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ABSTRACT 

Economic production from low permeability shale gas formations has been made possible 

by the introduction of horizontal drilling and hydraulic fracturing. To ensure that gas production 

from these formations is optimized and carried out in an environmentally friendly approach, 

knowledge about the patterns of gas flow in the shale reservoir formation is required. 

This work presents the development of a shale gas reservoir model for the characterization 

of flow behavior in hydraulically fractured shale formations. The study also seeks to develop more 

computationally efficient approaches towards the modeling of complex fracture geometries. The 

model evaluates the migration patterns of gas in the formations, and investigates the range of 

physical conditions that favor the direction of gas flux towards the wellbore and decreases the 

probability of gas escape into the overlying formation.  

Two conceptual models that bypass the need for explicit fracture domains are utilized for 

this study, the semi-explicit conceptual model and the fractured continuum model. Fracture 

complexity is accounted for by modeling induced secondary hydraulic fractures. A novel approach 

to modeling the secondary fractures, which utilizes asymmetrical fractal representations is also 

implemented, and the governing equations for flow in the system are solved numerically using 

COMSOL Multiphysics 4.4b, a finite-element analysis software package. A parametric study is 

conducted on the reservoir and fracture properties and an assessment of their impacts on the 

production and formation leak off rates examined. 

The study results are presented and analyzed using a combination of transient pressure 

surface maps, production rate data curves and transient velocity distribution maps. Optimization 

of gas production rates from the studied formation is shown to be achievable by the use of long 

lateral fractures placed orthogonal to the wellbore. There is a need for an accounting of the distinct 

fracture systems present in a fractured formation for the accurate prediction of production values 



   

 
 

and flow patterns arising in the formation. This work extends the understanding associated with 

shale gas reservoir modeling and demonstrates the applicability of the fractured continuum model 

approach for the simulation of complex fractured shale formations. 
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CHAPTER 1 

INTRODUCTION 

1.1. Unconventional Gas 

Natural gas is one of the major sources of energy in the United States (US), and it 

contributes about 22% of the country’s domestic energy resource (OECD/IEA, 2012). The gas- 

which is part of the petroleum fluids formed as a result of thermal maturity of organic matter 

sediments that are deeply buried in the subsurface, can be found in both conventional and 

unconventional formations.  Conventional formations are also referred to as reservoir rocks. They 

are typically a high porosity and high permeability rock formation that allow for ease of production 

and development but represent a small proportion of the total oil and gas reserves. Unconventional 

gas resources – including tight sands, coal-bed methane, and gas shales – constitute some of the 

largest reserves of unexploited natural gas resources. They tend to have enormous concentrations 

of the resource, occur in fine-grained low permeability rocks i.e. lower quality formations, and 

most importantly, they cannot be recovered economically without application of improved 

stimulation, extraction or recovery technologies. The relationship between conventional and 

unconventional resources can be visualized by the resource triangle in Figure 1.1.  

 Unconventional gas resources represent a potential long-term global resource of natural 

gas. These resources are particularly attractive to natural-gas producers due to their production life 

and stabilizing influence on reserve portfolios. Outside the US, with a few exceptions, 

unconventional gas resources have largely been overlooked and understudied. Activities required 

to produce gas from this sources has been previously considered as impractical because of the very 

poor permeability of the rock.(Chianelli et al., 2011; Rao, 2012)  
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 However, research and development into the geological controls and production 

technologies for these resources during the past several decades has enabled operators in the US 

to begin to unlock the vast potential of these challenging resources. These technological 

advancements have resulted in a substantial increase in economically recoverable reserves that 

were previously thought to be uneconomic. This in turn has led to an increase in the amount of 

natural gas reserves the country has discovered and produced since its almost nonexistent 

production levels in the early 1970s. Unconventional resources have since become an important 

component of the US domestic natural-gas supply base for many years and the volumes of gas 

produced from unconventional resources in the US are projected to increase in importance over 

the next 25 years. In the year 2010 alone, unconventional gas accounted for 50% of the estimated 

recoverable reserves and nearly 60% of total gas production in the US (OECD/IEA, 2012)– See 

Table 1. 1  

 

 

 

 

 

 

 

 

Figure 1.1  The Resource Triangle (IEA, 2012 ‘Golden Rules for a golden Age of Gas: World 
Energy Outlook Special Report on Unconventional Gas’) 
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Table 1.1 Remaining recoverable natural gas resources and production by type in the 
United States (OECD/IEA, 2012) 

            Recoverable resources (tcm)              Production (bcm)

 End-2011 Share of total 2005 2010 Share of total 
(2010) 

Unconventional gas 37 50% 224 358 59% 

      Shale gas 24 32% 21 141 23% 

      Tight gas 10 13% 154 161 26% 

      Coalbed methane 3 4% 49 56 9% 

Conventional gas 37 50% 288 251 41% 

Total 74 100% 511 609 100% 

    Sources: IEA analysis and databases. 

 

1.2. Shale Formations 

Shale accounts for more than half of the earth’s sedimentary rock and includes a wide 

variety of vastly differing formations that range from the organic rich, fine-grained rocks of the 

Antrim Shale in the Michigan Basin to the variable facies rocks of the Lewis Shale in the San Juan 

Basin(Seto, 2011). Gas shales refer to fine-grained geological rock formations rich in clays which 

are capable of storing significant amounts of gas, that have been produced by the thermal 

transformation and maturation of  fine organic sediments deposited in a low energy  and fairly 

quiet environments, such as a tidal flat or a deep-water basin.  These organic‐rich formations were 

previously believed to function as source rocks and seals for gas accumulating in stratigraphically 
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proximal sandstone and carbonate reservoirs of otherwise conventional onshore gas developments 

(Frantz and Jochen, 2005; OECD/IEA, 2012).   

Shale gas reservoirs are typically comprised of two distinct porous media: the shale matrix 

containing the majority of gas storage in the formation but with a very low permeability and the 

fracture network with a higher permeability but low storage capacity. Natural gas in shale 

reservoirs is believed to be stored as “free gas” in both shale matrix and natural fracture system, 

and as “adsorbed gas” on the surface of matrix particle i.e. there are three distinct forms in which 

shale gas can be present in the formation: as free gas in rock pores, free gas in natural fractures, 

and adsorbed gas on organic matter and mineral surfaces. These different storage mechanisms 

affect the speed and efficiency of gas production(Song, 2010). 

Unlike conventional gas accumulations which exist in discrete fields, – i.e. the boundaries 

of the reservoir are defined over a limited area - gas saturations in shales exist over a wide area, 

making exploration risk associated with these plays very low. The rock is characterized by low 

porosity (usually less than 10% of the total volume) and low permeability (micro- to nano-darcy 

range). The permeability of shale is about one-millionth that of a conventional gas reservoir rock, 

and as such, specific technologies need to be utilized to achieve commercial gas flow rates. The 

low recovery rates from shale formations are also dependent on the porosity controls of the rock 

formation, as the gas is usually trapped within the limited disconnected pore spaces or present 

mostly in the adsorbed form (Cipolla et al., 2009; Seto, 2011; OECD/IEA, 2012; Rao, 2012) . 

Shale gas accounts for a huge part of the unconventional gas resources present and 

produced in the US (as reported in Table 1), and the production of natural gas from shale is one 

of the most rapidly expanding trends in the onshore gas industry. This increased activity is made 

possible because of the discovery and implementation of improved exploration techniques to 
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recover the gas i.e. horizontal drilling and hydraulic fracturing; as well as, the favorable economics 

that has been associated with natural gas production (Arthur et al., 2008; Soeder, 2012) Figure 1.2 

shows the approximate locations of producing and prospective gas shales across the United States. 

 

 

 

 

Figure 1.2  Map of Shale Gas Basins in the Lower 48 states (EIA 2012) 
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1.3. Hydraulic Fracturing  

Over the years, a variety of technologies have been developed to enhance flow from low 

permeability reservoirs. These include acid injection procedures, which involve the treatment of 

the rock formation to dissolve some of the rock minerals and enhance the rock permeability; 

horizontal drilling -the use of long lateral sections in order to increase the surface area of the 

wellbore available for fluid recovery; and hydraulic fracturing – a process that has become the 

most common technology in recent years (OECD/IEA, 2012). 

The process of hydraulic fracturing involves pumping proppant-laden viscous fluid at high 

rates and high pressures into the rock formation through encased wells. The objective of pumping 

a fracture treatment is to crack the reservoir rock around the borehole and place proppants, which 

are typically solid materials in particulate form, in the cracks to keep them open, allowing for the 

formation of a permeable conduit through which the rock can release its gas. The newly fractured 

formation has an increased effective permeability and thus enhances fluid flow and recovery to the 

wellbore (Veatch et al., 1989; Taleghani, 2009; ALL Consulting, 2012).  

Fracturing is an enhanced oil recovery technique used as a means of stimulating flow in 

wells with declining production rates. The process dates back to the 1860s, when an explosive 

such as nitroglycerin was employed to break up the rock to increase oil flow rates. Although the 

increased recovery desired was achieved, the hazardous nature of the process inspired studies on 

safer approaches to fracturing, and in 1947, the first experimental hydraulic fracturing job- 

utilizing gelled gasoline and sand as the fracking fluid-was conducted by Stanolind oil in the 

Hugoten gas field in Kansas.  With over 60 years of commercial utilization, and about a million 

oil and gas wells fractured in the United States alone, hydraulic fracturing has matured into a highly 
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developed technology, estimated to account for about 70% of North America’s future natural gas 

development (NPC, 2011; OECD/IEA, 2012).  

Hydraulic fracturing stimulations are varied. The type of stimulation depends on the 

geometry of the well as well as the type of resource being stimulated. Conventional hydraulic 

fracture treatments requiring the use of high viscosity fluids containing high concentrations of 

proppant are utilized to produce short wide fractures and bypass near well bore damage in small 

scale fracturing operations in high-quality reservoirs such as sandstone and carbonate units.  

Stimulation treatment in low quality reservoirs such as coal and shale gas however, makes use of 

large volumes of low viscosity fluids like water, with low proppant loading, at high pressures 

(typical pressure levels to fracture a shale rock is about 10,000 pounds per square inch), as the 

process is performed in multiple stages and combined with horizontal well drilling in order to 

promote fracture complexity and increase wellbore exposure to the reservoir. The amount of water 

used depends on the nature of the sub-surface. A well can require between 2 and 8 million gallons 

of water for a fracturing job. The fractures produced are typically long and thin(Song, 2010; 

Linkov, 2012; Todd Energy, 2012). 

 

1.4. Concerns about Hydraulic Fracturing 

The increased activity associated with shale gas development using the hydraulic fracturing 

process has resulted in significant amount of public concern about the environmental effects of the 

technology.  These effects could be short term and acute, i.e. impacts related to the well 

construction phase such as water withdrawals and noise from drilling operations, or they could be 

long term effects, which are usually chronic, such as groundwater contamination (Clark et al., 

2012; Soeder, 2012).  In the US, where high volume water fracturing is utilized, depletions of the 
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ground water resource is one of such concerns. Ground water depletion can occur if more water is 

discharged than recharged. Large withdrawals of ground water during these times can cause the 

water table to fall and lead to a depletion of the aquifer. Also, ground water can become unusable 

if it becomes polluted and is no longer safe to drink. This occurs in areas where the material above 

the aquifer is permeable, allowing pollutants to seep into ground water.  

A frequently expressed concern about shale gas development is that during hydraulic 

fracturing operations in deep shale, developers do not have complete control over where fractures 

will develop; therefore methane, contaminants naturally occurring in formation water, and 

fracturing fluids tend to migrate from the target formation into aquifers and drinking water 

supplies. The high pressure exerted during hydraulic fracturing and deep-well injection processes 

can force the toxic fluids up through any existing uncapped wells, contaminating aquifers and 

drinking wells (US DOE, 2009; Todd Energy, 2012). Results from a 2007 Penn State study of 200 

water wells near oil and gas wells found 8% contaminated (NRDC, 2002). Evidence of water 

movement through unsaturated fractured rocks over vertical distances of several hundred meters 

and at velocities of an order of 10m/year or more, has also been observed from environmental 

tracers placed at a potential site for a high level nuclear waste repository at Yucca Mountain 

(Pruess, 2001), indicating the potential for significant subsurface migration of fluids in a fractured 

formation. 

Hydraulic fracturing does induce new fractures into shale, and can propagate fractures 

thousands of feet along the bedding plane of a shale formation. Typical unfractured shales have 

matrix permeabilities on the order of 0.01 to 0.00001 millidarcies, in contrast, field determinations 

of permeability of fractured shales has been found to yield permeability values close to what is 

obtained for sandstone i.e. 10 to 10000 millidarcies (Chiles and de Marsily, 1993).  
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Concerns about potential free gas migration however, seem to be a more pressing issue in 

recent times. This is justifiable by the fact that the gas phase migrates much faster than the liquid 

phase in porous formations and this movement can be further enhanced by the presence of 

fractures, as flow in fractures is known to be orders of magnitude faster than flow in the porous 

matrix. While it has been argued that vertical separation distance and low permeability of 

intervening rock layers reduces the chances of ground water contamination from shale gas 

development techniques (See Figure 1.4), state regulators have not been able to disprove a 

connection between hydraulic fracturing and water contamination.  

 

 

Figure 1.4 Target Shale Depths and Base of Treatable Groundwater in Select Shale Plays – 
distances shown in field units (US DOE, 2009) 
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1.5. Objectives of this Project  

While innovative solutions are emerging which allow for rapid commercialization of shale 

gas, attending concerns about the migration patterns of fluids in the fractured formation i.e. stray 

gas, formation brines, and hydraulic fracturing fluids, as well as a lack of information about the 

linkages or consequences that this enhanced production has on the ground water resources have 

also grown alongside these developments. In ensuring that recoverability of gas from 

unconventional reservoirs is optimized and carried out in a most environmentally friendly 

approach, adequate knowledge about the patterns of gas flow in the shale reservoir formation is 

required.  

The overall objective of this project is to evaluate the migration patterns of the gas present 

in the shale formation i.e. the free gas now exposed in the system as a result of hydraulic fracturing. 

This study also aims to investigate the range of physical conditions that favor the direction of gas 

flux towards the wellbore - and by so doing enhances gas production from the host rock and 

decreases the probability of gas escape into the overlying formation. The motivations of the study 

were modified into specific objectives stated below:  

• Utilize COMSOL to predict migration patterns of shale gas in fractured media 

• Estimate the effect of fracture network patterns on flow in simulated geometry  

• Utilize an appropriate multi-physics boundary condition to estimate and model possible 

gas flux out of the system 

The steps involved in the modeling process are: 

 Conceptual model formulation of fractured formation 

 Generation of three dimensional fracture patterns to represent expected fracture 

characteristics. 
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 Solution of flow and pressure fields in the model domain. 

On implementation of these steps, the gas velocities and migration paths within the 

formation being modeled will be determined. The model is then re-simulated for different fractured 

strata configurations, and the estimated values averaged to get the effective values that are 

representative of the system within acceptable limits.  

The tendency for fracture networks to be asymmetrical as they interact with natural 

fractures in the formation has been discussed in literature, (Bennet et al., 2005; Dershowitz and 

Doe, 2011)  however the use of asymmetrical fractal patterns to represent the complexity of 

fractures originating from wellbore formations has not been presented so far in literature. This is 

a problem of significant interest to shale gas operators, regulators and the members of the 

communities who are interested in getting access to accurate information about the effects of 

hydraulic fracturing. 

 Fear of the unknown risks caused by the exploration and exploitation of gas is a major 

reason for the concerns raised by the public; it is the aim of this work to present a clearer 

understanding of the subject of gas movements associated with hydraulically fractured formations.   

 

1.6. Outline of Thesis 

This dissertation presents the tasks and results associated with research work on the subject 

of numerical migration of methane through hydraulically fractured formations. This chapter 

presents an introduction to unconventional gas resources and hydraulic fracturing. The objective 

of the research, which is born out of concerns associated with the hydraulic fracturing process and 

the need for a proper understanding of the effects of hydraulic fracturing, is also discussed in this 

chapter. 
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Chapter 2 presents the review of literature associated with flow modeling in subsurface 

formations. Concepts of fluid flow in porous media and in shale formations in particular is 

discussed. The chapter also provides information about fractures in shale formations and the 

conceptual models available for their description for flow modeling purposes. The review 

highlights the need for further research into the development of conceptual models that are capable 

of handling complex fractured geometries, which is still relatively sparse in literature.  

In chapter 3, the sequential approach to the development of the numerical model is 

presented.  The assumptions of the study, conceptual model selection, as well as the procedure for 

the representation of the fracture networks is discussed. The chapter also gives a brief description 

of the reservoir simulation software package, the boundary conditions utilized in the study and it 

ends with a look at how production from the model is estimated. 

 The results from the numerical studies are analyzed and discussed in chapter 4, showing 

possible relationships and effects of the reservoir parameters and fracture network configurations 

on flow through the modeled formation. Chapter 5 presents the conclusions of this study and some 

recommendations that are suggested for future work.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction  

Fracture flow and characterization has become increasingly important in the wake of the 

continuous development and stimulation of underground mineral resources for economic 

purposes. The study of fluid flow in fractured reservoirs is particularly important in a bid to 

determine a causality or correlative relationship between the introduction and propagation of 

fractures in the reservoir and the effects it might have on the nearby environment, particularly in 

geologies that have not been rigorously studied such as shale.  

The migration of gas at depth through saturated fractured rock has become increasingly 

important as a way to assess the performance and safety of radioactive waste disposal sites and of 

recent to assess the performance and safety of hydraulically fractured production zones (Nuclear 

Energy Agency, 1992; Gascoyne and Wuschke, 1997). Evidence of water movement through 

unsaturated fractured rocks over vertical distances of several hundred meters at velocities of an 

order of 10m/year or more have been observed from environmental tracers placed at a potential 

site for a high level nuclear waste repository at Yucca Mountain (Pruess, 2001). My intention is to 

be able to determine if similar migration/response information exists for natural gas movement in 

shale lithology.  

Gas production in subsurface rock formations requires that gas flows towards strategically 

located wells completed in these formations. Therefore, an understanding of the principles that 

govern the flow of gas in porous media is essential to determining the depletion of gas from 

reservoir formations.   



   

14 
 

2.2 Fluid Flow in Porous Media 

The mathematical equations that describe fluid flow and transport processes in porous 

media may be developed from the fundamental principle of conservation of fluid mass and 

Newton’s second law of motion. Darcy’s law is a simplified version of the momentum equation 

applied to fluid flow. The law has been derived to give a relation between flow rate, pressure forces 

and gravitational forces.  

For the single-phase gas flow case- a condition that is generally prevalent in most reservoir 

engineering flow problems – the effect of gravitational forces is very small and can be safely 

ignored. Darcy’s law then simplifies to a relation between flow velocity and pressure gradient. 

 

ݒ ൌ െ௞ఘ௚

ఓ
݌׏ ൌ  (2.1)        ݌׏ܭ

where   v is the  velocity of the fluid,  (LT-1) 

k is the intrinsic permeability of the soil or rock(L2),  

ρ is the fluid density(ML-3),  

µ is the fluid viscosity(ML-1T-1), 

g is acceleration of gravity(L/T2) 

સ࢖ is the pressure gradient(1), and 

K is the hydraulic conductivity (LT-1),  

 

The negative sign in the Darcy’s equation implies that flow takes place in the direction of 

decreasing pressure. The permeability of rocks is usually reported in a field unit called the Darcy. 
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While it also possesses the same dimensional unit of length2 as described above, 1 Darcy is 

equivalent to 1(µm)2. 

The mass conservation equation for steady state flow states that the total mass flux into a 

certain reference volume must be equal to the mass flux out of the volume. When this law is applied 

to an infinitesimal Cartesian volume element, it takes the form of a partial differential equation 

known as the continuity equation that can be stated as: 

 

 	డఘ
డ௧
൅ .ߘ ሺݒߩሻ ൌ 0      (2.2a) 

and simplified to give 

.ߘ	  ሺݒߩሻ ൌ 0       (2.2b) 

 

Combining equations (1) and (2) yields the partial differential equation governing 3-dimensional 

fluid flow in a heterogeneous and anisotropic medium; 
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where,  

Kxx  Kyy, and Kzz represents the principal components of the hydraulic conductivities in the 

3D space(LT-1),  

F is the source term for fluid – if present (LT-1), 

 is the Specific storage of the rock(L-1).    and ࢙ࡿ

࢖ࣔ

ࣔ࢞
࢖ࣔ		,
ࣔ࢟

࢖ࣔ		,
ࢠࣔ
	represent the pressure gradients with respect to the three directions and  

ࣔ࣋

࢚ࣔ
  is the mass accumulation term. 
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Flow is dependent on the hydraulic conductivities and the pressure gradients in different 

directions as expressed by equation (2.3).  For transient gas flow in deep reservoirs however, the 

compressibility of the gas contributes to the storativity of the reservoir, and thus the assumptions 

of fluid incompressibility that may be permissible when studying liquid-groundwater flow cannot 

be accepted. The density of the gas - which is the parameter that controls the compressibility term, 

is one that changes with pressure. This pressure-density relationship can be represented in a general 

form by the equation 

ߩ ൌ  ሺܲሻ       (2.4)ߩ	

Because the density depends on pressure, Equation (2.3) becomes non-linear, making a 

direct analytical solution difficult to obtain. Early attempts to solve gas flow problems in 

subsurface formations utilized the method of succession of steady states (Muskat, 1946). Other 

attempts to obtain analytical solutions have since been looked into by Al-Hussainy et al. (1966) 

and Cornell & Katz (1953). The method of pseudo-pressure function was introduced by (Al-

Hussainy et al. (1966) as a way of linearizing the equations and obtaining more robust 

mathematical solutions. The pseudo pressure concept makes use of an integral function of pressure, 

viscosity and the compressibility factor as a way of obtaining an average homogenized property 

value for the reservoir. 

More recent semi-analytic models that utilize the concept of pseudo-pressures have been 

developed by authors such as Anderson et al. (2010) and Mattar et al. (2008). Their models 

however cannot accurately handle the high nonlinearities associated with shale gas reservoir 

modelling as the analytical solutions based on pseudo pressures do not adequately capture the 

effects of gas desorption or the several non-ideal cases of fracture networks that is encountered in 

these complex geological formations, that are not present in simple porous media formations. 
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Numerical simulations utilizing appropriate boundary conditions have therefore being suggested 

as the best approach to be employed for the solution of the non-linear gas equation in fractured 

formations, as the fracture properties significantly affect the reservoir performance.  

 

2.3 Fluid Flow in Shale Formations 

Shale formations are typically low porosity and low permeability media that serve both as 

source rock and reservoir rock.  Hydrocarbons are bound to the surface of the rock and also 

contributes to the total gas content in the reservoir. This hydrocarbon content is referred to as the 

adsorbed component. While various approaches to the fundamental physics of flow and transport 

in shale gas reservoirs have been proposed and implemented, the connectivity of the organic and 

mineral matter is not totally understood (King, 1990; Cipolla et al., 2009; Kalantari Dahaghi and 

Mohaghegh, 2011; Leahy-Dios et al., 2011).  

According to Song (2010), there are two main types of porous media present in gas shales, 

the pores and the fractures. The primary porosity is made up of very fine pores which provide large 

surface areas and potential sorption sites where large quantities of gas may be adsorbed. A shale 

gas formation can therefore be simulated using a triple porosity model, in which the free gas is 

stored in a double porosity system that consists of the pores and the fractures and gas adsorption 

is modeled as the third porosity. The solution of the fluid flow equation therefore requires an 

adequate determination of the fluid storage parameter in the formation.  

 It has been suggested that fluid flow through porous media may not be the dominant 

phenomenon governing flow in shale, and that the physics needs to be augmented or completely 

replaced by other modes of flow such as flow between parallel, and diffusion controlled, thin plates 

or transport due to diffusion resulting from a concentration gradient, as in coal bed methane 
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formations (Rushing et al., 2008; Mohaghegh, 2013),  however recent studies have disproved this 

assertion by being able to validate field data from shale reservoirs while making use of the Darcy- 

flow equations  for bulk phase matrix transport of the gas (Schepers et al., 2009; Ding et al., 2014; 

W. Yu et al., 2014). 

 

 

Figure 2.1  Illustration of Gas Transport Mechanism in Gas Shale (Song, 2010) 

 

2.4 Fractures 

Bear et al (1993) defined a fracture as part of the void space of a porous medium domain 

that has a special configuration such that one of its dimensions – the aperture- is smaller than the 

other two dimensions. The term is usually used to describe a naturally occurring planar 

discontinuity in rock that is due to deformation or digenesis (Nelson, 2001). It possesses the 

distinct property of having a high permeability and a low porosity, making it a poor storage 

medium for fluids but a good conduit for fluid flow (Huyakorn et al., 1983).  
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Fractures can by classified either by their origination mode, the scale of interest at which 

they are being studied, or by the parameters that govern their distribution. In shale reservoirs, often 

a combination of natural and hydraulically induced fractures is required for efficient gas 

production. In terms of scales of interest, a fracture can be classified and characterized as 

a. Individual fracture – by specifying its length, orientation, location and aperture 

b. A fracture network – by providing information about the number of fractures and its 

connectivity in the domain. 

In Figure 2.2, a comparison of these characterizations is shown. Complex fracture 

networks are desirable in tight shale gas reservoirs because they maximize the contact area 

available for flow in the reservoir rock due to the associated increase in intensity or size. However, 

the complexity of a network in itself may or may not lead to increased communication between 

matrix and fracture blocks, further supporting the need for the detailed study of flow in these 

media. 

 

 

 

 
             a. Simple Fracture                  b. Complex Fracture   

 

 

 

 

c. Extremely Complex Fracture Network 

Figure 2.2  Types of fractures  as depicted by (Fisher et al., 2004) 
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According to Warpinski et al. (2009), there is presently no method to predict the network 

generating capability of a given reservoir; the fracture complexity can only be observed by 

mapping. However, current mapping technologies do not provide adequate resolution to precisely 

determine the wellbore to fracture intersection or the details of the fracture geometry at a small 

scale. In the study conducted by Fisher et al. (2002),  generation of fractal networks was carried 

out by fitting small sequential increments of micro seismic data into a linear regression model to 

determine the length and orientation of many fracture segments in the order that they are created.  

Two widely accepted facts in shale literature (Curtis, 2002; Gale et al., 2007; Kundert and 

Mullen, 2009; King, 2012; Walton and McLe, 2013) are that: 

i. The reservoir formation contains natural fractures 

ii. The hydraulic fracturing process reactivates the natural fractures and opens 

a new porosity and permeability component in the reservoir. 

Moridis et al. (2010) classifies the distinct fracture systems that are observable in a 

producing shale gas formation into four.  

 Natural fractures – these are fractures that are already in the formation before any fracturing 

or well completion process is carried out. This is discussed further in a later section. 

 Hydraulic fractures- these fractures are created by the injection of fracturing fluids into the 

formation and are used to produce a high permeability pathway in the formation. 

 Secondary fractures – these are the fractures that are induced as a result of the changes in 

the geomechanical state of the rock during hydraulic fracture.  

 Radial fractures – these fractures are created as a result of stress effects in the immediate 

neighborhood of the horizontal well. 

A graphical illustration of these systems is presented below: 
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Figure 2.3  Fracture systems present in a shale-gas formation (Moridis et al., 2010) 

 

In the figure above, h is the reservoir height, Ly is the reservoir-extent in the y-direction, dsf is the 

length/extent of the secondary fractures in the direction of the wellbore, ysf is the extent of the 

secondary fractures in the y-direction, dsr is the extent of the radial fractures, yf is the length/extent 

of the primary (hydraulic) fracture in the y-direction, wf is the width of the hydraulic fracture, and 

df is the distance between the center points of two primary fractures- a parameter that is required 

when utilizing symmetry boundaries for modeling purposes. 

 

 

Secondary 
fracture

Primary 
fracture 

Natural 
fractures

Radial 
fractures 
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2.4.1. Natural Fractures 

Natural fractures are ubiquitous features that are associated with many reservoir formations 

and shale in particular. They can be divided into categories, tectonic and non-tectonic. Tectonic 

fractures tend to be variably oriented and differ both in size and properties on a regional scale. 

They are related to folding and faulting of the earth crust. Non-tectonic fractures however include 

joints and weak planes that are related to rock properties and generally have consistent properties 

such as fracture orientation and permeability, in the region of study. These are the type of fractures 

observed in shale formations (Fox et al., 2013).   

Understanding the mechanism of formation of natural fractures and the histories of the 

rocks in which they are being formed is helpful in the development of predictive models of natural 

fracture patterns in the subsurface (Gale et al., 2007). Natural fractures are sometimes observed in 

outcrops but are more commonly observed when core studies are conducted, thus getting complete 

data descriptions of the location, extent and properties of these fractures is almost impossible. Due 

to these data constraints, stochastic representations of the fracture properties which are based on 

appropriate fracture propagation physics are employed in fluid flow and transport simulations.  

The impact of natural fractures in the development of a gas reservoir can be observed in 

three different ways (Dershowitz and Doe, 2011): 

a. Serving as planes of weaknesses that control hydraulic fracture propagation  

b. Increased conductivity pathways in the formation as a result of reactivation and slips 

following a hydraulic fracture  

c. Third, natural fractures that were conductive prior to stimulation may affect the shape 

and extent of a well’s drainage volume.  
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Due to the presence of natural fractures, a fracture treatment in a tight shale formation is 

more likely to look like the ‘very complex’ fracture description than the simple case as shown in 

Figure 2.2. This geometry allows for the production of what is referred to as a fracture fairway 

with many fractures in multiple orientations resulting in large surface areas potentially contributing 

to production. 

 

2.4.2. Hydraulic Fractures 

The hydraulic fracturing process is a computationally complex one to model. This is due 

in part to the coupling of the physical processes that define the fracture creation process and in part 

to the heterogeneity of the earth structure. The classical description of a hydraulic fracture was 

developed from 2-dimensional fracture propagation models and is that of a single bi-wing planar 

crack with the wellbore at the center of two wings. The most common of these 2-D propagation 

models, which are being employed for decision making purposes in the hydraulic fracture design 

industry are the Perkins-Kern-Nordgren (PKN) geometry - which is utilized when the fracture 

length is much greater than the fracture height-, and the Kristonovich-Geertsma-Daneshy (KGD) 

geometry, used if fracture height exceeds the fracture length- See Figure 2.4 (Perkins and Kern, 

1961; Geertsma and De Klerk, 1969; Nordgren, 1972). In both cases, an assumption of constant 

fracture height is used in order to determine other fracture parameters. 

The increasing availability of computational resources for numerical simulations however 

meant that the development of pseudo 3-D or fully 3-D models of hydraulic fracture geometry are 

being proposed. These 3-D models characterize the fracture as two-semi-ellipses, that originate 

from the well-bore perforation and are restricted to a plane (Rahman and Rahman, 2010, 2013) as 

seen in Figure 2.4c.  
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Figure 2.4  Hydraulic fracture models (a) PKN Model (b) KGD Model (c) 3-D radial model 
(CEFoR, 2012) 
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Available reservoir simulators that utilize this simplistic elliptical 3-D bi-wing assumption 

for representing hydraulic fracture geometry in the reservoir exist in fracture simulation literature 

(Gorocu, 2010; Osholake, 2010; Wang et al., 2013) These models function under the assumption 

that the geometry of the fracture is easily defined and that the fracture is constrained to a single 

plane, and are therefore not suitable for modeling fractures in shale gas formations where the broad 

extension of the fracture network and the nature of fracture growth makes the use of a two-wing 

model unrealistic. The complex nature of induced fractures in formations containing multiple 

layers of formation strata and utilizing horizontal wellbores for production is a phenomenon that 

has been reported by fracture propagation simulation studies. Abass et al. (1996) and Li et al., 

(2012)  present results to show that fractures initiate in a non-preferred direction in a multi-layered 

formation and then turn and twist during propagation to become aligned with the preferred 

direction. Also, the complex stress state around a horizontal well or a well that is inclined to the 

vertical leads to the creation of a complex fracture pattern in the formation.  

 

 

Figure 2.5  Schematic view of hydraulic fracture propagation modes in the presence of 
natural fractures. In mode (a) the hydraulic fracture crosses the natural fracture 
without any change in its path and in mode (b), the hydraulic fracture turns into 
the natural fracture and propagates along it. (Keshavarzi and Jahanbakhshi, 2013) 
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Results of studies presented by Gale et al., (2007) are also supportive of the assumption 

that in the hydraulic fracturing of deviated wells, fractures sometimes reorient and interact with 

natural bedding planes and other fractures as they propagate. This interconnection of fractures 

along existing lines of weakness has been shown to be universal. (Larsen and Gudmundsson, 2010; 

Li et al., 2012) Thus, a proper understanding of fracture geometry is key to the effectiveness of 

any stimulation program.  A comprehensive study of flow in fractured shale therefore must include 

geometry elements describing both the natural and the hydraulic fracture components in order to 

obtain a conceptual model that is most representative of the formation.  

Ascertaining the type of fracture geometry created during a hydraulic fracturing process is 

one that is associated with a high degree of uncertainty. This, in turn means that the definition of 

permeability pathways in the fracture formations is one that is fraught with uncertainties too. 

Knowledge of the principles underlying this complex fracture growth is therefore important in 

creating and visualizing the fracture patterns present in shale reservoirs. However, these principles 

are still not well understood (Mahrer, 1999; Hossain and Rahman, 2008). To address this 

challenge, recent modelling approaches that require the use of parametric studies to analyze 

various complex fracture growth patterns have been proposed in literature (Dong and de Pater, 

2001; Zhang and Jeffrey, 2006). 

An attempt to study the complexity that is likely to ensue around a hydraulically fractured 

reservoir well and its effect on production from a reservoir was implemented using a commercial 

reservoir simulator by Freeman et al. (2008). The geometric complexity introduced in their model 

included the specification of planar fractures transverse to the wellbore as well as the inclusion of 

thin lateral secondary fracture layers. While their approach represents an improvement to the study 

of characteristic fracture geometries in shale formations, the effect of fractal branches that are 
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oriented at an angle to the formation as well as irregular lengths or patterns of the fracture was not 

studied. 

Yu et al. (2014) also carried out a similar study to investigate the effects of irregular 

fracture patterns over a small interval of a horizontal wellbore. Their study makes use of planar 

vertical fracture geometry in which the only controlling factor on the network complexity was the 

length and placement of fractures around the wellbore. Their results suggest that a difference in 

the placement of fractures oriented in the same direction around a wellbore can lead to significant 

differences in gas recovery values after an extended period of production. 

In yet another attempt to study complex fracture geometries, Almulhim (2014) carried out 

a study to evaluate and compare two new stimulation patterns described as the Alternate and the 

Zipper on production optimization in a fractured formation. Their model like the ones previously 

reviewed also makes use of simple planar transverse fractures along with the added computational 

complexity of having to simulate more than one horizontal well in some of their designs. 

 

2.5 Conceptual Models of Fluid Flow in Fractured Media 

Conceptual models of flow in fractured media vary in their representation of the heterogeneity 

of the fractured medium. Fractured media are usually modeled by allowing the porosity and 

permeability to vary rapidly and discontinuously over the whole domain. Both these quantities are 

much larger in the fractures than in the blocks of porous rock (Chen et al., 2006). Therefore for 

accuracy in fluid flow modeling, conceptual models of the fractured porous medium are developed. 

Three major factors are considered when making the decision of the appropriate conceptual model 

to be used. They are: 
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1. The geology of the fractured rock i.e. is the system dominated by few relatively major 

fractures in a relatively impermeable matrix or does it consist mainly of a system of 

highly interconnected fractures in a relatively permeable matrix that can be represented 

as an equivalent continuum. 

2. The scale of interest- Depending on whether the system is large scale or small scale, 

different models can be used to approximate properties of the system.  A system that 

can be represented by a continuum on a large scale may actually be characterized by 

few relatively large fractures when being considered on a smaller scale. 

3. The purpose for which the model is being developed- Relatively coarse model 

approximations can be used when the goal of the model is to predict an average 

volumetric flow rate in the fractures. If however, the model development is fueled by 

concerns about pollutant concentrations, a more refined conceptual model is needed for 

more accurate predictions. 

 

Based on these factors, the modeling approaches to simulate flow and transport in fracture 

networks fall into one of three categories within the range of conceptual models for fractured rock: 

Equivalent Continuum Models (ECM), Discrete fracture networks and Hybrid Models (National 

Research Council, 1996). These techniques and their key distinguishing parameters as well as 

references that illustrate recent applications in the modeling approaches are summarized in Table 

2.1, and will be discussed in detail in the next few sections. 
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Table 2.1 Classification of Single-phase Flow and Transport Models Based on the 
Representation of Heterogeneity in the Model Structure -reproduced with 
permission from National Research Council. 

Representation of 
heterogeneity 

Key parameters that Distinguish Models Examples 

Equivalent Continuum 
Models 

Single porosity 

 

Multiple continuum  (double 
porosity, dual permeability, 
and multiple interacting 
continuum) 

Stochastic continuum 

Effective permeability tensor 

Effective porosity 

Network permeability and porosity 

Matrix permeability and porosity 

Matrix block geometry 

Non equilibrium matrix and porosity 

 

Geo-statistical parameters for log permeability: 
mean, variance, spatial correlation scale 

Carrera et al.(1990) 

Davidson (1985) 

Hseih et al.(1985) 

 

Reeves et al.(1991) 

Pruess and Narasimhan 
(1988) 

 

Neuman and 
Depner(1988) 

Discrete Network Models 

Network models with simple  
structures 

Network models with 
significant matrix  porosity 

Network models 
incorporating partial 
relationships between 
fractures 

 Equivalent discontinuum 

Network geometry statistics 

Fracture conductance distribution 

Network geometry statistics 

Fracture conductance distribution 

Matrix porosity and permeability 

Parameters controlling clustering of fractures, 
fracture growth, or fractal properties of networks 

Equivalent conductors on a lattice 

Herbert et al.(1991) 

 

Sudicky and McLaren 
(1992) 

Dershowitz et al. (1991a) 

Long and Billaux (1987) 

Long et al. (1992b) 

Hybrid  Models 

Continuum approximations 
based on discrete network 
analysis 

Statistical continuum 
transport 

 

Network geometry statistics 

Fracture transmissivity distribution 

Network geometry statistics 

Fracture transmissivity distribution 

 

Cacas et al. (1990) 

Oda et al. (1987) 

Smith et al. (1990) 

Fractal Models 

   Equivalent discontinuum  

 

Fractal generator parameters 

Long et al. (1992) 

Chang and Yortsos (1990) 
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2.5.1. Equivalent Continuum Models 

 This group of models are based on the assumption that the different zones in the formation 

can be represented by continuum sections where the flow and transport properties can be obtained 

by average representative properties.  For the single porosity/single continuum model case, the 

fractures are assumed to be sufficiently ubiquitous and distributed in a manner that can be 

meaningfully described statistically. The technique treats the fractured rock system as if it were an 

unconsolidated porous medium. Bulk parameters for the permeability of the rock mass are used, 

and the geometry of individual fractures or the rock matrix is not considered. This is a reasonable 

approach if fracturing is intense or the study domain is sufficiently large such that individual 

fractures have no influence on the overall flow system.  

The approach plays down on the importance of the individual fractures and their 

significance becomes secondary to the significance accorded the average fracture properties 

(Pinder et al., 1993). For a system in which the number of heterogeneous regions is large however, 

a Representative Elementary Volume (REV) must be distinguished if the results of the EPM model 

computations are to be accepted. The volume of interest (REV), is considered to be large enough 

that, on average, the permeability can be assumed as the sum of fracture and porous media 

permeability- an approximation which simplifies the flow problem immensely (Pankow et al., 

1986; Diodato, 1994).  

The transient three dimensional fluid flow equation in a heterogeneous and anisotropic 

medium described in (3b) is to be solved in ECM systems, and is re-presented here.  
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The terms Kxx, Kyy, and Kzz are now the effective hydraulic conductivities in the principal directions. 

These values are determined by getting average values of the contributions of the fracture network 

and the porous block to the overall effective conductivity. 

The suitability of continuum modeling for fractured formations was studied by Pankow et 

al. 1986. In their study, a formation was said to be amenable to single continuum modeling if it 

contained a matrix with large porosity and diffusivity values and fracture components with large 

apertures and small inter-fracture spacing.  Their study was carried out on two fractured porous 

systems with varying characteristics. The results obtained when validated with information from 

the sites studied confirmed the utility of the approach, as well as its breakdown in a highly 

heterogeneous formation. 

The assumptions of continuum behavior break down in highly heterogeneous media, 

because the fundamental basis for continuum behavior, i.e., connections exist between all points 

in the reservoir, is no longer valid in these systems. The dual porosity modeling approach attempts 

to account for the non-continuum behavior by modeling the system as if it were composed of two 

interacting continua with different porosities. This approach was first introduced by Barenblatt et 

al. (1960). The model consists of a set of equations developed for slightly compressible single-

phase flow and is written for both the fractures and the matrix. In this approach, equations of flow 

and transport for each system are linked by a source/sink term that describes the fluid or solute 

exchange between the two systems each of which may have very different properties relative to 

the other. This transfer was assumed to occur at pseudosteady state.  
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A simplification of the governing equations for two dimensional flow in in dual porosity 

systems developed by Gerke and Van Genuchten, 1993 as described by Lee, 1997 is given below: 
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    (2.5b) 

where   Subscripts f & m refer to the fracture and matrix pore systems respectively 

h is the total head (L),  

K is the hydraulic conductivity (LT-1).     

 is the fracture volume fraction	ࢌ࣓

 t is time (T) 

  is the Specific storage (L-1)  and ࢙ࡿ

ડ࢝ 	is the transfer function – an exchange term describing the transfer of fluid 

between the two   pore systems. 

Dual-porosity representations, like their other ECM counterparts can be used to model 

large-scale flow through well connected fractured systems. Its utility is however limited due to the 

difficulty associated with obtaining and validating the values of the transfer function. (Warren and 

Root, 1963) proposed a practical formulation that simplified the solution approach for obtaining 

the transfer function. Their work which is based on the assumption that the matrix blocks are of 

simple geometry has formed the basis of dual continuum modelling studies by other authors such 

as Huyakorn et al. (1983); Karimi-Fard et al. (2006); X. Wang & Ghassemi, (2012) and Wu & 

Qin, (2009). A schematic of the single and dual continuum model conceptualizations is presented 

in Figure 2. 6. 
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Figure 2.6  Schematic view of equivalent continuum models showing (a) a single porosity 
continuum formulation and (b) a dual permeability continuum formulation. F and 
M represents the Fracture continuum and the Matrix continnum respectively. 

 

The advantage of the ECM Model is that it allows for a far-field and macroscopic 

perspective of the field of interest and thus, detailed knowledge about the individual fractures is 

not required. While their results have proven useful, they are limited in their ability to predict the 

effects of concentrated flow paths that arise as a result of discrete fractures as they use an 

equivalent flow conduit for their modeling. In reality however, flow is restricted to discrete 

pathways, and networks themselves may be finite.  
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2.5.2. Discrete Network Models  

In the discrete fracture network modeling approach, the fractured reservoir is depicted by 

a network of discrete features representing fractures, combined with background permeability (La 

Pointe, 1997). The discrete fracture approach will result in the most physically representative 

description of the reservoir at the sub-continuum scale. This modeling approach however requires 

the generation of fracture networks based on working conceptual model developed using 

information on both the individual fractures and the geometry of inter-fracture relationships. This 

makes the approach computationally rigorous and unrealistic for field scale modeling purposes. 

However, the discrete fracture modelling approach has been utilized by authors in characterizing 

behavior of fractures on a small scale. 

For most subsurface hydrogeological studies, the complexity of reality does not always 

allow for a complete description of the actual field. Therefore the subsurface properties are often 

simulated using a stochastic model and not a deterministic one because it is difficult to explicitly 

measure formation properties. A deterministic approach to modeling means the detailed 

presentation of the physical situation; however it is usually complex and at most times, obtaining 

and meeting the data requirements is almost impossible, particularly in highly heterogeneous 

formations. A stochastic approach on the other hand is based on the hypothesis that natural 

parameters that appear random are in reality not completely spatially and randomly distributed but 

have a trend and uniformity to a certain degree (Tubeileh, 2003). 

The physical model is thus usually based on a complex and stochastic geometry. The main 

advantage of this model is that it considers the contribution of every fracture towards the overall 

transmissivity of reservoir and can be applied at any scale. The drawback of this model is that 

statistical information required for parameter estimation may also be difficult to obtain. This model 
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may become very complex at field scale and computationally intensive (Anwar, 2008). The model 

generation process involves the study of a fracture population, the choice of the network model 

i.e. random planes or random discs; and the study of the geometry of the single fracture. To a large 

extent, fracture size, shape and orientation can be idealized as random variables and statistical 

distributions can be employed to generate the fracture network. For example, the geological 

medium might be considered as a cube, and the fractures represented by ellipses with random 

distributions of eccentricity, length, position and orientation (Chiles et al, 1993; Erhel, 2007).  

Wang and Ghassemi (2011) utilized discrete fracture networks to study fracture flow. Their 

study focuses on utilizing stochastic fracture networks to simulate flow in fractured rock using a 

finite element numerical model with a stochastic description on fracture distribution alongside 

assessment the mechanical rock mass response to stress variations caused by injection/production, 

i.e., the response of the system during periods of active stimulation. 

Jacot et al. (2010) also utilized the DFN methodology as a tool in their research study. The 

aim of their model was to optimize the economics of wellbore production and seek ways to enhance 

production in the Marcellus shale. Although their simulation results were not unique, the study 

highlighted the need for a network of connected secondary fractures and the importance of 

technology integration in obtaining history matched solutions in the simulated formation. 

Studies into the applicability of the discrete fracture network models to modeling of field 

abound in literature (Andersson and Dverstorp, 1987; Sarda et al., 2002; Painter and Cvetkovic, 

2005; Karimi-Fard et al., 2006; Parker et al., 2012). In all these studies, the importance of having 

a knowledge of the connectivity of the discrete fractures as well as the scale restrictions associated 

with the individual representations of the fractures is emphasized.  
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2.5.3. Hybrid Models 

Hybrid models offer a way of dealing with the scale restrictions associated with the use of 

DFN simulation models. This approach, which can also be thought about in terms of an upscaling 

methodology introduces the concept of dividing the field-scale domain into smaller sized domains, 

and making use of the DFN approach to deduce effective parameters that can be utilized in the 

solution of a simpler and computationally inexpensive model such as the continuum model for the  

field-scale model (National Research Council, 1996). 

 In the generation of hybrid models, it is assumed that the fracture network model used in 

the DFN simulation, i.e. the fracture distribution in each sub-domain, is representative of the 

fracture network in the larger domain. The hybrid modeling approach starts out by generating the 

full 3D DFN, overlaying a continuum grid on the generated fractures and then computing the 

effective property values in a tensor form (Oda, 1985; Dershowitz et al., 2004). 

Parashar et al (2010) developed a fracture continuum approach using MODFLOW for the 

solution of fluid flow within the fracture network and low-permeability rock matrix, Their 

approach assumes that fractured continuum model is suitable for capturing the key aspects of  flow 

in their study. 

 The use of the hybrid approach to shale modeling is supported in literature by several 

studies (Painter and Cvetkovic, 2005; Wu and Qin, 2009; Dong, 2010; Wang et al., 2013; Ding et 

al., 2014). The hybrid approach is particularly suited to shale formations as they contain fractures 

and faults, which exist on multiple scale ranges, and the approach ensures that the essential 

properties associated with these features are properly captured and represented in the model. 
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2.6 Summary 

Understanding flow in fractured rock remains a challenge, as high transmissivity fractures 

control flow and transport and we are limited in our ability to predict where they occur and how 

they connect with other features. The importance of choosing an appropriate conceptual model 

cannot be overemphasized as it determines the quality of the result that is obtained. If a conceptual 

model is robust, different mathematical formulations of the model will likely give similar results. 

Identifying pertinent physical processes, developing a conceptual hydrogeological model, and 

recognizing appropriate field data requirements are thus critical to a successful modeling endeavor.    

The review of literature has shown that complex fracture network are developed in shale 

formations and that proper characterization of these fractures are essential for accurate reservoir 

production forecasting (Carter et al., 2000; Fisher et al., 2002). Studies that utilize the knowledge 

of complex fracture pattern generation as a starting point for the simulation of fluid flow migration 

patterns in shale formations are however still sparse in literature, with those found utilizing simple 

fracture arrangements because of the computational intensity associated with representation of the 

physics associated with the complex fracture pattern (Freeman et al., 2008; Almulhim, 2014; W. 

Yu et al., 2014).  

This work presents the development of a shale gas reservoir model for the characterization 

of flow behavior in shale formations. This model makes use of hybrid modeling techniques and 

numerical simulation methods to account for the complexity of secondary network of fractures, 

and investigates the relationships between the different attributes of the reservoir being studied, as 

well as the different configurations of fracture network, on the response of the model. 
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CHAPTER 3 

MODELING OF SUB SURFACE CONFIGURATION 

3.1. Introduction 

The development of predictive models for flow and transport in shale formations is still an 

active area of research. While reservoir production rates and completion data are becoming 

available for the validation of deterministic models, the number of reservoir parameters with 

inherent uncertainties are still sizable enough , that the  use of synthetic models i.e. mathematical 

representations, based on available information forms the basis for most studies.  

Completion methods in shale gas formations involve inducing hydraulic fractures into a 

naturally fractured domain -See Figure 3.1. Most models in the literature (Cipolla et al., 2009; 

Rubin, 2010; Li et al., 2013; Ding et al., 2014) make use of conventional orthogonal transverse 

fractures as a way to account for natural fractures in the formation. However shale layers have 

been observed to be made up of mostly horizontal layers of laminated bedrock. It therefore seems 

that a suitable conceptual model for a shale reservoir should have horizontal fracturing network 

elements built into the simulation. In this study, a novel approach to modeling shale reservoirs 

which makes use of a hybrid model which includes semi-explicit representations of horizontal 

fracture laminations and hydraulic fractures, and upscaled representations of secondary fractures 

and microfractures.  

The sequential approach to the model development process is described in the sections that 

follow. First, a conceptual model which takes into account the assumptions of the study, the 

different physical processes taking place in the formation and their governing equations is 

presented, with discussions of the principles underlying gas desorption as well as the cubic law for 

flow in fractures. Then, the procedure for the representation of the fracture networks and the 
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wellbore geometry in the model is addressed.  As discussed in the review of literature, fractures 

can be modeled either as explicit (discrete fractures) or implicit (continuum) features in the 

domain. In an explicit model, the full geometrical characteristics of the physical feature are 

included in the model while in the implicit form, certain techniques are required to describe the 

fracture properties without specifying the fracture geometry. The semi-explicit approach to 

representing the natural and hydraulic fractures is therefore discussed next.  

The next section discusses the representation process for the secondary fractures. These are 

modeled as implicit features. The procedure to obtaining the properties of the secondary fractures 

begins with the generation of the fractures as discrete features. This is achieved by implementing 

a fractal algorithm, which utilizes the locations of well-bore penetrations for the hydraulic fractures 

as its points of origination. Next, an upscaling procedure is employed because of the complexity 

of the generated secondary fracture system, and a kriging process to interpolate formation 

properties at points where such properties are not fully specified is presented.  

With the selection of governing equations, representation of model features, and generation 

of simulation parameters completed, the choice of a simulation code becomes necessary. The next 

section follows with a brief description of the reservoir simulation software package.  Also, a set 

of initial and boundary conditions are required in order to obtain a solution of the fluid velocities 

and pressure fields in the model domain. These conditions are presented and discussed. Finally, 

the chapter ends with a section describing how flux through the wellbore i.e., flow rate out of the 

formation, is calculated. 
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Figure 3.1 Schematic of a typical completion arrangement in shale gas production sites 
which makes use of transverse fractures in a horizontal well (Dong, 2010). 

 

3.2. Conceptual Model of the Reservoir Domain 

A conceptual model is set up based on published average reservoir data for a producing 

shale formation(Yu et al., 2014) and published well completion data (Ramakrishnan et al., 2011; 

Harpel et al., 2012). For computational tractability the model is sized around one production stage 

with 2 foot perforated sections located at 80 foot intervals.  

The following assumptions are implemented for our studies: 

i. The formation is rectangular and contains natural and induced fractures. 

ii. The formation is completed using multiple transverse fractures originating at perforations 

and intersecting the horizontal well.  

iii. Gas in the reservoir flows into the wellbore only through the perforated intervals. 
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iv. The reservoir formation is dual porosity, but is represented by a single porosity system. 

Properties of the secondary fractures are upscaled to represent a non-homogeneous 

anisotropic continuum and flow in the second porosity system-the natural and hydraulic 

fractures- is accounted for by the specification of internal boundaries. 

v. Flow in the reservoir can be described mathematically by Darcy’s law. 

vi. The effects of desorption are included in the study. 

vii. The formation is considered to be impermeable, except in the case where it intersects a pre-

existing fault or fracture –in which case a pressure boundary condition is specified. 

 

3.3. Governing Equations for Fluid flow in Shale Formations 

Depending on if the formation being studied is a dry-gas reservoir or one with significant 

water content, a single phase or two-phase flow model is considered as the conceptual flow model 

for in shale, however, since we are most concerned with the migration pattern of the gas in the 

formation, we assume that the water in our system is at residual saturation and immobile. This is 

a situation which is generally prevalent in most shale gas formations. This reduces our model to a 

single phase flow formulation, with the pressure gradient as the hydraulic potential.  

 

3.3.1. Single Phase flow equations in the Shale Matrix 

King (1990) describes the development of material balance equations used in estimating 

gas content in unconventional gas reservoirs. To account for the adsorbed gas on the solid phase 
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of the rock, the mass conservation equation for isothermal gas flow is modified to include the 

physics of adsorption as presented in the equation below. 

 

߲
ݐ߲
൫ܯ௦	 ൅	ܯ௣	൯ ൌ 	െ׏. ሺݒߩሻ	

                   (3.1) 

where   ࢙ࡹ	represents the amount of mass present in the adsorbed state and 

 .is the amount of gas present in the pores in the formation	࢖ࡹ 

 

 

Most researchers have been able to validate the use of Darcy- flow equations for bulk phase 

matrix transport of the gas and we therefore employ these equations for the purpose of our study.  

 

ݒ ൌ െ
݃ߩ݇
ߤ

݌׏ ൌ 	݌׏ܭ

        (3.2) 

First, we seek to account for the adsorbed gas in the rock matrix. Gas adsorption is a surface 

phenomenon in which the molecules of the gas become bound to the surface of a solid as a result 

of inter-molecular attractive forces.  The converse process in which the gas molecules are released 

from the surface of the rock is referred to as desorption and is an important element in shale gas 

production. 

Release of gas from shale reservoirs is usually described by an adsorption isotherm (Hardy 

et al., 2012; Rexer et al., 2013; Wang et al., 2013). The isotherm specifies the amount of gas in 

equilibrium with the rock surface as a function of pressure at a constant temperature value. The 
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Langmuir isotherm is the most commonly used model for quantifying gas adsorption and 

desorption. It gives the dependency of the adsorbed gas volume on the reservoir pressure at any 

point in time (Leahy-Dios et al., 2011; Wu et al., 2013). The volume of gas that can be adsorbed 

௔ܸௗ௦ is estimated by making use of the Langmuir adsorption isotherm function stated as:  

௔ܸௗ௦ ൌ 	
ܲ

ܲ ൅	 ௅ܲ
௅ܸ	

                                                      (3.3) 

where   ࡼ	is the reservoir pressure 

 ࡸࢂ is the pressure at which 50% of the gas is desorbed (Langmuir pressure) and	ࡸࡼ

is the gas content, (Langmuir volume) specified in scf/ton. 

 A typical sorption isotherm is illustrated in Figure 3.2. 

              

 

 

 

 

 

 

 

 

 

Figure 3.2 Typical Langmuir Sorption Isotherm 
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The mass of adsorbed gas in the formation from equation (3.1) can thus be expressed by the 

relationship  

     

	௦ܯ ൌ ௚ߩ௞ߩ	 ௔ܸௗ௦	

                                              (3.4) 

where  ࣋࢑	is the bulk density of the rock, 

 

  is the gas density at standard conditions and ࢍ࣋ 

௔ܸௗ௦ is the estimated adsorbed gas volume. 

 

For the estimations, it is assumed that there is local equilibrium between the free and 

adsorbed gas phases i.e. a transient lag between pressure change and desorption responses does 

not exist, and as such, there is an instantaneous re-establishment of equilibrium conditions when 

the pressure changes.  

 

By substituting for the value of	 ௔ܸௗ௦, we can rewrite equation (3.4) as  

 

	௦ܯ ൌ ௚ߩ௞ߩ	
ܲ

ܲ ൅	 ௅ܲ
௅ܸ	

                                               (3.5) 
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                   (3.6) 
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                         (3.7) 

߲ ௔ܸௗ௦
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                           (3.8) 

 

 

Therefore 
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         (3.9) 

Equation (3.9) describes the rate of change of mass of gas present in the adsorbed state in the 

matrix. Next, we seek to account for the gas in the pore spaces of the reservoir matrix.  

 

The mass of gas in the reservoir pore volume can be expressed as a function of the porosity of the 

reservoir and the density of the fluid in the reservoir. 

i.e. 

	௣ܯ ൌ 	ρߠ	

                                                           (3.10) 

where ࣂ	is the porosity of the reservoir and  

ૉ is the gas density at reservoir conditions  given as   
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                                              (3.11) 

where ࡹ	is the Molecular Mass of the gas,  

 ,is the value of the gas Constant ܀

  ,is the gas pressure compressibility factor and ܈

 .is the temperature of the formation ܂ 

 

The rate of change is thus given by:  
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                                              (3.12) 
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                               (3.13) 

The isothermal compressibility of a gas ܥ௙ is defined as 
૚

࣋

ࣔ࣋

ࡼࣔ
  so that 
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                                           (3.14) 

And  
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                                          (3.15) 

 



   

47 
 

Therefore: 
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                    (3.16) 

Re-writing equation (3.1) in the expanded form gives 
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         (3.17) 

Equation (3.17) specifies the governing equation for fluid flow in the shale matrix. 

 

3.3.2. Single Phase flow equations in Fractures 

Fluid flow in a single fracture is often modeled by assuming the fracture walls are 

analogous to parallel plates separated by a constant aperture (See Figure 3.3). Using this analogy, 

the solution of the Navier–Stokes equations for laminar flow of a viscous, incompressible fluid 

bounded by two smooth plates, in a direction parallel to the bounding plates, leads to an expression 

referred to as the cubic law, which is written as: 

 

ࡽ
સ࣐

ൌ 	૜࢈࡯

  (3.18) 

where   Q  is the volumetric flow rate  (L3T-1), 

  ,is the drop in hydraulic potential (L) ߮׏
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Direction of Darcy 
Hydraulic Potential 

Direction of fluid 
flow 

b is fracture aperture (L) and  

C is a constant related to the properties of the fluid and the geometry of the flow 

domain.  

 

A detailed development of the cubic law is presented in Appendix A.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3  Schematic of flow through a fracture hypothesized as parallel plates 

 

 

For uniform flow in Cartesian grids, the constant C has been found  (Lapcevic et al., 1999),  

to be given by the term:  
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The transmissivity (Tf) and hydraulic conductivity (Kf) of the fracture can be obtained by 

substituting the cubic law obtained in equation above into the Darcy equation for fluid flow. This 

yields the result 

௙ܶ ൌ
݃ߩ
ߤ12

ܾଷ ൌ 		ܾ	௙ܭ	

         (3.20) 

A value for the permeability of a single fracture can be inferred from equation (3.19), as long as 

the value of the fracture aperture is known 

݇௙ ൌ
ܾଶ

12
	

  (3.21) 

 A modified Darcy’s law can be written for flow in the fracture with respect to the flow direction 

and the direction of the Darcy potential drop (see Figure 3.3) as: 

௙ݒ ൌ 	ሻ݌்׏௙ሺܭ

        (3.22) 

Where ݌்׏ represents the tangential pressure gradient between the fracture surfaces. 

A single equation in terms of pressure can be obtained for the transient flow of fluid in fractures 

by combining equation (3.22) with the continuity equation and integrated over the fracture cross 

section. This equation is given as: 

ࣔ
࢚ࣔ
	൫࢖ࢌࡹ	൯ ൌ െ	સࢀ. ሺ࣋ࢌࡷሺસ࢖ࢀሻሻ	

        (3.23) 
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Where ࢖ࢌࡹ		is the mass of the fluid present in the fracture, and specified by  

	௙௣ܯ ൌ 	ρߠ௙  

                                                           (3.24) 

 is the porosity of the fracture	ࢌࣂ            

 

ૉ is the gas density earlier defined.   

            and all other parameters are as earlier defined. 

Equation (3.23) is analogous to the mass balance equation in equation (3.1) and can be rewritten 

in a simplified form as: 

ࣔ
࢚ࣔ
	൫࢖ࢌࡹ	൯ ൌ 	સࢀ. ሺ࣋࢜ࢌሻ	

        (3.25) 

specifying the governing equation for fluid flow in fractures. 

 

 In reality however, fluid flow in fractures takes place in fracture networks, and the complex 

arrangement of fractures frequently encountered in reservoir formations often lead to difficulties 

in numerical modeling of these features.  
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3.4. Wellbore Geometry and Parameter Representation 

It is important that the conditions at the wellbore be well defined as different flow behaviors 

can result depending on the completion model utilized for the wellbore study. Wells in shale 

formations are usually completed using a cased perforation completion approach – See Figure 3.4.  

The perforations serve as the pathway for the initiation of hydraulic fractures into the formation 

and also as the only point through which produced gas can exit the domain. The parameters for 

defining the wellbore recovery are defined by the perforation shot density and the perforation 

phasing respectively. The perforation shot density specifies the number of perforations per foot 

section of the well casing, while the phasing is the angle between the two consecutive perforations. 

(Harpel et al., 2012) reported the use of a multi-stage approach to completion operations carried 

out in the Fayetteville shale. Each production stage consists of 6 – 10 perforation clusters (2 foot 

perforated sections) located at intervals of 80ft along the wellbore. The clusters are created by 

making use of a perforation shot density of 3 shots/ft and a perforation phasing of 600 (Figure 

3.5). 

Well diameter values reported in literature are between 0.2ft to 0.3ft. Having a wellbore 

with an outer diameter of 0.25ft in a domain that is hundreds of feet in size, introduces an added 

layer of complexity into the system to be implemented in the model domain. To address this issue, 

the wellbore pressure presumed to act only across the perforations i.e. along certain lengths of the 

fracture intersection at the boundary. Also, the studied domain is assumed to be symmetrical 

around the wellbore, and around each fracture stage in order to reduce the computational domain. 

The simulated geometry is as shown in Figure 3.6.  
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Figure 3.4 A cased perforation completion arrangement in a multi-stage fractured formation 
highlighting flow in the perforated cluster network, flow to the fractured cluster 
and flow through the wellbore 

 

 

 

 

 

 

Figure 3.5 Horizontal wellbore section showing spiral perforation pattern using a 600 phasing 
angle and a shot density of 3 shots/ft over a 2 feet pipe section of radius r _well.  
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Figure 3.6 Conceptualization of boundary conditions along the horizontal wellbore.                      

As shown above, sections 1, 2 and 3 in Figure 3.6a represent well-bore boundaries that do not allow for gas escape 
from the formation. By reformulating the model as shown in Figure 3.6b, the wellbore pressure presumed to act only 
across the perforations thereby reducing the geometric complexity associated with simulating the entire well-bore. 

  

1 23 

Sections that represent physics 
of interest for simulation 
purposes i.e. well-bore section 
through which gas is recovered.
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3.5. Natural Fracture Network Representation 

In the generation of synthetic (mathematical) models which represent naturally fractured 

formations, the parameters that are required to completely specify the characteristics of the natural 

fracture network are: 

i. the location of the fractures 

ii. the extent of the fractures 

iii. the orientation of the fractures and  

iv. the conductive properties of the fractures. 

These parameters serve as the essential controls on the topology of the fracture network 

generated.  

Generation of natural fracture networks in literature is based on the premise that natural 

fractures are stochastic in nature and must be modeled as such. An example of such model is the 

Baecher model, which assumes that each fracture is elliptical, and is defined by its centroid 

location, diameter and orientation (Dershowitz and Einstein, 1988; Chiles and de Marsily, 1993). 

The coordinates of fracture centers are generated using a random number generator following 

Poisson’s distribution. The Poisson’s parameter λ represents the expectation of fracture quantity 

in the selected formation. This parameter is calculated by multiplying the observed fracture density 

by the length of the model cube. For example, if the fracture density detected from field data is 

specified as 2 fractures per cubic meter, and the model size is specified as 250×1000×100 cubic 

meters, the Poisson’s parameter would be calculated as 2× (250×1000×100) and equals to 

50,000,000. This means that a total of 50 million fractures are expected to be located in the model 

scenario specified above.  
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 The diameters of the ellipses are assumed to be independent of each other and follow a 

log-normal distribution (Wang and Ghassemi, 2011). To determine the fracture orientation for 

these studies, the Fisher von Mises parameter k is obtained by conducting statistic study of field 

gathered fracture orientation data. The cumulative distribution function of the Fisher von Mises 

distribution is generated as discrete random numbers U first and then these random numbers are 

then transferred into random angles by applying the inverse of the cumulative distribution function.  

However, the definition of shale suggests that the formation is made up of thin laminar 

layers that is bound up by immense pressure at depth. The assumption can thus be made that the 

dominant natural fractures in shale may be described by sheeting fractures, or horizontal plate 

sections that can be opened by hydraulic fracturing. This conceptual model provides a large 

porosity that may or may not be connected prior to the hydraulic fracturing. They are however 

opened during the hydraulic fracturing process leading to a substantial increase in the formation’s 

overall permeability. 

For modeling purposes, the natural fractures in the formation are represented in a semi-

explicit form. The term semi-explicit is used to denote the reduced dimensionality approach 

utilized for this process. The fracture volumes are not fully reproduced in the model, rather the 

fractures are represented by horizontal planar layers with variations in the size, location and 

orientation of the layers. In this approach, a 3D fracture is modeled as a 2D planar geometry– (See 

Figure 3.7) and the collapsed dimension is accounted for by introducing it into the modified 

Darcy’s law equation which utilizes tangential gradients as earlier discussed.  

The effects that different configurations of these natural fractures have on the production 

rate of gas in the formation is investigated and presented in the next chapter. 
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Figure 3.7 Multiple scenarios representing different configurations of natural fractures in 
the reservoir domain. (a) Natural fracture layers parallel to the horizontal axis 
(b) layers are separated by sections where facture sheets do not connect (c) 
natural fracture layers inclined at an angle to the horizontal 
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3.6. Induced Fracture Representations 

The tendency for induced hydraulic fracture to form asymmetrical patterns as they interact 

with natural fractures in the formation has been discussed in literature (Bennet et al., 2005; 

Dershowitz and Doe, 2011).  According to Mohaghegh (2013), the coupling of hydraulic fractures 

and natural fracture networks, and their integration and interaction with the shale matrix still poses 

a significant challenge to the reservoir modelling of shale formations. This is a problem of 

significant interest to shale gas operators, regulators and the members of the communities who are 

interested in fully understanding the effects of hydraulic fracturing.  

Monitoring activities carried out in shale exploration areas utilizing micro seismic studies 

have suggested that the fracture network generated differs from the bi-wing fracture model 

commonly used in literature, but appear to be more like a network of distributed fissures along a 

central line or a fractal (Urbancic et al., 2010). Fractal geometry has been reported to be a powerful 

tool for describing patterns in nature. The fractal pattern is one in which self-similarity is present 

between all its sub-parts. This characteristic of a fractal geometry makes it amenable for use in 

generating synthetic fracture networks whose size and spatial properties are constrained by the 

fractal dimension. 

In this work, I have adopted the use of secondary fractures as a way of describing the 

asymmetrical distribution of fractures that arise as a result of the hydraulic fracturing process. For 

the purpose of this study, the hydraulic fracture itself is represented as a semi-explicit feature just 

like the natural fracture system. The post-fractured state of the formation which represents the 

stimulated reservoir volume/secondary fractures is however represented by the use of 

asymmetrical fractal patterns. This geometry is assumed to be a tree patterned network extending 

from the perforation at the wellbore. This approach has not been presented so far in literature, but 
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the study by Urbancic et al. (2010) supports these assumptions. The fractal pattern is approximated 

by the use of a modification of the Pythagoras tree. The Pythagoras tree is a plane fractal that is 

constructed from recursively generated squares that are fractional multiples of the original square 

and grows according to the specified number of iterations. For our use, an adaptation of the 

Pythagoras tree that makes use of lines instead of squares and allows for recursive generation of 

daughter branches with different orientations is employed. The study of the irregular fracture 

patterns generated, can provide useful insight into the effects of these non-ideal fracture geometries 

on the flow behavior. 

 

Fractal Generation Algorithm 

 An assumption is made about the origination point of the hydraulic fractures. They are 

assumed to originate from the perforation sections present on the cased wellbore. The perforation 

points therefore serve as the location of the initiating fractal pattern.  By utilizing the concept of 

self-similarity of fractals, the procedure for generating the network of secondary fractures from 

the initial fracture location and property is presented below: 

 

Step 1:  Define the parameters specifying the first line 

  Fracture location, Fracture length 

Step 2:  Specify the number of daughter lines to generate at each iteration 

  Number of branches 

Step 3:  Specify the angle of orientation of daughter lines 

  Inclination angles – ϕ and θ 

Step 4:  Specify the number of times to generate daughter lines 
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  Number of iterations  

Step 5:  Generate daughter lines 

Draw the initial line 

At the end of the line, apply rotational and scaling transformations on line  

Append generated line(s) to original line 

Step 6:  Repeat step 5 for number of iterations 

Step 7:  Plot generated line segments 

 

  A sample of the generated fractal geometry is presented in Figure 3.5. The output of this 

algorithm is a group of variables specifying the spatial coordinates of the starting and end points 

of each branch of the fracture network. A complete MATLAB implementation of the pseudo code 

specified above and implemented in our modeling is presented in Appendix B. 

 

 

 

 

 

 

 

Figure 3.8 Sample fractal configuration generated using MATLAB.    
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3.7. Geometric Upscaling of Fracture Properties 

In situations where multiple and complex fractures exist over a large scale formation or in 

areas containing fractures with high length to width ratios e.g. secondary fractures generated in the 

previous section, the representation of individual fractures possessing low aspect ratios becomes 

computationally implausible. The continuum approach of obtaining an effective property value 

that is representative of the geology and preserves the geometrical controls of the parameters 

therefore presents the most effective mode of capturing the physics of the formation. To be able to 

represent the properties of the generated model of the formation as a non-homogenous anisotropic 

continuum however, a careful subdivision of the model volume into representative volume or grid 

sections over which the formation properties are reasonably conserved after an averaging process 

has taken place.  

In the subsections that follow, the technique for upscaling the formation properties, - which 

involves a subdivision of the formation into subdomains, accounting of fracture features that are 

present in the individual subdomains by means of a clipping algorithm, the subsequent calculation 

of effective property values by an averaging approach, and the interpolation procedure for 

obtaining formation properties in the presence of uncertainty, is discussed. 

 

3.7.1. Subdomain Grid Discretization 

Controls on the size of the subdomains to be used for the model simulation are based on 

the spacing between perforated sections, along the axis of the wellbore, with the grid allowing for 

2 subdivisions between two perforated sections. The subdomain grids (It should be noted that these 



   

61 
 

differ from grids generated in the numerical solvers) are further subdivided logarithmically along 

the wellbore axis to allow for accurate representation of fracture segments. This subdivision is 

based on the assumption that all fractal segments originate from the perforations and therefore the 

largest formation heterogeneity is found in the formation volumes around the perforations.  In 

Figure 3.9, a schematic of the subdivisions utilized is presented. A study of the effect of the 

number of subdivisions on generated permeability is studied and presented in our modeling results. 

 

 

 

 

 

 

 

 

 

 

Figure 3.9  Subdomain grid discretization scenarios implemented in study model (a) Box 
representing formation with 12 subdomains (b) formation with 96 subdomains 
(c) Subdomain division structure showing logarithmic division along wellbore 
axis and even gridding structure in y and z-axes 

 

(a) 
(b) 

(c) 
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The effective permeability of the fractured reservoir subdomain being studied has to take into 

account the initial permeability of the formation and the permeability of any fracture included in 

the subdomain. This effective value	ࢋ࢑ can be computed from the equation:  

ࢋ࢑ ൌ
௙݈݋ݒ
݈݋ݒ

ࢌ࢑ ൅	
1 െ ௙݈݋ݒ
݈݋ݒ

	࢓࢑

  (3.26) 

where  ࢜࢒࢕ is the volume occupied by the entire sub-region of interest. 

 And f and m represent the fracture and matrix sub-regions respectively. 

 

3.7.2. Clipping of Fracture Segments 

For upscaling purposes, the different segments of the generated hydraulic fracture network 

needs to be identified and associated with the appropriate subdomain. Carrying out this task 

requires the use of a clipping algorithm which takes as its input structure the co-ordinates of the 

generated fractures and outputs the co-ordinates of the fragments that are contained in each 

subdomain. 

To perform a clipping operation involving objects in 3-D space, extraction of a portion of 

the geometry object being clipped by means of a volume, is carried out.  A typical 3-D clipping 

algorithm involves three steps: 

i. Check to see if the line segment lies completely within the clipping volume 

ii. If not, check if line lies completely outside clipping volume 
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iii. If not, compute intersection points with clipping planes and retain information for 

segment that lies within clipping volume. 

Notable algorithms that implement this procedure include the Cohen-Sutherland line 

clipping algorithm and the Liang-Barsky line clipping algorithm (Liang and Barsky, 1984; Foley 

et al., 1990; Pandey and Jain, 2013). The Cohen-Sutherland algorithm becomes inefficient for 

complex problems as it requires that 27 exclusive volumes be defined and different memory 

allocations be made for each volume in order to determine the interactions of the line with the 

complete 3D space.   

This modeling work makes use of a more efficient clipping algorithm proposed by 

Kodituwakku et al. (2012). Their algorithm, which employs the use of a series of constants 

generated from an algebraic manipulation of the equation of a line, reduces the memory allocation 

and number of calculations required to generate the co-ordinates of a clipped line segment. The 

algorithm is presented below. A full mathematical derivation of the algorithm is presented in 

Appendix B. 

 

Clipping Algorithm 

Step 1:  Determine the number of lines to be processed by the clipping algorithm. 

  Number of lines = nl 

Step 2:  Specify the extents of the bounding box i.e. define the subdomain coordinates 

  Lower boundaries (Xmin, Ymin, Zmin); Upper boundaries (Xmax, Ymax, Zmax) 
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Step 3:  Specify co-ordinates of end points of each of the n fracture line segments 

  Lower boundaries (X1, Y1, Z1); Upper boundaries(X2, Y2, Z2) 

Step 4: Starting with one line, compute the values of constants required for obtaining 

intersection of line with planes using the line equation. 

Step 5: For each end point of the line (Xi, Yi, Zi), where i = 1 and 2, calculate the intersection 

point with the 6 planes of the bounding box 

Step 6:  Save the co-ordinates for the newly calculated end points of line segments  

Step 7:  Repeat steps 4 to 6 for the number of line segments specified in Step 1. 

Step 8:  Repeat steps 1 to 7 for the number of subdomains in the domain. 

 

 The result obtained from implementing this algorithm is a data-structure containing the co-

ordinates of the bounding points of each subdomain and the co-ordinates of the fracture segments 

associated with each subdomain. Values from this data structure form the basis for the calculation 

of a permeability tensor (described below), a parameter required in the solution of the governing 

equations when utilizing an implicit/continuum approach for representing fracture properties i.e. 

upscaling the discrete fracture properties to a continuum grid.  
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3.7.3. Calculation of Fracture Permeability Tensor 

 Permeability in shale formations is often anisotropic, and oftentimes horizontal 

permeability is higher than vertical permeability as a result of the arrangement of the grain 

structures in the different directions. The value for the fracture permeability ࢌ࢑ obtained from the 

equation (3.21) is the permeability value obtained along the direction of the fluid flow and cannot 

be used directly for the flow solution as it doesn’t adequately describe the anisotropic nature of 

permeability. There is therefore the need to translate ࢌ࢑ into a tensor that can also be referred to 

as the upscaled fracture permeability ࢙࢖࢑࢛ which captures the values of the permeability with 

respect to the new subdomain co-ordinates. In the equations that follow, a mathematical 

development of the permeability tensor is presented. 

Consider the 2D planar fracture depicted by Figure 3.10 

 

 

 

 

 

 

 

Figure 3.10 Schematic of a planar fracture in a 2-dimensional domain 
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The hydraulic gradient responsible for flow in this domain is given by 

ܬ ൌ ଵܲ െ ଶܲ

ܮ
	

  in the x-direction.         (3.27) 

This term ′ܬ′ is referred to as the field gradient (Snow, 1969) 

To determine the flow along the fracture however, the tangential component of the field vector 

along the fracture (݌்׏) can be related to the field gradient. For ease of solution development, this 

term is denoted as ܬሺ௙ሻ and its relationship to ܬ is specified by 

ሺ௙ሻܬ ൌ ܬ െ ሺ݊	.		ܬሻ݊	

          (3.28) 

௜ܬ
ሺ௙ሻ ൌ ൫߲௜௝ െ ݊௜ ௝݊൯ܬ	

              (3.29) 

where ߲௜௝ is the kronecker delta 

i.e.  ߲௜௝ ൌ 	 ൜
0				݂݅	݅	 ് ݆
1			݂݅	݅ ൌ ݆  

           (3.30) 

and ݊௜ and ܬ௜ are components of the normal vector n and the J projected to the orthogonal axes. 

The flow in a fracture has been characterized by idealizing it as laminar flow between parallel 

plates with an aperture b, the velocity of which can be obtained from the cubic law as: 
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௜ሺ௙ሻݒ ൌ െ
ߩ
12

݃
ߤ
ܾଶܬ௜

ሺ௙ሻ 

           (3.31) 

Substituting for ܬ௜
ሺ௙ሻ 

௜ሺ௙ሻݒ ൌ െ ఘ

ଵଶ

௚

ఓ
ܾଶ൫߲௜௝ െ ݊௜ ௝݊൯ܬ       

         (3.32) 

The average velocity in the 2D domain is obtained by integration 

௜ݒ
ሺ௙ሻ ൌ

1
݈݋ݒ

න ܸ݀ሺ௙ሻ	௜ሺ௙ሻݒ

௏ሺ೑ሻ

	

          (3.33) 

ܸ݀ሺ௙ሻ = volume of a fracture 

 volume of the domain = ݈݋ݒ

Therefore in a scenario with more than one fracture, the total volume of fractures is given as 

ܸ݀
ሺ௙ሻ

ൌ 	෍݀ ௞ܸ
ሺ௙ሻ

ே

௞ୀଵ

 

           (3.34) 

௜ݒ ൌ
1
݈݋ݒ

෍ݒ௜௞
ሺ௙ሻ	݀ ௞ܸ

ሺ௙ሻ
ே

௞ୀଵ

 

           (3.35) 
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Substituting for ݒ௜ሺ௙ሻ  from equation (3.32) in equation (3.35) gives 

௜ݒ ൌ െ
1
݈݋ݒ

	෍
ߩ
	12

݃
ߤ
ܾ௞
ଶ൫߲௜௝ െ ݊௜ ௝݊൯ܬ	݀ ௞ܸ

ሺ௙ሻ
ே

௞ୀଵ

 

           (3.36) 

If the velocity value from equation (3.36) is compared to Darcy’s law for flow in the domain- 

which is given in equation (3.37) below, 

௜ݒ ൌ െ
݃ߩ
ߤ
݇௜௝	ܬ௜ 

           (3.37) 

we obtain the a term for the permeability of the fracture	݇௜௝. This term is presented below. 

݇௜௝
ሺ௙ሻ ൌ 	

1
	12. ݈݋ݒ

෍ܾ௞
ଶ൫߲௜௝ െ ݊௜ ௝݊൯. ݀ ௞ܸ

ሺ௙ሻ
ே

௞ୀଵ

 

           (3.38) 

Oda, in (1985) developed an approach for the calculation of continuum properties from discrete 

fractures. The approach which was based on the assumption that continuum properties could be 

generated directly from the fracture geometry led to the concept of an empirical fracture 

permeability tensor ௜ܲ௝, the value of which can be calculated by adding the permeabilities of the 

individual fracture weighted by their volume. This tensor is specified by the equation: 
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௜ܲ௝ ൌ 	
1
݈݋ݒ	

෍ܾ௞
ଶ. ݊௜ ௝݊	. ݀ ௞ܸ

ሺ௙ሻ
ே

௞ୀଵ

	

           (3.39) 

so that 

݇௜௝
ሺ௙ሻ ൌ 	

1
	12

൫ ௞ܲ௞߲௜௝ െ ௜ܲ௝൯ 

           (3.40) 

where ௞ܲ௞ is the sum of the diagonal elements. 

 Equation 3.38 and 3.39 although derived using a 2-D example, can be shown to be 

applicable even in a 3D reservoir domain with an angle θ to the horizontal and displaced by an 

angle ϕ in the x-y plane, as shown in Figure 3.11. 

 

 

 

 

 

 

 

Figure 3.11  Schematic of a planar fracture in a 3-dimensional domain 
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To obtain the permeability tensor for the shown fracture of volume	݈ܾ݄, the values of the 

components of the normal vector	݊௜, ݊௝ and ݊ ௞	, also known as the direction cosines, are developed 

for the 3D scenario. These values are: 

݊௜ ൌ sin χcos	∅ 

௝݊ ൌ sin χsin	∅ 

݊௞ ൌ cos	χ 

Thus: 

݊ଵଵ ൌ sin	ଶ χcosଶ∅			; 											݊ଵଶ ൌ sin	ଶ χ	sin∅ܿݏ݋∅	;																						݊ଵଷ ൌ  	∅cosߠݏ݋ܿ	χ݊݅ݏ

݊ଶଵ ൌ sin	ଶ χ	sin	∅ܿݏ݋∅			; 											݊ଶଶ ൌ 	 sin	ଶ χsin	ଶ ∅	; 																						݊ଶଷ ൌ  	∅cos∅݊݅ݏ	χ݊݅ݏ

݊ଷଵ ൌ ;			∅cosߠݏ݋ܿ	χ݊݅ݏ 											݊ଷଶ ൌ ݊ଷଷ																						;	cos∅∅݊݅ݏ	χ݊݅ݏ	 ൌ cosଶχ 

 

For the case of an horizontal fracture with aperture b = 1, i.e. χ and	∅  = 0 

݊ଵଵ ൌ 0			; 											݊ଵଶ ൌ 0	;																						݊ଵଷ ൌ 0	 

݊ଶଵ ൌ 0			; 											݊ଶଶ ൌ 	0	; 																						݊ଶଷ ൌ 0	 

݊ଷଵ ൌ 0			; 											݊ଷଶ ൌ 	0	; 																					݊ଷଷ ൌ 1 

 

 Substituting for term in equation (3.40), 
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௜ܲ௝ ൌ 	
1
݈݋ݒ	

൥
0 0 0
0 0 0
0 0 1

	൩ . ݈ܾ݄ 

therefore     ௞ܲ௞  = ݈ܾ݄/݈݋ݒ;          and  

݇௨௣௦
ሺ௙ሻ ൌ ݇௜௝

ሺ௙ሻ ൌ 	
݈ܾ݄
݈݋ݒ	

൥
1 0 0
0 0 0
0 0 0

	൩ 

This value specifies the upscaled fracture permeability, and lies along the horizontal axis. 

The effective upscaled permeability value in the subdomain is then reformulated from equation 

(3.26) with substitutions made for the fracture permeability 

࢙࢖࢑࢛ ൌ
௙݈݋ݒ
݈݋ݒ

࢙࢖࢑࢛
ሺࢌሻ ൅	

1 െ ௙݈݋ݒ
݈݋ݒ

	࢓࢑

  (3.41) 

3.7.4. Kriging of Permeability values 

The result of upscaling is a series of subdomains that fill the computational domain each 

with a distinct permeability tensor. There will therefore be discontinuities in the tensor values at 

the boundary of these subdomains. This section describes the approach taken to smooth the tensor 

field over the computational domain of the finite element calculations. In numerical computation 

using grid systems, the values of the domain property is assigned either as a face-centered value 

or a block centered value. For this work, the value of the calculated effective permeability values 

is assigned to sections of the domain using the block centered approach, and the geostatistical 

interpolation technique of kriging is then used to interpolate for the data values at points in the 

formation where the data values are not explicitly calculated. The advantage of the kriging 
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technique over any other deterministic interpolation scheme is that it yields a best estimate of the 

value at the unknown locations based on a least square fit.  

The kriging technique assumes that the first statistical moment of the property being 

considered is inhomogeneous, such that ݇ത ൌ ത݇ሺݔሻ and that the second moment is homogenous, i.e. 

the covariance is not a function of the spatial co-ordinate but of the distance r between the two 

points - 	ݒ݋ܥ ൌ  ሻ.  The estimation of the property value k at the unknown point can then beݎሺݒ݋ܥ

obtained using correlations utilizing a semivariogram and by solving the equation: 

݇∗ሺݔሻ ൌ ത݇ሺݔሻ ൅ ෍ ௜ߣ

௡ሺ௫ሻ

௜ୀଵ

ሺݔሻሾ݇ሺݔ௜ሻ െ	 ത݇ሺݔ௜ሻሿ 

(3.41) 

where ࢞࢏	is the sampled point ;  

the asterisk  * subscript indicates an estimated value;  

࢑ഥሺ࢞ሻ refers to the mean of the property value in the subdomain and the weights ࢏ࣅ, need to 

be determined and may be selected differently at different locations within the subdomain.  

The choice of weights ࢏ࣅ is dependent on the degree of statistical homogeneity that can be 

attached to the studied field. In this study, the permeability values can be formulated as a function 

of space i.e. values within a certain radius to each other are strongly correlated than values that are 

present at farther distances. The effect of three different weight expressions- which are functions 

of distance - on the permeability of the modeled domain is conducted and the expression that 

closely matched values obtained in a validation study is then adopted.  The estimated values are 
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obtained using a 3ft grid discretization.  The mathematical algorithm implemented to generate the 

kriged data values is presented in Appendix C. 

 

3.8. Reservoir Simulation Code 

Mathematical models usually possess the greatest potential to provide the much needed 

information about otherwise recondite relationships present in nature. These models can either be 

analytical or numerical.  Numerical models have an advantage over analytical models in terms of 

the range of problems that they can adequately represent. Over time, differential and integral 

numerical methods for solving the material balance equations describing mass flow and transport 

in fractured porous media have been employed. For the spatial derivatives, integral methods have 

enjoyed more widespread use than the differential approach of the finite difference method, partly 

because they are amenable to irregular domain geometries. Integral methods used in fracture flow 

modeling include the finite-element method and the boundary-element method (Diodato, 1994). 

The finite element method (FEM) is based on the idea that by dividing a domain into 

smaller subsections or finite elements, and solving a simpler form of the governing physical 

equations on the smaller domain, an approximation of the solution to the entire domain can be 

obtained using a piece-wise continuous function. This method has developed into an important 

tool for the simulation of subsurface systems. Perhaps, its most attractive feature is its ability to 

handle complex geometries and boundaries with relative ease even in three-dimensions (Le Roux 

et al., 1998; Franca and Hwang, 2002). The formation is modeled using the subsurface flow 

module of COMSOL Multiphysics 4.4 – a finite element software package, which in addition to 
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its capabilities to handle coupled physics problems, also offers a graphic user interface (GUI) for 

the visualization of simulation results.  

The flow in the domain was specified using the Darcy’s law module of COMSOL which 

utilizes equation (3.17) as described in the governing equation section. Flow through the hydraulic 

and natural fractures (laminated planar layers) is modeled by the assignment of upscaled property 

values generated from the MATLAB fractal generation code in combination with COMSOL’s 

semi-explicit fracture flow boundary condition. The fracture flow delivers the capability of 

generating the fracture as a boundary within the modeled geometry which eliminates the need for 

extensive and excessive meshing requirements of having a different domain and leads to a faster 

and improved solution of the physics.  

The interface uses the tangential version of Darcy’s law. It increases the computational 

efficiency of the simulation as it makes use of a reduced dimensionality for the fracture domain, 

i.e. a 3D fully explicit fracture is modeled as a 2D planar geometry. The collapsed dimension is 

accounted for in a re-formulated equation for flow which makes use of tangential derivatives to 

the pressure gradient to solve for pressure distribution within the fracture. 

 

ࢌࢗ ൌ െ
ࢌ࢑
ࣆ
				ሻ࢖ࢀࢺሺࢌࢊ

  (3.42) 

where ݍ௙ is the volume flow rate per unit length in the fracture, ݇௙is the fracture’s permeability, ߤ 

is the fluid dynamic viscosity, ݀௙ is the thickness of the fracture, ்ߘ denotes the gradient operator 

restricted to the fracture’s tangential plane and p is the pressure. 
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3.9. Initial and Boundary Condition Specification 

A set of initial and boundary conditions is required to solve a transient simulation i.e. a 

complete set of variables over which the solution of the equation in each grid block is carried out.  

 

3.9.1. Initial Conditions  

An initial condition of constant pressure is specified everywhere in the numerical domain 

for time t = 0.  The free time stepping algorithm is specified in the solver with an initial time step 

of 0.0001 days in order to resolve the strong transients that might be introduced into the system as 

a result of the jump in boundary condition at the wellbore relative to the initial pressure of the 

reservoir domain and to address the issue of non-converging time steps. 

 

3.9.2. Boundary condition – External reservoir boundaries 

A no flow condition is specified at the top and bottom of the formation for purposes of 

model validation. In cases where the effect of an overlying domain is to be studied, the boundary 

of the shale formation in contact with that boundary is modeled by assuming continuity of flow 

between the two layers. Symmetry boundary conditions are specified along the other faces of the 

domain being modeled. 

 

3.9.3. Boundary condition - Wellbore 

The boundary condition specified at the wellbore is that of constant pressure. The area of 

the perforated section of the wellbore exposed to the reservoir is also specified.  



   

76 
 

 

3.9.4. Boundary condition – Fault intersections 

A pressure boundary condition is specified at the boundary sections representing the 

intersection of a fault with external boundary. The specified pressure at the boundary is obtained 

from transient pressure distribution results of a simulation study utilizing no-flow boundary 

conditions along the overlying boundary face. The results obtained along the fault section is then 

sent in as the boundary condition for a new simulation study.  

 

3.10. Flux Estimation 

The flux of gas through the system presents a way by which the model can be validated for 

accuracy and history matching can be conducted on the study model. Estimates of the gas flux into 

the wellbore will be obtained by integrating the velocity across the area of the open perforation 

sections.  Hence  

ࢋ࢘࢕࢈࢒࢒ࢋ࢝ࢗ ൌ න .ܔ܌ ܃ ∗ 	ܖ
ࢌ࢘ࢋ࢖࡭

		 

  (3.43) 

 Where  Aperf is as previously defined and 

 dl.U is the magnitude of the velocity at the wellbore 

                 and n is the normal vector at the wellbore. 
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For obtaining accurate estimations of the flux through the system, a constraint can be 

specified on the Dirichlet boundary condition at the boundary through which the flux is being 

calculated – in this case the wellbore. The constraint specification gives more accurate results than 

direct evaluations in situations where a non-uniform source e.g. the amount of gas released from 

desorption with time, makes the solution in the domain non-linear. An optimization algorithm, 

which makes use of the concept of constraints –referred to as Lagrange multipliers is built in to 

the software to enable this. The concept of the Lagrange multipliers introduces an additional degree 

of flexibility in the specification of the length of the wellbore radius, and dealing with the meshing 

complexities that may arise as a result of small edge elements, and is implemented in this study 

for validation of production rates simulated at the wellbore. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Introduction  

The objectives of this research work as stated in chapter 1 are to: 

• Utilize COMSOL to predict migration patterns of shale gas in fractured media 

• Investigate the range of conditions that favor the direction of fluid flux towards the 

wellbore. 

In this chapter, the results of studies associated with these objectives are studied by 

estimating what the effect of fracture network patterns are on flow in simulated geometry and by 

making use of an appropriate multi-physics boundary condition to estimate and model possible 

gas flux out of the system.  These results are obtained by making use of the model built in chapter 

3, and are presented in the sections that follow. For a model to be accepted as being representative 

of the system it describes, its outputs need to be verified either by assessing them with analytical 

results or comparing them to previously published solutions describing the same systems.  

 

4.2 Validation of semi-explicit fracture representation using COMSOL 

The applicability of the conceptual model and governing equations presented in the 

previous chapter is now demonstrated by means of simulation of flow scenarios likely to be 

encountered in a hydraulically fractured shale formation. The objective of the first case study is to 

demonstrate how well COMSOL models flow in the ultra-low permeability shale formation, and 

how the model performs as a tool for prediction of migration patterns of shale gas in fractured 

media by implementing a semi-explicit representation of hydraulic fractures. The model only 
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considers the effect of hydraulic fractures on the production in the formation as a base case 

scenario. The model is formulated around values obtained from one production stage and the 

production stage is assumed to be made up of 5 perforation clusters spaced 80ft apart. The 

perforation clusters are hypothesized as planar hydraulic fractures. 

The domain consists of a 2000 ft. long, 300 ft. thick portion of a producing shale formation 

extending 2000 ft. in the transverse direction and completed using cased perforations. The 

hydraulic fractures are modeled using the reduced dimensionality formulation described in the 

previous chapter and the effects of adsorption are accounted for. The input data employed for this 

simulation case study was based on average reservoir data from the Barnett Shale and was obtained 

from the system modeled by Yu et al. (2014). This data is presented in Table 4.1.   

 

Table 4.1  Fracture and Reservoir Parameters utilized for study 

Parameter Value Units 

Reservoir Properties   

Initial Reservoir pressure  3800 psi 

Model dimensions (L x W x H) 2000 x 2000 x 300 ft 

Perforated stages 1 stage with 5 perf. clusters 

Perforation spacing 80 ft 

Matrix permeability  1.0×10-4  mD 

Porosity of the matrix 5 % 

Rock density 2580 kg/m3 

Langmuir pressure 650 psi 

Langmuir volume 96 ft3/ton 

Temperature 180 0F 
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Table 4.1.  Fracture and Reservoir Parameters utilized for study (cont’d) 
Parameter Value Units 

Well-bore Properties   

Well-bore pressure 1000 psi 

Well-bore radius 0.25 ft 

Hydraulic Fracture Properties   

Hydraulic fracture porosity 100 % 

Hydraulic fracture half-length 500 ft 

Hydraulic fracture height 300 ft 

Hydraulic fracture permeability 5.0×103 mD 

Number of fractures 5  

Fracture spacing 80 ft 

Fracture Aperture 0.02 ft 

Fluid Properties   

Density 0.716 kg/m3 

Gas Constant 8.314 kJ/(kmol*K) 

Molar mass 16 g/mol 

Fluid compressibility 2.5×10-4 psi-1 

 

 A schematic of the modeled domain is presented in Figure 4.1. In this figure, the reservoir 

is located at a depth of 7000 ft in the subsurface and only half of the domain is modeled on the 

basis of symmetry about the xz- plane at y = 0 ft. A symmetry boundary condition cannot be 

assumed about the xy-plane as the formation pressure can vary linearly with depth. A no flow 

boundary is specified at all other external boundaries of the formation and a well-bore pressure 

held constant at 1000psi.  



   

81 
 

  

Figure 4.1  3D view of planar hydraulic fractures located in a modeled domain symmetrical 
about the xz-plane. The blue points represents the well-bore perforation points 
through which gas flow out of the system is captured. 

 

 

By utilizing the concept of symmetry, the production rate forecast for the whole domain is 

obtained by multiplying the simulated rates by a factor of two. This reduces the number of grid 

elements required for the finite element study and correspondingly reduces the associated 

execution time. Although we are trying to simulate production from a fracture stage, a larger extent 

of the reservoir is modeled so that the flow in the formation is not controlled by the boundary. 
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4.2.1. Finite Element Mesh Selection 

In simulations that make use of finite element methods, the finite element mesh serves a dual 

purpose: 

i. To serve as a framework for the representation of the solution of the physics being 

solved for and  

ii. To discretize the finite element domain into smaller grid blocks over which the set of 

equations describing the solution to the governing equations can be written. 

The minimum element size is chosen as half of the smallest feature in the domain, that is, the 

well-bore radius, with a maximum growth rate of 1.25. The maximum finite element size was 

specified as one-third of the reservoir height. For this scenario, the software generates a high 

quality mesh consisting of 58, 172 tetrahedral elements incorporating refinements around the 

fractures as shown in Figure 4.2.   

The mesh quality usually gives a good indication of the accuracy of a simulation based on the 

solution of partial differential equations. In COMSOL, a size quality of each element is used as a 

measure of the mesh quality. For a tetrahedron, the quality measure is evaluated by the formula 

ݍ_	݄ݏ݁݉ ൌ 	
72√ܸ

ሺ݄ଵ
ଶ ൅	݄ଶ

ଶ ൅	݄ଷ
ଶ ൅	݄ସ

ଶ ൅	݄ହ
ଶ ൅	݄଺

ଶሻଷ/ଶ
 

 Where ܸ	denotes the volume of the element and 	݄ᇱ s the length of the element edges. For an 

optimal tetrahedron, the value of ݄݉݁ݏ	ݍ_ becomes 1, else its value is less than 1. It is usually 

desirable to have a mesh with a minimum element quality of 0.1 or above. 

  It is also important to perform a mesh refinement study in order to ensure that the 

computational results obtained from a numerical modeling procedure are free of any numerical 
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effects that might be associated with the discretization of the system during the translation of the 

physical equations to the form being computed by the numerical solver. The results of our mesh 

refinement studies are presented in Appendix D. 

 

 

Figure 4.2  3D surface map showing the quality of the tetrahedral mesh elements utilized in 
the simulation  

 

4.2.2. Initial Conditions and Solver Settings   

Although pressures in the subsurface varies linearly with depth, pressure in shale gas 

formations typically exceed the hydrostatic pressure component. The pressure distribution across 

the whole formation is therefore specified only as a function of the overpressure in the shale.  The 

model is initialized with a homogenous pressure distribution of 3800psi in the model domain. The 

Backward Differentiation Formula (BDF) is selected as the time stepping algorithm in the solver 

with an initial time step of 0.0001 days. The low value of the initial time step is selected in order 

to resolve the strong transients that might be introduced into the system as a result of the jump in 
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boundary condition at the wellbore relative to the initial pressure of the reservoir domain. The 

study was conducted for a simulation period of 30 years. 

Figure 4.3 presents the cumulative production comparative plots, indicative of a good 

match between the results obtained by making use of the conceptual model and data values (See 

Appendix E) obtained using a fully explicit hydraulic fracture representation using CMG reservoir 

simulator by Yu et al. (2014).  

 

 

Figure 4.3 Comparison of cumulative production values obtained from a COMSOL 
Multiphysics simulation -utilizing a reduced dimensionality formulation for 
hydraulic fracture modeling, and reported data obtained using a fully explicit 
hydraulic fracture representation using CMG reservoir simulator by Yu et al. 
(2014). 
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The pressure profile in the domain at different simulation times is presented below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4  Surface map showing propagation of pressure front in the simulated domain at (a) 

1 month, (b) 1 year and (c) 30 years respectively. 
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In Figure 4.4(a) above, it can be observed that the pattern of pressure dissipation is linear 

around the fractures after a study period of one month, suggesting that the high permeability zones 

of the hydraulic fractures allow transmission of the reduced pressure at the well-bore to the 

surrounding formation. After a 1 year simulation period however, interference effects can be 

observed in the stimulated zone. This pattern continues till the 4th year of the study (See Figure 

4.5) after which the pressure front extends beyond the stimulated zone into the rest of the formation 

in an elliptical pattern as can be seen in Figure 4.4(c).   

 

 

Figure 4.5  Compound linear pressure dissipation pattern in the simulated domain after 4 
years of production from (a) COMSOL simulation (b) Yu et al (2014) study. 

 

Pressure transient analysis in reservoir formations is utilized to characterize the different 

flow regimes in the formation with time. However, an advantage of studying the fractured domain 

using the COMSOL Multiphysics software package is the ability to visualize the velocity evolution 

i.e. the migration patterns of the fluid in the simulated domain in addition to observing the pressure 

dissipation. In Figure 4.6, transient fluid movement patterns around the fractured region in the 

formation is presented. 
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Pressure (psi) 
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Figure 4.6  Fluid flow directions in the hydraulically fractured region consisting of 5 fractures 

after a simulation period of (a) 1 month, (b) 1 year and (c) 10 years respectively. 
The surface plots show the magnitude of velocity in the fractures while the arrow 
lengths are indicative of the velocities in the formation. 
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Whereas characterization of flow regimes in shale formations completed using multiple 

fractures and horizontal wells have been approximated mainly by the use of pressure maps and 

analytical plots (Freeman et al., 2013, van  Kruysdijk & Dullaert, 1989), the visualization presented 

in Figure 4.6 simplifies and enhances the process of characterization of these transient flow 

regimes.  

The arrow plots presented in Figure 4.6 correspond to the flow regimes in the formation 

with time. After the first month of production, the fluid flows in in the hydraulic fractures at a rate 

of about 0.004m/s at areas closer to the wellbore, while the values observed at the fracture edges 

farthest from the well-bore is about 0.0001m/s. Flow is observed to be directed towards each of  

the fractures in the fractured area. The length of the arrows are indicative of the magnitude of 

velocity and the arrow heads indicate the direction of fluid movement. These values have been 

multiplied by a scale factor of 3E9 in the three cases for visualization. The magnitudes of the 

velocity are observed to be smaller in the region around the hydraulic fractures after the one year 

period (Figure 4.6b) and a reduced velocity is also observed in the fractures – from the surface 

plot. This suggests a diminished production capacity in the stimulated zone and can be attributed 

to an increased resistance to mass transfer in the fractured zone. 

In Figure 4.6c, it is observed that no velocity arrows are present in the fractured zone and 

flow into the fractured area comes mainly from the surrounding formation that fracture interference 

has occurred. Fracture interference occurs when the pressure head at an adjacent fracture is 

significantly lowered as a result of production from a nearby fracture. As a result, both fractures 

would produce less than they normally would in the absence of the other fracture. This effect can 

further be demonstrated by examining the production rates from the individual fractures at 

different time periods as shown in Figure 4.7.  
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Figure 4.7  Gas production rate showing contributions from individual fractures over a 30 
year simulation period. 

 

 

Initially, all the fractures are producing at the same rate and contribute equally to the total 

production from the formation, however after a 3-4 year period, we observe a difference in the 

production rates from the external fractures, denoted by Fracture 1 and Fracture 5 from what is 

observed in Fractures 2, 3 and 4, the internal fractures. By the end of the 30 year simulation period, 

gas flow through the external fractures makes up 82% of the total  production further suggesting 

that depletion of gas has occurred in  the fractured zone and gas movement is now predominantly 

from the unstimulated zone of the formation. 
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The results of this test case show that the semi-explicit representation of the fractures can 

be employed for the simulation of flow in a hydraulically fractured shale formation, and gives 

results that have a good match to model results obtained using a fully explicit hydraulic fracture 

representation.  This technique reduces the computational requirements associated with numerical 

modeling using fully explicit models. In addition, the software offers a tool for better visualization 

of the flow regimes in the formation, and a better understanding of gas movement patterns in shale. 

 

4.3 Validation of developed upscaling technique 

The validity of the semi-explicit approach for fracture representation has been 

demonstrated by the scenarios presented above. However, in situations where complex fractures – 

such as the secondary fractures observed in the vicinity of areas containing fractures with high 

length to width ratios, the semi-explicit representation of individual fractures possessing low 

aspect ratios becomes computationally implausible, and continuum models present the most 

effective mode of capturing the physics of the formation.  

This study aims to demonstrate the ability of a novel algorithm for the generation and 

modeling of complex fracture geometries. The upscaling technique is used to calculate the 

modified values of the formation permeability required for the solution of the flow equations, when 

the presence of fractal patterns results in a meshing challenge for the computational software. The 

validity of the upscaling approach, which was discussed in section 3.7 is investigated. An 

important aspect of the upscaling approach is the choice of the subdomain grids utilized for the 

procedure, and so the effect of fine scale and coarse scale subdomain selection was evaluated.  The 

model is formulated around values obtained from one production stage and the production stage 
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is assumed to be made up of one planar hydraulic fracture located in the middle of the formation. 

The domain consists of a 2000 ft. long, 300 ft. thick portion of a producing shale formation 

extending 2000 ft. in the transverse direction similar to the base case scenario. All other model 

parameters are the same as for the base case scenario. 

First, the planar fracture to be upscaled is generated using the MATLAB fracture 

generating program and subsequently processed using a clipping and upscaling subroutine. The 

data points obtained from upscaling program represent discrete points which are spatially 

distributed in the domain and require a smoothing procedure before it can be suitable for use in 

COMSOL. This smoothing procedure is carried out using the kriging subroutine. The kriging 

weights utilized is 1/D2, where D is the distance between computed data pairs. A listing of the 

programs used for this study is presented in Appendix F.  The final output from the MATLAB 

program is a text file containing coordinates of the centroids of the subdomain, along with upscaled 

permeability and porosity values.  

These values are imported into the simulation software using a linear interpolation 

function. For points not present within the boundaries of the imported geometry, a constant 

permeability value was specified for extrapolation. This value is equivalent to the permeability of 

the matrix. In the results that follow, the effects that the gridding scheme, either logarithmic or 

regular, and the different subdomain sizes, that is,  the number of subdomains (N) through which 

the system is upscaled, have on the distributed permeability data obtained from the upscaling 

algorithm is presented. 
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Figure 4.8 Geometry representing model domain to be upscaled. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9  Y-directed permeability distributions (Kyy) from kriging data with N subdomains 
and r neighbors (points used for interpolation) using a logarithmic gridding 
scheme along the axis of the wellbore (x-axis). 
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Figure 4.10  Y-directed permeability distributions (Kyy) from kriging data with N subdomains 
and r neighbors (points used for interpolation) using a regular gridding scheme. 
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(f) N	=	290,	r	=	8	(e)		 N	=	290,	r	=	3	
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Figures 4.9 and 4.10 show the upscaled y-directed permeability distributions (Kyy) 

obtained from the kriging data. The permeability values remain constant in the x-direction, as 

fracture lies in the yz-plane. It is observed that an increase in the number of subdomains (N) 

decreases the apparent penetration of the permeability values to the neighboring grid cells. Also, 

a similar effect is observed by reducing the number of neighbors (r) implemented in the kriging 

interpolation for both gridding techniques.  

The logarithmic grid utilizes a grid size Δx of 38ft, 7.8ft and 3.8 ft for the largest grids 

along the wellbore direction, in the coarse, intermediate and fine grids (grids corresponding to N 

= 50, 150 and 290) respectively. In all cases, a 0.5ft grid size is implemented around the fractures. 

For the regular gridding system, the grid is evenly distributed at 19.2ft, 6.4ft and 3.8 ft intervals 

also corresponding to N values of 50, 150 and 290 respectively. An analysis of the steady state 

production data obtained from the upscaled system using the different subdomain scenarios is 

presented in the table below.  

 

Table 4.2 Steady-state Flux Simulation Results 

 Flux (MMcf/day) 

Number of 

subdomains (N) 

Regular Grid Logarithmic Grid

r= 8 r= 3 r= 8 

N = 50 0.01036 0.00982 0.01003 

N = 150 0.00983 0.00961 0.00943 

N = 290  0.00964 0.00943 0.00905 
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The values in Table 4.2 when compared with a reference value of 0.00872 MMcf/day 

obtained by solving the model system using the semi-explicit approach suggests that the flux 

values converge to the reference solution at higher subdomain values. A convergence criteria was 

specified by specifying a relative error < 0.05. These results indicate that the upscaling technique 

is useful in the approximation of the permeability a domain containing fractures. 

Next, results that demonstrate the ability of the code to handle multiple and complex 

fracture geometries is presented. Illustrations of some of the complex geometries that were tested 

with the upscaling methodology are presented in Figure 4.11 below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11  Fracture configurations generated by MATLAB for use in testing how well code 
handles complex geometry. (a) Scenario with multiple planar fractures and (b) 
Scenario with complex fracture pattern representing induced secondary fractures. 
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The configuration generated in Figure 4.11(b) incorporates ‘tree’ patterned fractures 

originating from the planar hydraulic fracture structure. This configuration becomes too complex 

to be modeled using a semi-explicit formulation. However as discussed earlier, the upscaling 

approach allows the permeability of the fractured system to be represented as a non-homogenous 

anisotropic continuum domain shown in Figure 4.12. This permeability distribution can be utilized 

in the analysis of flow and transport in complex formations.  Perhaps the most important utility of 

this representation is that we can visualize the changes in the permeability over the domain as a 

result of the complex fracture system. In Figure 4.13, the x-directed permeability values for the 

geometry with and without complex fracturing is presented.   

 

 

 

 

 

 

 

Figure 4.12 Y-directed permeability distributions (Kyy) from kriging data with N=75 
subdomains and r =3 neighbors (a) Scenario with multiple planar fractures and (b) 
Scenario with complex fracture pattern representing induced secondary fractures. 
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Figure 4.13 x-directed permeability distributions (Kxx) from upscaled data in (a) Scenario 
with multiple planar fractures and (b) Scenario with complex fracture pattern 
representing induced secondary fractures, reflecting the higher x-directed 
permeability zones in the complex fractured scenario. 

 

Higher values of the x-directed permeability value is observed in the complex fractured 

scenario as compared to the planar model, as the planar fractures in the yz-plane have no effect on 
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Kxx. The flow behavior arising from this type of scenario has not been presented in literature so 

far, as most conceptual models utilize the assumption of the bi-wing fracture geometry for 

hydraulic fractures. To validate the upscaling process therefore, the generated permeability 

distributions for the multi-planar fracture system presented in Figures 4.12(a) and 4.13(a) are 

utilized in a transient study, and the performance of the non-homogenous porous medium 

approximation created by the upscaling process is compared to results from the semi-explicit 

representation of the planar fractures. This comparison is presented in Figure 4. 14. 

 

Figure 4.14 Comparison of daily production rate obtained from the upscaled formation 
containing multiple planar fractures to values obtained using a semi-explicit 
fracture representation. 
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It can be observed from Figure 4.14 that gas production rates for a 30 year transient study 

utilizing the upscaling technique closely matches the production rates observed from the semi-

explicit technique. The applicability of the upscaling methodology for the representation of single 

and multiple planar fracture geometries and its usefulness in the analysis of production from shale 

formations has been demonstrated by the results presented above. An investigation of the effect of 

the permeability distribution obtained for the complex case on flow in the modeled domain is 

presented in section 4.4.2.  

 

4.4 Effect of fracture networks on flow  

A comprehensive study of flow in fractured shale should include geometry elements 

describing the distinct fracture systems that are observable in a producing shale gas formation (see 

Section 2.4) in order to obtain a conceptual model that is most representative of the formation. The 

distinct features to be studied are:  

a. The hydraulic fractures – which are already accounted for in the base case simulation; 

b. Natural fractures -  taken in this context to mean the existing lines of weakness in the 

formation parallel to bedding planes, and  

c. Secondary fractures – induced smaller fractures that form a “cloud” around the planar 

hydraulic fractures 

In the next set of simulations, we intend to account for each of these features and observe 

the effects that these have on gas production and flow patterns in the formation. These simulations 

are also intended to test the hypothesis that modeling of all the features is required for accurate 

modeling of gas migration in stimulated shale formations. 
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4.4.1. Model incorporating natural fractures 

The base case simulation presented in section 4.2 takes into account the presence of 

hydraulic fractures in the formation. This next test is intended to assess the impact of the presence 

of natural fractures and their interaction with hydraulic fractures, on gas production and fluid flow 

in shale. As described in section 3.5, natural fractures in the model can be represented by semi-

explicit layers parallel to the bedding plane. These layers may become connected as a result of 

hydraulic fracturing. The principal extent of the natural fractures is assumed to be bounded by the 

production stage, in order to minimize interference effects that may occur if the natural fracture 

extends into an adjacent production stage. Therefore, a width of 450 ft – the average length of a 

production stage- is assumed for simulation purposes. A porosity value of 0.25 is specified in the 

fracture in order to account for the fact not all parts of the bedding plane is fully open to flow. 

Other simulation parameters are obtained from the base case scenario in Table 4.1 in addition to 

properties of the natural fractures, which are presented in Table 4.3.  

 

Table 4.3  Natural Fracture Properties  

Parameter Value Units 

Natural fracture porosity 25 % 

Natural fracture half-length 500 ft 

Natural fracture width 450 ft 

Natural fracture permeability 1.0×102 mD 

Number of fractures 2  

Natural fracture spacing 100 ft 

Natural fracture Aperture 0.02 ft 
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 The newly conceptualized domain is as shown in Figure 4.15.The simulation was carried 

out for a study period of 30 years,  using a finite element mesh consisting of  69, 816 tetrahedral 

elements incorporating refinements. 

   

 

 

 

 

 

 

Figure 4.15  3D view of modeled domain with highlighted section showing the simulated 
planar natural fractures as light blue horizontal planes. 

 

  

Surface maps of changing pressure with time are presented in Figure 4.16. The pressure 

dissipation pattern is observed to be similar to the pattern observed in the formation in the absence 

of natural fractures. Observation of the velocity patterns in the fractured region (see Figure 4.17)  

show that in addition to flow directed towards the hydraulic fractures, flow is also directed towards 

the planes of the natural fractures at early times (t<1year), while at late times there appears to be 

no observable difference in the flow patterns. This observation is supported by further analysis of 

the late time flow regime using gas production rate plots (Figure 4.18a and 4.18b)  
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Figure 4.16  Surface map showing propagation of pressure front in the simulated domain with 

natural fractures at (a) 1 month, (b) 1 year and (c) 30 years respectively. 
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Figure 4.17  Fluid flow directions in the modeled domain consisting of both natural and 

hydraulic fractures after a simulation period of (a) 1 month, (b) 1 year and (c) 10 
years respectively. The surface plots show the magnitude of velocity in the 
fractures while the arrow lengths are indicative of the velocities in the formation. 
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.  

 

Figure 4.18 Comparison of (a) early time gas production rates (b) late time gas production 
rates and (c) cumulative production values in a domain containing natural 
fractures to a domain without natural fractures. 
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However, a comparison of the gas cumulative production values reveals a 10% increase in 

gas production from the domain with natural fractures (See Figure 4.18c) at the end of the 

simulation time period. By performing a careful analysis on the daily production rate data, it is 

observed that the difference in the production values is primarily the result of higher production 

rates at the early simulation times (t<1 year). 

From the above results, it can be deduced that presence of natural fractures provides an 

additional stimulation surface area through which gas can be produced from the formation, and 

therefore leads to an increase in the production rate into the well-bore. These results show the need 

for an accounting of the presence of natural fractures in the formation for accurate simulation of a 

shale gas formation.  A sensitivity analysis of the production rate as a function of size of stimulated 

area, other natural fracture parameters is presented in section 4.6, in order to ascertain the impacts 

of natural fractures on production from the wellbore. 

 

4.4.2. Model incorporating secondary hydraulic fractures 

In the next test, the effect of accounting for the secondary fractures is tested. All simulation 

parameters remain the same as for the base case scenario. The complex fractures are generated in 

MATLAB. The codes implemented for the generation of this case study is presented in Appendix 

F. The permeability of the secondary fractures are calculated using the formula from equation 3.  

Like the hydraulic fractures, the value of the secondary fracture aperture is taken as 0.02 ft. The 

fractal is allowed to have three daughter branches and extends in the horizontal direction away 

from the planar representation of the hydraulic fractures. The schematic representation of the 

modeled geometry is presented in Figure 4.19 
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Figure 4.19 MATLAB configuration of fractured network incorporating hydraulic, natural 
fractures and complex secondary fractures (b) close-up view of fracture network 
showing ‘tree’ like secondary fracture structure. 

 

The pressure dissipation patterns in the formation are presented after a simulation time 

period of 1 month, 1 year and 30 years respectively. 
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Figure 4.20 Surface map showing propagation of pressure front in the simulated complex 
fractured domain at (a) 1 month, (b) 1 year and (c) 30 years respectively 

 

In Figure 4.21, a comparison of the cumulative production data from the system containing 

upscaled complex fractures and a system utilizing the upscaled planar fractures alone is presented.  
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Figure 4.21 Comparison of cumulative production values in a domain containing planar 
hydraulic fractures to the simulated complex fractured domain. 

 

 At the end of the 30 year simulation period, the simulation model, higher production values 

are observed for the solution utilizing the planar fracture geometry. This can also be attributed to 

the effect of fracture interference in the stimulated zone. Thus Figure 4.21 suggests that optimistic 

production values might be obtained when utilizing simple systems for the representation of 

fractures in shale gas systems, as interference effects that may arise as a result of the system 

complexity will be unaccounted for. 
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4.5 Effect of fault through model Boundary  

In the studies considered so far, the producing formation is considered to be a closed 

system, with its only outlets existing through the perforations located at the wellbore. However, 

during hydraulic fracturing, there can be re-activation of closed/sealed faults presented at the 

formation boundary, which in turn leads to a change in the conceptualization of the boundary 

conditions. This study seeks to assess if movement of gas away from the shale layer is possible in 

the presence of a fault in the formation, i.e., if hydraulic fracturing of the shale formation can 

potentially lead to contamination of overlying aquifers. The simulation case to be tested is based 

on the hydraulically fractured formation with natural bedding planes and pre-existing fault shown 

in Figure 4.22 below: 

 

 

 

                       

 

                       

 

 

Figure 4.22 Model geometry showing pre-existing fault in the formation boundary 
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The simulations are conducted using the no- flux boundary conditions as a base case. 

Conceptual models that simulate the production of gas from shale formations assume that the 

reservoir is a closed system. In reality however, the shale formation is connected to other 

formations and a continuity boundary condition represents the appropriate physics at the point of 

intersection of the different formations. In the case where a fault serves as the link between the 

shale formation and an outside formation, continuity is enforced at the fracture edge by 

incorporating the pressure changes associated with time obtained from the base case scenario. 

Table 4.4 presents the properties of the fault utilized in addition to the previously given parameters 

from the naturally fractured case study. The fault is located along the yz-plane and its conductive 

properties are assumed to be the same as that of the natural fractures.   

Table 4.4  Fault Properties  

Parameter Value Units 

Fault porosity 25 % 

Fault width 1000 ft 

Boundary where fault is located Top Boundary  

Depth of fault into formation 20 ft 

Distance of fault from model centroid 500 ft 

Fault permeability 1.0×102 mD 

 

A description of the pattern of fluid movement into the plane in the formation that contains 

the fault (i.e yz-plane at x=500ft) during different simulation time periods is presented in Figures 

4.23. Increased flow activity is observed into the vicinity of the fault over the course of the 

simulation. An estimate of flux over the fault formation is calculated and the results presented in 

Figure 4.24. 
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Figure 4.23 Fluid flow directions into the fault plane- x=500ft at  (a) 1 month, (b) 1 year and 
(c) 10 years respectively. The surface plots show the magnitude of velocity in the 
fractures while the arrow lengths are indicative of the velocities in the formation. 
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Figure 4.24 (a) Cumulative production values in the simulated model, utilizing a no flux 
boundary condition and a pressure boundary condition respectively at the fault 
boundary. (b) Comparison of cumulative leak off from fault boundary to decline 
in wellbore production after a 4 year period 

 

1
Leak-off from Fault 4.99E-04
Difference in cumulative
production in wellbore 3.38E+01

1.00E-04

1.00E-02

1.00E+00

1.00E+02

G
as

 f
lu

x 
V

al
u

es
 (

M
M

sc
f)

Comparison of cumulative leak-off to decline in cumulative 
production value from wellbore after 4 years

0

500

1000

1500

2000

2500

0 10 20 30

C
u

m
u

la
ti

ve
 G

as
 P

ro
d

u
ct

io
n

 
(M

M
sc

f)

Time(years)

No flux

Pressure
boundary



   

113 
 

From Figure 4.24(a), we observe that the boundary condition seems to have no apparent 

effect on the cumulative production values of gas produced from the wellbore for the model 

simulated. Also in Figure 4.24(b), an estimate of the gas flux through the fault boundary is 

compared to the calculated difference in the wellbore recovery rate from the closed boundary 

simulation case. While the leak-off value at the fault boundary after a 4 year simulation period is 

relatively low (500 ft3 – 0.0004%) compared to the production from the wellbore, it represents a 

significant amount of gas that has the potential of moving into other regions in the subsurface. To 

ascertain that this leak-off stream does not travel into overlying formations and become a 

contaminant source in gas production areas, a sensitivity analysis of the flux leaving the 

computational domain through the fault to the fault parameters is carried out. 

 

4.6 Sensitivity Analysis of Model Parameters 

In the next set of simulations, an estimate of the sensitivity of the model results to the 

fracture, fault and formation parameters is evaluated. These tests are required in order to provide 

insight into the impacts of uncertainties on shale gas production values, as well as the possible leak 

off values from the fault at the boundary. For each parameter of interest, the base case value and 

the range of variations that are considered are presented in Table 4.5 below. The simulated model 

geometry is as described in section 4.5 above. 
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Table 4.5  Parameter Values used for Sensitivity Analysis 

Parameter Value Range 

Formation Properties   

Well-bore pressure (psi) 1000 500 - 1500 

Formation permeability (mD) 1e-4 1e2 – 1e-6 

Fracture Properties   

Hydraulic fracture half-length (ft) 500 357 - 833 

Hydraulic fracture permeability (mD) 5.0×103 500, 5000, 50000

Hydraulic fracture orientation to wellbore (degrees) 90 30, 60, 90 

Number of fractures 5 3-7 

Fracture spacing (ft) 80 60 - 100 

Fracture Aperture (ft) 0.02 0.02, 0.2, 2 

Natural fracture permeability (mD) 1e2 1e-2, 1, 1e2 

Number of natural fracture bedding planes 2 2,4,6 

Fault Properties   

Fault orientation to horizontal (degrees) 90 30, 60, 90 

Depth of fault into shale formation (ft) 20 20, 40, 60 

 

 

4.6.1. Sensitivity to Formation Properties  

The results of the sensitivity study of the impacts of the wellbore pressure and the formation 

permeability are presented in Figure 4.24 and Figures 4.25 respectively. We observe that for a 

50% change in the wellbore pressure, a corresponding 17% change in the cumulative production 

value at the wellbore is observed. Also, comparing the leak-off values from the fault boundary for 
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the three cases show that flux out of the fault boundary increases with increased operating pressure 

at the wellbore.  

 

 

 

 

 

 

 

 

Figure 4.25 (a) Cumulative production values for simulation at different wellbore pressures 
(b) Cumulative leak off from fault boundary after a 30 year period  
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amount of gas produced in the formation. Increased matrix permeability values lead to a 

corresponding increase in the amount of gas recovered at the wellbore. A decrease of 17.6% is 

observed in the cumulative production for a 50% decrease in the formation permeability and a 

13% increase is associated with a 50% increase in the formation permeability. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 (a) Cumulative production values for simulation at different formation 
permeabilities.  
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Figure 4.26 (b) Cumulative leak off from fault boundary after a 30 year period at different 
formation permeabilities  
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Figure 4.27  (a) Cumulative production from simulation study using different fracture 
permeabilities. (b)  Cumulative leak off from fault boundary after a 30 year 
production period. 
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in the size of the fracture spacing leads to a 13% increase in the cumulative production values, 

while a similar decrease leads to a 14% decrease in the total well recovery for the modeled system. 

 

 

 

Figure 4.28 (a) Cumulative production from simulation study using different fracture spacing. 
(b)  Cumulative leak off from fault boundary after a 30 year production period. 
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This decreased production in the wellbore at lower fracture spacing values can be attributed 

to the effect of interference in the stimulated zone. Also a decrease in the leak off value is observed 

with increasing fracture spacing. 

A study of the effect of inclination of hydraulic fracture to the wellbore is presented in 

Figure 4.29.  By comparing the cumulative production values from the parametric study to that of 

the base case scenario (i.e., HF_Rot = 90),  a 7% decrease in total production value was observed 

for the 60 degrees inclination angle case, and a 27% decrease observed for the case with the 30 

degrees inclination angle. These results imply that fracture orientation relative to the wellbore is 

an important parameter required for accurate forecasting of production from fractured formations. 
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Values of leak-off can also be observed to increase with increasing acuteness of the angle between 

the wellbore and the fractures. 

 

 

Figure 4.29 (a) Cumulative production from simulation study using different fracture 
orientations to the wellbore (b) Cumulative leak off from fault boundary after a 30 
year production period. 
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Figures 4.30 and 4.31 present the response of the model to changes in fracture length and 

fracture aperture respectively. It is observed that an increase in fracture length directly increases 

the cumulative production over the simulation period, while the results observed from utilizing a 

100-fold increase in the aperture size does not significantly affect the recovery at the wellbore. 

 

 

 

 

Figure 4.30 Cumulative production from simulation study using different fracture lengths.  
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Figure 4.31 Cumulative production from simulation study using different fracture apertures   

 

 In Section 4.4. 1, the effect of natural fractures on production values from the wellbore was 

discussed. In Figures 4.32 and 4.33, the effects of the number of bedding plane layers and the 

permeability of the natural fracture are evaluated. 

 From Figure 4.32, a 12% increase in total production at the wellbore can be observed at 

the end of the simulation period as a result of the introduction of two natural fractures into the 

formation. Adding two more natural fractures led to a further 7% increase in cumulative 

production. However when six natural fractures are present in the formation, the effect of the 

increased surface area no longer affects the cumulative production, suggesting impacts of flow 

regime interference.  In contrast, for Figure 4.33, an increase in the permeability of the natural 

fractures did not have any effect on the cumulative production at the end of the simulation period. 
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Figure 4.32 Cumulative production from simulation study using different number of natural 
fractures.   

 

  

  

 

 

 

 

 

Figure 4.33 Cumulative production from simulation study using different natural fracture 
permeabilities.   
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4.6.3. Sensitivity to Fault Properties  

An evaluation of the model response to changes in the parameters of the fault is presented.  

In Figures 4.34, the sensitivity of the system to the change in fault orientation is presented. While 

it can be observed that the fault orientation does not affect the wellbore production, the amount of 

fluid that moves across the fault boundary is dependent on the fault orientation. There is increased 

movement into the plane of the fault at lower angles of inclination to the horizontal as shown in 

Figure 4.34(b). 
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Figure 4.34 (a) Cumulative production from simulation study using different fault 
orientations. (b)  Cumulative leak off from fault boundary after a 30 year 
production period. 
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Figure 4.35 (a) Cumulative production from simulation study using different fault depths 

(b)  Cumulative leak off from fault boundary after a 30 year production period. 
 

For all range of parameters studied, the response of the leak-off at the fault boundary was 

most sensitive to the orientation of the fractures to the wellbore, while production in the wellbore 

was most sensitive to the change in the length of the hydraulic fractures. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Conclusions   

Migration patterns of gas present in fractured shale formations is addressed in this work, 

based on two conceptual models. While current approaches to modeling of fractured domains 

require a fully explicit representation of the fracture in order to obtain accurate description of the 

dynamics of fluid movement in hydraulically fractured formations, this work develops and makes 

use of two new conceptual models that bypass the need for explicit fracture grids. The semi-explicit 

conceptual model that is adopted in this work, makes use of a reduced dimensionality formulation 

to represent the hydraulic fractures and natural fractures present in the formation. This conceptual 

model enables faster simulation times and less computational requirements for situations in which 

the fracture can be hypothesized using the bi-wing description. The model results are validated by 

comparing against results obtained using a commercial fully explicit simulator. 

The other noteworthy contribution of this research work to shale gas model development 

and an understanding of fractured shale formations, is its ability to handle complex fracture 

geometries. The use of asymmetrical fractal patterns to represent the secondary fractures around 

the hydraulically fractured region- has to my knowledge - so far not been implemented in literature. 

At best, currently available simulation models make use of the concept of a stimulated reservoir 

volume (SRV) where assignment of a bulk homogenous parameter to the area containing the 

complex fractures has been used.  In this work, a test of our developed algorithm for the 

representation of complex fracture networks as a non-homogenous porous medium, while still 
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preserving the conductive characteristics of the system is carried out by comparing it with the 

previously validated semi-explicit conceptual model. 

At the end of the modeling study, the following conclusions were reached: 

i. There is need for an accounting of the distinct fracture systems that are 

present in a fractured formation for accurate prediction of production values 

and flow patterns arising in the formation. 

ii. The semi-explicit model representation of planar fractures is able to provide 

accurate results when used to simulate planar hydraulic fractures. By 

reducing the dimensionality of the fracture domain, the approach reduces 

the computational requirements associated with the fully explicit modeling 

of shale formations. 

iii. Modeling of complex fracture networks is possible using the developed 

upscaling algorithm. The accuracy of the simulated results from these 

technique is however dependent on the number of subdomains that are used 

to resolve the model domain. 

iv. The logarithmically spaced subdomain gridding technique enables a better 

preservation of fracture characteristics and gives well resolved property 

values compared to the regular gridding technique. 

v. Stimulated reservoir volume overlap, which in our case occurs by capturing 

the physics of flow through the induced fracture networks surrounding the 

hydraulic fractures can lead to reduced production in fracture systems over 

time, particularly as the effects of fracture interference become pronounced 

in the system. 
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vi. Visualization of flow patterns in the fractured formation by use of arrow 

plots representing information about the velocity of fluids in the formation 

offers more information than the pressure transient analysis or even 

production rate analysis techniques available in literature. 

The range of physical conditions that favor the direction of fluid flux towards the wellbore 

is also addressed.  From the observed simulation results, it can be concluded that: 

i. The natural fractures simulated in the formation enhance gas production rates from 

the wellbore at early times (t<1 year). After this period, the production rate becomes 

equivalent to the scenario without natural fractures. 

ii. For most of the studied parameters, physical conditions that lead to an enhancement 

in the gas production rates from the formation, reduce the flux rates observed at the 

fault boundary and thereby decrease the probability of fluid escape into the 

overlying formation. 

iii. Optimum gas flux can be obtained from the production stage by the use of long 

lateral fractures and ensuring that the fractures are placed orthogonal to the 

wellbore at a fracture spacing that limits the effect of interference in the stimulated 

zone. 

 

5.2 Recommendations 

This work attempts to represent the physical subsurface system as realistically as possible, 

however due to the uncertainties associated with obtaining accurate subsurface data, it is 

imperative to mention that the accuracy of the model does not necessarily mean that the physical 
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representation is correct, it just means that the model can produce accurate solutions for the 

parameters that have been specified. With this in mind, the following recommendations are made 

for the purpose of advancing knowledge associated with shale flow modeling efforts: 

 

i. Reservoir characterization studies should be carried out, in order to enable the 

compilation of validation data for the complex geometry of the induced fractures 

around the wellbore, as it can be observed that these geometries have a significant 

impact on production performance.  

ii. The visualization utility of the reservoir simulation code employed, enhances the 

understanding of the movement in the fractured formation and should be incorporated 

into other standard fractured shale gas reservoir simulators. 

iii. The inherent non-linearities associated with flow in a distributed permeability system, 

represent a challenge to the validation of the solutions obtained using the upscaling 

technique. An attempt to resolve this issue, by making use of swept meshing techniques 

is explored in this work. However, there is still need for further study into meshing 

techniques that will enable model convergence in these systems.  

iv. The model has been developed based on the assumption of the gas being present as a 

single phase in the shale formation. In reality however, shale formations usually 

possess water and in some cases, fracturing fluids. A model that extends the multi-

phase interaction in the formation will therefore be beneficial to the shale model 

development industry and the oil and gas production industry at large. 
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v. The effect of geomechanics on the permeability of the fractures also needs to be 

considered in subsequent studies, in order to get a better characterization of the change 

in fracture properties with time and stress systems in the subsurface. 
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APPENDICES 

APPENDIX A -Derivation of Cubic’s Law 

The derivation of the Cubic’s Law describing flow in a fracture is described by Bear et al (1993) 

and is presented here for report completeness. 

The three dimensional balance equation for the linear momentum of an incompressible fluid in a 

fracture, when combined in a mass balance form, takes the form 

ߩ డ௏	

డ௧	
൅ .	׏ߩ	 ሺVVሻ ൅	݌׏ െ ݃ߩ	 െ ଶV׏ߤ	 ൌ 0,    (A.1) 

Where ߩ and ߤ denotes the fluid’s density and dynamic viscosity, respectively, p is pressure, V is 

the fluid’s mass weighted velocity, t is time, g (= -g ׏z) denotes the gravitational acceleration, 

and z is the vertical coordinate (positive upward). 

 Hubbert’s potential, ߮∗	, for a compressible fluid, ߩ ൌ  ሻ is defined by݌ሺߩ	

   ߮∗	 ൌ ݖ ൅	׬
ௗ௣ᇲ

௚௣ሺ௣ᇲሻ	
௣
௣௢ .        

 

We shall approximate it by the piezometric head,߮, defined for a fluid of constant density , by 

߮ ൌ ݖ ൅	 ௣
ఘ௚
.        (A.2) 

Substituting (2) into (3), yields  

ߩ డ୚

డ௧
൅ .׏ߩ	 ሺVVሻ ൅ ߮׏݃ߩ	 െ V	ଶ׏ߤ	 ൌ 0	    (A.3) 
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By averaging (A.3) across the fracture width (normal to the fracture axis), a two-dimensional 

balance equation for linear momentum can be obtained in the fracture plane  

׬ ቄߩ డ୚

డ௧
൅ .׏ߩ	 ሺVVሻ ൅ ߮׏݃ߩ	 െ ଶVቅ׏ߤ	 ᇱݕ݀ ൌ 0.

௙మ
௙భ

   (A.4) 

Since the limits of integration are independent of time, the first term in the integrand of (A.4) 

yields 

׬ ߩ డ୚

డ௧
ᇱݕ݀ ൌ ߩ	 డ

డ௧

௙మ
௙భ

	ቀ׬ V݀ݕ′
௙మ
௙భ

ቁ ൌ ߩ	 డሺ௕୚෩ሻ

డ௧
,    (A.5) 

Where the average of quantity A over a fracture width is defined  

,ᇱݔሚሺܣ ᇱሻݖ 	≡ 	 ଵ
௕
׬ Aሺݔᇱ, ,ᇱݕ .ᇱݕᇱሻ݀ݖ
௙మ
௙భ

     (A.6) 

By applying Leibnitz’s rule (for taking the derivative of an integral) to the second term in the 

integrand of (A.4), we obtain 

න .׏ߩ ሺVVሻ݀ݕᇱ ൌ ᇱ.න׏ߩ	 ᇱݕVV݀ߩ െ VV|௙మߩ	

௙మ

௙భ

௙మ

௙భ

. ଶܨ׏ ൅ .VV|௙భߩ	  ଵܨ׏

  ൌ .ᇱ׏ߩ	 ሺܾVVሻ෪ െ .	VV|௙మߩ	 ଶܨ׏ ൅ .VV|௙భߩ	  ଵ,   (A.7)ܨ׏

where ׏ᇱ denoted differentiation only with respect to coordinates lying in the fracture ሺݔᇱݖᇱሻ-

plane. By definig a velocity deviation, Vሶ , such that 

Vሺݔᇱ, ,ᇱݕ ᇱሻݖ 	≡ 	V෩ሺݔᇱ, ᇱሻݖ ൅	Vሶ ሺݔᇱ, ,ᇱݕ ሶ෩	V					ᇱሻ,ݖ ൌ 0.		   (A.8) 

We then have the relation 

V෩ ൌ 	V෩V෩ ൅	Vሶ Vሶ ,෪        (A.9) 
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With ρVሶ Vሶ෪  representing a dispersive momentum flux. 

 By introducing (A.9) into (A.7), we obtain 

׬ .׏ߩ ሺVVሻݕ݀׏ᇱ ൌ 	ρ׏ᇱ. ൫ܾV෩V෩൯ ൅ .ᇱ׏ߩ	 ቀܾVሶ Vሶ෪ቁ
௙మ
௙భ

  

െ	ߩVV|௙మ. ଶܨ׏ ൅ .VV|௙భߩ	  ଵ.      (A.10)ܨ׏

The third term in the integrand of (4) is evaluated by 

׬ ᇱݕ݀߮׏݃ߩ ൌ ᇱሺܾ׏݃ߩ	 ෤߮ሻ െ 	ଶܨ׏௙మ|߮݃ߩ ൅ 			.ଵܨ׏௙భ|߮݃ߩ	
௙మ
௙భ

   (A.11) 

Applying Leibnitz’s rule to the fourth term in the integrand of (4), gives 

׬ ᇱݕଶV݀׏ߤ ൌ ᇱଶ൫ܾV෩൯׏ߤ	 െ .ᇱ׏ߤ	 ൫V|௙మܨ׏ଶ െ 	V|௙భܨ׏ଵ൯
௙మ
௙భ

  

െ	ߤ൫׏V|௙మ. ଶܨ׏ െ	׏V|௙భ.  ଵ൯.      (A.12)ܨ׏

Finally substituting (A.5), (A.10), (A.11) and (A.12) into (A.4), produces the averaged linear 

momentum balance equation in the fracture plane in the form 

ߩ డ௕୚෩

డ௧
	൅ .ᇱ׏ߩ	 ൫ܾV෩V෩൯ ൅ .ᇱ׏ߩ	 ቀܾVሶ Vሶ෪ቁ  

െ	ߩVV|௙మ. ଶܨ׏ ൅ .VV|௙భߩ	   ଵܨ׏

൅	׏݃ߩᇱሺܾ ෤߮ሻ െ ଶܨ׏௙మ|߮݃ߩ ൅   .ଵܨ׏௙భܶ|߮݃ߩ	

 ൅	׏ߤᇱଶ൫ܾV෩൯ െ .ᇱ׏ߤ	 ሺV|௙మܨ׏ଶ െ 	V|௙భ	ܨ׏ଵሻ  

െ	ߤ൫׏V|௙మ. ଶܨ׏ െ	׏V|௙భ. ଵ൯ܨ׏ ൌ 0.     (A.13)  
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The averaged mass balance equation takes the form 

డሺ௕ఘ෥ሻ

డ௧
൅	׏ᇱ. ൫ܾߩ෤V෩൯ ൅ ሺߩVሻ|௙మ. ଶܨ׏ ൅ ሺߩVሻ|௙భ. ଵܨ׏ ൌ 0.   (A.14) 

With the assumptions of constant fluid density and stationary, non-deformable fracture 

walls employed above, (A.14) reduces to 

.ᇱ׏ ሺܾߩ෤ሻ െ V|௙మ. ଶܨ׏ ൅ V|௙భ. ଵܨ׏ ൌ 	0.      (A.15) 

Substituting (A.15) into (A.13), yields 

ߩ  డ௕୚෩

డ௧
	൅ .ᇱ׏V෩൫ܾߩ	 V෩൯ ൅ .ᇱ׏ߩ ሺܾVሶ Vሶ෪ሻ 

െ	ߩVV|௙మ. ଶܨ׏ ൅ .VV|௙భߩ ଵܨ׏ ൅ ሺܾ′׏݃ߩ ෤߮ሻ  

െ߮݃ߩ|௙మܨ׏ଶ ൅   ଵܨ׏௙భ|߮݃ߩ

൅׏ߤᇱଶ൫ܾV෩൯ െ .ᇱ׏ߤ ሺV|௙మܨ׏ଶ െ V|௙భܨ׏ଵሻ  

െߤሺ׏V|௙మ. ଶܨ׏ െ .V|௙భ׏   ଵሻܨ׏

൅ߩV෩൫V|௙మܨ׏ଶ െ V|௙భܨ׏ଵ൯ ൌ 0.     (A.16) 

To further analyze (A.16), the simple case of steady, unidirectional flow through a two-

dimensional fracture bounded by the planar, parallel walls defined in Fig. A1 is considered. In 

addition, the following assumptions are considered  

 The dispersive momentum flux is much smaller than the advective one, i.e.,ቚߩVሶ Vሶ෪ቚ ≪  ,|V෩V෩ߩ|

and  
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 Across any aperture, the piezometric heads at the fracture walls satisfy ߮|௙మ ≅ ߮|௙మ  (the 

stronger condition, ߮|௙మ ≅ ߮|௙మ 	≅ ෤߮ , is required if the fracture walls are not assumed 

parallel). 

 

 

 

 

 

 

 

 

 

Figure A1 Fracture porous block geometry in one-dimensional case 

 

 

 

 

Under these assumptions, and for steady flow, (A.16) reduces to  

ܾ݃ߩ డఝ෥

ௗ௫
െ ߤ	 ቀడ୚ೣ

డ௬
|௙మ െ

డ୚ೣ
డ௬

|௙భቁ ൌ 0.	      (A.17) 

Porous block 

F1(x,y) = y+b/2 = 0 

Fracture 

xb 

Porous block 

F2(x,y) = y-b/2 = 0 

y 
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Although (A.17) was developed for steady flow, this restriction would have been unnecessary 

had we neglected inertial effects already at the microscopic level, i.e., for the constant density 

assumed here. 

ߩ ቄడ୚
డ௧
൅ V׏V	ቅ ≅ 0,	 and  ׏. V ൌ 0. 

If the fracture walls are stationary and impervious, and a no-slip condition (i.e. Vx  = 0 at the 

walls) is imposed on them then the velocity distribution across the fracture width will be 

parabolic, symmetric about the fracture axis (Lamb, 1945), with  

௫ܸሺݕሻ ൌ 	
଺௏ೣ෪

௕మ
൫భ
మ
ܾ ൅ ൯൫భݕ

మ
ܾ െ భ								൯,ݕ

మ
ܾ ൑ ݕ ൑ భ

మ
ܾ.    (A.18) 

By differentiating (A.18), and substituting the result into (A.17), we obtain the average velocity 

in a fracture, in the form 

௫ܸ෩ ൌ െ௣௚

ఓ

௕మ

ଵଶ

ௗఝ෥

ௗ௫
.        (A.19)  

Equation (A. 19) can be rewritten in the form 

௫ܸ෩ ൌ െܭ௙௥
݀ ෤߮
ݔ݀
, 

Where ܭ௙௥, is the hydraulic conductivity in the fracture, defined by  

௙௥ܭ ൌ
௣௚

ఓ

௕మ

ଵଶ
.         (A.20) 

In general, the hydraulic conductivity, K, and the permeability, k, are related to each other by the 

expression  
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ܭ ൌ െ௣௚

ఓ
݇.        (A.21) 

 

 

Hence the permeability in the fracture, ܭ௙௥, is defined as 

௙௥ܭ ൌ
௕మ

ଵଶ
.         (A.22) 

 

The total discharge through a fracture, ܳ௙௥, is expressed by 

ܳᇱ௙௥ ൌ ܾ ෨ܸ ൌ െ ఘ௚

ఓ

௕య

ଵଶ
׏ ෤߮ ൌ െ ௙ܶ௥׏ ෤߮ ,      (A.23) 

Where the prime indicates a vector in the fracture plane, and 

௙ܶ௥ ൌ െ ఘ௚

ఓ

௕య

ଵଶ
ൌ  ௙௥್        (A.24)ܭ
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APPENDIX B - Mathematical Background for Clipping Algorithm 

 

Consider a clipping volume as defined in the figure below, 

 

 

 

 

 

 

 

Figure B1  Clipping volume 

 

 and a line segment defined by the points (X1, Y1, Z1) and (X2, Y2, Z2) as shown 

 

 

 

 

Figure B2  Straight line segment 

 

 

xmin xmax

ymax 

ymin 

zmax 

zmin 

X1, Y1, Z1 

X2, Y2, Z2 
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The equation of the line above in parametric form is given by 

ሺܺଶ െ ଵܺሻ

݈
ൌ
ሺ ଶܻ െ ଵܻሻ

݉
ൌ 	
ሺܼଶ െ ܼଵሻ

݊
	

                         (B.1) 

Where l, m and n are constants. 

By rearranging equation (B.1), we obtain 

ܺଶ െ ଵܺ

ଶܻ െ ଵܻ
ൌ

݈
݉
ൌ 	ࢇ

                         (B.2) 

ଶܻ െ ଵܻ

ܼଶ െ ܼଵ
ൌ
݉
݊
ൌ 	࢈

                         (B.3) 

Therefore,  

࢈ࢇ ൌ 	
݈
݉
∗
݉
݊
ൌ
݈
݊
ൌ 	
ܺଶ െ ଵܺ

ܼଶ െ ܼଵ
	

                         (B.4) 

Next, consider, the intersection of the line and the x=p plane depicted in Figure B3 

 

 

 

 

 

Figure B3  A straight line intersecting x= p plane. 
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To obtain the point of intersection, substitute for the point x = p using the parametric equations 

specified in B.2. Therefore, 

 

ሺ݌ െ ଵܺሻ

݈
ൌ
ሺ ଶܻ െ ଵܻሻ

݉
 

(B.5) 

 

ଶܻ ൌ ሺ݌ െ ଵܺሻ ∗ 	
݉
݈
൅ ଵܻ 

(B.6) 

 

Also from B.4, 

ሺ݌ െ ଵܺሻ
݈

ൌ
ሺܼଶ െ ܼଵሻ

݊
 

(B.7) 

 

ܼଶ ൌ ሺ݌ െ ଵܺሻ ∗ 	
݊
݈
൅ ܼଵ 

(B.8) 

 

The coordinates of the intersection point can thus be specified as: 

ሾ݌,
ሺ݌ െ ଵܺሻ

ܽ
൅ ଵܻ,

ሺ݌ െ ଵܺሻ

ܾܽ
൅ ܼଵሿ 

(B.9) 
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Similarly, we can consider the intersection of a line with a plane in the y-axis – y=q plane. 

 

ሺܺଶ െ ଵܺሻ

݈
ൌ
ሺݍ െ ଵܻሻ

݉
 

(B.10) 

 

ܺଶ ൌ ሺݍ െ ଵܻሻ ∗ 	
݈
݉
൅ ଵܺ 

(B.11) 

 

Also from B.4, 

ሺݍ െ ଵܻሻ
݉

ൌ
ሺܼଶ െ ܼଵሻ

݊
 

(B.12) 

 

ܼଶ ൌ ሺݍ െ ଵܻሻ ∗ 	
݊
݉
൅ ܼଵ 

(B.13) 

 

The coordinates of the intersection point can thus be specified as: 

ሾܽ ∗ ሺݍ െ ଵܻሻ ൅ ଵܺ, ,ݍ
ሺݍ െ ଵܻሻ

ܾ
൅ ܼଵሿ 

(B.14) 

 

Finally, consider the intersection of a line with a plane in the z-axis – z=r plane. The coordinates 

of the intersection point can be obtained in a similar way 
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ሺܺଶ െ ଵܺሻ

݈
ൌ
ሺݎ െ ܼଵሻ

݊
 

(B.15) 

 

ܺଶ ൌ ሺݎ െ ܼଵሻ ∗ 	
݈
݊
൅ ଵܺ 

(B.16) 

 

Also from B.4, 

ሺ ଶܻ െ ଵܻሻ
݉

ൌ
ሺݎ െ ܼଵሻ

݊
 

(B.17) 

 

ଶܻ ൌ ሺݎ െ ܼଵሻ ∗ 	
݉
݊
൅ ଵܻ 

(B.18) 

 

The coordinates of the intersection point on the z-axis is then specified by: 

ሾܾܽ ∗ ሺݎ െ ܼଵሻ ൅ ଵܺ, ܾ ∗ ሺݎ െ ܼଵሻ ൅ ଵܻ,  ሿݎ

(B.19) 

 

To determine if any of the line segments lie in the clipping volume, the algorithm below is 

implemented. 
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Clipping Algorithm 

Step 1:  Calculate the constants a and b 

Step 2:  Test the line segments against the clipping volume boundaries 

  Lower boundaries (xmin, ymin, zmin); Upper boundaries (xmax, ymax, zmax) 

For i = 1 to 2 (where i and 2 represent the end points of the line segment) 

        if x(i) < xmin 

            y(i) = (xmin - x(i))/a + y(i); 

            z(i) = (xmin - x(i))/(a*b) + z(i); 

            x(i) = xmin; 

        elseif x(i) > xmax 

            y(i) = (xmax - x(i))/a + y(i); 

            z(i) = (xmax - x(i))/(a*b) + z(i); 

            x(i) = xmax; 

        end 

 

        if y(i) < ymin 

            x(i) = a*(ymin - y(i)) + x(i); 

            z(i) = (ymin - y(i))/b + z(i); 

            y(i) = ymin; 

        elseif y(i) > ymax 

            x(i) = a*(ymax- y(i)) + x(i); 

            z(i) = (ymax - y(i))/b + z(i); 

            y(i) = ymax; 

        end 
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        if z(i) < zmin 

            x(i) = a*b*(zmin - z(i)) + x(i); 

            y(i) = b*(zmin - z(i)) + y(i); 

            z(i) = zmin; 

        elseif z(i) > zmax 

            x(i) = a*b*(zmax - z(i)) + x(i); 

            y(i) = b*(zmax - z(i)) + y(i); 

            z(i) = zmax; 

        end 

 

        point (i,:) = [x(i) y(i) z(i)]; (Co-ordinates of new point) 

 end 
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APPENDIX C - Kriging spatial correlation algorithm  

This kriging algorithm is implemented to smoothen the permeability tensor field over the 

computational domain of the finite element calculations. The kriging spatial correlation technique 

is used to interpolate for the data values at points in the formation where the data values are not 

explicitly calculated. The stepwise procedure to obtain the kriged data values is presented below. 

 

i. Compute the spatial mean of the permeability values. 

ii. Compute the distance between known locations distance matrix 

iii. For each data pair (i, j), compute the covariance term: 

ሺμ௜ െ μതሻሺμ௝ െ μതሻ 

iv. Order the data pairs from the lower to higher separation distance and group the 

data pairs within “separation rings” of distance r. 

v. Within each separation ring, compute the covariance of the data as : 

cov	ሾμሺݔԦሻ, μሺݔԦ ൅ Ԧሻሿݎ ൌ
1
݊௥

෍ ሺμ௜ െ μതሻሺμ௝ െ μതሻ

௡ೝ

ሺ௜,௝ሻୀଵ

 

where nr= number of data pairs within the ring 

vi. This will result in a “covariance matrix” with each data pair (i,j) assigned a 

value of covariance. Cij=Cov (µi,µj) 

vii. Make a plot of the covariance of the data as a function of separation distance. 

viii. For each data point (i), compute the distance between location (i) and the 

desired kriging location (o). 
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ix. Compute the covariance Cio of each data pair by locating the value 

corresponding to distance (i,o) in the covariance plot computed in 7. 

x. Specify the weight to be assigned to each data pair 

௜ܹ ൌ  ଶ              i=1, 2……, nܦ/1

xi. Compute the kriging estimate as follows: 

 μො௢ ൌ ∑ ௜ܹμ௜
௡
௜ୀଵ  
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APPENDIX D - Mesh Refinement Study 

It is usually of great value to perform a mesh refinement study in order to verify the 

accuracy of the computational results obtained from a numerical modeling procedure. Before the 

results of a numerical model can be accepted as being representative of the solutions being sought 

for, it is essential to ensure that the results being obtained are free of any numerical effects that 

might be associated with the discretization of the system during the translation of the physical 

equations to the form being computed by the numerical solver. 

The reservoir and fracture parameters utilized for this study are given in Table 4.1. To 

create a finite element mesh in COMSOL Multiphysics, certain input parameters need to be 

specified. These parameters and the values specified for these simulations are given in Table E1 

below. Control on the number of grid elements and is achieved by changing the scaling factor of 

the created mesh, which has a default software value of 1, after the other parameters have been 

specified.  

Table E1 Mesh Parameters  

Property Value 

Maximum element size Model height/3 

Minimum element size Well- bore radius/3 

Maximum element growth rate 1.25 

Curvature factor 0.5 

Resolution of narrow regions 0.6 

Scaling Factor 0.55, 0.65, 0.75, 0.85, 0.95 
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Figure E1 presents the quality histogram of the mesh created for scaling factor values of 

0.95, 0.75 and 0.55 respectively. The quality of the mesh is usually a good indication of how well 

the elements would approximate the solution. According to Griesmer (2014), a minimum element 

quality of 0.1 is satisfactory enough for numerical solutions using COMSOL Multiphysics. 

 

     

Figure E1 Mesh statistics for simulated model for scaling factor values of 0.95, 0.75 and 0.55 
respectively. 

 

The results of the steady state model study conducted utilizing the finite elements mesh 

obtained above is presented in Table E2. 
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Table E2 Mesh Refinement Simulation Results 

Property 
Scaling Factor 

0.55 0.65 0.75 0.85 0.95 

Number of tetrahedral elements 223246 100876 58172 32615 22138 

Degree of freedom  312087 143050 83210 47480 32875 

Computation time (s) 63 21 10 5 3 

Memory Requirement (GB) 6.23 3.45 2.73 2.31 2.13 

Flux (Bcf/day) 0.1203 0.1203 0.1205 0.1207 0.1209 

Relative Error in Estimated Flux (%) 0 0 0.0017 0.0033 0.005 

Relative Error in Simulated Pressure (%) 0 0.04 0.09 0.10 0.09 

 

For this simulation study, an analytic solution is not available, therefore, we set up a 

reference solution to compare the numerical method with. The reference solution for this model is 

taken at a mesh scale factor of 0.55. Although the estimated steady state flux values obtained from 

the model do not differ significantly after the mesh simulation study, i.e. the associated errors in 

the estimated flux are all within a tolerance limit of 0.05, the maximum relative error associated 

with the approximated pressure in the simulation region exceeds the tolerance error for the coarse 

grids, as seen in Table E2 and Figure E2.  The relative error was calculated as  

݊݋݅ݐݑ݈݋ݏ	݁ܿ݊݁ݎ݂݁݁ݎ|| െ ||݊݋݅ݐݑ݈݋ݏ	݈݁݀݋݉
݊݋݅ݐݑ݈݋ݏ	݁ܿ݊݁ݎ݂݁݁ݎ

 

Alternately, in order to conserve the computational resources associated with choosing the 

fine scale mesh, the adaptive mesh refinement process is utilized to minimize the error associated 

with the computation in the zones where the maximum deviations occur. In numerical analysis, 

adaptive mesh refinement refers to the technique of changing the accuracy of a solution in certain 
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regions during the solution calculation process. This technique changes the spacing of the grid 

points, in order to change how accurately the solution is known in the region of interest. The 

advantage of this dynamic grid adaptation is that it requires less computational and storage space 

requirement as compared to a mesh convergence study carried out using static grids.  

For the adaptive mesh refinement study, the initial mesh was chosen as the coarse mesh 

with a scale factor 0.95. The mesh is refined using a global refinement strategy and after 4 

refinements, a better accuracy is obtained with a mesh consisting of 70118 elements as compared 

to the reference solution which makes use of 223, 246 elements. A comparison of the mesh 

parameters and simulation results is presented in Table E3 and Figure E3. 

 

 

Figure E2 Distribution of error associated with estimated pressure values by comparing results 
from a coarse mesh (Mesh scale factor = 0.95) with reference solution (Mesh scale 
factor = 0.55) 
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Table E3 Comparison of model results obtained using Adaptive mesh refinement 

Property 

Scaling Factor 

0.55 0.95 
 Adapted mesh  

0.95 

Number of tetrahedral elements 223246 22138 70118 

Degree of freedom  312087 32875 100269 

Computation time (s) 63 3 13 

Memory Requirement (GB) 6.23 2.13 2.62 

Flux (Bcf/day) 0.1203 0.1209 0.1203 

Relative Error in Estimated Flux (%) 0 0.005 0 

Relative Error in Simulated Pressure (%) 0 0.09 0.05 

 

 

Figure E3 Distribution of error associated with estimated pressure values by comparing results 
from adapted mesh (Mesh scale factor = 0.95) with reference solution (Mesh       
scale factor = 0.55) 

 



   

163 
 

APPENDIX E - Model Production Validation data. 

The cumulative production values obtained from the study by (Wei Yu et al., 2014) and  

utilized for the construction of Figure 4.5 is presented here. 

   
  case1.irf 

TIME DATE 
Cumulative Gas 
SC 

(yr)  (MMSCF) 
0.002207 1/1/2000 0
0.002244 1/1/2000 0
0.002259 1/1/2000 0
0.002271 1/1/2000 0
0.002286 1/1/2000 0
0.002738 1/2/2000 25.51916122
0.027379 1/11/2000 82.49411011
0.054757 1/21/2000 121.9822159
0.084873 2/1/2000 156.1043243
0.112252 2/11/2000 181.7213593
0.13963 2/21/2000 204.6758118

0.164271 3/1/2000 223.7080231
0.202601 3/15/2000 250.4629974
0.249144 4/1/2000 279.8587341
0.287474 4/15/2000 302.3868713
0.33128 5/1/2000 326.3582153

0.416153 6/1/2000 367.7854309
0.498289 7/1/2000 404.0841675
0.583162 8/1/2000 438.2601013
0.668036 9/1/2000 469.6280212
0.750171 10/1/2000 497.7198486
0.835045 11/1/2000 524.6448975
0.91718 12/1/2000 548.9902344

1.002053 1/1/2001 572.562439
1.086927 2/1/2001 594.7248535
1.163587 3/1/2001 613.6907959
1.24846 4/1/2001 633.5171509

1.330595 5/1/2001 651.7043457
1.415469 6/1/2001 669.5274658
1.497604 7/1/2001 685.9487305
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1.582478 8/1/2001 702.1143188
1.667351 9/1/2001 717.5443726
1.749487 10/1/2001 731.8406982
1.83436 11/1/2001 745.9848022

1.916496 12/1/2001 759.125061
2.001369 1/1/2002 772.1602783
2.086242 2/1/2002 784.6901855
2.162902 3/1/2002 795.6206665
2.247776 4/1/2002 807.2791748
2.329911 5/1/2002 818.1732178
2.414784 6/1/2002 829.0419312
2.49692 7/1/2002 839.2191772

2.581793 8/1/2002 849.394043
2.666667 9/1/2002 859.2504883
2.748802 10/1/2002 868.510498
2.833676 11/1/2002 877.800415
2.915811 12/1/2002 886.5446777
3.000685 1/1/2003 895.3331909
3.085558 2/1/2003 903.8891602
3.162218 3/1/2003 911.4381104
3.247091 4/1/2003 919.5874634
3.329227 5/1/2003 927.2870483

3.4141 6/1/2003 935.0523682
3.496236 7/1/2003 942.3955688
3.581109 8/1/2003 949.8076782
3.665982 9/1/2003 957.0512085
3.748118 10/1/2003 963.9094849
3.832991 11/1/2003 970.8411865
3.915127 12/1/2003 977.4098511

4 1/1/2004 984.0544434
4.249145 4/1/2004 1002.452698
4.498289 7/1/2004 1019.859375
4.750171 10/1/2004 1036.547119
5.002054 1/1/2005 1052.414673
5.24846 4/1/2005 1067.227051

5.497604 7/1/2005 1081.543945
5.749487 10/1/2005 1095.405029
6.001369 1/1/2006 1108.707764
6.247776 4/1/2006 1121.238647
6.49692 7/1/2006 1133.461548

6.748803 10/1/2006 1145.400024
7.000685 1/1/2007 1156.951416
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7.247091 4/1/2007 1167.907471
7.496236 7/1/2007 1178.657471
7.748118 10/1/2007 1189.213867

8 1/1/2008 1199.479736
8.249145 4/1/2008 1209.368408
8.498289 7/1/2008 1219.007935
8.750172 10/1/2008 1228.514404
9.002053 1/1/2009 1237.795898
9.24846 4/1/2009 1246.672852

9.497604 7/1/2009 1255.452515
9.749487 10/1/2009 1264.139526
10.00137 1/1/2010 1272.647583
11.00068 1/1/2011 1304.555908

12 1/1/2012 1334.37207
13.00205 1/1/2013 1362.525757
14.00137 1/1/2014 1389.148926
15.00068 1/1/2015 1414.532959

16 1/1/2016 1438.84668
17.00205 1/1/2017 1462.291016
18.00137 1/1/2018 1484.851929
19.00068 1/1/2019 1506.687012

20 1/1/2020 1527.874756
21.00205 1/1/2021 1548.537964
22.00137 1/1/2022 1568.62207
23.00068 1/1/2023 1588.231445

24 1/1/2024 1607.407959
25.00205 1/1/2025 1626.237915
26.00137 1/1/2026 1644.650146
27.00068 1/1/2027 1662.723022

28 1/1/2028 1680.480591
29.00205 1/1/2029 1697.990723
30.00137 1/1/2030 1715.177002
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APPENDIX F - MATLAB Programs 

Single Fracture generator 

% Model Building Interface 
  
clear all   % - comment this line when in function mode 
close all 
clc 
  
  
tic 
%% Generate fractal pattern 
  
n =2; % specified value of n must be 2 at least 
% r =[2.4,0.4,0.4;0.7,0.3,0.3]; 
r =[0,0,0;0,0,0]; 
phi =[pi/2,0, 0]; 
chi =[2*pi,pi/2,-pi/2]; 
  
% axis equal 
  
numofterms=length(phi); 
if length(r)==1 
    rM=ones(numofterms, 1)*r; 
elseif length(r)==numofterms 
    rM=r'; 
else 
    warning on ('The sizes of scale vector and vector of angles in fractal`s generator are not 
equal'); 
end 
  
sumofterms = (1-numofterms^n)/(1-numofterms); % Sum of a Geometric progression 
  
sumofprevterms = (1-numofterms^(n-1))/(1-numofterms) +1; %Required for color-coding of 
fractal display 
  
num = 1; 
Startpoints = zeros(3, sumofterms, num); 
Endpoints = zeros(3, sumofterms,num); 
  
for ind = 1:num 
    if ind== 1 
        xb =[998 998]; yb =[10.5 10.5]; zb =[-7150 -7000]; 
    elseif ind==2 
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        xb =[1001 1001]; yb =[10 11.2]; zb =[-7150 -7100]; 
    else 
        xb =[1002 1002]; yb =[10 11.2]; zb =[-7150 -7300]; 
    end 
     
    % ----------------The matrix for coordinates for each branch----------------- 
    % Reinitialize start and end points 
    A=ones(n+1,numofterms^n,3); 
    ndpoints = zeros(3, 1); 
    % ----------------- Coordinates of trunk ------------------ 
     
    A(1,:,1)=ones(1,numofterms^n)*xb(1); 
    A(1,:,2)=ones(1,numofterms^n)*yb(1); 
    A(1,:,3)=ones(1,numofterms^n)*zb(1); 
    A(2,:,1)=ones(1,numofterms^n)*xb(2); 
    A(2,:,2)=ones(1,numofterms^n)*yb(2); 
    A(2,:,3)=ones(1,numofterms^n)*zb(2); 
     
    % ----------------- Coordinates of trunk ------------------ 
     
    Startpoints(1,1,ind)=xb(1); 
    Startpoints(2,1,ind)=yb(1); 
    Startpoints(3,1,ind)=zb(1); 
     
    ndpoints(1,1)=xb(2); 
    ndpoints(2,1)=yb(2); 
    ndpoints(3,1)=zb(2); 
     
    % ------------The calculating of coordinates of branches on the base of Kantor`s array------------
-- 
     
    NewCoords=zeros(3,numofterms); 
     
    count = 1; 
    for i=2:1:n 
         
        z=1; 
        for j=1:1:numofterms^(i-2) 
            for k=1:1:numofterms 
                for m=1:1:numofterms^(n-i) 
                     
                     
                    % --------------- Length of last branch -------------- 
                    a=sqrt((A(i-1,z,1)-A(i,z,1))^2+(A(i-1,z,2)-A(i,z,2))^2+(A(i-1,z,3)-A(i,z,3))^2); 
                    b=sqrt((A(i,z,1)-A(i-1,z,1))^2+(A(i,z,2)-A(i-1,z,2))^2); 
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                    theta1=acos((A(i,z,3)-A(i-1,z,3))/a); 
                    k2=(A(i,z,2)-A(i-1,z,2))/b; 
                    k1=(A(i,z,1)-A(i-1,z,1))/b; 
                     
                    if (A(i,z,1)==A(i-1,z,1))&&(A(i,z,2)==A(i-1,z,2)) 
                        k2=0; 
                        k1=1; 
                    end 
                     
                    % the matrix of turning (k2 - sin(asimute), k1 - cos(asimute), theta1 - angle of 
bending) 
                    B=[k1*cos(theta1),-k2,sin(theta1)*k1;k2*cos(theta1),k1,k2*sin(theta1);-
sin(theta1),0,cos(theta1)]; 
                    %B=[cos(theta1),0,sin(theta1);0,1,0;-sin(theta1),0,cos(theta1)]; 
                     
                    for h=1:1:numofterms 
                         
                        % the coordinates of base of branches 
                        %                                                  
                        x2=a*rM(h, count)*sin(chi(h))*cos(phi(h)); 
                        y2=a*rM(h, count)*sin(chi(h))*sin(phi(h)); 
                        z2=a*rM(h, count)*cos(chi(h)); 
                         
                        NewCoords(:,h)=B*[x2,y2,z2]'+[A(i,z,1),A(i,z,2),A(i,z,3)]'; 
                         
                    end 
                     
                    % define following coordinates 
                    A(i+1,z,1)=NewCoords(1,k); 
                    A(i+1,z,2)=NewCoords(2,k); 
                    A(i+1,z,3)=NewCoords(3,k); 
                     
                     
                    z=z+1; 
                end 
                 
            end 
            ndpoints= [ndpoints NewCoords]; 
        end 
        count = count +1; 
    end 
     
    Endpoints(:,:, ind) = ndpoints; 
    g= 2; 
    for j= 1:sumofterms/3 
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        Startpoints(:,g, ind)   = Endpoints(:,j, ind); 
        Startpoints(:,g+1, ind) = Endpoints(:,j, ind); 
        Startpoints(:,g+2, ind) = Endpoints(:,j, ind); 
        % %     Startpoints(:,g+3) = Endpoints(:,j); 
        g=g+3; 
         
    end 
end 
  
Startpoints = reshape(Startpoints, 3, num*sumofterms); 
Endpoints = reshape(Endpoints, 3, num*sumofterms); 
  
Trans_d = [0 20 0]; % Translation is done in the positive y-direction 
well_d = 0; % diameter of the wellbore - required for reflection 
origin = Startpoints(:,1); 
  
Startpointb = Ty_Transrotation(Startpoints,'ref',origin, well_d,Trans_d); 
Endpointb = Ty_Transrotation(Endpoints,'ref', origin,well_d,Trans_d); 
  
%Obtain co-ordinates for the clustered fracture network 
clus_sp_1 = [Startpoints Startpointb]; 
clus_ep_1 = [Endpoints Endpointb]; 
  
% Replicate clustered network by translation 
  
num_rep = 24; 
[clus_dim1, clus_dim2]= size(clus_sp_1); 
clus_sp = zeros(clus_dim1,clus_dim2, num_rep); 
clus_ep = zeros(clus_dim1,clus_dim2, num_rep); 
  
clus_sp(:,:,1) = clus_sp_1; 
clus_ep(:,:,1) = clus_ep_1; 
for i   =1 :num_rep 
     
clus_sp(:,:, i+1) = Ty_Transrotation(clus_sp_1, 'trans',origin, well_d,Trans_d*i); 
clus_ep(:,:,i+1)= Ty_Transrotation(clus_ep_1,'trans',origin, well_d,Trans_d*i); 
  
end 
  
% Obtain co-ordinate of all points 
num_frac = clus_dim2 * (num_rep+1); 
  
All_startpoint = reshape(clus_sp,[3 num_frac]); 
All_endpoint = reshape(clus_ep,[3 num_frac]); 
  
Parameter_vector = All_endpoint - All_startpoint; 
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Vertices = [All_startpoint' All_endpoint' Parameter_vector']; 
  
% Plotting Section elipses 
  
h=figure; 
axes('Parent',h,'Color',[0.,0.7,0.7]); 
view(3); 
hold on; 
SP = Vertices(:,1:3); %start point 
EP = Vertices(:,4:6); %end point 
DV = Vertices(:,7:9); %direction vector 
SegNorm = vectorNorm3d(DV); % length of segment 
SegMid = SP + DV/2; % midpoint by vector addition 
Orient = zeros(size(SP)); 
Orient(:,1) = atan2(DV(:,2),DV(:,1)); %angle to rotate around z axis to align x-axis with DV 
Orient(:,2) = -atan2(DV(:,3),sqrt(DV(:,1).*DV(:,1) + DV(:,2).*DV(:,2)));  % angle to rotate 
around new y axis to aligh new x axis with DV 
  
  
for i = 1:length(Vertices) 
    Start = struct('x', Vertices(i,1), 'y', Vertices(i,2),'z', Vertices(i,3)); 
    End = struct('x', Vertices(i,4), 'y', Vertices(i,5),'z', Vertices(i,6)); 
    Mid =  struct('x', SegMid(i,1), 'y', SegMid(i,2),'z', SegMid(i,3)); 
    Direct_vec = struct('x', Vertices(i,7), 'y', Vertices(i,8),'z', Vertices(i,9)); 
    Orient_vec = struct('phix', Orient(i,2), 'phiz', Orient(i,1)); 
    Fractures(i) = struct('Startpoint',Start,'Endpoint', End, 'Midpoint', Mid,'Dir_vec', Direct_vec, 
'Length', SegNorm(i),'Orientation', Orient_vec); 
end 
  
% Plotting Section line segments 
  
% ------------The branches of the tree--------------- 
count = 0; 
for j = 1:50 
    for i=count+1:count+sumofprevterms 
        
line([All_startpoint(1,i),All_endpoint(1,i)],[All_startpoint(2,i),All_endpoint(2,i)],[All_startpoint(
3,i),All_endpoint(3,i)],'Color',[0.8,0.5,0.5],'LineWidth',2); 
    end 
    % ------------The end branches of the tree--------------- 
     
    for i=count+sumofprevterms:count+sumofterms 
        
line([All_startpoint(1,i),All_endpoint(1,i)],[All_startpoint(2,i),All_endpoint(2,i)],[All_startpoint(
3,i),All_endpoint(3,i)],'Color',[0.4,0.75,0.4],'LineWidth',2); 
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    end 
    count =count + sumofterms; 
end 
  
axis ([750 1250 0 1000 -7300 -7000]) 
 
  
 
% %Clip and Upscale 
  
% Clip fracture line segments into different sub-domain configurations and 
% generate upscaled permeabiity values. 
  
BBox = [760 1240 0 1000 -7300 -7000]; %Specify extents of the Bounding box 
  
Gridtype = 'logdiv'; % Grid size can be chosen either as regular or logarithmic 
grd_sz = 3; % Select any of the numbers, 1, 2 or 3 to represent size of logarithmic subdomain 
mesh. 1 is coarse, 3 is finer 
NumSubDomain = [145 2 1]; % specify the number of subdomains in axis x, y, z 
Interpdata = Clip_upscale(SP, DV, Orient, BBox, NumSubDomain, grd_sz, Gridtype); 
 
%% Krigging 
  
% Krig the upscaled values and send to a data table 
  
  
method = 'IDW';    % Method of interpolation to be used. 'IDW' or 'krig' are the options that can 
be used. 
r1 = 'ng';         % Type of interpolation to be utilized, 'fr' is the other option. 
r2 = 8 ;           % Radius lenght if r1 == 'fr' & ... 
                    ...number of neighbours if  r1 =='ng' 
krig_d =4 ;       % size of linear divisions in axis to be krigged 
  
Final_interp_data=Toyin_InterpolationP(Interpdata,method,krig_d, BBox, r1,r2); 
  
save ('C:\Users \Permeability Data\FineGrid_R26.out','Final_interp_data', '-ASCII') 
% saves permeability data into file to be exported into COMSOL. 
 
  
toc 
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Cluster replicating subroutine 

function[Out] = Ty_Transrotation(SP, rotn, origin, well_d,Trans_d) 
  
x = SP(1, :); 
y = SP(2, :); 
z = SP(3, :); 
  
x_center = origin(1); 
y_center = origin(2); 
z_center = origin(3); 
  
center = repmat([x_center; y_center; z_center], 1, length(x)); 
% choose a point which will be the center of rotation 
  
v = [x;y;z]; % create a matrix which will be used later in calculations 
well_trans = [0 0 -well_d]; 
  
rot = strcmp(rotn, 'ref'); 
     
if rot == 1 
    %Reflection matrix construction - reflect about the z axis with 
    R = [ 1 0 0; 0 -1 0; 0 0 -1]; 
    % do the rotation... 
    s = v - center; 
    so = R*s;           % apply the rotation about the origin 
     
    vo = so + center;   % shift again so the origin goes back to the desired center of rotation 
  
          Out = zeros(size(vo)); 
     
    for i = 1:3 
        Out(i,:) = vo(i, :) +well_trans(i);    %translated matrix 
    end 
     
else 
    %Translation matrix 
%     Trans = [Trans_d 0 0]; 
    Trans = Trans_d; 
     
    Out = zeros(size(v)); 
     
    for i = 1:3 
        Out(i,:) = v(i, :) + Trans(i);    %translated matrix 
    end 
end %   
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Upscaling subroutine 

function[Interpdata] = Clip_upscale(SP, DV, Orient, BBox, NumSubDomain, grd_sz, grid) 
close all 
clc 
%%  Bounding box calculations 
 
%  Generate co-ordinates of subdomain edges 
 
if strncmp(grid, 'reg', 3) 
    NumSubDomainX = NumSubDomain(1); 
    XCorners = linspace(BBox(1),BBox(2),NumSubDomainX+1);  
else 
    XCorners = Toyin_logdivision(BBox, grd_sz); 
    NumSubDomainX = length(XCorners)-1; 
end 
  
NumSubDomainY = NumSubDomain(2); 
NumSubDomainZ = NumSubDomain(3); 
 
XCorners = linspace(BBox(1),BBox(2),NumSubDomainX+1); YCorners = 
linspace(BBox(3),BBox(4),NumSubDomainY+1); 
ZCorners = linspace(BBox(5),BBox(6),NumSubDomainZ+1); 
 
SubBox = zeros(NumSubDomainX*NumSubDomainY*NumSubDomainZ,6); 
SubBox_centroid = zeros(1,3); 
  
m=0; 
for k= 1:length(ZCorners)-1 
    for j = 1:length(YCorners)-1 
        for i = 1:length(XCorners)-1 
            m = m+1; 
            SubBox(m,:) 
=[XCorners(i),XCorners(i+1),YCorners(j),YCorners(j+1),ZCorners(k),ZCorners(k+1)]; 
            SubBox_centroid(m,:) = 
[(XCorners(i+1)+XCorners(i))/2,(YCorners(j+1)+YCorners(j))/2,(ZCorners(k+1)+ZCorners(k))/
2]; 
        end 
    end 
    SubBox_volume = (XCorners(i+1)-XCorners(i))*(YCorners(j+1)-
YCorners(j))*(ZCorners(k+1)-ZCorners(k)); 
end 
  
%% Upscaling code 
  
Formation_permeability = [9.86923e-20 0 0; 0 9.86923e-20 0; 0 0 9.86923e-20]; 



   

174 
 

Frac_porosity = 1; 
Frac_width = 50; % reservoir width/grid size 
Formation_porosity = 0.05; 
  
SubBox_perm = zeros(m,9); 
Total_frac_vol = zeros(m, 1); 
Formation_volume = zeros(m, 1); 
 
 
% 
for j=1:m 
    [Edge, SegmentsInBox, Radii] = newclipper([SP DV],SubBox(j,:)); 
     
    %     Radii = SegNorm(SegmentsInBox);              % Generation of the Fracture radii 
    Aperture=0.02*ones(size(SegmentsInBox));    % Aperture of Fractures 
    Phi = radtodeg(Orient(SegmentsInBox, 1)) ;   % Angles 
    Omega = radtodeg(Orient(SegmentsInBox,2)) ; 
    Total = length(SegmentsInBox); 
     
     
    Permeability = (Aperture*0.3048).^2/12;  % Compute Permeability using the cubic law for 
parallel plates in fractures 
    L = sind(Phi).* cosd(Omega);      % directional cosine in x-direction 
    M = sind(Phi).* sind(Omega);      % directional cosine in y-direction 
    N = cosd(Phi);                               % directional cosine in z-direction 
     
    Direction_Cosines = [(L.^2),(L.*M),(L.*N), (M.*L),(M.^2),(M.*N),(N.*L),(N.*M),(N.^2)]; 
    Fracvolume =  Aperture.*Radii*Frac_width;  %Volume of voids occupied by fractures 
    Total_frac_vol(j) = sum(Fracvolume); 
    Formation_volume(j) =SubBox_volume; 
    Crack_tensor = zeros(3,3); 
     
    %% 
    for i = 1:Total 
        OrientMatrix = [Direction_Cosines(i,1) Direction_Cosines(i,2) Direction_Cosines(i,3); 
Direction_Cosines(i,4) Direction_Cosines(i,5) Direction_Cosines(i,6);Direction_Cosines(i,7) 
Direction_Cosines(i,8) Direction_Cosines(i,9)]; 
        Crack_tensor = Crack_tensor + (Fracvolume(i)*Permeability(i)*OrientMatrix); 
    end 
     
    Fracture_crack_tensor = Crack_tensor/Formation_volume(j); 
     
    Permeability_tensor = ((sum(diag(Fracture_crack_tensor))*eye(size(Fracture_crack_tensor)))-
Fracture_crack_tensor); 
     
    [Eigval, Frac_k_tensor] = eig(Permeability_tensor); 
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    Percent_frac = Total_frac_vol(j)/Formation_volume(j) ;       %Percentage of formation 
occupied by fractures 
     
    Overall_upscaled_k = (Percent_frac*Frac_k_tensor) + (1-
Percent_frac)*Formation_permeability;                                      %Upscaled Permeability 
    Overall_upscaled_porosity = (Percent_frac* Frac_porosity) + (1-
Percent_frac)*Formation_porosity; %Upscaled Porosity 
     
    SubBox_perm(j,:) = [Overall_upscaled_k(1,1), Overall_upscaled_k(1,2), 
Overall_upscaled_k(1,3),Overall_upscaled_k(2,1), Overall_upscaled_k(2,2), 
Overall_upscaled_k(2,3),Overall_upscaled_k(3,1), Overall_upscaled_k(3,2), 
Overall_upscaled_k(3,3)]; 
     
     
end 
Final_frac_vol = sum(Total_frac_vol); 
Final_form_vol = sum(Formation_volume); 
Equiv_HF_length = Final_frac_vol/(0.001*Frac_width); 
  
Interpdata = [SubBox_centroid, SubBox_perm(:,1), SubBox_perm(:,5),SubBox_perm(:,9)]; 
% Matrix of co-ordinates and permeability points. 
 
  
 
  



   

176 
 

Logarithmic division subroutine 

function xloc =Toyin_logdivision(BBox, grid_sz) 
clc 
close all 
%code works for internal sections 
%treat boundaries differently 
Boundaries = [BBox(1) BBox(2)]; 
% grid_sz=3; 
% Boundaries = [760 1240]; 
% divide x into logarithmic spaces 
  
% determine the number of HF Locations 
% HFloc = Nfracs; 
HFloc = 5; 
Fracloc = zeros(1, HFloc); 
Fracspac = (Boundaries(2)- Boundaries(1))/(HFloc); 
multiplier = Fracspac/2; 
  
x1 = zeros(HFloc,6); %preallocate matrix of larger grids 
  
if grid_sz == 1 
    xgrid1 = zeros(HFloc,6); %preallocate matrix of smaller grids 
    xgrid2 = zeros(HFloc-1,5); %to be used for reshaping 
     
    for n= 1:HFloc 
        if n == 1 
            Fracloc(n) = Boundaries(1) + multiplier; 
        else 
            Fracloc(n) = Fracloc(1) + multiplier*(2*(n-1)); 
        end 
        % determine number of subdivisions - total of 5 including HF 
         
        x1(n,1) = Fracloc(n) - multiplier; 
        x1(n,end) = Fracloc(n) + multiplier; 
         
        x1(n,2) = x1(n,1) + (multiplier * 0.905); 
        x1(n,3) = x1(n,2)+ (multiplier *0.0949948); 
        x1(n,4) = x1(n,3)+ (multiplier *0.00104); 
        x1(n,5) = x1(n,4)+ (multiplier *0.0949948); 
         
        % get more grid points 
         
        xgrid1(n, :) = x1(n,:); 
         
        if n>=2 
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            xgrid2(n-1, :) = xgrid1(n, 2:end); 
        end 
        % xgrid1(n, :) = [linspace(x1(n,1),x1(n,2),6), (x1(n,2)+ (multiplier *0.09499)/2), x1(n,3), 
x1(n,4), (x1(n,4)+ (multiplier *0.09499)/2), linspace(x1(n,5),x1(n,end),6)]; end 
        % end 
    end 
    if HFloc == 1 
        xloc = xgrid1; 
    else 
        xloc_1 = xgrid1(1, :); 
        xloc_a = xgrid2'; 
        xloc_2 = reshape(xloc_a, [1, (HFloc-1)*5]); 
        xloc = [xloc_1, xloc_2]; 
    end 
     
elseif grid_sz== 2 
    xgrid1 = zeros(HFloc,16); %preallocate matrix of smaller grids 
    xgrid2 = zeros(HFloc-1,15); %to be used for reshaping 
     
    for n= 1:HFloc 
        if n == 1 
            Fracloc(n) = Boundaries(1) + multiplier; 
        else 
            Fracloc(n) = Fracloc(1) + multiplier*(2*(n-1)); 
        end 
        % determine number of subdivisions - total of 5 including HF 
         
        x1(n,1) = Fracloc(n) - multiplier; 
        x1(n,end) = Fracloc(n) + multiplier; 
         
        x1(n,2) = x1(n,1) + (multiplier * 0.905); 
        x1(n,3) = x1(n,2)+ (multiplier *0.09499); 
        x1(n,4) = x1(n,3)+ (multiplier *0.002); 
        x1(n,5) = x1(n,4)+ (multiplier *0.09499); 
         
        % get more grid points 
       xgrid1(n, :) = [linspace(x1(n,1),x1(n,2),6), (x1(n,2)+ (multiplier *0.09499)/2), x1(n,3), 
x1(n,4), (x1(n,4)+ (multiplier *0.09499)/2), linspace(x1(n,5),x1(n,end),6)]; 
         
        if n>=2 
            xgrid2(n-1, :) = xgrid1(n, 2:end); 
        end 
         
    end 
    if HFloc == 1 
        xloc = xgrid1; 
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    else 
        xloc_1 = xgrid1(1, :); 
        xloc_a = xgrid2'; 
        xloc_2 = reshape(xloc_a, [1, (HFloc-1)*15]); 
        xloc = [xloc_1, xloc_2]; 
    end 
   
else 
    xgrid1 = zeros(HFloc,30); %preallocate matrix of smaller grids 
    xgrid2 = zeros(HFloc-1,29); %to be used for reshaping 
     
    for n= 1:HFloc 
        if n == 1 
            Fracloc(n) = Boundaries(1) + multiplier; 
        else 
            Fracloc(n) = Fracloc(1) + multiplier*(2*(n-1)); 
        end 
        % determine number of subdivisions - total of 5 including HF 
         
        x1(n,1) = Fracloc(n) - multiplier; 
        x1(n,end) = Fracloc(n) + multiplier; 
         
        x1(n,2) = x1(n,1) + (multiplier * 0.905); 
        x1(n,3) = x1(n,2)+ (multiplier *0.09499); 
        x1(n,4) = x1(n,3)+ (multiplier *0.002); 
        x1(n,5) = x1(n,4)+ (multiplier *0.09499); 
         
        % get more grid points 
         
        xgrid1(n, :) = [linspace(x1(n,1),x1(n,2),11), (x1(n,2)+ 0.25*(multiplier 
*0.09499)),(x1(n,2)+ 0.5*(multiplier *0.09499)), (x1(n,2)+ 0.75*(multiplier *0.09499)), x1(n,3), 
x1(n,4), (x1(n,4)+ 0.25*(multiplier *0.09499)),(x1(n,4)+ 0.5*(multiplier *0.09499)), (x1(n,4)+ 
0.75*(multiplier *0.09499)), linspace(x1(n,5),x1(n,end),11)]; 
         
         
        if n>=2 
            xgrid2(n-1, :) = xgrid1(n, 2:end); 
        end 
        % xgrid1(n, :) = [linspace(x1(n,1),x1(n,2),6), (x1(n,2)+ (multiplier *0.09499)/2), x1(n,3), 
x1(n,4), (x1(n,4)+ (multiplier *0.09499)/2), linspace(x1(n,5),x1(n,end),6)]; end 
        % end 
    end 
    if HFloc == 1 
        xloc = xgrid1; 
    else 
        xloc_1 = xgrid1(1, :); 
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        xloc_a = xgrid2'; 
        xloc_2 = reshape(xloc_a, [1, (HFloc-1)*29]); 
        xloc = [xloc_1, xloc_2]; 
    end 
end 
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Clipping subroutine 

function varargout = newclipper(line, box) 
  
% Clipping algorithm  
     
%% Variables 
% line = M x 6 matrix specifying a point on the line and its direction... 
%        vector 
% box = 1 x 6 vector containing the end points of the clipping box. 
% output_edge = M x 6 matrix specifying End points of clipped lines. 
% index = index of line segments contained in clipped box 
% Radii = calculated length of clipped line segments 
  
%Examples 
% Code functionality can be tested uncommenting lines 23 to 30 and running 
% as a script. 
% clear all 
% close all 
% clc 
% line = [60 40 3 10 11 10]; 
% % 0.1 2 2 0 1.2 -0.56; 0.5 0.2 0.8 ... 
% ...0.4 0.55 1.33; 0.1 0.1 0.1 0 1.9 1.9]; 
%     box = [50 65 0 50 0 50]; 
  
%% Initialization section 
  
tol = 1e-12; 
num_lines = size(line,1); 
% determine the number of lines to be processed 
  
edge = zeros(num_lines,6); 
% Pre-allocate matrix of box edges 
  
xmin = box(1);   xmax = box(2); 
% Specify the box constraints in the x-direction 
  
ymin = box(3);   ymax = box(4); 
% Specify the box constraints in the y-direction 
  
zmin = box(5);   zmax = box(6); 
% Specify the box constraints in the z-direction 
  
for j = 1 : num_lines 
    point = zeros(2,3); 
    % Preallocate the values of the first point 
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    point(1,:) = line(j, 1:3); 
    % Specify the co-ordinates of the first point on the line 
     
    point(2,:) = line(j, 1:3) + line(j, 4:6); 
    % Specify coordinates of the second point on the line 
     
    x = [point(1,1);point(2,1)]; 
    % Specify the line values in the x-direction 
     
    y = [point(1,2);point(2,2)]; 
    % Specify the line values in the y-direction 
     
    z = [point(1,3);point(2,3)]; 
    % Specify the line values in the z-direction 
     
    l = (x(2) - x(1)); m =(y(2) - y(1)); n = (z(2) - z(1)); 
     
    %% Computation Section 
    if l== 0 % line is parallel to yz plane 
        numcase = 1; 
        point = newclip2D(x, y, z, xmin, xmax , ymin, ymax, zmin, zmax, numcase); 
    elseif m == 0 % line is parallel to xz plane 
        numcase = 2; 
        point = newclip2D(x, y, z, xmin, xmax , ymin, ymax, zmin, zmax, numcase); 
    elseif n == 0 % line is parrallel to xy plane 
        numcase = 3; 
        point = newclip2D(x, y, z, xmin, xmax , ymin, ymax, zmin, zmax, numcase); 
    else % 3d computation 
        a = l/m;     b = m/n; 
        % Parametric constant required for scaling 
        for i = 1:2 
             
            if x(i) < xmin 
                y(i) = (xmin - x(i))/a + y(i); 
                z(i) = (xmin - x(i))/(a*b) + z(i); 
                x(i) = xmin; 
            end 
            if x(i) > xmax 
                y(i) = (xmax - x(i))/a + y(i); 
                z(i) = (xmax - x(i))/(a*b) + z(i); 
                x(i) = xmax; 
            end 
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if y(i) < ymin 
                x(i) = a*(ymin - y(i)) + x(i); 
                z(i) = (ymin - y(i))/b + z(i); 
                y(i) = ymin; 
            end 
            if y(i) > ymax 
                x(i) = a*(ymax- y(i)) + x(i); 
                z(i) = (ymax - y(i))/b + z(i); 
                y(i) = ymax; 
            end 
             

if z(i) < zmin 
                x(i) = a*b*(zmin - z(i)) + x(i); 
                y(i) = b*(zmin - z(i)) + y(i); 
                z(i) = zmin; 
            end 
            if z(i) > zmax 
                x(i) = a*b*(zmax - z(i)) + x(i); 
                y(i) = b*(zmax - z(i)) + y(i); 
                z(i) = zmax; 
            end 
            point(i,:) = [x(i) y(i) z(i)]; 
        
      end 
        check = (abs(diff(x)))+(abs(diff(y)))+(abs(diff(z))); 
         
        if check <=tol 
            point =NaN(size(point)); % Not in selected box 
        end 
    end 
    edge(j,:) =[point(1,:) point(2,:)]; 
end 
  
%% Output Section 
  
edge_for_indx = zeros((size(edge, 1)),1); 
  
for i = 1:size(edge, 1) 
    for j = 1:size(edge, 2) 
        if isnan(edge(i,j)) == 1 
            edge_for_indx(i) = NaN; 
            break 
        elseif isinf(edge(i,j)) == 1 
            edge_for_indx(i) = NaN; 
            break 
        else 
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            edge_for_indx(i) = edge(i,1); 
        end 
    end 
end 
  
[index]= find(~isnan(edge_for_indx)); 
  
output_edge = edge(index,:); 
  
%calculate radii of clipped segments 
Edge_dir_vec = output_edge(:, 4:6) - output_edge(:, 1:3); 
Radii = vectorNorm3d(Edge_dir_vec); % length of segment 
  
varargout{1} = output_edge; 
  
if nargout == 3 
    varargout{2} = index; 
    varargout{3} = Radii; 
end 
 
 

2D clipping subroutine 

% Program for clipping of lines parallel to the bounding box planes 
 
function point =  newclip2D(x, y, z, xmin, xmax , ymin, ymax, zmin, zmax, numcase) 
  
point = zeros(2,3); 
tol = 1e-14; 
  
switch numcase 
    %% 
    case 1 % parallel to the yz plane 
         
        if x(1) >= xmin && x(1) <= xmax 
             
            if z(1) == z(2) 
                if z(1) >= zmin && z(1) <= zmax 
                    for i = 1: 2 
                        if y(i) < ymin 
                            y(i) = ymin; 
                        elseif y(i) > ymax 
                            y(i) = ymax; 
                        end 
                    end 
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                    if abs(diff(y)) <tol 
                        point =NaN(size(point)); % Not in selected box 
                    else 
                        point = [x(1) y(1) z(1); x(2) y(2) z(2)]; 
                    end 
                else 
                    point =NaN(size(point)); % Not in selected box 
                end 
                 
                 
            elseif y(1) == y(2) 
                if y(1) >= ymin && y(1) <= ymax 
                    for i = 1: 2 
                        if z(i) < zmin 
                            z(i) = zmin; 
                        elseif z(i) > zmax 
                            z(i) = zmax; 
                        end 
                    end 
                    if abs(diff(z)) <tol 
                        point =NaN(size(point)); % Not in selected box 
                    else 
                        point = [x(1) y(1) z(1); x(2) y(2) z(2)]; 
                    end 
                else 
                    point =NaN(size(point)); % Not in selected box 
                end 
                 
            else 
                m = (z(2) - z(1)) / (y(2) - y(1)); 
                c= (y(1)*z(2) -y(2)*z(1))/( y(1) - y(2)); 
                for i = 1:2 
                    if y(i) < ymin 
                        z(i) = m*ymin + c; 
                        y(i) = ymin; 
                    elseif y(i) > ymax 
                        z(i) = m*ymax + c; 
                        y(i) = ymax; 
                    end 
                     
                    if z(i) < zmin 
                        y(i) = (zmin -c)/m; 
                        z(i) = zmin; 
                    elseif z(i) > zmax 
                        y(i) = (zmax -c)/m; 
                        z(i) = zmax; 
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                    end 
                     
                    point(i,:) = [x(i) y(i) z(i)]; 
                end 
                check = abs(diff(y))+ abs(diff(z)); 
                 
                if check <=tol 
                    point =NaN(size(point)); % Not in selected box 
                     
                end 
            end 
        else 
            point =NaN(size(point)); % Not in selected box 
        end 
         
        %% 
    case 2 % parallel to the xz plane 
         
        if y(1) >= ymin && y(1) <= ymax 
             
            if z(1) == z(2) 
                if z(1) >= zmin && z(1) <= zmax 
                    for i = 1: 2 
                        if x(i) < xmin 
                            x(i) = xmin; 
                        elseif x(i) > xmax 
                            x(i) = xmax; 
                        end 
                    end 
                    if abs(diff(x)) <tol 
                        point =NaN(size(point)); % Not in selected box 
                    else 
                        point = [x(1) y(1) z(1); x(2) y(2) z(2)]; 
                    end 
                else 
                    point =NaN(size(point)); % Not in selected box 
                end 
                 
                 
            elseif x(1) == x(2) 
                if x(1) >= xmin && x(1) <= xmax 
                    for i = 1: 2 
                        if z(i) < zmin 
                            z(i) = zmin; 
                        elseif z(i) > zmax 
                            z(i) = zmax; 
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                        end 
                    end 
                    if abs(diff(z)) <tol 
                        point =NaN(size(point)); % Not in selected box 
                    else 
                        point = [x(1) y(1) z(1), x(2) y(2) z(2)]; 
                    end 
                else 
                    point =NaN(size(point)); % Not in selected box 
                end 
                 
            else 
                m = (z(2) - z(1)) / (x(2) - x(1)); 
                c= (x(1)*z(2) -x(2)*z(1))/( x(1) - x(2)); 
                for i = 1:2 
                    if x(i) < xmin 
                        z(i) = m*xmin + c; 
                        x(i) = xmin; 
                    elseif x(i) > xmax 
                        z(i) = m*xmax + c; 
                        x(i) = xmax; 
                    end 
                     
                    if z(i) < zmin 
                        x(i) = (zmin -c)/m; 
                        z(i) = zmin; 
                    elseif z(i) > zmax 
                        x(i) = (zmax -c)/m; 
                        z(i) = zmax; 
                    end 
                    point(i,:) = [x(i) y(i) z(i)]; 
                end 
                check = abs(diff(x))+ abs(diff(z)); 
                 
                if check <=tol 
                    point =NaN(size(point)); % Not in selected box 
                     
                end 
            end 
        else 
            point =NaN(size(point)); % Not in selected box 
        end 
         
        %% 
    case 3 % parallel to the xy plane 
        if z(1) >= zmin && z(1) <= zmax 
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            if y(1) == y(2) 
                if y(1) >= ymin && y(1) <= ymax 
                    for i = 1: 2 
                        if x(i) < xmin 
                            x(i) = xmin; 
                        elseif x(i) > xmax 
                            x(i) = xmax; 
                        end 
                    end 
                    if abs(diff(x)) <tol 
                        point =NaN(size(point)); % Not in selected box 
                    else 
                        point = [x(1) y(1) z(1); x(2) y(2) z(2)]; 
                    end 
                else 
                    point =NaN(size(point)); % Not in selected box 
                end 
                 
                 
            elseif x(1) == x(2) 
                if x(1) >= xmin && x(1) <= xmax 
                    for i = 1: 2 
                        if y(i) < ymin 
                            y(i) = ymin; 
                        elseif y(i) > ymax 
                            y(i) = ymax; 
                        end 
                    end 
                    if abs(diff(y)) <tol 
                        point =NaN(size(point)); % Not in selected box 
                    else 
                        point = [x(1) y(1) z(1); x(2) y(2) z(2)]; 
                    end 
                else 
                    point =NaN(size(point)); % Not in selected box 
                end 
                 
            else 
                m = (y(2) - y(1)) / (x(2) - x(1)); 
                c= (x(1)*y(2) -x(2)*y(1))/( x(1) - x(2)); 
                for i = 1:2 
                    if x(i) < xmin 
                        y(i) = m*xmin + c; 
                        x(i) = xmin; 
                    elseif x(i) > xmax 
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                        y(i) = m*xmax + c; 
                        x(i) = xmax; 
                    end 
                     
                    if y(i) < ymin 
                        x(i) = (ymin -c)/m; 
                        y(i) = ymin; 
                    elseif y(i) > ymax 
                        x(i) = (ymax -c)/m; 
                        y(i) = ymax; 
                    end 
                    point(i,:) = [x(i) y(i) z(i)]; 
                end 
                check = abs(diff(x))+ abs(diff(y)); 
                 
                if check <=tol 
                    point =NaN(size(point)); % Not in selected box 
                     
                end 
            end 
        else 
            point =NaN(size(point)); % Not in selected box 
        end 
end 
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 Kriging subroutine 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Krigging Interpolation %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function Final_interp_data=Toyin_InterpolationP(Interp_Data, method,num, BBox, r1,r2) 
  
%% Variable Specifications 
% INPUTS 
% Interp_data = Matrix [length(xc), 6] with co-ordinate... 
%               values and determined properties 
% n           = Number of divisions in each direction 
% method      = String input for method of interpolation: 'krig' = krigging;... 
%                                                         'IDW' = Inverse Distance Weighting 
% r1          = String input for type of interpolation: 'fr' = fixed radius;... 
%                                                       'ng' = neighbours 
% r2          = Radius lenght if r1 == 'fr' & ... 
%               number of neighbours if  r1 =='ng' 
  
% OUTPUTS 
% Final_interp_data = Matrix [length(z)*length(y)*length(x), 6] with ... 
%                    interpolated variable  and co-ordinate values. 
  
% EXAMPLE 
% --> Permeability_data =InterpolationP(Interp_data, 30,'ng',length(x1)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%   $Adapted  from Simone Fatichi IDW code(MATLAB Xchange ... 
%    ...and expanded by Toyin Aseeperi 2013/10/14 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
close all 
  
% % % Initialize data to test when not in function mode. 
% Interp_Data=load('C:\Users\Interp_data.out'); 
% % send in at least two data points 
% % n= 20; 
% BBox = [0 20 0 30 0 50]; 
% method = 'IDW'; 
% r1 = 'fr' ; 
% r2 = 2; 
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%% Extract data into new variables to be used for computation 
xc = Interp_Data(:,1)'; 
yc = Interp_Data(:,2)'; 
zc = Interp_Data(:,3)'; 
  
VariableC = Interp_Data(:,4:end)'; 
Means = mean(VariableC, 2); 
  
  
x = BBox(1):num:BBox(2); 
y = BBox(3):num:BBox(4); 
z = BBox(5):num:BBox(6); 
  
  
count = 1;                                               % Initiate count for use in obtaining the co-ordinate 
positions later in the loop 
Coord_index = length(x)*length(y)*length(z);             % Determine new length for generated 
data 
Coord=zeros(Coord_index ,3);            % Preallocate matrix of Co-ordinate indexes 
Intp_Vari=zeros(length(x),length(y),length(z),size(VariableC, 1)); % Preallocate matrix of 
inerpolated variables 
  
%Generate Distance Matrix A 
n = length(xc); 
A= zeros(n); 
  
for i = 1:n 
    for j = 1:n 
        A(i,j)= sqrt((xc(i)-xc(j))^2 +(yc(i)-yc(j))^2+(zc(i)-zc(j)).^2); 
    end 
end 
% A(:, end) = 1; 
% A(end, 1:end-1) = 1; 
% A(end, end) = 0; 
CovC = zeros(n); 
  
%% Computation Section 
  
% Fixed radius computation 
if  strcmp(r1,'fr') 
    if  (r2<=0) 
        disp('Error: Radius must be positive') 
        return 
    end 
    %     for a = 1: size(VariableC, 1) 
    %         for l = 1:n 
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    %             for m = 1:n 
    %                 vcc =VariableC(a, :); 
    vcc =VariableC; 
%     CovC(l,m)= (vcc(l)-mean(vcc))*(vcc(m)-mean(vcc)); 
    %             end 
    %         end 
    %         CovC(:, end) = 1; 
    %         CovC(end, 1:end-1) = 1; 
    %         CovC(end, end) = 0; 
    %         plot(A, CovC) 
    for k = 1:length(z) 
        for j=1:length(y) 
            for i =1:length(x) 
                Distance= sqrt((x(i)-xc).^2 +(y(j)-yc).^2 +(z(k)-zc).^2); 
                 
                %                     if min(Distance)==0 
                %                         disp('Error: One or more stations have the coordinates of an 
interpolation point') 
                %                         return 
                %                     end 
                 
                if  strcmp(method,'krig') 
                    Weights = Toyin_krigweight(CovC, Distance);     % Krigging weights 
                else 
                    Weights = ones(1, length(Distance))./Distance.^2;  % Inverse distance algorithm 
weights 
                end 
                 
                 
%               Weights = Weights(Distance<10); vcc = vcc(Distance<10); 
                % To utilize a fixed radius for computation, enable the line above. 
                V = vcc.*Weights; 
                 
                if isempty(Distance) 
                    V=NaN; 
                else 
                    V=sum(V)/sum(Weights); 
                    Intp_Vari(i, j, k)=V; 
%                     if a==1 
                        Coord(count, :)= [x(i) y(j), z(k)]; 
                        count = count+1; 
%                     end 
                end 
                 
            end 
        end 
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    end 
% end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Nearest neighbor computation 
  
else 
    if r2 > length(VariableC) 
        r2 = length(VariableC); 
    end 
    if r2<1 
        disp('Error: Number of neighbours not congruent with data') 
        return 
    end 
    for a = 1: size(VariableC, 1) 
        for k = 1: length(z) 
            for j=1:length(y) 
                for i=1:length(x) 
                    Distance= sqrt((x(i)-xc).^2 +(y(j)-yc).^2+(z(k)-zc).^2); 
                    if min(Distance)==0 
                        disp('Error: One or more stations have the coordinates of an interpolation point') 
                        return 
                    end 
                    [Distance,I]=sort(Distance); 
                    vcc=VariableC(a,I); 
                    if  strcmp(method,'krig') 
                         
                        Weights = Toyin_krigweight(A, Distance);     % Krigging weights 
                    else 
                        Weights = ones(1, length(Distance))./(Distance.^2);                % Inverse distance 
algorithm weights 
                    end 
                     
                       Weights=Weights(1:r2); vcc = vcc(1:r2); 
                    %                     To utilize a fixed number of neighbors for 
                    %                     computation, enable the line above. 
                    V = vcc.*Weights; 
                    V=sum(V)/sum(Weights); 
                    Intp_Vari(i, j, k, a)=V; 
                    if a==1 
                        Coord(count, :)= [x(i) y(j), z(k)]; 
                        count = count+1; 
                    end 
                end 
            end 
        end 
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    end 
end 
%% Format output data 
  
Data_length = length(x)*length(y)*length(z); 
Perm = reshape(Intp_Vari,Data_length,size(VariableC, 1)); 
Final_interp_data = [Coord, Perm]; 
  
%% For debugging when not in function mode 
% save C:\Users \Desktop\Final_interp_data.out Final_interp_data -ASCII 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
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APPENDIXG – Sample COMSOL Report. 

 

Report Generator 
 

 

 

 

 

 

 

 

 

Author 

Toyin Aseeperi 

Summary 

This report presents the steps involved in the geometry definition and flow solution in a fractured shale 
formation 
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1 Global Definitions 

1.1 Parameters 1 

Parameters 
Name Expression Description 

wellbore_pres 1000[psi] Pressure at perforates 

init_pres 3800[psi] Initial Reservoir pressure 

total_reservoir_width 22000[ft] Overall Reservoir extent 

depth_res 1000[ft] Reservoir depth - y 
direction 

height_res 300[ft] Height of reservoir 

num_stage 11 Number of stages in 
reservoir 

width_res total_reservoir_width/num_stage Stage extent in wellbore 
direction 

rad_well 5[ft] Well radius 

eta 0.02[cP] Dynamic viscosity 

rho_g 0.716[g/L] Fluid density at standard 
conditions 

IG_const 8.314[kJ/(kmol*K)] Ideal Gas Constant 

MMass 16[g/mol] Molar mass of Methane 

Temp 180[degF] Reservoir Temperature 

perm_mat 1e-4[mD] Matrix Permeability 

por_mat 0.06 Matrix Porosity 

perm_frac 5000[mD] Fracture permeability 

aper_frac 0.02[ft] Fracture Aperture 

por_frac 1 Fracture Porosity 
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Name Expression Description 

width_frac 500[ft] Fracture width 

height_frac 300[ft] Fracture height 

num_frac 5 Number of fractures 

dist_frac 80[ft] Fracture spacing 

perm_sep 1e2[mD] Shale separation 
pemeability 

por_sep 0.2 Shale seperation porosity 

aper_sep 0.02[ft] Shale separation aperture 

dist_sep 100[ft] Separation distance 

num_sep 2 Number of separation 
layers 

width_sep 450[ft] Separation width 

height_sep 500[ft] Separation height 

Lang_pres 650[psi] Langmuir Pressure 

Lang_vol 96[ft^3/ton] Langmuir volume 

rock_dens 2580[kg/m^3] Rock Density 

prod_rate 5000e3[ft^3/d] Pumping rate 

Stage_flux prod_rate*rho_g/num_stage Overall Flux value 

Mass_source Stage_flux/(depth_res*width_res*
height_res) 

Mass source 

Res_flux prod_rate*rho_g Flux Value 

daily_vol_stage_flux (Stage_flux/rho_g)*3.051e6 Flux value in cubic ft/day 

mesh_scf 1 Mesh Scale factor 

sat 0.7  
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Name Expression Description 

fault_dis 500[ft] Distance to middle of 
reservoir 

fault_width 1000[ft] Fault width 

fault_height 20[ft] Fault height 

fault_perm 100[mD] Fault permeability 
 

1.2 Variables 

1.2.1 Variables 1 

Selection 
Geometric entity level Entire model

 

Name Expression Description 

comp (zfac(comp1.p)/comp1.p) * 
d(comp1.p/zfac(comp1.p), comp1.p) 

 

rho_f (MMass*comp1.p)/(zfac(comp1.p)*IG_const*Te
mp) 

 

fluid_com comp*sat  

ads_com ((rock_dens*Lang_vol*Lang_pres)/(comp1.p + 
Lang_pres)^2)*(rho_g/rho_f) 

 

Shale_com 1e-6[1/psi]  

Shale_com2 Shale_com + ads_com  

Flow_rate (comp1.p_lm1/rho_g)*3.051 flow rate in MMcf/day 

kappax permx(x[1/ft], y[1/ft], z[1/ft])  

kappay permy(x[1/ft], y[1/ft], z[1/ft])  

kappaz permz(x[1/ft], y[1/ft], z[1/ft])  
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1.3 Functions 

1.3.1 Interpolation 3 

Function name pbound 

Function type Interpolation 
 

 

Interpolation 3 

1.3.2 Interpolation 4 

Function name permea 

Function type Interpolation 
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Interpolation 4 



   

201 
 

2 Component 1 (comp1) 

2.1 Definitions 

2.1.1 Functions 

Step 1 

Function name step1 

Function type Step 
 

 

Step 1 

2.1.2 Component Couplings 

Boundp 

Coupling type Average 

Operator name aveop1 
 

2.1.3 Selections 

Perforations 

Selection type 

Explicit 
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Selection 

Edges 28, 46, 64, 82, 100 
 

 

Perforations 

Fractures 

Selection type 

Explicit 
 

Selection 

Boundaries 10, 12, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 42, 44, 46
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Fractures 

Secondary fractures 

Selection type 

Explicit 
 

Selection 

Boundaries 8–9, 14, 17, 22, 25, 30, 33, 38, 41, 45, 47
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Secondary fractures 

Fault 

Selection type 

Explicit 
 

Selection 

Boundary 6 
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Fault 

Fault Edge 

Selection type 

Explicit 
 

Selection 

Edge 12 
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Fault Edge 

2.1.4 Coordinate Systems 

Boundary System 1 

Coordinate system type Boundary system

Identifier sys1 
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2.2 Darcy's Law (dl) 

 

 

Darcy's Law 

Features 
Fluid and Matrix Properties 1 

No Flow 1 

Initial Values 1 

Storage Model 1 

Fracture Flow 1 

Fracture Flow 2 

Fracture Flow 3 
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2.2.1 No Flow 1 

 

No Flow 1 

2.2.2 Storage Model 1 

 

Storage Model 1 

Settings 

Settings 
Description Value 

Density User defined 
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Description Value 

Density rho_f 

Dynamic viscosity User defined 

Dynamic viscosity eta 

Permeability User defined 

Permeability {{perm_mat, 0, 0}, {0, perm_mat, 0}, {0, 0, 
perm_mat}} 

Porosity User defined 

Porosity por_mat 

Compressibility of fluid User defined 

Compressibility of fluid fluid_com 

Permeability model Permeability 

Storage Stor1 

Effective compressibility of matrix Shale_com2 

Storage Linearized storage 

Porous material Domain material 

Fluid material Domain material 
 

Weak expressions 

Weak expression Integration frame Selection 

dl.rho*(-
dl.S*pt*test(p)+dl.u*test(px)+dl.v*test(py)+dl.w*
test(pz)) 

Material Domain 1 
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2.2.3 Fracture Flow 1 

 

Fracture Flow 1 

Pressure 1 

 

Pressure 1 

Settings 

Settings 
Description Value 

Pressure (wellbore_pres - init_pres)*step1(t[1/d]) + init_pres 
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Description Value 

Apply reaction terms on All physics (symmetric) 

Use weak constraints On 
 

Weak expressions 

Weak expression Integration frame Selection 

(p-dl.p0)*test(-p_lm1) Material Edges 28, 46, 64, 82, 100

-test(p-dl.p0)*p_lm1 Material Edges 28, 46, 64, 82, 100
 

Fluid and Matrix Properties 1 

 

Fluid and Matrix Properties 1 

Settings 

Settings 
Description Value 

Density User defined 

Density rho_f 

Dynamic viscosity User defined 
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Description Value 

Dynamic viscosity eta 

Permeability in fracture User defined 

Permeability in fracture {{perm_frac, 0, 0}, {0, perm_frac, 0}, {0, 0, 
perm_frac}} 

Porosity in fracture User defined 

Porosity in fracture por_frac 

Permeability model Permeability 

Storage 0 

Fracture thickness aper_frac 

Porous material Boundary material 

Fluid material Boundary material 
 

Weak expressions 

Weak expression Integration 
frame 

Selection 

dl.df*dl.rho*(dl.u*test(pTx)+dl.v*test(pTy)+dl.w*t
est(pTz)) 

Material Boundaries 
10, 12, 15, 18, 
20, 23, 26, 28, 
31, 34, 36, 39, 
42, 44, 46 

 



   

213 
 

2.2.4 Fracture Flow 2 

 

Fluid and Matrix Properties 1 

 

Fluid and Matrix Properties 1 

Settings 

Settings 
Description Value 

Density User defined 

Density rho_f 

Dynamic viscosity User defined 

Dynamic viscosity eta 

Permeability in fracture User defined 

Permeability in fracture {{perm_sep, 0, 0}, {0, perm_sep, 0}, {0, 0, perm_sep}} 

Porosity in fracture User defined 

Porosity in fracture por_sep 

Permeability model Permeability 
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Description Value 

Storage 0 

Fracture thickness aper_sep 

Porous material Boundary material 

Fluid material Boundary material 
 

Weak expressions 

Weak expression Integration frame Selection 

dl.df*dl.rho*(dl.u*test(pTx)+dl.v*test(pTy)+dl
.w*test(pTz)) 

Material Boundaries 8–9, 
14, 17, 22, 25, 
30, 33, 38, 41, 
45, 47 

 

2.2.5 Fracture Flow 3 

 

Fracture Flow 3 
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Fluid and Matrix Properties 1 

 

Fluid and Matrix Properties 1 

Settings 

Settings 
Description Value 

Density User defined 

Density rho_f 

Dynamic viscosity User defined 

Dynamic viscosity eta 

Permeability in fracture User defined 

Permeability in fracture {{fault_perm, 0, 0}, {0, fault_perm, 0}, {0, 0, 
fault_perm}} 

Porosity in fracture User defined 

Porosity in fracture por_sep 

Permeability model Permeability 

Storage 0 
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Description Value 

Fracture thickness aper_sep 

Porous material Boundary material 

Fluid material Boundary material 
 

Weak expressions 

Weak expression Integration frame Selection 

dl.df*dl.rho*(dl.u*test(pTx)+dl.v*test(pTy)+dl.
w*test(pTz)) 

Material Boundary 6 

 

Pressure 1 

 

Pressure 1 

Settings 

Settings 
Description Value 

Pressure (pbound(t) - init_pres)*step1(t[1/d]) + init_pres 

Apply reaction terms on All physics (symmetric) 

Use weak constraints On 
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Weak expressions 

Weak expression Integration frame Selection

(p-dl.p0)*test(-p_lm1) Material Edge 12 

-test(p-dl.p0)*p_lm1 Material Edge 12 
 

2.3 Mesh 2 

 

Mesh 2 
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3 Study 1 

3.1 Time Dependent 

Study settings 
Property Value

Include geometric nonlinearity Off 
 

Times: range(0,1,30) range(31,30,361) range(365,365,10950) 

Mesh selection 
Geometry Mesh 

Geometry 1 (geom1) mesh1 
 

Physics selection 
Physics Discretization 

Darcy's Law (dl) physics 
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4 Results 

4.1 Derived Values 

4.1.1 Wellbore Flux1 

Selection 
Geometric entity level Edge 

Selection Edges 28, 46, 64, 82, 100
 

Data 
Name Value 

Data set Overall data 
 

Expression 
Name Value 

Expression Flow_rate 

Unit m^4/kg 

Description flow rate in MMcf/day
 

4.1.2 Wellbore Flux2 

Selection 
Geometric entity level Edge 

Selection Edges 28, 46, 64, 82, 100
 

Data 
Name Value 

Data set Overall data 
 

Expression 
Name Value 

Expression Flow_rate 

Unit m^4/kg 
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Name Value 

Description flow rate in MMcf/day
 

4.1.3 Fault Boundary pressure 

Selection 
Geometric entity level Edge 

Selection Edge 12 
 

Data 
Name Value 

Data set Overall data 
 

Expression 
Name Value 

Expression p 

Unit psi 

Description Pressure 
 

4.1.4 Fault Flux1 

Selection 
Geometric entity level Edge 

Selection Edge 12 
 

Data 
Name Value 

Data set Overall data 
 

Expression 
Name Value 

Expression Flow_rate 
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Name Value 

Unit m^4/kg 

Description flow rate in MMcf/day
 

4.1.5 Fault Flux2 

Selection 
Geometric entity level Edge 

Selection Edge 12 
 

Data 
Name Value 

Data set Overall data 
 

Expression 
Name Value 

Expression Flow_rate 

Unit m^4/kg 

Description flow rate in MMcf/day
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4.2 Plot Groups 

4.2.1 Mesh 

 

Mesh 

4.2.2 Pressure (dl) 1 

 

Time=7300 d Surface: Pressure (Pa) 
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4.2.3 velocity 

 

Time=7300 d Surface: Darcy's velocity magnitude (m/s) Arrow Volume: Darcy's velocity field 

4.2.4 Fracture velocity 

 

Time=7300 d Surface: Darcy's velocity magnitude (m/s) Arrow Surface: Darcy's velocity field 
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