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Application of Machine Learning Principles to Modeling ofNonlinear
Dynamic Systems

Murray R. Clark
Department of Electronics and Instrumentation

University ofArkansas inLittle Rock
2801 S. University ETAS 575

Little Rock, AR72204

Abstract

A method for the development of mathematical models for dynamic systems with arbitrary nonlinearides from mea-
sured data is described. The method involves the use of neural networks as embedded processors indynamic system simu-
ation models. The technique is demonstrated through generation of models for anharmonic oscillators described by the
Duffing Equation and the Van der Pol Equation from measured input/output data. Itis shown that high quality models of
these systems can be developed using this technique which are efficient in terms of model size. Using neural networks as
embedded processors, accurate models of the Duffing Oscillator and the Van der Pol Oscillator were generated which
contained eighteen parameters ineach case. The architecture used requires that the neural networks perform only func-
tion fitting, a task to which they are well suited while integrators handle the modeling of energy storage by the system.
This allows model parameter count to remain low, averting the undesirable high parameter counts sometimes associated
with neural network based models. Model architecture, test problem specification, model optimization techniques used,
quality of the models produced, practical applications and future work are discussed.

Introduction

The development of accurate models for systems
exhibiting both nonlinear and dynamic behavior is a
topic of considerable interest to professionals in a broad
spectrum of fields, including signal processing, control,
structural science, and ecology. The use of modern com-
>uting tools and algorithms such as neural networks and

conjugate gradient learning have allowed the iterative
solution of problems previously prohibitive in size and
defiant of analytical solution. Linear dynamic systems, on
the other hand, are wellunderstood, with numerous tools
available for their identification. This paper explores the
use of neural networks as function fitting modules
embedded indifferential-equation-based models of non-
linear dynamic systems.

In the evaluation of a new modeling technique, simple
ystems offer an opportunity for such evaluation to be

carried out with maximum comprehensibility of the
esults. The Duffing and Van der Pol Oscillators are
inge-degree-of freedom (SDOF), second order, nonlin-

ear processes which have been used as test problems for
nonlinear system identification method evaluation previ-
ously (Masri, 1979), (Masri, 1993). For these reasons, the
dentification of these systems was chosen as the test

>roblem set here.

tinorder to extend an SDOF linear model of a constant

iss mechanical system to include nonlinearity, accomo-
tion must be made for two possible sources of nonlin-

ear behavior: nonlinear spring characteristics and nonlin-
ear damper characteristics. A single neural network can
be used to provide a function mapping capable of repre-
senting a spring-damper combination of arbitrary charac-
teristic (Masters, 1993). This method has been demon-
strated previously (Masri, 1993) in the successful develop
ment of a neural network based model for the Duffing
Oscillator. In this work, it is demonstrated that the
embedded network architecture gives much flexibilityas
the Duffing and Van der Pol Oscillators are here mod-
eled using identical topology (only the parameters are
changed); furthermore, accurate models can be con-
structed using very small neural networks, resulting in
compact, high-quality system models. Usage of a few
terms essential to the discussion will be clarified before
proceeding further: A Linear System is one possessing
the properties of additivity and homogeneity as common-
ly referred to in system theory. A Dynamic System is a
history dependent system; for mechanical systems, this
implies energy storage. Those processes which do not

store energy willbe referred to as static systems. A Time
Invariant System is a process whose transfer function
does not change with time. The work presented here will
focus on the identification of systems representable as a
mass-spring-damper combination, where the mass is con-
stant, and the spring-damper combination may possess
arbitrary characteristics. A schematic representation of
such a system is shown inFig. 1. The type of systems to

be identified here are therefore nonlinear, dynamic, and
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Fig. 1. Schematic representation of mass-spring-damper
system.

Materials and Methods

Architecture of the Model.
—

The modeling method to
be demonstrated is based on the well-known analog com-
puter simulation architecture shown inFig. 2. Here, inte-
grators, adders and linear amplifiers are used to numeri-
cally solve the describing differential equation for a mass-
spring-damper system:

x(t)is the position output (m),
m is the mass (kg),
b is the damping constant (N-s/m),
kis the spring constant (N/m).

In order to extend this model to accomodate systems
with nonlinear spring and damper characteristics, the
force terms bx and kx must be replaced by an appropriate
nonlinear function of velocity and position. This map-
ping ofposition and velocity can be accomplished using a
feedforward neural network as shown in Fig. 3.

Fig. 3. Simulation model with embedded neural network
for calculation of force function of nonlinear spring-
damper combination.

Eig. 2. Simulation architecture for a linear, second order,
ngle degree of freedom system.

E ft) =mx +bx +kx
here:

F(t) is the force input to the system (N),

Specification of the Test Problems.
—

In order to demon-
strate the modeling technique, input and output data
were generated through numerical solution of two well
known nonlinear differential equations: the Duffing equa-
tionand the Van der Pol equation, listed below.

Duffing Equation
F(t) =mx +bx =k xx

+Agx3

in the present study, this equation was modified to

include a coupling term, resulting in a spring-damper
characteristic that is nonlinear in both position and veloc-
ity, and thus a more challenging function fittingproblem
for the network.

F(t) =mx +bx +k}x+k2xs +axx2

where: m=500e-9, b=0.001, 1^=1.0, k2
=0.015, a=5e-6

These values were chosen to give an interesting ampli-
tude and frequency response.

Van der Pol Equation
F(t) =roc"- ax (1-

x2) +x

Proceedings Arkansas Academy of Science, Vol.48, 1994

37

Journal of the Arkansas Academy of Science, Vol. 48 [1994], Art. 9

https://scholarworks.uark.edu/jaas/vol48/iss1/9



38

Application 01 Machine Learning rrmciples to Modeling of Nonlinear tic Systems

where: m=0.2, a=0.2
This is nonlinear inposition and velocity. Parameter val-
ues were chosen to give an interesting amplitude and fre-
quency response.

ModelOptimization Techniques.
—

The method of train-
ing the networks to accurately map position and velocity
to force for each oscillator to be identified is now
described. If the force is due to a spring and damper of
arbitrary characteristics is denoted as J{x,x), the differen-
tial equation governing the motion of a constant mass
system containing them becomes F(t) = mx +J{x,k) .
Solving for this force gives J{x,x) =F(t)

-
mx.

By recording many data points representing F(t) and
x(t) and then numerically estimating the first and second
time derivatives of x(t) at each point, an array of data
x,x,J{x,x) can be found for each data point. A subset (400
well-spaced points) of this list of inputs (position and
velocity) and resulting output (force due to spring-
damper combination) are used in the training of a feed-
forward neural network that the network may learn an
accurate mapping of the force function J{x,x) of the sys-
tem to be modeled. Ifthe mass of the system is known or
measurable, the model is completed. In the present
study, the conjugate gradient algorithm (Masters, 1993)
was used for training of the networks.

Probing Signals for Identification.
—

For each nonlinear
oscillator to be identified, the training data was generated
through excitation of the equation based simulation
model with an amplitude modulated swept sine signal.
This gave efficient coverage of the input space of the
force functionyfox).

Results

Duffing Oscillator.
—

The force function J{x,x) measured
rom the Duffing oscillator simulation is graphically
depicted in Fig. 4. The effect of the cubic term in the
nonlinear spring is clearly visible as an increasing nonlin-
earity in x. Note that for a linear system, the force func-
tion willbe planar. The time domain output of the neur-
al-network-based model of the Duffing oscillator is com-
pared with that of the equation-based reference system in

Fig. 5.
Van der Pol Oscillator.

—
The force function J{x,x) mea-

sured from the Van der Pol oscillator simulation is graphi-
cally depiced in Fig. 6. The effect of the coupling
jetween the spring and damper is clearly visible. The
time domain output of the neural-network-based model
of the Van der Pol oscillator is compared with that of the
equation-based reference system inFig. 7.

Fig. 4

Time (s)

Fig. 5. Comparison of time domain response of refer-
ence system based on Duffingequation (top) with that of
neural network based model (bottom).

Force function of DuffingOscillator
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Fig. 6. Force function of Van der Pol Oscillator.

Time (s)

Fig. 7. Comparison of time domain response of refer-
ence system based on Van der Pol Equation (top) with
that ofneural network based model (bottom).

Discussion

Quality of the Models Produced.
—

As can be seen from
Fig. 5, the time domain output of the neural-network-
based Duffing oscillator model is very comparable to that
of the equation-based reference model. Ineach case the
input is an amplitude modulated swept sine signal. The
output error can be seen to be small at all points.
Similarly, good agreement is seen inFig. 7 between the
neural-network-based model of the Van der Pol oscillator
and the equation-based reference model.

Complexity of the Models Produced.
—

In the Duffing
oscillator model, the neural network employed contained
two inputs, five hidden neurons, and one output neuron.
This corresponds to seventeen network parameters
(weights) in each model. This is slightly more complex
than the orthogonal-polynomial-expansion-based model
reported in (Masri, 1979), which used eight, but less com-
plex than the normal network based model reported in
(Masri, 1993) which contained 216. In the Van der Pol
oscillator model, the neural network again employed sev-
enteen network parameters (weights). This is less com-
plex than the orthogonal-polynomial-expansion-based
model reported in (Masri, 1979), which used 64. No
precedent for comparison is found in the literature for a
neural network based Van der Pol oscillator model. The
low complexity of the model is most likelyattributable to

the assignment of tasks within it; feedforward neural net-

works perform static nonlinear mappings well, and an
integrator is perhaps the most basic example of an energy
storing device. Since these are the tasks here assigned,
each component isutilized efficiently.

Complexity ofImplementation of the Modeling Method.
—

The
method was found to be easy to implement by the
author, largely due to the fact that the architecture did
not need to be changed from one problem to the next
(only the network weights were changed), and because
the training of these networks requires no special mathe-
matical aptitude.

Applications of the Modeling Method.
—

Perhaps the
most interesting application of nonlinear dynamic system
modeling from measured data is the identification of a
poorly understood process for the purposes of behavioral
prediction or control. Possession of an accurate system
model allows estimation of the response of the reference
system to a hypothetical input, as well as offering benefit
in the design of a controller for the reference system.

Future Work.
—

The next step in this work willbe the
development of a method for on-line optimization (as
opposed to the training of the force function mapping
network off-line as in the present work). Greater accura-
cy, as well as accommodation of time variance in the ref-
erence system could result. With on-line training, new
training data can be incorporated into the training data
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set as the reference system is observed, allowing the
model to "track" gradual changes in the behavior of the
reference system. The application of the modeling
method to the development of controllers for nonlinear
dynamic systems is an area of possible future work also.
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