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Abstract

The conventional method used in attribute control charts is the Shewhart three sigma limits.

The implicit assumption of the Normal distribution in this approach is not appropriate for skewed

distributions such as Poisson, Geometric and Negative Binomial. Normal approximations perform

poorly in the tail area of the these distributions. In this research, a type of attribute control chart is

introduced to monitor the processes that provide count data. The economic objective of this chart

is to minimize the cost of its errors which is determined by the designer. This objective is a linear

function of type I and II errors. The proposed control chart can be applied to Poisson, Geometric

and Negative Binomial as the underlying distribution of count data. Control limits in this chart is

calculated optimally since it is based on the probability distribution of the data and can detect a

directional shift in the process rate. Some numerical results for the optimal design of the proposed

control chart are provided. The expected cost of the control chart is compared to that of a one sided

c chart. The effects of changing the available parameters on the cost, errors and the optimal limits

of the proposed control chart are shown graphically.
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Chapter 1

Introduction

Statistical Process Control (SPC) as a subset of Statistical Quality Control (SQC) consists

of tools and method to monitor, control and improve the products in manufacturing processes.

Monitoring the process in manufacturing is required to ensure that it operates properly. One of the

most important tools used in SPC is control chart. There are always variations in production due

to common and special causes and control chart is the effective way used to inspect this variation

and continually monitor the production process. One type of control chart is attribute chart which

is used to monitor the processes that provide discrete or count data.

1.1 Research Background

The conventional method used in attribute control charts is c chart with three sigma limits

which was proposed by Shewhart for the first time and has been widely applied for monitoring

the manufacturing processes that provide count data. Since Poisson distribution is generally used

to model the count data, c chart follows the assumption of the Poisson distribution for defect

occurrence in a sample of constant size. Suppose that nonconformities or defects occur according

to Poisson distribution in constant size samples; that is,

Pr(X = x) =
e−λ×λx

x!
, x = 0,1,2, ... , λ > 0 (1.1)

Where λ is the parameter of the Poisson distribution and x is the number of defects in the sam-

ple. Since the mean and variance of the Poisson distribution are the same, the Upper Control Limit

(UCL) and Lower Control Limit (LCL) with three sigma in the classical control chart are defined

as follows,
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UCL = λ+3×
√

λ (1.2)

CL = λ (1.3)

LCL = λ−3×
√

λ (1.4)

When lower control limit is negative, set LCL = 0. In this control chart λ is a known pa-

rameter; otherwise, it may be estimated from a preliminary sample taken from the output of the

process when it was in control, say λ̄. On the other hand if the number of units in each sample

is variable during the inspection, a U chart would be appropriate in which the average number of

nonconformities per inspection unit would be compared to its control limits.

1.2 Research Motivation

The problem with this approach is that there is an implicit assumption of Normal distribution

for data which is not appropriate to the skewed distributions such as Poisson. It means that the

probability of defining an in control process as an out of control is not equally allocated in the tail

area of the control chart. Normal approximation performs poorly in the tail area of the Poisson

distribution and also when its parameter is small.

Another problem is that c chart is only intended to decrease the type I error to an specific

amount and it does not consider a relative value to type II error in case of a change in the process.

Figure 1.1 shows an instance of Poisson probability distribution with λ = 5. This figure shows

that Poisson distribution is not symmetric as it is in normal distribution, and any symmetric control

chart such as c chart creates unequal tail area; therefore, the classical control chart cannot not be

an efficient way to monitor this distribution.

2



Figure 1.1: Poisson Probability Distribution

1.3 Research Objectives

The objective in this research is to create a attribute control chart that:

1. improves manufacturing processes that provide count data.

2. can be applied to Poisson count data.

3. causes the least cost from the view of the user.

4. has the capability to detect deterioration and improvement in the process quality.

5. can be applied to high quality processes where the nominal proportion of nonconformities is

very small.

1.4 Research Contributions

The new approach proposed in this study is an optimal economic statistical alternative control

chart to the conventional c chart for monitoring and improving the manufacturing processes, which

3



satisfies the economic requirement of the user in a way that the cost is assumed to be a linear

function of type I and II errors. The control charts in this study are intended to minimize the cost

of decision about the process whether it is in control or out of control. The firm will be able to use

this approach to detect any shifts in its manufacturing process.

The proposed approach in this research will have the least possible cost that is charged to the

users since this approach has optimal characteristic with its assumptions. On the other hand this

approach has the capability to detect the downward shift in the processes that has nonconforming

items to take action toward beneficial changes.

In contrast to normal approximation used in traditional c chart, research described here uses the

exact probability of statistic distribution to design the control chart to monitor and improve the

process.

4



Chapter 2

Literature Review

There have been numerous papers in the area of control charts. In this chapter several basic

approaches will be discussed.

2.1 Shewhart Control Charts

This control chart was first proposed by Shewhart [26] [25]. Shewhart control charts are used

to determine whether a process is in statistical control or not and to maintain the current status.

The control chart uses 3-sigma limits as its limits that justify a fixed amount of type I error. This

constant is on the assumption of that the data’s distribution is normal and this causes a drawback

for the control chart when the actual distribution is badly skewed since it may indicate lack of

control when it actually is in control. So the normal approximation in 3-sigma cannot provide

efficient control limits in this chart (Ryan [22], Woodall [32], Acosta-mejia [1]). C chart is one of

them that is used to monitor the processes that provides count data and usually uses Poisson as the

datas distribution which is a skewed distribution.

There have been many approaches developed by researchers to improve the attribute control

chart by reducing false alarm rate and increase the power of attribute control chart especially in the

case of the Poisson distribution. One approach has been introduced by Quesenberry [18] [17] that

first standardizes the data and then plot them in -3 and 3 control limits. Another approach which

is applied to data to acquire symmetry is the transforming approach. Ryan [22] presented different

kinds of transformation in his book as well as tsia et al. [29]. Tsai et al. [29] proposed a square

root transformation to improve the attribute control chart for both binomial and Poisson data in a

way that the probability of a false alarm in this chart is close to nominal values. This approach

converts the raw data to a form that approximately has normal distribution.

Other researchers suggested optimal control chart procedures for count data that produce a tail
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area close to the nominal tail area. Ryan and Schwertman [21] proposed the optimal control limit

that provides certain amount of type I error. They presented a regression model that can determine

the limits. Kittlitz [9] presented an almost exact control limits that has nearly equal tail area for

Poisson distribution.

Another problem with Shewhart attribute control charts is that it sometimes gives a negative

lower control limits which cannot detect improvement in the process. Lucas et al. [13] developed

a modified c chart that can signal an improvement based on the number of samples that has zero

defects.

Some studies worked on the need for a general control chart for attribute data. Sellers [24]

developed such control chart that can be applied to Poisson, Geometric and binomial distribution.

Shore [27] introduced a general approach to attribute control chart that considers mean, standard

deviation and the skewness of the underlying distribution. A method for detecting shifts in Poisson

process considering variable sample size developed by Mei et al. [14]

2.2 Cumulative Sum

One of the most applicable forms of control charts is CUSUM or Cumulative Sum Control

Charts. This control chart is first developed by Page [16]. The control chart uses all the information

since the last action taken and has the ability to detect changes in the underlying parameter in two

directions. Page argued that this control chart is more sensitive to small shifts than shewhart

control chart. The main difference between CUSUM control chart and shewhart control chart is

that it does not use only a single observation or a single sample. Both the c chart and the u chart

are two procedures that use the information about the most recent sample to monitor the process

to determine whether the process is out of control or not.

Many studies have been done in the area of CUSUM charts. Lucas [12] suggested a CUSUM

procedure to monitor count data that can detect both upward and downward shift in the count

level. The author also designed two modified CUSUM schemes that can detect the changes in

count level faster than the simple CUSUM. Riaz et al. [19] proposed a CUSUM control chart with
6



runs rules and compared their control chart with simple CUSUM, WCUSUM, EWMA and Fast

initial response CUSUM and showed that it has better performance in detecting small shift while

maintaining its efficiency for detecting larger shifts. Yashchin [35] proposed a weighted CUSUM

procedure (a generalized CUSUM) and asserted that it has better run length than classical CUSUM.

Jiang et al. [7] developed a weighted CUSUM chart to monitor inhomogeneous Poisson process

and detect different range of shifts when the sample size is not constant over time. This control

chart can be applied to different distributions like the study done by Chen et al. [4] which used

Geometric Poisson as the underlying distribution.

2.3 Exponentially Weighted Moving Average

Exponentially Weighted Moving Average or EWMA is one type of control chart to monitor

attribute data using all the information from the past. Many reserachers have studied this control

chart in the area of quality control. Borror et al. [3] introduced an EWMA chart that considered

a weighted average of past informationto the case of Poisson data. They evaluated their proposed

control chart by using Markov chain approximation and argued that it has better ARL’s than c

chart. It also can detect downward shift since the lower limit is positive. Dong et al. [5] studied

the EWMA control chart to detect an increase in incident rate and evaluated it by finding the

probability of successful detection and ARL’s. Weiß [30] proposed a one sided s EWMA to the

dependent Poisson data and compared its ARL’s with that of c chart and one sided CUSUM. Zhou

et al. [37] developed a EWMA that accounts varying sample size and asserted that this control

chart is more efficient than the classical EWMA. Shu et al. [28] applied the EWMA control

chart to Poisson data to detect an increase in rate in their and used Markov chain to analyzed

its performance. Khoo [8] suggested a Poisson moving average control chart to monitor count

data.The author compared its performance to the c chart by evaluating its average run length and

showed that it has smaller out of control ARL.

Other researchers studied the comparison between these control charts based on factors such as

ARL. Ryan and Woodall [20] evaluated CUSUM and EWMA based on their Average Run Length
7



(ARL) with a simulation study, when the sample size varies. Han et al. [6] studied and compared

the performance of CUSUM and EWMA for count data in their paper. White et al. [31] also

presented a comparison of the c chart and CUSUM procedure based on ARL. They showed that

CUSUM chart provided faster detection of a shift while maintaining a larger in-control ARL.

2.4 Geometric and Negative Binomial

There are other control charting procedures that are based on the number of conforming items

found between nonconformities. Liu et al. [11] used the term ”Time Between Event” for this type

of control chart. Cumulative Count of Conforming (CCC-r) control chart is another term used for

this control chart which represents the number of units until rth nonconformities is found. These

methods are usually applied to high quality processes where the proportion of nonconforming

items is very small. Geometric or in the general case Negative Binomial are the two underlying

distributions used. The traditional approach in this case is to use p chart which is based on the

number of nonconformities in a unit sample which is not appropriate to small proportions. There

have been many studies done in this area. Albers [2] analyzed this type of control chart and argued

that as the proportion p increases Negative Binomial chart has better performance than Geometric

one. Schwertman [23] expanded the work done by Xie et al. [33], which provided the control

limits for different r, and also evaluated the ARL’s to detect a change in process. Yang et al.

[34] investigated the effect of sample size in a Geometric control chart when the proportion p is

estimated. Lai and Govindaraju [10] showed how to reduce the variability in false and correct

alarm rate in the design of control chart for high quality processes high quality. Ohta et al. [15]

presented an optimal method to design a CCC-r chart from an economic view that can detect a

positive shift in p and maximize the profit in each cycle. Yeh et al. [36] Proposed a EWMA control

chart based a non transformed geometric count to monitor high quality processes.
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Chapter 3

Methodology

In this chapter, the methodology used to design the proposed control chart will be explained in

detail for three distributions: Poisson, Geometric and Negative Binomial.

3.1 Upward Shifts

Suppose the cost of the control chart for nonconformities, following a Poisson distribution, is

a linear function of two types of errors; that is

Cost = z×Type I error+Type II error , z > 0 (3.1)

z denotes the relative cost of type I error to type II error. This function is true for every combi-

nation of Poisson mean and size of anticipated shift. This paper assumes that there is no LCL and

UCL for upward shift and downward shift, respectively. The null hypothesis cannot be rejected

because of small and large numbers of defects in an upward shift and downward shift, respectively.

The process is considered out of control when the number of defects is greater than UCL for up-

ward shift and less than LCL for downward shift.

Cost in Equation 3.1 is formulated as follows, where there is an upward shift assuming no

lower control limit.

Cost(UCL = u) = z×

(
1−

u

∑
x=0

e−λ1×λx
1

x!

)
+

(
u

∑
x=0

e−λ2×λx
2

x!

)
(3.2)

Where λ1 is the predefined mean of the Poisson distribution, and λ2 is the actual mean con-

sidering an upward shift. Figure 3.1 shows an instance of cost versus upper control limit for an

upward shift ( λ1 = 5 , λ2 = 10 , z = 1 ).

9



Figure 3.1: Cost versus Upper Control Limit

It can be observed from Figure 3.1 that cost of the control has decreasing trend to a point (say

UCL*) before it starts to increase; therefore, it can be concluded that the difference between the

costs of UCL and UCL−1 in which UCL ≤ UCL* are negative, and the difference between the

costs of UCL and UCL−1 in which UCL*≤UCL−1 are positive. Considering the objective, UCL*

should be found to minimize cost of the control chart. The cost difference between any UCL and

UCL−1 is represented in Equation 3.3.

CostDi f f erence(X = x) =Cost(x)−Cost(x−1) =−z×

(
e−λ1×λx

1
x!

)
+

(
e−λ2×λx

2
x!

)
(3.3)

Figure 3.2 illustrates function CostDifference versus x for the instance of Figure 3.1 (λ1 = 5 ,

λ2 = 10 , z = 1).

10



Figure 3.2: CostDifference versus x

As shown in Figure 3.2, for every x≤ UCL* the value of CostDifference is negative and for all

other x the value of CostDifference is positive. The main objective requires the greatest x that has

a negative value in the function CostDifference. In order to do that, the following equation should

be solved.

CostDi f f erence(x) = 0 (3.4)

The details to solve the above equation are shown in the Appendix 1. The solution to the

Equation 3.4 is

X =
ln(z)+λ2−λ1

ln(λ2)− ln(λ1)
(3.5)

Since all the components of the above fraction are unique numbers, we can be sure that there is

only one number which makes the function CostDifference equal to zero and there is no possibility

of having another number that can satisfies Equation 3.4. This result demonstrates that the behavior

of the graph in Figure 3.1 is true for all combinations of λ1 and λ2 ; there is a decreasing trend on

11



one side and an increasing trend on the other side of the curve separated by UCL*.

X in the above equation is not necessarily an integer, so it should be converted to the largest integer

which has a negative value in function CostDifference. The final and the optimal UCL is

UCL∗ = Floor

(
ln(z)+λ2−λ1

ln(λ2)− ln(λ1)

)
(3.6)

And whenever the value for X is not nonnegative, it means there is no Upper Control Limit for

this instance, and any number of defects is ;therefore, the process is considered out of control.

3.2 Downward Sifts

The general approch to find the limits of teh control chart to detect a downward shift is the

same as upward shift. Note that there is no upper control limit in downward control chart. The

equivalent cost for downward shift is

Cost(LCL = l) = z×

(
l−1

∑
x=0

e−λ1×λx
1

x!

)
+

(
1−

l−1

∑
x=0

e−λ2×λx
2

x!

)
(3.7)

Figure 3.3 shows an instance of cost versus lower control limit for a downward shift ( λ1 = 10

, λ2 = 5 , z = 1) .

12



Figure 3.3: Cost versus Lower Control Limit

The cost difference between any LCL and LCL+1 is

CostDi f f erence(X = x) =Cost(x)−Cost(x+1) =−z×

(
e−λ1×λx

1
x!

)
+

(
e−λ2×λx

2
x!

)
(3.8)

Figure 3.4 represents CostDifference versus x for the instance of Figure 3.3 ( λ1 = 10 , λ2 = 5

, z = 1 ).
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Figure 3.4: CostDifference versus x

It can be seen from the above figure that for every x≥ UCL* the value of CostDifference is

negative and for all other x’s the value of CostDifference is positive. In order to minimize the cost,

the smallest x should be found which has a negative value in the function CostDifference. To find

this x, the following equation should be solved like in upward shift.

CostDi f f erence(x) = 0 (3.9)

The details to calculate the x which solves the above equation are shown in the Appendix 2.

The result of this equation is

X =
λ1−λ2− ln(z)
ln(λ1)− ln(λ2)

(3.10)

Again x in the above equation is not necessarily an integer number, so it should be converted to

the smallest integer number which has a negative value in function CostDifference. The final and

14



the optimal LCL is

LCL∗ =Ceiling

(
λ1−λ2− ln(z)
ln(λ1)− ln(λ2)

)
(3.11)

Whenever the value for X is negative, it means that there is no Lower Control Limit for this

instance, and any number of defects is acceptable; therefore, the process is considered in control.

In the optimal bounds in Equations 3.6 and 3.10 that are shown below,

• UCL∗ = Floor

(
ln(z)+λ2−λ1

ln(λ2)− ln(λ1)

)

• LCL∗ =Ceiling

(
λ1−λ2− ln(z)
ln(λ1)− ln(λ2)

)
Increasing z implicitly values type I error rather than type II error, so in order to minimize the

cost, the optimal upper control limit should be increased in upward shift, and the optimal lower

control limit should be decreased in downward shift, both of which can be obtained from their

specific optimal bound. The optimal bounds have the appropriate behavior toward any changes in

z value in upward and downward shifts, respectively.

Combining downward and upward shift in designing the control chart:

Suppose we are interested to design the proposed control chart that can detect an upward shift

of size x1 and a downward shift of size x2 simultaneously with least cost based on the customized

objective that the user defines. This objective is

Cost = z×Type I error+Type II error , z > 0 (3.12)

The second part of the objective, type II error, needs to know the alternative state of the process

and it should be unique, so we cannot consider two shifts at the same time to design this control

chart but We can assign probability to the alternative states to find the type II error and design it.
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In this condition the objective would be

Cost = z×Type I error+α×Type II error(λ+ x1)+(1−α)×TypeIIerror(λ− x2) (3.13)

in which z> 0 , 0 < α < 1 , x1> 0 and x2> 0. Or in another way Cost(UCL = u,LCL = l) =

z×

(
1−

u

∑
x=l

e−λ×λx

x!

)
+α×

(
u

∑
x=l

e−(λ+x1)× (λ+ x1)
x

x!

)
+(1−α)×

(
u

∑
x=l

e(λ−x2)× (λ− x2)
x

x!

)
(3.14)

Figure 3.5 shows how cost varies for different LCL and UCL for an instance with λ = 10 , z

= 1 , x1= x2= 5. You can see that there is one local minimum for this instance and the software

Mathematica can find the exact value for the optimal UCL and LCL but I could not find a general

expression to find the minimum point.

Figure 3.5: Cost versus UCL and LCL

3.3 Geometric

The previous sections were based on the assumption of Poisson distribution. But there are

other cases where this assumption is violated and defects occur based on a Geometric distribution.
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High quality processes is an example of this case where the nominal proportion of non-conforming

units are quiet small. In such processes there is a large number of conforming items between two

consecutive nonconformities and the decision is based on whether this number is small enough to

say that the process is out of control or not. These processes should also have the capability of

inspecting the units sequentially instead of inspecting them as a batch which most of the modern

manufactures do. This section focuses on low failure rate which is common in health care moni-

toring as well as high quality processes.

Suppose that the probability of an item to be nonconforming is equal to p, then the probability

of getting the nonconforming item after x conforming ones is

Pr(X = x) = p(1− p)x , x = 0,1,2,3, ... (3.15)

The objective of the control chart is the same as the previous sections which is

Cost = z×Type I error+Type II error z > 0 (3.16)

Upward shift (deterioration) in this section means that the probability p increases and the num-

ber of conforming items between two consecutive nonconformities decreases. There is no UCL in

the control chart and the objective is formulated as

Cost(LCL = l) = z×

(
l−1

∑
x=0

p1(1− p1)
x−1

)
+

(
1−

l−1

∑
x=0

p2(1− p2)
x−1

)
(3.17)

where p1 is the predefined rate of nonconformities and p2 is the actual rate considering an

upward shift.

Figure 3.6 shows an instance of cost versus lower control limit for an upward shift ( p1= 0.1 ,

p2= 0.15 , z = 1).
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Figure 3.6: Cost versus Upper Control Limit

The behavior of the above figure is the same as the cost graph assuming Poisson distribution.

In order to find the best bound in this case, we use the function CostDifference as the previous

sections. Function CostDifference in this control chart would be

CostDi f f erence(X = x) =−z× p1(1− p1)
x + p2(1− p2)

x (3.18)

Figure 3.7 shows how CostDifference varies as the lower control limit changes for the same

instance in the previous figure ( p1= 0.1 , p2= 0.15 , z = 1).
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Figure 3.7: CostDifference versus Lower Control Limit

Again like in the previous section we should solve the following equation to find the optimal

bound.

CostDi f f erence(X = x) = 0 (3.19)

The details how to solve this equation is shown in the Appendix 3. The result of the above

equation is

X =
ln(p2)− ln(p1)− ln(z)
ln(1− p1)− ln(1− p2)

(3.20)

So the optimal lower control limit would be

LCL∗ =Ceiling

(
ln(p2)− ln(p1)− ln(z)
ln(1− p1)− ln(1− p2)

)
(3.21)

The same approach for downward shift (improvement) from p1 to p2 where p1 > p2 gives
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optimal upper control limit equal to

UCL∗ = Floor

(
ln(z)+ ln(p1)− ln(p2)

ln(1− p2)− ln(1− p1)

)
(3.22)

3.4 Negative Binomial

In the previous section, the decision about whether the process is in control or out of control is

based on the number of conforming items between two consecutive defects. Monitoring the num-

ber of items inspected before r nonconforming items requires Negative Binomial as the underlying

distribution.

Suppose that the probability of an item to be nonconforming is equal to p, then the probability

of reaching the rth nonconforming items after x inspections is

Pr(X = x) =
(

x−1
r−1

)
pr(1− p)x−r , x = r,r+1,r+2, ... (3.23)

The objective of the control chart would be the same as the previous sections which is

Cost = z×Type I error+Type II error z > 0 (3.24)

Upward shift (deterioration) in this section means that the probability p increases and the num-

ber of conforming items between two consecutive nonconformities decreases. There is no UCL in

the control chart and the objective is formulated as

Cost(LCL = l) = z×

(
l−1

∑
x=0

(
x−1
r−1

)
pr

1(1− p1)
x−r

)
+

(
1−

u

∑
x=0

(
x−1
r−1

)
pr

2(1− p2)
x−r

)
(3.25)

where p1 is the predefined rate of nonconformities and p2 is the actual rate considering a upward

shift. Figure 3.8 shows an instance of cost versus lower control limit for an upward shift ( p1 = 0.1

, p2 = 0.15 , r = 3, z = 1 ).
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Figure 3.8: Cost versus Lower Control Limit

In the above figure, there is an increasing trend in one side and a decreasing trend on the other

side of the graph, so we can use again the function CostDifference to help us to find the optimal

bound. Function CostDifference would be

CostDi f f erence(X = x) =−z×
(

x−1
r−1

)
pr

1(1− p1)
x−r +

(
x−1
r−1

)
pr

2(1− p2)
x−r (3.26)

Figure 3.9 shows how CostDifference varies as the lower control limit changes for the same

instance in the previous figure ( p1 = 0.1 , p2 = 0.15 , r = 3, z = 1 ).
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Figure 3.9: CostDifference versus Lower Control Limit

Again like in the previous section we should solve the following equation to find the optimal

bound.

CostDi f f erence(X = x) = 0 (3.27)

The details to solve this equation are shown in the Appendix 4. The result of the above equation

is

X =
r× (ln(p2)− ln(p1)+ ln(1− p1)− ln(1− p2))− ln(z)

ln(1− p1)− ln(1− p2)
(3.28)

So the optimal lower control limit would be

LCL∗ =Ceiling

(
r× (ln(p2)− ln(p1)+ ln(1− p1)− ln(1− p2))− ln(z)

ln(1− p1)− ln(1− p2)

)
(3.29)

The same approach to detect a downward shift (improvement) from p1 to p2 where p1 > p2
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gives upper control limit equal to

UCL∗ = Floor

(
ln(z)+ r× (ln(p1)− ln(p2)+ ln(1− p2)− ln(1− p1))

ln(1− p2)− ln(1− p1)

)
(3.30)
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Chapter 4

Discussion

In this chapter some numerical examples to design the proposed control chart are presented

assuming that the distribution of the data is either Poisson, Geometric or Negative Binomial. Also

the effects of the factors z and shift size on the design of the control chart and cost are examined

graphically for some sample instances.

4.1 Upward Shift

In this section, upward shift in processes with Poisson as the underlying distribution of the data

will be examined.

4.1.1 Results

Table 4.1 represents the control limits for several combinations of upward shift from λ1 to λ2

as the process parameters with different z values. As you can see from the table, the upper control

limit has a nondecreasing pattern as the z value increases in each row which corresponds to an

specific shift.
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z = 0.5 z = 1 z = 2
λ1 λ2 LCL* UCL* LCL* UCL* LCL* UCL*

1 2 None 0 None 1 None 2
1 3 None 1 None 1 None 2
1 4 None 1 None 2 None 2
1 5 None 2 None 2 None 2
2 3 None 0 None 2 None 4
2 4 None 1 None 2 None 3
2 5 None 2 None 3 None 4
2 6 None 3 None 3 None 4
5 6 None 1 None 5 None 9
5 7 None 3 None 5 None 8
5 8 None 4 None 6 None 7
5 9 None 5 None 6 None 7
5 10 None 6 None 7 None 8

10 14 None 9 None 11 None 13
10 16 None 11 None 12 None 14
10 18 None 12 None 13 None 14
10 20 None 13 None 14 None 15
20 40 None 27 None 28 None 29
40 70 None 52 None 53 None 54

Table 4.1: Upward Sample Results (Poisson)

4.1.2 Sensitivity Analysis

In this subsection we examine the behavior of the optimal bounds, cost and errors when the

other parameters such as size of shift and z value change with the assumption that the data follow

Poisson distribution.

There are two possible behavior expected for the optimal upper control limit when the size of shift

increases:

1. If type II error costs more than type I error (z≤1) then as the size of shift increases, the

optimal control limit increases.

2. If type I error costs more than type II error (z>1) then the optimal upper control limit has

convex behavior toward the changes in size of shift.
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Here is an example for the these cases. Figure 4.1 shows how the optimal upper control limit

varies with different z values when the size of the shift increases for a process with λ1 = 10. In

this figure, the instance with z = 0.5 and z = 1 has increasing trend but for z = 2 it has convex

behavior. The decreasing part in the optimal bound for z = 2 is because the z value is large and

the peak of the two distributions are very close so it is better to have a larger in control region to

decrease the type I error since the type II error will be large. This case can be helpful in practice

when the user is not sure about determining the λ2. In this case there is a minimum optimal upper

control limit that the user can not violate in order to decrease the cost of the control chart. This

minimum optimal bound can be found by plugging the solution to the derivative of the Equation

3.5 in Equation 3.6.

Figure 4.1: Optimal Upper Control Limit versus Size of Shift

Figure 4.2 shows how type I error varies as the size of shift increases for λ1 = 10 and different

z values. Type I error associated with z= 0.5 and z= 1 has decreasing trend because the optimal

region has increasing trend but for z= 2 it has concave behavior since the in control region has

convex behavior.
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Figure 4.2: Type I Error versus Size of Shift

Figure 4.3 shows how type II error varies as the size of shift increases for λ1 = 10 and different

z values. For z= 2, the optimal bound first decreases and that is why type II decreases but when

the optimal bound starts to increase, size of shift is large and that is why type II keeps decreasing.

Figure 4.3: Type II Error versus Size of Shift
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Figure 4.4 shows how the difference in type I and II errors varies as the size of shift increases

for a process with λ1 = 10 and z=1. The inconsistency of the difference between two types of

errors for the small shift is due to two things. First is the discrete property of the Poisson and the

way the optimal limit is rounded, but as the size of shift increases it will lose its effect. The second

reason is that when the size of shift is relatively small, it means the peaks of the probability density

function for both distributions (λ1 and λ2) are very close. That is why any control limit between

(λ1 and λ2) is going to result in relatively large type I and type II errors.

Figure 4.4: Difference between Two Types of Errors versus Size of Shift

Figure 4.5 Shows how cost changes as the size of shift increases for λ1 = 10 and different z

values. The decreasing trend for all three z’s in this figure, is because of the fact that detecting a

larger shift is easier than a small shift with less errors. As the size of the anticipated shift increases,

the peak of the two distributions will not be closer, so any control limit in between will have a

smaller error rates and cost.
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Figure 4.5: Cost versus Size of Shift

Figure 4.6 shows how optimal Upper Control limit varies when z increases for an upward shift

from λ1 = 5 to λ2 = 20. In this instance, increasing z implicitly values type error rather than type

II error, so in order to minimize the cost which includes type I error with increasing coefficient, the

optimal upper control limit should be increased to expand the in control region.

Figure 4.6: Optimal Upper Control Limit versus z
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4.2 Downward Shift

In this section, downward shifts in processes with POisson as the underlying distribution of the

data will be examined.

4.2.1 Results

Table 4.2 represents the control limits of the proposed control chart for several combinations

of downward shift from λ1 to λ2 as the process parameters with different z values. In each row of

the above table, the lower control limit has nonincreasing trend as the coefficient of the type I error

(z) increases to lower the type I error.

z = 0.5 z = 1 z = 2
λ1 λ2 LCL* UCL* LCL* UCL* LCL* UCL*

3 2 5 None 3 None 1 None
3 1 3 None 2 None 2 None
4 3 6 None 4 None 2 None
4 2 4 None 3 None 2 None
4 1 3 None 3 None 2 None
5 4 8 None 5 None 2 None
5 3 6 None 4 None 3 None
5 2 5 None 4 None 3 None
5 1 3 None 3 None 3 None
8 7 13 None 8 None 3 None
8 5 8 None 7 None 5 None
8 3 6 None 6 None 5 None
8 1 4 None 4 None 4 None

10 8 13 None 9 None 6 None
10 6 10 None 8 None 7 None
10 4 8 None 7 None 6 None
10 2 6 None 5 None 5 None
20 5 12 None 11 None 11 None
40 10 23 None 22 None 22 None

Table 4.2: Downward Sample Results (Poisson)
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4.2.2 Sensitivity Analysis

The same sensitivity analysis can goes to the control chart that is intended to detect improve-

ment in a process assuming that Poisson is the underlying distribution of the data.

Figure 4.8 shows how the optimal lower control limit varies with different z values, when size

of the downward shift increases for a process with λ1 = 10. This instance has the opposite behavior

as its upward shift; that is, a decreasing trend with z = 0.5 and z = 1 and a concave behavior with

z = 2 for in control region.

Figure 4.7: Optimal Upper Control Limit versus Size of Shift

Figure 4.9 shows how type I error varies as the size of shift increases for λ1 = 10 and different

z values. This figure is in accordance to the previous figure. It means as the in control region

increases in the previous figure, the type I error decreases.
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Figure 4.8: Type I Error versus Size of Shift

Figure 4.10 shows how type II error varies as the size of shift increases for λ1 = 10 and different z

values. This figure has the same behavior as the upward shift for this instance.

Figure 4.9: Type II Error versus Size of Shift

Figure 4.11 shows how the difference in type I and II errors varies as the size of shift varies for a
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process with λ1 = 10 and z=1. The inconsistency of the difference between two types of errors for

the small shift is due to the same reasons mentioned for upward shift for this instance.

Figure 4.10: Difference between Two Types of Errors versus Size of Shift

Figure 4.12 Shows how cost changes as the size of shift increases for λ1 = 10 and different z

values. The decreasing trend of cost function in this figure is due to the fact that detecting a larger

shift is easier with less errors.
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Figure 4.11: Cost versus Size of Shift

Figure 4.13 shows how optimal Lower Control limit varies when z increases for a downward

shift from λ1 = 20 to λ2 = 5. In this instance, as z increases, the in control region expands to

decrease type I error and consequently the cost of the control chart.

Figure 4.12: Optimal Lower Control Limit versus z

Figure 4.15 presents the cost associated with the proposed control chart and the conventional c
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chart for a process with λ1 = 10 and z=1. It is assumed that the c chart is one sided. As it can be

seen in the figure, the proposed control chart returns lower cost compared to the one sided c chart

when a directional change in the process is to be detected, especially when the size of the shift is

small.

Figure 4.13: Cost versus Size of Shift

4.3 Geometric

4.3.1 Results

In this subsection, some numerical examples of the control limits for the proposed control chart

are presented assuming that the nonconforming items occur based on a Geometric distribution.

Table 4.3 represents the control limits for several combinations of upward shifts from p1 as the

parameter of the in control state to p2 as the parameter for the alternative state with different z

values. In this table, ”None” as the lower control limit means that the process is always considered

in control. Any number of conforming items between two nonconformities is acceptable.
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z = 0.5 z = 1 z = 2
p1 p2 LCL* UCL* LCL* UCL* LCL* UCL*

0.005 0.0055 1569 None 190 None None None
0.005 0.006 871 None 182 None None None
0.005 0.0065 634 None 174 None None None
0.005 0.007 512 None 168 None None None
0.005 0.0075 437 None 162 None None None
0.01 0.011 781 None 95 None None None
0.01 0.012 433 None 91 None None None
0.01 0.013 315 None 87 None None None
0.01 0.014 255 None 84 None None None
0.01 0.015 217 None 81 None None None

0.015 0.0165 518 None 63 None None None
0.015 0.018 288 None 60 None None None
0.015 0.0195 209 None 58 None None None
0.015 0.02 169 None 56 None None None
0.015 0.02 144 None 54 None None None
0.1 0.11 71 None 9 None None None
0.1 0.12 39 None 9 None None None
0.1 0.13 29 None 8 None None None
0.1 0.14 23 None 8 None None None
0.1 0.15 20 None 8 None None None

Table 4.3: Upward Sample Results (Geometric)

Table 4.3 represents the control limits for several combinations of downward shifts from p1 to

p2 with different z values. In this table, ”None” as the upper control limit means that the process

is always considered out of control. Any number of conforming items between two consecutive

nonconformities shows that the process is out of control.
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z = 0.5 z = 1 z = 2
p1 p2 LCL* UCL* LCL* UCL* LCL* UCL*

0.01 0.009 None None None 104 None 790
0.01 0.008 None None None 110 None 454
0.01 0.007 None None None 117 None 346
0.01 0.006 None None None 126 None 298
0.01 0.005 None None None 137 None 275

0.015 0.0135 None None None 69 None 524
0.015 0.012 None None None 73 None 301
0.015 0.0105 None None None 78 None 230
0.015 0.009 None None None 84 None 198
0.015 0.0075 None None None 91 None 182
0.1 0.09 None None None 9 None 72
0.1 0.08 None None None 10 None 41
0.1 0.07 None None None 10 None 32
0.1 0.06 None None None 11 None 27
0.1 0.05 None None None 12 None 25

0.15 0.135 None None None 6 None 45
0.15 0.12 None None None 6 None 26
0.15 0.105 None None None 6 None 20
0.15 0.09 None None None 7 None 17
0.15 0.075 None None None 8 None 16

Table 4.4: Downward Sample Results (Geometric)

4.4 Negative Binomial

4.4.1 Results

In this section, some numerical results are presented to design the proposed control chart for a

process that follows Negative Binomial as the defect occurence distribution. Table 4.5 represents

the control limits for several combinations of upward shifts from p1 to p2 with different z values

and r = 2. p1 is the parameter of the process when it is in control and p2 is its parameter when it is

out of control. In this table, ”None” as the lower control limit means that the process is always in

the state of control.
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z = 0.5 z = 1 z = 2
p1 p2 LCL* UCL* LCL* UCL* LCL* UCL*

0.005 0.0055 1761 None 382 None None None
0.005 0.006 1054 None 365 None None None
0.005 0.0065 810 None 350 None None None
0.005 0.007 681 None 337 None None None
0.005 0.0075 600 None 325 None 49 None
0.01 0.011 877 None 191 None None None
0.01 0.012 526 None 183 None None None
0.01 0.013 404 None 175 None None None
0.01 0.014 340 None 169 None None None
0.01 0.015 300 None 163 None 26 None

0.015 0.0165 582 None 128 None None None
0.015 0.018 349 None 122 None None None
0.015 0.0195 268 None 117 None None None
0.015 0.021 226 None 113 None None None
0.015 0.0225 199 None 109 None 18 None
0.1 0.11 82 None 20 None 0 None
0.1 0.12 50 None 19 None 0 None
0.1 0.13 38 None 18 None 0 None
0.1 0.14 33 None 17 None 2 None
0.1 0.15 29 None 17 None 5 None

Table 4.5: Upward Sample Results (Negative Binomial)

Table 4.6 represents the control limits for several combinations of downward shifts from p1 to

p2 with different z values and r = 3. In this table, the rows with ”None” as the upper control limit

means that the process is alwasy out of control.
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z = 0.5 z = 1 z = 2
p1 p2 LCL* UCL* LCL* UCL* LCL* UCL*

0.01 0.009 None None None 210 None 897
0.01 0.008 None None None 223 None 566
0.01 0.007 None 8 None 237 None 466
0.01 0.006 None 83 None 255 None 427
0.01 0.005 None 139 None 277 None 414

0.015 0.0135 None None None 140 None 595
0.015 0.012 None None None 148 None 376
0.015 0.0105 None 6 None 158 None 310
0.015 0.009 None 56 None 170 None 284
0.015 0.0075 None 93 None 184 None 276
0.1 0.09 None None None 21 None 83
0.1 0.08 None None None 22 None 53
0.1 0.07 None 2 None 23 None 44
0.1 0.06 None 9 None 25 None 41
0.1 0.05 None 14 None 27 None 40

0.15 0.135 None None None 14 None 53
0.15 0.12 None None None 14 None 34
0.15 0.105 None 2 None 15 None 29
0.15 0.09 None 6 None 16 None 27
0.15 0.075 None 10 None 18 None 26

Table 4.6: Downward Sample Results (Negative Binomial)

Table 4.7 represents the cost, type I error and type II error associated with the optimal control

chart for an upward shift from p1 = 0.01 to p2 = 0.015 with z = 1 and different r values. As r gets

larger, the effect of probability error will decrease. It means that the number of conforming items

until the rth nonconfromities will be a better representation of the process; therefore, the errors

and cost will decrease. Number of conforming items between two consecutive defects follows a

Geometric distribution, so the average of this r numbers to find the rth defects converge to Normal

distribution ( 1
p ,0) when r gets large. It means that there will be less errors with data from the

process and less error with the decision of determining whether the process is out of control or

not. It is better for the user to use the Negative Binomial control chart with larger r than Geometric

control chart to monitor the process. Another factor that may affect the decision of the user is

time. With choosing larger r, the time to make the first decision about the process will get much

more than the smaller r, so the user can choose a r to trade of between cost and time to monitor the
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process.

r LCL* Type I error Type II error Cost
1 82 0.5614 0.2896 0.8510
2 163 0.4889 0.2933 0.7822
3 244 0.4465 0.2850 0.7314
4 325 0.4156 0.2743 0.6898
5 406 0.3908 0.2634 0.6542
6 487 0.3699 0.2528 0.6227
7 568 0.3518 0.2426 0.5944
8 649 0.3357 0.2330 0.5687
9 730 0.3212 0.2238 0.5450

10 811 0.3080 0.2151 0.5231

Table 4.7: The Effect of r on Binomial Control Chart
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Chapter 5

Conclusion and Future Works

5.1 Conclusions

In this research, a new control chart is described to monitor and improve the quality of the

processes that provide count data. The control chart is designed to decrease the cost charged to the

user in long term. The user has the ability to define the cost as a linear function of the control chart’s

error rates (type I and II errors). The control limits are optimaly chosen in this control chart since it

is based on the exact probability distribution of the data. The proposed control chart can be applied

to Poisson, Geometric and Negative Binomial as the distribution of the count data. In addition, it

has the ability to detect both deteriorartion and improvement in the quality. The proposed control

chart is a superior alternative to the classical Shwhart chart which is only intended to provide a

fixed rate of type I error in a case that type II error cost the user as well.

Numerical samples of the control limits for different possible shifts are represented for Poisson,

Geometric and Negative Binomial control chart. The effect of shift size in the parameter of interest

and the relative cost of the errors on the design of the control chart , cost and error rates are shown

graphically.

5.2 Future Works

1. In this research, the control chart is designed from an economic view of the user and it does

not account for ARL performance. One may adjust the control limits in the proposed chart

to give a desired performance such as the in control and out of control ARL. These can be

added as a constriant for the defined objective.

2. For the Negative Binomial chart we know that as r gets larger the control chart can detect

small shift easier in p with less cost. One may consider the cost of inspecting items to
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obtain the rth nonconformities in the objective of the control chart. So the optimal limits are

determined after accounting a trade off between costs of errors and inspection in each cycle.

3. The proposed control chart, like other kinds of individuals control charts, has large type I

error rate when a small size of shift is desired to be detected. Future studies can include

modification of this control chart to a CUSUM procedure which detects the shift based on a

sequence of observations.

4. The control chart in this reserach is designed to detect only step shifts in the underlying

distribution’s parameters. One may consider designing a control chart with the same objec-

tive to detect other kinds of trends in the undelying distribution parameter such as a linear

change.

5. In the proposed Poisson control chart, it is assumed that the rate of nonconformities is fixed

in the statistical control. This rate is based on a fixed unit of sample. One may investigate

the effect of varying sample sizes over time as they do in practice on designing the control

limits .

42



References

[1] CESAR A Acosta-Mejia. Improved p charts to monitor process quality. IIE transactions,
31(6):509–516, 1999.

[2] Willem Albers. The optimal choice of negative binomial charts for monitoring high-quality
processes. Journal of Statistical Planning and Inference, 140(1):214–225, 2010.

[3] Connie M Borror, Charles W Champ, and Steven E Rigdon. Poisson ewma control charts.
Journal of Quality Technology, 30(4):352–361, 1998.

[4] Ching-Wen Chen, Paul H Randolph, and Tian-Shy Liou. Using cusum control schemes for
monitoring quality levels in compound poisson production environment: the geometric pois-
son process. Quality Engineering, 17(2):207–217, 2005.

[5] Yuping Dong, AS Hedayat, and BK Sinha. Surveillance strategies for detecting changepoint
in incidence rate based on exponentially weighted moving average methods. Journal of the
American Statistical Association, 103(482):843–853, 2008.

[6] Sung Won Han, Kwok-Leung Tsui, Bancha Ariyajunya, and Seoung Bum Kim. A compari-
son of cusum, ewma, and temporal scan statistics for detection of increases in poisson rates.
Quality and Reliability Engineering International, 26(3):279–289, 2010.

[7] Wei Jiang, Lianjie Shu, and Kwok-Leung Tsui. Weighted cusum control charts for monitoring
poisson processes with varying sample sizes. Journal of quality technology, 43(4), 2011.

[8] Michael BC Khoo. Poisson moving average versus c chart for nonconformities. Quality
Engineering, 16(4):525–534, 2004.

[9] Rudolf G Kittlitz Jr. Calculating the (almost) exact control limits for a c-chart. Quality
Engineering, 18(3):359–366, 2006.

[10] CD Lai and K Govindaraju. Reduction of control-chart signal variablity for high-quality
processes. Journal of Applied Statistics, 35(6):671–679, 2008.

[11] JY Liu, M Xie, TN Goh, and P Ranjan. Time-between-events charts for on-line process
monitoring. In Engineering Management Conference, 2004. Proceedings. 2004 IEEE Inter-
national, volume 3, pages 1061–1065. IEEE, 2004.

[12] James M Lucas. Counted data cusum’s. Technometrics, 27(2):129–144, 1985.

[13] James M Lucas, Darwin J Davis, and Erwin M Saniga. Detecting improvement using
shewhart attribute control charts when the lower control limit is zero. IIE Transactions,
38(8):699–709, 2006.

[14] Yajun Mei, Sung Won Han, and Kwok-Leung Tsui. Early detection of a change in poisson
rate after accounting for population size effects. Statistica Sinica, 21(2):597, 2011.

43



[15] Hiroshi Ohta, Etsuko Kusukawa, and Abdur Rahim. A ccc-r chart for high-yield processes.
Quality and Reliability Engineering International, 17(6):439–446, 2001.

[16] ES Page. Cumulative sum charts. Technometrics, 3(1):1–9, 1961.

[17] CHARLES P QUESENBERRY. Spc q charts for a poisson parameter λ: short or lung runs.
Journal of Quality Technology, 23(4):296–303, 1991.

[18] Charles P Quesenberry. Spc q charts for start-up processes and short or long runs. Journal of
Quality Technology, 23(3):213–224, 1991.

[19] Muhammad Riaz, Nasir Abbas, and Ronald JMM Does. Improving the performance of cusum
charts. Quality and Reliability Engineering International, 27(4):415–424, 2011.

[20] Anne G Ryan and William H Woodall. Control charts for poisson count data with varying
sample sizes. Journal of Quality Technology, 42(3):260–275, 2010.

[21] Thomas P Ryan and Neil C Schwertman. Optimal limits for attributes control charts. Journal
of Quality Technology, 29(1), 1997.

[22] T.P. Ryan. Statistical Methods for Quality Improvement. Wiley Series in Probability and
Statistics. Wiley, 2011.

[23] Neil C Schwertman. Designing accurate control charts based on the geometric and negative
binomial distributions. Quality and Reliability Engineering International, 21(8):743–756,
2005.

[24] Kimberly F Sellers. A generalized statistical control chart for over-or under-dispersed data.
Quality and Reliability Engineering International, 28(1):59–65, 2012.

[25] WA Shewhart. Quality control. Bell System Technical Journal, 6(4):722–735, 1927.

[26] Walter A Shewhart. Quality control charts1. Bell System Technical Journal, 5(4):593–603,
1926.

[27] Haim Shore. General control charts for attributes. IIE transactions, 32(12):1149–1160, 2000.

[28] Lianjie Shu, Wei Jiang, and Zhang Wu. Exponentially weighted moving average control
charts for monitoring increases in poisson rate. IIE Transactions, 44(9):711–723, 2012.

[29] T Tsai, C Lin, and S Wu. Alternative attribute control charts based on improved square root
transformation. Tamsui Oxford Journal of Mathematical Sciences, 22(1):61, 2006.

[30] Christian H Weiß. Detecting mean increases in poisson inar (1) processes with ewma control
charts. Journal of Applied Statistics, 38(2):383–398, 2011.

[31] Carolyn H White, J Bert Keats, and James Stanley. Poisson cusltm versus c chart for defect
data. Quality Engineering, 9(4):673–679, 1997.

[32] William H Woodall. Control charts based on attribute data: bibliography and review. Journal
of Quality technology, 29(2):172–183, 1997.

44



[33] M Xie, XS Lu, TN Goh, and LY Chan. A quality monitoring and decision-making scheme for
automated production processes. International Journal of Quality & Reliability Management,
16(2):148–157, 1999.

[34] Zhenlin Yang, Min Xie, Vellaisamy Kuralmani, and Kwok-Leung Tsui. On the performance
of geometric charts with estimated control limits. Journal of Quality Technology, 34(4):448–
458, 2002.

[35] Emmanuel Yashchin. Weighted cumulative sum technique. Technometrics, 31(3):321–338,
1989.

[36] Arthur B Yeh, Richard N Mcgrath, Mark A Sembower, and Qi Shen. Ewma control charts
for monitoring high-yield processes based on non-transformed observations. International
Journal of Production Research, 46(20):5679–5699, 2008.

[37] Qin Zhou, Changliang Zou, Zhaojun Wang, and Wei Jiang. Likelihood-based ewma charts
for monitoring poisson count data with time-varying sample sizes. Journal of the American
Statistical Association, 107(499):1049–1062, 2012.

45



Appendix 1

Upward Shift

CostDi f f erence(x) = 0

−z×

(
e−λ1×λx

1
x!

)
+

(
e−λ2×λx

2
x!

)
= 0 combining the two fractions→

−z× e−λ1×λx
1 + e−λ2×λx

2
x!

= 0 equaling the numerator to zero→

−z× e−λ1×λx
1 + e−λx

2×λx
2 = 0 setting the base to ”e”→

−eln(z)× e−λ1× (eln(λ1))x + e−λ2× (eln(λ2))x = 0

−eln(z)× e−λ1× ex×ln(λ1)+ e−λ2× ex×ln(λ2) = 0

−eln(z)−λ1+x×ln(λ1)+ e−λ2+x×ln(λ2) = 0

e−λ2+x×ln(λ2) = eln(z)−λ1+x×ln(λ1) taking the natural log of the two sides→

−λ2 + x× ln(λ2) = ln(z)−λ1 + x× ln(λ1)

X =
ln(z)+λ2−λ1

ln(λ2)− ln(λ1)
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Appendix 2

Downward Shift

CostDi f f erence(x) = 0

−z×

(
e−λ1×λx

1
x!

)
+

(
e−λ2×λx

2
x!

)
= 0 combining the two fractions→

−z× e−λ1×λx
1 + e−λ2×λx

2
x!

= 0 equaling the numerator to zero→

−z× e−λ1×λx
1 + e−λx

2×λx
2 = 0 setting the base to ”e”→

−eln(z)× e−λ1× (eln(λ1))x + e−λ2× (eln(λ2))x = 0

−eln(z)× e−λ1× ex×ln(λ1)+ e−λ2× ex×ln(λ2) = 0

−eln(z)−λ1+x×ln(λ1)+ e−λ2+x×ln(λ2) = 0

e−λ2+x×ln(λ2) = eln(z)−λ1+x×ln(λ1) taking the natural log of the two sides→

−λ2 + x× ln(λ2) = ln(z)−λ1 + x× ln(λ1)

X =
λ1−λ2− ln(z)
ln(λ1)− ln(λ2)
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Appendix 3

Geometric

CostDi f f erence(x) = 0

−z× p1(1− p1)
x + p2(1− p2)

x = 0

z× p1(1− p1)
x = p2(1− p2)

x taking the ”x” to one side of the equality→

z× p1

p2
=
(1− p2

1− p1

)x taking the natural log of the two sides→

ln(
z× p1

p2
) = x× ln(

1− p2

1− p1
)

x =
ln(

z× p1

p2
)

ln(
1− p2

1− p1
)

x =
ln(z)+ ln(p1)− ln(p2)

ln(1− p2)− ln(1− p1)
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Appendix 4

Negative Binomial

CostDi f f erence(x) = 0

−z×
(x−1

r−1

)
pr

1(1− p1)
x−r +

(x−1
r−1

)
pr

2(1− p2)
x−r = 0

z×
(x−1

r−1

)
pr

1(1− p1)
x−r =

(x−1
r−1

)
pr

2(1− p2)
x−r canceling the combination and taking the ”x”

to one side of the equality→

z× (
p1

p2
)r = (

1− p2

1− p1
)x−r

z× (
p1

p2
)r× (

1− p2

1− p1
)r = (

1− p2

1− p1
)x taking the natural log of the two sides→

ln(z× (
p1

p2
)r× (

1− p2

1− p1
)r) = x× ln(

1− p2

1− p1
)

x =
ln(z× (

p1

p2
)r× (

1− p2

1− p1
)r)

ln(
1− p2

1− p1
)

x =
ln
(

z×
(

p1(1− p2)

p2(1− p1)

)r)
ln(

1− p2

1− p1
)

x =
ln(z)+ r×

(
ln(p1)− ln(p2)+ ln(1− p2)− ln(1− p1)

)
ln(1− p2)− ln(1− p1)
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