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ABSTRACT 

This dissertation performs a methodical analysis to understand the 

behavior of inventory record inaccuracy (IRI) when it is influenced by 

demand, supply and lead time uncertainty in both online and offline retail 

environment separately. Additionally, this study identifies the 

susceptibility of the inventory systems towards IRI due to conventional 

perfect data visibility assumptions. Two different alternatives for such 

methods are presented and analyzed; the IRI resistance and the error control 

methods. The discussed methods effectively countered various aspects of IRI; 

the IRI resistance method performs better on stock-out and lost sales, 

whereas error control method keeps lower inventory. Furthermore, this 

research also investigates the value of using a secondary source of 

information (automated data capturing) along with traditional inventory 

record keeping methods to control the effects of IRI. To understand the 

combined behavior of the pooled data sources an infinite horizon discounted 

Markov decision process (MDP) is generated and optimized. Moreover, the 

traditional cost based reward structure is abandoned to put more emphasis on 

the effects of IRI. Instead a new measure is developed as inventory 

performance by combining four key performance metrics; lost sales, amount of 

correction, fill rate and amount of inventory counted. These key metrics are 

united under a unitless platform using fuzzy logic and combined through 

additive methods. The inventory model is then analyzed to understand the 

optimal policy structure, which is proven to be of a control limit type. 
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CHAPTER 1  INTRODUCTION 

1.1 Background and Motivation 

Supply chain and inventory management has always been a major concern in 

the business world as well as in the academic domain. It can be referred to 

as the planned course of action against random consumption of the items, 

products, goods, etc. The scope entails physical holding, lead times, holding 

costs, replenishment, defective goods, quality control, transportation, 

storage, and inventory visibility. Hence, inventory models can be regarded as 

one of the most widely studied topics in industrial engineering and 

operations management. Due to the uncertain nature of the world, these models 

are known to have a complex structure.  

There is countless number of research studies related to inventory 

management in the literature. The main goal for most of these studies is to 

reach efficient solutions that would provide cost effective realizations in 

practice. Keeping specific levels of inventory is a must to attain optimal 

values for cost or profit (Rinehart, 1960). Relph et al. (2003) categorize 

the basic reasons for inventory in three sets: lead-time, uncertainty, 

consumer satisfaction. Lead time is the time lags present in the supply chain 

- from suppliers to end costumers – that requires a certain amount of 

inventory to be used. However, in practice, inventory is to be maintained for 

consumption during variations in lead time, forcing decision makers to hold 

extra items to account for the time lag. Decisions are made under different 

levels of uncertainty which forces extra items to be maintained as buffers to 

meet uncertainties in demand, supply and movements of goods. Ideal condition 

of "one unit at a time at a place where a consumer needs it, when he/she 

needs it" principle incur lots of costs in terms of logistics. So bulk 
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buying, movement and storing brings in economies of scale, thus extra 

inventory. Hence, items must be ordered periodically, stored and managed 

efficiently or else, the business will lose money. To avoid such undesirable 

situations companies pay a lot of attention to inventory and its management. 

In practice, dealing with all the uncertain factors, satisfying the high 

service levels and reaching optimal solutions at the same time is 

challenging. Starting from late 70s, theoretical studies began addressing the 

difficulties faced in inventory management (Boxx, 1979; Covin, 1981; French, 

1980). In industries where the competition is fierce and profit margins are 

thin, companies have automated the inventory management processes to better 

meet customer demand and reduce operational costs. Such schemes significantly 

decreased the response time of the decision makers, making it dramatically 

easy to keep track of the records and avoid human intervention as much as 

possible. However, the automation of management processes transferred the 

entire critical decision making - such as what products are where and in what 

quantity - from humans to computers.  

The effectiveness of automated systems depends on data gathering and 

passing it through the chain with the aim of effectively coordinating the 

movement of the goods. This, according to Boritz (2003), raises the issue of 

data accuracy. Most companies make substantial investments in innovating 

systems and thus enabling them to improve the level of automation of their 

supply chain processes (Boritz, 2003). However, majority of the inventory 

models operate under the assumption of perfect data accuracy. In other words, 

the quantities of the various goods in stock at any time are known 

accurately. Such models have limited liability, especially if the number of 

inventory is large with high turnover rates. In such a setting, inventory 

records are likely to be incorrect, and ignoring this fact often results in 

failed re-procurement cycles and quantities.  
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The lack of theoretical studies in this conjecture has left the practices 

vulnerable to unrequired replenishment, unnecessary procurement and 

occasional delays in supplying customers. Iglehart and Morey (1972) and Raman 

et al. (2001) quantify the effect of the data assumptions on data accuracy; 

Iglehart and Morey (1972) also report that out of 20,000 total items 25% 

revealed discrepancies, which corresponded to roughly 4% of monthly 

inventory. Similarly, Raman et al. (2001) reports that 65% of 370,000 units 

of inventory, did not match the physical stocks. 

The objectives of this dissertation are to understand the concept of 

inventory record inaccuracy (IRI), explore the effects induced by uncertainty 

on IRI, and apply methods to control the impact of IRI. In this context, IRI 

is defined as the error when the stock record is not in agreement with the 

physical stock. Such discrepancies are generally introduced to the system 

during three operations: inbound transactions, shelving operations and 

outbound transactions. These errors force the system to operate with 

inaccurate information and make wrong decisions, often followed by a stock-

out. The susceptibility in this setting arises from two factors, the 

capabilities of technological systems and the shortcomings of the theoretical 

inventory models used in the system. Hence, it is clear that policies that 

are more resistant to IRI and technologies that can capture data more 

effectively are needed.  

1.2 Literature review 

Inventory problems, in general, have been studied extensively in the 

literature. Since 1950s artifacts, barcode readers and universal tags have 

been used in order to decrease the complexity of decision making. One of the 

major benchmarks in the gradual progress of supply chain and inventory 
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management, particularly in inventory management, was in the early 1980s. The 

development of technology reached to a point in which easy and cheap 

utilization of stronger computers with faster processing power became 

possible. Companies started to take advantage of these computers and began to 

automate their inventory management processes using specialized software for 

inventory management. According to Lee and Ozer (2007), the specialized 

software that emerged is referred to as automatic replenishment systems 

(ARS). The ARS gather the point-of-sales statistics under one platform by 

tracking the changes in inventory records. In addition, replenishment orders 

are placed automatically based on the gathered data and the implemented 

control policy. With the support of various inquiries, these systems 

significantly reduced the complexity of decision making by providing superior 

utilization of statistics. Automatic replenishment systems operate by keeping 

track of every stock keeping unit (SKU) in the inventory through recording 

the fluctuations due to demand, supply, and any other possible cause at the 

same time. With this SKU information in hand, such systems can react to 

predetermined circumstances (such as low on-hand inventory or a sharp 

increase in holding costs) without the need of frequent cycle counting.  

1.2.1 Inventory Record Inaccuracy 

An essential shortcoming of the ARS is the regular implicit assumption 

that the quantities of the various goods in stock at any time are accurately 

known. In other words, the actual on-hand inventory and the recorded 

inventory is equal or very close. However, empirical observations have found 

this implicit assumption to be incorrect, DeHoratius and Raman (2008) and 

Iglehart and Morey (1972), show that make such assumptions have limited 

viability. Surveys and empirical studies have also shown that the difference 

between inventory records and actual inventory has a critical effect on the 

4 
 



 

resulting operating costs and revenue (Agrawal, 2001; Kang & Gershwin, 2004). 

If the information provided to an automated replenishment system is incorrect 

and if the control mechanisms do not account for inventory discrepancy, then 

the system fails to order when it should or it carries more inventory than 

necessary. The outcome is either lost sales or an inventory surplus. 

Early studies conducted by Rinehart (1960) observe that the larger the 

supply operations, the more susceptible it will be to discrepancies between 

inventory records and physical stocks. In his research, a case study 

conducted on a government agency reveals that there is 33% discrepancy out of 

6,000 randomly picked items during a specific period of time. Furthermore, 

the study concludes that small discrepancies with little impact on inventory 

control operations and re-ordering procedures could lead to huge 

inconsistencies over a period of time. Thus, in terms of identification 

purposes all discrepancies are significant regardless of their size. 

Iglehart and Morey (1972) discuss the same issue by looking at a report 

conducted at a naval supply depot. This report shows that 25% of the 20,000 

total SKUs have discrepancies. These discrepancies correspond to an error 

rate approximately 4% of the monthly inventory turnover. Furthermore, an 

alternative case is also addressed in their investigations. A retailer with 

400 units of monthly demand with a fixed standard error deviation is 

considered. They analyze how rapidly the errors grow between cycle counts. 

Their study shows that the cumulative error after 26 months reaches to 

approximately 20% of the monthly demand. 

Several studies (Iglehart & Morey, 1972; Rinehart, 1960), realize the 

importance of the accuracy of inventory records and introduce the concept of 

IRI. Starting in the late 1970s, IRI has been extensively researched, 

especially under material requirements planning (MRP) (Boxx, 1979; Covin, 

5 
 



 

1981; French, 1980). With the development of manufacturing simulation systems 

in the 1980s, the interest in IRI jumped to various fields. Ritzman et al. 

(1984) focus on the standardization of the product and the corresponding IRI 

rate. Krajewski et al. (1987) show that the probability of incorrect 

inventory transaction is 0.02, if a fixed order quantity is used for lot 

sizes. Viewing IRI as a reoccurring problem, Bragg (1984) addresses the long 

term impact on inventory delivery and supply chain performance. The 

conventional ways of reducing the inaccuracy is first discussed by Plossl 

(1977). According to Plossl, management can control the accuracy by 

formalized training of personnel, cycle counting, barcoding, limiting access 

to the stockroom, and higher wages for personnel who track inventory data. 

These procedures imply incurring additional costs on employee downtime. 

Baudin (1996) and Millet (1994) utilized a similar approach and argued that 

improving employee traits such as incentives, motivation, training and tools 

can achieve higher accuracy levels. 

The majority of the literature on IRI used the same functional definition 

for inventory accuracy, which is based on the discrete counts of inventory 

components called SKU. Inventory accuracy is then defined to be the ratio of 

the number of SKUs counted and found to be correct with a small tolerance for 

error. In this setting, the magnitude of the error is defined to be the size 

of the discrepancy between the physical stock and recorded inventory; see 

studies by Buker (1979) to Robison (1994). However, in the 1990s with the 

advent of computer aided systems for record keeping, the main focus of 

research began to shift towards identifying the underlying reasons for IRI 

and analyzing their long term effects. In the earlier studies the most 

commonly encountered problems in IRI are categorized as misplacement errors, 

theft, perished products, supplier frauds, and transaction errors. Mosconi et 

al. (2004) capture the interaction between IRI and the variability due to 
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scanning and receiving processes. In the study, a mathematical model is 

proposed defining the amount of inventory on-hand and the level of demand. By 

focusing on the impacts of factors that lead to IRI, Atali et al. (2006) 

analyze inventory shrinkage problem under three categories: permanent 

inventory shrinkage (such as theft and damage), temporary inventory shrinkage 

(such as misplacement) and the final group of factors (such as scanning 

error) that affects only the inventory record without changing the physical 

inventory level. 

Studies tend to agree on grouping IRI in two categories: shrinkage and 

transaction errors. One of the earliest analyses on transaction errors is by 

Iglehart and Morey (1972), which entails a single-item periodic-review 

inventory system with a predefined stationary stocking policy. Another paper 

by Kok and Shang (2007) explores an inventory replenishment problem together 

with an inventory audit policy to correct transaction errors. They consider 

transaction errors as a source for discrepancy and assume that these error 

terms are identically and independently distributed with mean zero. They 

consider a periodic-review stationary inventory system in which transaction 

errors accumulate until an inventory count is triggered. Hence, the manager 

incurs a linear ordering, holding and penalty cost and a fixed cost per 

count. When inventory is not counted periodically, the total error gradually 

increases thus contributing to the amount of uncertainty. The question is 

whether to deal with a larger uncertainty, or to count and incur an 

additional fixed cost and subsequently deal with lesser uncertainty. For a 

finite horizon problem Kok and Shang (2007) shows that the adjusted base-

stock policy is close to optimal through a numerical analysis. The policy 

claims that if the inventory record is below a threshold, an inventory 

counting is requested to correct the errors. They model cost analysis 

framework to compare two classic periodic-review inventory control problems 
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for which the base-stock policy is the optimal. They compare the cost of a 

periodic review systems facing demand uncertainty at each period. Comparing 

the two, the authors observe that the costs can be reduced by around 11% if 

the manager can eliminate all transaction errors. 

Shrinkage is the second source of discrepancies influencing IRI. 

Shrinkage can be categorized as the general unavailability of products due to 

various reasons such as theft, spoilage or damage. Kang and Gershwin (2004) 

investigate inventory movement when the errors are caused only by shrinkage. 

They illustrate how shrinkage increases lost-sales and results in an indirect 

cost of losing customers (due to unexpected out of stock), in addition to the 

direct cost of losing inventory. Their objective is to illustrate the effect 

of shrinkage on lost-sales through simulation. They do not consider 

transaction errors and misplacement, nor do they consider optimal inventory 

counting decision. However, they provide some plausible methods to compensate 

for inventory inaccuracy.  

The reoccurring encounter of IRI forced industry to pursue different 

methods and to invest in computer aided systems that provide automatic 

identification (Auto-ID), such as barcoding. According to Steidtmann (1999), 

US retailers spend 1% of total annual sales on automated inventory management 

tools to track sales, forecast demand, plan product assortment, determine the 

replenishment quantities, and control inventory. In his paper, Agrawal (2001) 

points out that the barcode system became the most commonly used data capture 

technology in practice. Approximately five billion codes are scanned every 

day in 140 countries. Utilization of a barcode system reduced the effects IRI 

caused by transaction errors; however, it did not account for other types of 

errors. A more recent work on IRI, (Raman et al., 2001), report that out of 

370,000 SKUs investigated in 37 of two leading apparel retail stores, more 

than 65% of the inventory records did not match the physical stock. Ton and 
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Raman (2004) conduct similar empirical analysis to show that the discrepancy 

problem still exists today. Gentry (2005) also report an IRI around $142,000 

in a well-known apparel retailer, The Limited. Comparison of these case 

studies reveals two important observations. First, retail environments that 

have a high inventory turnovers and more contact with customers accumulate 

much more discrepancy than distribution centers that have lower inventory 

turnovers and less contact with customers. Second, the recent developments in 

information technology have not yet addressed or eliminated the inventory 

discrepancy problem. Presumably, with a real-time tracking technology the 

manager can have complete visibility of inventory movement within the company 

at any point in time. 

The focus of the studies of IRI in the literature is generally on 

monetary effects. Our study on the other hand focuses on modelling the 

behavior of IRI, analyzing various methods to control the behavior and limit 

the impact of IRI. Furthermore, most of the studies only use random demand 

and do not include the lead time or supply uncertainty in the inventory 

framework. This dissertation however, scrutinizes the effects of supply and 

lead time uncertainties as well as their influence on IRI. Combining all of 

the analysis, a general formulation for IRI is presented including the 

uncertainties faced. Finally, two different alternatives for compensating IRI 

are developed: limiting the impact of IRI on inventory model and controlling 

the behavior of IRI.  

1.2.2 Multi-Objective Inventory Models 

Multi-objective inventory models are also commonly studied in the 

literature, i.e. (Lewis, 1970; Naddor, 1966; Silver & Peterson, 1985), under 

various constraints. Modelling an inventory problem involves inventory costs, 

purchasing and selling prices in the objectives and constraints, which are 
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seldom known in real life. So due to the specific requirements and local 

conditions, uncertainties are associated with these variables and the 

mentioned objectives are vague and imprecise. This motivated researchers to 

use fuzzy logic in formulating inventory models, especially in the multi-

objective setting (Roy & Maiti, 1998; Tsou, 2008; Wee et al., 2009; Xu & Liu, 

2008). ARTICTE (1995) group multi-objective optimization problems into two 

categories, complementary and conflicting. In complementary objective multi-

objective decisions can often be solved through a hierarchical extension of 

the multi-criteria evaluation process i.e. (Carver, 1991). With conflicting 

objective multi-objective decisions are often prioritized to give rank order. 

The most common way of solving such problems involves optimization of a 

choice function (Feiring, 1986) or goal programming (Ignizio, 1985). Please 

refer to Marler and Arora (2003) for a comprehensive review of methods on 

multi-objective optimization. 

The first publication in fuzzy set theory, (Zadeh, 1965), presents 

methods to accommodate uncertainty in a non-stochastic sense rather than the 

presence of random variables. After that, fuzzy set theory is applied to many 

fields including inventory management. One of the first applications of fuzzy 

dynamic programming to inventory problem is by Kacprzyk and Staniewski 

(1982). Instead of minimizing the average inventory cost, they reduced it to 

a multi-stage fuzzy decision making problem. Another paper, Park (1987), 

focus on the EOQ formula in the fuzzy set theoretic perspective, associating 

the fuzziness with the cost data. The Eoq model is then transformed to a 

fuzzy optimization problem. Petrovic and Sweeney (1994) fuzzify the demand, 

lead time and inventory level into triangular fuzzy numbers in an inventory 

control model. Vujosevic et al. (1996) extend EOQ model by introducing the 

fuzziness of ordering and holding cost. Roy and Maiti (1997) also develop an 

EOQ model where unit prices vary with demand, cost and production. They 
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evaluate the optimal order quantity by both fuzzy nonlinear programming and 

fuzzy geometric programming. Chang et al. (2006) investigate mixture 

inventory model involving variable lead time with backorder and lost sales. 

They obtain the total cost by fuzzifing the lead time demand with a 

triangular membership function. 

Fuzzy multi-objective inventory models are a developing field. Roy and 

Maiti (1998) investigate a multi-item inventory model of deteriorating items 

with stock-dependent demand in a fuzzy environment. Their objective is 

maximizing the profit and minimizing the wastage cost which are fuzzy. They 

express the impreciseness in the fuzzy objective and constraint goals by 

fuzzy linear membership functions and that in inventory costs and prices by 

triangular fuzzy numbers. Chen and Tsai (2001) reformulate the fuzzy additive 

goal programming by incorporating different important and preemptive 

priorities of the fuzzy goals. An interactive fuzzy method for multi-

objective non-convex programming problems using genetic algorithms is 

proposed by Sakawa and Yauchi (2001). Mandal et al. (2005) formulate a multi-

item multi-objective fuzzy inventory model with storage space, number of 

orders and production cost restrictions. The multi-objective fuzzy inventory 

model was solved by geometric programming method. Xu and Liu (2008) 

concentrate on developing fuzzy random multi-objective model for multi-item 

inventory problems in which all inventory costs are assumed to be fuzzy. They 

use trapezoidal fuzzy numbers to represent the impreciseness of objectives 

and constraints. They provide a fuzzy random multi-objective model and a 

hybrid intelligent algorithm to provide solutions to inventory models. Wee et 

al. (2009) study a fuzzy multi-objective joint replenishment inventory 

problem of deteriorating items. Their model maximizes the profit and return 

on inventory investment under fuzzy demand and shortage cost constraint. The 

fuzzy multi-objective models are formulated using fuzzy additive goal 
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programming method and also a novel method inverse weight fuzzy non-linear 

programming is proposed.  

The general focus of multi-objective inventory models is usually on 

various conflicting return on investment type of objectives. In this 

dissertation we define a new measure called the inventory performance. This 

measure is a fuzzy combination of four key parameters that are directly 

influenced by IRI; lost sales, expected correction, stock-out amount and 

service level. These parameters are then used to develop a multi-objective 

setting for a fuzzy additive goal programming 

1.3 Organization of the Dissertation 

The organization of this dissertation is shown in Table 1-1. The model 

column in the table shows the utilized setup for each chapter. The data 

source column presents the sources of information used in the model. In this 

context, inventory records refer to the traditional stock keeping methods 

where the number of inventory on-hand is calculated based on order and sales. 

In Chapter 2, Appendix A and Chapter 4, the only source of information on the 

inventory level is the inventory records; however, in Chapter 5 another 

source of information is introduced as the visibility information, obtained 

through automated data capturing systems (e.g. RFID). The IRI policy column 

shows the decision maker’s perception of IRI. Ignorant means that the 

decision maker assumes that IRI is non-existent; whereas, in the informed 

policies the decision maker is aware of IRI and the inventory system is 

constructed accordingly. The focus column shows the focus of the analyses 

done. The final column denotes the environment the system belongs to. Offline 

retail is the traditional brick and mortar type of retailing and online 

retail is the channel where customers make their purchases from internet. 
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Table 1-1: Dissertation organization 

Chapter Model Data Source IRI Policy Focus Environment 

Chapter 2 

Simulation 

Inventory 
Records 

Ignorant and 
Informed IRI Offline 

Retail 

Chapter 3 Inventory 
Records Informed IRI Online 

Retail 

Chapter 4 Inventory 
Records Informed Cost Online & 

Offline  

Chapter 5 Optimization Inv Records 
& AutoID Informed Inventory 

Performance 
Offline 
Retail 

 

In the dissertation, Chapter 2 and Appendix A conduct simulation studies 

to replicate and understand IRI behavior under demand, supply and lead time 

uncertainty for online and retail setting. Furthermore, various methods to 

control the behavior and limit the impact of IRI are analyzed. In these 

models the only source of information is inventory records. Combining all of 

the analysis, a general formulation is presented including the errors and the 

uncertainties faced. This general formulation is then separated into two 

separate cases (the best and the worst case) representing different order of 

events. Furthermore, for each case two different alternatives for 

compensating IRI are categorized: limiting the impact of IRI on inventory 

model and controlling the behavior of IRI. 

Chapter 4 continues the analysis on IRI by introducing a cost framework. 

The general cost structure is divided into three categories; IRI related 

costs, penalty costs and operating costs. This cost structure is then used to 

create a common platform for important performance metrics. This model is 

designed for online and offline retail setting separately. 

In Chapter 5, two new concepts are introduced to the system. First, a new 

source of information on inventory level is defined as Auto-ID. With two 

separate sources of information about the inventory level, the decision maker 

hopes to optimize the Inventory problem by reducing or controlling IRI. 

Second, the cost structure is improved further by using fuzzy logic. Multiple 

13 
 



 

fuzzy cost parameters are defined and then combined in a multi-objective 

setting. With both sources of information the inventory problem is modeled as 

an infinite horizon discounted MDP with fuzzified multi-objective. This model 

is extensively analyzed to understand the optimal policy structure.  
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CHAPTER 2  IRI ANALYSIS IN OFFLINE RETAILING WITH LEAD TIME AND SUPPLY 

UNCERTAINTY 

 

Inventory models are one of the widely studied topics in supply chain 

management. Due to the uncertain nature of the system parameters such as 

demand, supply, lead times and errors, these models are known to have a 

complex structure. In practice, dealing with these uncertain factors, 

satisfying the high service levels, and reaching optimal solutions at the 

same time are very difficult.  

Majority of the research on inventory models operate under the assumption 

perfect record accuracy. According to Bensoussan et al. (2005), a limited 

number of studies investigate IRI mainly due to retailers do not publicize 

their lack of full inventory information, and because the information must be 

inferred from surrogate measures. Moreover, the assumption of perfect 

accuracy assumption greatly reduces the theoretical complexity of the 

inventory problems. However, in real settings, inventory records are likely 

to be incorrect. The lack of theoretical studies in this conjecture has left 

practices susceptible to unrequired replenishment, unnecessary procurement 

and occasional delays in supplying customers. Empirical studies try to 

quantify and reveal the impact of data accuracy assumption. In Iglehart and 

Morey (1972), out of 20,000 total items 25% revealed discrepancies which 

corresponded roughly 4% of monthly inventory. In Raman et al. (2001) 65% of 

370,000 units of inventory, did not match the physical stocks. 

The objective of this dissertation is to understand the IRI concept in 

the offline environment, explore the effects induced by uncertainty, and 

apply methods to control the impact of IRI. In the offline retail setting, 

IRI can briefly be defined as the error when the stock record is not in 
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agreement with the physical stock. Such discrepancies are generally 

introduced to the system during three operations, inbound transactions, 

shelving operations and outbound transactions. These errors force the system 

to operate with inaccurate information and make wrong decisions, often 

followed by a stock-out. The susceptibility in this setting arises from two 

factors, the capabilities of technological systems and the shortcomings of 

the theoretical inventory models used in the system. Hence, it is clear that 

inventory policies that are more resistant to IRI and technologies that can 

capture data more effectively are needed. 

Lead time and supply uncertainty are extensively researched topics in 

inventory management problems. However, the literature on IRI commonly 

operates under the assumption that the lead time and the supply are 

deterministic. This dissertation also investigates the influence of the 

additional uncertainty caused by the random supply and the random lead time. 

Supply uncertainty. The introduction of general random lead time mechanism 

often causes disruptions in the supply chain coordination due to loss of 

tractability (Bashyam & Fu, 1998). Furthermore, it enhances the stock-out 

risk faced during the lead time. The supply uncertainty, on the other hand, 

is often caused by two factors, random capacity and random yield of the 

suppliers (Henig & Gerchak, 1990). In our study, we use simulation analyses 

to model these extra uncertainties and estimating performance. 

The outline of this chapter is as follows, Section 2.1 presents the 

general characterization for errors under demand, supply and lead time 

uncertainty. In Section 2.2 for a continuous review inventory problem, 

methods for compensating the impact of IRI are examined. Also the analysis is 

tested on a numerical example. Finally, in Section 2.3 a discussion about 

this study is presented.  
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2.1 Model 

As previously mentioned, the IRI is affected by many uncertain factors 

such as random demand, random supply, and lead time, in addition to the 

inventory management related errors. The complication is that the 

relationship is not one sided; IRI also affects all of these factors. Various 

enumerations of IRI can be found in the literature. Underlying error factors 

are typically categorized based on dependent variables. In this study 

however, we will categorize these error factors based on their impacts on 

inventory as follows: (1) Inbound errors: Errors that occur during ordering 

and receiving process; (2) Shelving errors: Errors that are due to damaged, 

stolen, or expire SKUs, which cause the physical stock to change without 

informing inventory records; (3) Outbound errors: Errors that occur during 

check-out processes (e.g. scanning errors). When left uncorrected, these 

errors will significantly lower retailer performance by increasing the stock-

out rate. According to Gruen et al. (2002) the stock-out rates on average 

fall in range 5-10% which roughly corresponds to 4% of sales. 

Figure 2-1 shows a typical continuous inventory behavior subject to 

errors. In the considered model, the start of each period is identified as 

points at which a replenishment order is given. In order to create a 

generalized model, let 
ktx  denote the amount of actual inventory and 

ktx  

denote the inventory record at time kt , at the replenishment order time in 

period k . 
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Figure 2-1: Behavior of the physical stock, inventory stock, and inventory 
position 

Also let ky  be the order quantity given by the decision maker and kD  be 

the total demand in period k . Hence, at the start of period, the inventory 

records are checked and updated by reordering ky  units of inventory. After kτ  

units of time, the order is received. The standard procedure continues until 

period 1k + , when records reach to the reorder level R . Up until this point 

kT  time periods passed and kε  amounts of error occurred which made total 

error equal to 1kJ + . As seen in the figure, after the second replenishment 

decision, the inventory keeps decreasing rapidly until none left. Eventually 

this rapid decrease results in a stock-out. The demand occurring during this 

interval is lost until inventory is replenished.  

Suppose that demand has a known distribution function ( ) { }DF z P D z= ≤
 
with 

a density ( )Df z . Furthermore, let kS  be the amount of sales and kε  be the 

discrepancy between the actual and the recorded inventory during period k . In 

a perfect world where there is no IRI, no lead time, and no random supply, 

k kt tx x= . Hence, inventory progression can be formulated as 
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1k k kt t t k kx x x y S
−

= = + − , (2.1) 

where 

 { }min ,
kk k tS D x= . (2.2) 

Since there is no lead time and no randomness in yield, the orders will 

arrive at the beginning of the next cycle. The total physical inventory will 

be updated upon the arrival of the order. The demand will be satisfied 

afterwards. In order account for IRI as it occurs in real life we modify 

equation (2.1) as, 

 
1k k kt k t t k k

k K

x x x y Sε
−

∈

+ = = + −∑ .  (2.3) 

Furthermore, the randomness in supply is implemented using two most commonly 

encountered methods: yield and capacity (Erdem & Ozekici, 2002; Henig & 

Gerchak, 1990).  

In random capacity models, typically the supplier has a replenishment 

power which is a random variable, represented by K  with a known distribution 

function ( )KF v  that has a density ( )Kf v . When an order is placed for ky  

units, the suppliers will ship ky  if the total amount of on-hand inventory 

they have, K , is greater than ky . Or else, they will send their entire 

inventory, which is K . 

In random yield models, it is assumed that the amount ordered could be 

different from the amount received so that only a fraction enters the 

stockpile. The randomness in this case is represented by a random variable U  

with a known distribution function ( )UF u  that has a density ( )Uf u . When an 

order is placed for ky  units, the amount received will be kUy . 
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When the supply uncertainty is caused by both sources, equation (2.3) 

becomes, 

 [ ] [ ] { }[ ] { }
1

min , min ,
k k kt t k k k k tE x E x E U K y E D x

−
= + −    .  (2.4) 

For practicality let kY  denote the random order received after ordering ky  

units of inventory. In other words 

 { }min ,k kk kU KY y= . 

2.1.1 Error Modeling 

We consider the errors as previously classified. In this classification 

inbound and outbound errors occur during receiving and selling transactions. 

Errors during receiving and selling are modeled as r
k kYε γ=  and s

k kSε δ=  

respectively, where [ ]1,γ ∈ − ∞  and [ ]1,δ ∈ − ∞ . More information on transaction 

errors can be found in Morey (1985) and Rosetti et al. (2010). Due to the 

nature of the transaction procedures, selling and receiving errors can be 

positive or negative. In this context, a negative selling error corresponds 

to the multiple scanning of the same product; whereas, a positive selling 

error is the mistake of not scanning an item during check-out. Similarly, 

negative receiving error is getting more items than the ordered quantity due 

to the supply or the loading errors; whereas, a positive receiving error 

corresponds to getting less than the ordered quantity. The parameters for the 

transaction errors γ  and δ  are both bounded by -1 because the highest 

possible negative error that can be done cannot exceed the total order 

quantity and the total sales, respectively. In other words, the maximum 

amount of negative selling errors that can be done is equal to the amount of 

total sales.  
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Shelving errors are caused primarily due to stock-loss. Stock-loss has 

three main components: Theft { }min ,
k

t
k tD xε α= , misplacement 

k

m
k txε θ=  and 

expiration { }max ,0
k

e
k t kx Sε β= −  where 0α ≥  is the rate of theft, [ ]0,1θ ∈  is the 

percentage of items misplaced and [ ]0,1β ∈  is the rate of expiration/spoilage. 

More information can be found in Rekik et al. (2009), Yan et al. (2011), and 

Rekik et al. (2008). The parameters for the shrinkage errors are all non-

negative numbers because it is assumed that a non-existing product cannot 

become salable (e.g. an expired item being unexpired). Finally, the shrinkage 

errors t
kε , e

kε  and m
kε  are all bounded by the total inventory available since 

it is not possible to lose an item that the system does not currently have.  

Equation (2.4) can be rewritten using the relation in (2.3) as 

 

[ ] [ ] { }[ ] { }
{ }[ ] { }

{ } { }

1

0 0

0 0 0

min , min ,

min , min ,

min , max .,0

j

j j j

k k kt t k k k k t
k k

j t
j j

k k k

t j t t
j

j j

j
j

j

j

E x E x E U K y E D x

E U K y E D x

E x E D E x Sx

γ δ

θ α β

−

= =

= = =

  
  

−

= + −

+ +

   −   − −     

∑ ∑

∑ ∑ ∑



  (2.5) 

Furthermore, by subtracting equation (2.4) from equation (2.5), the inventory 

record error can be formulated as  

 

[ ] { }[ ] { }

{ }( ) { }( )
( )

0 0

0 0

0

min m, ,in

min m, in ,

.

k k

j

j

j

j

t t t

j t j t

t

k k

j j j j
j j

k k

j j
k

j

E x x E U K y E D x

E D E D x

xE

xβ

γ δ

α

θ β

= =

= =

=
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 + −

− = +

  

− +  

 



∑ ∑

∑ ∑

∑



  (2.6)  

We introduce the lead time uncertainty to equation (2.6) by separating the 

demand into two parts: lead time demand 'D , and the demand for the rest of the 

period, ''D . Then, equation (2.6) becomes 
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 (2.7) 

where 
ktJ  is the total error made until period k  and kw  is the safety 

stock for period k .    

2.1.2 General Inventory Formulation 

The underlying problem for equation (2.7) is not easy to solve due to 

recursive relationship between parameters. In order to reduce this 

complexity, we implemented two models in which the best and the worst 

possible situations are analyzed. The difference between them is the order of 

events. Figure 2-2 shows the order of events for each model. Each period k   

is divided into two phases: the first phase contains lead time demand and the 

second phase contains the demand for the rest of the period. Replenishment 

time determines the end of the first phase. 

 In the best case scenario the demand is assumed to be fulfilled first 

and then errors occur. Since the sold items are outside of the feasible space 

for errors, this scenario maximizes the demand fill rate and minimizes the 

IRI. In the worst case scenario, the errors occur first and then the demand 

is fulfilled; thus, the fill rate is minimized. In reality, the inventory 

behaves somewhere between best and worst case situations; hence the two 

characterizations provide a lower and an upper bound. In this model 1
kε  denotes 

outbound plus shelving errors during lead time, 2
kε  denotes inbound errors, and 

3
kε  denotes outbound plus shelving errors during the remainder of period k .  
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Figure 2-2: The best (left) and the worst (right) case inventory behavior 

Full formulations of the error functions for the best and the worst case 

scenarios can be found in Appendix A.I and A.II. Error function structures 

for both scenarios are dependent on input parameters α , β , θ , γ  and δ . 

Based on their configuration, the error function can be increasing or 

decreasing with lead time demand. However, the error function value increases 

as R , w , and Y  increase (i.e., more inventory elevates error). Lead time 

demand has direct and indirect effect on error in both scenarios. As demand 

increases, the system observes more outbound errors but leads to fewer 

inventory and less shelving errors.   
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2.1.3 Numerical Study 

Characterization and behavior of the developed error function are 

analyzed using a case study provided by an appliance and furniture company 

(The data provided ranges from 1990 - 2003). In the case study, a continuous 

( ),Q R  policy is utilized with ( )600,80 . Weekly demand D  and lead time τ  are 

normally distributed with ( )250,12  and ( )21.14,0.33  respectively.  

The parameters for the errors are selected from various examples in the 

literature. The transaction errors are assumed to be uniformly distributed, 

( )1%,1%unifδ −  and ( )2%,2%unifγ −  (Morey, 1985; Rosetti et al., 2010). The 

shelving parameters are defined as 1%α =  and 0.5%β =  for theft and 

misplacement, respectively (Rekik et al., 2008, 2009; Yan et al., 2011). 

Over 2000 random numbers for D  and τ  with 5 replications are generated 

to obtain the expected errors in a single period. There are seven different 

sources of errors in each period. We categorize these errors into 3 types: 

three of these errors are first phase errors, three of them are second phase 

errors and the last one is the inbound error in between phases. 

We conducted a discrete event simulation for 52 periods with 60 

replications for ( ),Q R  policy. It is assumed that the model starts with 0 IRI 

when the inventory records and actual physical stock equal to the reorder 

level. The model is depicted in Figure 2-3. 
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Figure 2-3: Flowchart of the simulation model 

In this setting, the simulation is terminated by one of the two possible 

outcomes. Either the gradual error build up becomes too big and causes the 

inventory to freeze, or the system reaches period 52 and terminates itself 

normally. In this context, we use the term freeze to describe the situations 

in which the IRI becomes exceeds the reorder level; hence, no more 

replenishment orders can be given. Details about the characterization and 

calculation of freezing are presented in the next section. 

Remark: Freezing is a frequently encountered problem in practice. Upon 

encountering a freeze situation the sales immediately stop until the errors 

are corrected. A common practice to overcome this situation is using a zero 

sales check mechanism (Raman et al., 2001). Using this method, the sales are 

tracked for a specified duration. If they remain constant over this interval 

than a cycle count is performed to correct the errors. In the simulation 
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study, we are not implementing a correction model, hence once freezing is 

observed the simulation terminates. 

Table 2-1: Correlation matrix of 7 different types of errors in the best case 

Corr 'D  ''D  1st s
kε  1st t

kε  1st e
kε  1st r

kε  
2nd 

s
kε  

2nd 
t
kε  

2nd 
e
kε  

1st 
Phase 

2nd 
Phase 

'D  1           
''D  0.014 1          

1st s
kε  -0.16 -0.00 1         

1st t
kε  0.006 -0.00 0.14 1        

1st e
kε  -0.97 -0.01 0.11 -0.16 1       

1st r
kε  0.004 0.01 -0.01 -0.01 -0.01 1      

2nd s
kε  -0.03 -0.21 0.007 -0.01 0.035 -0.01 1     

2nd t
kε  -0.12 -0.32 0.008 -0.02 0.128 -0.02 0.193 1    

2nd e
kε  -0.12 -0.94 0.023 -0.01 0.125 -0.04 0.135 0.143 1   

1st 
Phase -0.27 -0.01 0.943 0.434 0.173 -0.00 0.009 0.015 0.033 1  

2nd 
Phase -0.08 -0.38 0.011 -0.01 0.085 -0.02 0.935 0.514 0.264 0.016 1 

 

Tables 2-1 to 2-6 summarize the results of simulation studies. In the 

tables 'D  denotes lead time demand, ''D  is the remaining demand, s
kε  denotes 

outbound (selling) errors, t
kε  denotes errors due to theft, e

kε  denotes errors 

due to expiration, and r
kε  denotes inbound (receiving) errors. Recall that theft 

and expiration forms shelving errors. Correlation and covariance matrices of 

the demand, 7 types errors and total errors in the first and the second 

phases are given in Table 2-1 and Table 2-2. Based on the correlation matrix, 

errors have no strong dependence between each other.  

Table 2-2: Covariance matrix of 7 different types of errors in the best case 

Cov 'D  ''D  
1st 

s
kε  1st t

kε  1st e
kε  1st r

kε  
2nd 

s
kε  

2nd 
t
kε  

2nd 
e
kε  

1st 
Phase 

2nd 
Phase 

'D  469.76           
''D  49.405 2357          

1st s
kε  -2.353 -0.9 0.40         

1st t
kε  0.03 -0.10 0.02 0.058 

      
 

1st e
kε  -2.01 -0.20 0.01 -0.01 0.009       
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Cov 'D  ''D  
1st 

s
kε  1st t

kε  1st e
kε  1st r

kε  
2nd 

s
kε  

2nd 
t
kε  

2nd 
e
kε  

1st 
Phase 

2nd 
Phase 

1st r
kε  0.348 9.61 -0.01 -0.01 -0.01 11.889      

2nd s
kε  -4.295 -175 0.02 -0.01 0.018 -0.261 29.3     

2nd t
kε  -5.67 -105 0.01 -0.01 0.025 -0.184 2.21 4.457    

2nd e
kε  -1.67 -91.2 0.01 -0.00 0.007 -0.09 0.46 0.191 0.396   

1st 
Phase -4.335 -1.2 0.43 0.075 0.011 -0.022 0.03 0.023 0.015 0.525  

2nd 
Phase -11.64 -372 0.04 -0.02 0.051 -0.536 32.0 6.860 1.051 0.076 39.96 

 

The variance of the errors per period is 51.417, or standard deviation 

7.17. The mean of the errors per period is 3.83; 0.49 from phase 1 and 3.34 

from phase 2. In order to validate the mean and variance results, we 

performed a goodness of fit test for the error values based on the generated 

data. The results indicate that they are normally distributed with (4.07, 

7.12) (The mean squared error for the fit is below 0.0005 and p-value for the 

Chi-Squared test is below 0.5). Looking from this perspective the errors can 

be treated as another source of demand with mean 3.83 and standard deviation 

7.17. Table 3 shows the summary of the results obtained from this study. 

Table 2-3: Summary of statistics of the best case 

Stock-out Error Length Time Sold  n(R)  Shelving Inbound Outbound 
9 85 12.301 251.421 9,595 36 89 (3) (1) 

 

Table 2-3 shows the observed results for 9 inventory performance measures 

obtained as a result of the numerical study for the best case. The stock-out 

refers to the amount of time where the actual physical stock dropped to zero. 

The error column denotes the average number of IRI accumulated in the system. 

The length column displays the average time length for a period and time 

column displays the average overall length of the simulation study. Sold 

column shows the average number of units sold. The remaining three columns 

represent the average errors.  
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Based on this table, we observe low values for stock-out, sales and 

errors because of early terminations. The gradual increase of IRI forces the 

inventory system to freeze which in turn forces the simulation to stop early. 

The average length of a period is recorded as 12.301 weeks and the overall 

time of the simulation study is at 251.421 weeks. The average lifecycle of 

the simulations is at 18 periods instead of 52. Inbound and outbound errors 

are close to zero. This is because of the assumption on the distribution 

functions; it is equally likely for inbound and outbound errors to be 

positive or negative. 

Table 2-4: Correlation matrix of 7 different types of errors in the worst 
case 

Corr 'D  ''D  1st s
kε  1st t

kε  
1st 

e
kε  1st r

kε  2nd s
kε  

2nd 
t
kε  

2nd 
e
kε  

1st 
Phase 

2nd 
Phase 

'D  1           
''D  -0.00 1          

1st s
kε  -0.00 -0.01 1 

       
 

1st t
kε  1 -0.00 -0.001 1        

1st e
kε  -0.30 0.01 -0.951 -0.306 1       

1st r
kε  -0.01 0.01 -0.005 -0.010 0.01 1 

    
 

2nd s
kε  -0.00 -0.01 -0.001 -0.004 0.002 0.012 1     

2nd t
kε  -0.00 1 -0.013 -0.002 0.013 0.008 -0.005 1    

2nd e
kε  -0.11 -0.94 0.012 -0.118 0.025 -0.02 -0.026 -0.94 1 

 
 

1st 
Phase 0.306 -0.01 0.95 0.306 -1 -0.01 -0.003 -0.01 -0.02 1  

2nd 
Phase -0.01 0.15 -0.003 -0.017 0.01 0.01 0.986 0.152 -0.16 -0.00 1 

 

The summary of the results for the worst case scenario is presented in 

Table 2-4 and Table 2-5. The results from Table 2-4 indicate that contrary to 

the best case, errors show dependence between each other for the worst case. 

Table 2-5: Covariance matrix of 7 different types of errors in the worst case 

Cov 'D  ''D  
1st 

s
kε  

1st 
t
kε  

1st 
e
kε  

1st 
r
kε  

2nd 
s
kε  

2nd 
t
kε  

2nd 
e
kε  

1st 
Phase  

2nd 
Phase 

'D  468,4           
''D  -6.63 2268          
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Cov 'D  ''D  
1st 

s
kε  

1st 
t
kε  

1st 
e
kε  

1st 
r
kε  

2nd 
s
kε  

2nd 
t
kε  

2nd 
e
kε  

1st 
Phase  

2nd 
Phase 

1st s
kε  -0.01 -1.34 0.451         

1st t
kε  4.68 -0.06 -0.00 0.046        

1st e
kε  -0.02 0.007 -0.00 -0.00 0.00 

      
1st r

kε  -0.76 4.548 -0.01 -0.01 0.00 11.89      
2nd s

kε  -0.55 -4.18 -0.01 -0.00 0.00 0.258 33.78     
2nd t

kε  -0.06 226.8 -0.01 -0.00 0.00 0.045 -0.04 2.268 
   

2nd e
kε  -1.57 -87.4 0.004 -0.01 0.00 -0.05 -0.09 -0.87 0.379   

1st 
Phase 4.649 -1.40 0.448 0.046 -

0.00 
-0.01 -0.01 -0.01 -0.01 0.49 

 
2nd 

Phase -2.19 135.1 -0.01 -0.02 0.00 0.253 33.65 1.351 -0.59 -0.03 34.41 

 

Using the covariance matrix, the variance of the errors per period is 

47.192, or the standard deviation 6.86. The mean of the errors per period is 

6.78; 0.97 from the first phase and 5.81 from the second phase. Again normal 

distribution is tested on the generated data, it turns out the data fits into 

a normal distribution with (6.69, 7) (The mean squared error is under 0.001 

and the Chi-Squared p-value is below 0.005). As expected, the average errors 

in the worst case are larger than the best case. Still, the errors can be 

treated as another source of demand with mean 6.78 and standard deviation 

6.86. 

Table 2-6: Summary statistics of the worst case 

Stock-out Error Length Time Sold n(R) Shelving Inbound Outbound 
7 88 11.8211 173.632 5,622 29 89 (1) 0 

 

The early terminations are observed in worst case as well. On average the 

system maintains its lifecycle for 10 periods. The ratio between the average 

number of items sold and lost sales is 193.86 which is lower than the best 

case. The inbound and the outbound errors are again close to zero. 
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2.2 Evaluation of the Impact of IRI 

In the previous section we presented the underlying reasons for IRI and 

their influence on different inventory parameters. Additionally, a general 

framework for modeling the behavior of errors in terms of inventory is 

presented. In this section we explore two approaches to manage errors. When 

the existence of the IRI is acknowledged, two alternatives are considered: 

Increasing the resistance of the current inventory policy, or controlling the 

factors that cause IRI. These two alternatives are systematically analyzed in 

this section to reveal the impact of IRI and the influence of other important 

key measures, such as average number of units sold in a period, the amount of 

stock-outs, the expected amount of lost sales, etc. 

2.2.1 Freezing Potential 

In previous section it is demonstrated that when there are no correction 

procedures present both cases end up in freeze. Hence, it is possible to 

create a characterization for the probability of freezing for both scenarios.  

 

Figure 2-4: The relation between records and errors 
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Figure 2-3 illustrates a freeze situation by looking at the total errors. At 

time kt  the total amount of error is 
ktJ . At the end of period k , kε  is added 

to 
ktJ . The same setup continues throughout the timeline.  

An interesting observation at this point is the time at which the 

inventory records are equal to total errors, * *t tx J= . Briefly, when total 

errors catch up to the point at which they are equal to inventory records, an 

unobserved stock-out occurs. In other words the demand is still there and the 

records show positive inventory, but the sales stays at zero since the actual 

physical stock is zero. This situation is different than a normal stock-out 

in the sense that unless there is a replenishment order on the way, the 

inventory system is frozen. Such an occurrence has drastic effects both on 

short and long term.  

i. Best Case 

Since in both phases the demand is fulfilled first, in a freezing 

situation the inventory has to be frozen at a value above reorder level 

before the complete demand for the second phase is fulfilled. Based on the 

period layout it is not possible for the second phase demand to be fulfilled 

before inventory records reach the reorder level, R . In other words, 

 { } { } { }
{ }1 2

Freezing at 0 0
0 .

k k k k k

k k k k

P k P x R x P x x R x
P R xJ ε ε

= > ∩ = = − > ∩ =
= + + > ∩ =

  



 (2.8) 

When 0k =  or 0kJ = , the remaining part 1 2ε ε+  constitutes the total 

errors done in the first phase (see Figure 2-2).  

Note that if 'D R>  than all the actual physical stock on-hand is sold 

during the lead time; which implies that the first phase errors are 0. If 

'D R≤ , 1ε  for the best case can be formulated as  
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' '

' '

'' ' '

' '

' '

min , if 
1

,
min , min if min , 1 1

,
min , min min ,

if min ,
1,

min min ,

R
E D R D D

R RD R D
E D R D E DD R D

D R D
E D R D E D R D

R
DR D D R D

E D R D
D R D

δ
δ

αδ δ δ α δ
ε αδ δ

δ
α δβ α

δ

 − > +
 −  − + < ≤ − − + + + 

= − − +  − − 
≤− − − 

+ + + −− − − 






 . (2.9) 

Remark: Equation (2.9) shows the calculation of the first phase errors, when 

'D R≤ , based on the lead time demand 'D  and the input parameters [ ]1,δ ∈ − ∞ , 

[ ]0,1β ∈  and 0α ≥ . In this formulation when ( ) '1 D Rδ+ > , the actual physical 

stock drops to zero after the outbound errors in the first phase; in the 

second line the actual physical stock depletes after theft errors; and when 

( ) '1 D Rα δ+ + ≤  there is enough inventory left in the system for all the first 

phase errors. For practicality we make a notational change for the rest of 

the dissertation. Hence, equation (2.9) is rewritten as 

{ }[ ]{ } { }{ } ( ){ }
{ }

{ }{ } ( ){ }

' ' '

' '

1 ' ' ' ' ' '

1
' ' '

' ' ' '

1

min , min , min ,

min ,
.

min , min ,

D R D R D R

D R D R

E D R D E D R D D R D

R D D R D
E

D R D D R D

δ

α δ

ε δ α δ
δβ α δ

≤ + ≤ ∩ ≤

+ + ≤ ∩ ≤

= − + − − −  
− − − +  − − − − 

  (2.10) 

Similarly, 2ε  is [ ]E Yγ . Thus, 

{ }[ ]{ } { }{ }
( ){ }

{ }
{ }{ } ( ){ }

[ ]

'
' '

' '

' '
1 2 ' '

' '

1
' ' '

' ' ' '

1

,
min , min min ,

min ,
.

min , min ,

D R
D R D R

D R D R

D R D
E D R D E D R D

R D D R D
E E Y

D R D D R D

δ

α δ

αε ε δ δ
δβ γα δ

≤
+ ≤ ∩ ≤

+ + ≤ ∩ ≤

− + = − +  − − 
− − − + + − − − − 

  (2.11) 

The highest value β  can get is 1, which intuitively means everything left at 

the end of each phase will be lost. Hence, the whole equation becomes 'R D− , 

which implies that first phase errors, 1ε  cannot be greater than R , This 

immediately provides an easy upper bound for freeze probability based on the 

distribution of 2ε . Inbound errors can be positive or negative by definition. 
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If in fact they assume a negative value freezing cannot occur since errors up 

to inbound cannot be greater than R . In other words, { } { }20 Freezing 0P P ε≤ ≤ ≥  

A tighter bound can be computed using 1 2ε ε+  as 

{ }

{ }[ ]{ }
{ }{ } ( ){ }

{ }
{ }{ } ( ){ }

[ ]

'

' '

' '

' '

' ' ' '

1
' ' '

' ' ' '

1

min ,

min , min ,
Freezing min ,

min , min ,

.

D R

D R D R

D R D R

R E D R D

E D R D D R D
P P R D D R D

E
D R D D R D

E Y

δ

α δ

δ
α δ

δβ α δ
γ

≤

+ ≤ ∩ ≤

+ + ≤ ∩ ≤

< − 
 + − − −    ≤  − − − +  − − − −  

+  

  (2.12) 

since { } { }1 2Freezing 0k k kP P R xε ε= + > ∩ = . Following a similar logic, by conditioning 

on the lead time demand the inequality in (2.12) can be transformed into, 

 [ ]{ } { } { }1 ' ' '0P R E Y D R P D R P D Rε γ< + ≤ ≤ + ≥ .  (2.13) 

This can be written as, 

 [ ] ( ){ } ( ){ }
[ ] ( ){ } ( ){ }

' ' ' ' '

1 ' ' ' '

1 1
1 1 .

P R R D E Y D R D R P D R D R
P R E Y D R D R P D R D R

γ δ δ
ε γ δ δ

< − + + ≥ ∩ ≤ + ≥ ∩ ≤
+ < + + ≤ ∩ ≤ + ≤ ∩ ≤

  (2.14) 

Equation (2.14) can be further expanded by conditioning on the second term. 

In other words, 

[ ] ( ){ } ( ){ }
[ ] ( ){ } ( ){ }
( )[ ]

( )[ ] ( ) ( ){ }

' ' ' ' '

' ' ' ' '

'
' ' ' '

'

1 1
1 1

1
1 1 .

P R R D E Y D R D R P D R D R
P R R D E Y D R D R P D R D R

R E R D
P D R D R P D R D R

E D Y

γ δ δ
γ α δ α δ

β α δ α δ α δα δ γ

< − + + ≥ ∩ ≤ + ≥ ∩ ≤
+ < − + + + ≥ ∩ ≤ + + ≥ ∩ ≤

< − + + + + + ≤ ∩ ≤ + + ≤ ∩ ≤ + + + 

  (2.15) 

Based on the distributions of δ , α , β , γ  and D  this function can be 

calculated as an upper bound for the best case framework freeze probability. 

ii. Worst Case 

The formulation for freezing in the worst case is similar, 

 { } { } { }
{ }1 2 3

Freezing at 0 0
0 .

k k k k k

k k k k k

P k P x R x P x x R x
P J R xε ε ε

= > ∩ = = − > ∩ =
= + + + > ∩ =

  



 (2.16) 
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The function can be rewritten as 

{ }
{ }[ ] { }[ ]{ }

{ } { }[ ] ( ){ }
[ ]

'

'

' ' '

1 2 3 ' ' '

3

min , min ,

min , min ,
D R

k k k k D R

k

R E D R E D R D

P J R P E R D R D R D

E Y

δ

α δ

δ α δ
ε ε ε β δ α δ

γ ε

≤

+ ≤

< + − 
 + + + > = + − − − 
 + + 

.  (2.17) 

When 0k =  or 0kJ =  and 1β =  the function becomes [ ]{ }'0P Y E D< − . Based on the 

distribution of D  this function can be calculated as an upper bound. 

2.2.2 IRI Resistance Method 

We have shown that the amount of errors is not the only important factor, 

the IRI susceptibility of the inventory policy is equally important as well. 

In this context, the term IRI resistance refers to the adopted inventory 

policy’s susceptibility to errors. We utilize a scheme that aims to account 

for the error and incorporate replenishment decisions accordingly. 

Our approach is similar to the myopic model designed by Dehoratius et al. 

(2008). The researchers model the multi-period problem as an infinite horizon 

with no fixed ordering cost and zero lead time. When lead times are non-zero, 

the myopic solution becomes a heuristic for an infinite horizon problem. In 

their heuristic myopic algorithm, they adjust the inventory records based on 

the stock-out probability. However, in our model we develop a formulation for 

errors and utilize this formulation to generate the expected error, which is 

then used to adjust the safety stock level. 

Figure 2-4 illustrates the behavior of inventory under a ( ),Q R  policy with 

gradually increasing safety stock. At each decision epoch the replenishment 

order is given based on the adjusted ( ),Q R  policy. The order quantity remains 

unchanged but the reorder level increases. As the figure illustrates, this 

method aims to compensate for the IRI by increasing the inventory records so 
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that the actual physical stock remains relatively stable. The situation 

continues until a cycle count is triggered, and the model reverts back to 

period zero. 

Remark: This method does not require any additional investments from the 

practices for implementation. By implementing a predictive approach, it 

generates the order decisions earlier than they are scheduled to counter IRI. 

 

Figure 2-5: Increasing the safety stock 

For the remainder of this dissertation we use the term increment to 

indicate the amount of increase for the safety stock at each period. As shown 

in Figure 2-4, the increment amount is critical for this method. We utilize 

the formulations derived for the best and the worst cases to obtain a mean 

and a variance for periodical errors. Then, these values are used to obtain 

an estimate for the increment amount. We used the same numerical study in 

Section 2.1.2 to demonstrate our results. 

Using the variance and the mean, an estimate for the increment can be 

obtained for this method. To demonstrate this, we used on the same case study 

simulation and applied the IRI resistance method.  
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For the best and the worst case scenarios, we generated separate 

simulation models. Both models continue for 52 periods and replicated 60 

times for integer increments 0 to 30. When the increment is 0, the algorithm 

is not being utilized therefore the model reverts back to original ( ),Q R  

policy. For values greater than 0 the algorithm is active.  

 

Figure 2-6: IRI Resistance method for the best and the worst cases 

Figure 2-5 shows the combined results of the simulation study for each 

case. The horizontal axis denotes the increment amounts and the vertical axis 

represent the total numbers of the following parameters respectively: Sales 
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per unit time, lost sales, stock-out and period length. As the increment 

increases, the sales per unit time also increases (unit time is a week) for 

both cases. This is because IRI resistance method compensates for some 

portion of the demand lost due to IRI. Moreover as the increment amount 

increases, the lost sales exhibits an increasing behavior first (for small 

increments) but then drops as increment keeps increasing. The reason behind 

this behavior for lost sales is freezing. For smaller increment levels, the 

inventory system is unable to reach period 52 due to the IRI. As a result the 

total lost sales remains low. But for bigger increment levels the inventory 

system is more resistant to IRI, and therefore can complete the simulation 

duration without freezing. Similar situation is observed for the total number 

of stock-outs as well. Finally, the average length of the period behaves 

independently from the increment.  

Inbound and Outbound errors (not present in the figure) act erratically 

around 0. That is an expected result since they do not depend on the 

inventory on-hand. 
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Figure 2-7: IRI Resistance method for the best and the worst cases cont.  

Figure 2-6 shows the results of the remaining parameters from the 

simulation. As expected both the total error and total stock-loss increases 

with the increment. Similarly recorded and actual inventory is also 

increasing with increment. The reason behind these is, IRI resistance method 

increases the average inventory on-hand gradually to compensate for the IRI. 

Thus, as a result the system operates with higher amounts of inventory than 

normal which in turn increases IRI. The final line is the period number that 

the system managed to reach before the simulation time ended.  
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According to Figure 2-6, there is a break point in the graphs where the 

slopes changes. Also based on the simulation results higher increment levels 

hurt the system more than it benefits. Therefore, there is a range where the 

increment works best. Depending on preference (due to line of business), 

certain parameters can be chosen and the increments that maximize or minimize 

those values can be selected.  

2.2.3 Error Control and Correction Method 

One of the fundamental methods of error control is counting full physical 

inventory. This is a process where the entire inventory is reckoned 

physically (Iglehart & Morey, 1972; Opolon, 2010; Young & Nie, 1992). 

However, this procedure is long and costly, especially if there is a large 

number of inventory.  

The literature on cycle counting and inventory auditing is vast (Iglehart 

& Morey, 1972; Kok & Shang, 2007; Kumar & Arora, 1991; Meyer, 1990; Rosetti 

et al., 2010; Young & Nie, 1992). While considering cycle counting practices 

there are several issues to be discussed. Kok and Shang (2007) present 

detailed analysis about cycle counting and consider many key aspects. The 

first aspect is the trade-off between inspection frequency and IRI related 

costs. The more frequent the cycle counts are, the lower the IRI is. Hence, 

choosing an appropriate mechanism to determine the frequency is important. On 

the other hand, inspection policies directly affect the amount of inventory 

stored which in turn affects the replenishment policy. It is beneficial to 

choose a replenishment policy while considering the inspection frequency. 

Additionally, the effectiveness of the cycle count itself is crucial since 

this process is prone to errors as well.  
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Remark: This method does not require any additional investments from the 

practices for implementation. However, it includes a counting cost based on 

the setup of the business and the magnitude of on-hand inventory. 

As repeatedly mentioned in literature, the predominant factors for 

determining the frequency of cycle counting are costs and disruptions 

associated with it. Apart from these, there are other key measures that can 

determine the effectiveness of the counting mechanism: lead time, amount of 

expected error correction, triggering condition, amount of expected lost 

sales and IRI. Our model focuses on these key metrics rather than a cost 

based structure. It is assumed that the correction procedures are done error 

free. 

Determining the best possible triggering condition is not an easy task. 

In our study we utilize the relation between the lead time sales and the 

expected demand during lead time to configure a trigger mechanism. In this 

relation, the expected lead time demand is a known value and the lead time 

sales is an observed value. The logic behind this trigger mechanism is: If 

the lead time sales is considerably lower than the expected demand during 

lead time, then it can be concluded that the system contains high amounts of 

IRI. However, determining the sensitivity of the trigger mechanism still 

remains as a daunting issue. To overcome this burden we inserted a modifier, 

called the trigger value. The main purpose of the trigger value is to adjust 

the expected demand during lead time. Via this method we can effectively 

change the sensitivity of the trigger mechanism.  

Remark: In this context, sensitivity of the trigger mechanism determines 

how often cycle counts are triggered. If the mechanism has high (or low) 

sensitivity to IRI than higher (or lower) number of cycle counts will be 

observed. 
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The trigger value itself is a positive number; when it approaches 0, the 

trigger mechanism becomes extremely sensitive and as it increases the 

mechanism loses its sensitivity to IRI.  

 

Figure 2-8: The error control method for the best (left) and the worst 
(right) case 

For the best and the worst case, we generated separate simulation models. 

Both models use 60 replications for 52 periods for trigger values 1 to 15. 

Figure 2-7 and Figure 2-8 show the combined results of these simulation 

studies. The horizontal axis denotes the trigger values and the vertical axis 

represent the average total values after 60 replications.  

Based on Figure 2-7, the sales per unit time and average period length 

are not affected by the changes trigger value. Lost sales and number of 
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stock-outs in both cases increases and number of cycle counts done decreases 

with the trigger value. These are expected results, since increasing trigger 

value decreases the sensitivity of the trigger mechanism. Furthermore, the 

effect of the trigger value diminishes for values greater than 5.  

 

Figure 2-9: The error control method for the best (left) and the worst 
(right) case cont. 

Figure 2-8 shows the results of the remaining parameters. Based on the 

figure, the number of errors and stock-loss slowly decreases with trigger 

value. The reason behind this is, the bigger trigger value means fewer 

counts, which implies that the system operates with more errors. Another 

important observation is the gap between inventory records and actual 

physical stock. As the trigger value increases this gap gets larger. This is 
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because when the actual physical stock is low, the potential for making 

errors is also low 

2.2.4 IRI Resistance and Error Control 

Figure 2-9 depicts the combined framework in which both compensating 

methods are utilized simultaneously. With each period, the IRI resistance 

method increases the safety stock. At the same time, depending on the trigger 

mechanism, the system performs cycle counts. When a cycle count is triggered 

both the inventory records and the safety stock levels are reset. 

 
Figure 2-10: Combined compensation framework 

The algorithm is applied to the numerical study in Section 2.1.2. Figure 

2-10 depicts the actual and the recorded inventory behavior for the best case 

when two previously mentioned methods are combined. Both the increment and 

the trigger value increase the inventory records. The actual inventory 

increases with the increment but decreases with the trigger value. This is 

because when the trigger value is high there are fewer number of cycle counts 

which results in fewer number of corrections and higher number of IRI in the 

system.  
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Figure 2-11: Combined method results for recorded and actual inventory for 
the best case 

Figure 2-11 compares the lost sales to the stock-out amounts. With the 

increment they both decrease; but the stock-out decreases faster. With the 

trigger value they both increase; again the stock-out increases faster. 

 

Figure 2-12: Combined method results for lost sales and stock-outs for the 
best case 

Figure 2-12 compares the effectiveness of error correction with the 

number of counts done. Normally the IRI resistance method does not offer any 

correction procedures. Thus, we expected a linear line on the x-axis; 

however, as increment increases both the count number and the error 

correction decreases. Intuitively, when the IRI resistance method is in 

effect the system does not need to activate trigger mechanism often due to 

the reduced number of stock-outs and lost sales. This outcome shows that the 
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effectiveness of the trigger mechanism is reduced as the increment gets 

higher. 

 

Figure 2-13: Combined method results for error correction and count number 
for the best case 

Figure 2-13 presents sales per unit time and the behavior of the errors. 

Sales rise with the increment and remain relatively constant the trigger 

value. Errors, on the other hand, remain constant with the increment and rise 

with the trigger value. Both graphs present some chaotic behavior; this is 

largely due to the natural uncertainty faced due to randomness in demand, 

supply and lead time. 

 

Figure 2-14: Combined method results for sales and error for the best case 

Remark: The same numerical study is conducted for the worst case as well. The 

details and the results are in Appendix A.III 
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Table 2-7: Final result statistics table with optimal range selection 

Case 
Sales 

per unit 
time 

(Scaled*) 
Stock-out 

Correction 
per Count 

(Scaled*) 
Error 

Average 
Record 

Average 
Actual 

(Scaled*)  
Lost 
Sales 

Original 
(Best) 38.25 31.14* - 250* 255 216 90* 

Original 
(Worst) 31.96 36.37* - 400* 251 210 110* 

Increment 
(Best) 8 40-50 5-10 - 350-400 400-450 250-300 15-10 

Increment 
(Worst) 12 30-50 5-10 - 500-550 500-550 260-300 20-10 

Trigger 
(Best) 4 45-50 30 50-75 25-40 225-250 220-230 30 

Trigger 
(Worst) 6 45-50 35 70-90 35-40 200-250 200-250 30-35 

Combined 
(Best) 5,2 47-50 10-15 130-140 30-35 300-320 230-250 19-20 

Combined 
(Worst) 5,3 47-50 20-25 120-130 30-35 280-300 220-250 25-26 

 
Table 2-7 presents the comparison between all the numerical studies done 

in this chapter. As discussed in the previous section the IRI resistance 

method performs better on the stock-out and the lost sales, whereas error 

control method operates with lower inventory levels. But when the two 

correction methods are combined, both inventory and stock-out parameters 

decrease considerably. 

2.3 Conclusion and Future Work 

In the first part of this chapter inventory inaccuracy is analyzed 

extensively to understand its behavior when influenced by demand, supply and 

lead time uncertainty. Different factors that constitute IRI are defined and 

formulated. Moreover, the impact of the stochastic nature is incorporated as 

random demand, lead time and supply. The effects of these uncertainties are 

demonstrated. Combining all of the analyses, a general formulation is 

presented as the best and the worst case framework. Then, a numerical study 

using simulation is conducted to show the sensitivity of the inventory 

replenishment policy to IRI. The highlights can be summarized as; 
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• In terms of lead time demand, there is no conclusive result on the 

behavior of the error function. Depending on input parameters α , 

β , θ , γ  and δ  it can decrease or increase with the lead time 

demand. 

• In terms of R , w  and Y  the error function is increasing. 

• Errors have no strong dependence between each other in the best 

case. This dependence is much higher in the worst case. 

• In both cases the biggest effect is done by the outbound errors. 

Hence, parameter β  has the highest impact.  

In the second part methods for reducing the effect of IRI are developed. 

Two different alternatives for such methods are presented; The IRI resistance 

and the error correction. Then, a numerical analysis is performed to observe 

the behavior of IRI and to quantify the effects of the applied solution 

alternatives. The primary findings can be concluded as: 

• The IRI resistance method positively influences sales. 

• The IRI resistance method positively influences errors because as 

the increment gets higher there will be more average inventory in 

the system. 

• The determining factor in choosing the trigger value is the count 

number. High count number means fewer stock-outs and fewer lost 

sales but more frequent counts. Therefore, a range based on the 

certain parameters can be chosen and the values that maximize or 

minimize those parameters can be selected.  
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• The IRI resistance method performs better on stock-outs and lost 

sales, whereas the error control method can keep low inventory 

levels. When combined, achieving lower levels of inventory becomes 

possible while keeping stock-out and lost sales low. 

Finally, using the best and worst case frameworks we presented lower and 

upper bounds for the behavior of errors. The derivations and the numerical 

analyses provided insights about the relations between IRI and key 

parameters. The sensitivity of these relations is shown to be similar in 

direction but different in magnitude for each case. Thus, the values for the 

trigger and increment in the best and the worst cases can be used as bounds 

real practices.   

The compensation methods described in this chapter are static. In other 

words the same level of increment or trigger value is implemented throughout 

the duration of the inventory system. Hence for future work utilizing dynamic 

correction methods that change for each period will be a considerable 

contribution.  
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APPENDIX A  

A.I  Best Case Error Calculation 

The errors made in the first phase can be written as,  

 ( )[ ] ( )[ ]
( )[ ]

' '
1 1 1 2

'
1 3

, ,
, .

phase phase

phase

E Outbound D Inv E Theft D Inv
E Expiration D Inv

δ
β

+
+

 (2.18) 

Sales cause the outbound errors to occur, which is a function of the 

demand and the remaining inventory. The term “Inv” refers to the remaining 

actual inventory after each step. Following the outbound, theft takes place; 

again it is a function of demand and remaining inventory. Lastly, expiration 

and spoilage occurs with a similar structure. First phase is concluded upon 

receiving the replenishment orders and with them the inbound errors. Which 

is, ( )1phaseInbound Yγ . Then the error structure for the first phase becomes, 

  
{ }[ ]{ } { }{ } ( ){ }

{ } { }{ } ( ){ }
[ ]

' ' '

' '

' ' ' ' ' '

1
' ' ' ' ' ' '

1

min , min , min ,

min , min , min ,

.

D R D R D R

D R D R

E D R D E D R D D R D

E R D D R D D R D D R D

E Y

δ

α δ

δ α δ
β δ α δ
γ

≤ + ≤ ∩ ≤
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+

 (2.19) 

The calculation of the second phase errors is more complicated since it 

dependents on the inventory left after the first phase. But the structure is 

the same as equation (2.18). The outbound errors on the second phase can be 

formulated as, 
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{ }
{ }{ }
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' ' ' '

' ' '

' ' ' '
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 (2.20) 

where 
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is the actual inventory left before second phase starts. Note that this 

value is always non-negative since, 

{ } { }{ }
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And ( )0 1 .Y γ≤ −  Then,  
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The equation above can assume non-negative values only if there are some 

physical stocks left on the shelves. This condition is forced by defining an 

area, referred as region. The area defined by region corresponds to the 

actual inventory left just before the second phase begins. Hence, the total 

visible plus non-visible (IRI) demand for that time frame cannot exceed the 

available actual physical stock. That is why the condition forces the 

equation to stay non-negative.  The formulation for region is 
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Similarly, theft for phase 2 can be written as, 
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 (2.21) 

The equation (2.21) can only assume non-negative values if there are some 

physical stocks left on the shelves. This time condition is forced by 
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defining another area which forces the result to be non-negative; this area 

is referred as region2. The characterization for region2 is 
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Similarly, region2 defines a smaller area that corresponds to the 

inventory left on-hand after the demand and the outbound errors takes place 

in the second phase. The final type of errors can be formulated similarly, 
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 (2.22) 

In the above equation region3 can be characterized as, 
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The area defined by region3 is even smaller compared to the others. This 

equation ensures that the last part of errors cannot exceed available 

inventory left on-hand after all the visible and invisible demand is 

satisfied. The final characterization of the  expected error for a period is 

obtained by combining equations (2.19), (2.20), (2.21) and (2.22) as 

57 
 



 

{ }[ ]{ } { }{ } ( ){ } [ ]
{ } { }{ } ( ){ }
( ) { }

{ }{ }
{ }

' ' '

' '

' ' ' ' ' '

1
' ' ' ' ' ' '

1
'' ' ' '

' ' ' '

' ' '

min , min , min ,

min , min , min ,

, 1 min ,
min , min ,

min min ,
min

D R D R D R

D R D R

E D R D E D R D D R D E Y

E R D D R D D R D D R D

D Y R D D R D
D R D D R D

E R D D R D

δ

α δ

δ α δ γ
β δ α δ

δ γ δ
α δ

δβ α

≤ + ≤ ∩ ≤

+ + ≤ ∩ ≤

− + − − − +  
+ − − − − − − −  

− + − − −
− − − −

+ − − −− − { }{ }
{ }

( ) { }
{ }{ }

{ }
{ }{ }

( ) { }

' ' ' '

'

' ' '

' ' ' '

' ' '
''

' ' ' '

'' '' ' ' '

, min ,

1 min ,
min , min ,

min ,
min , min ,

min , , 1 min ,

min

Region

D R D D R D
D

Y R D D R D
D R D D R D

R D D R D
D

D R D D R D
E D D Y R D D R D

δ

γ δ
α δ

δβ α δ
α δ γ δ

  
  

       − − −    −  
− + − − −

− − − −
− − − − − − − − − 

+ − + − − −
−

−
{ }{ }

{ }
{ }{ }

{ }

( ) { }

' ' ' '

' ' '

' ' ' '

''

2
' ' '

min , min ,
min ,

min , min ,

1 min , min
Region

D R D D R D
R D D R D

D R D D R D
D

Y R D D R D D

E

α δ
δβ α δ

γ δ α

β

   
   
   
   
        
    − − −    − − −     −   − − − −       −     

− + − − − −

+

{ }{ }
{ } { }{ }( )

( ) { }
{ }{ }

{ }
{ }{ }

( )

' ' ' '

' ' ' ' ' ' ' ''

'' ' ' '

' ' ' '

' ' '

' ' ' '

''

''

, min ,
min , min , min ,
, 1 min ,

min , min ,
min min ,

min , min ,

1

min ,

R D D R D
R D D R D D R D D R D D

D Y R D D R D
D R D D R D

R D D R D
D R D D R D

D
Y R

D

δ
β δ α δ

δ γ δ
α δ

δβ α δ

γ

α

− − −
− − − − − − − − −

− + − − − 
 − − − − − − − −  −   − − − −  − 

− + −

−

{ }
{ }{ }

{ }
{ }{ }

( ) { }
{ }{ }

{ }
{ }{ }

' ' '

' ' ' '

' ' '
''

' ' ' '

'' ' ' '

' ' ' '

' ' '

' ' ' '

''

min ,
min , min ,

min ,
min , min ,

, 1 min ,
min , min ,

min min ,
min , min ,

D D R D
D R D D R D

R D D R D
D

D R D D R D
D Y R D D R D

D R D D R D
R D D R D

D R D D R D
D

δ
α δ

δβ α δ
δ γ δ

α δ
δβ α δ

− −
− − − −

− − − − − − − − − 
− + − − −

− − − −− − − − −  − − − − 
−

{ }3Region

 
 
 
 
 
 
 
 
 

   
   
   
   
       
   
                    

The error characterization is increasing in R  since equations (2.18), 

(2.19), (2.20), (2.21) and (2.22) are all increasing in R . This is an 

intuitive result; more inventory means more mistakes. Demand however, has 

direct and indirect effects. 

A.II  Worst Case Error Calculation 

Similar to equation (2.18), 
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The calculation of the second phase errors start with the outbound, 
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is the actual inventory left before the second phase starts. Equation 

(2.24) is forced to be non-negative by region which is, 
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Similarly, theft for the second phase can be written as, 
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 (2.25) 

The equation (2.25) can only assume non-zero values if there are some 

physical stocks left on shelves. The region2 in which this happens can be 

characterized as, 
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The final phase of errors can be formulated similarly, 
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 (2.26) 

In the above equation region is the same as before, however region3 is 

even a smaller zone which can be defined as, 
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The expected error formulation for a period is obtained similarly by 

combining equations (2.23), (2.24), (2.25) and (2.26). 

A.III  Worst Case Combined 

Same set of simulation studies with the combined method is generated to 

for the worst case. 
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Figure A-1: Combined method results for the worst case 

In the simulation, same parameters are used as done in previous cases. 

The results are very similar to the best case. Figure A-1 and Figure A-2 

depict the simulation results of the worst case study. Lost sales and stock 

out parameters decrease with higher increment and lower trigger values. 

Inventory levels increase with increment and decrease with trigger.  

Similar results are obtained through Figure A-2. The correction and count 

number decreases as the increment increase. The trigger value is not 

effective for the correction and count number. Sales and error graphs also 

exhibit a similar behavior.  
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Figure A-2: Combined method results for the worst case (cont.) 

The combined method managed to utilize the positive sides of the both 

compensation methods. With the extra buffer the incrementing method provides 

the trigger mechanism is able to function effectively for low trigger values 

which considerably decreases the total count number; hence, reducing the 

costs associated with it. On the other side, trigger mechanism keeps the 

records in check and reduces the extra error caused by excessive 

incrementing. 

  

62 
 



 

CHAPTER 3  IRI ANALYSIS IN ONLINE RETAILING WITH LEAD TIME AND SUPPLY 

UNCERTAINTY  

 

With the advancement of the Internet, online retailing becomes an 

important channel for retails. According to Mangalindan (2005), 5.5% of all 

retail sales (excluding travel) are done online in 2004. This potential is 

recognized by many organizations as demonstrated in Tsay and Agrawal (2004). 

The major difference of the online retail environment is that customers do 

not have access to the goods during purchase. This fact greatly enhances the 

importance of inventory records since the amount of sales is highly dependent 

on the accuracy of the records.  

IRI is a well-known problem for both the online and the offline retail 

environment. In this context IRI is regarded as the mismatch between the 

inventory records and the actual physical stock. In large scale retailing, 

the inventory records are likely to be incorrect, and ignoring this fact 

often leads to failed re-procurement cycles and quantities. Inventory models 

with IRI are commonly studied in the offline retail environment, but there 

are limited studies for the online retails.  

The online and the offline retail models are similar on many aspects. But 

one crucial difference is: In the online retails, customers make their 

purchasing decisions based on inventory records where as in the offline 

retails customer are allowed to pick the product from shelves directly. This 

difference has various implications on the IRI behavior. Our aim in this 

chapter is to develop a model to identify the effects of customers’ 

interaction with physical stock and understand the behavior IRI in the online 

retailing environment.  
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This chapter also classifies IRI in three groups: inbound, shelving and 

outbound errors. While the customer interaction has little effect on inbound 

and outbound types of IRI, it is quite influential on shelving errors. In 

fact it is commonly known that customer interaction in the supply chain is a 

major source of shelving errors (Rekik et al., 2009). The online model lacks 

this interaction; however, a substantial amount of shelving errors can still 

take place even without the presence of customers. According to Center for 

Retail Research (2005) the average rate for shelving errors in UK is 1.4% 

percent of sales, which is one of the highest in Europe. The study also 

identifies that 14.4% of shelving errors can be attributed to internal 

errors, such as processing errors, accounting mistakes and pricing 

discrepancies.  

In this chapter, we investigate the online retail models where the 

customers are not allowed to directly interact with products; instead they 

make their purchasing decision based solely on the inventory records (Grewal 

et al., 2004). Furthermore, we characterize the structure of IRI when it is 

influenced by random supply, random demand and random lead time in the online 

setting where the inventory records are reviewed continuously.  

3.1 Model 

IRI is influenced by many factors such as demand, supply and lead time 

apart from the direct causes (shrinkage, transaction and misplacement 

errors). The difficulty in modeling IRI generally lies in the fact that the 

relationship is not one sided, IRI affects all of these factors back. In 

addition, the online retail environment has three main distinctive features. 

First, the customers do not have access to the inventory; therefore, the 

demand is satisfied based on the inventory records and not by the actual 

64 
 



 

amount. Second, the actual physical stock that is above the inventory records 

is unsalable. And lastly, customers can continue purchasing even if the 

actual physical stock is zero. This case may be perceived as backordering in 

the offline retail settings; however, this situation only occurs if the 

actual inventory reaches zero while the inventory records are positive. We 

refer to this case as penalty sales. Figure 3-1 provides a graphical 

explanation. 

In our model, we define a three-way categorization for the errors in 

order to understand the behavior: (1) inbound errors: Errors that occur 

during ordering and receiving processes; (2) storing errors: Received SKUs 

get damaged or expire, which causes the physical stock to change without 

updating the inventory records; and (3) outbound errors: The errors that 

occur during selling and shipment of SKUs. When left uncorrected, these 

errors can lower retailer performance by increasing the stock-out rates.  

 

Figure 3-1: Behavior of the physical stock, the inventory record, and the 
inventory position 

In this model, the classification for the errors and the inventory 

behavior is similar to Chapter 2. Figure 3-1 shows a typical continuous 

inventory behavior subject to errors. At period k  the inventory records, 
kt

x , 
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are checked and updated by ordering ky  units of inventory. After kτ  units of 

time, the order arrives. The standard procedure continues until period 1k +  

when the records reach to the reorder level. Up to this point, kT  units of 

time passed and kε  amounts of error occurred which made the total error equal 

to 1kJ + .  

 

Figure 3-2: The relation between the records and the errors 

The natural randomness of the model may result in situations where there 

is no actual inventory on-hand. However, in the online environment the 

customers are allowed to continue purchasing even when the actual physical 

stock drops to zero. We use the term penalty sales to describe this 

situation. Penalty sales can continue to occur as long as the inventory 

records are positive. If the demand continues to drain the inventory records 

all the way down to zero, a stock-out for the inventory records happens. At 

this point customers cannot purchase any more items and the remaining demand 

is lost. Another important factor is, the stock-out for inventory records is 

fully observable and when it happens, the present IRI is automatically 

corrected at 0t tx x= = . Figure 3-2 depicts such a stock-out situation by 

comparing the behavior of the total error versus the inventory records. 

66 
 



 

Let 
ktx  denote the amount of actual inventory and 

ktx  denote the 

inventory record at time kt  in period k . Also let, ky  be the order quantity 

and kD  be the total demand in period k . Suppose that demand has a known 

distribution function ( ) { }DF z P D z= ≤
 
with a density ( )Df z . Furthermore, let kS  

be the amount of sales and kε  be the discrepancy between the actual and the 

recorded inventory during period k . When there is, no lead time and no random 

supply, inventory progression can be formulated as 

 
1k k kt k t t k k

k K

x x x y Sε
−

∈

+ = = + −∑  , (3.1) 

where { }min ,
kk k tD xS =  is the amount of sales for 0 k kS x≤ ≤  and kε  is the mismatch 

at period k . Furthermore, we introduce the supply uncertainty using the same 

setup presented in Section 2.1 as { }[ ]min , kE U K y , where K  represents the random 

capacity and U  denotes the random yield of the supplier (Erdem & Ozekici, 

2002; Henig & Gerchak, 1990). Then, equation (3.1) can be rewritten as 

 [ ] { }[ ] [ ]
1

0

min ,
k k k k k

k

t t k i
i

E U K yE x EEx S ε
−

=

 = −  
−


+ ∑ .  (3.2) 

3.1.1 Error Modeling 

The total errors incurred until period k  is denoted by 

0

k

i
i

E ε
=

 
  
∑ . 

Note that we consider errors as previously classified. In this 

classification the shelving errors are only caused by expiration or spoilage 

( e
kε ) since customers are not allowed to physically interact with the 

products. Yan et al. (2011) provide a general characterization for expired 

and damaged items in inventory models. We modify their model to fit the 
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online retail environment as, { }max ,0
k

e
k t kx Sβε = −  where [ ]0,1β ∈  is the rate of 

expiration/spoilage. Expiration errors occur from the unsold inventory at the 

end of each period; which can be simplified as, ( )
k

e
k t kx Dε β= − . Moreover, r

kε  

denotes the inbound errors which are related to the order quantity; whereas, 

the outbound errors, s
kε , are dependent on the number of units sold. Rosetti 

et al. (2010) provide detailed insights about the structure of the 

transaction errors. In this setting r
k kyε γ=  and s

k kSε δ=  where  

'

'
1,
R S

D
γ − ∈     

and  

( )

( )2
1

1,
1

β β β
δ

β

+ − ∈ − − 
. 

The general formulation derived in Section 2.1.2 is modified according to 

the online retail framework as 
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  (3.3) 

Then, the inventory formulation can be modified accordingly to obtain the 

error function, [ ] [ ]k k kt t tE J E x x= −  . Using the inventory relation in equation 

(3.1), equation (3.3) can be rewritten as 

[ ] [ ]
{ }

[ ]
{ }

{ }[ ]
0 0 0

min ,
i xi ixi i

k k DD

k k k

t t t i i i i
i i i

iE x x E x D E D E U K yβ δ γ
≤≤

= = =

= − − + +− ∑ ∑ ∑ .  (3.4) 

Therefore, the total expected error at period k  when the current period is i 

can be modeled as, 
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[ ] [ ]
{ }

[ ]
{ }

{ }[ ] [ ]min ,
j xj jxj DjD

k k k

k t j j
j i j i

j i
j

j j
i

E J i E x D E D E U K y E Jβ δ γ
≤≤= = =

= − − + + +∑ ∑ ∑ .  (3.5) 

Additionally, for 1i k= −  and 1 0kJ − =  the formulation turns in to one-step 

error calculation for the single-period inventory problem. 

3.1.2 General Inventory Formulation 

As done in Chapter 2 the underlying problem in equation (3.5) is 

reformulated to analyze the best and the worst possible cases. The difference 

in these models is the order of events. 

 

Figure 3-3: The best (left) and the worst (right) case inventory behavior 
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Figure 3-3 shows the order of events for each model. Each period is 

divided into two phases; the first phase contains the lead time demand and 

the second phase contains the demand for the rest of the period. 

Replenishment time determines the end of the first phase. 

In the best case framework the demand is fulfilled first and then errors 

occur. Since sold items are outside of the feasible space for errors, this 

case maximizes the demand fill rate and minimizes the IRI. In the worst case, 

the errors occur first and then the demand is fulfilled; thus, minimizing the 

fill rate. In reality, the inventory behaves somewhere between the best and 

the worst case situations; hence, the two characterizations provide a lower 

and an upper bound. In this case 1
kε  denotes the outbound and storing errors 

during lead time, 2
kε  denotes the inbound errors, and 3

kε  denotes the outbound 

and the storing errors during the remainder of period k .  

i. Best Case 

The errors done in the first phase for the best case are, 

 { }[ ] { }[ ] [ ]' ' ' ' 'min , min , .E D R S E R S D R S E Yδ β δ γ− + − − − +  (3.6) 

The calculation of the second phase errors depends on the inventory left 

which is 

 [ ]( ) [ ] { }[ ] { }[ ]' ' ' ' ' '1 min , min ,E Y R E S E D R S E R S D R Sγ δ β δ− + − − − − − − −  (3.7) 

Note that equation (3.7) is always non-negative and can assume positive 

values only if there are some physical stocks left on shelves. This can 

easily be proven by choosing the highest 1β = , which corresponds to the 

extreme situation where all the inventory is lost at the end of the phase. In 

that case, equation (3.7) becomes [ ]( )1E Y γ−  which is always non-negative.  
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The second phase in the best case starts off with the demand, which can 

be written as 

[ ]( ) [ ] { }[ ] { }[ ] [ ]' ' ' ' ' ' ''1 min , min ,E Y R E S E D R S E R S D R S E Dγ δ β δ− + − − − − − − − − . (3.8) 

Equation (3.8) represents the available inventory before the next source of 

error occurs. Note that, equation (3.8) is always positive as long as 

( ) '1Y Dγ− ≤ . This provides a lower bound for γ . The outbound errors on the 

second phase can be formulated as 

( ) { } { }( ){ }'' ' '' ' ' ' ' 'min , 1 min , min ,E D Y R S D D R S R S D R Sδ γ δ β δ − + − − − − − − − −   .  (3.9) 

Finally the storing errors can be formulated similarly, 

( ) { } { }( )
( ) { } { }( ){ }
' '' ' ' ' ' '

'' ' '' ' ' ' ' '

1 min , min ,
min , 1 min , min ,

Y R S D D R S R S D R S
E

D Y R S D D R S R S D R S
γ δ β δβ δ γ δ β δ

− + − − − − − − − −
− − + − − − − − − − −
 
  

  (3.10) 

The final characterization of the expected error for a period is obtained by 

combining equations (3.6), (3.9) and (3.10) as 

[ ] { }[ ] { }[ ] [ ]
( ) { }

{ }( )
( ) ( ) { }( )

( ) ( ) { }( ){ }

' ' ' ' '

'' ' '' ' '

' ' '

'' ' ' '

'' ' ' '

min , min ,
, 1 min ,

min
min ,

1 1 min ,
.

min , 1 1 min ,

E J E D R S E R S D R S E Y
D Y R S D D R S

E
R S D R S

Y D R S D R S
E

D Y R S D R S

δ β δ γ
δ γ δ
β δ
γ β δβ δ γ β δ

= − + − − − +
− + − − − −  +   − − − −  

− − + − − − − 
+  − − + − − − − 

 (3.11) 

Reorder level dependency 

[ ]E J  is increasing in R  since the partial derivative with respect to R  

is positive. This can be shown by separating equation (3.11) into three 

terms. For practicality, we let [ ]iE J  denote the line 1,2,3i =  for equations 

(3.6), (3.9) and (3.10) respectively, so that [ ] [ ] [ ] [ ]1 2 3E J E J E J E J= + + . Then, 

the derivation of [ ]1E J  is, 

[ ]
{ }( ){ } { } { }( ){ }( )' ' '' ' ' '

1

1 1 1 1 1 1D R D R D RR S D R S D

E J
R δ δ

β≥ ≥ ≥− ≤ − ≤

∂
= − + − − −

∂
. 
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The derivative is non-negative since { }( ){ }' ' '1 1 0D R R S Dδ≥ − ≤
− ≥  and [ ]0,1β ∈ . The 

derivative of [ ]2E J  is, 

[ ]
( ) ( ) { }( ){ }

( ) { } { }( ){ }( ) ( ) ( ) { }( ){ }' ' ' ' '' '' ' ' '

2
'' '' ' ' '

1 1 min ,

min , 1 1 min ,

1 1 1 1 1 .D R D R R S D D Y D R S D R S

E J
E D Y D R S D R S

R R
δ δ γ β δ

δ γ β δ
β ≥ ≥ − ≤ ≥ − − + − − − −

∂ ∂
=  − − + − − − −  ∂ ∂
= − − − −

 

Since [ ]0,1β ∈  and { }'1 1 0D R≥− ≥ , the above equation is again always non-negative. 

The final part can be written as,  

[ ] ( ) ( ) { }( )
( ) ( ) { }( ){ }

( ) { } { }( ){ }( )
( ) { } { }( ){ }( ) ( ) ( ) { }( ){ }

' ' ' '

' ' ' ' '' ' ' '

'' ' ' '3

'' ' ' '

1 1 min ,

1 1 min ,
min , 1 1 min ,

1 1 1 1 1
1 1 1 1 1

D R D R R S D

D R D R R S D D Y R S D R S

Y D R S D R SE J
E

D Y R S D R SR R

δ

δ δ γ β δ

γ β δβ δ γ β δ
β

β β
≥ ≥ − ≤

≥ ≥ − ≤ ≥ − + − − − −

− − + − − − −∂ ∂  
=  − − + − − − −∂ ∂  

− − − − 
=  − − − − −

   

Hence, the summation of [ ] [ ] [ ]1 2 3E J E J E J+ +  is increasing in R  when 'R D≥  

or it is zero. 

Lead time demand dependency 

The function behavior with the first phase demand can be found by taking 

the derivative with respect to 'D . Let [ ] [ ] [ ] [ ]1 2 3E J E J E J E J= + +  then, 

[ ]
{ } { } { } { }( )
{ } { }( )( )

' ' ' ' ' ' ' '

' ' ' '

1

'

' '

' '

1 1

1 1

.
1     

R S D R D D R S D R D D

R S D R D D

E J

D

R S D
R S D

δ δ δ δ

δ δ

δ β β δ
δ β β
δ δβ β δ

δ

− ≥ − < − ≥ − <

− ≥ − <

∂
= − − − −

∂
= − − −

− − − ≥= − − <  

[ ]1E J  behaves differently based on δ  and β . When δ  is big enough [ ]1E J  

is decreasing with 'D , but when δ  is small it depends on both β  and δ . The 

derivative of [ ]2E J  with respect to 'D  is, 
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[ ]
[ ]{ }

{ }

[ ]

[ ]{ }
'

'' 1

2
'' ' '' 1

'

1

'

min ,

1 .D R
D Y R D E J

E J
E D Y R S D E J

D
E J

D δ

δ

≤
≥ + − −

∂
= + − − −  ∂

∂ = − − 
 ∂  

[ ]2E J  is also decreasing for big enough δ , otherwise it also depends on both 

δ  and β  through [ ]1E J . Finally, the derivative of [ ]3E J  is, 

[ ]
[ ] [ ]( )

{ }

[ ] [ ]
'

3
' '' 1 2

' '

1 2

' '
1 .D R

E J
Y R S D E J E J

D D
E J E J

D D

β

β ≤

∂ ∂
= + − − − −

∂ ∂
∂ ∂ = − − − 

 ∂ ∂  

Once again the behavior is dependent on δ  and β . 

ii. Worst Case 

In the worst case, it is assumed that IRI takes place prior to demand 

fulfillment. Similar to the best case, the inbound errors during the first 

phase can be obtained as, 

 [ ] [ ] [ ]' ' .E S E R S E Yδ β δ γ+ − +  (3.12) 

The calculation of the second phase errors start with the outbound errors, 

 ( ) ( ){ }'' ' ' 'min , 1E D Y R S S R Sδ γ δ β δ− + − − − −    (3.13) 

where ( ) ( )' ' '1Y R S S R Sγ δ β δ− + − − − −  is the actual remaining inventory on the 

shelves. When 1β = , the on-hand inventory becomes ( ) '1Y Sγ− − . Recall that, due 

to the nature of the online retail sales, customers can continue purchasing 

even when the actual physicals stock is zero. Hence, ( ) '1Y Sγ− −  can be 

negative, but ( )1Y γ−  is always positive. The final phase of errors can be 

formulated similarly, 

( ) ( ) ( ) ( ){ }( )[ ]' ' '' ' ' '1 min , 1 .Y R S S R S D Y R S S R SE γ δ β δ δ γ δ β δβ − + − − − − − − + − − − −  (3.14) 
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Also note that, equation (3.14) is always positive when ( ) '1Y Sγ− ≥ . The 

expected error formulation for a period is obtained similarly by combining 

equations (3.12), (3.13) and (3.14) as, 

[ ] [ ] [ ] ( ) ( ){ }
( ) ( ) ( ) ( ){ }( )[ ]' ' ' '' ' ' '

' ' '' ' ' '

1 min , 1 .
min , 1

Y R S S R S D Y R S S R S
E S E R S E Y E D Y R S S R S
E γ δ β δ δ γ δ β δ

δ β δ γ δ γ δ β δ
β − + − − − − − − + − − − −

+ − + + − + − − − −  
+

 (3.15) 

Reorder level dependency 

[ ]E J  in the worst case setup is again increasing in R  since the partial 

derivative with respect to R  is positive. This can be shown as  

[ ]
( ) ( ) ( ){ } ( ) ( ) ( ){ }( )
( ) ( )( ) ( ) ( ){ }

" ' ' ' " ' ' '

" ' ' '

1 1

1

1 1 1

1 1 1 .
D Y R D R D D D Y R D R D D

D Y R D R D D

E J
R γ δ β δ γ δ β δ

γ δ β δ

β δ β β β δ β
β β β δ β β

≤ − + − − − − ≤ − + − − − −

≤ − + − − − −

∂
= + − + − − −

∂
= + − + − −

 

This equation is non-negative, as long as, 

 
( )

( )2
1

1

β β β
δ

β

+ −
≥ −

−
.  (3.16) 

Equation (3.16) is decreasing in terms of β  since the derivative with 

respect to β  is negative. Thus, the lower bound for δ  decreases as β  

increases. 

Lead time demand dependency 

The function behavior with the first phase demand can be found by taking 

the derivative with respect to 'D . In other words, 

[ ]
( ) ( ) ( ){ }

( )( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( )

'' ' ' '

'' ' ' '

'' ' ' '

1'

1

1

1

1 1
1 1 .

D Y R D R D D

D Y R D R D D

D Y R D R D D

E J

D γ δ β δ

γ δ β δ

γ δ β δ

δ βδ δ βδ δ

β δ βδ δ βδ δ
βδ δ δ β βδ δ β

≥ − + − − − −

≥ − + − − − −

≥ − + − − − −

∂
= − + − −

∂
+ − + − − − −
= − − + − + −

 

Just like the best case this function’s behavior depends on the relation 

between δ  and β . 
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3.1.3 Numerical Study 

The model is applied to the numerical study presented in Section 2.1.2. 

In the case study, a continuous ( ),Q R  policy is utilized with ( )600,80 . Weekly 

demand D  and lead time τ  are normally distributed with ( )250,12  and 

( )21.14,0.33  respectively. Parameters for shelving errors are 1%α =  and 0.5%β =  

whereas parameters for transaction errors are uniformly distributed with 

[ ]1%,1%δ ∈ −  and [ ]2%,2%γ ∈ − . Over 2000 of random numbers for D  and τ  with 5 

replications are generated to obtain the expected errors in a single period.  

The duration of the simulation study is 52 periods. Moreover, the model 

starts with zero IRI. In this setting, the simulation terminates by one of 

the two possible outcomes: (1) gradual error build up becomes too big and 

causes the inventory to freeze or (2) the system reaches period 52 and 

terminates normally.  

Table 3-1: Correlation matrix of 5 different types of errors in the best case 

Corr 'D  ''D  1st s
kε  1st e

kε  1st r
kε  

2nd 
s
kε  

2nd 
e
kε  

1st 
Phase 

2nd 
Phase 

'D  1         
''D  -0.016 1        

1st s
kε  -0.145 0.00 1       

1st e
kε  -0.976 0.0151 0.084 1      

1st r
kε  -0.01 -0.01 -0.00 0.0216 1     

2nd s
kε  -0.02 -0.20 -0.003 0.0225 0.002 1    

2nd e
kε  -0.1 -0.94 0.017 0.1083 -0.01 0.125 1   

1st 
Phase -0.28 0.002 0.98 0.2295 0.0027 0.000 0.033 1  

2nd 
Phase -0.03 -0.26 -0.00 0.0404 0.5318 0.842 0.192 0.004 1 

 

Table 3-1 and Table 3-2 summarize the results of simulation studies. In 

the tables 'D  denotes the lead time demand, ''D  denotes the remaining demand, 

s
kε  denotes the outbound (selling), e

kε  denotes the storing (expiration and 
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spoilage), r
kε  and denotes the inbound (receiving) errors. Table 3-1 presents 

the results of correlation study done on the different types of errors; the 

study includes the total errors done in both the first and the second phase. 

Based on this table, errors have no strong dependence between each other. The 

demand in each phase has a negative correlation with errors; however, this 

relation is dependent on the δ  and β  as shown in the previous section. 

Table 3-2 demonstrates the covariance matrix between the same parameters. 

This table is used to calculate the variation in multiple dimensions. 

Table 3-2: Covariance Matrix of 5 different types of errors in the best case 

Cov 'D  ''D  1st s
kε  1st e

kε  1st r
kε  

2nd 
s
kε  

2nd 
e
kε  

1st 
Phase 

2nd 
Phase 

'D  463.09         
''D  -53.07 22626        

1st s
kε  -1.980 0.002 0.400 

     
 

1st e
kε  -2.007 0.215 0.005 0.009      

1st r
kε  -1.478 -4.531 -0.001 0.007 12.1     

2nd s
kε  -2.590 -163.8 -0.01 0.011 0.052 29.5 

  
 

2nd e
kε  -1.389 -88.59 0.006 0.006 -0.02 0.42 0.386   

1st 
Phase -3.986 0.206 0.405 0.014 0.006 0.00 0.013 0.4194  

2nd 
Phase -5.467 -256.9 -0.00 0.025 12.17 29.97 0.786 0.0197 42.88 

 

In the equations derived in the previous section we failed to conclude a 

strong linear relation between the demand and the total errors. Same 

conclusion is also observed from Table 3-1 and Table 3-2.  

Table 3-3 summarizes the statistics obtained through the simulation 

study. The results in this table are used to create a baseline to assess the 

impact of IRI through comparison. 

Table 3-3: Summary of statistics of the best case 

Stock-out Error Length Time Sold  n(R)  Stock-loss Inbound Outbound 
22 38 12.8 662 30,522 40 37 (2) 3 

76 
 



 

 

The total variance of errors is 43.365, or standard deviation 6.58. The 

mean of the errors is 0.1; 0.05 from phase 1 and 0.05 from phase 2. The 

correlation matrix for the worst case is shown in Table 3-4 

Table 3-4: Correlation matrix of 5 different types of errors in the worst 
case 

Corr 'D  ''D  1st s
kε  1st e

kε  1st r
kε  2nd s

kε  2nd e
kε  

1st 
Phase 

2nd 
Phase 

'D  1         
''D  0.007 1        

1st s
kε  0.001 0.002 1 

     
 

1st e
kε  -0.001 -0.002 -1 1      

1st r
kε  -0.005 0.001 -0.005 0.005 1     

2nd s
kε  -0.006 -0.004 0.015 -0.015 -0.002 1 

  
 

2nd e
kε  -0.12 -0.94 -0.004 0.004 -0.02 -0.03 1   

1st 
Phase 0.002 0.002 0.999 -0.99 -0.004 0.015 -0.004 1  

2nd 
Phase -0.02 -0.09 0.010 -0.01 0.509 0.853 0.054 0.01 1 

  

Contrary to the best case, errors have strong dependence between each 

other. The outbound and the storage errors in the first phase have strong 

negative correlation. The demand again has no strong correlation with errors 

except the storing errors in the second phase. Recall that this correlation 

is dependent on the relation between δ  and β . 

Table 3-5: Covariance matrix of 5 different types of errors in the worst case 

Cov 'D  ''D  1st s
kε  1st e

kε  1st r
kε  2nd s

kε  2nd e
kε  

1st 
Phase 

2nd 
Phase 

'D  478.78         
''D  21.28 22855.4        

1st s
kε  0.011 0.169 0.446       

1st e
kε  0.00 -0.0008 -0.002 0.00      

1st r
kε  0.008 0.555 0.008 0.00 12.1     

2nd s
kε  -1.355 -0.72 0.026 -0.00 -0.041 33.7    

2nd e
kε  -1.723 -89.6 -0.002 0.00 -0.044 -0.12 0.391   

1st 
Phase 0.017 0.181 0.444 -0.002 0.008 0.027 -0.002 0.441  
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2nd 
Phase -3.089 -89.8 0.033 -0.00 12.02 33.5 0.225 0.033 0.225 

 

Table 3-5 depicts the covariance matrix for the worst Case. Based on the 

table, the total variance of errors is 46.29, or standard deviation 6.8. And 

the mean of the errors is 1.44; 0.04 from the first phase and 0.09 from the 

second phase.  

Table 3-6: Summary of statistics of the worst case 

Stock-out Error Length Time Sold  n(R)  Stock-loss Inbound Outbound 
31 180 12.8 670 30,425 39.5 180 (6) 5 

 

Table 3-6 summarizes the final result statistics for the worst case 

simulation study. By comparing Table 3-3 and Table 3-6, we observe that the 

average errors in the worst case are considerably larger. This is intuitive 

since the order of events are arranged to maximize the errors in the worst 

case and minimize them in the best case. Unexpectedly, the average lost sales 

in both cases are similar. The reason behind this result is the effect of 

customer’s inability to access the actual physical stock. Lost sales in the 

online retail model can only occur after the records reach to zero. At that 

point both cases behave similarly. 

3.2 Evaluation of the Impact of IRI 

In the previous section we modeled IRI in the online retail environment. 

In the model the decision maker is assumed to be blind to IRI. When this 

assumption on IRI is removed, inventory manager has to adjust the inventory 

policies accordingly. In this section we analyze the two alternative methods 

for compensating IRI; increasing IRI resistance of the current inventory 

policy and controlling the factors that cause IRI.  
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3.2.1 IRI Resistance Method 

It is known that even small amount of IRI can cause significant losses 

(DeHoratius & Raman, 2008). The main focus here is minimizing the impact of 

IRI via controlling the level of inventory on-hand. As done in Section 2.2.2, 

we characterize a framework for error formulation and utilize this 

formulation to generate expected error, which is then used to adjust the 

inventory records. 

In a traditional ( ),Q R  framework, the inventory manager observes the 

inventory records continuously and makes a replenishment decision of Q  when 

the records fall below R . In this setup, R  is defined based on three 

parameters; lead time, supply/demand uncertainty and service level. Using 

these parameters the reorder level is defined as the safety stock plus the 

lead time demand. The exact calculation of Q  and R  levels is out of the 

scope of this study. We are interested in modifying the current safety stock 

each period to account for the IRI.  

The formulation of IRI in the previous section provides expected one-step 

error given certain parameters. Using this expectation we gradually increment 

the safety stock levels at each decision epoch. This behavior is depicted 

graphically in Figure 3-4. As the figure illustrates, this method forces the 

inventory records to increase gradually while keeping the actual physical 

stock relatively constant. 
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Figure 3-4: Increasing safety stock 

Determination of the increment value is critical for IRI resistance. One 

method of obtaining a suitable increment value is using the defined error 

characterization to obtain a mean and a variance for errors. Then these 

values can be utilized to devise an estimate for the increment value. 

However, in the case study we explore various increment values to account for 

the high standard deviation. For the best and the worst case scenarios, we 

generated separate simulation models. Both models have 52 period duration and 

replicated 60 times for increments 0 to 30.  

Figure 3-5 shows the results of the simulation studies for each case. The 

horizontal axis denotes the increment value and the vertical axis represent 

the total values of the parameters. According to the figure, sales per unit 

time (unit time is a day) is not effected with the increment because 

customers make their purchasing decision based on records; however, lost 

sales drops as the increment increases. The total number of stock-outs also 

decreases with the increment. Penalty sales is considerably different for the 

best and worst case; in the worst Case, penalty sales are larger. But in both 

cases they both decrease as the increment increases. After increment 12, all 

the parameters remain relatively constant. 
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Figure 3-5: The IRI resistance method for the best (left) and the worst 
(right) case 

The average length of the period, the inbound and the outbound errors 

behave independently from the increment. That is an expected result since 

they do not depend on the inventory on-hand. 
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Figure 3-6: The IRI resistance method for the best (left) and the worst 
(right) case cont. 

Figure 3-6 shows the results of the remaining parameters after the 

simulation. As expected the total error increases with the increment. 

Recorded and actual inventory are also increasing with increment. The reason 

is the increment raises the average inventory levels. Hence, choosing a very 

high increment is going to hurt the system more than it benefits it. 

Depending on preference (due to line of business), certain parameters can be 

chosen and the increments that maximize or minimize those values can be 

selected. 
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3.2.2 Error Control and Correction Method 

Cycle counting is one of the fundamental methods of error controlling 

methods. This is a process where the entire inventory is reckoned physically; 

see (Iglehart & Morey, 1972; Opolon, 2010; Young & Nie, 1992). The literature 

on cycle counting and inventory auditing is vast, see (Iglehart & Morey, 

1972; Kok & Shang, 2007; Kumar & Arora, 1991; Meyer, 1990; Rosetti et al., 

2010; Young & Nie, 1992).  

As mention in Section 2.2.3, determining the best possible triggering 

condition is not an easy task. Once again we perform simulation studies with 

various trigger configurations. In these studies we utilize the relation 

between the lead time sales and the expected demand during lead time to 

configure a trigger mechanism. The expected lead time demand is a known value 

and the lead time sales is an observed value. The logic behind this trigger 

mechanism is: If the lead time sales is considerably lower than the expected 

demand during lead time, then it can be concluded that the system contains 

high amounts of IRI. However, determining the sensitivity of the trigger 

mechanism still remains as a daunting issue. We overcome this burden by 

inserting a modifier called the trigger value. The main purpose of the 

trigger value is to adjust the expected demand during lead time. Via this 

method we can effectively change the sensitivity of the trigger mechanism.  

For the best and the worst case, we generated separate simulation models. 

Both models have 52 period duration and use 60 replications for trigger 

values 1 to 15. 
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Figure 3-7: The error control method for the best (left) and the worst 
(right) case 

Figure 3-7 shows the results of the simulation study. The horizontal axis 

denotes the trigger values and the vertical axis represent the average value 

after 60 replications. In both cases, as the trigger value increases expected 

correction decreases, penalty sales increases and errors slightly decrease. 

Comparatively, the changes are bigger in the worst case. 
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Figure 3-8: The error control method for the best (left) and the worst 
(right) case cont. 

Figure 3-8 presents the results of the remaining parameters. According to 

the figure, the sales per unit time, the lost sales and the average period 

length does not change over time. The behavior of these parameters for the 

best and worst case is very similar to each other. Once again the main reason 

behind this outcome is the customer’s lack of access to the actual physical 

stock. 
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3.2.3 IRI Resistance and Error Control 

In this section we apply IRI resistance and error control method 

simultaneously. As depicted in Figure 3-9, with each period, the IRI 

resistance method increases the reorder level. At the same time, depending on 

the trigger mechanism, cycle counts are triggered. After cycle count is 

triggered all the IRI is corrected and the reorder level resets to its 

original value. 

 
Figure 3-9: Combined compensation framework 

The combined method is applied to the numerical study presented in 

Section 2.1.2; Figure 3-10 and Figure 3-11 show the result of the study. 

Figure 3-10 depicts the penalty sales and the lost sales for the best 

case. The lost sales remain relatively constant with the increment level but 

a small decrease is observable as the trigger value increases. Penalty sales, 

on the other hand, decrease with both methods. For increment or trigger 

values greater than 2, the system observes no penalty sales. 
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Figure 3-10: Combined method results for penalty sales and lost sales for the 
best case 

Figure 3-11 compares error correction with the number of triggered cycle 

counts and the levels of increments. As can be seen from the graphs, the 

increment value increases the count number. This is because the IRI 

resistance method increases the total errors for higher increment levels and 

higher errors cause more cycle counts. For values greater than 2, the trigger 

mechanism starts to become ineffective. This is because the mechanism is not 

sensitive enough to generate any counts for values above 2. 

 

Figure 3-11: Combined method results for correction and count number for the 
best case 

The results obtained by the comparison between the original case and 

compensation methods are presented in Table 3-7. In this table, original case 
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refers to the classical ( ),Q R  model without implementing any IRI correction 

method. 

Table 3-7: Final result statistics table with optimal range selection 

Compensation 
Methods 

Sales 
per unit 

time 

Stock-
out 

Correction 
per Count Error Average 

Record 
Average 
Actual 

Lost 
Sales 

Original 
(Best) 45-50 20-25 - 40-50 250-260 150 40 

Original 
(Worst) 45-50 30-25 - 150-200 240-250 250 40 

IRI Res. 
(Best) 8 45-50 0-5 - 100-150 400-450 400-450 30-35 

IRI Res. 
(Worst) 9 45-50 0-5 - 200-250 400-450 350-400 30-40 

Error 
Control 
(Best) 1 

45-50 15-20 25-30 0-5 240-250 240-250 30-40 

Error 
Control 

(Worst) 1 
45-50 20-25 170-190 0-5 240-250 240-250 40-45 

Combined 
(Best) 2,1 47-50 10-15 45-50 5-10 260-270 260-270 35-40 

Combined 
(Worst) 2,1 47-50 15-20 170-200 10-15 250-260 250-260 35-40 

 
According to the table the sales per unit time does not change between 

compensation methods. This is an intuitive result because the sales are 

mainly influenced by demand; which is same in all the models. The original 

case has the highest total stock-out; all the other methods decrease this 

statistic. The best result for the stock-out is observed by the IRI 

resistance method. Error correction is done only in the error control and the 

combined method; and it is higher in the combined method. The reason is, the 

combined method utilizes the IRI resistance method as well, and as mentioned, 

the IRI positively influences the errors. Same outcome is observed for the 

actual inventory as well. The lost sales decreases with each method however, 

the best result is observed by the combined method. 
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3.3 Conclusion and Future Work 

IRI behavior in the online retail under the influence of demand, supply 

and lead time uncertainty is analyzed. Factors contributing to IRI are 

defined and formulated. Then, a framework for calculating the errors is 

derived in two separate cases: The best and worst case. Then, a numerical 

study using simulation is conducted to show the sensitivity of the inventory 

replenishment policy to IRI. The highlights can be summarized as; 

• In terms of the lead time demand, there is no conclusive result on 

the behavior of the error function. Depending on the input 

parameters β  and δ  it can decrease or increase with the lead time 

demand. 

• In terms of R , w  and Y  the error function is increasing. 

• In both phases the biggest effect is done by the outbound errors. 

Hence, the parameter β  has the highest impact.  

Two alternatives for compensating IRI are presented; the IRI resistance 

and the error control method. Then, a numerical analysis is performed to 

observe the behavior of IRI and to quantify the effects of the applied 

solution alternatives. Based on these studies, the IRI resistance method 

positively influences IRI because it increases the average inventory on-hand. 

The IRI resistance method performs better on stock-out and lost sales, 

whereas the error control method can keep low inventory levels. For the 

trigger mechanism high count number means, fewer stock-outs and fewer lost 

sales but more frequent counts. Therefore, a range can be chosen and the 

values that maximize or minimize desired parameters can be selected. 

89 
 



 

Similar to Chapter 2, the compensation methods described in this chapter 

are static. Hence again a good opportunity for future work is utilizing 

dynamic correction methods that change for each period. 
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CHAPTER 4  COMPARATIVE ANALYSIS 

 

In the previous chapters we derived characterizations for error behavior 

in online and offline retail environment with random demand, supply and lead 

time. Furthermore, we provided compensation methods that limit and control 

the impact of IRI and conducted numerical analyses using simulation. In this 

chapter we provide a comparative analysis using a cost framework for each 

setting. Then, we apply the cost framework to the previously developed 

compensation methods. Finally, we demonstrate the results with the same case 

study.  

We develop a cost model by dividing the general cost structure into three 

categories: IRI related costs, penalty costs and operating costs. IRI related 

costs are the ones caused by errors. As explained in the previous chapters 

they can further be categorized as shelving, inbound and outbound errors. The 

inbound and outbound errors are similar in the online and the offline retail 

settings. Typically, the inbound errors occur during ordering and receiving 

processes whereas the outbound errors occur during check-out processes (e.g. 

scanning errors). Shelving errors on the other hand are different for the 

online and the offline retail environment. Due to customer interaction in the 

offline retail environment, items are subject to theft and spoilage whereas 

in the online environment only spoilage occurs. 

Penalty costs consist of cycle counting costs and lost sales for the 

offline retail setting. In addition to those, the online settings also have 

penalty sales. Recall that, penalty sales denote the number of units sold 

when the actual inventory is zero but the inventory records are positive (see 

Appendix A). Operating costs are typically incurred in routine inventory 

management processes: holding, purchasing and selling price (as a negative 
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cost). These are known by the decision maker at all times. Moreover, they are 

used as the basis for estimating the remaining cost parameters.  

4.1 Model 

Let purchasing cost, holding cost for one period, and selling price of 

one unit of inventory be c , h, and p , respectively, where 0p c h> > > . The 

total cost in the ( ),Q R  framework as defined in Zipkin (2000) is, 

 ( ) [ ]( ) [ ] [ ]
( )',

2
Q E D E D

TC Q R h R E D k n R
Q Q

ρ= + − + +   

where  

 ( ) { }[ ] ( ) ( )max ,0 D
R

n R E D R z R f z dz
∞

= − = −∫ .  

In the above equations h, k , ρ , 'D  and ( )n R  are respectively holding, 

ordering, shortage cost, lead time, the expected unit time average demand and  

the expected lost sales. Additionally, the term [ ]/E D Q  denotes the expected 

unit time average demand per order (Nahmias, 2008). In our model we modify 

this cost function by introducing IRI and penalty cost. The costs are 

estimated as follows: 

IRI related costs: IRI has two consequences. First of all, the items that 

are affected by IRI become unsalable; thus, the opportunity of selling those 

items is vanished. The cost of losing the opportunity to sell an item is p . 

Secondly, the unsalable items also become unobservable; hence the inventory 

replenishment policy receives incorrect information. Finding a cost for 

incorrect information is challenging. For practicality, we use λ  to represent 

the cost of one unit of mismatch between actual inventory and records. 

Furthermore, it is possible to experience a positive or negative IRI. In this 

context positive IRI corresponds to losing inventory due to shrinkage. 
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Negative IRI is observed when unexpected items are obtained due to 

transaction errors. Then, the total value for IRI related unit cost becomes 

p λ+  for positive and p λ− +  for negative IRI.  

Penalty costs: These costs are incurred when certain conditions are met. 

In our model we have three such costs, penalty sales, cycle count costs, and 

lost sales. Counting cost is incurred based on the number of items counted 

and it is the same for both the offline and the online setting. Let υ  denote 

the cost of counting a unit. Penalty sales is only active for online setting; 

it only occurs when actual inventory is less than or equal to zero and 

inventory records are positive. Under a penalty sale situation, customers pay 

for the full price of the inventory that the system does not currently have. 

Let ν  denote the cost of one unit of penalty sales. Finally, lost sales 

occurs when actual physical stock drops to zero in the offline setting; 

whereas in the online setting it occurs when inventory records drops to zero. 

Note that lost sales is not simply equal to the selling price ( p ) because 

lost sales also has long term effects such as loss of goodwill and inaccurate 

demand estimation. For practicality, let ρ  denote the lost sales cost per 

unit in both the online and the offline settings. These cost parameters are 

summarized in Table 4-1, 

Table 4-1: Cost structure 

Cost 
IRI Related Cost Penalty Cost Operating Cost 

Theft Inbound Outbound Spoilage Pnlty sales Count 
Lost 
Sales Holding Purchasing 

Offline p λ± +  p λ± +  p λ± +  p λ± +  - υ  ρ  h c  

Online - p λ± +  p λ± +  p λ± +  ν  υ  ρ  h c  

 
One of the biggest problems of this setup is the fact that it does not 

account for errors. Additionally, in our model we use purchasing cost c  

instead of using a fixed ordering cost k . Hence, the total cost function can 

be rewritten as  
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( ) [ ]( ) [ ] [ ]

( )
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[ ]

[ ]

',
2
Q E D E D

TC Q R h R E D cQ n R
Q Q

E D
p E IRI

Q

ρ

λ

= + − + +

+ ± +
  (4.1) 

where [ ]E IRI  is the average amount of errors in a period. When cycle counting 

is implemented the equation becomes even more complex. We use the same 

function to model cycle counting mechanism as done Section 2.2.3. The 

relation between the lead time sales and the expected demand during lead time 

is utilized to configure the trigger mechanism. The expected lead time demand 

is a known value and the lead time sales is an observed value. The logic 

behind this trigger mechanism is: If the lead time sales are considerably 

lower than the expected demand during lead time, then it can be concluded 

that the system contains high amounts of IRI. A modifier called the trigger 

value is inserted to adjust the expected demand during lead time. Via this 

the sensitivity of the trigger mechanism can be controlled effectively. 

Note that the maximum number of times a cycle count can happen in a 

period is 1. This is because the decision to trigger a cycle count is only 

available to decision maker once per period, when inventory record is equal 

to the reorder level. Hence, equation (4.1) can be modified as, 

 

( ) [ ]( ) [ ] [ ]
( )

( )
[ ]

[ ] [ ]{ }( )

[ ]
[ ]{ }

'

1

1

,
2

count

count

Q E D E D
TC Q R h R E D cQ n R

Q Q
E D

p E IRI E Correction
Q

E D
E Count

Q

ρ

λ

υ

=

=

= + − + +

+ ± + −

+

  (4.2) 

where [ ]E Correction  denotes the expected number of correction when a cycle 

count is triggered. Additionally, [ ]E Count  denotes the expected number of 

inventory counted when a cycle count is triggered. We use equation (4.2) in 

our simulation studies to calculate the inventory related costs. 
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In order to compare similarities and differences of the online and 

offline setting we conducted series of simulation studies. We first examine 

two groups of studies for the offline setting. The first group is done using 

the IRI resistance method (Section 2.2.2); and the second group is done using 

the error control method (Section 2.2.3). In both groups several separate 

simulation studies are performed to understand the sensitivity of the total 

cost with respect to IRI and penalty costs. Furthermore, the best and the 

worst case framework are also implemented during these analyses. The same 

methodical analyses are then performed for the online setting. 

The main goal of these studies is to use the costs as a generic measure 

for all the key performance metrics. Then, the total cost function in 

equation (4.2) can be used to determine the effectiveness of the compensation 

methods described in Chapter 2 and Appendix A.  

The simulation study uses the same numerical study in Section 2.1.2. In 

the case study, a continuous ( ),Q R  policy is utilized with ( )600,80 . Weekly 

demand and lead time are normally distributed with ( )250,12  and ( )21.14,0.33  

respectively. Parameters for shelving errors are 1%α =  and 0.5%β =  whereas 

parameters for transaction errors are uniformly distributed with [ ]1%,1%δ ∈ −  

and [ ]2%,2%γ ∈ − . 

4.2 Numerical Study: The Offline Retail Setting 

We first discuss the findings for the offline retail environment. Using 

the error characterization derived in Chapter 2 and the cost structure 

presented equation (4.2) we conducted two groups of simulation studies. The 

first group is done to assess the best levels of increment for the IRI 
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resistance method and the second one is done for finding the most suitable 

trigger mechanism for the error control method. 

4.2.1 IRI Resistance Method 

Table 4-2 and Table 4-3 summarize the key performance measures while the 

IRI resistance method is being implemented for the best and the worst case, 

respectively. In both tables, columns represent the key measures that form 

the total cost function presented in equation (4.2). In these tables, the 

sales per unit time represents the average amount of sales done per week; the 

total sales denotes the total amount of sales done throughout 52 periods; The 

stock-out column shows the total number of time actual physical stock drops 

to zero; ( )n R  represents the total amount of lost sales; IRI column represents 

the total number of mismatch; the actual and the record columns denote the 

levels of inventory; and total actual column shows the total actual physical 

stock purchased in 52 periods. Furthermore, each row in these tables denote a 

set of simulation studies performed by using a specified level of increment 

for the IRI resistance method. For comparison, 7 different values for 

increment level are selected and presented, which are 0, 5, 10, 15, 20, 25 

and 30. Note that the first row (with 0 increment level) is the base setup 

where the IRI resistance method is not applied. 

Table 4-2: Summary of statistics for the best case with the IRI resistance  

Increment Sales/Time Total 
Sales 

Stock-
out n(R) IRI Avg 

Actual 
Avg 

Record 
Total 
Actual 

0 38.25 9,915 9.90 327.7
6 

92.78 50.79 124.78 10,000 

5 47.05 30,046 22.25 581.1
9 

304.63 225.60 374.51 30,340 

10 48.12 30,093 1.25 12.39 367.73 320.10 489.53 30,449 

15 48.37 29,840 0.72 6.08 416.33 417.77 613.34 30,262 

20 47.60 29,587 0.30 1.08 474.57 534.50 737.64 30,051 

25 48.44 29,333 0.20 0.57 523.21 632.70 862.00 29,860 

30 47.76 29,080 0.15 0.44 576.33 739.91 986.49 29,657 
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Based on the table, the stock-out and the lost sales values decrease with 

the increment amount; conversely IRI, inventory records and the actual 

physical stock levels increase as the increment increases. The main reason 

behind this is, the increment level increases the average on-hand inventory 

to reduce the effects of IRI (i.e. stock-outs, lost sales); but the system 

experiences more errors as a result of having excessive amounts of inventory. 

This suggests that having higher increment levels (15 to 30) are undesirable. 

Moreover, smaller increment levels (0 to 4) results in higher amounts of 

stock-outs and lost sales due to early freezing. As discussed in the previous 

chapters, when the increment level is too low, the system freezes before it 

reaches period 52. This can be observed by comparing the total sales. 

Finally, for moderate increment levels (5 to 14) the stock-out and the lost 

sales decrease considerably while the changes on the other measures are 

relatively small. Hence, using moderate levels of increment levels are more 

preferable. 

Table 4-3: Summary of statistics for the worst case with the IRI resistance 
method 

Increment Sales/Time Total 
Sales 

Stock-
out n(R) IRI Avg 

Actual 
Avg 

Record 
Total 
Actual 

0 31.96 5,252 6.23 181.01 82.69 27.09 27.09 108.36 

5 43.47 20,743 34.15 1068.5 327.15 134.29 134.29 376.73 

10 47.74 30,043 12.58 215.8 484.71 248.92 248.92 493.20 

15 48.18 29,840 0.87 5.77 532.45 351.42 351.42 613.21 

20 47.63 29,587 0.37 1.34 588.46 467.04 467.04 738.25 

25 48.18 29,333 0.32 1.4 642.56 578.49 578.49 862.11 

30 47.74 29,080 0.33 1.23 689.93 676.84 676.84 986.10 

 

The results observed from Table 4-3 are very similar; again, moderate 

levels of increment works better. The biggest difference between the two 

cases is: the amount of IRI experienced is larger in the worst case; 
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therefore, the most suitable level of increment is expected to be higher for 

the worst case.  

Table 4-4 presents the baseline and the remaining scenarios. The values 

for holding (h ), purchasing (c ) and selling ( p ) is selected. In the 

literature the most frequently used relation between h  and c  is 0.2h c= ; 

however there is no general relation for the selling price. For our purposes 

the accuracy of p , h  and c  is not relevant as long as they satisfy h c p> >  

and justifies a profitable opportunity for the decision maker to be in the 

business. Hence, we utilized the following setup: 0.2h c=  and 2p c= . In other 

words, if the purchasing cost is 1 unit then the holding cost is 0.2 and the 

selling price is 2 units. The cost values for the lost sales and IRI are 

subjective; so different configurations of values are considered for each 

scenario. 

Table 4-4: Cost scenarios in the offline setting with the IRI Resistance  

Cost Setup Holding Purchasing Price n(R) IRI 

Base 0.2 1 2 1 2 

Scenario 1 0.2 1 2 1 6 

Scenario 2 0.2 1 2 1 12 

Scenario 3 0.2 1 2 3 2 

 

Table 4-4 demonstrates 6 different costs in the columns and four 

different scenarios in the rows. The base scenario uses small penalty costs 

for lost sales and IRI. In scenarios 1 and 2, the unit cost of IRI is 

increased. Finally in scenario 3 the cost of lost sales is increased. 

We calculated the costs using the scenarios presented in Table 4-4 and 

the total cost function derived in equation (4.2). Then, we calculated the 

revenues by using the selling price and the total sales. Finally, the profit 

function is obtained as shown in Figure 4-1. With the increment, the profit 

obtained increases sharply up to a certain point than it decreases slowly. 
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Figure 4-1: Profit function for each scenario for the best case with the IRI 
resistance method 

As the unit cost of IRI and the unit cost of lost sales change, the 

profit functions behaves differently. In the base cost structure the optimal 

increment value is 8. When the penalty for IRI increases, the optimal 

increment value decreases; the optimal increment for scenario 1 is 7 and 

scenario 2 is 5. As presented in Section 2.2.2, the average inventory 

increases with the increment value, this in turn causes more shelving errors. 

In scenario 3 we increase the unit cost of lost sales, and the best increment 

value jumps to 9. Finally, the base case profit function is always greater 

than the other 3 as expected since the scenario has higher penalty costs.  

 

Figure 4-2: Profit function for each scenario for the worst case with the IRI 
resistance method 
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The profit function behavior in the worst case with each scenario is 

demonstrated in Figure 4-2. In the base case, the optimal increment value is 

12. The optimal increment is at 10 for scenario 1 and 2 but for scenario 3 it 

is back at 12. The overall behavior of the profit function is the same. 

4.2.2 Error Control and Correction Method 

We implement the same procedures for the error control method. Table 4-5 

and Table 4-6 summarize the key performance measures while the error control 

method is being implemented for the best and the worst case, respectively. In 

both tables, columns represent the key measures that form the total cost 

function presented in equation (4.2). Each row denotes a set of simulation 

studies performed by using a specified trigger level.  

For comparison, 7 different trigger values are selected and presented, 

which are 0, 1, 2, 3, 4, 5 and 10. Note that the first row (with 0 trigger 

value) is the base setup where the error control method is not applied.  

Table 4-5: Summary of statistics for the best case with the error control 
method 

Trigger Sales 
per Time 

Total 
Sales Stock-out n(R) IRI Count # Avg 

Actual 
Avg 

Record 
Total 
Actual 

0 38.25 9,915 9.90 327.76 92.78 - 50.79 124.78 10,000 

1 47.17 30,295 16.22 277.18 317.21 16.38 233.05 238.68 30,611 

2 47.04 30,319 25.40 627.82 310.98 5.58 224.51 243.27 30,624 

3 46.71 30,323 28.73 772.90 309.39 4.38 221.79 245.69 30,625 

4 46.35 30,329 30.60 898.53 308.12 3.88 220.15 247.30 30,629 

5 46.22 30,293 31.55 941.97 305.59 3.88 218.87 247.54 30,600 

10 46.07 30,136 31.05 966.89 301.13 3.72 217.33 248.14 30,432 

 

Recall that as the trigger value increases, the sensitivity of the 

trigger mechanism decreases, and as a result fewer cycle counts are observed. 

Based on Table 4-5, for higher trigger values the system experiences more 

stock-outs, higher lost sales, higher IRI and lower counts while the 

102 
 



 

remaining parameters do not fluctuate. On the other hand, when the trigger 

value is zero the system does not experience any cycle counts. As a result 

IRI buildups and causes the system to freeze early. This can be observed by 

comparing the total sales. Finally, for the moderate trigger values, system 

keeps the values for lost sales, IRI and stock-out low. Hence, choosing a 

moderate values for trigger (1 or 2) is more preferable. 

Table 4-6: Summary of statistics for the worst case with the error control 
method 

Trigger Sales 
per Time 

Total 
Sales Stock-out n(R) IRI Count # Avg 

Actual 
Avg 

Record 
Total 
Actual 

0 38.25 9,915 9.90 327.76 92.78 - 50.79 124.78 10,000 

1 46.97 30,149 19.95 393.95 476.59 20.22 229.11 237.20 30,619 

2 46.40 30,133 28.35 743.34 475.40 8.57 221.57 241.87 30,612 

3 47.01 29,954 32.30 927.38 473.18 6.92 217.76 243.19 30,426 

4 46.53 29,754 32.78 976.50 470.57 6.38 215.85 242.80 30,228 

5 46.33 29,530 33.53 995.25 467.32 6.05 213.89 242.25 30,000 

10 46.00 28,715 33.98 1,034.31 456.11 5.48 207.63 238.25 29,162 

 

The results observed from Table 4-6 are very similar; moderate values of 

trigger works better.  

Table 4-7: Cost scenarios in the offline setting with the error control 
method 

Cost Setup Holding Purchasing Price Count n(R) IRI 

Base 0.2 1 2 0.2 1 2 

Scenario 1 0.2 1 2 0.2 1 6 

Scenario 2 0.2 1 2 0.2 1 12 

Scenario 3 0.2 1 2 0.2 3 2 

Scenario 4 0.2 1 2 0.4 1 2 

 

We examine the costs associated with the error control method using Table 

4-7. In scenarios 1 and 2, the unit cost of IRI is increased. In scenario 3 

the cost of lost sales is boosted. Finally, the cycle counting unit cost is 

increased in scenario 4. 

103 
 



 

Figure 4-3 depicts the profit function for each of the cost scenarios for 

the best case framework. The behavior of the error control method for 

compensating IRI is considerably different from the IRI resistance method. In 

the IRI resistance method, with the increment the profit obtained increases 

sharply up to a certain point than it decreases slowly. But in this setup, 

the change in the profit function is small. But it is still possible to 

observe an increasing motion followed by a slow decrease. The recorded 

optimal trigger value for both best and worst cost structure is 2. Scenario 

1, 2 and 4 does not change the optimal value for both cases but in Scenario 3 

the optimal trigger jumps to 3 for both cases. 

 

Figure 4-3: Profit function for each scenario for the best case with the 
error control method 

As demonstrated in previous chapters, when applied, the error control 

method brings the best and the worst case setup closer to each other. This 

result is clearer in Figure 4-3 and Figure 4-4. 
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Figure 4-4: Profit function for each scenario for the worst case with the 
error control method 

In all of the scenarios errors are penalized; therefore, the system wants 

to keep low errors in general. Since errors are strongly dependent on the 

actual inventory, the system also wants to keep low levels of physical stock. 

Specifically in Scenario 3 the IRI is penalized severely, that is why the 

behavior in that scenario is a little different than the rest. 

4.3 Numerical Study: The Online Setting 

We conduct the same set of simulation studies for the online setting by 

using the error characterizations derived in Appendix A and the cost 

structure presented in equation (4.2). 

4.3.1 IRI Resistance Method 

Table 4-8 and Table 4-9 summarize the key performance measures while IRI 

resistance method is being implemented for the best and the worst case, 

respectively. In both tables, columns represent the key measures that form 

the total cost function presented in equation (4.2). And each row denotes a 

set of simulation studies performed by using a specified level of increment 

for the IRI resistance method.  
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Table 4-8: Summary of statistics for the best case with the IRI resistance 
method 

Increment Sales/Time Total 
Sales 

Stock-
out n(R) IRI Avg 

Actual 
Avg 

Record 
Total 
Actual 

0 47.50 28,505 12.17 289.93 26.38 227.18 229.14 28,523 

5 47.84 30,256 1.43 8.78 75.33 334.72 365.02 30,329 

10 48.04 30,052 0.67 3.27 127.82 435.96 489.33 30,186 

15 47.46 29,807 0.53 2.11 180.15 546.24 613.70 30,010 

20 48.34 29,586 0.42 1.29 237.65 647.43 737.36 29,828 

25 47.42 29,333 0.33 1.04 294.41 756.74 861.54 29,621 

30 47.48 29,070 0.32 0.61 348.57 861.22 986.39 29,417 

 

According to Table 4-8 as the increment level gets larger, the stock-out 

and the lost sales decrease but IRI, the actual and the recorded inventory 

increase. Higher increment levels (20 to 30) have small improvements on the 

stock-outs, the lost sales and IRI. Thus, it can be concluded that the 

smaller increment levels (0 to 5) perform better. 

 Table 4-9: Summary of statistics for the worst case with the IRI resistance 
method 

Increment Sales/Time Total 
Sales 

Stock-
out n(R) IRI Avg 

Actual 
Avg 

Record 
Total 
Actual 

0 47.09 29,506 29.75 618.56 165.44 217.11 232.36 29,671 

5 47.34 30,341 6.45 21.28 195.77 273.36 364.73 30,536 

10 48.01 30,053 0.97 5.98 244.56 369.95 489.44 30,306 

15 47.93 29,830 0.72 2.72 303.77 486.21 613.22 30,132 

20 48.15 29,586 0.57 2.08 354.63 586.42 737.67 29,949 

25 47.62 29,333 0.50 1.16 408.55 692.71 861.85 29,743 

30 47.84 29,080 0.28 0.8 461.37 796.89 986.45 29,549 

 

The results observed from Table 4-9 are similar; again, lower values for 

the increment are preferable.  

Table 4-10 shows the cost structure for 4 different scenarios. In these 

scenarios, the higher or the lower limits for the underlying costs are 

utilized in order to fully understand the influence of each factor. 
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Table 4-10: Cost scenarios in the online setting with IRI resistance method 

Cost Setup Holding Purchasing Price n(R) IRI 

Base 0.2 1 2 1 2 

Scenario 1 0.2 1 2 1 6 

Scenario 2 0.2 1 2 1 12 

Scenario 3 0.2 1 2 3 2 

 

The base scenario uses small values for the lost sales and IRI costs. In 

scenarios 1 and 2 the unit cost of IRI is increased. And in scenario 3 the 

cost of lost sales is increased. 

 

Figure 4-5: Profit function for each scenario for the best case with the IRI 
resistance method 

Figure 4-5 depicts the profit function for each of the cost scenarios for 

the best case framework. With the increment the profit obtained increases 

sharply up to a certain point than it decreases slowly. 

The behavior of the profit function in the online setting is similar to 

the offline setting. The online setting has higher profit in general for the 

same cost parameters. This is a direct result of the lack customer 

interaction with products. In the offline setting higher customer interaction 

causes more errors, which in turn reduces profit.  
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Figure 4-6: Profit function for each scenario for the worst case with the IRI 
resistance method 

The profit function behavior in the worst case with each scenario is 

demonstrated in Figure 4-6. In the base case, the optimal increment value is 

3; however the optimal increment is 5 for the worst case. 

4.3.2 Error Control and Correction Method 

We implement the same procedures for the error control method. Table 4-11 

and Table 4-12 summarize the key performance measures while the error control 

method is being implemented for the best and the worst case, respectively. In 

both tables, columns represent the key measures that form the total cost 

function presented in equation (4.2). Each row denotes a set of simulation 

studies performed by using a specified level of trigger for the error control 

method.  

Table 4-11: Summary of statistics for the best case with the error control 
method 

Trigger Sales 
per Time 

Total 
Sales Stock-out n(R) IRI Count # Avg 

Actual 
Avg 

Record 
Total 
Actual 

0 47.50 28,505 12.17 289.93 26.38 - 227.18 229.14 28,523 

1 47.57 28,446 12.70 295.38 26.44 7.90 227.96 228.86 28,466 

2 47.42 28,844 12.58 330.41 26.45 0.73 226.14 231.34 28,876 

3 47.78 28,838 14.58 367.28 25.42 0.25 225.96 231.37 28,866 

4 47.47 28,603 12.58 349.92 26.06 0.08 227.53 229.00 28,622 
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5 47.07 28,623 13.00 320.41 26.04 0.07 227.96 229.66 28,644 

10 47.28 28,604 12.92 348.46 25.82 - 242.05 229.51 28,618 

 

According to Table 4-11 the influence of the trigger value on the stock-

out, the lost sales and IRI is considerably small compared to previous cases. 

The other parameters remain relatively constant with trigger except count 

number. The results observed from Table 4-12 are similar in behavior. 

Table 4-12: Statistics summary for the worst case with the error control 
method 

Trigger Sales 
per Time 

Total 
Sales Stock-out n(R) IRI Count # Avg 

Actual 
Avg 

Record 
Total 
Actual 

0 47.09 29,506 29.75 618.56 165.44 - 217.11 232.36 29,671 

1 47.69 29,331 29.17 595.18 166.09 9.60 219.18 230.62 29,485 

2 47.43 29,426 31.17 586.04 165.31 1.60 217.24 231.44 29,591 

3 47.54 29,368 31.88 613.07 164.28 1.60 215.16 231.16 29,520 

4 47.07 29,449 30.73 628.19 165.19 1.03 216.56 231.55 29,625 

5 48.40 29,223 32.27 677.88 164.07 1.13 215.03 229.39 29,394 

10 47.60 29,071 32.67 666.32 163.39 - 214.80 228.91 29,222 
 

The same cost structure is used again in Table 4-13. 4 scenarios are 

created by systematically adjusting the error related costs. In these 

scenarios, the higher or the lower limits for the underlying costs are 

utilized in order to fully understand the influence of each factor. 

Table 4-13: Cost scenarios in the online setting with the IRI Resistance 

Cost Setup Holding Purchasing Price Count n(R) IRI 

Base 0.2 1 2 0.2 1 2 

Scenario 1 0.2 1 2 0.2 1 6 

Scenario 2 0.2 1 2 0.2 1 12 

Scenario 3 0.2 1 2 0.2 3 2 

Scenario 4 0.2 1 2 0.4 1 2 

 

The base scenario uses small lost sales and IRI costs. In scenarios 1 and 

2, the unit cost of IRI is increased. In scenario 3 the cost of lost sales is 

increased. Finally, the cycle counting unit cost is increased in scenario 4. 
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Figure 4-7: Profit function for each scenario for the best case with the 
error control method 

Figure 4-7 depicts the profit function for each of the cost scenarios for 

the best case framework. The behavior of the error control method for 

compensating IRI is again considerably different than the previous method. In 

this setup, the change in the profit function is small; but, it is still 

possible to observe an increasing motion followed by a slow decrease.  

 

Figure 4-8: Profit function for each scenario for the worst case with the 
error control method 

Figure 4-8 shows the profit function for the worst case setup. The 

behavior is similar.  
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The profit function in both figures increases when the trigger is 

positive than it remains relatively stable. The trigger mechanism becomes 

redundant when the trigger value is above 5 for both cases.  

4.4 Comparison of Retail Environments 

Chapter 2 contains detailed analyses on the structure of IRI for the 

offline retail environments. Furthermore, two compensation methods are 

developed to account for the impact of IRI for the offline retail setting. 

The results are then demonstrated on a numerical study. Similar analyses are 

performed for the online retail environment in Appendix A. Using the results 

obtained in Chapter 2 and Appendix A, this chapter provides comparative 

analyses for the online and offline retail settings. 

In this chapter the classical cost function, (Zipkin, 2000), is modified 

by introducing error related factors impacting the decision making process, 

such as IRI penalty cost, cycle counting cost etc. The effects of these 

factors are then compared as a function of cost and sales. Finally the 

results are demonstrated on the same numerical analysis in Section 2.1.2. 

Table 4-14 summarizes the results obtained from Chapter 2, Appendix A and 

Chapter 4. In this table, the preferable levels for each compensation method 

are tabulated based on the retail environment they are implemented upon.  

Table 4-14: Preferable levels of compensation methods based on the retail 
environment 

Chapter # Chapter 2 Chapter 3 Chapter 4 
Environment Offline Retail Online Retail Offline Retail Online Retail 

Method Incr. Trigger Incr. Trigger Incr. Trigger Incr. Trigger 
Best Case 5-10 1-2 0-5 0-1 8 2 3 2 
Worst Case 10-15 1-2 5-10 1-2 12 2 5 2 
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Remark: The results in Chapter 2 and Appendix A do not utilize the cost 

structure introduced in this chapter. 

Investigations in Chapter 2 and Appendix A show that the IRI resistance 

method performs better on keeping stock-out and lost sales low, whereas the 

error control method can operate with lower inventory. However, when the cost 

structure is implemented then same behavior cannot be observed. Based on the 

results obtained in this chapter, IRI resistance method reaches higher profit 

values in all of the cases, especially in the online setting.  

The overall results of the analyses done in this chapter are summarized 

into three groups: Retail environments, compensation methods, and IRI 

sensitivity 

4.5 Retail environments 

Major difference between the online and the offline retail environments 

is the lack of customer access to the goods during purchase. This difference 

has three major outcomes that greatly affect the inventory model. First, as a 

direct result, customers make their purchasing decisions based on the 

recorded inventory. This setup increases the importance of record accuracy 

and also creates a new type of IRI measure called the penalty sales. Second, 

the lack of customer access results in the absence of certain error factors 

that are present in the offline setting, such as theft. Because of this, the 

preferable levels for each compensation method is lower in the online setting 

as can be seen from Table 4-14. Finally, one of the biggest challenges faced 

in the offline setting is freezing as described in Section 2.2.1. The online 

setting on the other hand, is completely resistant to freezing. The main 

reason is, freezing can only occur during a stock-out and in the online 

setting these stock-outs are observable.  
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Compensation methods 

The profit obtained with the IRI resistance method, in all situations, 

increases with the increment level first and then decreases. This suggests 

that there is a range of values preferable for the increment value as shown 

in Table 4-14.  

Also the error control method becomes ineffective in the online setting. 

Intuitively, in the error control method the main goal is managing the 

difference between the actual and recorded inventory. But in the online 

setting, customers use records instead of actual physical stock. As a result 

the error control method loses its effectiveness. 

IRI sensitivity 

The behavior of the profit function under different scenarios is depicted 

in Figure 4-1 to Figure 4-8. According to these graphs, the IRI resistance 

method is not sensitive to changes in lost sales and unit IRI costs. 

Different cost values just change the magnitude of the profit function not 

the behavior. In both settings the influence of IRI is much greater than lost 

sales, mainly because the IRI resistance method operates with low lost sales. 

The profit function movement when the error control method is implemented 

shows greater sensitivity to changes in lost sales and IRI unit costs. The 

counting cost has small effect on the magnitude of the profit function. 

Whereas, lost sales and IRI costs are considerably influential. Moreover, 

slight changes in the behavior of the profit function are observed upon 

increasing the lost sales cost. This outcome is intuitively because error 

control method operated with high lost sales. 
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CHAPTER 5  FUZZY MULTI-OBJECTIVE MDP MODEL FOR INVENTORY RECORD INACCURACY 

 

Supply chains suffer greatly from inventory inaccuracy, which is a well-

studied problem in the literature. Due to this inaccuracy, the complete 

information about the current state of the inventory does not always exist. 

In the literature this issue is often referred as inventory visibility. In 

this study we concentrate on investigating the value of visibility through 

methodically analyzing the benefits of using a secondary source of 

information (i.e., automated data capturing) along with traditional inventory 

record keeping methods to control the effects of inventory record inaccuracy 

(IRI).  

In order to fully understand the value of visibility we define a 

secondary source of information which is referred to as visibility 

information for the rest of this study. We assume that the visibility 

information is obtained through an automated data capturing system which may 

or may not work with 100% accuracy. Hence the inventory manager has access to 

the conventional records and the new visibility data while making decisions. 

The inventory management and supply chain related problems are known to 

have a complex structure for optimization purposes. The conventional approach 

to solve these problems generally involves a cost estimation to bring the key 

metrics such as stock-outs, lost sales, or holding etc. to one generic 

platform, dollar value. Then an objective function is defined by assigning 

scalar weights to these metrics. In the multi-objective setting, the decision 

maker tries to optimize two or more objectives simultaneously under various 

restrictions. For a multi-objective optimization problem, a complete optimal 

solution seldom exists, and a Pareto-optimal solution is usually used. A 

number of methods, such as weighting method, assigning priorities to the 
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objectives and setting aspiration levels for the objectives are used to 

derive a compromise solution (Rosenthal, 1985). 

In general, inventory models involve uncertainty since certain values 

like shortage, or penalty cost are not known exactly. Furthermore, the 

decision maker often has vague goals such as keeping the shortage costs to a 

minimal, or keeping the customers satisfied. For such cases, fuzzy set theory 

and fuzzy mathematical programing methods are suitable (Bellman & Zadeh, 

1970; Zimmermann, 1978). 

In this study, in order to put more emphasis on the effects of IRI, a new 

measure is developed as inventory performance by combining four key 

performance metrics: lost sales, amount of correction, fill rate and amount 

of inventory counted. These key metrics are combined under a unitless 

platform using fuzzy logic and combined through additive methods. In a single 

item infinite horizon setting we develop a fuzzy multi-objective inventory 

model influenced by IRI with cycle counting under random supply, demand and 

lead time with no backordering. The multi-objective setup for fuzzy goals, on 

the other hand, is formulated using a fuzzy goal programming (FGP) approach 

involving different importance levels. Fuzzified goals are then assigned 

weights and combined using an additive model to maximize the sum of all the 

fuzzy goals. Extra information on additive methods in inventory problems can 

be found in Xu and Liu (2008) and Wee et al. (2009). 

Our goals are (1) to define an inventory system to assess the value of 

visibility, (2) to apply cycle counting methods to the new inventory system 

in order to gauge the IRI susceptibility of the created system, (3) to create 

a new performance measure (inventory performance) which combines the key 

inventory metrics in a platform where they can be compared, and (4) to find 

the optimal policy that maximizes the inventory performance 

116 
 



 

The inventory problem is modeled as an infinite horizon discrete-time 

discounted Markov decision process with fuzzified multi-objective subjected 

to random demand, supply and lead time. This model is extensively analyzed to 

understand the optimal policy structure. Finally, a numerical example is 

solved using policy iteration algorithm to provide insights. 

5.1 Model 

Earlier studies the inventory problem is commonly perceived as a 

sequential decision making problem. In such a problem, at a specified time 

the decision maker observes the state of a system. Based on this state 

decision maker chooses an action and receives an immediate reward. The action 

choice produces results and the system evolves to a new state at a different 

point in time according to a probability distribution determined by the 

action choice. Therefore, the main goal is to find a policy that provides a 

prescription for choosing actions in any possible future states. In this 

study we focus on a particular sequential decision model referred to as 

Markov decision process (MDP). In MPDs the set of available actions, the 

rewards and the transition probabilities depend only on the current state and 

action. Please refer to Puterman (2009). 

In inventory problems various types of uncertainties and imprecisions are 

inherent; such as demand, supply and lead time randomness. These are often 

modeled using approaches from the probability theory. Yet, it is not always 

possible to treat all types of uncertainties by probabilistic models (i.e. 

shortage cost, stock-out cost etc.). For such imprecise parameters we use 

fuzzy numbers defined on bounded intervals on the axis of real numbers. The 

fuzziness in inventory models can be present on multiple levels such as 

decision variables (S. P. Chen, 2011), costs (Vujosevic et al., 1996), goals 
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(L. H. Chen & Tsai, 2001), parameters (Ouyang & Chang, 2002) or objectives 

Wee et al. (2009). 

Fuzzy set theory, introduced by Zadeh (1965), is an extension of 

traditional set theory. In fuzzy theory the elements of the set are no longer 

required to belong to the set; instead, these elements have a degree of 

membership that quantifies how well they belong to the set. Fuzzy sets use a 

membership function, Aµ , for a set A , that extends the range of { }: 0,1Af U →  

to [ ]: 0,1A Uµ →  (Kosko, 1992). Triangular and trapezoidal membership function 

are very commonly used because they fit most of the cases and provide fast 

computation time (Xexéo). Other curves like Gaussian and sigmoid may provide 

smooth results but require higher computation time.  

 The goal of finding the optimal Q  and R  values have been studied 

extensively and therefore not in our scope. Instead we analyze alternatives 

that will maximize the potential of the selected ( ),Q R  policy by managing IRI. 

We are formulating a single-item multi-objective continuous-time stochastic 

inventory problem over an infinite horizon where the decision maker is 

following a ( ),Q R  policy with random lead time, random supply, lost sales and 

unobservable IRI. The inventory problem is modeled as an infinite horizon MDP 

with multiple objectives with the components discussed below. The multi-

objective setup is defined as the overall inventory performance which is a 

combination of four fuzzy parameters: Lost sales, expected error correction, 

service level and expected amount counted. These parameters are represented 

with triangular membership functions and combined together using fuzzy 

additive goal programming. A similar approach is present in Wee et al. 

(2009).  
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5.1.1 State Space: 

Consider the inventory problem where X  denotes the inventory level 

obtained from the records, X  denotes the inventory level obtained from 

automated data capturing system (i.e. Auto-ID, RFID etc.) and X  denotes the 

actual physical stock available for sales. The first two sources of 

information X  and X  are fully observable at any given time. However, X  

becomes observable only when inventory count is triggered. Using these 

variables we define state ξ  as follows, 

 ( ) ( )X X X Xξ = − + −    (5.1) 

Recall in previous chapters, ( )X X−   denotes the total error ε . The second 

term ( )X X−  shows the discrepancy of the automated data capturing system, ε . 

Therefore, the state space equation can be rewritten as, ξ ε ε= + . 

By defining state space this way we implicitly made the assumption that 

X X X≥ ≥ . In other words, the actual inventory that is available for sales is 

bounded by inventory records from above and automated data from below. In 

reality this may not be true. As we demonstrated in the previous chapters the 

actual inventory can be larger than inventory records due to negative 

transaction errors. However, in general this situation rarely occurs or lasts 

for very short durations. The same justification can also be claimed for the 

visibility as well. In reality automated data capturing systems are known to 

overestimate on occasions due to multiple readings. These outcomes are 

observed when the items (or the packaging) have the ability to reflect (such 

as metals) the radio waves. In order to decrease the complexity, in our 

models we assume that X X X≥ ≥  holds; however, this assumption can be relaxed 

by sacrificing computational efficiency (Note that when X X X≥ ≥  is true, this 
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inequality implicitly assumes 0ε ≥  and 0ε ≥  are also true). Figure 5-1 shows 

the graphical representation of the state space and its evolution as time 

moves forward. 

 
Figure 5-1: State Space 

With the assumption of X X X≥ ≥  the state space becomes finite, 

{ }0,1,..., 1, ,s R R F∈ −  where R  is the reorder level and F  denotes the freeze 

state (Absorbing state). The reason for the state space to be bounded by 

reorder level comes from the analysis done in the previous chapter. As shown, 

the maximum value that ε  can reach is R . That is because whenever Rε =  the 

system stops and making more errors becomes impossible. The visibility 

discrepancy on the other hand is always positive, 0ε ≥ . So whenever s i=  for 

{ }0,1,...,i R∈ , then { }0,1,...,Rε ∈  and { }0,1,...,Rε ∈  as long as s ε ε= +  is 

satisfied. The freezing scenario is observed only when s F= ; meaning Rε =  

and 0ε = . Moreover, freezing state F  is designed to represent the worst 

possible scenario. When the system is in this state the problem terminates 

with a big penalty m . This penalty is the main reason for the system to avoid 

freezing and triggering early cycle counts. Technically, the state space can 

be seen as  

{ }0,1,..., 1, , 1S R R R= − + . 
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The state space in this setup shows the sum of the total error and the 

total visibility discrepancy at each decision epoch. This setup greatly 

reduces the state space; instead of tracking the entire inventory, the system 

only tracks R  states. However, the effect of having a high vs. low amounts of 

overall inventory is not reflected in this setup. For example, having 10s =  

when the overall inventory is 100 is different than having 10s =  with 

thousands of overall inventory. In order to overcome this problem we first 

assume that if a practice has high inventory levels it also has a high 

reorder level. There are situations where this assumption does not hold such 

as just in time delivery systems. Moreover, the error formulation is a 

function of the reorder level and in Section 2.1.2 it is shown that errors 

increase with the reorder level. Thus, our states are sufficient to 

characterize the system changes in the overall inventory levels. 

5.1.2 Action Space 

As constructed in the previous chapters, the inventory problem evolves 

similarly. Figure 5-2 depicts this behavior and the decision epochs. 

According to the graph inventory records are replenished based on a ( ),Q R  

system. In this setting, the beginning and the ending of each stage are 

determined by inventory record level. In the figure τ  denotes the lead time 

and ka  denotes the action at period k . 
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Figure 5-2: Action space 

During a decision epoch, whenever the record reaches the reorder level, 

the decision maker has to take an action yielding a reward. The action space 

{ }0,1k
sA =  for { }1,2,...,k N∀ ∈  and { }0,1,2,..., 1s R∀ ∈ +  describes the cycle 

counting decision. For example in Figure 5-2 a cycle count is triggered at 

1 1ka + =  and a cycle count is not triggered at stage 0ka = . Furthermore, for 

each s S∈ , ( ) k
k sd s A∈  is the Markovian decision rule. In our study we are 

looking at an infinite horizon problem; hence, for the remainder of the 

research we use a  to denote the action instead of ka . Also since { }0,1k
sA =  

for { }1,2,...,k N∀ ∈  and { }0,1,2,..., 1s R∀ ∈ +  we replace k
sA  with A  and ( )

kd s  with 

( ).d s  

5.1.3 Transition Probabilities 

The transition matrix P is formulated using two principle values, the 

probability of making an error and the probability of having one unit of 

visibility discrepancy. Note that, error is obtained by looking at the 

mismatch between the actual physical stock and the inventory records; 

whereas, the visibility discrepancy is the difference between the information 

obtained from the actual physical stock and the automated data capturing 
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systems. In this study we are interested in maximizing the inventory 

performance policy when the system is subjected to IRI.  

The error from automated identification systems (i.e. visibility 

discrepancy), on the other hand, is dependent on many factors such as item 

types, warehouse shape, location, reader distance, packaging and many more. 

But we are interested only in the dependency to actual physical stock 

available. Although the remaining factors can be important contributions in a 

future study, they fall out of this study’s scope. In literature there are 

various papers dealing with the capabilities of automated data capturing 

systems (Agrawal, 2001; Raman et al., 2001; Ton & Raman, 2004). In our study 

we use visibility accuracy as an input parameter that shows the accuracy of 

the automated data capturing systems and investigate the various scenarios 

involving different levels of visibility accuracy. These levels can be high, 

medium and low.  

Let ε ′ , ε ′  and s ′ denote the error, visibility discrepancy and the state 

space for the next period. Then, ( )0 iP i a gε ε′ − = = ≡  for 0,...,i R=  denotes the 

probability of having i  errors at the current period. In this study we assume 

that errors are not corrected unless a cycle count is triggered, which means 

0ε ε′ − ≥  is always true. Let ( ), t
sP t s a rε = ≡  be the probability of having t 

units of visibility discrepancy when the system is in state s  where 

{ }0,1,...,t R∈  and the action a  is taken. Unlike errors, visibility discrepancy 

can be automatically corrected. The following condition holds for every s  and 

t, 

 ( )
0 

, t
s

t s
P t s a

r t s
ε

>= =  ≤
.  (5.2) 

To calculate ( ),P s s a′ , we condition on visibility discrepancy 
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 ( ) ( ) ( ), , , ,
t

P s s a P s s a t P t s aε ε′ ′= = =∑   (5.3) 

Then, ( ), ,P s s a tε′ =  can be calculated by conditioning on the discrepancy in 

the next observation  
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In equation (5.4) the first line shows the general equality of the 

conditional probability. The second equality extends the equation using the 

joint probabilities. Both ε ′  and ε ′  are non-negative so the summation starts 

from 0l =  to R . But since for the given observations certain values for s ′ 

are not attainable, the summation bounds are reduced in the third equality. 

In the fourth line, the joint probability is converted to the conditional. 

Then, the probability of visibility discrepancy is reduced to ( ),P l s s aε ′= =  

using the Markov property and time independence of visibility observations.  

Then, transition probability can be calculated as, 

 ( ) 0 0

0

, 0

s s s t
t s s t l l
s s

t l
s s s t

t s s t l l
s s

lt s s

r g r s s
P s s a

r g r s s

′− +
′− + −

′
= =

′− +
′− + −

′
′ == −

   ′≤   ′ = = 
  ′>   

∑ ∑

∑ ∑
  (5.5) 

and 

 ( ) 0
0

0

, 1  
s

s l l
s

l

P s s a r g r s s
′

′−
′

=

 ′ ′= = ≤ 
 
∑ .  (5.6) 

As state s  gets larger, the probability of reaching to smaller states 

decreases. In other words, the more the IRI is in the current period, the 
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higher the IRI will be in the next period. This is mainly because errors 

cannot be corrected until a cycle count is triggered.  

Note that the transition matrix becomes time independent since both the 

error and the discrepancy probabilities are time independent. In other words, 

the transition matrix P is fixed over time.  

For example, let { }0,1,2,3s∈  and action be { }1,0a∈ . Then, the transition 

matrix P can be calculated as follows: If the current state is 1s = , then the 

probability that the system will be in state 2s ′ =  for the next period is 

( )21,P a . This probability is calculated by conditioning on the visibility 

discrepancy two times. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

0
1

1
1

2 1, 21, , 0 01, 21, , 1 1 1,
21, , 2 21, 21, , 3 31,

0, 21, , 0 1, 1 1, , 0
2, 01, , 0

0, 2 1, , 1 1, 1 1, , 1
2, 01, , 1

P a P a P a P a P a
P a P a P a P a

P a P a
r P a

P a P a
r P a

ε ε ε ε
ε ε ε ε

ε ε ε ε ε ε
ε ε ε

ε ε ε ε ε ε
ε ε ε

= = = + = =
+ = = + = =

′ ′ ′ ′= = = + = = == ′ ′+ = = =
′ ′ ′ ′ ′= = = + = = =+ ′ ′+ = = =

 
  
 
  
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( )

0
1

1
1

0 1 0 0 1 1 2 0 1 1
1 1 1 1 1 1

1 1, , 0, 1 1 1, , 0
01, , 0, 2 21, , 0
21, , 1, 0 01, , 1
1 1, , 1, 1 1 1, , 1
01, , 1, 2 21, , 1

P a P a
r P a P a

P a P a
r P a P a

P a P a
r g r g r r g r g r

ε ε ε ε ε
ε ε ε ε ε

ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

′ ′ ′= = = = == ′ ′ ′+ = = = = =
′ ′ ′= = = = =
′ ′ ′+ + = = = = =
′ ′ ′+ = = = = =

= + + +

 
  
 
 
  

( )0 2
1 .g r+  

5.1.4 Reward: Inventory Performance 

One of the biggest challenges the researchers have been facing is 

creating a standard platform for the key metrics in the inventory problem. 

This platform is almost always the estimated dollar value of the mentioned 

metrics such as shortage or penalty cost. This setup enables the use of 

objective functions that aim to maximize profits or minimize. In this paper, 

our focus is on IRI, we create a different platform. In the inventory 

framework the error (the mismatch between the records and the actual) has 

substantial impacts on various performance metrics such as service level, 
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probability of stock-out, average inventory, lost sales, sales, inventory 

freezing, cycle counting, error correction, etc. Unfortunately the 

traditional models fail to address the importance of all of these metrics at 

the same time. Because of this, some of the metrics are constantly 

overlooked. By limiting our focus on IRI we limit our research to four key 

elements that are directly influenced by errors. 

In order to understand the value of errors we develop a new measure 

called “inventory performance”. This measure is a combination of the 

following metrics, (1) expected lost sales, (2) expected amount of 

correction, (3) service level and (4) expected amount of inventory to be 

counted. Unfortunately, as mentioned these metrics do not share a uniform 

unit. To overcome this challenge we fuzzify each of these metrics into a 

unitless platform, combine them into one measure and maximize it.  

The correlation between the chosen four performance metrics is 

complicated. Based on the simulation analysis presented in the previous 

chapters, the following results are concluded: as the frequency of cycle 

counting increases (1) the number of correction per count decreases, (2) the 

number of stock-outs decreases, (3) lost sales decreases and (4) the total 

number of errors made decreases. Additionally, the graphs presented in 

pervious chapters show the dependency between these parameters 

Theoretically, lost sales is a function of the reorder level, which is a 

function of safety stock. And safety stock is a function of service level; 

therefore, there is a direct dependency between lost sales and service level. 

However, the general characterization for lost sales and service level 

assumes that there are no errors. This poses a major problem since the 

effects of error on lost sales and service level are very different. Hence, 

the correlations between the discussed performance metrics are dependent on 
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the level of errors present in the inventory system. The relation between 

correction and the count amount is also similar. That is essentially the 

reason why these four metrics are chosen: lost sales, service level, error 

correction and count amount.  

i. Reward 1: Lost Sales 

The first part of the system performance is the lost sales. In the 

earlier studies, many inventory models have considered the uncertainty of 

shortage costs. However, papers dealing with the fuzzification of shortage 

costs are few  (Chang et al., 2006; Lin, 2008). In this section, we aim to 

fuzzify the value of lost sales. Applications of fuzzy set concepts on EOQ 

inventory models have been proposed earlier (Dutta et al., 2007; Vujosevic et 

al., 1996; Yao & Chiang, 2003). However, these studies almost always 

concentrate on the simple EOQ models, in which restrictive assumptions are 

implied. 

In a general ( ),Q R  setting the expected lost sales is formulated as the 

expected number of difference between demand and available inventory for a 

specified interval. In other words, 

( ) { }[ ] ( ) ( )max ,0 D
R

n R E D R z R f z dzτ

∞
= − = −∫  

where Df  is the demand distribution. Note that the term { }max ,0D Rτ −  uses 

reorder level instead of inventory level. This characterization is possible 

due to the decision structure. Recall that decision epochs are identified as 

the points at which inventory records reaches reorder level. Since the 

decision maker is only allowed to make decisions at decision epochs, the 

inventory level can be substituted with reorder level. 
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Lost sales value is generally inserted in the objective function with a 

scalar weight p  denoting the shortage cost per unit. We utilize a similar 

setup for lost sales, where the expected lost sales is calculated with 

 ( ) { }[ ], max ,0 ,n R s a E D R s aτ= − .  (5.7) 

Equation (5.7) can be rewritten as, 

 ( )
{ }[ ]

[ ]{ }[ ]
max ,0           1

,
max , 1 ,0 0

E D R a
n R s a

E D R E s a a
τ

τ ε
− =

=  − + = =
.  (5.8) 

Note that in equation (5.8) the second line uses [ ]1E aε =  although the 

realization is only possible when 0a = . This would seem unintuitive at a quick 

glance; however, at any decision epoch for a given s  when a cycle count is 

not triggered than the actual inventory on-hand is less than or equal to R  

(due to IRI). The difference between R  and the errors can be estimated by 

[ ], 1E s aε = , since it gives the expected amount of error correction if a cycle 

count is triggered. Equation (5.10) provides more details on this 

calculation. 

Then, to describe the fuzzy objective we define an acceptable interval

( ) ( )[ ],l un R n R . 

This interval is subjective and it represents the tolerable range for the 

lost sales values. The boundary limits ( )ln R  and ( )un R , as shown in the Figure 

5-3 part A, the optimistic and pessimistic situations respectively. 

Naturally, the lower the expected lost sales value is the better. The 

membership function ( )( ),n R s aµ , which may be linear or non-linear, is then 

used to describe the tolerance rating of the lost sales; the lower the 

expected lost sales is, the higher the membership value will be.  
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Figure 5-3: (A) Membership function for Lost sales and (B) membership 

function with bounds 

However, it is also possible to make more objective characterizations for 

lower and upper bounds, as shown in Figure 5-3 part B. The lower bound for 

the value can easily be obtained by looking at the demand distribution. The 

demand is assumed to be non-negative by nature. Thus, the smallest value for 

( ),n R s a  is zero. An easy upper bound for the value can be obtained by looking 

at the expected demand. The expected demand during lead time is always larger 

than expected lost sales by definition. In other words, [ ] ( ),E D n R s aτ > ; which 

can be written as 

[ ] ( ), 0E D n R s aτ ≥ ≥ . 

Then, the triangular membership function ( )( ),n R s aµ  is characterized as  

 ( )( )

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

1        ,       
,

, ,

0        ,       

l

u
u l

u l

u

n R s a n R
n R n R s a

n R s a n R n R s a n R
n R n R

n R s a n R

µ

≤
 −

= > >
−

≥

. (5.9) 

Equation (5.9) is used as the first part of the reward structure. 

ii. Reward 2: Expected Error Correction 

In this research we concentrate our attention on determining the right 

size of mismatch (state space) for counting. It is assumed that cycle 

counting is done with perfect accuracy 
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From this perspective, the expected amount of correction can easily be 

characterized as 

 [ ] [ ] 1, 0,1,...,
,

0   0             
E s a s R

E s a
a

ε
ε

= ∀ ==  =
  (5.10) 

where [ ]E sε  is the expected error when the system is in state s  upon 

triggering the cycle count. Since for a given s  and a , [ ] [ ], ,s E s a E s aε ε= + . 

Then expected error can be found by conditioning on probability of visibility 

discrepancy, or 

 

[ ] ( )

( )

( )

0

0

0

.

s

i
s

i
s

i

E s iP i s

iP s i s

iP s i s

ε ε

ε

ε

=

=

=

= =

= − =

= = −

∑

∑

∑

  (5.11) 

Let ( ) i
sP i s rε = = , then the above equation can rewritten as, 

 [ ]
0

s
s i
s

i

E s irε −

=

= ∑ .  (5.12) 

Hence, to describe the fuzzy objective, as shown in Figure 5-4 part A, we 

define an acceptable interval [ ] [ ][ ],l uE Eε ε . Naturally, it is better to have 

higher values for expected correction. Hence, the triangular membership 

function is greater for higher correction values. 

The lower bound for the value is zero since the smallest number 

correction can get is zero. The upper bound for the value is one since the 

maximum correction equals to the reorder level. In other words, as shown in 

Figure 5-4 part B the bounds can written as [ ]0 ,E s a Rε≤ ≤ . Figure 5-4 shows 

the membership function of fuzzified error correction parameter. For 

simplicity we use a triangular membership set as depicted in figure. 
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Figure 5-4: (A) Membership function for correction and (B) membership 

function with bounds  

The triangular membership function [ ]( ),E s aµ ε  is characterized as,  

 [ ]( )

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ] [ ]

[ ] [ ]

1 ,
,

, ,

0 ,

u

l
l u

u l

l

E s a E s
E s a E s

E s a E s E s a E s
E s E s

E s a E s

ε ε
ε ε

µ ε ε ε ε
ε ε

ε ε

≥
 −

= ≤ ≤
−

<

  (5.13) 

Equation (5.13) is used as the second part of the reward structure. 

iii. Reward 3: Service level 

Service level is a commonly used metric in inventory replenishment 

problems. Many definitions of service levels are used in the literature as 

well as in practice. These may differ not only with respect to their scope 

and to the number of products considered, but also with respect to the time 

interval they are related to. In our research the cycle service rate is the 

probability that there is no stock-out while waiting for an order to come in. 

In the long run, this corresponds to the percentage of order periods where 

there is no stock-out. 

In supply chain and inventory management literature, service level 

metrics are commonly used as a constraint (Bashyam & Fu, 1998; Ouyang & Wu, 

1997; Tarim & Kingsman, 2004). The reward associated with the service level 

is characterized as the probability of no stock-out. In a stochastic 

inventory problem, a stock-out can only happen during the lead time after an 
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order is given, assuming that the inventory is not frozen due to errors 

(Thiel et al., 2010). Hence, the probability of having no stock-out can be 

calculated as, 

{ } { } P No Stockout P D Rτ= < . 

In this formulation, Dτ  denotes the lead time demand. There is a very 

definite relationship between service level and the amount of inventory being 

stocked. Generally, the more the inventory level is the higher the service 

level will be but at a decreasing rate. The traditional setup of safety stock 

( )w  in ( ),Q R  is obtained as follows. Let R w τµ= +  be the reorder level where w  

is the safety stock and τµ  is the lead time demand. Then, w  can be formulated 

as  

* 2 2 2w z µ ττσ µ σ= +
. 

where τ  is the mean lead time, 2
µσ  is demand variance and 2

τσ  is the lead 

time variance (Zipkin, 2000). In this formulation *z  is the value obtained 

from the z -table for the desired service level (complementary type 1 error: 

all customer orders arriving within a given time interval will be completely 

delivered from stock on-hand). When the lead time is deterministic 2 2
τµ σ  

becomes zero making * 2w z µτσ=  and when there is no lead time w  and R  becomes 

zero. These results are very intuitive because if there is no lead time than 

there is no reason to have extra inventory. Obviously, such generalizations 

have limited viability in practice. Due to the difficulty in characterization 

of safety stock, in general the service level commonly becomes an input 

parameter inserted as a constraint.  
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In our research, the way the decision scheme is set up, inventory records 

are forced to be at R  during each decision epoch. However, the current 

inventory record observation involves errors. In reality the actual physical 

stock can be obtained by subtracting the error from R  during each decision 

epoch. Hence, at each decision epoch depending on the observed state the 

probability of observing a stock-out will be different, and is given by 

[ ]{ } { } { }, 0,1,..., , 0,1P D R E s a s R aτ ε≥ − ∀ ∈ ∀ ∈ . 

Similarly no stock-out probability can be obtained as 

 [ ]{ } { } { }, 0,1,..., , 0,1P D R E s a s R aτ ε< − ∀ ∈ ∀ ∈ .  

For simplicity of notation let { } { } P No Stockout P NS= . Note that the no stock-

out probability characterized in the equation above is dependent on the 

action;  

 { }
{ }

[ ]{ }
      1

,
0

P D R a
P NS s a

P D R E s a
τ

τ ε
< ==  < − =

  (5.14) 

To describe the fuzzy objective, as shown in Figure 5-5 part A, we define 

an acceptable interval for probability of no stock-out, { } { }[ ],l uP NS P NS .  

 

Figure 5-5: (A) Membership function for service level and (B) membership 
function with bounds 

Similar to correction, higher service levels are more desirable; so, higher 

service levels will yield higher membership values. Since service level is a 
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probability, it is naturally bounded by 0 and 1, see Figure 5-5 part B. 

However, the shape of the function’s bounds is still subjective. Once again 

we utilize a triangular function. 

The triangular membership function { }( )P NSµ  is characterized as, 

 { }( )

{ } { }

{ } { }

{ } { }
{ } { } { }

{ } { }

1             

0             

,
,

,

,

      

      

u

l
l u

u l

l

P NS P NS

P NS P NS
P NS P NS P NS P NS

P NS P NS
P NS P NS

s a
s a

a s a

s a

µ

≥
−

= ≤ ≤
−

<







  (5.15) 

Equation (5.15) is used as the third part of the reward structure. 

iv. Reward 4: Expected Amount Counted 

When a cycle count is triggered, a lot of time and effort is put into the 

counting procedure, especially if there is a lot of inventory. In literature, 

the tediousness of cycle counting and opportunity costs associated with it is 

often overlooked. Yet there are some considered the effects of the number of 

units counted (Gumrukcu et al., 2008). Moreover, the accuracy of the cycle 

counting is another issue. In practice the counting procedure itself is prone 

to errors as well. And the accuracy drops as the number of inventory to be 

counted increases (Stevenson & Hojati, 2007). To address these issues we 

implement fourth reward as the expected amount counted.  

Theoretically, when the actual physical stock level is high (or low), 

initiating a count yields a lower (or higher) reward (Kiefer & Novack, 1999). 

In our model we utilize the same reward structure for counting.  

Let c  denote the amount counted after a cycle count is triggered. Then, 

[ ],E c s a  denotes the expected amount counted given s  and a ; which can be 

formulated as, 
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 [ ]
[ ] 1

,
0      0
R E s a

E c s a
a

ε− ==  =
  (5.16) 

To describe the fuzzy reward, as shown in Figure 5-6 part A, we define an 

acceptable interval for [ ],E c s a  as, 

[ ] [ ][ ],l uE c E c . 

This number can easily be bounded with 0 from below, since that is the 

lowest possible countable number. From above it can be bounded by maximum 

allowable error, which is R . This is because when the errors in the system 

reaches R , a freeze is observed and the problem terminates. Figure 5-6 part B 

shows this relation. 

 

Figure 5-6: (A) Membership function for counting amount and (B) membership 
function with bounds 

We again we utilize a triangular function with the following membership 

function, 

 [ ]( )

[ ] [ ]
[ ] [ ]
[ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

1        ,       
,

, ,

0        ,       

l

u
u l

u l
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E c E c

E c s a E c

µ

≤
 −

= > >
−

≥

  (5.17) 

Equation (5.17) is used as the first part of the reward structure. 

v. The Aggregate Reward 

We coined the term chained reward to symbolize the combined fuzzy rewards 

defined in equations (5.9), (5.13), (5.15) and (5.17). The chained reward in 
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state s  for the action a , ( ),r s a , can be obtained through fuzzy additive goal 

programming (Roy & Maiti, 1998; Xu & Liu, 2008). 

In our study the chained reward can be characterized as, 

 ( ) 1 1 2 2 3 3 4 4,r s a W W W Wµ µ µ µ= + + + . (5.18) 

In the equation, iµ  ( 1,2,3,4i = ) is the fuzzy reward obtained from each of 

the reward function i . The term iW  ( 1,2,3,4i = ) denotes the associated weight 

of each reward. In this setup, 1i =  to 4 represents lost sales, error 

correction, service level and the counting amount respectively. Moreover, the 

assigned weights are assumed to be constant over stages. 

The formulation below in equation (5.19) shows one-step maximization 

problem. The left side shows the general characterization and the right side 

shows the bounded version. This characterization is rewritten as an infinite 

horizon model in the following sections. 
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  (5.19) 

The weights 1W , 2W , 3W  and 4W  reflect the relative importance of each 

goal in the decision model. FAGP method is commonly applied to solve multiple 

criteria decision problems (Yaghoobi et al., 2008). The basic concept is to 

use a single utility function to express the overall preference of the 

decision maker to draw out the relative importance of each criterion (Lai & 

Hwang, 1994). In this case, we obtain a linear weighted utility function by 
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multiplying each membership function of fuzzy goals with their corresponding 

weights and then adding the results together. The weighted additive model, 

proposed by Tiwari et al. (1987), belongs to the convex fuzzy models outlined 

by Bellman and Zadeh (1970). One important shortcoming of additive models is 

that the weights are assumed to be known. In reality this is not always 

correct; hence, we conducted sensitivity analysis on various weights to study 

the influence of the weights and the effect of error. 

5.1.5 Infinite-Horizon Discounted MDP 

Optimizing sequential decision making problems requires the computation 

of objective function for each combination of values. This becomes a 

significant obstacle when the dimension of the state variable is large. As 

pointed out by Rust (1997) this can considerably reduce the ability to solve 

continuous MDPs accurately. In literature such problems are often referred as 

the curse of dimensionality (Bellman, 1957; Bellman & Dreyfus, 1962). 

In this study we model an infinite-horizon discrete-time discounted MDP. 

In our problem the state space is the difference of two data sources (records 

and visibility), which are both fully observable. At each decision epoch 

decision maker has two alternatives; cycle counting or not. The immediate 

rewards obtained after the actions are bounded and stationary. The transition 

probabilities do not change over time and the state space is finite.  

By using the expected total discounted reward as the objective function 

we solve our problem using policy iteration algorithm. The policy iteration 

algorithm, as described in Puterman (2009), first selects an arbitrary policy 

and then calculates the corresponding value function. Then, one by one 

different policies are generated and corresponding value functions are 

compared iteratively. At the end of each iteration, the generated policies 
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are either updated or discarded based on the value function comparison. This 

cycle continues until no improvement is possible. 

Let ( )v sπ
λ  represent the expected total discounted reward of policy π , 

where 0 1λ≤ ≤ . Then infinite-horizon optimality equations can be formed as 

( ) ( ) ( ) ( )sup , ,
a A s S

v s r s a P s s a v sπ π
λ λλ

∈ ′∈

 ′ ′= + 
 

∑
 

see (Puterman, 2009).  

5.2 Structural Properties 

In this section, we examine the sufficient conditions that ensure the 

existence of an optimal control limit policy. The control limit type policy 

in MDP framework can be briefly explained as follows: The optimal decision 

rule is to trigger a cycle count when the current state is above a threshold 

state *s  and do nothing if it is below *s . In other words, the cycle count is 

done if and only if the observed state is among * *, 1,..., 1s s R+ +  (Barlow & 

Proschan, 1996). In this paper we refer this type as threshold type policy. 

Also, it is widely known that when the optimal policy is of threshold type 

the problem typically can be solved more efficiently, as demonstrated in 

Puterman (2009). 

Below, we discuss some observations that are used to specify special 

structures about the optimal policy. Interested readers should refer to 

(Barlow & Proschan, 1996; Puterman, 2009).  

5.2.1 Transition Matrix 

Property 1: ( ),q k s a  is non-decreasing in s  for all a , where 
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( ) ( ), , .
s k

q k s a P s s a
∞

′=

′= ∑  

Proof. From equation (5.6), ( ),q k s a  is independent of s  for 1a =  so it is 

non-decreasing. For 0a = , let ( ) ( )1,0 ,0 k
sq k s q k s q+ − =  so that 

 ( ) ( )1, ,k
s

s k s k

q P s s a P s s a
∞ ∞

′ ′= =

′ ′= + −∑ ∑ . (5.20) 

Then, k
sq  is non-decreasing due to the transition probability structure 

as mentioned in Section 5.1.3.   

5.2.2 Rewards 

The following discussions are important observations about the structure 

of the aggregate reward. 

Property 2: For { }1,2,3i∈ , ( ) ( )1 0i ia aµ µ= ≥ =  for all s .  

Proof. This can be shown by looking at the formulation of each iµ  in equation 

(5.19).  

For 1i = , 

 
[ ] ( )

[ ]
( )

[ ]1

, ,
1

E D n R s a n R s a

E D E D

τ

τ τ

µ
−

= = − .  (5.21) 

In equation (5.21), as ( ),n R s a  gets larger 1µ  gets smaller. Also the 

expected lost sales is always smaller when a cycle count is triggered, 

( ) ( ), 0 , 1n R s a n R s a= ≥ = . 

This can be proven by examining equation (5.8); since [ ], 1E s aε =  is 

always non-negative, ( ) ( ), 0 , 1n R s a n R s a= ≥ =  is always true. Then, for all 

s , ( ) ( )
1 11 0a aµ µ= ≥ =  holds. Similarly, same statement can be proven for 
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2µ  and 3µ  using equations (5.10) and (5.14). They both increase when a 

count is triggered ( 1a = ). Hence, ( ) ( )1 0i ia aµ µ= ≥ =  holds for { }1,2,3i∈ . 

  

Property 3: ( ) ( )
4 40 1a aµ µ= ≥ =  for any s . 

Proof. This can be proven by examining equation (5.16). Since [ ]E sε  is non-

negative, [ ] [ ], 1 , 0E c s a E c s a= ≤ =  holds. Hence ( ) ( )
4 40 1a aµ µ= ≥ =  also holds 

for any s .   

Property 4: ( )
1 0aµ =  and ( )

3 0aµ =  are monotonically decreasing with s .  

Proof. First of all, as s  increases the expected number of inventory error 
increases 

 [ ] [ ], 1,E s a E s aε ε≤ + . (5.22) 

Equation (5.22) can be shown as follows: 

 ( ) 0
10 1 ss r +≤ +   (5.23) 

is always true since both r  and s  are non-negative. Equation (5.23) 

can be expanded by adding 

0

s
s i
s

i

ir −

=
∑

 

to both sides of the inequality, in other words 

 
( ) 0

1
0 0

1
1
1

0

1
s s

s i s i
s s s

i i
s

s i
s

i

ir ir s r

ir

− −
+

= =
+

+ −
+

=

≤ + +

≤

∑ ∑

∑
  (5.24) 

According to equations (5.10) and (5.12),  

[ ] 0

1
,

0     0

s
s i
s

i

ir a
E s a

a
ε

−

=

 == 
 =

∑ . 
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Hence, [ ] [ ], 1,E s a E s aε ε≤ +  is correct. Consequently, this implies that 

the following also holds 

 ( ) ( )1, 0 , 0n R s a n R s a+ = ≥ = ,  (5.25) 

since 

( ) [ ]{ }[ ], 0 max , 1 ,0n R s a E D R E s aτ ε= = − + = . 

Finally, equation (5.25) implies that ( )
1 0aµ =  is monotonically 

decreasing in s . The proof for ( )
3 0aµ =  is very similar: when the 

system is in higher states the probability of having a stock out is 

also higher which decreases the fill rate. In other words, for any s  

 [ ]( ) [ ]( )1, ,P D R E s a P D R E s aτ τε ε≥ − + ≥ ≥ − . (5.26) 

Equation (5.26) implies 

( ) ( )1, ,P NS s a P NS s a+ ≤ , 

since 

{ } { }
[ ]{ }

      1
,

0
P D R a

P NS s a
P D R E s a

τ

τ ε
< ==  < − =

. 

Thus, ( )
1 0aµ =  and ( )

3 0aµ =  are monotonically decreasing with s .   

Property 5: ( )
1 1aµ =  and ( )

3 1aµ =  are constant with respect to s .  

Proof. Since ( ),n R s a  and { },P NS s a  are independent of s  when 1a = .   

Property 6: ( )
2 1aµ =  and ( )

4 1aµ = , are both monotonically increasing with s . 

Proof. Since equation (5.22) is true for any a  and s ,  
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[ ]
2

,E s a

R

ε
µ =

 

also becomes monotonically increasing with s . Likewise  

[ ]
4

,R E c s a

R
µ

−
=

 

and 

 [ ]
[ ] 1

,
0      0
R E s a

E c s a
a

ε− ==  =
  (5.27) 

decreases with s  by equation (5.22).   

Property 7: ( )
2 0aµ =  and ( )

4 0aµ =  are constant with respect to s  

Proof. Since they are both 0 as shown in equations (5.10) and (5.16).   

Property 8: ( ),r s a  is non-decreasing with s  for 1a =  and non-increasing with 

s  for 0a = . 

Proof. The aggregate reward function can be expended as 

( ) 1 1 2 2 3 3 4 4,r s a W W W Wµ µ µ µ= + + + . 

In this equality, iW  is independent of s  and 0iW ≥ , 1,2,3,4i = . From 

propositions 4 through 7, it can be shown that ( ), 0r s a =  is non-

increasing and ( ), 1r s a =  is non-decreasing.   

Theorem 1: Let ( ) ( ) ( ), 1 , 0f s r s a r s a= = − = , then ( )f s  is a monotonically 

increasing function with s . 

Proof. This can be proven by showing ( ), 1r s a =  is monotonically increasing and 

( ), 0r s a =  is monotonically decreasing with s . In other words 

( ) ( )1, 1 , 1r s a r s a+ = ≥ =  and ( ) ( ), 0 1, 0r s a r s a= ≥ + =  for every [ )0,s R∈ . 
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For s S∈  and { }1,2,3,4i∈ , ( ), 1r s a =  is a convex combination of ( )1i aµ =  

and ( ), 0r s a =  is a convex combination of ( )0i aµ =  where [ ]0,1iW ∈  and 

4

1

1i
i

W
=

=∑ , 

as shown in (5.18). Since ( )
1 0aµ = , ( )

3 0aµ =  are monotonically decreasing 

and ( )
2 0aµ = , ( )

4 0aµ =  are constant with s . Any convex combination of 

them is also monotonically decreasing with s . Similarly, ( )
1 1aµ = , 

( )
3 1aµ =  are constant and ( )

2 1aµ = , ( )
4 1aµ =  are monotonically increasing 

with s . Any convex combination of them is also monotonically increasing 

with s . Hence, ( )f s  is monotonically increasing with s .   

5.2.3 Value Function and Policy 

According to Puterman (2009) under following conditions: 

1. Stationary rewards and transition probabilities: ( ),r s a  and ( ),P s s a′  

do not change from decision epoch to decision epoch. 

2. Bounded rewards: ( ),r s a M≤ < ∞  for all a  and s . 

3. Discounting: future rewards are discounted according to discount 

factor λ , with 0 1λ≤ < . 

4. Discrete state space; S  is finite and countable. 

Theorem 2: For any stationary policy π , there is a unique solution vπ
λ . 

Theorem 3: A policy *π  optimal if and only if 
*

vπ
λ is a solution of the 

optimality equation. 
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Theorem 4: For a discrete S  if sA  is compact, ( ),r s a  is continuous for each s  

and ( ),P s s a′  is continuous in a  for each s  and s ′ . Then there exists an 

optimal deterministic stationary policy. 

Proof. See Puterman (2009) for theorems 2 through 4. 

Theorem 5: The structure of the optimal policy is a control limit type as long 

as assumptions 1 through 4 are satisfied and [ ]0,1iW ∈  for every i , 

4

1

1i
i

W
=

=∑ . 

Proof. Assume that there exists an *s  such that ( ) 0d s =  for all *s s<  and 

( ) 1d s =  for all *s s≥ . This assumption implies that for every *s s<  

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0

,1 ,1 ,0 ,0
R R

s s

r s P s s v s r s P s s v sλ λ
+ +

′ ′= =

′ ′ ′ ′+ ≤ +∑ ∑   

and for every 
*s s≥  

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0

,1 ,1 ,0 ,0
R R

s s

r s P s s v s r s P s s v sλ λ
+ +

′ ′= =

′ ′ ′ ′+ ≥ +∑ ∑ .  

Let’s assume the converse of the assumption is true. In other words, 

there exists an *s s<  such that ( ) 0d s =  and ( )1 1d s − = . This can be 

formulated as 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0

,1 ,1 ,0 ,0
R R

s s

r s P s s v s r s P s s v sλ λ
+ +

′ ′= =

′ ′ ′ ′+ ≤ +∑ ∑   (5.28) 

 

and 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0

1,1 1,1 1,0 1,0
R R

s s

r s P s s v s r s P s s v sλ λ
+ +

′ ′= =

′ ′ ′ ′− + − > − + −∑ ∑ .  (5.29) 

Equations (5.28) and (5.29) can be respectively rewritten as 
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 ( ) ( ) ( ) ( ) ( )( )
1

0

,1 ,0 ,0 ,1
R

s

r s r s v s P s s P s sλ
+

′=

 ′ ′ ′− ≤ − 
 
∑   (5.30) 

and  

 ( ) ( ) ( ) ( ) ( )( )
1

0

1,1 1,0 1,0 1,1
R

s

r s r s v s P s s P s sλ
+

′=

 ′ ′ ′− − − > − − − 
 
∑   (5.31) 

In property 9 it is already proven that ( ) ( ) ( ),1 ,0f s r s r s= −  is a 

monotonically increasing function in terms of s . This implies that 

( ) ( )1 0f s f s− − ≤ . Then, by subtracting equation (5.30) from equation 

(5.31) we get 

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1

0
1

0
1

0
1

0

1,0 1,1
1

,0 ,1

1,0 1,1
0

,0 ,1

R

s
R

s
R

s
R

s

v s P s s P s s
f s f s

v s P s s P s s

v s P s s P s s

v s P s s P s s

λ

λ

+

′=
+

′=
+

′=
+

′=

 ′ ′ ′− − − 
− − >  

 ′ ′ ′− − 
 
 ′ ′ ′− − − 

>  
 ′ ′ ′− − 
 

∑

∑

∑

∑

  (5.32) 

In equation (5.32), λ  is a non-negative number between 0 and 1; 

removing it does not violate the inequality. Also, by definition 

( ) ( ),1 0,0P s s P s′ ′=  for any s , so we can rewrite the equation as 

 ( ) ( ) ( ) ( ) ( )( )[ ]
1

0

0 1,0 0,0 ,0 0,0 .
R

s

v s P s s P s P s s P s
+

′=

′ ′ ′ ′ ′> − − − +∑   (5.33) 

Subsequently, it can be simplified as 

 ( ) ( ) ( ) ( )( )
1 1

0 0

,0 1,0
R R

s s

v s P s s v s P s s
+ +

′ ′= =

′ ′ ′ ′> −∑ ∑   (5.34) 

where both ( )v s ′  and ( ),0P s s′  are non-negative for any s . Hence, 

equation (5.34) is equivalent to saying ( ) ( )( ),0 1,0P s s P s s′ ′> −  for all 

*s s< . This is simply not true for every possible realization. Which 

means there exists a contradiction, meaning ( )* 0d s =  implies ( )* 1 0d s − =  

for *s s< . 
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Similarly, ( ) 1d s =  for *s s≥  can easily be proven by employing the same 

logic. Hence, ( )* 0d s =  implies ( )* 1 0d s − =  for *s s<  and ( )* 1d s =  implies 

( )* 1 1d s + =  for *s s≥ . Meaning the optimal policy is a threshold type.    

5.3 Numerical Analysis 

To demonstrate the performance of our algorithm we solved the same case 

study provided in previous chapters. Recall, in the case study a ( ),Q R  policy 

is utilized with ( )600,80 . The weekly demand is normally distributed with 

( )250,12  and lead time is also normally distributed with ( )21.14,0.33 . 

Furthermore, by utilizing the error characterization provided in chapter 3 we 

used normal distribution with ( )23.83,7.17  for errors. We compare three level 

visibility performance with truncated normal distribution.  

As mentioned the mean is set to zero to ensure that the system is not 

intentionally making errors. The standard deviation however, depends on the 

current state and it is the factor that defines the performance. Intuitively, 

in an ideal setup the unbiased visibility yields ( )0 1P sε = =  if t is zero and 

( ) 0P t sε = =  if 0t > ; this is a matrix with ones in column zero and zeroes 

everywhere else. Similarly the worst unbiased visibility would assume a 

uniform shape across t. In other words, in such a scenario ( ) 1/P t s sε = =  for 

every t and s . In reality the visibility performance will behave somewhere 

in between these two extremes.  

5.3.1 Transition Matrix 

In our example, ( )P t sε =  follows a truncated normal distribution with 

mean zero and variance εσ . If εσ  is zero, then the visibility will be perfect 
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and as εσ  increases the visibility performance decreases. We utilize three 

different settings for our problem. In the high visibility case H
εσ  is assumed 

to be 0.1s . Similarly, 0.2M sεσ =  and 0.3L sεσ =  are for medium and low 

visibility performance respectively.   

The structure of visibility discrepancy probability respect to states for 

high performance case is demonstrated in Figure 5-7Figure 5-8. Lines in the 

graph correspond to states; 10, 25, 50 and 80. The x-axis shows the amount of 

discrepancy and the y-axis shows the corresponding probability of having that 

many discrepancies for the given state.  

 

Figure 5-7: Probability of visibility discrepancy for 4 states for high 
performance 

For example in Figure 5-7, when the current state is 10 (the first line 

in the figure) the probability of having no visibility discrepancy (0 on the 

x-axis) is close to 0.6; the probability of having small visibility 

discrepancy (1 to 5 on the x-axis) sharply decreases, and for higher 

visibility discrepancies this probability becomes almost 0. Whereas, if the 

current state is 80 (the last line in the figure) no visibility discrepancy 

probability is 0.1; small discrepancy probability is still around 0.1, and 

for higher values of discrepancy the probability slowly decreases. 
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Figure 5-8: Probability of visibility discrepancy for 4 states for medium 
performance. 

Similarly, the visibility discrepancy probabilities for medium and low 

performance are demonstrated in Figure 5-8 and Figure 5-9. As can be seen 

from the figures, in each performance level the visibility discrepancy 

probability decreases as state increases. The reason behind this behavior is 

because the visibility discrepancy is bounded and the distribution is 

truncated with state. If the current state is 10s =  then ( )P t sε =  can only 

take positive values for [ ]0,10t∈ . 

 As shown in the previous sections, the transition probability matrix is 

generated using the visibility probabilities. Figure 5-10 summarizes the 

transition probability matrix for high performance by depicting the 

transition behavior given the current state. For simplicity, once again 4 

states are chosen for representation; 10, 25, 50 and 80. Moreover, the x-axis 

represents the observations for the next state (s ′) and the y-axis shows the 

probability of reaching to s ′ given the current state (or line). 
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Figure 5-9: Probability of visibility discrepancy for 4 states for low 
performance 

 

Figure 5-10: Transition probability matrix for 4 states for high performance 

For example in Figure 5-10, when the current state is in 10 (the first 

line in the figure) the probability that the next state will be in between 10 

and 30 is very high; and the probability of being in the remaining state is 

very low. Also, the transition matrix displays increasing failure rate type 

of behavior (IFR); the system is likely to move towards higher states and 

stay there. 
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Figure 5-11: Transition probability matrix for 4 states for medium 
performance 

Same observations can be seen in Figure 5-11 and Figure 5-12 as well. By 

looking at the figures, the transition matrix exhibits a similar behavior at 

each level. When the state is small the probability of transitioning to 

immediate vicinity is higher than jumping to a distant state. But as the 

state gets larger, the jump range increases; especially if the visibility 

level is low. 

 

Figure 5-12: Transition probability matrix for 4 states for low performance 

Moreover, in each scenario for each state the system is more likely to 

move up in state in each transition. This means if left unattended state 

space will reach to R  and eventually results freezing; however, when the 
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system is close to R  the structure of the transition probabilities change 

considerably. This is because the system cannot go beyond R  due to freezing. 

5.3.2 Rewards 

The reward setup, using weights iW  is presented, in equations (5.18) and 

(5.19). The weights play an important role in determining the optimal policy. 

Finding standardized weights for the objective function that apply to all 

inventory problems is difficult. To overcome this problem we utilize various 

weight distributions, which are shown in Table 5-1. But before that we first 

take a look at the rewards. 

Table 5-1: Rewards table with three performance levels 

( ),r s a  High Low 

a  s  1µ  2µ  3µ  4µ  1µ  2µ  3µ  4µ  

0 

0 0.9693 0.9693 0 0 0.9693 0.9693 0 0 

10 0.9334 0.9693 0 0.1184 0.9408 0.9693 0 0.0988 

25 0.8365 0.9693 0 0.2912 0.8703 0.9693 0 0.2417 

50 0.5514 0.9693 0 0.5789 0.6646 0.9693 0 0.4797 

80 0.1006 0.9693 0 0.9241 0.3143 0.9693 0 0.7652 

1 

0 0.9693 0 0 0.8395 0.9693 0 0 0.8395 

10 0.9693 0 0.1184 0.7097 0.9693 0 0.0988 0.7341 

25 0.9693 0 0.2912 0.4644 0.9693 0 0.2417 0.5377 

50 0.9693 0 0.5789 0.123 0.9693 0 0.4797 0.2149 

80 0.9693 0 0.9241 0.0073 0.9693 0 0.7652 0.0321 

 

Table 5-1 shows the structure of immediate gains obtained from each 

component of the reward function. The table summarizes these rewards with 

respect to action, various states (0, 10, 25, 50 and 80) and different 

visibility performance levels. Recall that, iµ  for 1,2,3,4i =  denotes the 
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objective function coefficient for lost sales, error correction, fill rate 

and count amount respectively. 

5.3.3 Value Function and Policy 

The numerical example is solved, by combining fuzzified key performance 

metrics into rewards. To see the sensitivity of the system with respect to 

weights we performed various combinations. Table 5-2 summarizes the weight 

selections. According to the table, seven different combinations of iW ’s are 

used; recall that, iW  for 1,2,3,4i =  denotes the weights for lost sales, error 

correction, fill rate and count amount respectively. In the first 

combination, equal values are assigned to each as 0.25. In the remaining 

combinations different values are methodologically assigned to each iW  to 

assess the relative effect on the objective function. 

Table 5-2: Different weight selections 

# 1W  2W  3W  4W  

1 1/4 1/4 1/4 1/4 

2 3/8 1/8 3/8 1/8 

3 1/8 3/8 1/8 3/8 

4 5/8 1/8 1/8 1/8 

5 1/8 5/8 1/8 1/8 

6 1/8 1/8 5/8 1/8 

7 1/8 1/8 1/8 5/8 

 

The results obtained by using the information presented in Table 5-2 are 

summarized in Table 5-3. The table is designed to show changes in the control 

limit state by different weight selections and for different visibility 

levels. Additionally the table presents the optimal values for the selected 

weight distribution and visibility level. 
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According to the results, the optimal policy is greatly influenced by the 

visibility level and weight distribution. As the visibility decreases the 

threshold state increases. This is an unexpected result and also very hard to 

prove mathematically, but intuitively when the visibility is lowered, the 

expected error given at any observed state increases. 

Table 5-3: Optimal value vs. control limit state table for each weight 
selection 

 High Medium Low 

# Control Limit Value Control Limit Value Control Limit Value 

1 22 12.782 26 12.847 29 12.965 

2 12 14.972 14 14.995 16 15.060 

3 39 11.272 43 11.382 44 11.442 

4 16 15.828 18 15.852 20 15.914 

5 21 7.332 25 7.465 27 7.7041 

6 10 14.181 12 14.198 13 14.266 

7 51 15.478 54 15.512 57 15.467 
 

Furthermore, as the state increases the value function also increases; 

however, this is only true when the state is above the threshold state. 

5.4 Conclusion and Future Work 

In this study, a multi-objective single-item continuous-review stochastic 

inventory problem over an infinite horizon where the decision maker is 

following a ( ),Q R  policy with random lead time, lost sales and IRI where the 

objective is fuzzy is formulated. To show the value of inventory visibility a 

secondary source of information is used along with traditional inventory 

record keeping methods to control the effects of IRI. Using both measures the 

decision maker chooses the best time to generate a cycle count. Furthermore, 

in the multi-objective setting, the traditional cost based reward structure 

is abandoned to put more emphasis on the effects of IRI. Instead a new 
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measure is developed as inventory performance by combining four key 

performance metrics; lost sales, amount of correction, fill rate and amount 

of inventory counted. These key metrics are combined under a unitless 

platform using fuzzy logic and combined through additive methods.  

The inventory problem is modeled as an infinite horizon discounted MDP 

with fuzzified multi-objective. The optimal policy is shown to be a control 

limit policy. Finally, the results are shown in a brief numerical example 

solved by policy iteration algorithm. 

The dynamic programming model in this chapter is designed to find the 

optimal inventory performance using the error correction and control method.  

This model can be extended by implementing the IRI resistance method. In that 

case, the decision maker has two decision available at each decision epoch, 

whether to do a cycle count or not and to decide on the best increment level. 
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CHAPTER 6  CONCLUSION 

Supply chain and inventory management has always been a major concern in 

the business world as well as in the academic domain. The scope entails 

physical holding, lead times, holding costs, replenishment, defective goods, 

quality control, transportation, storage, and inventory visibility. Hence, 

inventory models can be regarded as one of the most widely studied topics in 

industrial engineering and operations management. The main goal for most of 

these studies is to reach efficient solutions that would provide cost 

effective realizations in practice. Due to the uncertain nature of the world, 

these models are known to have a complex structure. In practice, dealing with 

all the uncertain factors, satisfying the high service levels and reaching 

optimal solutions at the same time is challenging. Starting from late 70s, 

theoretical studies began addressing the difficulties faced in inventory 

management. In industries where the competition is fierce and profit margins 

are thin, companies have automated the inventory management processes to 

better meet customer demand and reduce operational costs. Such schemes 

significantly decreased the response time of the decision makers, making it 

dramatically easy to keep track of the records and avoid human intervention 

as much as possible. However, the automation of management processes 

transferred the entire critical decision making - such as what products are 

where and in what quantity - from humans to computers. As a result 

understanding the value of data accuracy and controlling the impact of data 

inaccuracy became a crucial part of inventory management problems. The aims 

to answer the following two questions:  What is the impact of IRI? And how 

can we control IRI? 
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In this dissertation a methodical analysis is performed to understand the 

behavior of inventory record inaccuracy (IRI) when it is influenced by 

demand, supply and lead time uncertainty in both the online and the offline 

retail environment separately. Additionally, this study identifies the 

susceptibility of the inventory systems towards IRI due to conventional 

perfect data visibility assumptions. In terms of lead time demand, there is 

no conclusive result on the behavior of the error function. Depending on 

input parameters for errors, the function can decrease or increase with the 

lead time demand. In terms of the reorder level, the safety stock and the 

order quantity the error function is increasing. It is also shown that, 

errors have no strong dependence between each other. And, in both best and 

worst cases the biggest effect on IRI is done by the outbound errors. To 

compensate for IRI two different alternatives are presented and analyzed; the 

IRI resistance and the error control methods. The discussed methods 

effectively countered various aspects of IRI. The IRI resistance method 

performs better on stock-out and lost sales but influences errors; whereas, 

the error control method keeps lower inventory but has more stock-out, higher 

stock-out and additional counting cost.  

By shifting the focus from IRI to cost, this dissertation, also provides 

a detailed comparison between the retail environments, the compensation 

methods and the IRI sensitivity. In terms of the retail environments, it is 

shown that in the online retail, the importance of record accuracy is 

elevated, a new type of IRI measure called the penalty sales is revealed and 

the freezing problem is vanished. The studies on the compensation methods 

reveal that the IRI resistance method generates higher levels of profit in 

all situations and the error control becomes ineffective in the online 

setting. Finally, in terms of the IRI sensitivity, the IRI resistance method 

is not as sensitive as the error control method to changes in IRI unit costs.  
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Furthermore, this research also investigates the value of using a 

secondary source of information (automated data capturing) along with 

traditional inventory record keeping methods to control the effects of IRI. 

To understand the combined behavior of the pooled data sources and a multi-

objective infinite-horizon single-item continuous-review problem with ( ),Q R  

policy, random lead time, random lost sales, IRI and fuzzy objective is 

formulated. Moreover, the traditional cost based reward structure is 

abandoned to put more emphasis on the effects of IRI. Instead a new measure 

is developed as inventory performance by combining four key performance 

metrics; lost sales, amount of correction, fill rate and amount of inventory 

counted. These key metrics are united under a unitless platform using fuzzy 

logic and combined through additive methods. The inventory model is then 

analyzed to understand the optimal policy structure, which is proven to be of 

a control limit type. 

The work done in this dissertation can be extended by including combined 

retail environments where the customers can use the offline or the online 

platform simultaneously. The store pickup and home delivery models could be 

added into the model. Furthermore, price changes and multi-inventory setting 

could be introduced to the system to make it more realistic. The discussed 

compensation methods are designed as static decision; they could be remodeled 

as dynamic decision so that at each period the decision maker can adjust the 

values based on the system performance. Finally the dynamic programming model 

in the final is designed to find the optimal inventory performance using the 

error correction and control method. This model can be extended by 

implementing the IRI resistance method. In that case, the decision maker has 

two decision available at each decision epoch, whether to do a cycle count or 

not and to decide on the best increment level. 
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