.12a)

∆(i)
2 (k) = log

(1− p0)ζ
(i)
0 (k)+ p0ζ (i)

1 (k)

p0ζ (i)
0 (k)+(1− p0)ζ

(i)
1 (k)

(5.12b)

Based on the inputs, the initial LLRs for thei-th iteration can be calculated as

δ (i)
n (k) =































λ (0)
n (k), M < k≤ M+P,

∆(0)
n (k)+λ (0)

n (k), k∈ Tn

∆(i−1)
n (k)+ λ̂ (i−1)

n (k), otherwise.

(5.13)
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Please note that the parity bits do not form a Markov process so the outputs of the HMM decoder

are not used in the calculation of the LLRs of the parity bits.

With the initial LLRs given in (5.13), the MCMP algorithm described in the previous subsec-

tion can be performed. Specifically, the message from the variable node to the check node is first

calculated with (5.9), then the message from the check node to the variable node is calculated with

(5.10). The output of the MCMP at thei-th iteration is calculated from (5.11), which will be used

as the input for the MCMP decoder for the next iteration as in (5.13). In addition, the soft output

of the MCMP will also be used as the input for the HMM decoder ofthe current iteration.

5.4.2.2 HMM Decoding

Since the data from source 1 is a Markov process and the data from source 2 is a hidden Markov

process, the corresponding observations at the receiver,yαn, are hidden Markov processes.

Define the observation likelihood function of the data from source 1 at thei-th iteration as

γ(i)j (k) =















p(i)(yα1(mk)|b1(k) = j), k∈ T1,

p(i)(yα2(mk)|b1(k) = j), k∈ T2.

(5.14)

We propose to update the observation likelihood function with the soft output of the MCMP

decoder, as

γ(i)j (k) = P(i)
1 j (k), if k∈ T1,

γ(i)0 (k) = (1− p0)P
(i)
20(k)+ p0P(i)

21 (k), if k∈ T2,

γ(i)1 (k) = p0P(i)
20 (k)+(1− p0)P

(i)
21(k), if k∈ T2,

(5.15)

whereP(i)
n0 (k) =

exp[λ (i)
n (k)]

1+exp[λ (i)
n (k)]

andP(i)
n1 (k) = 1−P(i)

n0 (k).

The APP,P(i)(b1(k) = j|yα1,yα2), can be efficiently calculated by using a foward-backward
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recursion as [14]

ψ(i)
j (k)=

[

1

∑
l=0

ψ(i)
l (k−1)al j

]

γ(i)j (k),k= 2, · · · ,M, (5.16)

ϕ(i)
j (k)=

1

∑
l=0

ϕ(i)
l (k+1)a jl γ

(i)
l (k+1),k= 1, · · · ,M−1, (5.17)

whereψ(i)
j (k) = p(yα1(1 : k),yα2(1 : k),b1(k) = j) is the forward message and initialized by

ψ(i)
j (1) = πi × γ(i)j (1), with a(k1 : k2) representing a vector formulated by using thek1-th to k2-th

elements of the vectora, andϕ(i)
j (k) = p(yα1(k+1 :M),yα2(k+1 :M)|b1(k) = j) is the backward

message and initialized byϕ(i)
j (M) = 0.5.

After the forward-backward recursion, the APP output of theHMM decoder is calculated by

ζ (i)
j (k) =C(i)

k ×ψ(i)
j (k)×ϕ(i)

j (k), (5.18)

whereC(i)
k is a normalizing constant such thatζ (i)

0 (k)+ζ (i)
1 (k) = 1. The APP output is then used

as the input to the MCMP decoder in the next iteration as described in (5.12) and (5.13).

The iterations will be performed until convergence or the maximum number of iterations is

reached. The joint MCMP-HMM decoding algorithm is summarized as follows.

I) Initialization

i) Calculate the initial LLRs of the transmitted information bits and parity bits,λ (0)
n (k)

with (5.5) and (5.6 fork∈ Tn or k= M+1, · · ·N, andn= 1,2.

ii) Calculate the estimated initial LLRs of the punctured information bits,λ̂ (0)
n (k), with

(5.7) fork∈ Tm, wherem 6= n.

iii) Calculate the stable probability of the Markov processπ j(k), for k = 1, · · · ,M and

j = 0,1.

116



iv) Calculate∆(0)
n (k) with (5.12), fork= 1, · · · ,M andn= 1,2.

v) Seti = 1.

II) MCMP Decoding

i) Calculate the initial LLRs,δ (i)
n (k), for k= 1, · · · ,N, andn= 1,2.

ii) Calculate the message from the variable node to the checknode,η(i)
kp(n), with (5.9), for

k= 1, · · · ,N, p= 1, · · · ,P, andN = 1, · · · ,N.

iii) Calculate the message from the check node to the variable node,µ(i)
pk(n), with (5.10),

for k= 1, · · · ,N, p= 1, · · · ,P, andN = 1, · · · ,N.

iv) Calculate the soft decisions,λ (i)
n (k), with (5.11).

v) Update the estimated LLR of the punctured information bits, λ̂ (0)
n (k), with (5.7) for

k∈ Tm, wherem 6= n.

III) HMM Decoding

i) Calculate the observation likelihood function,γ(i)j (k), with (5.15), fork= 1, · · · ,N and

j = 0,1.

ii) Perform the forward algorithm described in (5.16) to obtain ψ(i)
j (k), for k = 2, · · · ,M

and j = 0,1.

iii) Perform the backward algorithm described in (5.17) to obtainϕ(i)
j (k), for k=1, · · · ,M−

1, and j = 0,1.

iv) Calculate the APPζ (i)
j (k) with (5.18), fork= 1, · · · ,N and j = 0,1.

v) Update∆(i)
n (k) with (5.12), fork∈ Tm with n 6= m.
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Figure 5.1: The performance of MCMP for memoryless sources under various values ofρ .

vi) If i ≤ I , go bakc to step II.1); otherwise go to the next step.

III) Detection

Make hard decision aŝbn(k) = 1 if ∆(I)
n (k)> 0 andb̂n(k) = 0 otherwise.

5.5 Simulation Results

In this section, the performance of proposed DJSCC scheme with the MCMP and MCMP-HMM

algorithms are demonstrated with simulation results.

In the simulation, an irregular LDPC with a 508-by-1016 parity-check matrix is used to gen-

erate the DJSCC codeword. We would like to stress that the parity check matrix of the irregular

LDPC code has been chosen without any optimization. It is expected that more performance gains

can be achieved with a carefully designed parity check matrix. In all the examples, the initial

probability of the Markov process is 0.5 for both states.
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We first study the bit error rate (BER) performance of the proposed MCMP decoding algorithm

for the network with two correlated sources, without considering the Markov property in the time

domain. Fig. 5.1 plots the BER of the DJSCC with MCMP decodingalgorithm under various

values of the spatial correlation coefficient,ρ . The performance of a system with the two sources

encoded separately with conventional LDPC code and the MP decoder is also shown for compar-

ison. In the simulation, the transition probabilitiesa00 = a11 = 0.5, which means both source 1

and source 2 are memoryless. The energy allocation factor isθ = 0.5 for all cases. The iteration

number of the MCMP decoder is 20. It is observed that, with unequal energy allocation, the BER

performance of the proposed DJSCC with MCMP decoder is better than the conventional LDPC

code even atρ = 0.7, and performance improves asρ increases. Atρ = 0.9, the DJSCC with

MCMP decoder outperforms the conventional system by 1.8 dB at BER=10−3

The performances of the various decoding algorithms for spatial-temporally correlated sources

are compared in Fig. 5.2. The data from source 1 follows a Markov process with transition proba-

bilities a00= 0.8 anda11= 0.7. The correlation coefficient between sources 1 and 2 isρ = 0.8. As

expected, the MCMP-HMM algorithm has the best performance because it exploits both the spa-

tial and temporal data correlations, compared by MCMP and the conventional MP algorithm. At

BER=10−3, the MCMP algorithm is about 0.2 dB better than the conventional MP algorithm due

to the extra information exchange during the decoding process, and the MCMP-HMM algorithm

is about 0.4 dB superior than the DJSCC with the MP algorithm.

Fig. 5.3 demonstrates the performance of the proposed MCMP-HMM decoding algorithm

under various spatial and temporal correlations. For comparison, the simulations are performed

by considering different HMM parameters as follows: a)a00 = a11 = 0.5, b) a00 = a11 = 0.7, c)

a00 = a11 = 0.8. The proposed DJSCC with the MCMP-HMM decoding can effectively exploit
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Figure 5.2: Comparison of different iterative decoding algorithms.

the correlation in both the space and time domains, thus increasing the spatial and/or temporal

correlation yields better performance. As can be seen from the figure, whenρ = 0.9 and BER =

10−3, increasinga00 anda11 from 0.5 to 0.8 leads to a 0.38 dB performance gain.

5.6 Conclusion

In this chapter, we propose a new DJSCC coding scheme for sources with spatially and tempo-

rally correlated data. The DJSCC encoding is performed by puncturing the information bits in

the encoder and allocating unequal energy for the information and parity bits in the transmission.

Two decoding algorithms are proposed. The first algorithm, the MCMP algorithm, is designed for

spatially correlated memoryless sources. The second algorithm, the MCMP-HMM algorithm, can

effectively exploit the data correlation in both the space and time domains. The MCMP algorithm
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Figure 5.3: The performance of MCMP-HMM for HMM sources under various values ofρ .

performs iterative joint decoding over two correlated sources simultaneously, such that the soft in-

formation between the two codewords are exchanged at each iteration to obtain extra performance

gains over conventional MP algorithm, where the soft information is only exchanged inside of one

codeword. The MCMP-HMM algorithm exchanges soft information between the MCMP decoder

an a HMM decoder, which exploit the temporal data correlation. Simulation results demonstrate

that the proposed new DJSCC coding schemes achieve considerable performance gains over con-

ventional systems.
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5.7 Appendix of documentation of multi-authored chapter

122



5.8 References

[1] D. Slepian and J. K. Wolf, ”Noiseless coding of correlated information sources,”IEEE Trans.

Information theory, vol. 19, no. 4, pp. 471-480, Jul., 1973.

[2] S. Pradhan and K. Ramchandran, “Distributed source coding using syndromes (DISCUS):

Design and construction,”IEEE Trans. Info. Theory, pp. 626-643, Mar., 2003.

[3] A. D. Liveris, Z. Xiong, and C. N. Georghiades, ”Compression of binary sources with side

information at the decoder using LDPC codes,”IEEE Communications Letters, vol. 6, no. 10,

pp. 440-442, Oct., 2002.

[4] I. Shahid and P. Yahampath, ”Distributed joint source-channel coding of correlated binary

sources in wireless sensor networks,” inProc. IEEE Intern. Symposium on Wireless Commun.

Systems, pp. 236-240, 2011.

[5] N. Gehrig and P. L. Dragotti, ”Symmetric and a-symmetricSlepian-Wolf codes with systematic

and non-systematic linear codes,”IEEE Communications Letters, Vol. 9, pp.61 - 63, Jan., 2005.

[6] X. Zhu, L. Zhang, and Y. Liu, ”A distributed joint source-channel coding scheme for multiple

correlated sources,” inProc. IEEE Commun. and Networking in China, pp. 26-28, Aug., 2009

[7] Ning Sun, Jingxian Wu, and Hai Lin, ”Distributed joint source and channel code with corre-

lated information sources,” inProc. IEEE Intern. Conf. Commun. China ICCC’12, Aug., 2012

[8] J. Garcia-Frias and J. D. Villasenor, ”Joint Turbo decoding and estimation of hidden Markov

sources,”IEEE J. Sel. Areas Commun., vol. 19, no. 9, pp. 1671-1679, Oct., 2001.

[9] L. Yin,J. Lu, and Y. Wu, ”Combined hidden Markov source estimation and low-density parity-

check coding: a novel joint source-channel coding scheme for multimedia communication,”

Wirel. Commun. Mob. Comput., pp. 643-650, July, 2002.

[10] S. Majumder and S. Verma, ”Joint source-channel decoding of IRA code for hidden Markov

source,” inProc. IEEE Conf. on Recent Advances in Information Technology, pp. 220-223, Mar.,

2012.

[11] M. Fresia and H. V. Poor, ”Distributed source coding using Raptor codes for hidden Markov

sources,”IEEE Trans. Sig. Processing, vol. 57, no. 7, pp. 2868-2875, July, 2009.

123



[12] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, ”Factor graphs and the sum-product algo-

rithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498C519, Feb., 2001.

[13] J. L. Smith, ”Approximate stationary probability vectors of a finite Markov chain,”SIAM

Journal on Applied Mathematics, Vol. 20, No. 4, pp. 612-618, Jun., 1971.

[14] Mark Stamp, ”A revealing introduction to hidden Markovmodels,” pp. 1-20, April, 2012.

124



Chapter 6

Maximizing Spectral Efficiency for High Mobility Systems with Imperfect Channel State

Information

Ning Sun and Jingxian Wu

6.1 Abstract

This chapter studies the optimum system design that can maximize the spectral efficiency of high

mobility wireless communication systems with imperfect channel state information (CSI). High

mobility of the wireless terminals results in fast time-varying fading, which can be tracked at the

receiver by employing pilot-assisted channel estimation.The percentage of pilot symbols in the

transmitted symbols plays a critical role on the system performance: a higher pilot percentage

yields a more accurate channel estimation, but also more overhead. The effects of pilot percentage

are quantified through the derivation of the channel estimation mean square error (MSE), which is

expressed as a closed-form expression of various system parameters through asymptotic analysis.

It is discovered that the channel interpolation at non-pilot locations can yield the same asymptotic

MSE as the channel estimation at pilot locations if the pilots sample the channel above its Nyquist

rate. Based on the statistical properties of the channel estimation error, we quantify the impacts of

imperfect CSI on system performance by developing the analytical symbol error rate (SER) and

a spectral efficiency lower bound of the communication system. The optimum pilot percentage

that can maximize the spectral efficiency lower bound is identified through both analytical and

simulation results.

125



6.2 Introduction

High mobility wireless communications have received increasing attentions recently with the grow-

ing demands for applications such as high speed railways andaircraft communications. One of the

main challenges faced by high mobility communications is the fast time-varying fading caused by

the Doppler shift, which could be as high as 1,000 Hz for a 2.4 GHz system operating at a speed

of 450 km/hr. In a high mobility system, the accurate estimation and tracking of the fast time-

varying fading are critical to reliable system operations.Channel estimation can be performed

either through the direct estimation of the fading coefficients [1]-[7], or through basis expansion

models (BEMs) that transform the fading coefficients to low-dimensional transform domains [8, 9].

Many channel estimation related works focus on the design ofoptimum pilot patterns that

can minimize the channel estimation mean square error (MSE)[1]-[3], [9]. In [1], the optimum

pilot design for an orthogonal frequency division multiplexing (OFDM) system employing the

minimum mean square error (MMSE) channel estimation is discussed, and it is shown that the MSE

can be minimized by using identical equally-spaced frequency domain pilot clusters. The MMSE

estimator requires the priori knowledge of channel statistics, yet such information is not needed

by a least squares (LS) channel estimator. In [2], the optimum pilot pattern for the LS estimation

of quasi-static channel in OFDM systems is obtained throughnumerical convex optimizations.

The LS estimation of doubly selective channels are discussed in [3] for a multiple-input multiple-

output (MIMO) OFDM system, where the pilot matrix is designed as a unitary matrix to avoid

matrix inversions during the LS channel estimation. A windowed LS (WLS) channel estimation

with a BEM channel model is proposed in [9], and it is shown that the estimation accuracy of

WLS can approach that of MMSE-based estimators. All above methods are designed by using
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the MSE as a metric under the constraint of fixed pilot power and/or pilot numbers. They do

not consider how the pilot patterns or imperfect channel state information (CSI) will impact the

overall communication performance, such as the bit error rate (BER), spectral efficiency, or energy

efficiency.

In high mobility systems, channel estimation errors are non-negligible and they might have

significant impacts on the system performance and designs [4]-[6]. In [4], it is discovered that sys-

tems employing LS or MMSE channel estimations can achieve the same symbol error rate (SER)

performance if the optimum receivers are designed by considering the statistics of the channel es-

timation errors. In [5], the impacts of channel estimation error on the BER of an ultra-wide band

(UWB) system are studied. Both [4] and [5] use system error probability as the design metric. An

information theoretic metric, a sum-rate lower bound of a two-way relay network, is used in [6] to

evaluate the system performance in the presence of imperfect CSI. The sum-rate lower bound is nu-

merically maximized by considering parameters such as training vector structures and the number

of training symbols. A quasi-static block fading model is assumed in [4]-[6], thus the results are

not applicable to high mobility systems. In [7], the tracking of a time-varying channel is achieved

by using polynomial interpolations, and the results are used to quantify the BER of a two-way

relay system with analog network coding. It is demonstratedthat polynomial interpolations might

not be sufficient to track the channel variation in high mobility systems.

In this chapter, the optimum pilot design that maximizes thespectral efficiency of high mo-

bility wireless communication systems is studied. The fasttime-varying fading coefficients are

estimated and tracked through the MMSE estimation and interpolation. The MSE of both channel

estimation at pilot locations and channel interpolation atnon-pilot locations are studied through

asymptotic analysis, and the results are expressed as closed-form expressions of parameters such
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as the Doppler spread, the signal-to-noise ratio (SNR) at pilot locations, and the percentage of

pilot symbols in the transmitted symbols. It is discovered that, if the pilots sample the channel at

or above the Nyquist rate of the time-varying fading, then the MMSE interpolation at non-pilot

locations yields the same asymptotic MSE as channel estimation at pilot locations. The statistical

properties of the estimated channel coefficients are studied, and the results are used develop an

analytical SER and a spectral efficiency lower bound for systems operating with imperfect CSI. A

higher pilot percentage yields a better SER. However, a lower SER does not necessarily mean a

better overall performance, considering the fact that the excessive use of pilot symbols means more

overhead. Such a tradeoff relationship is revealed in the system spectral efficiency. The optimum

pilot percentage that can maximize the spectral efficiency lower bound is analytically identified.

The impacts of imperfect CSI on system performance are studied through both analytical and sim-

ulation results.

The remainder of this chapter is organized as follows. The system model and the MMSE chan-

nel estimation are presented in Section 6.3. Section 6.4 studies the analytical asymptotic MSE for

both channel estimation at pilot locations and channel interpolation at non-pilot locations. The

impacts of the imperfect CSI on the SER are analyzed in Section 6.5 by analyzing the statistical

properties of the estimated channel coefficients. In Section 6.6, a spectral efficiency lower bound is

developed for systems with imperfect CSI, and the optimum pilot density that maximizes the spec-

tral efficiency is identified. Numerical results are given inSection 6.7, and Section 6.8 concludes

the chapter.
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6.3 Problem Formulation

6.3.1 System Model

Consider a system that employs pilot-assisted channel estimation and experiences fast time-varying

fading. At the transmitter, the data to be transmitted are divided into slots, and each slot hasNs

modulated data symbols andNp ≤ Ns pilot symbols. The values ofNs andNp can be chosen such

thatK = Ns
Np

is an integer. The pilot symbols are equally spaced such thateach pair of adjacent pilot

symbols are separated byK data symbols. Denote the symbol vector asx = [x1, · · · ,xN]
T ∈S N×1,

whereN = Ns+Np is the total number of symbols per slot,S is the modulation alphabet set, and

AT represents the matrix transpose. Denote thek-th pilot symbol asxik = pk, whereik = kK is the

index of thek-th pilot symbol, fork= 1, · · · ,Np. The average energy of the symbols is normalized

to 1,E(|xn|2) = 1, whereE is the mathematical expectation operator. Define the percentage of the

pilot symbols asδ =
Np
N = 1

K+1.

The data and pilot symbols are transmitted over the fast time-varying fading channel with

additive white Gaussian noise (AWGN). The signals observedat the receiver is

y =
√

E0 ·X ·h+z, (6.1)

wherey= [y1, · · · ,yN]
T ∈C N×1 is the received signal,z= [z1, · · · ,zN]

T ∈C N×1 is the AWGN with

covariance matrixRz= σ2
z IN, IN is a size-N identity matrix,E0 is the average transmission energy

of a symbol,h = [h1, · · · ,hN]
T ∈ C N×1 is the channel fading coefficient vector, andX = diag(x)

is a size-N diagonal matrix with the transmitted signal vectorx on its diagonal. The time-varying

fading coefficients are correlated with cross-correlationbeing

ρ(m−n) = E[hmh∗n] = J0(2π fD|m−n|Ts), (6.2)
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where fD is the maximum Doppler spread of the fading channel,Ts is the symbol period, andJ0(x)

is the zero-order Bessel function of the first kind.

It is assumed that the energy per symbolE0 is fixed for both data and pilot symbols. Therefore,

the average transmission power isP0 =
E0
Ts

.

6.3.2 MMSE Channel Estimation

Before detection, the receiver first performs the channel estimation to obtain an estimate of the

fading channel,h, over the entire slot based on distorted observations of pilot symbols,yp =

[yi1,yi2, · · · ,yiNp
]T ∈ C Np×1. The channel estimation is performed to minimize the mean square er-

ror (MSE) between the estimated and the actual channels. TheMSE of then-th channel coefficient

is

σ2
n = E

[

|ĥn−hn|2
]

, for n= 1, · · · ,N (6.3)

whereĥn is then-th estimated channel fading coefficient.

The optimum linear MMSE estimator ofĥn is

ĥn =
√

E0rH
n PH (E0PRhhP

H +σ2
z INp

)−1
yp, (6.4)

wherern =E [hph∗n]∈C Np×1, with hp = [h(i1), · · · ,h(iNp)]
T ∈C Np×1 being the fading coefficients

at pilot locations,Rhh=E
[

hphH
p

]

∈ C Np×Np with its elements defined in (6.2),AH denotes the

matrix Hermitian operation, and the diagonal matrixP= diag{[p1, · · · , pNp]} ∈ S Np×Np contains

the transmitted pilot symbols. The channel auto-correlation matrixRhh is a Toeplitz matrix with

the (m,n)-th element beingJ0
(

2π fD|m−n|Ts
δ
)

as defined in (6.2), whereδ is the percentage of

pilot symbols.
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With the optimum MMSE estimator given in (6.4), the MSEσ2
n can then be calculated as

σ2
n = 1− rH

n

(

Rhh+
1
γ0

INp

)−1

rn, (6.5)

whereγ0 =
E0
σ2

z
is the signal-to-noise ratio (SNR) without fading, and the assumption|pn|2 = 1 is

used in the above equation. This assumption can be easily metby choosing only constant amplitude

symbols, such as phase shift keying symbols, as the pilot symbols. It should be noted that the data

symbols do not need to be constant amplitude.

The MSEσ2
n given in (6.5) is a function of the symbol indexn, the SNRγ0, the data rateRs,

the maximum Doppler frequencyfD, and the pilot percentageδ . Intuitively, given a fixed trans-

mission power, the pilot percentage,δ , plays a critical role on the MSEσ2
n and the overall system

performance. A smaller pilot percentage means less overhead, thus a higher spectral efficiency.

On the other hand, a smaller pilot percentage might not be sufficient to track the fast time-varying

fading, and this will degrade the channel estimation accuracy. In the next section, we will study

the impact of pilot percentage on the channel estimation MSE.

6.4 Impacts of Pilot Percentage on Channel Estimation

In this section, the impacts of pilot percentage on the channel estimation MSE are analytically

studied through asymptotic analysis. The channel estimation is performed in two steps: the receiver

first obtains an estimate of the channel coefficients at pilotlocations, then the channel coefficients

at non-pilot locations are obtained by performing MMSE interpolations over the estimated CSI at

pilot locations. It has been shown in [10] that such a two-step MMSE estimation yields the same

performance as (6.4).
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6.4.1 MMSE Channel Estimation at Pilot Locations

The receiver first obtains an estimate of the channel fading at the pilot locationshp by minimizing

the average MSE,σ2
p,Np

= 1
Np
E(‖ĥp−hp‖2), as

ĥp = WH
p yp, (6.6)

whereĥp= [ĥi1, · · · , ĥiNp
]T ∈C Np×1 is an estimate ofhp, andWp=

√
E0
(

E0PRhhPH +σ2
z INp

)−1PRhh

is the MMSE estimation matrix.

The error correlation matrix,Ree= E
[

epeT
p

]

, with ep = ĥp−hp, can be calculated as

Ree=Rhh−Rhh

(

Rhh+
1
γ0

INp

)−1

Rhh (6.7)

where the orthogonal principal,E
[

(ĥp−hp)yH
p

]

= 0, is used in the above equality.

The average MSE can then be calculated as

σ2
p,Np

=
1

Np
trace(Ree). (6.8)

From (6.7) and (6.8), the calculation of the MSE involves matrix inversion and the trace operation.

In order to explicit identify the impacts of pilot percentage on the MSE, we resort to the asymptotic

analysis by lettingNp → ∞ andNs → ∞ while keeping a finite pilot percentageδ and data rate

Rs=
1
Ts

. The results are presented as follows.

Proposition 6.1: WhenNp → ∞ while keeping a finiteδ andRs, the asymptotic MSE,σ2
p =

limNp→∞ σ2
p,Np

, of the estimated channel coefficient at the pilot locationsis

σ2
p = 1−

8γ0arctan

(√

2γ0−α
δ

2γ0+
α
δ

)

π
√

(2γ0)2− (α
δ )

2
, for δ ≥ α

π
, (6.9)

whereα = 2π fDTs, γ0 is the SNR without fading, andδ is the pilot percentage.

132



Proof: The proof is in Appendix 6.9.1.

Intuitively, the asymptotic MSE should be a decreasing function in the pilot percentageδ ,

because a largerδ means a higher sampling rate of the time-varying channel. This intuition is

corroborated by the following corollary.

Corollary 6.1: The asymptotic MSE given in (6.9) is a monotonic decreasingfunction in the

pilot percentageδ and an increasing function in the maximum Doppler spreadfD, for δ ≥ α
π .

Proof: The proof is in Appendix 6.9.2.

6.4.2 MMSE Channel Interpolation

Once the estimates of the channel information at the pilot locations are obtained, they can be

interpolated to obtain the channel estimations of the entire slot.

Consider the estimation of the fading coefficients with symbol indices{i′k = (k−1)+u}Np
k=1,

whereu= 2, · · · ,K −1 correspond to the indices of the non-pilot data symbols. Define the fading

vector to be estimated through interpolation ashd = [h(i′1), · · · ,h(i′Np
)]T∈ C Np×1.

Following the orthogonal principal,E
[

(ĥd−hd)ĥT
p

]

= 0, whereĥd is an estimate ofhd, the

MMSE spatial interpolation can be expressed by

ĥd = RdĥR−1
ĥĥ

ĥp, (6.10)

where

Rdĥ , E(hdĥH
p ) =

√

E0RdhP
HWp, (6.11a)

Rĥĥ , E(ĥpĥH
p )=WH

p (E0PRhhP
H+σ2

z INp)Wp. (6.11b)
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The cross-correlation matrix,Rdh= E(hdĥH
p ) ∈ RNp×Np, is a Toeplitz matrix with its first row be-

ing [ρ(−K+u),ρ(−2K+u), · · · ,ρ(−NpK+u)] and the first column[ρ(−K+u),ρ(u), · · · ,ρ((Np−

2)K+u)]T .

Combining (6.6), (6.10) and (6.11) yields

ĥd =
√

E0RdhP
H (E0PRhhP

H +σ2
z INp

)−1
yp. (6.12)

The corresponding error correlation matrix,ee, E
[

(ĥd−hd)(ĥd−hd)
T
]

, can then be calcu-

lated by

ee= Rhh−Rdh

(

Rhh+
1
γ0

INp

)−1

Rhd, (6.13)

whereRdd = E(hdhH
d ) = Rhh is used in the above equation, andRhd = RH

dh. The average MSE for

spatial interpolation isσ2
e,Np

= 1
Np

trace( ee). The asymptotic average MSE for channel estimation

through temporal interpolation is given in the following proposition.

Proposition 6.2: WhenNp → ∞ while keeping a finiteδ , if δ ≥ α
π , then channel estimations

through temporal interpolation yields the same asymptoticMSE as channel estimations at pilot

locations, i.e.,σ2
e = limNp→∞ σ2

e,Np
= σ2

p, with σ2
p defined in (6.9).

Proof: The proof is in Appendix 6.9.3.

The results in Proposition 6.2 state that the temporal interpolation will not degrade the channel

estimation performance, as long as the channel coefficientsare sampled by the pilots at a rate no

less than the Nyquist rate,1Tp
≥ 2 fD, or equivalentlyδ ≥ α

π . The temporal interpolation introduces

a time shift in the correlation betweenhd andhp. A shift in the time domain corresponds to a phase

shift in the frequency domain. The asymptotic MSE is only related to the squared amplitude of the

frequency domain representation of the channel correlation. If there is no spectrum aliasing, then

the phase shift does not have any impact on the asymptotic MSE.
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6.5 Impacts of Pilot Percentage on Symbol Error Probability

In this section, the statistical properties of the estimated channel are studied, and the results are

used to derive the SER in the presence of imperfect CSI.

6.5.1 Statistical Properties of the Estimated Channel

To build an explicit relationship between the channel estimation MSE and the SER, we first study

the statistical properties of the estimated channel in thissubsection. To simplify notation, the data

symbol index is dropped in the subsequent analysis.

Proposition 6.3: For a system operating in a Rayleigh fading channel, the estimated channel

coefficient,ĥ, is a complex Gaussian random variable (CGRV) with zero meanand varianceσ2
ĥ
=

1−σ2
e , i.e., ĥ∼ N (0,1−σ2

e), whereσ2
e is the channel estimation MSE.

Proof: The proof is in Appendix 6.9.4.

Corollary 6.2: Consider a system operating in a Rayleigh fading channel. Conditioned on the

estimated channel coefficientĥ, the true channel coefficienth is Gaussian distributed with meanĥ

and varianceσ2
e , i.e.,h|ĥ∼ N (ĥ,σ2

e).

Proof: The proof is in Appendix 6.9.5.

The receiver performs detection based on the knowledge of the received sampley and the

estimated channel coefficientĥ. We have the following corollary regarding the likelihood function,

p(y|ĥ,x), in the presence of imperfect CSI.

Corollary 6.3: Consider a system operating in a Rayleigh fading channel. If the channel co-

efficient is obtained through MMSE channel estimation, thenthe likelihood function,p(y|ĥ,x), is
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a Gaussian probability density function (pdf), with the conditional mean,uy|x,ĥ, and conditional

variance,σ2
y|x,ĥ, given by

uy|x,ĥ =
√

E0ĥx, (6.14)

σ2
y|x,ĥ = E0σ2

e |x|2+σ2
z . (6.15)

whereσ2
e is the channel estimation MSE.

Proof: The proof is in Appendix 6.9.6.

6.5.2 SER in the Presence of Imperfect CSI

The SER performance of systems with imperfect CSI is studiedin this subsection by utilizing the

statistical properties of the channel estimation error.

For systems with equiprobable transmitted symbols and imperfect CSI, the SER can be min-

imized by maximizing the likelihood function,p(y|ĥ,x), which is a Gaussian pdf with the con-

ditional mean and variance given in Corollary 6.3. From Corollary 6.3, the maximum likelihood

decision rule for system withM-ary phase shift keying (MPSK) can be expressed as

x̂= argmin
x∈S







|y−uy|x,ĥ|2

σ2
y|x,ĥ







= argmin
x∈S

{

|µ −x|2
}

(6.16)

whereS is the MPSK modulation alphabet set, andµ = 1√
E0

ĥ∗y is the decision variable for MMSE

channel estimation, witha∗ being the complex conjugate operator.

From eqn. (6.16), the SER can be calculated by finding the probability that the decision variable

µ is outside the decision region of the transmitted symbol, thus the SER depends on the statistical

properties ofµ. Given ĥ and the transmitted symbolx, the decision variableµ is also Gaussian
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distributed with the conditional mean and variance given by

uµ|x,ĥ = |ĥ|2x, (6.17a)

σ2
µ|x,ĥ = |ĥ|2(σ2

e +
1
γ0
). (6.17b)

Note that the identity|x|2 = 1 is used in the above derivation for the MPSK modulated system.

With the statistical properties of the decision variable given in (6.17), the SER of MPSK mod-

ulated systems with the imperfect CSI is given in the following proposition.

Proposition 6.4: For an MPSK modulated system operating in fast time-varying Raleigh fading

channels, if the channel is estimated with an MMSE estimator, then the SER is

P(E) =
1
π

∫ π− π
M

0

[

1+ζ · sin2( π
M )

sin2(φ)

]−1

dφ , (6.18)

whereζ =
1−σ2

e

σ2
e+

1
γ0

, andσ2
e is the asymptotic MSE of the channel estimation given in Proposition 2.

Proof: The proof is in Appendix 6.9.9.

In Proposition 6.4, the SER is expressed as a function of the channel estimation MSEσ2
e , and

the SNRγ0. Since the asymptotic MSEσ2
e is a function ofδ and fD, the SER can be expressed as

an explicit function inδ , fD, andγ0.

Corollary 6.4: The SER given in (6.18) is a monotonically decreasing function in the pilot

percentageδ and an increasing function in the maximum Doppler spreadfD , for δ ≥ α
π .

Proof: It is easy to show thatP(E) in (6.18) is an increasing function inσ2
e . The relationship

betweenP(E) andδ or fD can then be obtained by using the results of corollary 6.1.

Based on the results in corollary 6.4, a higher pilot percentage yields a better SER performance.

However, more pilots means more overhead, and this might negatively affect the system spectral
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efficiency. This tradeoff relationship is studied through spectral efficiency analysis in the next

section.

6.6 Maximizing Spectral Efficiency with Imperfect Channel Information

In this section, we study the optimum pilot design by maximizing a lower bound of the spectral

efficiency in the presence of imperfect CSI. A higher pilot percentage yields a better channel es-

timation, thus less detection errors at the receiver. On theother hand, increasing pilot percentage

will decrease the number of data bits transmitted per unit time per unit bandwidth.

Considering the presence of both pilot symbols and channel estimation error, we can calculate

the effective system spectral efficiency as

η = Eĥ

[

Ns

N
C(ĥ)

]

= (1−δ )Eĥ

[

C(ĥ)
]

, (6.19)

where the expectation is performed with respect toĥ, C(ĥ) = maxp(x) I(y;x|ĥd) is the maximum

mutual information betweeny andx given the knowledge of the estimated channel coefficientĥ,

with p(x) being the pdf of the inputx. C(ĥ) can be considered as the channel capacity in the

presence of imperfect CSI, and it quantifies the impact of channel estimation error on the channel

capacity.

It is difficult to obtain the exact expression of the conditional channel capacityC(ĥ). A lower

bound onC(ĥ) is given as follows.

Lemma 6.1: For a system operating in a Rayleigh fading channel with pilot-assisted MMSE

channel estimation, the channel capacity conditioned on the estimated channel coefficient is lower
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bounded by

Clow(ĥ) = log

(

1+ |ĥ|2 1

σ2
e +

1
γ0

)

(6.20)

Proof: The proof is in Appendix 6.9.8.

Based on the results in Lemma 6.1, a lower bound on the effective spectral efficiency is given

by the following proposition.

Proposition 6.5: For a system that employs MMSE channel estimation and experiences Rayleigh

fading, the average spectral efficiency is lower bounded by

ηlow = (1−δ )exp

(

σ2
e +

1
γ0

1−σ2
e

)

Γ

(

0,
σ2

e +
1
γ0

1−σ2
e

)

, (6.21)

whereΓ(s,x) =
∫ ∞

x ts−1e−tdt is the incomplete Gamma function.

Proof: The proof is in Appendix 6.9.9.

From Corollary 6.1,σ2
e is a decreasing function inδ and an increasing function infD . It

is straightforward to show thatξ (δ ) = 1−σ2
e

σ2
e+

1
γ0

is an increasing function inδ . The spectral effi-

ciency lower bound in (6.45) can thus be decomposed into two components,g1(δ ) = (1−δ ) and

g2(δ ) =
∫ ∞

0 exp(−v) log

(

1+v 1−σ2
e

σ2
e+

1
γ0

)

dv. The linear functiong1(δ ) is strictly decreasing inδ ,

and it contributes to the spectral efficiency loss due to a higher pilot percentage. On the other hand,

g2(δ ) is an increasing function inδ , and it contributes to the spectral efficiency gain due to a more

accurate channel estimation at a higherδ . Therefore,g1(δ ) andg2(δ ) reveal the two opposite

effects of the pilot percentageδ on the spectral efficiency.

The spectral efficiency lower bound is shown as a function ofδ in Fig. 6.1 under various values

of the normalized Doppler spreadfDTs, whereTs is the symbol period. For a system with symbol

rate 1 Msym/s and operating at 1.9 GHz, the range of the Doppler spread considered in the figure
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is between 100 Hz (fDTs = 10−3) to 1 KHz (fDTs = 10−2), which correspond to a mobile speed

in the range between 56.8 km/hr and 568.4 km/hr. It can be seenthatηlow is a concave function

of δ due to the tradeoff relationship betweeng1(δ ) andg2(δ ). Whenδ is small,e.g., δ < 0.095

for fDTs = 0.01, ηlow increases inδ . This indicates that, whenδ is small enough, the impacts

of channel estimation error dominates the effective spectral efficiency. On the other hand, when

δ becomes large enough,e.g., δ > 0.095 for fDTs = 0.01, increasingδ further will degrade the

spectral efficiency because of the excessive overhead caused by the high percentage of the pilot

symbols. The optimum pilot percentage that maximize the spectral efficiency lower bound can be

obtained by solving the equation∂ηlow
∂δ = 0, which can be expressed as

exp

(

σ2
e +

1
γ0

1−σ2
e

)

Γ

(

0,
σ2

e +
1
γ0

1−σ2
e

)[

(1−δ )
1+ 1

γ0

(1−σ2
e)

2(σ
2
e)

′−1

]

−(1−δ )
1+ 1

γ0

σ2
e +

1
γ0

1
1−σ2

e
(σ2

e)
′, (6.22)

where(σ2
e)

′ is the first derivative ofσ2
e given in eqn. (6.30). The above equation inδ can be solved

numerically by using standard software packages, such as fsolve in Matlab.

6.7 Numerical Results

Numerical and simulation results are provided in this section to verify the results obtained in this

chapter, and to demonstrate the impacts of imperfect CSI on the system performance.

Fig. 6.2 shows the asymptotic MSE in Proposition 6.2 as a function of pilot percentage, under

various values of the normalized Doppler spreadfDTs. The SNR isγ0 = 10 dB. The MSE obtained

from simulations is also shown in the figure. In the simulations, a frame length ofN= 3,000 is used

to approximate the infinite frame length. Both the MSE for channel estimation at pilot positions and

the MSE for channel interpolation at non-pilot locations with temporal interpolation are shown in
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Figure 6.1: The spectral efficiency as a function of the pilotpercentage.

the figure, and they are the same as predicted by Proposition 6.2. Excellent agreement is observed

between the analytical MSE obtained with infinite frame length and the simulation results with

finite frame length. As expected, the MSE is a decreasing function in δ , and an increasing function

in fDTs.

The analytical and simulated SER of the data symbols are shown in Fig. 6.3 under various

values of the normalized Doppler spreadfDTs. The SNR isγ0 = 10 dB, and the modulation is

BPSK. The analytical results can accurately predict the actual SER in the presence of imperfect

CSI. Similar to the MSE, the SER is a decreasing function inδ and an increasing function in

fDTs. In addition, it is also observed from the Fig. 6.3 that, whenδ is small, the SER decreases

dramatically asδ increases. Whenδ reaches a certain threshold, increasingδ further only yields

very small performance gains, i.e., the slope of the SER-δ curve approaches zero asδ increases.

Therefore, the desired pilot percentage can be chosen as thepoint such that
∣

∣

∣

∂P(E)
∂δ

∣

∣

∣
= ε, with ε
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Figure 6.2: The asymptotic MSE as a function of the pilot percentage.

being a small number. The slope of the SER-δ curve can be calculated as

∂P(E)
∂δ

=
1
π

∫ π− π
M

0











(1+ 1
γ0
)(σ2

e)
′ sin2( π

M )

sin2(φ)
[

σ2
e +

1
γ0
+(1−σ2

e)
sin2( π

M )

sin2(φ)

]2











dφ (6.23)

where(σ2
e)

′ is the first derivative ofσ2
e with respect toδ , and it is given in eqn. (6.30).

In Fig. 6.4, the desired pilot percentage is solved by choosingε = 10−5 and shown as functions

of the the normalized Doppler spreadfDTs under different SNRs. The desired pilot percentage

increases asfDTs increases. This is intuitive because a channel that changesfaster needs a higher

percentage of pilots.

Fig. 6.5 shows the spectral efficiency maximizing pilot percentage as a function of the normal-

ized Doppler spreadfDTs, under various values of SNR. The optimum pilot percentage is calculated

by solving (6.22). The optimum pilot percentage is a monotonically increasing function infDTs,

because more pilots per unit time are required to compensatethe faster channel variation at higher
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Figure 6.3: The SER as a function of the pilot percentageδ .

Doppler spread. At SNR = 10 dB, increasingfDTs from 2×10−3 to 10−2 will double the optimum

pilot percentage from 4% to 8%. In addition, a lower pilot percentage is required for systems with

higher SNR due to the better channel estimation quality whenthe SNR is high.

6.8 Conclusions

The optimum system design for high mobility wireless communication systems with imperfect

CSI has been studied in this chapter. The asymptotic channelestimation MSE has been quantified

as a closed-form expression of the percentage of pilots usedfor MMSE channel estimation. By

analyzing the statistical properties of the estimated channel coefficients, we derive the explicit SER

and a spectral efficiency lower bound of a communication system operating with imperfect CSI.

It has been shown through theoretical study that, if the pilot samples the channel at a rate no less

than the Nyquist rate of the time-varying channel, MMSE channel estimation at pilot locations or
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Figure 6.4: The desired pilot percentage obtained by solving (6.23) withε = 10−5.

MMSE channel interpolation at non-pilot locations yield the same MSE. In addition, the SER is

a monotonic decreasing function in pilot density, yet the spectral efficiency is concave in the pilot

density.

6.9 Appendix of Proofs

6.9.1 Proof of Proposition 6.1

Performing eigenvalue decomposition ofRhh in (6.7), we can rewrite the MSE as

σ2
p,Np

=
1

Np

Np

∑
n=1

[

λn−
(

λn+
1
γ0

)−1

λ 2
n

]

=
1

Np

Np

∑
n=1

(

λn

λnγ0+1

)

, (6.24)
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Figure 6.5: The optimum pilot percentage as a function of thenormalized Doppler spread.

whereλn is then-th eigenvalue ofRhh. Based on Szego’s Theorem [12], whenNp → ∞, (6.24) can

be rewritten as

σ2
p = lim

Np→∞
σ2

p,Np
=

1
2π

∫ π

−π

[

Λ(Ω)

Λ(Ω)γ0+1

]

dΩ, (6.25)

whereΛ(Ω)=∑∞
k=−∞ J0(2π fD|k|Tp)e− jkΩ is the discrete-time Fourier transform (DTFT) of{J0

(

2π fD|k|Ts
δ
)

}k,

with Tp =
Ts
δ being the space between two pilot symbols.

The Fourier transform (FT) of the continuous-time functionJ0(2π fDt) is [14]

Λc(ω) =
2rect( ω

4π fD
)

√

(2π fD)
2−ω2

, (6.26)

whereω = Ω
Tp

is the analog angular frequency with unit radians per second. Based on the sampling

theorem and (6.26), the DTFTΛ(Ω) can be written as

Λ(Ω)=
1
Tp

∞

∑
n=−∞

Λ
(

ω −n
2π
Tp

)

=
∞

∑
n=−∞

2rect(Ω−2πn
2β )

√

β 2− (Ω−2πn)2
, (6.27)

whereβ = 2π fDTp.
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Based on the sampling theorem, whenδ ≥ 2 fDTs, there is no spectrum aliasing in (6.27), thus

the MSE in (6.25) can be simplified to

σ2
p =

1
2π

∫ β

−β

[

2

2γ0+
√

β 2−Ω2

]

dΩ (6.28)

It should be noted thatβ ≤ π whenδ ≥ 2 fDTs.

By changing the integration variableΩ = β sin(x), we can solve the above integral with the

following integration

∫ π
2

− π
2

[a+bcos(x)]−1dx=
4arctan

(
√

a−b
a+b

)

√
a2−b2

, (6.29)

where the equation is derived by combining [11, eqn. (2.553.3)] with the identity arctan( jx) =

jarctanh(x) for x∈ R and j2 =−1. The results in (6.9) can then be obtained by applying (6.29) to

(6.28).

6.9.2 Proof of Corollary 6.1

We will consider two cases:δ ≥ α
2γ0

, and α
π ≤ δ < α

2γ0
with γ0 < π

2 . Whenδ > α
2γ0

, the first

derivative ofσ2
p with respect toδ can be written as

∂σ2
p

∂δ
=

−4γ0α
[

δ
√

(2γ0)2−(α
δ )

2−2α arctan

(√

2γ0−α
δ

2γ0+
α
δ

)]

πδ 3
[

(2γ0)2− (α
δ )

2
]3

2

. (6.30)

Decompose (6.30) into two parts asf1(δ )= −4γ0α

πδ 3[(2γ0)2−(α
δ )

2]
3
2

and f2(δ )=δ
√

(2γ0)2−(α
δ )

2−2α arctan

(√

2γ0−α
δ

2γ0+
α
δ

)

.

It is obvious f1(δ ) ≤ 0 with δ ≥ α
2γ0

. Since f ′2(δ )=
√

(2γ0)2−(α
δ )

2 ≥ 0, f2(δ ) is an increasing

function. As a resultf2(δ )≥ f2(
α

2γ0
) = 0. Therefore,

∂σ2
p

∂δ = f1(δ ) f2(δ )≤ 0 whenδ ≥ α
2γ0

.

Whenα
π ≤ δ < α

2γ0
andγ0 <

π
2 , with the identity arctan( jx) = jarctanh(x), the asymptotic MSE
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in (6.9) can be alternatively expressed as

σ2
p = 1−

8γ0arctanh

(
√

α
δ −2γ0
α
δ +2γ0

)

π
√

(α
δ )

2− (2γ0)2

for
α
π
≤ δ ≤ α

2γ0
,γ0 <

π
2
. (6.31)

The first derivative ofσ2
p in (6.31) is

∂σ2
p

∂δ = f1(δ ) f3(δ ), wheref3(δ )=δ
√

(α
δ )

2− (2γ0)2−2αarctanh

(
√

α
δ −2γ0
α
δ +2γ0

)

.

We havef1(δ )> 0 whenα
π ≤ δ < α

2γ0
. Since f ′3(δ ) =

√

(2γ0)2− (α
δ )

2 > 0, f3(δ ) is an increasing

function inδ . Thus f3(δ )< f3(
α

2γ0
) = 0. Therefore,

∂σ2
p

∂δ = f1(δ ) f3(δ )< 0.

Similarly, we can show thatσ2
p is an increasing function inα, which is proportional tofD .

6.9.3 Proof of Proposition 6.2

The Toeplitz matrix,Rdh, is uniquely determined by the sequencetdh = [t−Np, · · · , t0, · · · , tNp−2]
T ,

wheretk = ρ(kK+u) = J0
(

2π fDTp|k+ u
K |
)

. WhenNp → ∞, the DTFT of the sequencetdh can be

calculated as

Λdh(Ω) = Λ(Ω)×exp
(

j
u
K

Ω
)

, (6.32)

whereΛ(Ω) is defined in (6.27).

Based on [12, Lemma 2],Rdh is asymptotically equivalent to a circulant matrix,Cdh=UH
NDdhUN,

whereUH
N is the unitary discrete Fourier transform (DFT) matrix withthe(m+1,n+1)-th element

being(UN)m+1,n+1 =
1√
N

exp
[

− j2π mn
N

]

, andDdh is a diagonal matrix with itsk-th diagonal ele-

ment being(Ddh)k,k = Λdh
(k−1

N

)

.

Similarly, the Toeplitz matrix,Rhh, is asymptotically equivalent to a circulant matrix,Chh =

UH
NDhhUN, whereDhh is a diagonal matrix with itsk-th diagonal element being(Dhh)kk= Λ

(

k−1
N

)

,

with Λ(Ω) defined in (6.27).
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Based on [13, Theorem 2.1], the error correlation matrix,ee, is asymptotically equivalent

to a circulant matrix,Cee = Chh−Cdh

(

Chh+
1
γ0

INp

)−1
CH

dh = UH
NDeeUN, whereDee = Dhh−

Ddh

(

Dhh+
1
γ0

INp

)−1
DH

dh. It is apparent thatDee is diagonal given thatDhh andDdh are diagonal.

Based on Szego’s Theorem, we have

σ2
e =

1
2π

∫ π

−π

[

Λ(Ω)− |Λdh(Ω)|2
Λ(Ω)+ 1

γ0

]

d f. (6.33)

Sinceδ ≥ α
π , there is no spectrum aliasing forΛ(Ω) andΛdh(Ω) when−π ≤ Ω ≤ π . As a

result,Λdh(Ω)|2 = |Λ(Ω)|2 when−π ≤ Ω ≤ π . Therefore (6.33) can be simplified to (6.25), and

this completes the proof.

6.9.4 Proof of Proposition 6.3

Sincehp andzp are zero mean Gaussian distributed, the received vector corresponding to the pilot

symbols,yp, is zero mean Gaussian distributed with auto-correlation matrix Ryy = E0PRhhPH +

σ2
z INP. From (6.12), the estimated channel vectorĥd is a linear transformation ofyp, thusĥd is

zero mean Gaussian distributed with auto-correlation matrix given by

Rd̂d̂ = Rdh

(

Rhh+
1
γ0

INp

)−1

RH
dh. (6.34)

Combining (6.13) with (6.34) yieldsRd̂d̂ = Rhh−Ψee. Therefore,σ2
ĥ
= 1

N trace(Rd̂d̂) = 1−σ2
e .

6.9.5 Proof of Corollary 6.2

Denote the estimation error vectored = ĥd −hd. Since bothĥd andhd are zero-mean Gaussian

distributed,ed is zero-mean Gaussian distributed. The cross-covariance matrix betweened and

ĥd is E(edĥH
d ) = 0 by following the orthogonal principal. Therefore,ed andĥd are uncorrelated.
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The conditional mean can then be calculated asuh|ĥ = E(hd|ĥd) = ĥd−E(ed|ĥd) = ĥd. The auto-

covariance matrix is,E[(hd−uh|ĥ)(hd−uh|ĥ)
H ] =E[(hd− ĥd)(hd− ĥd)

H ] =Ψee. The conditional

variance is thusσ2
h|ĥ =

1
N traceΨee= σ2

e .

6.9.6 Proof of Corollary 6.3

Sinceh conditioned onĥ is Gaussian distributed, it is straightforward thaty =
√

E0hx+ z con-

ditioned onĥ andx is Gaussian distributed. The conditional mean and variancecan be directly

calculated by using the result from Corollary (6.2).

6.9.7 Proof of Proposition 6.4

Given the estimated CSIĥ and the transmitted symbolx, the conditional SER equals to the proba-

bility that the decision variableµ is outside of the decision region ofx. Sinceµ conditioned on̂h

andx is Gaussian distributed, the conditional error probability can be written as [4] and [15]

P(E|ĥ) = 1
π

∫ π− π
M

0
exp







−
|uµ|x,ĥ|2sin2( π

M )

σ2
u|x,ĥsin2(φ)







dφ (6.35)

Substituting the values ofuµ|x,ĥ andσ2
u|x,ĥ from (6.17) into (6.35) yields

P(E|ĥ) = 1
π

∫ π− π
M

0
exp

[

− |ĥ|2sin2( π
M )

(σ2
e +

1
γ0
)sin2(φ)

]

dφ (6.36)

The unconditional error probabilityP(E) = E[P(E|ĥ)] can then be calculated by

P(E) =
1
π

∫ π− π
M

0

∫ +∞

0
exp

[

− θ sin2( π
M )

(σ2
e +

1
γ0
)sin2(φ)

]

p|ĥ|2(θ)dθdφ ,

wherep|ĥ|2(θ) is the pdf of|ĥ|2. From Proposition 6.3,̂h ∼ C N (0,1−σ2
e), thus|ĥ|2 is an ex-

ponentially distributed random variable with mean 1−σ2
e . Changing the integration variable with

v= α
1−σ2

e
and solving the integration ofv results in (6.18).
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6.9.8 Proof of Lemma 6.1

The conditional mutual information is defined as

I(y;x|ĥ) = Ex,y
[

logp(y|x, ĥ)
]

−Ex,y
[

logp(y|ĥ)
]

. (6.37)

From Corollary 6.3,p(y|x, ĥ) is a Gaussian pdf with the conditional mean and variance given

in (6.14). Then

Ex,y
[

logp(y|x, ĥ)
]

= Ex

[

log
1

π(E0σ2
e |x|2+σ2

z )e

]

. (6.38)

It can be easily shown that (6.38) is convex in|x|2. Based on Jensen’s inequality, we have

Ex

[

log
1

π(E0σ2
e |x|2+σ2

z )e

]

≥ log
1

π(E0σ2
e +σ2

z )e
, (6.39)

whereE(|x|2) = 1 is used in the above inequality.

Define

I low(y;x|ĥ) = log
1

π(E0σ2
e +σ2

z )e
+E

[

log
1

p(y|ĥd)

]

. (6.40)

Thus Ilow(y;x|ĥ)≤ I(y;x|ĥ).

The second term in (6.40) is the conditional differential entropy of y given ĥ. Conditioned on

ĥ, the conditional mean and variance ofy are given by

uy|ĥ = 0, (6.41a)

σ2
y|ĥ = E0(|ĥ|2+σ2

e)+σ2
z . (6.41b)

Given varianceσ2
y|ĥ, it is well known that the entropy ofy|ĥ is maximized ify|ĥ∼ N

(

0,σ2
y|ĥ

)

. In

this case,

maxE

[

log
1

p(y|ĥd)

]

= log(E0|ĥ|2+E0σ2
e +σ2

z ) (6.42)
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Thus, (6.40) can be maximized by

Clow(ĥ) = maxIlow(y;x|ĥ) = log

(

1+ |ĥ|2 1

σ2
e +

1
γ0

)

. (6.43)

Since Ilow(y;x|ĥ)≤ I(y;x|ĥ), we haveClow(ĥ)≤C(ĥ).

6.9.9 Proof of Proposition 6.5

Based on (6.19) and (6.20), a lower bound on the effective spectral efficiency can be obtained as

ηlow = (1−δ )
∫ +∞

0
log

(

1+x
1

σ2
e +

1
γ0

)

p|ĥ|2(x)dx, (6.44)

wherep|ĥ|2(x) is the pdf of the exponentially distributed random variablex= |ĥ|2 with mean 1−σ2
e .

With the change of integration variablev= x
1−σ2

e
, (6.44) can be alternatively represented as

η = (1−δ )
∫ ∞

0
exp(−v) log

(

1+v
1−σ2

e

σ2
e +

1
γ0

)

dv (6.45)

Solving the above integral based on the definition of the incomplete Gamma function yields (6.21).
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6.10 Appendix of documentation of multi-authored chapter
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Chapter 7

Conclusions

This chapter summarizes the main contributions of this dissertation and lists some possible direc-

tions for the future research.

7.1 Contributions

The contents presented in this dissertation focus on the practical design of distortion-tolerant wire-

less communication systems by exploiting spatial and/or temporal correlation and the main contri-

butions are summarized as follows.

First, we present the optimum sensor node density for 1-D and2-D WSNs with spatial source

correlation. The WSN is designed to minimize the MSE distortion between the original and the

reconstructed signals under the constraint of a fixed power per unit area. It is observed that, for

the network only needs to estimate spatially discrete data,placing exactly one sensor at the desired

measurement locations will generate the optimum performance. For the estimation of the data at

arbitrary locations in the measurement field, the optimum node density can be found when the

MSE-density slope is close to zero.

Second, the analysis of the optimum sampling is extended into 1-D and 2-D WSNs with spatial-

temporally correlated data. The impacts of the node densityin the space domain, the sampling rate

in the time domain, and the space-time data correlation on the network performance are investi-

gated asymptotically by considering a large network with infinite area but finite node density and

finite temporal sampling rate, under the constraint of fixed power per unit area. The impact of
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space-time sampling on network performances is investigated in two cases. The first case studies

the estimations of the space-time samples collected by the sensors, and the samples are discrete

in both the space and time domains. The second case estimatesan arbitrary data point on the

space-time hyperplane by interpolating the discrete samples collected by the sensors. Optimum

space-time sampling is obtained by minimizing the mean square error distortion at the network

fusion center.

Third, a new DJSCC is proposed for a communication network with multiple correlated infor-

mation sources. The DJSCC is performed by puncturing the information bits of a linear block code

but leaving the parity bits intact. Unequal amounts of energy per bit is allocated to the information

and parity bits. At the receiver, the sources are jointly decoded with the iterative message pass-

ing algorithm. Simulation results demonstrate that the proposed scheme can achieve considerable

performance gains over conventional schemes.

Fourth, a new DJSCC coding scheme is designed for sources with spatially and temporally

correlated data. At the receiver, two decoding algorithms are proposed. The fist MCMP decod-

ing algorithm can perform both intra- and inter-codeword soft information exchange by using the

spatial source correlation. The second one adds a hidden Markov model decoding module to the

MCMP decoder to exploit the temporal data correlation. Bothof these two decoding algorithms

can lead to significant performance gains.

Finally, the optimum system design for high mobility distortion-tolerant wireless communica-

tion systems with imperfect CSI has been studied. The asymptotic channel estimation MSE has

been quantified as a closed-form expression of the percentage of pilots used for MMSE channel

estimation. Based on the statistical properties of the estimated channel coefficients, we derive the
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explicit SER and a spectral efficiency lower bound of a communication system operating with im-

perfect CSI. It is discovered that the pilot samples the channel at a rate no less than the Nyquist rate

of the time-varying channel, MMSE channel estimation at pilot locations or MMSE channel inter-

polation at non-pilot locations yield the same MSE. In addition, the SER is a monotonic decreasing

function in pilot density, yet the spectral efficiency is concave in the pilot density.

7.2 Future Works

We listed several possible directions for the future works.

First, in the DJSCC proposed in Chapters 4 and 5, the simulation results show that the per-

formance of the puncture operations is affected by the channel conditions. If the CSI is available

at the transmitter, then the transmitter can adjust the puncturing rate to obtain extra performance

gains. The CSI can be made available to the transmitter through a feedback channel. The design

of adaptive DJSCC based on CSI is one of the future research directions worth exploring.

Second, in the design of distortion-tolerant high mobilitysystems introduced in Chapter 6, the

role of the pilot is more important than data symbols, thus wecan allocate unequal amounts of

energy to the pilot and data symbols. Then the pilot information, i.e., the pilot percentage and the

energy allocation factor, can be jointly optimized to maximize the spectral efficiency or minimize

the SER.

Finally, the channel model considered in Chapter 6 is time-varying flat fading. In reality, the

channel in the high mobility case also suffers frequency selective fading, and this determines an

operation environment of doubly-selective fading. The optimum designs of high mobility systems

in doubly-selective fading with imperfect CSI is another important research topic.
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