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ABSTRACT 

Genetic selections currently utilized in the poultry industry have been highly successful in 

promoting broiler growth rate and yield.  However, these selections may have come at the expense of 

broiler physiology, as evidenced by an increase in physiological disorders.  To address this 

experimentation was undergone to develop a novel method of selection to promote growth with minimal 

physiological impact and to assess how a new embryonic technique affects growth in broiler lines 

exhibiting different growth rates.  

In the first experiment, a random bred control (RAN) broiler line was divergently selected for four-

day relative breast yield (BY4) resulting in the high (HBY4) and low (LBY4) BY4 lines.  Selection resulted 

in clear divergence in BY4 of the HBY4 and LBY4 lines over four generations. This was made possible by 

the high heritabilities calculated for breast weight relative to live weight in both the HBY4 and LBY4 lines. 

Furthermore, BY4 selections were capable of impacting embryonic development. 

In the second experiment, multiple hatches were obtained from selected generation three broiler 

breeders from the HBY4, LBY4 and unselected RAN lines.  Hatches were used to examine correlated 

responses to selection during a traditional growout period.  Results indicate that selection for BY4 was 

capable of promoting breast percentage at processing age with the HBY4 having a greater breast yield 

than the LBY4 at 42 and 56 days of age. Furthermore, this change occurred at minimal expense to broiler 

fitness and with no impact on broiler meat quality at processing age. 

In the third experiment, the effects of thermal manipulation (TM) on broiler embryos from two 

broiler strains expressing differing rates of growth. TM was effective in promoting early growth in both 

strains compared to their control counterparts, but post Day 35 no difference in body weight was shown 

between TM and CTRL strains.  However, at Day 42 differences in breast percentage between TM and 

CTRL strains approached significance with TM strains having a greater breast percentage than their 

CTRL counterparts at 60 days of age.  The improved body composition was not accompanied by changes 

in meat quality parameters between CTRL and TM broilers. Results indicate that TM can be used to 

improve body composition without impacting meat quality. 
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INTRODUCTION 

The purpose of this research was to develop and evaluate novel methods of selection intended to 

promote broiler growth, while minimalizing potential negative impacts on broiler physiology and meat 

quality.  To that end this dissertation covers the development of the four-day relative breast yield (BY4) 

lines, the evaluation of correlated response(s) to BY4 both embryonically and posthatch, as well as the 

evaluation of thermal manipulation on lines exhibiting different  growth rates.  These topics were chosen 

for inclusion as both techniques represent novel methods of growth promotion and focus on impacting 

early growth leading to improved broiler performance throughout growout. 
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1. Literature Review 

The purpose of this research is to develop and evaluate novel methods of selection intended to 

promote broiler growth, while minimalizing potential negative impacts on broiler physiology and meat 

quality.  To that end this dissertation covers the development of the four-day relative breast yield (BY4) 

lines, the evaluation of correlated response(s) to divergent selection for BY4 both embryonically and 

posthatch, as well as the evaluation of thermal manipulation on lines exhibiting different  growth rates.  

These topics were chosen for inclusion as both techniques represent novel methods of growth promotion 

and focus on impacting early growth leading to improved broiler performance throughout growout. 

Industry 

 The poultry industry has applied several basic genetic principles to increase the pace of genetic 

advancements (Anthony, 1998). These principles include the use of highly heritable traits, quick 

generational turnover, large family size, and high selection pressure (Anthony, 1998).  Increased 

production became necessary as the development of value added products resulted in increased demand 

for meat production.  To meet these demands, poultry geneticists focused on creating a chicken that 

would grow quickly and efficiently.  Growth rate was the first trait identified for selection, as not only is it 

economically important; it is also highly heritable and can be improved quickly via selection (Emmerson, 

1997).   Additional production traits also chosen for selection include breast yield and feed conversion 

ratio.  These traits maximize the profitability of the broiler, by increasing the yield of the breast offering 

maximum return while decreasing the amount of input (feed) needed for growth. 

Currently in the United States, three companies dominate the broiler poultry breeding industry. 

These companies, known as Broiler Primary Breeder Companies (BPBC), are Cobb-Vantress, Aviagen, 

and Hubbard.  Depending on the company size and philosophy, a BPBC may maintain between six to 30 

resource populations (Pollock, 1999).  These companies operate in a pyramidal structure (Emmerson, 

1997), allowing for a small number of pedigree individuals (0.4 million) to be multiplied into an eventual 

400,000 million broilers (Pollock, 1999).  Selection and any permanent genetic advances occur at the 

pedigree level. 
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Separate male and female lines comprise the pedigree structure.  Male lines are selected for multiple 

highly heritable traits including age to market weight, body weight at a given age, yield and feed 

conversion (Anthony, 1998).  Female lines are primarily selected for reproductive traits, such as egg 

production, fertility and hatchability, and secondarily selection for growth and confirmation (Anthony, 

1998).  The top individuals from the pedigree populations are selected for breeding the next pedigree 

generation while the remaining pedigree individuals are relegated to the Great Grandparent (GGP) 

population, as shown in figure 1.  Little selection occurs past the pedigree level and broiler breeders 

below the pedigree level (GGP, GP, P) are tasked with reproducing to obtain the projected number of 

broilers for slaughter.    

Growth Selections 

Growth selections currently practiced by the poultry industry today rely mainly on postnatal growth, or 

an increase of muscle mass resulting from increased muscle fiber size through hypertrophy (Rehfeldt et 

al., 2004).  Hooper et al. (1973) also found that selection for increased body weight results in similar 

changes in muscle mass.  Muscle mass is dependent upon three characteristics: muscle fiber size and 

number and to a lesser degree the extracellular matrix (Brown and Stickland, 1994).  While selection for 

growth rate and yield remain economically viable, it has been suggested that muscle fiber size may hit a 

biological limit, at which metabolic processes may be compromised (Mahon, 1999). Concurrent with 

selection for increased growth rate and yield there has been a rise in physiological disorders.  In broilers, 

these disorders are often related to increased metabolism and rapid growth rate resulting in failure of 

body systems due to increased demand being placed upon these body systems (Julian, 2005).    

Common examples of these disorders include ascites, (Julian, 1987; Wideman et al., 1996, 1997; Pavlidis 

et al., 2007) sudden death syndrome (SDS) (Jackson et al., 1972; Volk et al., 1974; Julian, 1996) and 

tibial dyschondroplasia (Farquharson and Jefferies, 2000). For a review see Julian, 2005. 

Two more recent muscle abnormalities are of particular interest to current research. White striping, 

described as white striations running parallel to muscle fibers in the pectoralis major and first described 

by Bauermeister and colleagues (2009) and wooden breast, described as a pale area of the pectoralis 

major with increased firmness in comparison to unaffected breast tissue (Sihvo et al., 2013).   Both 
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conditions are seen in heavier weight broiler lines selected for increased breast percentage and are 

thought to arise from a growth rate exceeding physiological sustainability as evidenced by increased 

myodegeneration and muscle damage (Wilson, 1990; Mahon, 1999).  These abnormalities have been 

observed separately or in unison in modern broilers (Mudalal et al., 2014). 

Regardless of whether seen separately or together in breast tissue, both conditions are seen as 

defects and subsequently downgraded. Downgrading relegates the meat to further processing, which 

negates appearance issues but it has been shown that white striping (Petracci et al., 2013) and wooden 

breast  both result in decreased meat quality (Mudalal et al., 2014).  Notably meat expressing one or both 

of these defects exhibit decreased water retention, and poor cooking and processing yields further 

impacting broiler production profits (Mudalal et al., 2014).  As both traits are viewed as arising due to 

increased growth rate and breast yield they provide further impetus into research exploring growth 

selections that rely on methods of muscle growth other than hypertrophy. 

Hypertrophy is the process of muscle growth through an expansion in muscle fiber size.  Muscle fiber 

hypertrophy occurs during the postnatal period and is made possible by the proliferation and 

incorporation of satellite cell nuclei (Rehfeldt et al., 2004). Satellite cell proliferation is of particular 

importance as fully differentiated muscle fibers do not divide, and muscle growth relies on a balance 

between precursor cell proliferation and differentiation into myocytes and muscle fiber (Brand-Saberi and 

Christ, 1999).  

In general, for a muscle to grow, it must continually accumulate additional nuclei, which will support 

the accretion of more muscle protein (Halevy et al., 2006). Muscle growth is based on the concept of 

nuclear domain size (cytoplasmic volume per nucleus), in which a single myonucleus in a multinucleated 

myofiber governs the surrounding cytoplasm (Mozdziak et al., 1997).  The additional nuclei needed for 

increases in muscle fiber diameter and length come from satellite cells (Goldspink, 2004).  The use of 

satellite cells in adult muscle growth explains why satellite cells may also be referred to as “adult 

myoblasts”.    

Hyperplasia is the growth of muscle via an increase in muscle cell number.  Muscle fiber hyperplasia 

occurs almost entirely during gestation, but has been evidenced to occur after birth in some species 
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(rodents, swine, chickens) (Rehfeldt et al., 2004).  Hyperplasia is crucial to postnatal growth, as there 

appears to be a physiological limit to the size of muscle fibers (Rehfeldt et al., 2004).  Researchers have 

shown a negative correlation between postnatal muscle fiber hypertrophy and muscle fiber number 

(Rehfeldt et al., 2000).  This relationship also forms the basis for lean growth, as lean growth depends on 

prenatal increases in muscle fiber number and the subsequent hypertrophy of the available muscle fibers 

(Rehfeldt et al., 2004). Lean growth is a desirable trait, as it is associated with improved meat quality.  

Increased muscle fiber number and moderate cell size have also shown a correlation between increased 

meat yield and quality (Rehfeldt et al., 2004).   

In order to continue making selection progress in body weight and yield, novel methods of selection 

should be considered. To that end current research has focused on selection for relative breast yield at 

four-days posthatch and is viewed as a new opportunity to promote growth.  As the time needed for a 

broiler to reach market weight decreases, the percentage of lifespan the bird spends in embryogenesis 

increased (Halevy et al., 2006).  This prenatal period is also a time in which, almost all increases in 

muscle cell number will occur (Rehfeldt et al., 2004). It is hoped that through selection for BY4 this period 

may be impacted, thus utilizing this period of development to promote growth. 

Muscle Development 

 Muscle development begins in the early stages of embryogenesis.  It is during this prenatal period 

that muscle fiber formation occurs and is also the primary time for muscle growth via hyperplasia.  The 

growth of these muscle fibers is most likely a maternal factor as the increase in fiber number occurs 

almost entirely prenatally (Rehfeldt et al., 2004).   The potential for lean growth postnatally is dependent 

on the prenatal muscle fiber formation, as future growth in muscle via hypertrophy, or the increase in cell 

size, is limited by a combination of genetics, nutrition, and physiology (Rehfeldt et al., 2004).  Therefore, 

understanding how muscle fiber formation occurs (myogenesis) is a crucial part of livestock development 

and growth selections. 

    Muscle fiber development occurs in two initial waves and then a third wave further along in prenatal 

development. This process is initiated by the presence of the proper mixture of promoter/depressor 

signaling.  The first wave of myogenesis involves the formation of primary muscle fibers resulting from the 
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proliferation and differentiation of embryonic myoblasts (Harris et al., 1989).  The second wave of 

myogenesis involves the proliferation and differentiation of fetal myoblasts, which fuse to form secondary 

muscle fibers.  The sites of secondary muscle fiber formation are dependent on primary muscle fiber 

formation, as the primary muscle provides support for secondary fiber formation and attachment (Kelly 

and Zacks, 1969; Duxson and Usson, 1989).  The third and final wave, which is relatively distinct from the 

other two waves, involves the proliferation, but not differentiation of satellite cells.  These satellite cells, 

also called adult myoblasts are involved in muscle hypertrophy and regeneration (Mauro, 1961).  All three 

myoblast classes play important roles in myogenesis. 

Primary Muscle Fiber  

 As stated previously, primary muscle fibers provide a framework for secondary muscle fiber 

formation.  The different fiber types can be identified by either histology or based on adenosine 

triphosphate activity, as in an example using swine (Stickland, 1995). Primary muscle fibers will react as 

slow twitch fibers, with secondary fibers being fast twitch (Stickland, 1995).  Around these primary muscle 

fibers, upwards of 20 secondary muscle fibers will form (Wigmore and Stickland, 1983). In research done 

using swine (Wigmore and Stickland, 1983; Dwyer and Stickland, 1991), primary fiber number was shown 

to be relatively fixed in an animal, thus more indicative of that animals genotype for meat production 

(Stickland, 1995).  The secondary fiber still plays a significant role in meat production as it appears to be 

more responsive to nutrition, but primary muscle fiber is the determining factor. 

Secondary Muscle Fiber 

 Secondary fibers form on the surface of primary fibers (Kelly and Zacks, 1969; Duxson and 

Usson, 1989).  The number of primary fibers formed is relatively unaffected by environmental factors, 

such as underfeeding.  Research has established that primary fiber number is difficult to manipulate 

through changes in intrauterine environment (Russel and Oteruelo, 1981; Du et al., 2009). Secondary 

fibers, unlike primary fibers, are susceptible to many environmental factors that permanently affect 

secondary fibers (Dwyer et al., 1994).   
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In swine, variation in piglet birth weights in litters has been attributed to utero undernutrition 

(Wigmore and Stickland, 1983; Handel and Stickland, 1987).  This variation is a product of decreased 

secondary muscle fiber number, caused by malnutrition.  In a study done examining maternal feed intake 

and litter birth weights in swine, primary muscle fiber number was not affected, but secondary muscle 

fiber was affected.  The study demonstrated that a 30 day increased feed prior to muscle fiber 

hyperplasia increased secondary fiber number 9 to 13% (Dwyer et al., 1994).    

Myoblasts 

     Myoblasts, also known as muscle fibers, originate from myogenic precursor cells, which come 

from the mesodermal layer (Rehfeldt et al., 2004).  Specifically, myoblasts are formed by mitotic division 

of mesodermic somites (Lawrence and Fowler, 2002).  They are derived from the dermomyotome, 

located in the dorsal somite between the neural tube and somatopleural mesoderm, but beneath the 

ectoderm (Christ and Brand-Saberi, 2002).  The somite forms in halves:  the medial half forming as part of 

Henson’s node, and the lateral half originating from a region in the primitive streak (Selleck and Stern, 

1991).   

    The first fibers appear in the rostral somite, in an area referred to as the myotome (Holtzer et al., 1957; 

Stockdale, 1992).  Research has shown that muscle development is attributable to several myogenic 

populations: embryonic, fetal and adult myoblasts (Cossu and Molinaro, 1987; Stockdale, 1992).  It is 

from the embryonic myoblasts that the primary muscle fibers, which form a base for future muscle growth, 

of the limb bud of birds and mammals, derive (Stockdale, 1992).    

Embryonic Myoblasts 

Embryonic myoblasts numbers peak at Day 5 of embryonic development (E5) (Stockdale, 1992).  

Within this period there are three embryonic subtypes based on myosin heavy chain (MHC) (Miller and 

Stockdale, 1986).  The two primary types express (1) a fast MHC isoform and a slow MHC1 and (2) slow 

MHC1 and slow MHC3 (Page et al., 1992).  These embryonic myoblasts will make up the primary muscle 

fibers of the limb bud that first form in dorsal and ventral muscle masses (Stockdale, 1992).  This process 

is accomplished by the fusion of myoblasts together, resulting in the formation of myotubes (Lawrence 
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and Fowler, 2002).  These myotubes form myofibrils through the synthesis of myosin and actin (Lawrence 

and Fowler, 2002).  Primary fibers will go on to provide the support structure for secondary muscle fibers 

(Wigmore and Evans, 2002). 

Fetal Myoblasts 

The fetal period of avian development is noted for the change in the primary myoblast type 

isolated in muscle-forming regions of the limb; changing from embryonic myoblasts to fetal myoblasts 

(Stockdale, 1992).  Fetal myoblasts express several sarcomeric proteins and are capable of forming long, 

mutli-nucleated fibers (Stockdale, 1992).  Fibers formed from fetal myoblasts express MHC classes 

different than those from embryonic myoblasts (Cerny and Bandman, 1986; Vivarelli et al., 1988).  Fetal 

myoblasts also differ from embryonic myoblasts in desmin expression and surface antigens (Kaufman et 

al., 1991). 

As secondary fibers increase in fetal muscle, fetal myoblasts become the primary myoblast 

isolated (Stockdale, 1992). As fetal myoblasts are the primary myoblast collected during secondary fiber 

formation, they are seen as the progenitor of secondary muscle fibers. Secondary myotubes arise at sites 

of innervation in primary myotubes (Stockdale, 1992).  Once embryonic differentiation is completed no 

further muscle cell division occurs and future muscle growth is dependent on adult myoblasts (Goldspink, 

2004). 

Adult Myoblasts 

Adult myoblasts were originally termed satellite cells based on their location near muscle fibers 

(Mauro, 1961).  Adult myoblasts can be isolated in the sublaminar membrane surrounding myofibers 

around E16 to E18 days of development (Feldman and Stockdale, 1992; Hartley et al., 1992).  Adult 

myoblasts differ from fetal myoblast in several ways including, but not limited to size, MHC expression 

and type of regenerated fibers they form in muscle (Cossu et al., 1985; Hoh and Hughes, 1988, 1991; 

Feldman and Stockdale, 1990, 1992; Hartley et al., 1991, 1992; Yao et al., 1992). Adult myoblasts are 

also the only myoblast isolated at the time of hatch (Feldman and Stockdale, 1992; Hartley et al., 1992).  

They are vital to postnatal growth, as they are the only source of new fiber formation and fiber growth.  
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Thermal Manipulations 

Genetic selection for improved growth rate, meat yield and feed efficiency has reduced the 

number of days to processing. This coupled with advances in incubation, have led to the incubation 

period being an increasingly larger proportion of the broiler life cycle (Havenstein et al., 2003; Wolanksi et 

al., 2004).  Therefore, several studies have focused on utilizing the embryonic growth period as a way to 

promote performance gains in postnatal growth.  Before delving into how differing incubation factors may 

be used to promote postnatal growth, it is important to understand the basic mechanics of avian 

incubation. 

Incubation 

Chicken eggs incubate for just over 21 days.  During this time, the embryo is provided all 

necessary nutrition in ovo and develops under the care of the hen.  The hen is responsible for the turning 

of the eggs, as well as all environmental conditions present in the nest, such as temperature and airflow.  

These factors are influenced by the nest building capability of the hen, as well as the attentiveness of the 

hen (Huggins, 1941; Freeman and Vince, 1974).  

As the poultry industry developed and grew, poultry production moved away from backyard flocks 

toward an industrial level of production. At this point the brooding hen was replaced by still-air incubators, 

followed by forced draught incubators (Molenaar et al., 2010).  As the industry grew, incubation 

technology progressed to large multi-stage incubators, in which eggs of multiple setting dates were 

incubated.  In the late nineties, multi-stage technology was replaced by single-stage incubators utilizing 

an all-in, all-out policy.  This shift began when research showed that multi-stage incubators failed to meet 

many requirements of the embryo and thus negatively impacted hatchability (Hill, 2000).  Single-stage 

incubators are now the industry standard, as they allow for the control of multiple environmental 

conditions such as temperature, relative humidity and carbon dioxide (CO2) concentration (French, 1997; 

Bennett, 2010). These conditions are among some of the most important factors to consider during 

incubation. 
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Incubation Temperature 

Multiple sources agree that the temperature is the number one factor to regulate in avian 

incubation (Freeman and Vince, 1974; Decuypere and Michels, 1992; Meijerhof, 2000, 2009). In nature, 

the embryo is capable of managing its body temperature by redistributing its blood flow depending on 

various temperatures affecting the eggshell.   During artificial incubation, the embryo is largely unable to 

manage its temperature by redistributing blood flow as it is surrounded by air of the same temperature 

(Molenaar et al., 2010).  Therefore, incubators must be set at 37.8 °C, which has been shown to 

maximize chick quality and hatchability (Barott, 1937). This temperature has been industry practice for 

some time as close regulation minimizes possible negative effects temperature may have on 

development, hatchability, chick quality and postnatal growth (Krausova and Peterka, 2007).  

  Egg temperatures being influenced by incubator environment have been shown to be 1.0°C to 

1.5°C greater than incubation temperature (Leksrisompong et al., 2007).  Given that measuring embryo 

temperature is difficult and often destructive, embryo temperature is usually determined by taking the egg 

shell temperature, which deviates no more than 0.1°C to 0.2°C from actual embryo temperature 

(Meijerhof and Van Beek, 1993; French, 1997). In addition to incubation temperature, embryonic heat 

production is a major influence on embryo temperature.   

Embryonic Heat Production 

Factors influencing embryonic heat production are age of the breeder flock, egg size and 

incubation stage (Tona et al., 2004; Lourens et al., 2006; Hamidu et al., 2007; Meijerhof, 2009).  As 

breeder flocks age, the amount of heat production in eggs from the flock increases (O’Dea et al., 2004, 

Lourens et al., 2006).  Egg size is also influential, as larger eggs and thus larger embryos result in 

increased heat production. The most important factor in heat production is incubation stage (Meijerhof, 

2009).  Starting around E9, embryonic heat production begins to exceed heat loss and incubator 

temperature has to be gradually decreased to regulate eggshell temperature (Romijn and Lokhorst, 1960; 

Lourens et al., 2005, 2006; Yahav et al., 2009).      
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Relative Humidity and CO2 Concentration 

Relative humidity (RH) is a significant factor in heat transfer from the incubator to the embryo.  If 

heat is transferring more efficiently, then it helps to minimize variation in the incubator microenvironment.  

Humid air is more effective for heat transfer than dry air, and the poultry industry capitalizes on RH to 

create a more uniform environment (Molenaar et al., 2010).  A RH of 50% promotes maximum 

hatchability (Robertson, 1961), but a RH ranging from 40 to 70% still may be considered optimal (Lundy, 

1969).  In a study conducted to determine the effects of relative humidity on body weight, hatchability and 

associated traits, a RH of 53% resulted in the highest hatchability, and a RH of 63% resulted in increased 

late term mortality (E18 to E21) (Bruzual et al., 2000).  A significant effect was shown in hatching body 

weight, but this difference was not present when birds were pulled from the machine.  Researchers 

postulated that the increase in hatching weight was additional water weight and that RH affects 

hatchability, but not chick weight. 

CO2 concentration increases during incubation due to the increased respiration throughout 

embryonic development.  During early incubation embryos can survive CO2 concentrations up to 5% 

(Taylor & Kreutziger, 1965). During late incubation, a CO2 concentration of 5.6% encourages chicks to 

pip the air cell and begin hatching (Romijn and Roos, 1938; Visschedijk, 1968).  These findings 

demonstrate that CO2 concentration is a major factor in hatchability, but how CO2 concentration affects 

chick quality is still unclear. 

Enhancing Postnatal Development 

Poultry consumption has greatly increased worldwide and is currently the world’s most widely 

consumed source of animal protein.  Obtaining the top spot in animal proteins was made by possible by 

advances in genetics, nutrition, environment, and rearing.  The genetic gains utilized selections that 

occurred in the postnatal period.  While postnatal growth is the primary contributor to a broiler’s growth 

curve, the incubation period represents a significant portion of a broilers life.  By controlling different 

environmental variables during incubation, postnatal growth may be positively or negatively impacted by 

the prenatal environment.  This was the initial theory behind the introduction of thermal manipulations 

(TM) during incubation. 
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Thermotolerance 

A negative byproduct of increased growth rate is that many broilers exhibit poor heat tolerance.  

Birds are homeotherms and must maintain their body temperature in a narrow window. Increasing or 

failing to meet this window may result in a potentially fatal cascade of thermoregulatory events.  It was 

theorized that by increasing incubation temperature to a certain degree and manipulating the time period 

of increased incubation temperature, a long-lasting epigenetic change via an alteration in the 

hypothalamic threshold would occur (Uni and Yahav, 2010). Improved thermotolerance would reduce 

heat-related morbidity and mortality. 

While the optimum combination of temperature, and time duration has yet to be determined, it 

has been shown that a short TM is all that is necessary to improve thermotolerance (Holland et al., 1997). 

While TMs of greater duration may negatively affect embryo morphology (Kaplan et al., 1978).  The goal 

is to find the right period in which to influence the development of the hypothalamus-hypophysis-thyroid 

axis (HHTA), and the hypothalamus-hypophysis-adrenal axis (HHAA) (Uni and Yahav, 2010).  TMs were 

tested on E8 and E12 based on the development, maturation and function of HHTA and HHAA (Uni and 

Yahav, 2010).  Multiple studies have been conducted at various ages and temperatures throughout this 

period (E8 to E18) (Yahav et al., 2004a;b). TMs during mid (E8 to E10) and late embryogenesis (E16 to 

E18) failed to improve long term thermotolerance (Collin et al., 2007; Tona et al., 2008). Testing of TMs at 

39.5º C and 65% relative humidity from Day 7 to Day 16 of embryogenesis for 12 hours per day, showed 

improved thermotolerance without negatively impacting the growth performance of caged broilers (Loyau 

et al., 2013). Improvement in thermotolerance was demonstrated by lower body temperature prior to 

slaughter (Piestun et al., 2008; 2009).   

Growth Rate 

Postnatal muscle growth typically involves the formation of additional nuclei to increase the 

buildup of muscle protein (Halevy et al., 2006).  This is for two reasons: (1) differentiated muscle cells do 

not undergo cell division and (2) nuclear domain size, where a myonucleus in a myofiber governs a 

specific area of cytoplasm (Mozdziak et al., 1997).  TMs from E16-E18 are believed to promote growth as 

they are targeting a critical period in satellite cell population expansion (Hartley et al., 1992).  TMs for 
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three hours during this time at either 38.5°C or 39.5°C increased breast yield and body weight up to 42 

days of age (Halevy et al., 2006; Collin et al., 2007). 

To verify that this promoter effect held true throughout even an extended grow-out period, Piestun 

et al. (2013) conducted a study.  Among the variables examined were body weight, feed intake, feed 

conversion ratio (FCR), breast muscle yield and abdominal fat (Piestun et al., 2013).  Piestun et al. (2013) 

utilized a TM of 39.5°C and a 65% RH for 12 h/d from E7 to E16, incubation past this point and hatching 

occurred under standard incubation conditions. 

The results of this study may prove to be influential. The TM populations had a decreased hatch 

window time but showed a three percent decrease in hatchability (86% < 89%) (Piestun et al., 2013).  In 

males, there was no significant difference in body weight at hatch or during the growth period between 

TM and control population males, but feed intake was lower in the TM males (Piestun et al., 2013).  TM 

females exhibited a lower weight at hatch and growout, but had a 0.1 improvement in FCR due to having 

a lower feed intake (Piestun et al., 2013).  TM males also had a lower feed intake and a 0.08 decrease in 

FCR (Piestun et al., 2013). Decreased feed intake and improved FCR are of high economic value to the 

poultry industry.  Additionally, researchers observed a significant increase in percent breast yield in TM 

populations regardless of sex, decreased fat pad in TM males compared to control males and no 

significant effect on fat pad in females (Piestun et al., 2013).   

The increased breast yield is likely an effect of muscle cell hypertrophy, due to increased satellite 

cell proliferation.  This theory is supported by a previous study that showed higher levels of hypertrophy in 

broilers subjected to TMs in ovo (Piestun et al., 2011).  These benefits are of major economic benefit.  A 

1% increase in breast yield amounts to at least 39 additional grams of breast yield, worth $1.07 billion 

(Piestun et al., 2013).  While a 0.1 improvement in FCR in an 8.6 billion broiler population would save 

roughly 225 grams of feed per bird, thus $553 million in savings (Piestun et al., 2013). Selections to 

improve hatchability at 39.5°C would allow TMs to be used efficiently, resulting in major economic benefit 

to the industry. 
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Muscle Fiber Number 

Muscle mass is a combination of muscle fiber number and muscle fiber size (Stickland and 

Dwyer, 1996).  Of these two, muscle fiber number is the primary determinant of muscle mass (Miller et al., 

1975). The number of fibers varies less than muscle fiber size, as factors such as exercise and nutrition 

may affect muscle fiber size, but will not influence fiber number (Stickland et al., 1975; Goldspink and 

Ward, 1979).  Fiber number is unaffected as it determined prior to hatch and is thought to be indicative of 

an animal’s future performance.  In addition to being a decisive factor in post-natal skeletal muscle 

growth, fiber number has a significant effect on the animal’s meat quality.  Research focused on 

increasing hyperplasia, may uncover ways to improve both yield and quality. 

Swine studies show that the muscle growth potential of an individual is largely determined by total 

fiber number, which is essentially fixed at birth (Stickland and Handel, 1986; Rehfeldt et al., 1987, 2000).  

This limit to growth potential is due to an inverse relationship between muscle fiber number and the 

growth of muscle fibers. Hypertrophy occurs faster when muscle fiber number is lower, than when fiber 

number is higher (Rehfeldt et al., 2000).  This relationship has been observed in multiple species (Staun, 

1972; Osterc, 1974; Locniskar et al., 1980; Fiedler et al., 1997; Larzul et al., 1997). While fiber number is 

a primary factor in muscle mass, hypertrophy can be promoted by selection (Rehfeldt et al., 2004) and 

through TM due to decreased body temperatures exhibited by TM broilers (Piestun et al., 2008; 2009), 

and thus lower maintenance energy requirements.    

Growth Selections and Fiber Characteristics  

 Poultry selection has targeted total breast yield (pectoralis and supracoracoideus) as these 

muscles are of the highest economic importance to poultry producers (Velleman and McFarland, 2014).  

While selection has mainly targeted muscle growth via hyperplasia, selection for growth has resulted in 

faster-growing strains that exhibit higher numbers of muscle fibers than other strains of the same species 

(Ezekwe and Martin, 1975; Miller et al., 1975).  In addition faster-growing lines, for example, geese 

selected for meat yield, show increased muscle fiber size compared to birds selected for egg production 

(Klosowska et al., 1993). This trend holds true for other avian species, i.e. meat-type chicken fiber size in 

comparison to layer chickens.   
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Growth Characteristics 

Considerable effort has been put into studying the effect of muscle fiber size and number on 

growth and other correlated responses.   In swine, piglet weight and its relationship to growth and muscle 

fiber characteristics have been of particular interest.  Previous research has shown that smaller piglets 

form a lower number of muscle fibers during prenatal development as compared to heavier littermates 

(Wigmore and Stickland, 1983; Handel and Stickland, 1987; Gondret et al., 2006).  Low weight (LW) 

piglets exhibit higher percentages of internal organs, bones and skin, and a smaller percentage of muscle 

tissue when compared to heavy weight (HW) piglets (Rehfeldt and Kuhn, 2006).  Extending this trend into 

poultry means LW chicks would produce proportionally more offal and yield proportionally less meat.   

Lower numbers of muscle fibers results in decreased performance in various economic traits 

associated with animal production such as yield or fat percentage.  LW pigs have lower lean meat 

content, higher fat percentage, and an increased FCR as compared to the average or heavier pigs 

(Rehfeldt and Kuhn, 2006). Faster-growing strains of pigs have an improved FCR with a decreased fat 

percentage when compared to slower-growing strains (Campbell and Taverner, 1988).  Low muscle fiber 

number has been cited as the cause, since it limits postnatal growth and resulting lean growth (Rehfeldt 

and Kuhn, 2006).  With nutritional energy no longer necessary for increased lean growth, it is funneled 

into fat accretion (Rehfeldt et al., 2008).  These small piglets will require more time to reach market weight 

than larger littermates (Wolter et al., 2002; Le Cozler et al., 2004).   

This trend has also been shown in poultry research comparing high and normal breast yield 

broilers (HBY and NBY) to leghorn chickens.  Both the HBY and NBY broilers showed a greater muscle 

fiber number than the leghorn chickens (Scheuermann et al., 2004). Furthermore, muscle fiber number 

had positive phenotypic correlations with body weight, breast weight and percentage breast relative to live 

weight, 0.58, 0.58 and 0.69, respectively (Scheuermann et al., 2004). Thus emphasizing the contribution 

of muscle fiber number to broiler growth and its potential commercial importance (Scheuermann et al., 

2004). Therefore, decreased muscle fiber number hurts producers by increasing the duration and cost of 

production. While increased muscle fiber number may decrease the duration and cost of production. 
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Meat Quality 

Growth selection in swine and other livestock species have resulted in improvements in average-

daily-gain (ADG), FCR, and lean meat content.  Unfortunately, these improvements have adversely 

affected stress response and meat quality (Fiedler et al., 2004).  In order to combat the downturn in meat 

quality while continuing to promote growth, it is important to consider variables that are positively related 

to both growth and meat quality (Lengerken et al., 1994; Ender et al., 2000).  Muscle fiber number is a 

trait that has been described previously in regards to morphological and physiological properties that 

affect muscle quality (Swatland, 1982,1992; Wicke et al., 1998; Fiedler et al., 1999).  Furthermore, the 

phenotypic relationship between muscle fiber number, muscle growth, stress and meat quality have been 

noted in several studies (Fiedler et al., 1993, 2003; Lengerken et al., 1994; Karlsson et al., 1999; Suzuki 

et al., 2003).   

LW piglets have a lower number of muscle fibers when compared to heavier littermates (Wigmore 

and Stickland, 1983; Rehfeldt and Kuhn, 2006).  At market weight, pigs identified as LW piglets, exhibit 

poor carcass quality; increased fat deposition, and decreased lean meat content (Hegarty and Allen, 

1978; Powell and Aberle, 1980,1981; Kuhn et al., 2002; Bee, 2004; Gondret et al., 2006; Rehfeldt and 

Kuhn, 2006).  Meat quality is also negatively impacted by low birth weight as both tenderness and water 

holding capacity are negatively affected (Gondret et al., 2005; 2006, Rehfeldt and Kuhn, 2006). 

LW pigs are thought to exhibit poor meat quality due to increased fiber hypertrophy and abnormal 

fiber hypertrophy (giant fibers), which are correlated with reduced pork quality (Fiedler et al., 2004).  Two 

generations of selection for increased muscle fiber size, resulted in a clear increase in muscle fiber size, 

decreased fiber number and resulted in decreased meat quality in swine (Fiedler, 1988).   

Commercial poultry strains selected for growth have also shown increased meat quality issues, 

notably deep pectoral myopathy (green muscle) (Wilson et al., 1990; Sosnicki and Wilson, 1991), white 

stripping (Bauermeister et al., 2009; Kuttappan et al., 2012), and Pale, Soft, Exudative (PSE) and Dry, 

Firm, Dark (DFD).  PSE is characterized by pale, soft almost gel-like meat, low pH with a poor WHC. DFD 

in contrast is dark in color, firm feel and increased pH (Allen et al., 1997, 1998; Wulf et al., 2002).  

Pectoralis tissue expressing white stripping has been shown to possess variable fiber size, mononuclear 
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cell proliferation, fibrosis, increased fat content and reduced protein content (Kuttapan et al., 2013).  

Traits similar to those seen in swine exhibiting low fiber number and reduced meat quality.  These issues 

become more severe as poultry develop, as evidenced by turkey research showing decreased 

endomysial and perimysial  (sources of blood flow and innervation, respectively) spacing at 8 weeks of 

age, leading to muscle degeneration and fragmentation by 20 weeks of age (Velleman et al., 2003).   

Selecting for Muscle Growth and Meat Quality 

In a study conducted by Fiedler et al. (2004) the concept of utilizing fiber characteristics was 

examined.  The study was a simulated selection study utilizing roughly 2,000 swine on which data was 

collected for three years. From this data, a heritability of 0.22 was calculated for body weight and 0.2 for 

fiber number (Fiedler et al., 2004).  Selection for live weight alone with 10 or 50% selection intensity 

provided a gain of 3.69 or 1.73 kg, respectively.  These selections had a slight negative effect on muscle 

quality; given multiple selections over time a significant negative effect may be expected. A variant of the 

live weight selection criteria that selected for increased live weight but also including the additional 

characteristics of fiber number, white fiber and giant fiber frequency, still promoted growth while improving 

meat quality (1.8, 1.05); (Fiedler et al., 2004). The inclusion of other meat quality characteristics into a 

selection criterion along with growth selections showed similar results (Fiedler et al., 2004).   

While growth is still a major selection factor in the animal industry, the importance of muscle 

quality has increased.  If meat quality criteria can be added to growth selections, an opportunity exists to 

improve meat quality at minimal cost to growth. Furthermore, since increased muscle fiber number is 

associated with improvements in ADG and FCR, there is potential to decrease costs of production.   

Muscle fiber number is a major determinant of body weight, skeletal muscle growth and muscle 

quality.  Finding ways to promote fiber number and fiber characteristics may prove to be beneficial to not 

only the poultry industry but also the animal industry as a whole.  Continued work designed to manipulate 

fiber number offers the opportunity to reduce both the cost and duration of animal production while 

continuing to promote growth and meat quality.  Proper introduction of these techniques into the poultry 

industry should result in improved FCR, increased growth and maintenance of optimal meat quality.  
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Improvements in these categories will allow the poultry industry to continue low cost, efficient production 

and maintain its place as a primary supplier of animal protein worldwide.   
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2. Divergent selection for relative breast yield at four-days posthatch and the effect on embryonic 
and early posthatch development 

Abstract 

 Genetic selections for growth promotion in poultry have been highly successful in improving 

growth, yield and feed conversion in the modern broiler.  These selections have focused on the use of 

hypertrophy, the increase of muscle fiber size to promote growth.  Muscle growth however is not limited to 

hypertrophy, but is largely attributable to both hypertrophy and hyperplasia. Hyperplasia being the 

increase of muscle fiber number, hyperplasia along with hypertrophy are the primary determinants of 

muscle size with a smaller contribution coming from satellite cells and the extracellular matrix.  As muscle 

fiber size has been theorized to reach an eventual physiological limit, it was determined to develop of 

novel method of selection focusing on hyperplasia.  Divergent selection for four-day relative breast yield 

(BY4) was chosen as it is believed to occur at point at which muscle cell number per gram is maximized 

and satellite cell activity is higher than later in life. 

 Pilot testing of two commercial pedigree populations showed large variation in relative breast 

yield at four days and heritabilities greater than 0.3, these results provided the confidence to proceed with 

divergent selection. Using a random bred control (RAN) population divergent selection was undergone for 

four-day relative breast yield. The two broiler lines divergently selected for BY4 are noted as the high and 

low BY4 lines, respectively (HBY4 and LBY4).  Heritability estimates for selection of four-day breast 

percentage in the upward and downward directions were 0.63 and 0.44 respectively.  Divergent selection 

resulted in clear divergence in BY4 and shows promise in utilizing BY4 to promote broiler growth and 

body composition. 

2.1 Introduction 

 The use of genetic selection in the animal industry, particularly the poultry industry has resulted in 

significant livestock improvement.  Improved performance has proven necessary as feed costs, which 

make up a significant portion of production costs, and product demand, continue to increase.  Therefore, 

selection that focuses on improving the economic efficiency of livestock, while minimalizing feed intake 

(Luiting, 1990) and increasing the overall growth of the animal is imperative.   
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Poultry breeding programs focus on promoting growth, feed efficiency, and increased yield (Rauw 

et al., 1998).  Growth-promoting selections are possible because growth traits exhibit moderate to high 

heritabilities (Emmerson, 1997) and often correlate with increased feed efficiency.  Poultry selections 

have been so successful that in a study comparing a 1957 broiler population to a 1991 broiler strain, 

modern broiler weights were 3.2 times greater than the 1957 broiler when both were fed a modern diet 

(Havenstein et al., 1994).  Growth and yield selections have resulted in a broiler reaching market weight 

at an earlier age.  This change is important, as the industry is primarily an age-for-weight market with 

slaughter being performed at a particular weight as opposed to at a given age (Emmerson, 1997).   

    Growth selections currently practiced by the industry rely mainly on postnatal growth, or an increase of 

muscle mass resulting from increased muscle fiber size or hypertrophy (Rehfeldt et al., 2004).  

Hypertrophy is only one component contributing to muscle mass, as hyperplasia (muscle fiber number) 

and to a smaller extent extracellular matrix also contribute (Brown and Stickland, 1994).  It has been 

suggested that the intense focus and duration of selection for muscle fiber size may soon lead to 

biological limits for muscle fiber size (Mahon, 1999).   

In order to continue making selection progress in body weight and yield, novel methods of 

selection should be considered. To that end current research has focused on selection for relative breast 

yield at four-days (BY4) posthatch and is viewed as a new opportunity to promote growth.  As the time 

needed for a broiler to reach market weight decreases, the percentage of lifespan the bird spends in 

embryogenesis increased (Halevy et al., 2006).  This prenatal period is also a time in which, almost all 

increases in muscle cell number will occur (Rehfeldt et al., 2004). 

Hyperplasia is the growth of muscle via an increase in muscle cell number.  Muscle fiber 

hyperplasia occurs almost entirely during gestation, but has been evidenced to occur briefly after birth in 

some species (rodents, swine, chickens) (Rehfeldt et al., 2004).  Researchers have shown an inverse 

correlation between postnatal muscle fiber hypertrophy and muscle fiber number (Rehfeldt et al., 2000).  

Growth may be maximized by utilizing a combination of fiber size and fiber number.   

It is important to understand that myogenesis i.e. muscle fiber formation and the subsequent 

hypertrophy of muscle fibers is dependent on three waves of development.  The first wave stems from the 



29 
 

proliferation and differentiation of embryonic myoblasts into primary muscle fibers.  Primary muscle fiber 

formation is crucial to muscle formation, as they provide a framework for secondary fiber attachment.  The 

secondary wave consists of the proliferation and differentiation of fetal myoblasts into secondary muscle 

fibers.  The third and final wave of myogenesis, the proliferation of satellite cells, is of particular interest to 

this research, as satellite cells are required for muscle hypertrophy and regeneration.  Satellite cells are 

the only myoblasts isolated at the time of hatch (Feldman and Stockdale, 1992; Hartley et al., 1992). 

It has been hypothesized that selection for BY4 will promote growth as it targets an age at which 

muscle cell number per gram is maximized (0 to 4 days posthatch) and a point at which satellite cell 

activity is much greater then later in life (Halevy et al., 2006). Therefore, it may be assumed that the 

relative breast yield of Day 4 chicks relies primarily on the muscle fiber number, as opposed to fiber size.  

Therefore, selection should result in increased fiber number at hatch, with an increase in available 

satellite cells thus promoting postnatal hypertrophy.  In addition, broilers selected for BY4 should exhibit 

improved growth characteristics and improved meat quality.   

Characteristics associated with lower meat quality, such as decreased tenderness and poor water 

holding capacity are observed at slaughter in animals with low birth weights (Gondret et al., 2005; 2006; 

Rehfeldt and Kuhn, 2006).   In swine animals with low birth weights form less skeletal muscle fibers, than 

larger littermates (Wigmore and Stickland, 1983; Handel and Stickland, 1987; Gondret et al., 2006).  Low 

fiber number may restrict postnatal growth and result in increased fat deposition (Rehfeldt and Kuhn, 

2006), which negatively affects meat quality. Furthermore, low fiber number has been related to extreme 

fiber hypertrophy, often resulting in giant fiber formation, known to correlate with reduced meat quality 

(Fiedler et al., 2004).  Therefore, selection resulting in increased fiber number should promote improved 

growth yield and meat quality.   

2.2 Materials and Methods 

Pilot Test 

Before undergoing full-scale implementation, two pilot studies were conducted with support from 

Cobb-Vantress. The two populations chosen for study were known to express differing growth rates and 

selection criteria.  These studies were utilized to determine the variation present in percentage breast 
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yield at Day 4, as well as to calculate the heritability of percentage breast at the same age.  Three 

hatches of fully pedigreed line A day-old chicks were obtained from a Cobb hatchery and transported to 

the University of Arkansas poultry research farm.  Line A was reared under typical broiler management 

conditions up to four days of age with 23 hours of light and 1 hour of dark.  Birds were provided feed and 

water ad libitum with a starter ration that was formulated to meet or exceed NRC (1994) minimum 

standards.  Feed was withdrawn from line A 12 hours prior to euthanasia and processing. Birds were then 

placed on trays, covered and refrigerated at 1°C for a minimum of three hours to promote the onset of 

rigor mortis.   Line B consisted of four hatches of fully pedigreed day-old chicks obtained from the same 

Cobb hatchery and transported to the University of Arkansas poultry research farm.  Line B was reared 

and processed according to the protocol used for line A.  After refrigeration, body weights were recorded, 

and researchers dissected birds from line A, and B.   Sex was determined by gonadal examination. 

Weights were obtained for the bone-in-breast, breast, tenders, keel and yolk sac. The weight values were 

then used to calculate the part yields relative to body weight.  The two studies revealed large variation in 

breast yield and body weight in both populations and provided high heritabilities thus giving confidence to 

proceed with selection. 

Initial Line Formation 

The base population for this study was developed in 1997 by crossing 7 male and 6 female lines 

at the University of Arkansas (RAN) (Harford et al., 2014). The population is randomly mated with the 

exception of sibling and half-sibling matings.  The population consists of 24 sire families with each family 

consisting of 1 sire and 3 dams.   In 2012, divergent selection for BY4 was begun using a sibling selection 

protocol similar to that previously described for ascites (Pavlidis et al., 2007) and muscle color (Harford et 

al., 2014).  Figure 2.1 provides a schematic for the development of the High Breast Yield (HBY4) and Low 

Breast Yield (LBY4) lines from the RAN.  To establish the research lines, four hatches were reared using 

standard industry practices.  Pedigree replacements derived from hatches 1 and 2.  Bird from hatch 1 and 

2 were provided ad libitum access to a starter ration that was formulated to meet or exceed NRC (1994) 

minimum standards up to 3 weeks of age.  Post 3 weeks of age, birds were sex separated, sample 
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weights obtained and placed on a feed and photoperiod restriction program to regulate growth and 

maximize adult reproductive efficiency.  Water was provided ad libitum throughout the rearing process. 

Hatches 3 and 4 were reared under typical broiler management conditions up to four days of age 

with 23 hours of light and 1 hour of dark. Birds were provided feed and water ad libitum with a starter 

ration that was formulated to meet or exceed NRC (1994) minimum standards. At four days of age, birds 

were prepared for processing. Feed was removed 12 hours prior to euthanasia, and all remaining crop 

contents surgically removed to minimize the confounding effects of crop contents on body weight. Birds 

were then placed on trays, covered and refrigerated at 1°C for a minimum of three hours to promote the 

onset of rigor mortis.  All birds were necropsied for the purpose of obtaining component weights.  

Incisions were made; skin retracted, and cuts were then made along the ribs and clavicle to allow 

extraction of the intact keel.  Upon removal of the keel, the yolk sac was removed and weighed. Sexing 

also occurred at this point through gonadal examination.  The breast and tenders removed from the keel 

and then weighed (0.001 g).  Relative values were calculated based on the part weight expressed as a 

percentage of live weight. 

Sire family selection was used to diverge the RAN line into the HBY4 and LBY4 lines.  Mean 

percentage breast yield was calculated for the original 24 sire families.  The 8 sire families with the 

greatest percentage breast yield became the HBY4 line, while the 8 sire families with the lowest 

percentage breast yield became the LBY4 line.  

Current Selection Techniques 

The current selection method and propagation of the breast growth lines, implemented with the 

addition of DMU and EBV’s, starting with Generation 2, is illustrated in Figure 2.2. Matings were 

performed by artificial insemination and pedigree information collected.  Each subsequent generation 

consisted of 4 pedigreed hatches.  Hatches 1 and 2 were grown under standard broiler breeder 

conditions as previously mentioned.  Birds were allowed ad libitum access to water and a broiler starter 

and grower feed formulated to meet or exceed NRC (1994) minimum standards.  At 3 weeks of age, birds 

were sex separated and placed on a feed and photoperiod restriction program to enhance reproductive 

performance.  Water was provided ad libitum during the course of feed restriction.   
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Birds from hatches 3 and 4 were necropsied as described for the initial line formation.  Data 

obtained were used to calculate the dam’s estimated breeding values (EBVs) via DMU (Madsen and 

Jensen, 2000).  Based on these EBVs hatch 1 and 2 progeny from the top 36 dam families were 

maintained, while progeny from the bottom 36 dam families were euthanized. Selected breeders were 

caged between 14 and 16 weeks of age.  Sire families were created by random assignment of 3 females 

to each male with the avoidance of sibling and half-sibling matings. 

Embryology 

To assess how BY4 selections have impacted embryological development three one-week egg 

collections were incubated. Fertile hatching eggs (N ≈ 180 per line) from the HBY4, LBY4 and RAN lines 

were obtained. Multiple collections were utilized to provide an increased sample size and allow for 

sampling to be done at multiple ages.  Eggs were incubated under standard conditions and randomly 

distributed throughout the incubator trays in order to minimize potential variation attributable to 

differences in incubator microenvironment.  Collection one was used to assess growth from 

developmental age 21 to developmental age 24, developmental age being counted from the start of 

incubation.  Collections two and three were used for samplings from developmental age 15 to age 20.   

Eggs (N = 30 HBY4, LBY4; N = 20 RAN) were randomly sampled daily from developmental age 

15 to 20.  At Day 18 of embryonic development (E18) eggs not previously selected for sampling were 

transferred into hatching trays.  For developmental ages 21 to 24, 20 chicks were selected for sampling 

from each of the three lines.  The procedures used for collections two and three were identical to the 

procedures used in collections one.  Characteristics measured include body, yolk, leg, gastrointestinal 

tract and bone-in-breast weight.  These values are represented as both the absolute value and relative 

value to the embryo weight. 

Data Analysis 

Heritability estimates and genetic correlations were calculated for body weight, breast and 

percentage breast at four-days of age using data from all four generations.  The calculations were 

performed using a derivative free multivariate analysis by restricted maximum likelihood along with the 
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DMU package (Madsen and Jensen, 2000).  These calculations included the use of a fixed effect, which 

involved the combination of generation, hatch and sex for the HBY4 and LBY4 lines.  Generational 

changes in percentage breast yield and additional processing traits were analyzed with line as the main 

effect by generation and with generation as the main effect by line using the general linear model 

procedure of SAS 9.3 (SAS Institute Inc., 2001, Cary, NC).  Means separations were carried out using 

Duncan’s multiple range test using SAS 9.3 (SAS Institute Inc., 2001, Cary, NC). 

Data obtained from the embryological study was analyzed with line as the main effect by 

developmental age and examined separately from data collected during the growout phase of the trial.  

Trait means separation was performed via the general linear model procedure (GLM) along with 

Duncan’s multiple range test using SAS 9.3 (SAS Institute Inc., 2001, Cary, NC). An alpha level of .05 

was determined to assign significance. 

2.3 Results 

Pilot Testing 

 Body weight heritability was found to be moderately to highly heritable in the pedigree populations 

(Table 2.1).  Breast weight heritability was also found to be moderately to highly heritable, with four-day 

breast percentage being moderately heritable (Table 2.1).   

Genetic Parameters for Generations 1 to 4 

Heritability estimates for four-day body weight were found to be high in both research lines, 

greater than 0.4 (Table 2.2).  Breast weight heritability estimates were found to be high for both the LBY4 

(0.52) and HBY4 (0.63). Heritability estimates for four-day relative breast yield were found to be high for 

both the HBY4 and LBY4 lines, greater than 0.4 (Table 2.2). Lines expressed clear divergence throughout 

selection, the line means diverged by 0.33 from Generation 1 to 2 and continued to diverge in 

Generations 3 and 4 while the average divergence from Generation 1 to 4 was 0.19 (Fig 2.3).  By 

Generation 4, the HBY4 line had achieved a percentage breast of 2.95, with the LBY4 at 2.21% (Fig 2.4).   
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Four-Day Part Response to Divergent Selection 

 In addition to percentage breast, data was collected on body, keel, breast, tender, and yolk 

weight over four generations. Body weight decreased in all three lines post Generation 1, with body 

weights increasing in the HBY4 from Generations 2 to 4 and the LBY4 from 2 to 3 (Table 2.3).  The HBY4 

had a greater body weight than the LBY4 from Generation 2 onwards. The HBY4 also had a greater body 

weight than the RAN that exhibited an intermediate body weight exceeding the LBY4 (Table 2.3). The 

HBY4 keel weight increased from Generation 2 to 4 (Table 2.3).  LBY4 keel weight did not increase from 

Generation 2 to 3 but increased from Generation 3 to Generation 4 (Table 2.3).  Keel was not different 

from Generations 1 and 4 in the RAN, but was greater than the LBY4 in Generation 4 (Table 2.3).  Breast 

weight was greatest in the HBY4 in Generation 4 and lowest in the LBY4 in Generations 2 and 4 (Table 

2.3). The phenotypic correlations between traits are shown in Table 2.4. 

Prehatch Development of BY4 Lines 

 At Day 15 and 18 of embryo development, the HBY4 line had a greater egg weight than the RAN 

and LBY4 lines (Fig 2.5).  However, body weight showed no difference at any of the prehatch sampling 

dates (Fig 2.6).  The HBY4 line had a greater supply organ weight than the LBY4, at days 15 and 17 of 

embryo development (Fig 2.7).  The HBY4 also had a greater supply organ weight than the RAN at Day 

15 (Fig 2.7).  RAN supply organ weight was greater than LBY4 supply organ weight at Day 15 (Fig 2.7).  

Past this age, there was no difference in supply organ weight between the RAN and LBY4.  Yolk weight 

was greater in the HBY4 than the LBY4 at days 19 and 20, but did not differ between the RAN and HBY4 

or the LBY and RAN at any age prehatch (Fig 2.8). 

 Up to Day 18 there were no differences in bone-in-breast weight, but at Day 19 the HBY4 began 

exhibiting increased bone-in-breast weight, being greater than the LBY4 at days 19 and 20 (Fig 2.9).  No 

difference in bone-in-breast weight was found prehatch between the RAN and HBY4 lines (Fig 2.9). The 

RAN exhibited greater bone-in-breast weight than the LBY4 at Day 19, but this difference was not seen at 

any other age prehatch (Fig 2.9).  Absolute leg weight did not differ between the BY4 lines at any age 

prehatch (Fig 2.10). 
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 HBY4 supply organ percentage was greater than the LBY at Day 17, no other differences in 

supply organ percentage were found between BY4 lines at any other age prehatch (Fig 2.11).  Bone-in-

breast percentage followed the trend of bone-in-breast weight, where beginning at Day 19 and continuing 

to Day 20 the HBY4 line had a greater bone-in-breast percentage than the LBY4 (Fig 2.12).  HBY4 bone-

in-breast percentage failed to differ from the RAN line at any age prehatch (Fig 2.12), while the RAN 

bone-in-breast percentage was greater than the LBY4 at days 16 and 20 (Fig 2.12). Leg weight 

percentage relative to live weight was greater in the HBY4 than the RAN and LBY4 lines at 20 days of 

age (Fig 2.13). 

Early Posthatch Development of the BY4 Lines 

 At developmental age 21, i.e. hatch, body weight was lower in the RAN line than either the HBY4 

and LBY4 lines, which did not differ (Fig 2.6). There were no differences in body weight at Day 22, but 

from Day 23 to 24, the HBY4 has a greater body weight than the LBY4 line (Fig 2.6). The HBY4 also had 

a greater body weight than the RAN line at Day 23 (Fig 2.6). The RAN and LBY4 did not differ in body 

weight at either 23 or 24 days (Fig 2.6). The HBY4 and RAN line did not differ in supply organ weight from 

developmental Day 21 to 24, while the HBY4 supply organ weight was greater than the LBY4 line from 23 

to 24 days (Fig 2.7).  The RAN line displayed a greater supply organ weight than the LBY4 at days 22 

and 24 (Fig 2.7).  HBY4 line yolk weight was greater than the RAN at days 21, 22 and 23 (Fig 2.8). The 

LBY4 also expressed greater yolk weight than the RAN at days 22 and 23 (Fig 2.8). There were no 

differences in yolk weight between the HBY4 and LBY4 at any of the early posthatch sampling dates (Fig 

2.8).  HBY4 bone-in-breast weight was greater at hatch than in the RAN and greater than both the RAN 

and LBY4 from days 22 to 24 (Fig 2.9). No difference in bone-in-breast weight was found between the 

LBY4 and RAN from days 21 to 24 (Fig 2.9).  At hatch no difference in absolute leg weight was shown, 

but by Day 22 the HBY4 line had a greater leg weight than the RAN and greater than the LBY4 at days 23 

and 24 (Fig 2.10). The RAN and LBY4 did not differ in leg weight from days 21 to 24 (Fig 2.10).  

At hatch the RAN line had a greater supply organ percentage than the LBY4 line, and continued 

to have a higher supply organ percentage throughout the early posthatch period, excluding Day 23 where 

no difference in supply organ percentage was shown between any of the BY4 lines (Fig 2.11). No 
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consistent difference was shown in supply organ percentage between the RAN and HBY4 lines (Fig 

2.11). At Day 22, the HBY4 line had a greater percentage bone-in-breast than the LBY4 but did not differ 

from the RAN line (Fig 2.12). From Day 23 on, the HYB4 had a greater percentage bone-in-breast than 

either the RAN or LBY4 (Fig 2.12).  Neither the RAN or LBY4 lines were different from each other in 

percentage bone-in-breast from days 21 to 24 (Fig 2.12).  Percentage leg was greater in the RAN than 

the HBY4 and LBY4 at hatch (Fig 2.13). By Day 24 leg percentage had flipped, with the HBY4 having a 

greater leg percentage than the RAN and LBY4 (Fig 2.13).  No consistent differences were observed for 

either percentage thigh or drum during this part of the study (data not presented).  

2.4 Discussion 

Pilot Testing  

The moderate to high heritabilities calculated for body weight and breast weight in the pedigree 

populations corresponded with prior research.  The body weight heritability was consistent with estimated 

body weight heritabilities of seven-day old quail ranging from 0.26 to 0.37 (Sefton and Siegel, 1974), and 

0.43 to 0.52 at four and six weeks in broilers, respectively (Kuhlers and McDaniel, 1996).  Breast weight 

heritability was consistent with Le Bihan-Duval et al. (1999), which calculated a heritability of 0.51 in six-

week old broilers. The calculated heritabilities for four-day percentage breast were lower than the 

estimated percentage breast heritability ranging from 0.51 to 0.55 at six weeks in broilers (Le Bihan-Duval 

et al., 1999;2001). The heritabilities were consistent with swine research, which estimated heritability as 

high as 0.28 for muscle fiber number (Larzul et al., 1997; Fiedler et al., 2004).  While four-day percentage 

breast does not measure muscle fiber number directly, research has shown that fiber number does not 

increase after hatch in chickens (Smith, 1963) and sampling occurs at a point shown to maximize muscle 

cell number per gram (Halevy et al., 2006). Implying that BY4 is capable of substituting for direct selection 

for fiber number, an idea similar to that of Smith, 1963.  The use of simulated selection in swine showed 

promise, as selection based on fiber number resulted in improved growth, and promoted swine muscle 

quality by a resulting decline in abnormal fibers shown to correlate with poor meat quality (Fiedler et al., 

2004).   

 



37 
 

Genetic Parameters for Generations 1 to 4 

The estimated four-day body weight heritability is consistent with research estimating body 

heritability between 0.43 to 0.52 in four and six-week old broilers, respectively (Kuhlers and McDaniel, 

1996).  The high heritabilities found for breast weight in the LBY4 and HBY4, are consistent with the 

estimated breast weight heritability of 0.51 found in broilers at six-weeks of age (Le Bihan-Duval, et al., 

1999). 

Heritability estimates for four-day percentage breast yield were found to be higher than the 

estimated heritabilities for muscle fiber number calculated by Larzul et al. (1997), and Fiedler et al. 

(2004), and the heritabilities calculated during pilot testing. The results are consistent with heritabilities 

calculated for breast yield percentage ranging from 0.43 in turkey toms at 14 weeks (Case et al., 2012) to 

0.55 at 6 weeks in broilers (Le Bihan-Duval et al., 2001).  Results suggest several possibilities.   First, 

selection for four-day percentage breast yield may be targeting fiber number, with a higher heritability in 

avian species than swine.  Second, selection may be affecting both fiber number and satellite cell 

development. Or third, early selection may be shifting the age at which hypertrophy begins, as evidenced 

by the similar heritability of breast percentage at six weeks in broilers (Le Bihan-Duval et al., 1999;2001). 

Regardless of the exact mode of action, both research lines showed the desired movement in 

percentage breast yield in Generation 2, the first generation post divergence.  The HBY4 line increased in 

breast percentage from Generation 1 to 3 with a slight decreased from Generation 3 to 4. The LBY4 

obtained the lowest breast percentage in Generations 2 and 4.  

Four-Day Part Response to Divergent Selection 

The drop in BY4 line body weights from Generation 1 to 2, were due to a change in seasonal 

conditions, as well as a decrease in breeder age. The HBY4 expressing a greater body weight than the 

LBY4 from Generation 2 onward and the RAN line serving as an intermediate with a greater body weight 

than the LBY4 was the expected outcome of divergent selection for BY4. Research has shown that 

selection for muscle fiber number promotes growth (Fiedler et al., 2004); therefore it is reasonable to 

assume that divergent BY4 selection would both promote and obstruct growth.  Divergent selection for 
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BY4 resulted in concurrent changes in keel weight.  While it might be assumed the divergent selection for 

BY4 would result in an increased keel weight in the HBY4 and a decreased keel weight in the LBY4, both 

BY4 lines exhibited increases in keel weight across generations.  In the selected populations changes in 

keel weight, can be explained by research showing that body weight is a result of a union between 

skeletal structure, condition and fleshing (Tierce and Nordskog, 1985).  Keel weight was shown to have a 

higher correlation with body weight than breast percentage in the BY4 lines. Furthermore, body weight 

improved in both the HBY4 and LBY4 lines post Generation 2.  Therefore it stands to reason that as 

divergent BY4 selection improved fleshing in the HBY4 and both the LBY4 and HBY4 exhibited increases 

in body weight that increases in keel weight would occur regardless of the direction of selection for BY4. 

Divergent BY4 selection led to clear divergence in breast and tender weight with the HBY4, RAN, LBY4 

ranking 1st, 2nd and 3rd in these categories respectively. This is to be expected given the correlations 

between breast percentage, tender weight and breast weight.  The changes in breast and tender weight 

reflect the desired impact of divergent selection for BY4 from the original RAN populations.  

BY4 Development Days 15 to 20 

Egg weight was different at embryonic developmental ages 15 and 18, but these were the only 

dates where differences were detected. However, it appears the HBY4 may have had a greater egg 

weight, and lack of difference in egg and embryo weight may be due to sampling error. No differences in 

embryo weight were detected, however differences were detected in embryo composition as evidenced 

by differences in supply organ percentage at 17 days and bone-in-breast percentages at 16, 19, and 20 

days.  The difference in supply organ percentage between the HBY4 and LBY4 at Day 17, may be 

demonstrative of the HBY4 line preparing for rapid early growth, by having an improved supply system 

needed to promote growth and muscle development (Siegel, 2002).  The lack of difference in supply 

organ percentage past this point is presumably due to the emergence of differences in bone-in-breast 

percentage between the HBY4 and LBY4, made possible by the increased supply organ percentage at 

Day 17.     

 Embryonically it has been shown that days 16-18 are a key period in satellite cell development 

(Hartley et al., 1992).  As the HBY4 line showed no difference in bone-in-breast prior to Day 19, it is 
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reasonable to suggest that increased satellite cell proliferation also contributed to an increase in bone-in-

breast weights.  Furthermore the HBY4 leg percentage was not negatively impacted by increased bone-

in-breast, which would be expected as resources are finite and increased resource devotion to breast 

yield should have drawn resources needed for concurrent leg development (Siegel et al., 2009), 

suggesting that increased satellite cell proliferation increased the resource pool available for growth to the 

HBY4 embryo.  The HBY4 lines supply organ weight and percentages also support the idea that 

increased satellite cell proliferation resulted in improved bone-in-breast yields, as traditionally selection for 

increased growth results in decreased supply organ percentage (Deeb and Lamont, 2002). 

Early Posthatch Development of BY4 Lines 

Muscle fiber number has been shown to be fixed by the time of hatch (Smith, 1963), but research 

has also demonstrated that the maximum number of muscle cells per gram of tissue can be found up to 

three days of age dropping significantly at five days of age (Halevy et al, 2006).  This development is 

almost perfectly mimicked by the BY4 lines.  No differences in body weight between lines were shown at 

developmental age 22, but at Day 23 the HBY4 body weight was greater than the LBY4 and RAN lines.  

The HBY4 continued to outperform the LBY4 at 24 days, and the RAN line became the intermediate. 

Furthermore, at hatch there was no difference in percentage bone- in-breast, but by Day 23, the HBY4 

line began exhibiting a greater bone-in-breast percentage than the other two lines.  The change in bone-

in-breast suggesting that BY4 selection altered the muscle fiber number of the HBY4 and LBY4 lines.  

The increased fiber number resulting in a greater body weight in the HBY4 when compared to the LBY4 

and a greater bone-in-breast percentage than either the RAN or LBY4 lines.    

The brief time period posthatch is also the point of maximum satellite cell activity (Halevy et al., 

2000, 2003) and declines rapidly afterwards (Moss et al., 1964; Halevy et al., 2000, 2003; Velleman et al., 

2010).  While four days posthatch does not represent the peak period for satellite cells, it is a point near 

maximum satellite cell activity and before gains in muscle fiber size have begun to occur rapidly (Halevy 

et al., 2006).  Increased satellite cell proliferation is suggested both by the bone-in-breast percentage 

exhibited by the HBY4 line and the leg percentage shown in the HBY4 line.  Traditionally increased breast 

growth has come without proportional increases in leg muscle (Nestor et al., 1985; Lilburn, 1994; Yalcin 
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et al., 2001).  While leg percentage did not increase to the degree of bone-in-breast, the HBY4 line still 

exhibited a greater leg percentage than the other two lines at Day 24.  Again, suggesting that selection 

could have resulted in increased fiber number and or increased satellite cell proliferation providing the 

necessary resources to allow for growth in both the breast and legs of the HBY4 chick. 

Typically the aforementioned growth boost would have resulted in a decreased ratio of supply to 

demand organs (Deeb and Lamont, 2002) in the HBY4 line.  This was not seen in the current experiment; 

rather the LBY4 line had a lesser supply organ percentage compared to the RAN line, while the HBY4 

line did not differ from the RAN line.  Divergent selection may have resulted in additional resources being 

devoted to supply organs early on, thereby creating the support system the HBY4 line needed to 

outperform the LBY4 in body weight and bone-in-breast percentage, and the RAN in bone-in-breast 

percentage.  Increased resources would allow for better resource allocation diminishing the imbalance 

between an increasingly greater body mass and a broilers support system (internal organs, vascular 

systems and skeletal structure) which has been cited as a primary cause of the reduction in broiler fitness 

(Katanbaf et al., 1988; Dunnington and Siegel, 1996; Julian, 2005).      

In summary, selection for BY4 is feasible due to large breast yield variation and a high heritability 

for percentage breast at four days posthatch.  The selected BY4 lines exhibited clear divergence in 

relative breast yield from the original population.  Embryonic differences found between the three BY4 

lines in supply organ and bone-in-breast percentages demonstrate that divergent selection for BY4 were 

capable of impacting embryonic development.  It appears that the increased supply organ percentage at 

Day 17 of development of the HBY4 line allows it to gear up for increased early growth, as evidenced by 

the increased bone-in-breast percentage shown at days 19 and 20 compared to the LBY4 line.  

Furthermore, this growth does not come at the expense of leg growth as typically shown in traditional 

selection (Siegel et al., 2009).  Whether this growth is the result of increased muscle fiber number, 

increased satellite cell proliferation, a combination of the two, or an as of yet undetermined cause is not 

known.  While the exact mode of action driving the change in relative breast yield is unknown, results 

show promise in utilizing BY4 selections to promote broiler growth.   
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2.5 Figures and Tables 

Table 2.1 Research line A and line B heritabilities and means1 for four-day body weight and breast 
traits. 

Line A 
 

Line B 

Trait Heritability Mean ± SEM Heritability Mean ± SEM 

Body Weight (g) 0.18 77.70 ± .19 0.61 74.30 ± .19 

Breast2 (g) 0.32   2.57 ± .02 0.48   2.81 ± .02 

% Breast   0.33   3.28 ± .01   0.38   3.74 ± .02 

1 All heritabilities and means calculated at four-days posthatch 
2 Pectoralis major only 
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Table 2.2. Heritabilities, and genetic correlations1 for body weight and breast traits calculated from the 
HBY4 and LBY4 lines2. 

  
Line Designation 

HBY4 Line LBY4 Line 

Trait BW BRST %BRST BW BRST %BRST 

Body Weight  0.41 0.79 0.54 0.45 0.79 0.65 

3Breast (g) 0.03 0.63 0.92 0.03 0.52 0.96 

% Breast   0.06 0.01 0.63   0.04 0.01 0.44 

1 Heritabilities are on the diagonal line, genetic correlations are above the diagonal line, and genetic 
correlation SE are below the diagonal line. 

2 HBY4 and LBY4 are selected for high and low % breast, respectively 
3 Pectoralis Major only 
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Table 2.3 Four day chick weight measures (g) (means ± SEM) over four generations of 
divergent selection for BY41. 

    
Line Designation2 

Trait 
 

Generation 
 

HBY4   
 

LBY4  
 

RAN  

Body Weight  
 

1 66.68 ± 0.50a 66.68 ± 0.50a 66.68 ± 0.50a 

  
2 

 60.39 ± 0.31c,x 58.36 ± 0.38c,y . 

3 64.20 ± 0.40b,x 59.83 ± 0.47b,y  
. 

  
4 66.00 ± 0.37a,x 59.88 ± 0.38b,z  62.99 ± 0.55b,y 

  
Yolk  

 
1 0.49 ± 0.02a 0.49 ± 0.02a 0.49 ± 0.02a 

  
2 0.41 ± 0.01b 0.41 ± 0.02b . 

  
3 0.31 ± 0.01d,x 0.26 ± 0.01d,y . 

  
4 0.38 ± 0.01c,x 0.32 ± 0.01c,y 0.28 ± 0.01b,z 

  
Keel3  

 
1 1.25 ± 0.02c 1.25 ± 0.02a 1.25 ± 0.02b 

  
2 1.21 ± 0.02c,x 1.13 ± 0.02b,y . 

  
3 1.34 ± 0.02b,x 1.17 ± 0.02b,y . 

  
4 1.57 ± 0.03a,x 1.27 ± 0.02a,z 1.41 ± 0.03a,y 

  
Tender  

 
1 0.48 ± 0.01c 0.48 ± 0.01a 0.48 ± 0.01a 

  
2 0.44 ± 0.01d,x 0.38 ± 0.01c,y . 

  
3 0.58 ± 0.01a,x 0.43 ± 0.01b,y . 

  
4 0.53 ± 0.01b,x 0.37 ± 0.01c,z 0.43 ± 0.01b,y 

  
Breast  

 
1 1.61 ± 0.04b 1.61 ± 0.04a 1.61 ± 0.04a 

  
2 1.55 ± 0.02b,x 1.30 ± 0.03c,y . 

  
3 2.02 ± 0.04a,x 1.47 ± 0.03b,y . 

    4   1.97 ± 0.03a,x   1.35 ± 0.03c,z   1.60 ± 0.04a,y 
a-d Means for a trait  across generations within a line are different (P < .05). 
x-z Means for a trait within a generation but across lines are different (P < .05).   
1BY4 (Four-day Relative Breast Yield) 
2HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = 
unselected random bred control 
3 Keel = Skeletal support system of the breast post breast removal 
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Table 2.4 Phenotypic correlations of processing trait means at four days of age from the BY41 lines. 

Line Trait BWT Breast Tender Keel Yolk TBRST PBRST PTBRST 

HBY42 BWT 1 0.84 0.75 0.52 0.15 0.85 0.67 0.68 

Breast 0.84 1 0.81 0.46 0.00 0.99 0.96 0.95 

Tender 0.75 0.81 1 0.40 -0.06 0.88 0.76 0.86 

Keel 0.52 0.46 0.40 1 0.07 0.46 0.39 0.38 

Yolk 0.15 0.00 -0.06 0.07 1 -0.01 -0.09 -0.10 

TBRST 0.85 0.99 0.88 0.46 -0.01 1 0.94 0.96 

PBRST4 0.67 0.96 0.76 0.39 -0.09 0.94 1 0.98 

PTBRST4 0.68 0.95 0.86 0.39 -0.10 0.96 0.98 1 

LBY42 BWT 1 0.83 0.74 0.58 0.09 0.82 0.66 0.67 

Breast 0.83 1 0.87 0.54 0.00 0.98 0.96 0.95 

Tender 0.74 0.87 1 0.48 -0.05 0.92 0.82 0.89 

Keel 0.58 0.54 0.48 1 0.05 0.53 0.45 0.45 

Yolk 0.09 0.00 -0.04 0.05 1 0 -0.03 -0.04 

TBRST 0.82 0.98 0.92 0.53 0 1 0.94 0.96 

PBRST4 0.66 0.96 0.82 0.45 -0.03 0.94 1 0.99 

PTBRST4 0.67 0.95 0.89 0.45 -0.04 0.96 0.99 1 

RAN3 BWT 1 0.87 0.75 0.56 0.15 0.87 0.73 0.72 

Breast 0.87 1 0.84 0.57 0.08 0.99 0.96 0.95 

Tender 0.75 0.84 1 0.44 0.05 0.90 0.80 0.88 

Keel 0.56 0.57 0.44 1 0.02 0.56 0.52 0.50 

Yolk 0.15 0.08 0.05 0.02 1 0.08 0.02 0.02 

TBRST 0.87 0.99 0.90 0.56 0.08 1 0.95 0.96 

PBRST4 0.73 0.96 0.80 0.52 0.02 0.95 1 0.99 

    PTBRST4 0.72 0.95 0.88 0.50 0.02 0.96 0.99 1 
1 BY4 (Four-day Relative Breast Yield) 
2 HBY4 and LBY4 are selected for high and low four-day % breast, respectively. 
3 RAN = unselected random bred control. 
4 Trait weight relative to live weight percentage 
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Figure 2.1 BY41 line formation. Adapted from Pavlidis et al., 2007. 

 
1 BY4 (Four-Day Relative Breast Yield) 

 

 

 

 

 

 

 

 

 

 
 

 

* Composite line from 1997 
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Figure 2.2 Selection and propagation of BY41 lines. Adapted from Pavlidis et al., 2007. 

 
1 BY4 (Four-Day Relative Breast Yield) 
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Figure 2.3 Generational divergence of lines divergently selected for BY41.  Generation one represents the 
base population from which both lines diverged. 

 
1 BY4 (Four-Day Relative Breast Yield)  
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Figure 2.4 Generational percentage breast measures (means ± SEM) of the BY41 lines2 over four 
generations of divergent selection for BY4.  

  
1  BY4 (Four-Day Relative Breast Yield) 
2  HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = unselected 
random bred control. 
a-c Means for a trait across generations within the HBY line are different (P < .05). 
x-z Means for a trait across generations within the LBY4 line are different (P < .05). 
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Figure 2.5 Weight measures (mean ± SEM) of eggs from the BY41 lines2 after four generations of 
divergent selection for BY4. (N ≥ 20 per line) 

 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = unselected 
random bred control. 
a-b Means within an age but across lines are different (P < .05). 
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Figure 2.6 Body weight measures (mean ± SEM) collected from the BY41 lines2 after four generations of 
divergent selection for BY4. (N ≥ 20 per line) Panel (a) includes 15 to 20 days, while (b) includes 21 to 24 
days. 
a) 

 
 
b) 

 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = unselected 
random bred control. 
a-b Means within an age but across lines are different (P < .05). 
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Figure 2.7 Supply organ weight measures (mean ± SEM) collected from the BY41 lines2 after four 
generations of divergent selection for BY4. (N ≥ 20 per line) Panel (a) includes 15 to 20 days, while (b) 
includes 21 to 24 days. 
a) 

 
 
b) 

 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = unselected 
random bred control. 
a-b Means within an age but across lines are different (P < .05). 
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Figure 2.8 Yolk weight measures (mean ± SEM) collected from the BY41 lines2 after four generations of 
divergent selection for BY4. (N ≥ 20 per line) Panel (a) includes 15 to 20 days, while (b) includes 21 to 24 
days. 
a) 

 
 
b) 

 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = unselected 
random bred control. 
a-b Means within an age but across lines are different (P < .05). 
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Figure 2.9 Bone-in-breast weight measures (mean ± SEM) collected from the BY41 lines2 after four 
generations of divergent selection for BY4. (N ≥ 20 per line) Panel (a) includes 15 to 20 days, while (b) 
includes 21 to 24 days. 
a) 

 
 
b) 

 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = unselected 
random bred control. 
a-b Means within an age but across lines are different (P < .05). 
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Figure 2.10 Leg weight measures (mean ± SEM) collected from the BY41 lines2 after four generations of 
divergent selection for BY4. (N ≥ 20 per line) Panel (a) includes 15 to 20 days, while (b) includes 21 to 24 
days. 
a) 

 
 
b) 

 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = unselected 
random bred control. 
a-b Means within an age but across lines are different (P < .05). 
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Figure 2.11 Supply organ weight relative to live weight measures (mean ± SEM) collected from the BY41 
lines2 after four generations of divergent selection for BY4. (N ≥ 20 per line) Panel (a) includes 15 to 20 
days, while (b) includes 21 to 24 days. 
a) 

 
 
b) 

 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = unselected 
random bred control. 
a-b Means within an age but across lines are different (P < .05). 
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Figure 2.12 Bone-in-breast weight relative to live weight measures (mean ± SEM) collected from the BY41 
lines2 after four generations of divergent selection for BY4. (N ≥ 20 per line) Panel (a) includes 15 to 20 
days, while (b) includes 21 to 24 days. 
a) 

 
 
b) 

 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = unselected 
random bred control. 
a-b Means within an age but across lines are different (P < .05). 
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Figure 2.13 Leg weight relative to live weight measures (mean ± SEM) collected from the BY41 lines2 after 
four generations of divergent selection for BY4. (N ≥ 20 per line) Panel (a) includes 15 to 20 days, while 
(b) includes 21 to 24 days. 
a) 

 
 
b) 

 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 are selected for high and low four-day % breast, respectively. RAN = unselected 
random bred control. 
a-b Means within an age but across lines are different (P < .05). 
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3. Growout of broilers divergently selected for relative breast yield at four-days of age and 
correlated responses. 

Abstract 

 Genetic selections relying on muscle fiber growth have vastly improved production related traits in 

the modern broiler. Today’s broiler reaches a greater market weight at an earlier age than ever before.  

Regrettably, the improved performance has come at the expense of broiler fitness with the modern broiler 

experiencing an increase in physiological disorders.  In addition meat quality issues are becoming more 

prevalent as traditional selection methods have been shown to correlate with reduced meat quality.  To 

combat these issues while still promoting growth divergent selection for four-day relative breast yield 

(BY4) were undergone.   

 After 4 generations of divergent selection for BY4 in broilers, growth rate and other correlated 

responses were examined.  Included in this study are the two divergently selected BY4 lines (HBY4 and 

LBY4) and the random bred control (RAN) progenitor line.  Divergent selection led to improvements in 

early growth rate allowing the HBY4 to outperform the LBY4 in both body weight and relative breast yield 

from 4 to 28 days posthatch.   While the impact of divergent selection diminished prior to processing age, 

the HBY4 exhibited a greater percentage breast than the LBY4 at 42 and 56 days posthatch.  The 

improvements in body composition came without a sacrifice in meat quality with no difference in meat 

quality being shown between the HBY4, LBY4 and RAN lines. 

3.1 Introduction 

Rapid genetic progress has been made in meat-type broilers via intensive selections for 

production traits such as, body weight, growth rate and breast yield (Deeb and Lamont, 2002).  The rate 

of progress intensified as poultry breeders and producers moved from a dual-purpose chicken, selected 

for both yield and egg production, to the stocks seen today, selected either for egg production or meat 

yield (Warren, 1996).  The broiler today, as a product of selection, has market age body weight 

approximately three times its predecessor from 50 years ago (Havenstein et al., 1994).  Furthermore, 

market age has continued to decrease roughly one day per generation, thus drastically reducing the days 

to market (Pollock, 1999) 
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Improvements in average daily gain and yield are primarily attributable to changes in broiler 

muscle mass (Hooper et al., 1973). Muscle growth relies not on one, but two major components, 

hypertrophy and hyperplasia (Stickland and Dwyer, 1996). These gains were made possible by 

hypertrophic muscle growth (Velleman and McFarland, 2014).  Muscle hypertrophy is the expansion of 

muscle by gains in muscle fiber size (Velleman and McFarland, 2014). Muscle hypertrophy occurs 

posthatch and relies on the uptake of satellite cell nuclei (Moss and Leblond, 1971). Satellite cells are 

used to meet the additional demand for nuclei associated with increased fiber size (Goldspink, 2004).  

While hypertrophy has led to significant gains in growth, increases in growth rate and yield have resulted 

in reduced fitness (Katanbaf et al., 1988; Dunnington and Siegel, 1996), increased incidence of 

physiological disorders (Julian, 2005), and reduced meat quality.  

Hyperplasia is muscle growth resulting from an increase in muscle fiber number (Rehfeldt et al., 

2004).  Hyperplasia occurs almost entirely before birth, and is a major determinant of animal performance 

(Stickland and Handel, 1986; Rehfeldt et al., 1987, 2000). Increased muscle fiber has been suggested as 

a primary factor in improving muscle growth and meat quality (Stickland and Dwyer, 1996).  Inversely, in 

swine it was shown that piglets with low birth weights had a lower muscle fiber number (Rehfeldt and 

Kuhn, 2006) and that fiber size increases rapidly when fiber number is low (Rehfeldt et al., 2000).  Rapid 

fiber growth may lead to extreme fiber size and abnormal giant fiber formation, which are known to 

contribute to poor meat quality in swine and poultry (Klosowska et al., 1979; Fiedler et al., 1999).   

Selections for four-day relative breast yield (BY4) are thought to promote both growth and meat 

quality.  Increased muscle fiber number is a trait positively related to muscle growth and quality 

(Lengerken et al., 1994; Ender et al., 2000).   Furthermore, this selection targets a point near maximum 

muscle cell number per gram of muscle tissue and when satellite cell activity is high (Halevy et al., 2006).  

Increasing satellite numbers may also promote muscle hypertrophy by increasing the supply of nuclei 

needed to make gains in fiber size.  This combination may prove beneficial to both meat quality and 

muscle growth. 

Divergent selection for BY4, allows for the examination of genetic relationships between muscle 

growth, meat quality and broiler fitness and other correlated responses that may occur.  The two primary 
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goals of this research were: (1) the effects of selection on muscle growth, and broiler fitness, and (2) 

determine how broiler meat quality has been impacted by divergent BY4 selection. 

3.2 Materials and Methods 

Broiler Populations 

The populations used for this study were three research broiler lines currently maintained at the 

University of Arkansas.  These lines were divergently selected for BY4 from a random bred control 

population initiated in 1997 (Harford et al., 2014). In 2012, divergent selection for BY4 was initiated using 

a sibling selection protocol previously described in Chapter 2.  Broilers utilized in the current study 

originate from selected breeders from the third generation of BY4 selections. These lines are identified as 

the high breast yield (HBY4), selected for increased percentage breast yield at four-days of age, low 

breast yield (LBY4), selected for decreased percentage breast yield at four-days of age and the 

unselected random line (RAN).   

Growth Characteristics  

To assess how divergent BY4 selection has impacted broiler performance during growout, three 

one week hatches were obtained from the selected breeders from generation three HBY4, LBY4, and 

RAN lines. Since we were sampling from a subset of each line it was necessary to generate three 

hatches to increase sample size and add replication to the study.  Data was collected on hatch weight, 

supply and support systems, as described by Katanbaf and coworkers (1988).  Incubation and hatching 

were performed under standard conditions. 

Hatching and Placement 

Upon hatch, chicks were pedigreed; wing-banded and weighed.  Birds from hatch one and hatch 

three were reared straight run, and all lines were reared together with roughly 100 birds per pen.  Birds 

from hatch two were grown in cages in a controlled environment. All broilers were provided feed and 

water ad libitum with a starter and finisher ration formulated to meet or exceed NRC (1994) minimum 

standards. Birds chosen for use in feed conversion ratio (FCR) study were placed in 36 cages, 12 cages 
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per line.  These birds were weighed weekly beginning at eight days of age and continuing up to 42 days 

of age. In addition, feed consumption was recorded weekly from Day 8 to processing to calculate FCR.   

Sample 

Birds were sampled at 4, 7, 14, 28, 42, and 56 days of age posthatch.  Birds sampled (N ≈ 12 per 

line per sampling) were taken equally from hatch one and two and each pen at each processing age.  

Birds from hatch three were used to increase the sample size of the early processings and were sampled 

at 4, 7, and 14 days of age. 

Processing 

Prior to euthanasia feed was withdrawn, broilers sampled prior to Day 42 were euthanized via 

CO2 asphyxiation.  Crop contents were surgically removed to minimize the confounding effects of crop 

contents on body weight. Sampled broilers were then weighed and placed on trays and allowed to 

refrigerate at 1º C for a minimum of three hours. This was done to promote the onset of rigor mortis and 

facilitate easy removal of muscle. 

Necropsies were performed after the three-hour chill.  An incision was made perpendicular to the 

base of the keel and the skin retracted to reveal the chest cavity.  Two cuts were then made along the rib 

cage toward the clavicle.  Cuts were then made along the left and right clavicle to allow for the removal of 

the bone in breast.  Gender was assessed/confirmed for all sampled birds by gonadal examination.  

Weights were obtained for the gastrointestinal tract, heart, liver, spleen and abdominal fat.  The breast 

and tenders were removed from the bone in breast, then individually weighed and recorded. The skin was 

removed from the legs of birds sampled prior to Day 42. After removal of the skin, shanks were weighed 

and shank length recorded (mm). The remaining leg portions were cut into thigh and drum, weighed and 

recorded.  The muscle was separated from the tibia and femur, the tibia and muscle were weighed and 

recorded. The tibia length, width and height (mm) were then recorded. Data collected on parts yield are 

expressed as absolute values and as part weight relative to live weight. 

Samplings at 42 and 56 days posthatch were conducted at the University of Arkansas processing 

plant.  Processing involved feed removal 12 hours prior to slaughter.  Birds were then transported to the 
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processing plant one hour prior to slaughter.  Birds were recorded, weighed and hung on shackles.  The 

shackles then proceeded through the plant, where birds were electrically stunned, bled out via the left 

carotid artery and jugular vein, scalded, and mechanically defeathered.  Birds were then eviscerated by 

hand to facilitate weighing of the gastro-intestinal tract and abdominal fat. After evisceration, the WOGs 

were allowed to chill for four hours. WOGs were then re-weighed and recorded, cut into parts, and 

weights obtained for breast, tenders, keel, wing, drum, and thigh. 

Muscle Color, PH, and Drip Loss 

For samplings on Day 42 and 56, the deboned breasts were individually bagged and refrigerated 

at 1ºC. Twenty-four hours post-slaughter breasts were removed from cold storage and blotted dry.  The 

right lobe of the pectoralis major was used for color measurements using a Minolta CR-300 Colorimeter 

(Minolta Chroma Meter CR-300, Minolta Italia S.P.A., Milano, Italy) to obtain L* value, color 

measurements were done at the top, center and base of the lobe. PH measurements were taken from the 

right lobe using a Testo 205 pH probe.   

Drip loss measurements were obtained via the EZ Driploss method (Rasmussen and Andersson, 

1996).  A drill was used to obtain circular cores from the right lobe of the pectoralis major. Samples from 

the right lobe were then placed individually in driploss tubes, and stored an additional 24 hours at 1º C.  

At 48 hours post slaughter, the test tubes were weighed to obtain the weight of the combined sample-

tube weight. The sample was removed from the test tube and the tube reweighed to obtain the combined 

weight of the liquid and tube.  EZ driploss (Correa et al., 2007), was then calculated as follows: 

% Driploss = ((Tube with liquid WT) / (Tube with meat and liquid WT - Tube WT)) * 100  

Tenderness  

The left lobe of the pectoralis major was used to assess tenderness. Left lobes were cooked in an 

oven at 190º C until reaching an internal temperature of 74º C.  Breasts were then allowed to cool to room 

temperature prior to further testing. Six 1.27-cm diameter cores were then removed from each breast 

parallel to the muscle fiber orientation.  These cores were sheared through the center with a Warner-
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Bratzler shear apparatus attached to an Instron 4466 (Instron Corp., Canton, MA) with a 55-kg load cell 

with a crosshead speed of 250 mm/min (Burke et al., 2003). 

Data Analysis  

Data from the growout phase was analyzed by processing age with line as the main effect, to 

assess body weight, carcass composition, and carcass characteristics. Trait means separation was 

performed via the GLM procedure along with Duncan’s multiple range test using SAS 9.3 (SAS Institute 

Inc., 2001, Cary, NC).  An alpha level of .05 was determined to assign significance.  

3.3 Results 

BY4 Line Growth from Days 4 to 28. 

Body weights from birds sampled at 4, 7, 14 and 28 days posthatch showed no difference 

between the HBY4 and RAN lines (Table 3.1). The HBY4 consistently had a greater body weight than the 

LBY4 line. The RAN line had a greater body weight than the LBY4 at 7 days, but the lines did not differ in 

body weight at days 4, 14 and 28 (Table 3.1). The HBY4 line had a greater breast weight than the RAN 

line up to Day 7, at which point it failed to differ (Table 3.1).  The HBY4 outperformed the LBY4 in breast 

weight through Day 7 to 28. The RAN line was intermediate for breast weight, showing no difference in 

breast weight between it and either the HBY4 or LBY4 lines past Day 7 (Table 3.1).  Tender weight was 

greater in the HBY4 line than the LBY4 from days 4 to 28, but not different than the RAN from 4 to 28 

(Table 3.1).  The RAN line outperformed the LBY4 in tender weight at 4, 7, and 28 days of age (Table 

3.1).  Total breast weight was lower in the LBY4 than the HBY4 from 4 to 28 days (Table 3.1). Keel 

weight was greater at Day 4 in the HBY4 compared to the RAN and LBY4 lines and greater than the 

LBY4 at Day 14 (Table 3.1).  Keel weight did not differ between the LBY4 and RAN from 4 to 28 days 

(Table 3.1) The HBY4 had greater total leg weight than the LBY4 line from Day 4 to 14; it also had a 

greater leg weight than the RAN line on Day 14 (Table 3.1).  No differences were found for leg weight 

between lines at 28 days posthatch (Table 3.1). 

Total supply organ weight, as well as heart, was greater in the HBY4 line when compared to the 

LBY4 line at four days of age with heart weight continuing to be greater till 14 days posthatch (Table 3.2).  



68 
 

Differences in supply organ weight were found at 4 and 7 days, but no trend was apparent and by Day 

14, there were no differences in supply organ weight (Table 3.2).   

Percentage breast was greater in the HBY4 line than the LBY4 line from Day 4 to 28 and greater 

than the RAN line from Day 4 to 14 (Table 3.3). Breast percentage was higher in the RAN than the LBY4 

at 4 days of age, at which point it failed to differ (Table 3.3). Total breast percentage followed a similar 

trend with the HBY4 outperforming the LBY4 at all ages and the RAN at 7 and 14 days (Table 3.3).  The 

RAN had a greater total breast percentage than the LBY4 at days 4 and 7 (Table 3.3).  Keel weight 

relative to live weight differed at 4 days of age with the HBY4 outperforming the RAN and LBY4 (Table 

3.3).Leg percentage was greater in the HBY than both the RAN and LBY lines from days 4 to 14 (Table 

3.3).  Leg percentage was highest in the HBY4 line at 7 and 14 days, but no difference in leg percentage 

was found between the lines at 28 days (Table 3.3).  Leg percentage did not differ between the RAN and 

LBY4 from 4 to 28 days (Table 3.3). 

 Despite a difference in heart weight at 4 days of age, heart percentage relative to live weight only 

differed at Day 28, with the LBY4 having a greater heart percentage than the HBY4 (Table 3.3).  The 

RAN line had a greater supply organ percentage than the HBY4 line at 7 days of age (Table 3.3).  

However, no other difference in supply organ percentage was found at 14 or 28 days (Table 3.3). No 

difference was found in abdominal fat weight or percentage at either 14 or 28 days posthatch (data not 

presented).  

Processing Age Characteristics of BY4 Lines 

No difference in lifetime FCR was found between the lines with the HBY4, LBY4 and RAN having 

FCR values of 1.94, 1.99, and 1.95, respectively.  Body weight did not differ between the three lines at 

both 42 and 56 days posthatch (Table 3.4). WOG weight also did not differ between the lines at days 42 

and 56 (Table 3.4). WOG post-chill was greater in the RAN line the LBY4 at 42 days, but did not differ 

from the HBY4 (Table 3.4). Water uptake weight was greater in the RAN, than either the other two lines at 

42 days (Table 3.4).  Rack weight was not different at 42 or 56 days posthatch (Table 3.4). Leg weights 

were not different between lines at days 42 or 56 (Table 3.4).  Abdominal fat was greater in the RAN line 

than the HBY4 line at 42 days of age, but no differences were seen at 56 days posthatch (Table 3.4).  
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The RAN line also had the greatest supply organ weight at 56 days posthatch (Table 3.4).  Breast weight 

was greater in the RAN line at 42 days of age than the LBY4 line, but not different than the HBY4 line 

(Table 3.4). Total breast weight was greater in the RAN and HBY4 than the LBY4 at 42 days (Table 3.4).  

Any difference in breast and total breast weight diminished by 56 days posthatch with no differences 

being shown for either trait (Table 3.4). 

When considering the live weight percentages of various traits, numerous differences were found.  

No difference was found in supply organ percentage at 42 days of age, though at 56 days the RAN line 

had a greater supply organ percentage than either the HBY4 or LBY4 lines (Table 3.5).  Additionally the 

RAN line had a greater abdominal fat percentage than the HBY4 line at both 42 and 56 days posthatch 

(Table 3.5). Leg percentage showed no differences between lines at either 42 or 56 days posthatch 

(Table 3.5). Rack percentage showed no difference at 42 days of age, but the HBY4 line had a greater 

rack percentage than the LBY4 line at 56 days of age (Table 3.5).  Rack percentage failed to differ 

between the RAN and HBY4 at either processing age (Table 3.5).  The HBY4 had a greater breast and 

total breast percentage than the LBY4 at both processing ages, but did not differ from the RAN at the 

same ages (Table 3.5). 

It is important to consider how divergent selection for BY4 impacted the meat quality of the BY4 

lines.  Differences were found at 42 days of age, but no differences were found at 56 days posthatch.  At 

42 days of age the RAN line had a greater muscle color lightness value (L*) than the HBY4 line, but not 

the LBY4 line (Table 3.6).  No difference in shear force was found between the lines at 42 or 56 days 

(Table 3.6).  The RAN line had a greater drip loss percentage at 42 days of age than the HBY4 line but 

did not differ from the LBY4 (Table 3.6).  No differences were shown in drip loss percentage at 56 days of 

age (Table 3.6).  No differences in pH were shown between the lines at either 42 or 56 days (Table 3.6). 

3.4 Discussion 

Development of BY4 Lines from Days 4 to 28. 

Results indicate that selection for increased BY4 promoted both breast and leg percentage at 

early ages, and body weight. The HBY4 line having a greater body weight and breast percentage than the 

LBY4 line from ages 4 to 28 and a greater leg percentage from 4 to 14 days posthatch shows this growth 
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difference.  Furthermore, the HBY4 line had greater breast and total breast percentage than the RAN line 

up to Day 14 and a greater leg percentage at 7 and 14 days posthatch.  The growth impact appeared to 

diminish as the bird aged. At Day 28, the HBY4 line no longer had a greater percentage breast than the 

RAN line and did not outperform either of the other two BY4 lines in leg percentage.  

The change in growth may be an artifact of growth posthatch being based entirely on hypertrophy 

(Moss and Leblond, 1971), with maximum growth being obtained through a balance between muscle fiber 

number and size.  As only four generations of divergent selection for BY4 have occurred it will be of 

interest to see how these selections impact satellite cell and muscle fiber number and the resulting impact 

on the growth of future generations.  Theoretically if the HBY4 line continues to make gains in early BY4, 

it will increase both the muscle fiber number and satellite cell activity leading to further divergence 

between the HBY4 and LBY4 lines and growth differences between the HBY4 and Ran lines.  Increased 

growth being made possible by providing a better starting point for growth by improving muscle fiber 

number and available satellite cells needed for increased gain via hypertrophy. While the LBY4 line may 

continue to decline in percentage breast and body weight, resulting in further divergence from the RAN 

line. 

Research has shown that faster-growing animal strains have higher numbers of muscle fibers 

than slower growing strains of the same species (Ezekwe and Martin, 1975; Miller et al., 1975).  These 

animals also exhibit improved FCRs when compared to slower-growing strains (Campbell and Taverner, 

1988). Contrary to these results FCR over the growout period was equivalent amongst the three BY4 

lines.  Short-term divergent selection BY4 may not yet have resulted in enough divergence to see the 

effect on FCR at this point. Alternatively, hypertrophic growth may have obscured potential differences in 

FCR.  Further selection and testing will be needed to assess the effect of BY4 selection on FCR values.  

Processing Age Characteristics of BY4 Lines 

 Results indicate that while the effects of short-term divergent selection for BY4 had diminished by 

42 days posthatch, they were present.  The increased breast and total breast percentage of the HBY4 

line in comparison to the LBY4 line evidence this at 42 and 56 days.  Theoretically if selection for BY4 

promotes muscle fiber number and satellite cell activity, leg yield percentage should have improved, as 
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well as breast yield percentage. These gains are contrary to traditional gains in breast yield, which do not 

result in proportional gains in leg percentage (Nestor et al., 1985; Lilburn, 1994; Yalcin et al., 2001).   It 

may be argued that this increase did, in fact, occur.  As evidenced by the HBY4 line having a greater 

breast yield percentage than the LBY4 line at 42 and 56 days of age while maintaining a leg percentage 

equal to that of the LBY4 line. Unfortunately, this growth boost may have occurred at the cost of the 

supply systems of the HBY4 broiler with a lesser supply organ percentage when compared to the RAN at 

56 days. This imbalance between supply and demand systems is consistent with research indicating that 

increased growth comes at the cost of the broiler’s supply system (Deeb and Lamont, 2002).  The lack of 

difference in supply organ percentage between the HBY4 and LBY4 may be indicative of divergent 

selection negatively impacting the supply systems of the LBY4. 

Meat quality was neither promoted nor negatively impacted by short-term divergent selection for 

BY4. While muscle color lightness values (L*) differed between the HBY4 and RAN lines at 42 days of 

age, no difference was shown between lines at 56 days posthatch. The values collected were consistent 

with research showing mean L* value for poultry meat not affected by PSE or DFD ranging from 49.70 in 

broilers processed at 42 days (Harford et al., 2014) to 50.16 also processed at 42 days of age (Zhang 

and Barbut, 2005).  PH measurements at both processing ages were equivalent between the BY4 lines 

and were consistent with mean pH values from unaffected poultry meat, from 5.88 (Harford et al., 2014) 

to 5.91 (Zhang and Barbut, 2005). Shear force values obtained were higher than shear force values 

obtained from broilers processed at between either 42-45 days and 49-52 days of age, 1.82 – 2.19 

kg/cm2 (Lyon et al., 2004), but lower than those obtained from broilers processed at 7 weeks of age and 

chilled between 2.5 and 3.5 hours ranging from 6.22 to 7.34 kg/cm2 (Cavitt et al., 2004). Indicating that 

shear force values for all lines were consistent with values typically seen in poultry.  Drip loss percentage 

was higher than values calculated from broilers processed between 35 and 42 days and measured at 3 

days post slaughter, 0.82 - 0.90 percent drip loss and at 6 days post slaughter, 1.59 to 1.74 percent (Berri 

et al., 2001). The drip loss measurements were also higher than values calculated in three research 

broiler lines processed at 46 days of age and stored for 24 hours postmortem, 0.88 – 2.27 percent 

(Harford et al., 2014).  Differences in drip loss are believed to be due to differing storage times and the 

novel method of obtaining drip loss. 
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Selection did result in less fat percentage in the HBY4 line, having a lower fat percentage than 

the RAN line at 42 days and the LBY4 line at 56 days of age.  While it did not differ from the LBY4 at 42 

days and RAN at 56, it had a tendency to be lower than the values obtained for both of these lines.  

These results are consistent with results of simulated selection for muscle fiber number in swine, which 

showed selection for fiber number would promote growth (Scheuermann et al., 2004), while minimizing 

potential negative effects on meat quality (Fiedler et al., 2004).   

 In summary, divergent selection for BY4 had a significant impact on broiler muscle growth, and 

minimal impact on broiler fitness and muscle quality.  Broilers from the HBY4 line exhibited greater body 

weights than the LBY4 line from Day 4 up to Day 28. The HBY4 also exhibited greater breast percentage 

than the LBY4 from 4 to 28 days posthatch, without experiencing declines in leg and supply organ 

percentage when compared to the LBY4 line, suggesting selection was effective in promoting growth via 

the creation of additional resources needed to promote growth. However, these gains were temporary, 

and no difference in body weight was shown between lines at processing age.  This may be an effect of 

posthatch growth relying on hypertrophy (Velleman and McFarland, 2014) and masking differences 

attributable to changes in muscle fiber number. 

Selection was successful in impacting the breast percentage of processing age broilers with the 

HBY4 outperforming the LBY4.  Furthermore, breast yield did not come at the expense of leg percentage.  

Growth may have impacted supply organ percentage, as the RAN had a greater supply organ percentage 

than the HBY4 at 56 days, but the HYB4 was not different from the LBY4.  Additional growth failed to 

negatively impact meat quality, as shown by the similarity in meat quality characteristics of the BY4 lines.  

Consistent with research showing that muscle fiber number is positively correlated with improved meat 

quality and growth (Fiedler et al., 1993, 2003; Lengerken et al., 1994; Karlsson et al., 1999; Suzuki et al., 

2003).   

To improve comprehension of how early growth selections and muscle fiber number impacts 

broiler growth, the divergent lines were formed.  The maintenance of these populations at the University 

of Arkansas will allow for continued research to determine the underlying causes of changes in BY4 and 

provide a valuable resource population for research into muscle growth. 
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3.5 Figures and Tables 

Table 3.1 Body and breast related trait weight measures (g) (means ± SEM) collected up to 28 
days posthatch from the BY41 lines after 4 generations of divergent selection. (N ≥ 24 per line) 

  
Line Designation2 

Trait 
 

AGE 
 

HBY4 
 

RAN 
 

LBY4 

BWT 
 

4   71.97 ± 2.13a   67.97 ± 1.9ab   63.27 ± 1.95b 

7 
 107.12 ± 2.14a 107.05 ± 2.65a 100.46 ± 2.14b 

14 272.94 ± 7.43a 262.48 ± 5.84ab 248.28 ± 7.21b 

28 917.04 ± 23.23a 889.66 ± 22.43ab 832.60 ± 28.94b 

  
Breast 

 
4     2.63 ± 0.17a     2.20 ± 0.15b     1.64 ± 0.13c 

  
7     6.72 ± 0.23a     5.85 ± 0.31b     5.04 ± 0.23c 

  
14   24.63 ± 0.93a   22.26 ± 0.76ab   20.89 ± 0.91b 

  
28 108.41 ± 3.86a 101.39 ± 3.71ab   91.61 ± 5.05b 

Tenders 
 

4     0.65 ± 0.05a     0.60 ± 0.05a     0.45 ± 0.03b 

  
7     1.87 ± 0.09a     1.69 ± 0.11a     1.40 ± 0.06b 

  
14     6.44 ± 0.23a     5.82 ± 0.19ab     5.29 ± 0.31b 

  
28   28.17 ± 0.94a   26.23 ± 1.03a   22.77 ± 1.13b 

  
TBRST3 

 
4     3.28 ± 0.22a     2.80 ± 0.19a     2.09 ± 0.16b 

7     8.59 ± 0.28a     7.54 ± 0.34b     6.44 ± 0.28c 

14   31.08 ± 1.15a   28.07 ± 0.94ab   26.18 ± 1.16b 

  
28 136.58 ± 4.68a 127.62 ± 4.57ab 114.37 ± 6.11b 

  
Keel4 

 
4     1.91 ± 0.09a     1.60 ± 0.08b     1.42 ± 0.06b 

  
7     3.05 ± 0.12     3.11 ± 0.16     2.92 ± 0.12 

  
14   10.75 ± 0.54a     9.48 ± 0.35ab     9.27 ± 0.47b 

28   39.29 ± 1.92   38.46 ± 1.54   34.61 ± 1.59 

Leg 
 

4   10.70 ± 0.42a     9.88 ± 0.37ab     9.10 ± 0.42b 

7   15.66 ± 0.43a   14.96 ± 0.52ab   14.03 ± 0.40b 

  
14   45.60 ± 1.53a   41.68 ± 1.15b   39.54 ± 1.44b 

    28   169.60 ± 5.65   161.38 ± 5.13   153.46 ± 6.33 
a-c Means for a trait within an age but across lines are different (P < .05). 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 lines are selected for high and low % breast at four days of age, 
respectively. RAN = unselected random bred control. 
3 TBRST = Total Breast (Breast + Tenders) 
4 Keel = Skeletal support of the breast post breast removal 
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Table 3.2 Supply related trait weight measures (g) (mean ± SEM) collected up to 28 days 
posthatch from the BY41 lines after4 generations of divergent selection. (N ≥ 24)  

Line Designation2 

Trait 
 

AGE 
 

HBY4 
 

RAN 
 

LBY4 

Heart  4     0.65 ± 0.03a     0.57 ± 0.02b     0.56 ± 0.02b 
  7     0.92 ± 0.02a     0.90 ± 0.03ab     0.84 ± 0.03b 

14     2.30 ± 0.08a     2.07 ± 0.09b     2.05 ± 0.08b 

28     6.13 ± 0.25     6.07 ± 0.22     6.04 ± 0.29 

Supply 
Organs 

 4   21.00 ± 0.69a   20.07 ± 0.76ab   19.00 ± 0.50b 

 7   30.82 ± 0.81ab   32.51 ± 0.87a   30.03 ± 0.78b 
  14   60.45 ± 1.93   59.74 ± 1.67   56.49 ± 1.83 

    28   131.73 ± 3.36   127.55 ± 3.70   124.46 ± 4.35 

a-b Means within an age but across lines are different (P < .05). 
1 BY4 (Four-Day Relative Breast Yield) 

2 HBY4 and LBY4 lines are selected for high and low % breast at four days of age, respectively. 
RAN = unselected random bred control. 
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Table 3.3 Relative weights (%) (mean ± SEM) of breast, leg and organ weights collected up to 
28 days posthatch from the BY41 lines after 4 generations of divergent selection. (N ≥ 24) 

  
Line Designation2 

Trait 
 

AGE 
 

HBY4 
 

RAN 
 

LBY4 

Breast  
 4   3.58 ± 0.15a   3.16 ± 0.15b   2.51 ± 0.13c 

7   6.24 ± 0.14a   5.35 ± 0.21b   4.95 ± 0.15b 

14   8.95 ± 0.17a   8.41 ± 0.15b   8.30 ± 0.18b 

28 11.79 ± 0.24a 11.37 ± 0.27ab 10.85 ± 0.30b 

TBRST3 
 4   4.47 ± 0.19a   4.01 ± 0.20a   3.21 ± 0.16b 

7   7.99 ± 0.18a   6.96 ± 0.21b   6.33 ± 0.18c 

14 11.30 ± 0.20a 10.62 ± 0.20b 10.41 ± 0.24b 

28 14.87 ± 0.29a 14.31 ± 0.31ab 13.57 ± 0.36b 

Keel4  
 4   2.65 ± 0.10a   2.34 ± 0.09b   2.25 ± 0.07b 

7   2.83 ± 0.08   2.88 ± 0.12   2.89 ± 0.10 

14   3.89 ± 0.14   3.61 ± 0.11   3.71 ± 0.13 

28   4.31 ± 0.20   4.33 ± 0.14   4.22 ± 0.20 

Leg  
 4 14.80 ± 0.26 14.47 ± 0.26 14.16 ± 0.28 

7 14.60 ± 0.25a 13.89 ± 0.24b 13.93 ± 0.21b 

14 16.63 ± 0.21a 15.83 ± 0.18b 15.81 ± 0.19b 

28 18.43 ± 0.24 18.13 ± 0.33 18.37 ± 0.29 

Heart  
 4   0.91 ± 0.02   0.84 ± 0.02   0.90 ± 0.03 

7   0.86 ± 0.02   0.84 ± 0.02   0.84 ± 0.02 

14   0.84 ± 0.02   0.79 ± 0.03   0.83 ± 0.03 

28   0.67 ± 0.02b   0.69 ± 0.02ab   0.73 ± 0.02a 

Supply 
Organs 

 4 29.42 ± 0.81 29.53 ± 0.73 30.27 ± 0.64 

 7 28.75 ± 0.48b 30.44 ± 0.46a 29.96 ± 0.57ab 

14 22.33 ± 0.56 23.03 ± 0.69 23.06 ± 0.67 

    28   14.49 ± 0.39   14.43 ± 0.38   15.13 ± 0.47 

a-c Means for a trait within an age but across lines are different (P < .05). 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 lines are selected for high and low % breast at four days of age, respectively. 
RAN = unselected random bred control. 
3 TBRST = Total Breast (Breast + Tenders) 
4 Keel = Skeletal support system of the breast post breast removal 
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Table 3.4 Processing trait weight measures (g) (mean ± SEM) of BY41 broilers processed at 42 
and 56 days posthatch after 4 generations of divergent selection. (N ≥ 55) 

  
Line Designation2 

Trait 
 

AGE 
 

HBY4 
 

RAN 
 

LBY4 

BWT 
 

42 
      1825 ± 26      1866 ± 27      1806 ± 26 

56      2424 ± 45      2474 ± 45      2446 ± 38 

WOG3 
 

42      1234 ± 19      1262 ± 20      1209 ± 19 

56      1718 ± 34      1735 ± 34      1699 ± 29 

WOGPC4 
 

42      1282 ± 19ab      1318 ± 20a      1259 ± 19b 

  
56      1778 ± 34      1804 ± 34      1767 ± 29 

Uptake5  
 

42          46 ± 1b          55 ± 1a          48 ± 1b 

56          64 ± 1          69 ± 2          67 ± 2 

Rack6  
 

42   409.51 ± 6.44   424.27 ± 5.92   410.61 ± 6.36 

56   565.06 ± 12.14   571.13 ± 11.52   553.06 ± 8.59 

Breast  
 

42   226.60 ± 4.23ab   231.80 ± 4.73a   216.30 ± 4.23b 

56   309.78 ± 6.60   307.64 ± 6.68   301.40 ± 6.15 

TBRST7 
 

42   297.03 ± 5.28a   302.29 ± 5.85a   281.50 ± 5.36b 

56   410.82 ± 8.64   408.07 ± 8.53   396.35 ± 7.90 

Leg  
 

42   421.51 ± 6.88   433.45 ± 7.99   414.73 ± 7.02 

56   576.49 ± 12.27   593.36 ± 13.52   591.65 ± 12.58 

AB Fat  
 

42     42.09 ± 1.87b    50.02 ± 1.72a     45.74 ± 1.82ab 

56     72.43 ± 3.22     79.35 ± 2.42     81.06 ± 2.94 

Supply 
Organs 

 
42   214.63 ± 6.16   218.70 ± 6.26   214.58 ± 6.04 

  56     267.31 ± 6.96b     298.56 ± 9.10a     274.73 ± 6.61b 
a-b Means for a trait within an age but across lines are different (P < .05). 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 lines are selected for high and low % breast at four days of age, respectively. 
RAN = unselected random bred control. 
3 WOG = Without Giblets. 
4 WOGPC = Without Giblets Post Chill. 
5 Uptake = Water absorbed during chill. 
6 Rack = Skeletal system of the bird post part removal. 
7 TBRST = Total Breast (Breast + Tenders) 
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Table 3.5 Relative weight measures (%) (mean ± SEM) of processing traits of BY41 broilers 
processed at 42 and 56 days posthatch after 4 generations of divergent selection. (N ≥ 55) 

  
Line Designation2 

Trait AGE HBY4 RAN LBY4 

Rack3  
 42 22.42 ± 0.12 22.76 ± 0.12 22.73 ± 0.12 

56 23.27 ± 0.16a 23.07 ± 0.17ab 22.64 ± 0.15b 

Breast  
 42 12.39 ± 0.12a 12.40 ± 0.14a 11.94 ± 0.11b 

56 12.77 ± 0.12a 12.43 ± 0.13ab 12.30 ± 0.13b 

TBRST4 
 42 16.25 ± 0.14a 16.27 ± 0.16a 15.54 ± 0.13b 

56 16.94 ± 0.18a 16.50 ± 0.18ab 16.18 ± 0.15b 

Leg  
 42 23.07 ± 0.12 23.09 ± 0.15 22.93 ± 0.14 

56 23.73 ± 0.14 23.91 ± 0.19 24.11 ± 0.21 

AB Fat  
 42   2.30 ± 0.1b   2.69 ± 0.09a   2.53 ± 0.09ab 

56   2.96 ± 0.11b   3.21 ± 0.08ab   3.34 ± 0.12a 

Supply 
Organs 

 42 11.74 ± 0.28 11.73 ± 0.30 11.85 ± 0.27 

  56   11.08 ± 0.29b   12.20 ± 0.37a   11.30 ± 0.27b 

a-b Means for a trait within an age but across lines are different (P < .05). 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 lines are selected for high and low % breast at four days of age, 
respectively. RAN = unselected random bred control. 
3 Rack = Skeletal system of the bird post parts removal. 
4 TBRST = Total Breast (Breast + Tenders) 
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Table 3.6 Meat quality trait measures (mean ± SEM) of BY41 broilers processed at 42 and 56 days 
posthatch after 4 generations of divergent selection. (N ≥ 55) 

  
Line Designation2 

Trait 
 

AGE 
 

HBY4 
 

RAN 
 

LBY4 
3L* 

 
42 48.86 ± 0.31b 49.84 ± 0.36a 49.60 ± 0.23ab 

56 50.53 ± 0.36 51.14 ± 0.41 51.43 ± 0.31 

4Shear Force 
(kg/cm2) 

 
42   2.71 ± 0.22   2.59 ± 0.18   2.50 ± 0.18 

 
56   2.75 ± 0.20   2.92 ± 0.26   2.94 ± 0.24 

5Drip Loss % 
 

42   3.31 ± 0.33b   4.40 ± 0.38a   4.23 ± 0.37ab 

  
56   4.00 ± 0.41   3.34 ± 0.36   3.88 ± 0.35 

 
6PH 

 
42   5.84 ± 0.03   5.76 ± 0.03   5.81 ± 0.03 

    56     5.68 ± 0.03     5.65 ± 0.03     5.73 ± 0.03 
a-b Means for a trait within an age but across lines are different (P < .05). 
1 BY4 (Four-Day Relative Breast Yield) 
2 HBY4 and LBY4 lines are selected for high and low % breast at four days of age, respectively. 
RAN = unselected random bred control. 
3 L* = Muscle Color Lightness Value measured using a Minolta CR-300 Colorimeter. 
4 Shear force as measured using WB Method previously described by Burke et al., 2003. 
5 Drip loss as measured using EZ-Driploss Method as described by Correa et al., 2007. 
6 PH measured using Testo 205 pH probe. 
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4. Thermal manipulation of commercial lines selected for different market ages and the impact on 
breast yield and meat quality characteristics. 

Abstract 

 Thermal manipulation (TM) from embryonic days 16 to 18 (E16 to E18) for 6 hours daily has been 

shown to promote growth.  Previous TM research focused on the effect of TM on embryos from standard 

yield broiler strains. Of interest to research was the effect of TM on high-yield broiler strain growth and 

body composition. TMs were performed on embryos from Hubbard x Cobb 500 (HxC) and R708 broiler 

crosses.  TM embryos showed improved body weights up to 35 days of age. Furthermore, the TM HxC 

showed an improved FCR compared to the control HxC.  TM had no effect on leg percentage, but did 

improve breast percentage in the TM HxC at 46 and 60 days and the TM R708 at 60 days.  Evaluations 

of meat quality parameters showed no difference between control and TM lines.  

4.1 Introduction 

Muscle mass is primarily made up of two components: muscle fiber number and fiber size.  

Currently, growth selection practiced by the industry promotes increased body weight and growth through 

muscle fiber hypertrophy, i.e. increased muscle fiber size.  Such selection practices coupled with 

selection for yield and feed conversion have resulted in vast genetic improvements in the modern broiler 

(Havenstein et al., 2003).  Unfortunately, it has been suggested that selection utilizing hypertrophy as the 

means of increasing muscle growth and yield may be limited in the future as fiber size reaches a 

physiological limit in growth (Mahon, 1999).  

Therefore, it is important for the poultry industry to continue to explore avenues that promote 

growth.  One of the possible techniques being examined is TM during incubation.  As the time needed to 

reach market weight in poultry has decreased, embryogenesis has increased as a proportion of the 

broiler’s lifespan (Halevy et al., 2006).  This prenatal period is of particular importance, as the number of 

muscle fibers formed during this stage will be a determining factor in the rate of hypertrophy during 

postnatal growth.  To understand the mechanics behind this, it is important to have a working knowledge 

of myogenesis. 

During embryogenesis, muscle precursor cells arise from the dermomytome, which is part of the 

mesodermal layer.  These muscle precursor cells undergo myogenic determination and are then referred 



84 
 

to as myoblasts.  These myoblasts proliferate and differentiate to form muscle fibers.  In avian species, 

there are three unique myoblast populations: (1) embryonic myoblasts, (2) fetal myoblasts, and (3) adult 

myoblasts. Of particular interest to this research are adult myoblasts, also referred to as satellite cells 

(Mauro, 1961).  As muscle cells are incapable of proliferation, satellite cells represent the only source of 

new nuclei needed for additional muscle growth.   

Myogenesis relies on a complex, multi-step process to signal muscle precursor cells to 

proliferate, differentiate, and fuse into myofibrils.  Three families of transcription factor networks are 

responsible for controlling myogenic development (Perry and Rudnick, 2000).  These networks are the 

paired-box transcription factors (Pax), basic helix-loop-helix (bHLH) superfamily and MADS (MCM1, 

agamous, deficiens, serum response factor).  Pax genes regulate stem cell determination and 

proliferation (Montarras et al., 2005). BHLH genes are needed for the activation of muscle genes and 

MADS work to regulate myogenesis. 

TM was originally devised as a method for improving thermotolerance by affecting the 

development of the hypothalamus-hypophysis-thyroid axis (HHTA), and the hypothalamus-hypophysis-

adrenal axis (HHAA) (Uni and Yahav, 2010). Temperature was chosen as the incubation factor to be 

altered as it is considered to be a major controlling factor in embryo development (Meijerhof, 2000). 

Multiple studies have been conducted to determine the optimal embryonic age, and incubation 

temperature needed to promote improved thermotolerance (Yahav et al., 2004a; b).  Improvements in 

thermotolerance made using TM have been demonstrated by lower body temperatures prior to slaughter 

(Piestun et al., 2008a; 2009a).   

Postnatal muscle growth is dependent on the prenatal formation of muscle fibers and the 

postnatal addition of satellite cell nuclei to increase muscle protein buildup (Halevy et al., 2006). TM 

applied from E16 to E18 is thought to promote satellite cell proliferation as it targets a key period of 

satellite cell population expansion (Hartley et al., 1992). An increased satellite cell population provides 

more genetic material to increase growth via hypertrophy.  Increased hypertrophy in broilers that 

underwent embryonic TM suggests TM results in increased satellite cell proliferation (Piestun et al., 

2013). 
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 It was also thought that the decrease in core body temperature resulting from TM may impact 

growth through a reduction in maintenance energy requirements. This reduction leaves more resources 

available for lean growth.  TM embryos exhibit increased breast yield as well as an improved FCR 

(Piestun et al., 2013).  Increased breast yield coupled with improved FCR would be of significant benefit 

to the poultry industry. 

Meat Quality 

Meat quality relies on several factors such as water holding capacity (WHC), texture, tenderness, 

color, and pH.  Meat quality has recently become a more prevalent issue in the poultry industry, as 

several of the factors that contribute negatively to meat quality, also negatively impact the production of 

value added products.  As the poultry industry now relies much more on value added products, as 

opposed to whole birds, maintaining/improving meat quality is a major industry concern. 

PSE and DVD 

Specifically two primary conditions affect meat quality in the poultry industry: Pale, Soft, 

Exudative (PSE) and Dry, Firm, Dark (DFD).  PSE is characterized by pale, soft almost gel-like meat, low 

pH with a poor WHC. Both meat classifications result from lactic-acid production prior to slaughter.  This 

lactic-acid production is a byproduct of glycolsis and results in the lowering of pH (Lawrie, 1998).  PSE 

meat is associated with pre-slaughter stress that increases glycolysis and lactic production. The 

increased lactic acid contributes to increased contraction of muscle fiber during rigor mortis, thus leaving 

less space in between muscle cells for water absorption. DFD, in contrast, is dark in color, firm with 

increased pH (Allen et al., 1997, 1998; Wulf et al., 2002).  DFD results from stress hours prior to slaughter 

exhausting glycogen reserves and giving time for lactic-acid metabolism (Hedrick et al., 1989; Gregory, 

1994; Lawrie, 1998).  This results in meat that doesn’t reach typical pH levels, hence the relatively high 

pH for DFD meat.  This meat is more prone to spoilage and is not favored by consumers, as the dark 

color is off-putting. 
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Industry Impact 

Meat quality becomes an issue as poor quality meat has a negative impact on the profitability of 

poultry producers.  Consumers rely on characteristics of visual appeal to judge the quality and freshness 

of poultry products (Froning, 1995).  A package of breasts with inconsistent color or excess water will 

often be passed over for a more uniform ideal product.  Furthermore, DFD meat’s increased pH provides 

an ideal environment for bacterial growth (Newton and Gill, 1981; Allen et al., 1998).  Increased bacteria 

growth increases the chance the product will not sell prior to spoilage and also displeases the consumer 

as it may spoil prior to consumer use.  Finally, PSE meat negatively impacts value added products as it 

has issues with emulsification, binding, and water retention (Barbut, 1996).  This limits the use of PSE 

meat in value-added products due to a reduction in protein functionality resulting in estimated losses 

upwards of $30 million per year in the US turkey industry (Strasburg and Linz, 1997).    

Evaluating Meat Quality 

Of interest to the poultry industry is how to adequately evaluate properties of meat that affect its 

quality.  As mentioned previously, some of the more common characteristics used in the evaluation of 

meat quality are muscle color, pH, tenderness and WHC.   

Muscle Color 

The method for evaluating muscle color via a colorimeter has been previously described (Barbut, 

1993, 1996; McCurdy et al., 1996).  This measure produces three variables, lightness (*L), redness (a*) 

and yellowness (b*).  L* value is a measurement commonly used for analysis.  L* values for poultry meat 

unaffected by PSE or DFD range from 48.0 to 53.0 (Qiao et al., 2001; Zhang and Barbut, 2005; Harford et 

al., 2014), while PSE meat expresses L* values greater than 53 and DFD meat L* values are typically 

less than 46 (Qiao et al., 2001). 

Muscle pH 

The spear probe method described by (Dosler et al., 2007) is being used in this experiment. The 

spear probe method was chosen as it is cost efficient, quick and repeatable.  PH measurement done 

using this method involves the insertion of a pH probe into breast tissue and the recording of the resulting 
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pH measurement.  Normal poultry meat has a pH between 5.7 and 6.1, with PSE meat pH values less 

than 5.7 and DFD pH values greater than 6.1 (Barbut, 1997; Woelfel et al., 1998; Zhang and Barbut, 

2005). 

Water Holding Capacity 

  WHC is measured by cook loss, drip loss or expressible product moisture.  Cook loss is 

measured by weighing the breast before and after cooking. Cook loss is an effective measurement, but 

some weight loss may also be attributed to fat loss in addition to moisture loss. Drip loss is measured by 

weighing breasts then storing the breast for a predetermined time period, then reweighing the breast.   

Expressible moisture is moisture forced out of the breast or other product when put under pressure for a 

given period of time.  Of use in this research is the EZ-Driploss method (Correa et al., 2007), which is 

being used to measure drip loss in poultry for the first time in this study as well as in chapter 3.  

Tenderness 

Tenderness is a measure of the total force or force/mm required to tear or shear a product.  

There are three common methods of assessing the tenderness of products: Allo-Kramer (AK), Warner-

Bratzler (WB), and Razor Blade (RB) method (Bratzler, 1932; Cavitt et al., 2004; 2005). Tenderness in 

this study is being evaluated using the WB method as previously described by Burke et al. (2003). 

4.2 Materials and Methods 

Broiler Populations 

 Two broiler crosses were sourced for this study based on their differing growth rates.  A 

commercial broiler cross (Hubbard Male x Cobb 500) (HxC) was chosen to represent a standard yield 

commercial broiler commonly used in the whole bird/parts market.  A high yield bird (Ross x Ross 708) 

(R708) was also added to represent higher yielding birds produced for the debone market. This 

dissimilarity in growth was ideal for the study in order to compare the effect of thermal manipulations in 

lines exhibiting different growth rates. 
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Data Collection 

 Fertile hatching eggs (N = 720 per cross) from HxC and R708 crosses were evenly divided 

across two thermal treatments.  Eggs were randomly distributed throughout 8 trays in two identical 

incubators (4 trays per incubator) in order to minimize potential variation attributable to differences in 

incubator microenvironment.  Incubation conditions for the control HxC and R708 populations were 

37.8°C with a 56% relative humidity (RH) for the duration of the incubation.  Incubation conditions were 

identical for the test HxC, and R708 populations up to 384 hours at which time thermal manipulations 

were implemented. Thermal manipulations involved the test HxC, and R708 incubator conditions being 

set at 39.5°C with a 65% RH for 6 hours beginning at 384 and repeated every 24 hours (384, 408, and 

432) until 438 hours.  At 438 hours eggs were transferred into 8 hatching trays by cross and treatment 

combination (2 hatching trays per cross-treatment combination). 

Hatch Window 

 Beginning 484 hours into incubation, and repeated every 4 hours until 512 hours of incubation the 

hatcher was opened and hatched chicks were collected, individually weighed, wing banded and recorded 

according to cross-treatment combination.  Chicks were then returned to hatching trays by cross-

treatment combination and removed at the end of the hatch window study period.  Chicks were re-

weighed prior to placement and placed according to cross-treatment combination. Birds were reared 

straight run in pens containing birds from an individual cross-treatment combination. Stocking density was 

approximately 40 birds per pen, but all pens were equalized to 24 birds at 7 days. All birds were provided 

feed and water ad libitum with a starter and finisher ration formulated to meet or exceed National 

Research Council (NRC) (1994) minimum standards. Beginning with Day 7, birds were weighed weekly, 

and feed consumption recorded, to assess feed conversion ratio (FCR). 

Sample 

Birds were sampled at 4, 7, 46, and 60 days of age posthatch.  At each sampling period birds 

(N≈48 per cross-treatment) were randomly selected regardless of sex to be necropsied. Birds sampled 
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were taken equally (N≈8 per pen) each processing age and all remaining birds were processed at the end 

of the trial.   

Processing 

Body weight, tender, breast, yolk, keel, drum, thigh weight and part weight relative to live weight 

were assessed beginning at four days posthatch, hereby referred to as Day 4.  In addition, tbe broiler 

weight without giblets (WOG), WOG post chill, and wing weight were obtained at 46 and 60 days of age.  

Body weight measurements were taken on all un-sampled birds at each sampling date, as well as 14, 21, 

28, 35, 42, 49 and 56 days of age posthatch. 

Broilers sampled prior to Day 46 were euthanized via CO2 asphyxiation.   Feed was withdrawn 

12 hours prior to euthanasia and the contents of the crop removed to avoid artificial body weight 

contributed by crop contents.  Sampled broilers were individually weighed, recorded and placed on trays 

and allowed to refrigerate at 1ºC for a minimum of three hours to promote the onset of rigor mortis. 

 Muscle Color, pH and Drip Loss 

 For birds processed on Day 46 and 60, the deboned pectoralis major was individually bagged 

and refrigerated at 1º C.  Twenty-four hours post slaughter breasts were removed from cold storage, and 

blotted dry. The right lobe of the pectoralis major was used for color measurements using a Minolta CR-

300 Colorimeter (Minolta Chroma Meter CR-300, Minolta Italia S.P.A., Milano, Italy)  to obtain L* value, 

color measurements were done at the top, center and base of the lobe. PH measurements were taken on 

the right lobe using a Testo 205 pH probe. 

Drip loss measurements were obtained via the EZ Driploss method (Rasmussen and Andersson, 

1996).  A drill was used to obtain circular cores from the right lobe.  Samples were then placed 

individually in driploss tubes, and stored for an additional 24 hours at 1º C.  At 48 hours post slaughter, 

the test tubes were weighed to obtain the weight of the combined sample-tube weight. The sample was 

then removed from the test tube and the tube reweighed to obtain the combined weight of the liquid and 

tube. EZ driploss (Correa et al., 2007) was then calculated as follows: 
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% Driploss = ((Tube with liquid WT) / (Tube with meat and liquid WT - Tube WT)) * 100  

Tenderness 

 The left lobe of the pectoralis major was used to assess tenderness.  Left lobes were cooked in 

an oven at 190º C until they reached an internal temperature of 74º C.  Breast lobes were then allowed to 

cool to room temperature prior to further testing.  Six 1.27-cm diameter cores were removed from each 

breast parallel to the muscle fiber orientation. These cores were sheared through the center with a 

Warner-Bratzler shear apparatus attached to an Instron 4466 (Instron Corp., Canton, MA, USA) with a 

55-kg load cell with a crosshead speed of 250mm/min (Burke et al., 2003).  

Data Analysis 

 Data from the four processing dates (d 4, 7, 46 and 60) were run in a 3-way full-factorial ANOVA 

with two crosses (HxC and R708), two incubation profiles (CTRL and TM), two sexes and the resulting 

interactions. No significant interaction between sex and other factors was found, and sex was removed 

from the model.  Cross by incubation was significant for many traits, so cross means by incubation were 

analyzed for presentation. The GLM procedure of SAS along with Duncan’s multiple range test using SAS 

9.3 (SAS Institute Inc., 2001, Cary, NC) was used to compare cross means within incubation treatments 

and to compare the incubation treatments within cross.  An alpha level of .05 was used to determine 

significance. 

4.3 Results 

Thermal manipulation led to differences in hatch time between treatment groups. The HxC CTRL 

had a longer hatching time than the HxC TM and the R708 CTRL had a longer hatching time than the 

R708 TM (Table 4.1).  There were no differences in hatching time between the CTRL crosses, but the 

R708 TM had a longer hatching time than the HxC TM (Table 4.1).  The distribution of hatching times for 

the four line-treatment combinations are shown in Figure 4.1.   TM resulted in differences in hatchability in 

the R708 cross; the R708 TM had a greater hatchability than the R708 CTRL (Table 4.1).   Within 

treatment, the HxC CTRL had a greater hatchability than the R708 CTRL, and the HxC TM had a greater 

hatchability than the R708 TM (Table 4.1). TM did not affect hatching weight, with no differences in 
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hatching weight being shown between the HxC CTRL and TM groups, or the R708 CTRL and TM groups 

(Table 4.1).  Within treatment, there were differences in hatching weight. Within the CTRL treatment, the 

HxC CTRL had a greater hatching weight than the R708 CTRL (Table 4.1).  This difference was mirrored 

in the TM groups with the HxC TM having a greater hatching weight than the R708 TM (Table 4.1). 

Body Weight and FCR 

 At 7, 14, 21, 28, and 35 days posthatch TM resulted in a greater body weight in the R708 TM 

than the R708 CTRL (Table 4.2).  At Day 21 the HxC CTRL had a greater body weight than the HxC TM, 

this was the only weekly weigh in which a difference in body weight was shown between the HxC CTRL 

and HxC TM (Table 4.2).  The HxC CTRL had a greater body weight than the R708 CTRL from Day 7 to 

Day 56 (Table 4.2).  The HxC TM exhibited a greater body weight than the R708 TM at days 21, 28 and 

35, then again had a greater body weight at 49 and 56 days posthatch (Table 4.2).    

TM resulted in an improved FCR in the HxC TM compared to the HxC CTRL at 14 and 21 days 

posthatch (Table 4.2). Differences in FCR would again emerge at 56 days with the HxC CTRL having a 

greater FCR than the HxC TM (Table 4.2).  TM showed a difference in the R708 cross at Day 35 with the 

R708 CTRL having a greater FCR than the R708 TM (Table 4.2).  No differences were found within the 

control treatment groups, but differences in FCR were shown at days 14 and 21, with the R708 TM 

having a greater FCR than the HxC TM (Table 4.2). 

Processing Data 

 At days 4 and 7 posthatch, the HxC broiler strain had a greater body weight than the R708 for 

both the CTRL and TM groups (Table 4.3).  The TM strains did however express a greater four-day 

weight than their respective strains in the CTRL treatment group (Table 4.3).  Keel weight was greater in 

the HxC TM, than the R708 TM at 4 days of age (Table 4.3).  Keel weight was also greater at 7 days of 

age in the HxC CTRL than the R708 CTRL (Table 4.3).  No differences in keel weight were found at 

either 4 or 7 days between treatments within line (Table 4.3). Differences in leg weight were found in both 

treatment groups at 4 and 7 days, with the HxC CTRL outperforming the HxC CTRL at both 4 and 7 days, 

while the HxC TM had a greater leg weight than the R708 TM at 4 days (Table 4.4). The TM strains did 
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however express a greater leg weight than their CTRL counterparts at 4 days of age (Table 4.4).  No 

differences in breast, tender or total breast weight were found between strain within treatments at either 4 

or 7 days (Table 4.4).  However, the TM strains had greater breast, tender, and total breast weights than 

the CTRL strain counterparts at 4 days (Table 4.4).  The TM strains also had greater tender weights than 

their respective CTRL strains at 7 days of age (Table 4.4).  Furthermore, the R708 TM exhibited greater 

breast and total breast weight at 7 days, than the R708 CTRL (Table 4.4).   

The differences seen in absolute leg weight were not shown in leg weight relative to live weight, 

with the only difference shown being the HxC CTRL having a greater leg percentage than the HxC TM at 

Day 7 (Table 4.5). Differences in breast weight relative to live weight and total breast weight relative to 

live weight were found at 4 days with the TM strains having a greater breast and total breast percentage 

than their corresponding CTRL strains (Table 4.5).  This trend continued in the R708 strain, with the R708 

TM having a greater breast and total breast percentage than the R708 CTRL at 7 days (Table 4.5).  

Differences between strains within treatment were shown at 7 days, with the R708 CTRL and TM strains 

outperforming the HxC strains in breast and total breast percentage (Table 4.5).    

No difference in body weight was shown within strain between treatments at 46 days of age 

(Table 4.3.) The HxC CTRL did express greater body weight than the R708 CTRL at 46 days (Table 4.3).  

At 60 days of age, the HxC strain had a greater body weight than the R708 in both the CTRL and TM 

treatment groups (Table 4.3).  Furthermore, the HxC CTRL had a greater body weight than the HxC TM 

at 60 days (Table 4.3).  The HxC CTRL WOG and WOGPC weights were greater than R708 CTRL at 46 

and 60 days (Table 4.3).  No differences in WOG or WOGPC were found between the HxC CTRL and 

HxC TM (Table 4.3).  The HxC TM and R708 TM were equivalent in WOG and WOGPC weight at 46 

days (Table 4.3).  Differences between the HxC TM and R708 TM were found for both traits at 60 days 

(Table 4.3).  No differences were found for WOG or WOGPC weight within strain between treatments 

(Table 4.3).  The HxC CTRL had a greater rack weight than the R708 CTRL at 46 and 60 days, but did 

not differ from the HxC TM (Table 4.3).  The HxC TM displayed a greater rack weight than the R708 TM 

at Day 60 (Table 4.3).  No differences in rack weight were shown within strain between treatments (Table 

4.3). 
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The HxC CTRL had a greater leg weight than the R708 CTRL at 46 and 60 days (Table 4.4).  The 

HxC CTRL also had a greater leg weight than the HxC TM at 60 days (Table 4.4).   The drum and thigh 

weights for the HxC CTRL showed similar differences from the R708 CTRL, with the HxC CTRL having 

greater thigh and drum weights at 46 and 60 days (Table 4.4).  Furthermore, the HxC CTRL had a greater 

thigh weight than the HxC TM (Table 4.4).  The HxC TM had a greater drum weight at 46 days and a 

greater leg, thigh and drum weight at 60 days than the R708 TM at 60 days (Table 4.4).  No differences in 

these traits were found between treatments within the R708 strain at 46 or 60 days (Table 4.4). Breast, 

tender, and total breast weight showed no differences within strain between treatment at days 46 and 60 

(Table 4.4).  Furthermore, no differences were found within treatment between strains for either breast or 

total breast at 46 or 60 days (Table 4.4).   Differences in tender weight between strains within treatment 

were found with the HxC CTRL having a greater tender weight than the R708 CTRL at 60 days and the 

HxC TM having a greater tender weight than the R708 TM at 46 and 60 days (Table 4.4). 

 Leg weight relative to live weight was not impacted by TM, with neither the R708 nor the HxC 

expressing differences in leg percentage between treatments (Table 4.5).  Within the CTRL treatment, the 

HxC expressed a greater leg percentage than the R708 at both 46 and 60 days (Table 4.5).  Within the 

TM treatment, the HxC had a greater leg percentage than the R708 at 60 days (Table 4.5).   Thigh 

percentage was also not impacted by TM, with no differences being found between treatments within 

strain (Table 4.5).  The HxC CTRL had a greater percentage thigh than the R708 CTRL at 46 and 60 

days (Table 4.5). The HxC TM had a greater thigh percentage than the R708 TM at Day 60 (Table 4.5).  

Drum percentage was impacted by treatment with the R708 CTRL having a greater percentage drum 

than the R708 TM, at 46 and 60 days (Table 4.5).  Drum percentage was greater in the HxC CTRL than 

R708 CTRL at Day 60 (Table 4.5).  The HxC TM had a greater drum percentage than the R708 TM at 46 

and 60 days (Table 4.5).  No differences in breast percentage between treatments within strain were 

found at 46 days (Table 4.5). However, the HxC TM and R708 TM both displayed a greater breast 

percentage than their CTRL counterparts at 60 days (Table 4.5).  Differences in breast percentage were 

found between strains within treatment at 46 and 60 days with the R708 CTRL and TM outperforming 

their respective HxC counterparts (Table 4.5).  The R708 exhibited a difference in total breast percentage 

between treatments within strain with the R708 TM having a greater total breast percentage than the 
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R708 CTRL (Table 4.5).    At 46 and 60 days, the R708 CTRL and TM displayed a greater total breast 

percentage than their corresponding HxC strains (Table 4.5). 

Meat Quality 

 Within strains and between treatments only drip loss percentage showed a difference with the 

R708 CTRL having a greater drip loss percentage than the R708 TM at 46 days (Table 4.6).  Between 

strains and within treatment several differences in meat quality parameters were found.  The HxC CTRL 

and TM had a greater muscle color lightness value (L*) than their R708 counterparts at 46 and 60 days 

(Table 4.6).  The HxC CTRL also had a greater shear force mean than the R708 CTRL at 60 days (Table 

4.6).  No differences were found for drip loss percentage between strains within treatment at either 46 or 

60 days (Table 4.6).  No difference in pH was found between strains within treatment at 46 days (Table 

4.6).  The R708 CTRL did exhibit a greater pH than the HxC CTRL at 60 days (Table 4.6).  No difference 

in pH was shown between the HxC TM and R708 TM strains (Table 4.6). 

4.4 Discussion 

The purpose of this study was to evaluate how thermal manipulation affects lines selected for 

different processing ages.  Previous studies have utilized a standard yield strain exclusively (Piestun et 

al., 2008a, b, 2009a, 2011).  It was of interest to researchers to determine how differing genetics may 

impact the effect of thermal manipulation.  The decrease in hatch time in TM groups is an artifact of the 

increase in hatch temperature.  There was no difference in hatchability between the HxC treatment 

groups, and the R708 TM had a greater hatchability than the R708 CTRL. The lack of a negative impact 

on hatchability is consistent with research using TM from E16 to E18 for 3 hours per day (Piestun et al., 

2009b). Research utilizing longer TM duration 12 hours per day from E7 to E16, showed similar results 

with no impact on hatchability found by Piestun et al. (2008a); and a slight negative impact found by 

Piestun et al. (2013) using the same extended TM procedure.  The lack of a negative impact by TM on 

hatchability is of particular importance because if thermal manipulation is to be regularly used to boost 

performance, it will need to show minimal to no impact on hatchability.   

Growth performance was temporarily improved through the use of thermal manipulation with 

increases in body weight being shown in the TM groups of both lines at 4 days of age and with the 
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increase in body weight continuing in the R708 up to 35 days of age.  At typical broiler processing ages 

(46 and 60 days) there was no impact on live weight within the R708 between treatments, but the HxC 

TM was negatively impacted exhibiting a 5.3% lower body weight than HxC CTRL. The negative impact 

on body weight was not shown in research using TM for 12 hours/day from E 7 to E16 reared in cages to 

35 days (Piestun et al., 2008a) but was shown in studies done using the same TM procedure with broilers 

being reared on wood shavings to 35 days (Loyau et al., 2013; Piestun et al., 2013).  No difference in 

FCR was shown between strains within treatment at either 46 or 60 days.  However, TM did result in a 

decreased FCR for the HxC TM when compared to the HxC CTRL consistent with previous research 

(Piestun et al., 2013) but not to the same extent as previously shown.  Given that feed costs represent a 

significant portion of total production costs, producers may be willing to accept a slight decrease in growth 

in return for an improved FCR.   

Light meat (breast and tenders) and dark meat (drum, thigh) were affected differently by TM.  No 

differences in leg or thigh percentage were shown between treatments within strain at 46 or 60 days and 

only drum percentage showed a difference with the R708 CTRL having a greater percentage drum than 

the R708 TM at 46 and 60 days.  Given there appears to be no trend in any of the leg traits, TM may not 

be useful in impacting leg muscle development. Differences in how TM affect light and dark meat 

development may relate to muscle fiber type, as light meat consists primarily of glycolytic fibers, while 

dark meat primarily consists of oxidative muscle fibers (Brandenbourg, 2013).  TM having a greater effect 

in glycolytic fibers may relate to glycolytic fibers having a greater growth potential than other fibers 

(Henckel, 1992).  Furthermore, oxidative fibers relying on oxidative metabolism may be limited in size as 

a smaller diameter is more conducive to oxygen metabolism (Macrae et al., 2006). A larger diameter 

therefore would negatively impact oxygen diffusion, and create a limit to oxidative fiber size. Further 

research will be needed to expound on differences in TM effect relating to fiber type.  However, breast 

percentage was impacted by TM showing improvement at four days in both TM strains compared to the 

CTRL strains and again at 60 days. Total breast weight relative to live weight was also improved in the 

HxC TM compared to the HxC CTRL at 60 days.  Improvement in body composition in TM strains is 

consistent with previous TM research (Halevy et al., 2006; Collin et al., 2007; Piestun et al., 2011; 2013).  

Improvements in breast yield are attributable to increased muscle fiber hypertrophy in TM broilers 
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(Piestun et al., 2009b; 2011) made possible by TM targeting a period of satellite cell population expansion 

(Hartley et al., 1992) leading to increased satellite cell proliferation and subsequent muscle fiber 

hypertrophic growth.   

TM appeared to have no effect on the muscle quality of TM embryos at broiler age.  Drip loss at 

46 days was the only trait to exhibit a treatment effect and the drip loss values were consistent with 

control and TM treated Cobb 500 broilers processed at 35 days ranging from 1.99 - 3.67% (Loyau et al., 

2013). This study also found no difference in drip loss percentage between control and TM broilers 

(Loyau et al., 2013).  Muscle color values (L*) failed to differ between TM and CTRL strains and were 

consistent with research showing mean L* value for poultry meat unaffected by PSE and DFD ranging 

from 48.0 to 53.0 (Qiao et al., 2001; Zhang and Barbut, 2005; Harford et al., 2014).  The L* values 

calculated are consistent with research showing TM had no impact on muscle color (Loyau et al., 2013).  

Shear force values were not affected by TM and were consistent with shear force values in broilers 

processed between 42 and 52 days of age (Cavitt et al., 2004, Lyon et al., 2004).  PH was also 

unaffected in TM embryos at broiler age with results being consistent with pH calculated from broilers not 

affected by PSE or DFD (Zhang and Barbut, 2005; Harford et al., 2014) and lower than pH values 

calculated from DFD meat (Zhang and Barbut, 2005).   

In summary, TM of embryos of lines expressing different growth rates was effective in eliciting 

responses in body composition at broiler age and broiler growth up to 35 days. These responses are 

evidenced by the increased breast weight relative to live weight percentage exhibited by both TM strains 

when compared to their control counterparts, as well as the improvements in body weights shown in the 

by the R708 up to Day 35.  These responses occurred with little negative impact on hatchability and no 

negative impact on meat quality.  FCR improved at broiler age in the HxC TM embryos, but no impact 

was on FCR was shown in the R708.  The lack of impact on hatchability plus increased relative breast 

yield at processing age suggests TM of embryos may be a viable method to improve body composition in 

broilers.  However, as it appears the HxC strain showed greater benefit from TM than the R708 at 

processing age, further research and testing is necessary to implement TM effectively in broilers 

expressing differing growth rates and selected for different market ages.    
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4.5 Figures and Tables 

Figure 4.1 Distribution of hatching time of two broiler strains (HxC, R708), incubated under control or 
thermally manipulated conditions. 
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Table 4.1 Hatch of fertile, hatch weight and hatch time measures (mean ± SEM) of chicks from 
two broiler strains (HxC, R708), incubated under control or thermally manipulated (TM) 
conditions. 

Control TM 

Variable HxC R708 HxC R708 

Hatchability 
 

  89.98 ± 0.05a   83.20 ± 0.07b,y   89.98 ± 0.05a   86.85 ± 0.05b,x 

Hatch Weight 
 

  51.41 ± 0.27a   49.88 ± 0.27b   50.85 ± 0.27a   49.51 ± 0.29b 

Hatch Time   501.96 ± 0.41x 501.53 ± 0.48x   492.32 ± 0.35b,y 493.78 ± 0.37a,y 
a-b Means for a variable within an incubation treatment are different (P < .05). 
x-y Means for a variable within a genetic group are different (P < .05). 
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Table 4.2 Body Weight (BWT) and Feed Conversion Ratio (FCR) measures (means ± SEM) of two 
broiler strains (HxC, R708), incubated under control or thermally manipulated conditions over time. 
(N = 6) 

Control TM 

Trait Age HxC R708 HxC R708 

BWT (g) 7       184 ± 2a       164 ± 5b,y        185 ± 3         179 ± 3x 

14       501 ± 6a       429 ± 7b,y        486 ± 6         471 ± 7x 

21     1036 ± 6a,x       891 ± 14b,y      1006 ± 11a,y         950 ± 4b,x 

28     1726 ± 56a     1475 ± 25b,y      1652 ± 28a       1573 ± 11b,x 

35     2447 ± 15a     2148 ± 36b,y      2375 ± 18a       2244 ± 12b,x 

42     3154 ± 29a     2795 ± 69b      3087 ± 37       2935 ± 57 

49     3731 ± 37a     3375 ± 71b      3610 ± 73a       3426 ± 21b 

56     4613 ± 49a     4162 ± 62b      4501 ± 37a       4088 ± 119b 

FCR 14      1.16 ± 0.02x       1.10 ± 0.10       1.06 ± 0.01b,y        1.14 ± 0.02a 

21      1.28 ± 0.01x       1.29 ± 0.05       1.23 ± 0.01b,y        1.27 ± 0.01a 

28      1.37 ± 0.01       1.37 ± 0.03       1.34 ± 0.01        1.35 ± 0.01 

35      1.62 ± 0.05       1.71 ± 0.01x       1.65 ± 0.03        1.64 ± 0.01y 

42      1.75 ± 0.01       1.79 ± 0.01       1.71 ± 0.01        1.72 ± 0.04 

49      1.85 ± 0.03       1.85 ± 0.01       1.83 ± 0.03        1.83 ± 0.01 

    56        1.89 ± 0.03x       1.87 ± 0.01         1.82 ± 0.04y        1.87 ± 0.04 

a-b Means for a trait within an incubation treatment at a given age are different (P < .05). 
x-y Means for a trait within a genetic group at a given age are different (P < .05). 
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Table 4.3 Processing measures (g)  (means ± SEM) of two broiler strains (HxC, R708), incubated 
under control or thermally manipulated (TM) conditions at four processing ages (4, 7, 46, 60) (N ≥ 
42). 

Control TM 

Trait Age HxC R708 HxC R708 

BWT 
 4   100 ± 1a,y     90 ± 2b,y   108 ± 1a,x   101 ± 1b,x 

  7   181 ± 2a   169 ± 3b   186 ± 2a   177 ± 3b 

  46 3491 ± 62a 3179 ± 65b 3321 ± 60 3197 ± 60 

  60 4979 ± 88a,x 4259 ± 100b 4713 ± 83a,y 4378 ± 102b 

      
Keel1 

 4   2.30 ± 0.08  2.14 ± 0.08 2.45 ± 0.08a   2.26 ± 0.06b 

  7   4.86 ± 0.13a  4.51 ± 0.15b 5.07 ± 0.14   4.92 ± 0.14 

  
Rack2 

 46    739 ± 15a   646 ± 14b   705 ± 17    662 ± 16 

  60  1089 ± 28a   906 ± 24b 1044 ± 22a    922 ± 27b 

WOG3 
 46  2534 ± 46a  2308 ± 83b  2426 ± 47  2343 ± 77 

  60  3769 ± 47a  3264 ± 68b  3638 ± 44a  3358 ± 80b 

WOGPC4 
 46  2619 ± 47a  2379 ± 78b  2497 ± 48  2412 ± 81 

    60    3880 ± 47a  3348 ± 71b    3714 ± 44a  3413 ± 79b 
a-b Means for a trait within an incubation treatment at a given age are different ( P < .05). 
x-y Means for a trait within genetic group at a given age are different (P < .05). 
1 Keel = Skeletal support of the breast post breast removal. 
2 Rack = Skeletal system of the bird post part removal. 
3 WOG = Without Giblets. 
4 WOGPC = Without Giblets Post Chill. 
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Table 4.4 Breast and leg weight measures (g) (means ± SEM) of two broiler strains (HxC, R708), 
incubated under control or thermally manipulated (TM) conditions at four processing ages (4, 7, 46, 60) 
(N ≥ 42). 

Control TM 

Trait Age HxC R708 HxC R708 

Breast  
 4   3.99 ± 0.17y   3.56 ± 0.17y   4.85 ± 0.11x     4.79 ± 0.16x 

  7 13.91 ± 0.37 14.32 ± 0.46y 14.66 ± 0.37   15.84 ± 0.47x 

  46    659 ± 18    674 ± 18    639 ± 14      676 ± 13 

  60  1044 ± 23    996 ± 28  1035 ± 24    1044 ± 23 

      
Tenders  

 4   0.87 ± 0.04y   0.79 ± 0.04y   1.08 ± 0.03x     1.07 ± 0.04x 

  7   3.26 ± 0.09y   3.34 ± 0.13y   3.60 ± 0.09x     3.78 ± 0.12x 

  46    137 ± 3    132 ± 3    141 ± 2a      132 ± 2b 

  60    207 ± 5a    185 ± 4b    202 ± 4a      176 ± 5b 

  
TBRST1 

 4   4.85 ± 0.21a,y   4.35 ± 0.21b,y   5.93 ± 0.13x     5.86 ± 0.20x 

  7 17.17 ± 0.45 17.66 ± 0.57y 18.25 ± 0.45   19.62 ± 0.57x 

  46    805 ± 19    807 ± 21    780 ± 17      809 ± 14 

  60  1252 ± 27  1179 ± 31  1237 ± 27    1220 ± 26 

Leg 4 14.57 ±  0.36a,y 13.51 ± 0.38b,y 15.56 ± 0.25a,x   14.72 ± 0.25b,x 

7 28.37 ± 0.57a 25.93 ± 0.19b 28.40 ± 0.57   27.25 ± 0.64 

46    766 ± 17a    683 ± 13b    722 ± 17      681 ± 16 

60 1125 ± 30a,x    933 ± 26b  1042 ± 24a      932 ± 26b 

Thigh  46   452 ± 10a    398 ± 8b    425 ± 9      404 ± 10 

60   668 ± 18a,x    556 ± 16b    617 ± 13a,y      557 ± 15b 

Drum  46    314 ± 6a    283 ± 6b    297 ± 7a      276 ± 7b 

    60      457 ± 12a    380 ± 10b      424 ± 11a      375 ± 11b 
a-b Means for a trait within an incubation treatment at a given age are different ( P < .05). 
x-y Means for a trait within genetic group at a given age are different (P < .05). 
1 TBRST = Total Breast (Breast + Tenders). 
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Table 4.5 Breast and leg weight relative to live weight measures (%) (means ± SEM) of two broiler 
strains (HxC, R708), incubated under control or thermally manipulated conditions at four processing 
ages (4, 7, 46, 60) (N ≥ 42). 

Control TM 

Trait Age HxC R708 HxC R708 

Breast  
 4       3.92 ± 0.11y     3.81 ± 0.13y      4.43 ± 0.07x      4.64 ± 0.10x 

  7       7.62 ± 0.12b     8.46 ± 0.12a,y      7.84 ± 0.12b      8.88 ± 0.14a,x 

  46     19.02 ± 0.24b   20.99 ± 0.29a    19.35 ± 0.26b    21.25 ± 0.33a 

  60     21.29 ± 0.22b,y   23.16 ± 0.28a,y    22.02 ± 0.29b,x    23.97 ± 0.27a,x 

  
TBRST1  4       4.85 ± 0.15y     4.64 ± 0.16y       5.47 ± 0.09x       5.68 ± 0.13x 

  7       9.40 ± 0.14b   10.43 ± 0.15a,y       9.75 ± 0.14b     11.00 ± 0.16a,x 

  46      23.15 ± 0.30b   25.16 ± 0.35a     23.65 ± 0.30b     25.43 ± 0.37a 

  60      25.53 ± 0.24b,y   27.43 ± 0.32a     26.36 ± 0.32b,x     28.06 ± 0.35a 

  
 Leg   4      14.69 ± 0.18   14.76 ± 0.19     14.38 ± 0.16     14.48 ± 0.13 

 7      15.67 ± 0.14x   15.24 ± 0.19     15.08 ± 0.17y     15.36 ± 0.18 

 46      22.04 ± 0.19a   21.45 ± 0.17b     21.78 ± 0.19     21.25 ± 0.20 

 60      22.65 ± 0.21a   21.73 ± 0.18b     22.14 ± 0.19a     21.24 ± 0.19b 

Thigh  46      13.00 ± 0.15a   12.57 ± 0.13b     12.81 ± 0.15     12.62 ± 0.14 

60      13.44 ± 0.15a   12.87 ± 0.15b     13.08 ± 0.13a     12.70 ± 0.13b 

Drum  46        9.04 ± 0.08    8.88 ± 0.08x       8.97 ± 0.09a       8.63 ± 0.09b,y 

60        9.21 ± 0.10a    8.83 ± 0.08b,x       9.07 ± 0.11a       8.53 ± 0.10b,y 
a-b Means for a trait within an incubation treatment at a given age are different ( P < .05). 
x-y Means for a trait within genetic group at a given age are different (P < .05). 
1 TBRST = Total Breast (Breast + Tenders) 
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Table 4.6 Meat quality means ± SEM of two broiler strains (HxC, R708), incubated under control or 
thermally manipulated (TM) conditions collected at broiler processing ages (46,60).  

Control TM 

Trait Age HxC R708 HxC R708 
1L* 46 51.40 ± 0.36a 49.82 ± 0.40b 51.05 ± 0.38a 49.69 ± 0.30b 

60 53.56 ± 0.36a 52.22 ± 0.42b 53.31 ± 0.36a 52.12 ± 0.40b 

2Shear Force 
(kg/cm2) 

46   4.00 ± 0.69   3.72 ± 0.39   3.43 ± 0.30   3.21 ± 0.40 

60   3.43 ± 0.37a   2.41 ± 0.16b   2.73 ± 0.25   3.02 ± 0.31 

3Drip Loss % 46   3.38 ± 0.25   3.96 ± 0.27x   3.00 ± 0.29   2.83 ± 0.29y 

60   3.34 ± 0.30   3.62 ± 0.31   4.23 ± 0.41   3.59 ± 0.36 

4PH 46   6.00 ± 0.05   6.15 ± 0.07   6.13 ± 0.07   6.16 ± 0.05 

    60     5.88 ± 0.04b   6.01 ± 0.04a     5.92 ± 0.03   5.91 ± 0.04 
a-b Means for a trait within an incubation treatment at a given age are different ( P < .05). 
x-y Means for a trait within genetic group at a given age are different (P < .05). 
1 L* = Muscle Color Lightness Value measured using a Minolta CR-300 Colorimeter. 
2 Shear force as measured using WB Method previously described by Burke et al., 2003. 
3 Drip Loss as measured using EZ-Driploss Method as described by Correa et al., 2007. 
4 PH measured using Testo 205 pH probe. 
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CONCLUSION 

 Selection for increased broiler growth and yield has made the poultry industry the number one 

source of protein.  However, it is clear that growth selection has negatively impacted broiler physiology 

and fitness.  The continued use of modern selection techniques has resulted in increases in traditional 

meat quality issues, as well as the introduction of new muscle myopathies such as white striping and 

wooden breast.  To combat these issues development of novel methods of growth selection are required. 

To that end divergent selection for BY4 was undergone to utilize increases in muscle fiber number, as 

opposed to traditional growth selections utilizing the increase in muscle fiber size.  Furthermore, TM an 

embryonic technique used to promote postnatal broiler growth and thermotolerance was evaluated to 

assess its impact on broiler lines selected for different growth rates and the subsequent impact on meat 

quality.  The purpose of this dissertation was to develop a new selection technique for promoting growth 

and test a promising new technique, as well as evaluating the impact of these techniques on broiler 

growth, fitness and meat quality. 

 Short term divergent selection for BY4 has shown that selection for muscle fiber number is 

possible and provides a heritability that lends itself to effective use in selection.  Additionally, divergent 

BY4 selection posthatch was capable of manipulating embryonic development, suggesting that selection 

was effective in targeting the prenatal period in which changes in muscle fiber number occur. Further 

experimentation and research will be needed to evaluate the nature of these changes and provide a 

selection technique that can be adopted by the poultry industry.   

 Short term divergent selection for BY4 was also shown to promote broiler muscle growth, while 

having minimal impact on broiler fitness and muscle quality.  This was demonstrated by increases in 

broiler growth up to Day 28, increased breast yield at processing age and no differences in meat quality. 

It is believed that further selection will result in continued divergence in body weight and breast 

percentage.  Future research will focus on the impact of long term divergent BY4 selection and 

histological examination of muscle tissue from the BY4 lines. 

 TM was shown to be effective in altering the body composition of broiler strains expressing 

different growth rates.  The improvements in breast percentage expressed by TM strains compared to 
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their control counterparts demonstrate this change.  Contrary to traditional growth selection these 

improvements in body composition occurred without concomitant decreases in meat quality.  While both 

strains showed improved body composition, the degree to which performance improved differed.  Further 

research will be needed to tailor TM use based upon growth rates and differences in genetics.  Overall 

results of this research suggest that promising new techniques exist to promote broiler growth, fitness and 

muscle quality, given further development these techniques may one day be of benefit to the poultry 

industry. 
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