1994

Reaction of Titanocene Dichloride with Acetylenedicarboxylate

Tanya L. Hagler
Arkansas State University

Mark Draganjac
Arkansas State University

Paul M. Nave
Arkansas State University

J. Ed Bennett
Arkansas State University

Farooq Kahn
Arkansas State University

See next page for additional authors

Follow this and additional works at: http://scholarworks.uark.edu/jaas
Part of the [Organic Chemistry Commons](http://scholarworks.uark.edu/jaas), and the [Semiconductor and Optical Materials Commons](http://scholarworks.uark.edu/jaas)

Recommended Citation
Hagler, Tanya L.; Draganjac, Mark; Nave, Paul M.; Bennett, J. Ed; Kahn, Farooq; Engelken, Robert; Williams, Gerard; Poole, Chris; and Yu, Kwok Fai (1994) "Reaction of Titanocene Dichloride with Acetylenedicarboxylate," *Journal of the Arkansas Academy of Science*: Vol. 48 , Article 13.
Available at: http://scholarworks.uark.edu/jaas/vol48/iss1/13

This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.
This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.
Reaction of Titanocene Dichloride with Acetylenedicarboxylate

Authors
Tanya L. Hagler, Mark Draganjac, Paul M. Nave, J. Ed Bennett, Farooq Kahn, Robert Engelken, Gerard Williams, Chris Poole, and Kwok Fai Yu

This article is available in Journal of the Arkansas Academy of Science: http://scholarworks.uark.edu/jaas/vol48/iss1/13
Reaction of Titanocene Dichloride with Acetylenedicarboxylate

Tanya L. Hagler, M. Draganjac, Paul Nave, J. Ed Bennett and Farooq Kahn
Department of Chemistry and Biochemistry
Arkansas State University
State University, AR 72467

R. Engelken, Gerard Williams, Chris Poole and Kwok Fai Yu
Department of Engineering
Arkansas State University
State University, AR 72467

Abstract

The reaction of Cp₂TiCl₂ with either the mono- or dipotassium salt of acetylenedicarboxylic acid (ADC) gives high yields of an insoluble orange product. The insoluble compound shows potential semiconductor behavior, as evidenced by an apparent bandgap in the orange region of the visible spectrum. Under N₂, the compound decomposes at 238° C, eventually losing approximately 46% total mass up to 1350° C. The exothermic decomposition in air, beginning at 235° C, results in the formation of titanium oxides.

Introduction

Electron transfer between metal centers is important in many industrial and biological catalyst systems. To model these catalysts, Stephan and coworkers have prepared several early-late heterobimetallic (ELHB) compounds, with S and/or P atoms bridging the two metals (Stephan, 1989). Titanocene dichloride is often used as the electron deficient metal in these complexes. The challenge lies in finding new and diverse ligands that would make suitable candidates for the synthesis of novel multimetal complexes. Either acetylene dicarboxylic acid (ADC), or acetylene dicarboxylic acid, monopotassium salt (KADC) meet these requirements. The structure of these ligands affords the potential for bridging two metal centers. Herein is reported the reaction of titanocene dichloride and potassium salts of acetylene dicarboxylic acid.

Materials and Methods

Reactions were carried out in air at ambient conditions. The dipotassium salt of ADC was prepared as described by Carraher (Williams, et al., 1989). All other reagents were used as purchased without further purification. Infrared spectra were obtained on a Nicolet 5PC FT-IR Spectrophotometer using KBr pellets or Nujol mulls on NaCl plates. X-ray diffraction patterns were acquired on a Rigaku D/MAX-B unit. Bandgap measurements were taken on a Perkin-Elmer Lambda 19 UV/VIS/NIR Spectrophotometer. For the bandgap measurements, the sample was prepared by suspending the orange powder in acetonitrile and brushing it onto a glass slide. An apparatus consisting of a Hewlett Packard 712B voltage supply, a Keithley 177 Digital Multimeter (DMM), and JDR Instruments DMM-300 Multimeter, was used to procure resistivity-conductivity measurements. Thermal gravimetric analyses were obtained on a Seiko TG/DTA 320 instrument. Elemental analysis was performed by Galbraith Laboratories, Inc., Knoxville, TN.

Reaction of Cp₂TiCl₂ with KADC

A 0.10 g (0.40 mmol) sample of Cp₂TiCl₂, 0.06 g (0.39 mmol) KADC and 20 mL H₂O was stirred for several hours. The orange product began to precipitate out of the slurry after approximately 30 min. The reaction was considered complete when there was no longer any Cp₂TiCl₂ visible in the mixture. The orange powder, I, was filtered by suction filtration and washed with several portions of CH₃OH and water. Yield = 0.1086 g. Anal. found C, 56.41; H, 3.43; Ti, 15.60%. IR: 1635.84 (s), 1442.94 (m), 1298.26 (s), 1018.54 (m), 769.70 (m), 621.15 (m) cm⁻¹. X-ray Diffraction (d-spacings) (Å): 6.328 (s), 5.805 (vs), 4.683 (m), 4.089 (w), 3.942 (m), 3.340 (w), 2.860 (w), 2.620 (w), 2.272 (w), 2.029 (vv), 1.789 (vv), 1.544 (vv).

Reaction of Cp₂TiCl₂ with K₂ADC

Method A. A 0.14 g (1.2 mmol) sample of ADC and a 0.14 g (2.4 mmol) sample of KOH were dissolved in 30 mL of H₂O to yield a clear colorless solution of K₂ADC. A 0.31 g (1.2 mmol) sample of Cp₂TiCl₂ was dissolved in 30 mL of CHCl₃ in a separate flask. The contents of the two flasks were combined and allowed to react by rapid stirring.
Method B. A 0.14 g (1.2 mmol) sample of ADC and a 0.14 g (2.4 mmol) sample of KOH were dissolved in 30 mL of H_{2}O to yield a clear colorless solution of K_{2}ADC. A 0.51 g (1.2 mmol) sample of Cp_{2}TiCl_{2} was dissolved in 30 mL of CHCl_{3} in a separate flask. The contents of the two flasks were combined and allowed to react by a much slower process of magnetic stirring. The resulting solution was allowed to stir for 10 minutes followed by diffusion of the layers for several days.

In both cases, the product (a yellow-orange powder) was recovered by suction filtration and washed with water and chloroform. IR: 1624.22 (s), 1442.94 (m), 1296.33 (s), 1039.98 (m), 769.70 (m), 623.45 (m) cm^{-1}. X-ray Diffraction (d-spacings) (Å): 6.308 (m), 5.804 (s), 4.680 (m), 4.090 (w), 3.931 (m), 3.532 (w), 2.851 (w), 2.622 (w), 2.261 (w), 2.045 (vw), 1.782 (vw), 1.536 (vw).

Results and Discussion

The orange product from the reaction of Cp_{2}TiCl_{2} and KADC is easily obtained. The two reagents are allowed to stir in water in air at room temperature, and the powder is recovered by suction filtration. A slight excess of Cp_{2}TiCl_{2} was used to ensure complete reaction of KADC. This necessitated several washings with CH_{3}OH to remove excess Cp_{2}TiCl_{2}. The product was also washed with water to remove any KC1.

An alternate method for the synthesis of the orange product is similar to reactions of Carraher (Williams et al., 1989). In this method, K_{2}ADC, the dipotassium salt of the acid, is employed. The acid in the aqueous phase is allowed to come in contact with the organic phase containing the titanocene dichloride. This contact is accomplished either by stirring the layers with a rapid stirrer or stirring the layers for 5-10 minutes with a magnetic stirrer, then allowing the reaction to remain covered, undisturbed for several days. When chloroform is used as the organic solvent of Cp_{2}TiCl_{2}, a microcrystalline product is obtainable. Further attempts to grow larger crystals suitable for single crystal x-ray diffraction have been unsuccessful.

The reported time required for rapid stir techniques is on the order of sixty seconds (Williams et al., 1989). Rapid stir techniques for the reaction of Cp_{2}TiCl_{2} and K_{2}ADC require considerably longer times for completion, often taking 15-30 minutes. Possible differences in reaction times may be due to the lower nucleophilicity of ADC ions or to solution pH. Carraher alters the pH of the carboxylic acid with additional base to a slightly basic solution (Williams et al., 1989). No attempts were made to control pH in any of our reactions. Fig. 1 shows the pH of the solution as a function of time for an aqueous reaction of 0.3 g Cp_{2}TiCl_{2} with 0.18 g KADC in 30 mL of H_{2}O. The pH of the solution drops rapidly with the addition of KADC and continues to drop exponentially with time.

![Fig. 1. Plot of pH vs. time for the reaction of Cp_{2}TiCl_{2} with KADC.](http://scholarworks.uark.edu/jaas/vol48/iss1/13)

The orange products from either method are not soluble in any common solvent or solvent systems. The products react with N,N-dimethylformamide (DMF), pyridine, and hydrochloric acid. Characterization of the products obtained from the reactions with DMF and pyridine are still underway. The addition of HCl to the orange powder reforms the starting material, Cp_{2}TiCl_{2}. The insolubility of the adc compounds precludes molecular weight determination. Carraher and Lee (1975) have reported the formation of polymers from the reaction of Cp_{2}TiCl_{2} with salts of diacids. Some of their products were also insoluble and could not be further characterized. The soluble polyesters had average molecular weights of 3 x 10^{5} g/mol. These results suggest that the orange products formed from Cp_{2}TiCl_{2} and ADC salts are also insoluble polymers. The IR data indicates a chelated ester stretch at 1625-1635 cm^{-1}. R.N. Kapoor et al., (1987) have reported the structure of a titanocene complex in which the titanium atom has two chelated esters as ligands.

Because the two products from the two separate synthetic methods had observably different orange colors they were analyzed to see if the two methods gave dissimilar products. The decomposition points of the materials using a Mel-temp apparatus are 285° C for the reaction with KADC and 190° C for the reaction with K_{2}ADC. Singly, this indicates two distinct products. However, X-ray diffraction patterns (Fig. 2) and infrared spectra show conclusively that the two products are identical in structure. The difference in color and decomposition point suggests a difference in chain length of a polymer.

A thermal gravimetric analysis (TGA) of the Cp_{2}TiCl_{2}/KADC product under N_{2} shows a small mass loss at approximately 70° C (Fig. 3). The compound...
begins rapid decomposition at 238°C. This initial 14% mass loss is associated with a large exotherm. Calculations based on mass loss indicate possible loss of one CO₂ per acetylenedicarboxylate ligand. The TGA exhibited almost continual loss of material up to 1350°C, losing a total of 46% of its mass. The TGA of the Cp₂TiCl₂/KADC product in air (Fig. 4) shows a small mass gain before decomposition at 235°C. A second mass increase of 1.2% occurs before the burning off of the organic fragments to a final total mass loss of 69.8%. This percentage remaining would be consistent with the formation of TiO₂.

Fig. 2. X-ray diffraction patterns for A) Cp₂TiCl₂/KADC product and B) Cp₂TiCl₂/K₂ADC product.

Fig. 3. Thermal gravimetric analysis in N₂ of the orange product from the reaction of Cp₂TiCl₂ with KADC.

Fig. 4. Thermal gravimetric analysis in air of the orange product from the reaction of Cp₂TiCl₂ with KADC.

An X-ray diffraction pattern of Cp₂TiCl₂/KADC sample after thermal decomposition in air was computer matched to several different titanium oxide phases. While none of the phases were exact matches, most were close enough to indicate the decomposed material is a titanium oxide of unknown stoichiometry.

An optical absorbance vs. wavelength spectrum of the Cp₂TiCl₂/KADC product is shown in Fig. 5. The data indicated a transmittance window from 875-600 nm. The rapid increase in absorbance near 600 nm results from electron transitions from the valence band to the conduction band as photons are absorbed. Absorbance spectra of this type are typical of semiconducting materials. The spectrum indicated a bandgap of approximately 2.1 eV. Considering the narrow transmittance window, a possible application of 1 may be as an optical bandpass filter. The absorption in the portion of the spectrum from 3200-875 nm results from a combination of bond-resonance and intraband free carrier absorption. It is possible to observe the bond-resonance absorptions because these wavelengths make up the near-infrared (NIR) portion of the spectrum.

The electrical resistivity was determined through straightforward electrical resistance measurements for pressed pellets of diameter 28 mm and thickness approximately 3 mm. Resistance was determined by application of voltage up to a maximum of 500 V DC between silver ink contacts applied to the faces of the pellets, measurement of current through the pellets via a standard ammeter and use of Ohm's Law:

\[R = \frac{V}{I} \text{ and } \rho = \frac{RA}{l} = \frac{1}{\sigma}, \]

where \(\rho \) is the resistivity in ohm-cm, \(R \) the resistance in ohms, \(A \) the cross sectional area of the face, \(l \) the thickness, and \(\sigma \) the conductivity in (ohm-cm)⁻¹. Resistivity measurements
yielded a linear relationship between current and voltage. This can be seen from Fig. 6. The resistivity, \(\rho \), of the orange \(\text{K}_2\text{ADC/CP}_2\text{TiCl}_2 \) product, \(I \), is approximated by \(\rho = V w t / I l \). The symbols \(w \), \(t \), and \(l \) are dimensions of the sample. Voltage and current are denoted by \(V \) and \(I \), respectively. A diagram of this apparatus is presented in Fig. 7. The resistivity of \(I \) is \(2.86 \times 10^7 \) ohm-cm. Although very simple, this measurement scheme was rapid, convenient, and satisfactory for "order-of-magnitude" estimates as required in this preliminary study. Further research is needed to explore all possible applications of this material.

Acknowledgements

Funding provided by the Arkansas Science and Technology Authority, Arkansas Department of Energy EPSCoR, and the National Science Foundation (Grant #DUE-9351560).

Literature Cited

