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Abstract

In this dissertation, a first-principle-based approach is developed to study magnetoelectric effect

in multiferoic materials. Such approach has a significant predictive power and might serve as a

guide to new experimental works. As we will discuss in the course of this work, it also gives an

important insight to the underlying physics behind the experimentally observed phenomena.

We start by applying our method to investigate properties of a generic multiferroic material.

We observe how magnetic susceptibility of such materials evolves with temperature and com-

pare this evolution with the characteristic behavior of magnetic susceptibility for pure magnetic

systems. Then we focus our attention to particular multiferroic – BiFeO3 – and reproduce its mag-

netic states with all of their essential features. Those magnetic states include (i) antiferromagnetic

state, (ii) state with weak ferromagnetism resulting from canting of magnetic moments, and (iii)

cycloidal magnetic structure. All of those magnetic states were also studied under external electric

and magnetic fields. Under such electric fields magnetic order parameters of the systems undergo

interesting transformations and sometimes take unexpected path. Finally, we study the material un-

der strain and explore possibilities of favoring one magnetic state over another and even “creating”

states that can be stable only under the strain.
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Preface

Advancement in technology throughout the ages was tightly linked to advancement in the man-

ufacturing and usage of the materials with desirable properties. For example, improvement in

production methods of steel manufacturing made industrial revolution possible. In a similar man-

ner, in a recent times, the steady progress in manufacturing and understanding of materials with

good magnetic and electric properties gave rise to modern information age. The latter progress is

still continuing with a rapid pace and today there is a high demand for materials with novel mag-

netic and electric properties. As a result, there has been a flurry of research throughout the world

to discover materials that will make technology of the future possible.

In the hunt for a materials with unusual electric and magnetic properties, one promising av-

enue is multiferroics. Multiferroics are materials that can exhibit electric and magnetic ordering

simultaneously [1, 2]. Those coexisting electric and magnetic degrees of freedom are coupled to

each other and this coupling allows some phenomena that might not be observable in pure mag-

netically or electrically ordered systems. For example, multiferroics can exhibit magnetoelectric

effect. This effect opens possibility for new devices that can be controlled both electrically and

magnetically.

Among multiferroic materials, BiFeO3 (BFO) occupies a very important place. What is special

about BFO is that it has unusually high antiferromagnetic Neel and ferroelectric Curie temper-

atures (TN = 640K and TC = 1100K), and high electric polarisation (P = 100µC/cm2). These

uncommon properties are essential for device applications and are indeed the main reason why so

many attention was given to this material [25]. From a theoretical point of view, the rich physics

of this material poses challenging problems and opens up many issues, some of which still remain-

ing unresolved. To address some of those problems and understand the physics behind unusual

properties of BiFeO3 is the main goal of our study.

In this work, we will mainly concentrate on magnetic, electric, and structural properties of

multiferroic BiFeO3. We will study unusual properties of BiFeO3 under external electric and
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magnetic fields applied along different directions. We will also consider the effect of strain on

properties of this material. At the same time, we are aiming to arrive at general conclusions that

would be applicable to the broad class of multiferroic materials (i.e., not only BiFeO3).

This work is divided into three parts. In the first part, we will describe the methodology that is

used in the investigation of the properties of materials. This part contains description of some of the

general mathematical and computational methods that are used throughout this work. In the first

part we will also cover the relevant physics behind the models that are used in the simulations. The

second part consists of presenting and describing the results that were obtained from our studies.

The third part provides a summary of the studies performed, and offer possible avenues to further

pursue in the future.
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Part I

Mathematical methods and computational tools

This work is heavily based on methods of applied mathematics and computational science. There-

fore the first part of this work will start by giving an introduction and overview to the computa-

tional tools, and mathematical methods widely used in theoretical physics and material sciences.

The concepts of applied mathematics will be covered in a brief but comprehensive manner. On the

other hand, all the discussions related to the computational tools will be very practical and we will

go no deeper than necessary to reproduce the results of this work.

Note that Readers who are familiar with linear algebra and/or basics of computational physics

can safely skip this Part I, without any losses in understanding of the subsequent parts of the

dissertation. In other words, these Readers can directly go to Parts II and III, which describe

results obtained from our studies and future prospects of our work.

Whenever a number of subjects comes together in the single study like this one, it is impossible

to avoid conflict between terminology. Space for example has one definite meaning in mathematics

and it is different from the meaning used in common language. Field in mathematics might mean

the generalization of numbers and in physics it usually refers to a quantity that changes in space.

The same thing is true for letters used to denote those quantities. Even the central concept of this

work – multiferroic material – might be defined to mean slightly different things in different works.

We will not point out this ambiguity in every case unless it is absolute necessity to avoid confusion.

1 Linear algebra

1.1 System of linear equations and vector spaces

System of linear equations. Since linear algebra will provide us with a framework and language

for the subsequent discussions, its concepts will be covered first. I will introduce concepts and

results of linear algebra in the process of describing a system of m linear equations with n unknown
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quantities. The system of m linear equations with n unknowns has the following form



a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2

...
...

...
...

am1x1 +am2x2 + · · ·+amnxn = bm

(1.1.1)

In the system of equation (1.1.1) symbols x1, x2, . . . , xn represent unknowns to be determined,

while a11, a12, . . . , amn and b1, b2, . . . , bm are given numbers which in the linear algebra are

referred to as scalars.1

Vector notation. In the language of linear algebra, this system can be written in a more compact

form using vector notation

Ax= b (1.1.2)

where

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn


, x=



x1

x2

...

xn


, b=



b1

b2

...

bm


(1.1.3)

In the expressions (1.1.3), the quantity A is called m×n matrix, while x and b are called n and m

dimensional column vectors, respectively. Thus column vectors are nothing more than a column of

scalars arranged in particular order and matrix is just column vectors placed side by side. The set of

all possible vectors of the same dimension is called vector space or linear space of that dimension.2

1Here and in all subsequent discussions, unless otherwise specified, scalars are assumed to
be from the field of real numbers R. Later, in the context of quantum mechanics, we will also
consider the case where scalars are taken from the field of complex numbers. In abstract algebra,
more general cases of arbitrary fields are also studied. However, those general cases find very
small applications in physics and we will not mention them at all.

2In “advanced” level linear algebra this definition of vector spaces are given as a particular
example of linear spaces and sometimes referred to it as a coordinate space. However, our way of
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Operations with vectors. To show that problems stated in expressions (1.1.1) and (1.1.2) are

equivalent to each other we have to introduce some conventions.

The sum of two vectors x and y of the same dimensions is naturally defined to be a vector each

element of which is the sum of the corresponding elements

x+y =



x1

x2

...

xn


+



y1

y2

...

yn


=



x1 + y1

x2 + y2

...

xn + yn


(1.1.4)

The difference between two vectors of the same dimensions is defined in similar manner (i.e.,

element by element).

The product of a scalar α with a vector, x is defined to be a vector each element of which is a

product of that scalar α with corresponding elements of the vector x

αx= α



x1

x2

...

xn


=



αx1

αx2

...

αxn


(1.1.5)

Matrix A times vector x is interpreted as a linear combination of columns of the matrix A

Ax=



a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn





x1

x2

...

xn


= x1



a11

a21

...

am1


+ x2



a12

a22

...

am2


+ · · ·+ xn



a1n

a2n

...

amn


(1.1.6)

going about building foundations of linear algebra is not less general than in most advanced level
presentations. Actually one can show that any finite linear space of dimension n is isomorphic, i.e.
is equivalent to the n - dimensional coordinate space that we are considering here.
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Linear combinations. The concept of linear combination is very important in linear algebra. In

general, a linear combination of vectors x, y, · · · , z with scalars α, β, · · · , γ is another vector

obtained using the following expression

αx+βy+ · · ·+ γz (1.1.7)

Again, if we put vectors x, y, · · · , z side by side and construct a rectangular matrix from them,

then the linear combination (1.1.7) can be written as

(
x y · · · z

)


α

β

...

γ


(1.1.8)

Matrix is a very convenient notation for grouping vectors together. In general, matrix is an example

of linear function that acts in the vector space. From this point of view, matrix takes one vector

as an argument and returns a single vector as a value in a linear fashion. Such function can be

completely specified by giving the set of vectors. Therefore, by putting those vectors into columns

of rectangular matrix, we so to speak make complete structure of that function available for the

eyes to see. More general linear functions, i.e. tensors, can not be so conveniently denoted because

the paper on which we write has only two dimensions, while generic tensor would require many

more dimensions for its complete specification.

Linear dependence and independence. Of course, if all the scalars α, β, · · · , γ are zeros then

the operation of linear combination (1.1.7) will always return a zero vector, i.e. the vector all ele-

ments of which are zeros. If, however, there is such linear combination that can give a zero vector

and not all the scalars α, β, · · · , γ are zeros then the set of vectors x, y, · · · , z are called linearly

dependent. Otherwise, the set is called linearly independent. Thus, for linearly independent set of

6



vectors x, y, · · · , z, the relation

αx+βy+ · · ·+ γz = 0 (1.1.9)

can be satisfied if and only if α = β = · · ·= γ = 0.3

Basis and dimension. All the linear combinations of a single vector x define a line (i.e., one

dimensional subspace of the whole n dimensional vector space). All the linear combinations of

two independent vectors x, and y defines a plane (i.e., two dimensional subspace of the whole n

dimensional vector space). In n dimensional linear space there is always a set of n vectors whose

linear combinations fills up (spans) the whole n dimensional space. Such a set is called basis. The

number of vectors in basis is always the same for a given space but the choice of vectors that make

up the basis is not unique. The fact that the space of vectors with n elements (i.e., n dimensional

vectors) always have n basis is not trivial but we will not give its “proof” here.

Coordinate system. Whenever in n dimensional space, we have any set of n independent vectors,

we can use them as a basis and every other vector can be expressed as a linear combination of those

basis vectors. The coefficients of those basis are called the coordinates of the vector on that basis.

Therefore, choosing a basis is equivalent to defining a particular coordinate system.4 For a given

basis (coordinate system), any vector can be uniquely identified by its coordinates. The prove of

this and other basic facts about vector spaces can be found in ref. [7].

Equality of vectors. Finally, for the sake of completeness, we need to define the notion of equal-

ity between two vectors. Two vectors x and y of the same dimensions are equal to each other if and

3Let’s note that the number zero denoted by symbol 0 and zero vector denoted by bold symbol 0
are objects of different nature. The first is a single scalar, while the second is a column of scalars.
Here, we used bold symbol for the vector. However, it is common to see both of them denoted
with the same symbol 0. This ambiguous way of denoting zero rarely leads to confusion since one
usually can tell from context when 0 denotes a zero vector and when it denotes the number zero.

4Usually, however, basis are called coordinate systems and basis vectors called coordinate axis
if some explicit or implicit order is specified for the basis vectors.
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only if their corresponding elements are equal as a scalars x = y⇔ xi = yi for any i. With these

conventions and definitions now it is obvious that expressions (1.1.1) and (1.1.2) are equivalent to

each other.

Linear combination and system of linear equations. Let us now summarize the relation be-

tween the problem of solving the system of linear equations (1.1.1) and the concept of linear

combination (1.1.7). For a given set of vectors x, y, · · · , z to compute their linear combination

with a set of scalars α, β, · · · , γ is trivial operation. This operation involves straightforward mul-

tiplication and addition of scalars. The system (1.1.1) or equivalently the linear equation (1.1.2)

poses problem of inverting this operation of linear combination. In the language of linear algebra,

the equation (1.1.2) is asking us to find coefficients of the linear combination of columns of a ma-

trix A which will give the vector b. These coefficients then will give us the elements of vector of

unknowns x.

Column space. All possible linear combinations of the columns of matrix A is called a column

space of that matrix. The column space of matrix A can be equal to, i.e. span, the whole n

dimensional linear space. For this to happen, the number of columns should be at least equal to the

number of dimensions of the columns and consequently to the dimension of the whole space. In

particular, if the matrix A is a square matrix with independent columns, then the columns of this

matrix can be used as a basis set and by definition of basis it will span the whole space. The solution

of the system (1.1.2) then will be coordinates of the right hand side vector y on that basis. That

is why square matrices are so special. Provided that their columns are independent the system

associated with them always have one and only one solution. Square matrix with independent

columns, also called non-singular, non-degenerate, or an invertible matrix.

Overdetermined systems. The column space can also be equal to only some subspace of the

whole n dimensional linear space. In this case, there will be some vectors b that will be outside the

column space of the matrix A and the system (1.1.2) for such vectors will have no solution. For

8



example, if the number of columns of the matrix is smaller than the dimension of the whole space

(dimension of columns), then there is no way that every right hand side vector b can be obtained

just by combining those few columns.5 This latter case happens when we have more equations

than unknowns in the system (1.1.1) and it is called overdetermined system. We will consider the

case of overdetermined systems below first. To make the presentation of this case more concrete,

we will consider examples that plays a central role in this work.

1.2 Magnetic and electric susceptibilities

Magnetic susceptibility. Under external magnetic fieldH , all materials produce their own mag-

netic field, i.e. materials become magnetized. We will discuss the physical reasons that make ma-

terials magnetic and different types of magnetic materials later. Here, we are going to develop the

mathematical tools that will be used explicitly in computing certain coefficients that characterizes

behavior of materials under external fields.

The degree of magnetization of the material is characterized by the physical quantity called

magnetizationM . For a small external fieldH , the magnetizationM of the material with internal

magnetizationM 0 can be expressed as

M =M 0 +χmH (1.2.1)

In the expression (1.2.1) the proportionality coefficient χm is called the magnetic susceptibility and

it will be very important in our future discussions. Its magnitude shows how easy or hard it is to

magnetize the material, and its behavior with temperature will give us a clue about the magnetic

structure of the material as we will see later.
5By taking all linear combinations of a single vector from three dimensional space, we can

get only vectors lying along that vector, and by taking all linear combinations of two independent
vectors from three-dimensional space, one can get only vectors from the plane that contains those
two vectors. In both cases it is impossible to get every vector from the three dimensional space.
We need at least three vectors to accomplish that.
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Different definitions of susceptibilities. The susceptibility, in the way how we defined it, is

known as a volume susceptibility and sometimes denoted as χv
m. In the literature, one also com-

monly encounters other definitions. Among those alternative definitions, the following two are

important: they are mass magnetic susceptibility Xmass
m , and the molar magnetic susceptibility

χmol
m . The conversion between these three forms of susceptibilities can be made using following

relations

χ
mass
m =

χv
m

ρ

χ
mol
m = Mχ

mass
m = M

χv
m

ρ

where ρ is the density and M is the molar mass of the material.

Electric susceptibility. All the materials react to an external electric field by producing their

own electric field and such materials are said to become polarized. If the magnetic response to an

external magnetic field is characterized by the magnetic susceptibility, the electric response of the

material to an external electric field is characterized by an electric susceptibility. We will denote

the electric susceptibility as χe and for the material with internal polarization P 0 , it is defined

using the following expression

P = P 0 + ε0χeE (1.2.2)

In equation (1.2.2), the quantity P characterizes the degree of polarization of the material in re-

sponse to an external electric fieldE and is called electric polarization or simply polarization. The

physical constant ε0 is known by names vacuum permittivity, permittivity of free space or electric

constant. Its value in SI units is ε0 = 8.854187817×10−12 farads per meter (F·m−1).

Mathematical Analogy. From a mathematical point of view, both definitions for electric and

magnetic susceptibilities are very similar. In fact, they are so similar that just by replacing one

letter with another we can copy most formulas for magnetic susceptibility and use them to de-

scribe electric susceptibility. This is not an exceptional example and in physics we often encounter
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similar equations in describing different phenomena. This fact makes application of mathematics

in physics very fruitful, since by solving equations once we can use their solutions many times for

many different phenomena.

However, let us point out than in physics we gain a lot of insight by noticing differences be-

tween apparently similar things. For example, the magnetic susceptibility can have positive values

as well as negative values. Typically, when the sign of magnetic susceptibility is negative, it is

also small in magnitude in comparison with positive magnetic susceptibilities. On the other hand,

electric susceptibility has only one sign, namely it is always positive. Also most materials have

very small magnetic and electric susceptibilities, while there is a small family of materials that

possess very large susceptibilities. These and many other experimental facts have deep physical

reasons behind them and we will discuss those reasons as this work progresses.

Tensor character of electric and magnetic susceptibilities. In the discussion above, the mag-

netic and electric susceptibilities were treated as scalar quantities. This is the case when the ma-

terial under consideration is not a single crystal or if it is an amorphous material. We also can

consider the susceptibility as a single number (scalar) when we are interested in applying the field

only along one direction. However, in single crystal materials, one has to take into account the fact

that the matter differently reacts to an external field applied along different directions. Mathemati-

cally, this is achieved by using six numbers to characterize the susceptibility instead of one number

and the corresponding equations for susceptibilities become tensor equations

Mi = M0
i +χ

m
i jH j (1.2.3)

and

Pi = P0
i +χ

e
i jH j (1.2.4)

We will consider mathematical treatment of tensors in the appropriate section. Below, we will

ignore the tensor character of the susceptibility and consider them as scalars for convenience.

11



Computation of susceptibilities. One way of going about computing the magnetic and electric

susceptibilities is very obvious. Let us consider the magnetic susceptibility first. We can apply

external magnetic field and compute corresponding magnetization of the material. We can express

the resulting series of computations in the form of the system of linear equations as follows



M0 +χmH1 = M1

M0 +χmH2 = M2

...
...

...

M0 +χmHn = Mn.

(1.2.5)

In this linear system of equations, unknowns are M0 and χm. In the matrix form, the same system

can be expressed as 

1 H1

1 H2

...
...

1 Hn


M0

χm

=



M1

M2

...

Mn


(1.2.6)

As we can see, here we arrived at an overdetermined system (1.2.6) and we need to describe

how to deal with such systems. As we pointed out before, in general there are no such values

M0 and χm that will satisfy all the n equations of the system (1.2.6). However, there are such

values of quantities M0 and χm that will give us numbers that are very “near” to the right hand

side of equation (1.2.6). This problem is analogous to the problem of fitting the “best” line into

set of scattered points as it is demonstrated in Figure 1. To deal with such problems, we need

to define what does it mean for one vector to be “near” another vector or for the line to passes

through scattered points and to be the “best” fitting line. This involves introduction of concepts

like “length” and “distance” which we will do next.
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1.3 Euclidean space

Scalar product. To accomplish our goal of solving overdeterminant systems and enlarge the area

of application of linear algebra to other problems of physics, we need to define some additional

concepts. We will start by defining the notion that will allow us to determine a distance between

two n dimensional real vectors. This is achieved through the introduction of the concept of a scalar

product between two vectors.

The scalar product of two real n dimensional vectors x and y is denoted by the “dot” operator

and it is usually defined by the following expression

x ·y =
n

∑
i=1

xiyi = x1y1 + x2y2 + · · ·+ xnyn (1.3.1)

The length of the vector x can be defined as a squareroot of the scalar product of the vector with

itself

‖x‖=
√
x ·x=

√
n

∑
i=1

(xi)2 (1.3.2)

The angle between two vectors x and y is then defined by the formula

θ = cos−1
(

x ·y
‖x‖‖y‖

)
(1.3.3)

where cos−1 is the inverse of the cos function and it returns angles in radians. For the definition

(1.3.3) to make sense, one has to check if the following inequality is always satisfied

−1≤ x ·y
‖x‖‖y‖

≤ 1 (1.3.4)

This relation (1.3.4) is called Cauchy-Schwarz inequality and its proof can be found in any standard

textbooks on linear algebra.

With these definition, now we can define the distance between two vectors to be the length of

14



the x−y vector

d(x,y) = ‖x−y‖=

√
n

∑
i=1

(xi− yi)2 (1.3.5)

The vectors x and y are said to be orthogonal if their dot product is zero: x ·y = 0. The angle

between orthogonal vectors is θ = π

2 . For the two orthogonal vectors x and y, there is relation

which can be considered as a generalization of the Pythagorean theorem from geometry

‖x+y‖2 = ‖x‖2 +‖y‖2 (1.3.6)

To prove the generalized Pythagorean theorem, one just needs to remember that for orthogonal

vectors x and y: (x ·y) = (y ·x) = 0 and compute ‖x+y‖2 as

‖x+y‖2 = (x+y) · (x+y) = (x ·x)+(y ·y)+(x ·y)+(y ·x) = ‖x‖2 +‖y‖2 , (1.3.7)

Of course, this identity holds true for an arbitrary set of vectors provided they are pairwise orthog-

onal. This fact is handy when dealing with orthogonal set of basis.

As one can see from the Pythagorean theorem, the features of Euclidean geometry are emerging

one by one through introduction of the scalar product. Therefore the linear vector space with

this definition of length and scalar product is naturally called Euclidean space. Later, we will

present a slightly different way of looking at scalar product which will allow us to introduce a new

linear structure that is a tensor. But before that let us come back to the problem of solving the

overdeterminant linear systems.

1.4 Matrix multiplication

Matrix time columns. We know how to multiply any m×n matrix A with n dimensional vector

x. The results is m dimensional vector y

Ax= y (1.4.1)
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If on the right side of the matrix A , instead of one vectorxwe have a set of k vectorsx1, x2, · · · , xk

put into one matrix X

X =

(
x1x2, · · · , xk

)
=



(x1)1 (x2)1 · · · (xk)1

(x1)2 (x2)2 · · · (xk)2

...
... . . . ...

(x1)n (x2)n · · · (xk)n


(1.4.2)

we simply multiply the matrix A with every columns of X one by one

AX = A
(
x1x2, · · · , xk

)
=

(
Ax1Ax2, · · · , Axk

)
(1.4.3)

The result is a matrix with m rows and k columns.

Formula for elements. In principle, the equation (1.4.3) is all we need to know to perform matrix

multiplication. However, for different purposes some other ways of looking to the same operation

are more advantageous. For direct computation purposes, for example, it is convenient to have the

explicit formula for the elements of resulting matrix. Let us consider two matrices

A =



A11 A12 · · · A1m

A21 A22 · · · A2m

...
... . . . ...

An1 An2 · · · Anm


, B =



B11 B12 · · · B1p

B21 B22 · · · B2p

...
... . . . ...

Bm1 Bm2 · · · Bmp


(1.4.4)

By multiplying AB , we get the new matrix

AB =



(AB)11 (AB)12 · · · (AB)1p

(AB)21 (AB)22 · · · (AB)2p

...
... . . . ...

(AB)n1 (AB)n2 · · · (AB)np


(1.4.5)
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and the elements (AB)i j of that new matrix can be computed using

(AB)i j =
m

∑
k=1

AikBk j (1.4.6)

Block matrix multiplication. There are some other important ways of looking at matrix multi-

plication. Most notably, block matrix multiplication is very relevant in our work because it is used

by the fastest numerical algorithms to do matrix multiplication in computers. From a mathematical

point of view, all ways of matrix multiplication are fundamentally the same. However, depending

on how matrix is stored in the memory of computer, one way can give faster result than others.

In block matrix, multiplication matrix is divided into blocks with a right size and each block is

handled separately. Since the elements of every block are stored in a close proximate in memory

the computer processor can access to the matrix elements in faster way and thus leads to overall

fast execution. Block matrix multiplication is also the basis of fast Fourier transform algorithms.

All of these technical details can not be covered in this work and I would like to refer for more

information to the relevant literature on numerical computation.

Identity matrix. The matrix with ones on the main diagonal and zeros elsewhere is called iden-

tity matrix and it is denoted as I . Thus in n dimensional vector space the identity matrix has the

following form

I =



1 0 · · · 0

0 1 · · · 0
...

... . . . ...

0 0 · · · 1


(1.4.7)

When identity matrix I is multiplied with a vector x, it acts as a number “one”, i.e. it returns the

same vector x back

Ix= x (1.4.8)
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Both (1.4.7), and (1.4.8) can serve us as a definition for identity matrix since they are equiva-

lent. Another equivalent definition of the identity matrix can be given using the following matrix

equation

I A = AI = A (1.4.9)

Inverse of the matrix. Inversion is an operation that transforms a given matrix into another

matrix called its inverse. It is usually denoted by placing “−1” in the superscript. The inverse

A−1 of the n×n matrix A , for example, is another n×n matrix defined according to the following

relation

AA−1 = A−1A = I (1.4.10)

If we consider a matrix as a linear function on vector space, then inverse matrix is the corresponding

inverse function. In practice, most softwares use elimination methods to compute inverses of

matrices. We will not go into deep discussion about inverting general n× n matrix since we will

not be using them in our work. However, we will use inversion of 2×2 and 3×3 matrix, both of

which we will consider next.

Inversion of 2×2 matrix. In general, inversion of a 2×2 matrix

A =

a b

c d


can be performed using the following formula

A−1 =

a b

c d


−1

=
1

ad−bc

 d −b

−c a

 (1.4.11)
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Inversion of 3×3 matrices. The inverse of the matrix

A =


a b c

d e f

g h k


is calculated according to the following formula

A−1 =


a b c

d e f

g h k


−1

=
1

det(A)


A D G

B E H

C F K

 (1.4.12)

where the det(A) is a scalar number called determinant. For 3×3 matrices, it can be calculated as

follows

det(A) = a(ek− f h)−b(kd− f g)+ c(dh− eg) (1.4.13)

Determinant is a volume of the parallelepiped made by columns of matrix A . This fact about the

determinants are true even in arbitrary dimensional spaces and can serve as a generic definition

of determinants. If columns of the matrix A are independent then det(A) 6= 0 and matrix A is

convertible.

The rest of the symbols of the equation (1.4.12) are defined as follows

A = (ek− f h) D = (ch−bk) G = (b f − ce)

B = ( f g−dk) E = (ak− cg) H = (cd−a f )

C = (dh− eg) F = (gb−ah) K = (ae−bd).

(1.4.14)

We now have enough knowledge under our belt and we can start solving an overdeterminant

linear system.

19



1.5 Normal equation

Now, we can come back to the problem of solving overdeterminate systems. First, we will take

a general approach and then we will apply our general result to the particular problem of finding

susceptibilities and magnetization.

Let us introduce a new vector δ, the components of which are defined by the equations

δi = yi−
n

∑
j=1

Ai jx j (1.5.1)

If the vector x was the solution for the system (1.2.6) then this vector δ would be a zero vector. In

the case when δ is not zero vector, it will represent the distance between “particular solution” and

the vector y. Therefore, our goals come to finding such a set of xi’s that would give the minimum

for the length of δ vector. If we denote the square of the length of the δ vector by the capital letter

∆, then we can write

∆ =
n

∑
i=1

δ
2
i (1.5.2)

To find the minimum of ∆, we can use a theorem from differential calculus. For that purpose, we

should first differentiate ∆ with respect to x j’s

∂∆

∂x j
= 2

m

∑
i=1

δi
∂δi

∂x j
(1.5.3)

According to the definition (1.5.1) of δ vector

∂δi

∂x j
=−Ai j (1.5.4)

Thus the expressions for the partial derivatives (1.5.3) becomes

∂∆

∂x j
= 2

m

∑
i=1

(
yi−

n

∑
k=1

Aikxk

)
(−Ai j) (1.5.5)

To find the x j values that give the minimum for ∆ and consequently the minimum for the length of
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tion representing the dependence of the magnetization (which is simply the supercell average of

the {mi}’s) on an applied magnetic field. This latter field is oriented along the [111] pseudo-cubic

direction, that is along the polarization direction while being perpendicular to the G-type AFM

vector of BFO [3]. The applied magnetic field is allowed to have a magnitude ranging between

zero and 100 Tesla, in order to precisely compute χM,⊥. Figures 18, 19 and 20 show the magnitude

of L, the magnitude of u and χM,⊥, respectively, as a function of temperature for five different sets

of Ei j coefficients. If we denote the first-principles values of the Ei j coefficients in BFO as Ei j,re f ,

then these five sets correspond to Ei j being equal to γmeEi j,re f , with γme =1, 0.5, 0.25, 0.125 and

0.0, respectively (as characteristic of progressively weaker magneto-electric couplings until they

fully vanish).

Figure 18 reveals that the Neel temperature, TN , (which is taken as the temperature at which

the magnitude of L possesses an inflection point) strongly increases when the magneto-electric

coefficients grow in strength: for γme = 0, it is about 275K (this temperature will be denoted as

T 0
N in the following) while it significantly increases up to 635K when γme=1. Another effect that is

visible in Fig. 18 is the enhancement of the AFM vector resulting from the increase of γme for any

temperature below T 0
N = 275K (at the sole exception of 0K for which the antiferromagnetic vectors

are all equal to 4µB in magnitude, as consistent with quantum mechanics).

Furthermore, Figure 19 shows that the Curie temperature, TC, which is the temperature at which

the polarization suddenly jumps from a vanishing to non-zero value (via a first-order transition),

is less sensitive to the ME couplings: TC varies from 1050K to 1090K when the γme coefficient

changes from 0 to 1. However, Fig. 19 also demonstrates that the polarization-versus-temperature

dependence changes its curvature around TN . This effect is more pronounced for stronger γme,

therefore indicating a significant effect of ME couplings on some electric properties.

In addition to Fig. 18, another consequence of ME couplings on magnetic properties can be

clearly seen from Figure 20. As a matter of fact, in the case of γme = 0, the magnetic susceptibility

adopts the “normal” behavior inherent to antiferromagnetic systems [22], that is a kind of a plateau

for temperatures lower than T 0
N and then a monotonic decrease (that we numerically found to be
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inversely proportional to T +T 0
N , as consistent with Refs [22, 24]) when heating the systems above

T 0
N . In contrast, switching on the ME couplings has three dramatic effects: (1) the value of the

magnetic susceptibility decreases as the ME couplings increase in strength for any temperature

T ≤ T 0
N , with the plateau occurring when γme = 0 being even replaced by a slightly increasing

function when increasing the temperature up to T 0
N for the largest studied γme parameters; (2) the

magnetic susceptibility is not anymore inversely proportional to T +TN when heating the system

from TN to TC. In fact, χM,⊥ is found to be nearly independent of temperature for the strongest γme

coefficients; and (3) a sudden jump of χM,⊥ is clearly seen at the Curie temperature.

B.2.2 Phenomenology

To reveal the origins of all these effects and better understand them, let us develop a phenomenol-

ogy for which the free energy, F , is given by:

F = F0 +
A2
2 P2 + A4

4 P4 + A6
6 P6 + B2

2 M2 + C2
2 L2 + C4

4 L4

+βPM
2 P2M2 ++βPL

2 P2L2 + βLM
2 L2M2−MH (B.2.1)

where M and L are the magnetization and G-type antiferromagnetic moment, respectively, while

P and H are the electrical polarization and applied magnetic field, respectively. Note that, in the

case of the simulations described above, the polarization, induced magnetization and magnetic

field are all along the pseudo-cubic [111] direction while the AFM vector is along a direction

being perpendicular to [111]. As a result, we are only concerned about the magnitude, rather than

direction, of the physical quantities appearing in Eq.(B.2.1).

As consistent with phenomenologies of antiferromagnets undergoing a second-order magnetic

transition and of ferroelectrics undergoing a first-order structural transition, the C4 and A6 coeffi-

cients are both positive and constant, while the A4 parameter is also constant but is negative [24].
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On the other hand, the C2, B2 and A2 coefficients are temperature-dependent [24]:

C2 = c2(T −T 0
N ) (B.2.2)

B2 = b2(T +T 0
N )

A2 = a2(T −T 0
C )

where c2, b2 and a2 are positive constants, and with T 0
C being related to the “bare” Curie tempera-

ture, i.e. corresponding to the case of no ME coupling [13]. Notice the difference in sign in front

of T 0
N between the first and second line of Eq.(B.2.2).

Moreover, the βPL coefficient of Eq. (B.2.1) is considered here to be a negative constant, since

Figs. 18 and 19 show that increasing γme results in an enhancement of both L and P (at a fixed

temperature below T 0
N ). This enhancement also implies that the electric-dipole-mediated exchange

parameters appearing in the second energy term of Eq. (B.1.2) disfavor ferromagnetism even more

when γme increases in magnitude. As a result, the βPM coefficient is positive, and enhancing the

strength of the Ei j coefficients of Eq. (B.1.2) (or equivalently, γme) increases the magnitude of both

the βPL and βPM parameters of Eq. (B.2.1). Finally, the βLM parameter is a positive constant, as

characteristic of a competition between the magnetization and AFM vector.

If we take into account that, for temperatures below TC, A6(βPLL2 +A2) is negative and that

the magnetization always vanishes in the studied AFM system under no field, the minimization of

Eq. (B.2.1) with respect to P gives:

P2 =
−A4 +

√
A2

4−4A6(βPLL2 +A2)

2A6
f or T ≤ TC (B.2.3)

Inserting Eq. (B.2.2) into Eq. (B.2.3), and distinguishing the temperature ranges below and
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above the Neel temperature (at which the AFM vector vanishes) thus give:

P2 =
−A4+
√

A2
4+4A6a2(T 0

C−T )
2A6

f or TN ≤ T ≤ TC (B.2.4)

P2 =
−A4+
√

A2
4+4A6a2(T 0

C−T )−4A6βPLL2

2A6
f or T ≤ TN ≤ TC

The fact that the first and second lines of Eq. (B.2.4) differ by the presence of −4A6βPLL2

under the square-root (which is a quantity that is always positive) successfully explains the upward

change of slope in the polarization-versus-temperature curves of Fig. 19 below TN , when the ME

effect is turned on (that is when the βPL coefficient does not vanish), since L is also temperature de-

pendent – as shown in Fig. 18. Our Landau-type phenomenological model can therefore reproduce

and explain some striking features revealed by the atomistic simulations.

Furthermore, minimizing Eq. (B.2.1) with respect to L in our AFM multiferroic (for which M

is zero for any temperature, when no field is applied) gives:

L2 =
−(C2 +βPLP2)

C4
f or T ≤ TN ≤ TC (B.2.5)

Inserting Eq. (B.2.2) into this latter equality then yields

L2 =
c2(T 0

N −T )
C4

− (βPLP2)

C4
f or T ≤ TN ≤ TC (B.2.6)

Since βPL is negative while C4 is positive, the second term in the right-hand side of Eq. (B.2.6)

explains another significant result of the atomistic simulations, namely why increasing γme en-

hances the magnitude of the AFM vector L for any finite temperature below TN (see Fig. 18).

Moreover, setting Eq. (B.2.6) to zero provides the “renormalized” Neel temperature, that is the

Neel temperature that takes into account ME effects:

TN = T 0
N −

(βPLP2)

c2
(B.2.7)
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This equation indicates that the difference between TN and T 0
N should be proportional to both

γme and the square of the polarization (computed at the Neel temperature). As shown in the inset of

Fig. 18, such proportionality is well satisfied by the results of the atomistic simulations. Equation

(B.2.7), that is derived from a Landau-type-model, thus provides a successful explanation of some

key features of Fig. 18 (that arises from atomistic calculations), namely (1) why the Neel tempera-

ture is larger than the “bare” Neel temperature, T 0
N , when ME effects are switched on; and (2) why

TN increases when increasing γme. It would therefore be a mistake to determine the bare magnetic

exchange parameters from the experimental Neel temperature of multiferroics, especially if these

latter exhibit strong ME parameters.

Let us now try to explain and deeply understand some striking results shown in Fig. 20. For

that, one first has to minimize Eq. (B.2.1) with respect to M:

M =
H

B2 +βLML2 +βPMP2 (B.2.8)

Taking the derivative of this latter equality with respect to H then gives:

χM,⊥ =
1

B2 +βLML2 +βPMP2 (B.2.9)

This latter equation can be separated into three different equalities, depending on the range of

temperatures for which the AFM vector and/or polarization vanish or not:

χM,⊥ = 1
B2

f or TN ≤ TC ≤ T (B.2.10)

χM,⊥ = 1
B2+βPMP2 f or TN ≤ T ≤ TC

χM,⊥ = 1
B2+βLML2+βPMP2 f or T ≤ TN ≤ TC

The first and second lines of Eq. (B.2.10) indicate that the inverse of the magnetic susceptibility

should exhibit a sudden change of βPMP2 at the ferroelectric phase transition, when the polarization

appears via a first-order transition. Such feature therefore explains the significant increase of χM
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numerically found when increasing the temperature through the Curie temperature, for the largest

studied ME coefficients (see Fig. 20) [16].

Moreover, inserting the second line of Eq. (B.2.2) and the first line of Eq. (B.2.4) into the

second line of Eq. (B.2.10) gives:

χM,⊥ =
1

b2(T +T 0
N )+βPM{

−A4+
√

A2
4+4A6a2(T 0

C−T )
2A6

}
f or TN ≤ T ≤ TC (B.2.11)

This latter equation indicates that the magnetic susceptibility follows the “usual” 1
b2(T+T 0

N )
be-

havior when there is no ME coupling. On the other hand, switching the βPM coefficient (by making

γme non-null) leads to a violation of such traditional law, and can result in unusual behavior. For

instance, let us assume, for simplicity, that 4A6a2(T 0
C −T ) is much smaller than A2

4. Then using a

Taylor expansion of the square root results in the rewriting of Eq. (B.2.11) as:

χM,⊥ =
1

(b2 +
βPMa2

A4
)T +(b2T 0

N −
βPMA4

A6
− βPMa2T 0

C
A4

)
f or TN ≤ T ≤ TC (B.2.12)

In that case, an exact cancellation of b2 and βPMa2
A4

(recall that b2 is positive while βPMa2
A4

is negative)

would render the magnetic susceptibility independent of the temperature when this latter ranges

between TN and TC, which is nearly the case for the largest investigated γme as shown by the

numerical data of Fig. 20!

Finally, the insertions of Eq. (B.2.6) and of the second line of Eq. (B.2.2) into the third line of

Eq. (B.2.10) result in:

χM,⊥ =
1

(b2− βLMc2
C4

)T +(b2 +
βLMc2

C4
)T 0

N +(βPM−βLM
βPL
C4

)P2
f or T ≤ TN ≤ TC (B.2.13)

if we assume that b2 = βLMc2
C4

then the magnetic susceptibility becomes independent of tem-

perature for T ≤ TN when there is no ME coupling (i.e., when βPL=βPM=0), as nearly consistent

with Fig. 20. Moreover, the last term of the denominator of Eq. (B.2.13) is positive (since βPL is
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negative while βPM, βLM and C4 are all positive) and involves the square of the polarization. Since

this latter decreases when increasing the temperature up to the Neel temperature (see Fig. 19), the

phenomenological Equation (B.2.13) naturally explains aother numerical result, namely why χM,⊥

does not exhibit anymore a plateau and, in fact, increases when heating the system to TN for the

largest considered γme coefficient.

Note that Eq. (B.2.13) also tells us that 1
χM,⊥
− 1

χ0
M,⊥

, with χ0
M,⊥ being the magnetic susceptibility

in case of no ME coupling, is equal to (βPM−βLM
βPL
C4

)P2 and thus should be directly proportional

to both the γme parameter and the square of the polarization. The inset of Fig. 20 reveals that such

proportionality indeed holds for the results of the atomistic simulations, which further asserts the

validity of the phenomenological model developed here.

B.3 Conclusions

In summary, we have demonstrated, via the use of an atomistic scheme, that magnetic properties

can be strongly affected by the ME coupling in an antiferromagnet multiferroic. This includes

several strong deviations of the perpendicular component of the magnetic susceptibility from the

universal behavior seen in “pure” antiferromagnets. Let us also emphasize that our phenomeno-

logical model (that allowed to reproduce and understand novel key features of magnetic proper-

ties of our model AFM multiferroic) can be easily extended to AFM multiferroics for which the

Neel temperature is larger than the ferroelectric Curie temperature, as well as to system exhibiting

a second-order paraelectric-to-ferroelectric phase transition or even to ferromagnet ferroelectrics

(unlike the case we studied here). In all these situations, χM,⊥ will likely exhibit anomalous fea-

tures that should be reproduced and understood by these phenomenologies. We thus hope that the

present work is of broad interest and deepens our current knowledge of multiferroics and antifer-

romagnets.
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