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Abstract 

Cloud computing is an architecture model which provides computing and storage capacity as a 

service over the internet. Cloud computing should provide secure services for users and owners of 

data as well. Cloud computing services are a completely internet-based technology where data are 

stored and maintained in the data center of a cloud provider. Lack of appropriate control over the 

data might incur several security issues. As a result, some data stored in the cloud must be protected 

at all times. These types of data are called sensitive data. Sensitive data is defined as data that must 

be protected against unwarranted disclosure. Generally, almost all personal information might be 

considered sensitive data. This research paper outlines how data owners determine which data 

should be considered sensitive data, how data owners are able to keep their data to be secured and 

trustable, and how data owners are able to verify integrity of their data in cloud computing. Finally 

this research provides several analyses to show the effectiveness of the data integrity verification 

method. 
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1. Introduction 

Cloud computing is a distributed architecture model that centralizes remote server resources 

on a scalable platform in order to provide on-demand computing resources and services. Due to 

users’ requirements, deployment models of cloud computing can differ greatly. Four deployment 

models have been identified, such as Private Cloud, Community Cloud, Public Cloud, and Hybrid 

Cloud [1]. Furthermore, depending on the number of objects that are involved in cloud computing, 

three architecture models have been recognized. The first model includes the owner of the data 

and cloud service provider. Owners of data, users or clients, and cloud service providers identify 

the second model. Finally, several owners of data, users or clients, and cloud service providers are 

objects in the last model. Generally cloud service providers prepare three types of services such as 

Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) 

[2, 5].  

Since cloud computing offers a mass data storage, it must provide secure services as well. In 

fact, cloud security mechanism is effective if correct defensive implementations come to picture. 

Appropriate cloud security architecture should identify the issues that will be generated by security 

management. 

Security management is the identification of an organization’s assets (including information 

assets) followed by the documentation, development, and implementation of policies and 

procedures for protecting these assets [43]. Security management determines these issues with 

security controls which determine any drawbacks in the system and try to alleviate the effect of an 

attack. There are various types of security controls such as Deterrent Control, Preventative 

Controls, Corrective Control, and Detective Control [46]. On the other hand, the popularity of 

cloud computing is mainly due to the fact that many applications and data are moving into cloud 
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platforms. Consequently, a lack of security is the major issue for data owners who keep their data 

on cloud providers’ servers. The major security aspects in cloud computing are confidentiality, 

integrity, authentication, authorization, non-repudiation and availability [47].  

This thesis addresses the data integrity verification problem in cloud computing. Generally, 

almost all information systems keep various pieces of personal information like social security or 

bank account information. Intuitively, these types of information motivate others to know about, 

or in the worst case change, another person’s personal information. So the first and foremost 

challenge is the issue of security, and outsourcing can make it harder to maintain data integrity and 

privacy. In short, we must determine data items which are likely to be stolen as sensitive data and 

try to keep them safe from any unauthorized updates. This document takes a closer look at a 

method to verify integrity of this data. In order to follow this method the data owner must define 

various metadata (or information about business data) and keep them as a cipher text. The data 

owner stores all business (real) data as plaintext in cloud service provider’s computers, and 

metadata as cipher text in local computers or cloud service provider’s computers. This method 

empowers data owners to recognize the updated data in case that data has been altered by malicious 

users. 
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2. Background 

Cloud computing applies to the delivery of computing resources over the Internet; this gives 

data owners the opportunity to store their information and use their applications at another location, 

rather than keeping their data on their own computers. By outsourcing, organizations can 

concentrate on their specific tasks, and they are able to cut their main expenditures. Hence, 

database outsourcing is an important manifestation in this regard [6]. Furthermore the cloud 

computing model allows individual users and businesses to access information and computer 

resources from any location where a network connection is available. Cloud computing provides 

a shared pool of services and resources such as data storage space, computer processing power, 

and user applications.    

The following definition of cloud computing has been developed by the U.S. National Institute of 

Standards and Technology (NIST): 

“Cloud computing is a model for enabling convenient, on-demand network access to a shared 

pool of configurable computing resources (e.g., networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or service 

provider interaction”. [34] 

This cloud model encompasses three service models, four deployment models, and three 

architecture models. The Cloud service models include [1]: Software as a Service (SaaS), Platform 

as a Service (PaaS), and Infrastructure as a Service (IaaS). Cloud deployment models are typically 

referred to as [7]: Private cloud, Community cloud, Public cloud, and Hybrid cloud. Lastly, cloud 

architecture models are addressed as an architecture which each of which has a cloud service 

provider, include those with one data owner, one data owner with the addition of users or clients, 

and several data owners with users or clients [8].  
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Most recently, cloud computing has begun to offer groups of remote servers; the remote servers 

allow centralized data storage and online access to stored data (IaaS), and the amount of data 

increases massively. It can even reach the petabyte or exabyte scale, which is known as big data. 

Big data describes any voluminous amount of structured, semi-structured or unstructured data that 

has the potential to be mined for information. The main concentrate of cloud computing is 

maximizing the size of the shared data storage. It is therefore important to choose a model for 

storing massive data (such as XML, relational data or combination of both [9, 35]). In our model, 

we prefer to use the relational structure because it provides the highest level of performance. 

Besides, the schema is not volatile [10] in our research. Relational databases are robustly able to 

handle large volumes of structured data in a system. Database Management Systems can efficiently 

and reliably maintain large amounts of structured data. This data may be updated through 

transactions that guarantee the integrity of the database; the data can be extracted very rapidly 

when totally and properly configured [11]. 

Nowadays, cloud services have become both interesting and ubiquitous because they may 

reduce the cost and complexity of operating computers and networks. While there are benefits, 

there are also privacy and security concerns too. Data is stored in remote locations under the cloud 

service providers’ policies and controls. In addition, cloud service providers often serve multiple 

customers simultaneously. Consequently, all of this risks exposure of information by breaking into 

the computers, either accidentally or deliberately. Security for the most part consists of maintaining 

data integrity and data privacy. Several studies have been done to protect data confidentiality [12]. 

Much of this work has been done defining the issue of safeguarding data privacy [13, 16]. Integrity, 

on the other hand, is a major concern for the research community [14, 15, 16, 17]. By integrity, we 
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mean that query results returned by the service provider must be correct, complete, and includes 

the most up-to-date data. 

Mykletun et al [18] provide mechanisms to ensure data integrity and authenticity in outsourced 

data. In this work they suggest a secured and practical schema that authenticates the query replies. 

They suggest a technique that gives the data owner the power to authenticate the origin and verify 

the integrity of data returned by cloud service provider in response to a query. The type of query 

that has been considered is SELECT clause. They did not address queries that involve any kind of 

data aggregation such as SUM or COUNT. One of important issues of data integrity they address 

is the completeness of the query, which refers to the correct execution of the query over the entire 

targeted data. Data integrity examinations can be provided at different levels of granularity. For 

example, it can be done at the level of a table, a row, a column, or even an individual level of 

attribute value. Those authors believe that the optimum level of integrity is the row level. In order 

to justify their belief, they use message authentication codes, as they tend to be small and efficient 

to compute and verify. They show the applicability of popular digital schemes (e.g. RSA and 

DSA), besides a proposed schema presented by Boneh et al. [19] recently. They use digital 

signatures, eventually public key signature, with data encryption to provide integrity and 

aggregation techniques.  

One related field is Private Information Retrieval (PIR) [20, 21], which has been mentioned in 

the cryptographic literature. This work focuses on privatively retrieving parts of data stored at 

remote storage, which is protected against data leakage. PIR techniques support a searching 

method which is based on either the physical location [20] of the data or keywords [22].  

Hacigaumaus et al. [23] identify the problem of data integrity in the outsourced data model by 

using data encryption in tandem with manipulation detection codes to provide integrity.  
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Xie et al [26] proposes an approach to detect the integrity of outsourced data. They insert a 

small number of records into an outsourced database to audit the integrity by analyzing the inserted 

records in the query result. To analyze the result, the data owner must know what records had been 

inserted into the outsourced database, so the owner must keep a copy of the set of those inserted 

records. In order to increase the performance, this approach defines a deterministic function to 

describe the inserted data. The data owner only needs to maintain the definition of the function, 

rather than all of the inserted records.  

Mukkamala et al. [27] present a mechanism for maintaining the data integrity in a cloud 

database-as-a-service. This approach is based on inserting several fake tuples into the database. 

They define generating functions to create fake tuples with a uniform distribution. Malicious users 

are not able to distinguish between inserted fake tuples and real tuples. Because of its efficiency, 

this method stores real data as plaintext. 

Song et al. [24] propose a practical schema to search encrypted data; it requires a single server 

and has low computational complexity. In general, searching encrypted data is becoming an 

increasingly popular research topic. (See, for example, [24, 25].) However, all current schemas 

only support exact match queries whereby the server returns data matching either a physical 

address or a keyword.  

Hacigaumaus et al. [12] explores how SQL queries can be executed over encrypted data and 

provides details of query processing and optimization techniques. In this strategy, a huge part of 

the process can be run on the client service provider without having to decrypt data. Decryption 

and a small part of the query processing are performed at the client site. Specifically, they support 

range searches and joins in addition to exact match queries.   
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The Proof of Retrievability, proposed by Juels and Kaliski [28], is a method to verify the data 

stored by a user in remote storage in the cloud that is not modified by the cloud. POR defines 

sentinels for very massive files. The main idea of sentinels definition is the cloud needs to access 

only a small portion of the file instead of accessing the entire file. Sravan and Saxena [29] offered 

a Schematic view of a proof of retrievability based on inserting random sentinels in the data file.  

A Provable data possession method checks that a file, including a collection of n blocks, is 

retained by a cloud server provider. The data owner generates some metadata to store an 

information file locally, and then the file is sent to the server while the owner deletes the original 

copy of the file. The owner verifies the file ownership by using the "challenge response protocol". 

This technique is used by clients to check the integrity of the data. In this method, the client will 

compute the hash value for the entire file and a key. Clients have a collection of keys and hash 

values. Whenever the client wants to check the file, it releases one key and sends it to the server. 

The server must recompute the hash value, compare with the received key, and then return the 

result to client [30]. 

Feifei et al [17] proposes a method for query authentication. Query authentication has three 

important dimensions: correctness, completeness, and freshness. Correctness means that the client 

must be able to verify that the returned records have not been modified in an invalid way. 

Authenticating a set of data values is done by using the Merkle hash tree. The Merkle hash tree is 

a binary tree, where each leaf node contains the hash value of a data, and each internal node 

contains the hash value of the concatenation of its two children [31, 32]. Verification of data values 

is based on the fact that the hash value of the root of the tree is authentically published. To prove 

the authenticity of any data value, all clients have to do to verify data is to iteratively compute all 

the appropriate hashes up the tree, finally checking if the hash which has been computed for the 
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root matches the authentically published value. Freshness guarantees that queries are applied 

against the most up-to-date data, instead of just some version of the data in the past. 

Min Xie et al [33] provided a practical solution on how to add freshness guarantees to provide 

integrity assurance. 
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3. Data Integrity Verification 

In cloud computing, computing resources are shared between users; users can access resources 

such as memory and storage by saving information through the internet. Therefore, information 

should be kept safe from malicious users.  

Information security can be perceived as three functions: access control, secure 

communications, and protection of private data [42]. In our research we mention an aspect of 

information security which protects private data and monitors all unauthorized users’ access and 

modification, and for the most part, we focus on maintaining data integrity.   

Before transferring data to cloud servers, several security issues should be mentioned, namely 

confidentiality, integrity, and availability. As we mentioned before, three aspects to protect data 

integrity in a cloud computing environment include correctness, completeness and freshness [45]. 

 Correctness-- verifies that all rows in a query result are generated from the original 

real data without being tampered. 

 Completeness:--verifies that all rows in a query result are generated from the original 

real data include all information that we expect. 

 Freshness:--verifies that queries are executed over the up-to-date real data.  

In this research, two services of cloud computing, such as infrastructure and platform services, 

are used. For the architecture model, three objects, namely data owner, users or clients, and cloud 

service provider, are defined. For the deployment model, the public cloud is defined. The main 

focus of our research is defining a method to address how to unify private data (here referred to as 

real data) and how to supervise those in order to detect mischievous data updating, which is one 

of the major information security aspects. This is called verifying data integrity. The 

aforementioned data is stored in the cloud service provider’s servers. This text addresses the 
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required steps to provide integrity of data in the cloud computing field and defines a method to 

examine that data in case real data has been destroyed by malicious users.  

3.1 Sensitive Data Identification 

The advent of the Internet and new technologies like cloud computing bring us quicker, easier, 

and even anonymous access to more data than ever before. Thus, people should be more aware of 

how to make conscious decisions for protecting their data (here referred to as sensitive data).  

Sensitive data is any data which comprised with confidentiality, integrity, and availability. 

Sensitive data might have material effects on the privacy to which individuals are entitled [4, 3]. 

Data sensitivity is directly proportional to the subject of a compromise of the data with respect to 

these criteria. If the data is sensitive, it’s likely to be protected by laws, regulations, or policies. 

Sensitive data needs the maximum level of protection. There are two types of sensitive data [36].  

 Regulated sensitive data includes data protected under federal or state regulations. 

 Unregulated sensitive data includes data that is not legally controlled, but still considered 

sensitive. 

Protection of sensitive data might be required for legal or ethical reasons, for issues belonging 

to personal privacy, or for ownership considerations.  

Data owners who create data, maintain data, and use metadata to check integrity of data must 

classify their data according to sensitivity that they define for data during storing, accessing, and 

altering that data. This document addresses verifying data integrity to recognize any changes of 

real data that might be done by users who do not have permission to change data, (here referred to 

as unauthorized users). Unauthorized disclosure could not only have critically adverse effects on 

the data owners’ reputation, but in addition, they are less likely to be trusted in the future. Data 

owners must ensure that data being maintained or accessed should be kept secure. One vital 
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question is raised: what types of data should be secured and what types should not? One rule of 

thumb tells us that all personally identifiable data should be considered sensitive data. Examples 

of sensitive data may include, but not limited to [44]:  

 Social Security Number  

 Income tax records  

 Date of birth  

 Financial Information  

 Medical health data 

 Place of birth 

 Bank account numbers 

 Credit card numbers  

 Drivers’ license numbers  

 Mother's maiden name  

 Personal address  

Depending on the type of a business, data owners are able to determine the degree of data 

sensibility, and then they are able to categorize data into two groups: sensitive data and non-

sensitive data. Afterwards, data owners must define policies in order to keep data secure. Non-

sensitive data may be effectively considered public data. Public data disclosures to the general 

public posture little or no danger to data owners.  

This document addresses sensitive data, which must be defined and generated by the data 

owner. Sensitive data brings with it a massive amount of concern for data owner. In order to store 

data, including real data, metadata, and control data, a relational database structure is proposed. 

Hence, data owners are required determine the fields and tables that store the sensitive data items.  
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For instance, suppose a data owner requires using a service from a cloud service provider to 

store the real data of a payroll system which keeps salaries, wages, bonuses and deductions for all 

employees working for the data owner’s company. There is no doubt that the payroll system 

maintains personal information, which is required to be kept in a safe and secure way. Data in the 

payroll system is stored on several tables in a relational database structure; here we look at some 

of them. 

Figure 1 represents a table, as follows, including the employee’s personal information such as 

Sequence number, First name, Middle name, Last name, Social security number, Employee 

identification number, Date of birth, Address, and Phone number.  

 
Field Type Mandatory Description 

Sequence number Number Y Created by Database management system 

First name Text Y  

Middle name Text N  

Last name Text Y  

Social security number Number Y  

Employee identification 

number 

Number Y Created by Payroll system 

Date of birth Date Y  

Address Text N  
Phone Number N  

Figure 1: Employee Personal Information table 

Based on the explanation of how to define the sensitive data that previously has been provided, 

it seems to be rational to define the social security number as sensitive data. Hence for each field 

that is tagged as a sensitive data item, the data owner must define several types of information, 

known as metadata, and keep them in a safe storage location. Later in this document we will 

explain a table which is used for storing the sensitive data items’ information, called data 

dictionary. The data owner should add one row into the data dictionary table for each sensitive 

data item, including the name of the table and its column name which keeps the secure data. For 
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this example, the data owner stores “Employee_personal_ information”, which is a name of a table, 

and “social security number”, which is name of the column and the other required information, 

which is explained in the next section.     

Another table keeps the financial data for each employee, such as Sequence number, Salary 

(wages), Bonus, Taxes, Effective date, and Personal information, which refers to the employee 

information in the Employee_personal_information table. Let us call that table 

“Employee_financial_information”; its structure can be viewed as follows: 

 

Field Type Mandatory Description 

Sequence number Number Y Created by Database management system 

Salary (wages) Number Y  

Bonus Number N  

Taxes Number Y  

Effective date Number Y  

Personal Information Number Y Foreign key refers to Employee personal 

information table 
Figure 2: Employee Financial Information 

Like the previous table, the data owner must determine which columns contain secure data. 

For this table, the data owner may define the field “salary” as sensitive data, which also agrees 

with the sensitive data definition. The data owner should add one row into the data dictionary table, 

containing the name of the table, “Employee_financial_information,” and its column name, which 

holds the secure data (Salary), as well as the other required information. A table in cloud servers 

can hold as many sensitive data items as necessary.  

Besides the real data, in order to check the integrity of data, the data owner is required to define 

several tables to store information about the real data, like the data dictionary table and several 

data control tables, each of which corresponds to a single sensitive data item. Generally, data 

control tables store the information about the real data partitioning, as well as its hash value, which 

is addressed in this document later.   
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3.2 Data Dictionary 

A data dictionary is a table that is defined by data owners and stored in the data owners’ 

computers. Once data owners determine the sensitive data items for their business data, they can 

create one and put some information or metadata corresponding to sensitive data items into the 

data dictionary table. As a result, the data dictionary table keeps some descriptive metadata for 

each sensitive data item. It might be used as reference to find all the sensitive data items in the 

system. Consequently, we should keep this information in a safe location; the best location might 

be the data owner’s location (local computers). The data dictionary table saves the following 

information: 

 ID: A sequenced number which is generated by database management system. 

 Name of table (Table_Name): The name of a table in the business database, including the 

sensitive data item as a field. Each table can have several sensitive data items. 

 Name of sensitive data item (Column_Name): The name of a field of a table in a database 

which keeps real data or business data. The data owner is responsible for deciding whether 

or not a given field of a table should be considered sensitive or not. Recognizing which 

data should be considered sensitive data is a policy that was discussed in the previous 

section. 

 Data type of the column (Type): The type of data of the column which keeps sensitive data 

on the real database; it might be Number, Text, or Date. The type of data is used for 

partitioning. For each column, the type of data is one of several parameters that can be used 

in splitting data into several groups. Furthermore, the type of data helps the data owner to 

define an appropriate function to split data into several partitions or intervals. In order to 

verify the integrity of data, we prefer to split data into several groups, because computing 
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a hash value of a small chunk of data is much easier and faster than computing a hash value 

of large one. 

 Minimum and maximum value (LBound, UBound):  The smallest value and the greatest 

value that can be accepted in the column that keeps real data. Regarding the column’s data 

type and its column’s criteria, each column has a domain which shows the range of 

acceptable values. The data owner can recognize the maximum and minimum value by 

looking at the domain and the history of data and then define the lower bound and upper 

bound of the domain. Determining the minimum and maximum for each column that has 

been marked as sensitive data is vital for partitioning.  

 Partitioning: In order to maintain the integrity of data, the data owner splits data into several 

groups; this process is called partitioning. A partition is a division of real data of one 

column (or its constituent real data) into distinct, independent parts. Data partitioning is 

normally done for manageability or increased performance; it helps reduce the total cost of 

data integrity checking.  

 Function for defining the partition method (P_formula): This field stores a formula to 

compute partitions. There are two types of partitioning, equal width and equal depth. The 

former method divides the data into several intervals (k) of equal size. The width of 

intervals calculated as follows: 

W = (max – min)/kmaxmin 

The latter method divides the data into several groups (k) which each group contains 

approximately same number of values. For this method, the general way of determining k 

is by looking at the data and its diversity and trying to define different intervals or groups. 
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One of the easiest ways is to count the entire data and split it into a number of groups (k). 

The depth of interval calculated as follows:  

D = (numbers of items)/k 

Hence there are equal numbers of data in each group. 

Due to diversity of data in a column, the data owner can choose one of two methods for 

making partitions, although for simplicity we use the equal width method in our research. 

Besides, the data owner is able to change the formula based on their requirements, and he 

can define different formulas for various columns as well.  

 Number of partitions (K): The number of partitions. Again regarding diversity of data in a 

column and the number of data which put in a partition, the data owner can make a decision 

about the number of partitions and the size of a single partition. The number of partitions 

has a profound impact on both the performance and the degree of data integrity checking 

available.   

 A hash function (H_formula): Might be one of the several well-known hash functions 

which will be chosen by the data owner. Using a one-way hash function as an encryption 

method is a wise choice. Although all real data is stored as plaintext in the data owner’s 

computer, data items in each partition are encrypted using a hash function and might be 

stored in the cloud. By using H_formula we generate data, which is the concatenation of 

all data items in that partition, calculate a cryptographic hash function, and then store the 

generated cipher text into data control table, the structure of which will be explained later. 

 Start position of substring (start_position): This field holds the start position of a substring 

in the original string. Due to increasing the performance costs of computing hash value for 

one partition, using part of data rather than data as a whole might be helpful. Viewing the 
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original data as a string, the substring could be a part of the original string or could be the 

same as the original string, depending on the data owner's preference. Using a substring in 

hash computation, we might lose some of the subtlety of data integrity verification, 

however. 

 Length of substring (substring_length): This number represents the length of the substring 

that participates in the hash value computation. In fact, the smaller substring length leads 

to higher performance when creating cipher text for a partition. On the other hand by 

defining this policy, we might sacrifice accuracy in case of a data attack. Again depending 

on the data owner’s decision, the size of substring might be less than or equal to the size of 

the original string.    

 Hash value (Hash_value): This stores the hash value of all of the data in one column (here 

referred as hash_partition) of the data control table, which corresponds to the column that 

kept sensitive data. We compute a hash value for each partition and store in data control 

table and then compute a hash value for all of the hashed data generated by last step. As 

part of data integrity verification, it is necessary to ensure that the data control tables are 

kept in all partitions and the corresponding hash values are stored in a secure way. In the 

data control section we will explain the structure of this table more. We should mention 

that if we store data control on the data owner’s computers, this field remains empty. 

 Data integrity verification time (Data_Integrity_chk_type): This is defined by data owner 

and shows the frequency of checking data integrity during the data modification process. 

 Cycle of the data integrity verification (Data_Integrity_chk): This is defined by the data 

owner and shows the frequency of data integrity verification. 
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 Rollback command interval time (Rollback_interval_time): This keeps the time of reading 

the command file and executes all commands over the real data.  

The following table shows the structure of Data dictionary. 

Field Name Type Opt Description 

ID N N Primary key, sequence number. Generated by 

DBMS 

Table_Name chr(50) N Table name of the real data 

Column_Name chr(30) N Column that is stored under secure policy 

Type chr(20) Y Type of column that is kept in hash value 

LBound chr(8) N Lower bound value of domain of the corresponding 

column 

UBound chr(8) N Upper bound value of domain of the corresponding 

column 

Partitioning byte N Type of partitioning method –  Equal-width(1), 

Equal-depth(2) 

P_formula chr(100) N Formula to make partition 

K N N Number of partitions 

H_formula chr(100) N Formula to make hash value of all records in control 

table 

Start_position N N Start position of substring in string   

Substring_length N N Substring length 

Hash_value chr(64) N Keeps hash value of entire data of a column in a 

data control table, if data control has been stored on 

cloud server 

Data_Integrity_chk_type chr(1) N Data integrity checking time. It could be 

daily(“D”), weekly(“W”), monthly(“M”), or 

yearly(“Y”) 

 

Data_Integrity_chk N N Cycle of data integrity checking  

Rollback_interval_time N N Time of roll back the commands 
Figure 3: Data Dictionary Structure 

In order to more clearly understand, let us suppose the data owner determines that the social 

security number column of the Employee_personal_information table and the salary column of the 

Employee_financial_information table are both sensitive data items. The data owner must then put 

two records into data dictionary table, each of which keeps information for each of sensitive data 

items. The following two records show information that the data owner stores into the data 

dictionary table. 
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Record no. 1 

Field Name Value 

ID 1 

Table_Name Employee personal information 

Column_Name Social security number 

Type Number 

LBound 0000000000 

UBound 9999999999 

Partitioning 1 (“Equal width”) 

P_formula (max – min)/k 

K 9 

H_formula SHA512 

Start_position 1 

Substring_length 9 

Hash_value 2fba5541fda58c643524cb629cb310674d029d7dd688e97

4f9c0d95299c228fa3531d06a29a69b6715ad4ec074d2bb

50393fe5b4e7d2de5bc83b10ac7d3114ff 

Data_Integrity_chk_type “M” 

Data_Integrity_chk 1 

Rollback_interval_time Hourly 
Figure 4: A Record of Data Dictionary Table 
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Record no. 2 

Field Name Value 

ID 2 

Table_Name Employee financial information 

Column_Name Salary 

Type Number 

LBound 50,000 

UBound 1,000,000 

Partitioning 1 (“Equal width”) 

P_formula (max – min)/k  

K 9 

H_formula SHA512 

Start_position 1 

Substring_length 6 

Hash_value 8d969eef6ecad3c29a3a629280e686cf0fa3531d06a29a69

b6715ad4ec074d2bb50393fe5b4e7d2c3f5d5a86aff3ca12

020c923adc6c924cb629cb310674d02e 

Hash_value 8d969eef6ecad3c29a3a629280e686cf0fa3531d06a29a69

b6715ad4ec074d2bb50393fe5b4e7d2c3f5d5a86aff3ca12

020c923adc6c924cb629cb310674d02e 

Data_Integrity_chk_type “W” 

Data_Integrity_chk 1 

Rolleback_interval_time Hourly 
Figure 5: A Record of Data Dictionary Table  

3.3 Data Control 

Data control tables are created by the data owner to maintain the integrity of real data, which 

has been stored in cloud service provider’s servers. Since the integrity of sensitive data is our 

concern, no matter whether we store them in the cloud service provider’s servers or the data 

owner’s computer, we should store each partition as cipher text in tables. The data owner defines 

several tables, which are known as data control tables, each of which is used for storing one 

sensitive data item. Data is added into the data control tables as long as the data owner creates and 

adds business data into tables on the business relational database. In order to put data into data 

control tables, the data owner splits all of the real data of a column into several partitions, and for 

each partition, computes a hash value of that partition, and then stores into the data control table, 
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which has been created to store the information of that sensitive data item. If we store data control 

tables on cloud servers, we need to generate new data, which is concatenation of all computed hash 

values in data control table, and then store that into the data dictionary table, which has been 

created in order to store the metadata of that sensitive data item. This means for each sensitive data 

item the data owner creates a data control table, so the number of sensitive data items is the same 

as the number of data control tables. The following figure shows the structure of a data control 

table.  

Field Name Type Opt Description 

ID N N Generated by DBMS 

Hash_value String N Hash value corresponding to the partition 
Figure 6: Data Control Table Structure 

A data control table keeps the following information such as: 

 ID: A sequential number which is generated by database management system. It also 

presents the sequence number of partitions.  

 Hash_value: The hash value of one partition, which consists of several real data items.  

For more clarification, we should explain what a partition is and how we create one. There are 

two approaches for partitioning data, equal width and equal depth. Regarding the data of the 

column which has been defined as sensitive data, a data owner can choose one of the two methods 

and keep that in the data dictionary table, as well as the method that was used for partitioning. The 

first method divides the data into several intervals of equal size in each partition, and the second 

method divides the data into several partitions which each group contains approximately same 

number of values. For more simplicity in our research we only use the first method, equal width 

of data partitioning. In order to make partitions, the data owner looks at the range of the valid data 

that was defined in the criteria of the column, which is a field of a table in cloud servers and keeps 

real data, and then by using the definition of equal width method, partitions will be generated. The 
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ranges of data (minimum and maximum value) that are acceptable in a column of a table in cloud 

servers are stored in the data dictionary table; the data dictionary table keeps these values in two 

fields, LBound and UBound. As previously shown, the former holds the lower bound of the valid 

data and the latter holds the upper bound of the valid data for the corresponding column.  

Let us look at the following example: Suppose our data ranges between 50 and 100, so a set of 

data might look like this: {50, 99, 70, 80, 90, 85, 88, 82, 95, 98, 55, 100}. We would like to split 

data in two groups; using equal width and by using the following formula:  ((100 – 50)/2). We 

have two sets, the first set includes items like x, where x is between 50 and 75, 50 <= x < 75, so 

the set becomes: {50, 55, 70}. The second set includes items which are greater than or equal to 75 

and less than or equal 100--that is: {80, 82, 85, 88, 90, 95, 98, 99, 100}; both sets have the same 

width. Using the equal depth method, however, the data is separated differently. Because there are 

12 items in the main set, the partitions look like {50, 55, 70, 80, 82, 85}, and {88, 90, 95, 98, 99, 

100}; both sets have the same number of data items—6. 

The running time of both methods in creating partitions and checking the data integrity process 

is the same, although the running time of the equal depth method might be higher than the equal 

width method in the data modification process. Although database maintenance for keeping data 

integrity is the main concern of this document, performance plays an important role in our research. 

Consequently, for gaining better performance and making a balance between security and 

performance, we use the equal width method. Besides, we must combine the hash value of all the 

data in the column that holds the hash value of the data in a partition and then store the 

corresponding record in the data dictionary table. 

Now let us look at an example to show how the data owner generates the data for a data control 

table. Suppose that the data owner is going to add information for the Salary column. First of all, 
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the data owner must create several partitions for this column. These partitions can be generated 

based on several parameters which have been defined in data dictionary such as Type of data, 

minimum and maximum value of data for Salary (LBound, UBound), number of partitions (K), 

method for  partitioning  (partitioning), and the function for computing partitions (P_formula).  

While adding record into data control, the data owner must compute the hash value for each 

partition and edit the Hash value column. 

 It could be like the following table:  

Id Hash value Description 

1 c6d1b480d7e4b2888c1fa3e6f6ade6060621a83e89fb12809ae005

5cac12bed1d1d7eaa33b7a12df1e42fce481125382376dd6ad52cf

3c7eae9780ded1c22589 

50,000 – 155,000 

2 9e36e4f63b1dda97f9d466584d163d7523d8782901f052ca075120

e5637beacac507647e7eb8991eb3873d640c4c54e5ff559d2f0920

385d0af4e8d84595665c 

156,000 – 206,000 

3 735d535fd6198720702dbdbfc9ae34cab679f962bac4e0cada9d3e

9cc0cbefa6047797438d1966abd6d85a5e32c65b1ef1c330bcbb19

ef40ac8bcd5ac658c4a8 

207,000 – 366,000 

4 920590a60901e1f0e3b5d74a7cf70debb00f819f29796b77ef43d9

f0ddf85033799e6806845748426797026ee1bba7526052788f4ffc

d3251fd6139022401894 

367,000 – 472,000 

5 fb31d057badc6d1628ea5c04bddd7bf7136f99ed6a7df7267c0b7a

099c98bb20e7b3bb3c3a13464fc393c23880392a3f981c59dee0f4

ba085feac433dcbe30df 

473,000 – 578,000 

6 e92b9a98328f65a7d9cdabc43fb657181223e1aff703c421e9bc28

133c794e10dc2f471dc1f49879d790e475007597e14d51f2dbd77d

98d97fbb1447ee6a57b5 

579,000 – 683,000 

7 d8170dc56099aa94eff3a3a35132904139375ba6330554f58bc88d

2176563e90f53760efb88b8f12f7d3e92787b3c7531c3956794c14

efaeee54dcd0f501c371 

684,000 – 788,000 

8 48df8b265f003f4a19afbd64ee0daa0aa0759f9a06fd4e52ee20f7

a8be6e044f7d8655908b62e9d5426fba693cdc5e5ea952cbe421e3

52d50782263846eb2b1e 

789,000 – 895,000 

9 232c6ae8694e6ab2a2ec742cfff61f1109f6da5d8cd8b552e8fabb

5732d5a1d0f6a863e3a1b4d6505aacd3c8c8eed20e6a01b17742f5

dafc587a30c4faefc7b9 

896,000 – 1,000,000 

Figure 7: Example of Data Control Table 
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For example the hash value for record with rows: 

 Id=1 shows the result of concatenating of  all data in the Salary which its value is greater 

than or equal to ‘50,000’ and less than ‘155,000’; and then computing the hash function 

3.4 Cryptographic Hash Function 

Cryptographic hash functions play an essential role in modern cryptography, while the 

conventional hash function is more commonly used in non-cryptographic applications. In both 

cases, larger domains are mapped to a smaller range, inferring that collisions might occur [41]. 

Hash functions take a message as input and produce an output referred to as hash-result, hash-

value, or simply, a hash. A hash function h(m) is a message digest; in some sense, the message is 

condensed [37]. This is one hash property called compression. A hash function maps from a 

domain to a smaller range, typically many-to-one, like:  

h : X  Y, |X| > |Y|. This function should be easy to compute; this is the second property of hash 

function.   

At a high level, a hash function might be divided into two classes: un-keyed hash functions, 

which accept a single input parameter, and keyed hash functions, which accept two distinct inputs, 

a message and a secret key. The hash function we address for creating hash values is an un-keyed 

hash function. 

Generally hash functions are used to check data integrity. To improve performance, hash 

functions accept messages of any length as input and generate a fixed length output. A 

cryptographic hash function must have the following properties [38]: 

 A hash function should be one-way. Having an output prepared by the hash function h, it 

might be computationally infeasible to find an input m which hashes to that output. This 

property is called pre-image resistance. 
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 A hash function should also be second pre-image resistant. Giving an input m1, it might be 

computationally infeasible to find another input m2 with m1 ≠ m2 having h(m1) = h(m2).  

 A hash function should be strongly collision resistant. Having two different inputs m1≠ m2, 

it might be computationally infeasible to have h(m1) = h(m2). Consider the following hash 

function: 

h: {0,1}*  {0,1}n.  

Randomly generating k outputs, the probability of having a collision depends on n. To have 

an insignificant probability of collision, we should choose n to be sufficiently large so that 

the value of k will be infeasibly large.  

A hash function is a cryptographic hash function if it is collision resistant; collision resistant 

hash functions can be built from collision resistant compression functions in using Merkle-

Damgrad construction [39].  

There are two widely used methods of cryptographic hash functions: the message digest (MD) 

family and the secure hash algorithm (SHA) [40]. Any version of MD like MD5 uses the Merkle-

Damgard construction. SHA-1 is a NIST standard and it also uses Merkle-Damgard construction. 

Newer SHA’s have been included in the standard such as: SHA-256, SHA-384, and SHA-512. In 

order to generate a hash value, we use SHA-512 cryptographic hash function in our research. 

3.5 Data Generation 

The first step of verifying data integrity is to generate data, including business real data and 

control data. In the rest of the document, we refer to this step as the initializing step. This step 

starts with determining which data items are sensitive, which we discussed previously. This part 

also mentions which data items should be defined as sensitive. After determining the sensitive data 

items, we should continue the process by adding one tuple into the data dictionary table. We 



26 
 

previously presented the structure of the data dictionary and the information that we keep in this 

table; this table is fundamentally important for checking integration of real data. Consequently, we 

should keep this table in the local machine to be ensured that malicious users do not have access 

to this table. In order to have better performance, we would prefer to keep information as plain 

text in that table. 

After transferring all real business data to the cloud service provider and receiving 

confirmation that the data was inserted properly in the relational database in the cloud, the data 

owner must create data control tables. If those tables are stored in the data owner’s servers, 

inserting real data into the tables in the relational database and inserting the information into the 

data control tables are done simultaneously, and then the real data will be transferred to the cloud 

servers. As we explained before, data control tables store information about sensitive data items. 

There is a one-to-one relation between sensitive data items and data control tables; it means each 

data control table keeps information about one sensitive data item. In fact, a data control table 

maintains information on each group of data stored in a column that keeps sensitive data. In the 

data control section we described how the data owner splits data into several partitions for each 

sensitive data item, computes the hash value for each partition, and then stores the data control 

table corresponding to that sensitive data item. We can either store all data control tables in the 

data owner’s computers, or store them on another cloud service provider’s servers. For both 

choices we can use the data dictionary table and real data, which have been scattered among several 

tables in a relational database, to create all data control tables. Afterwards, we should transfer the 

real data to cloud servers and eliminate all real data from local servers. If data control tables are 

stored on cloud servers, we should transfer data control tables to cloud servers and then delete 

them from the data owner’s computer.     
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The algorithm is used to generate the required data has been defined in Algorithm1, which is 

presented later.  

3.6 Data Modification 

Generally, three commands that modify data in a table in a relational database are insertion, 

deletion, and update. Once clients perform one of the listed commands, the command is sent to 

data owner’s computer. After doing some pre-processing in advance, the real data will be updated. 

If the command tries to update sensitive data items in real data, one or more data control tables 

must be updated too.  

Data modification is a process that is responsible for updating data, including real data and 

control data. We split this process into two phases. First, the command is received, parsed, and 

used to update the real data. Then the data is verified, which includes real data and data control, 

and the data control tables (and the data dictionary table, if necessary) are updated. 

The data modification process is performed when authorized clients run queries (also known 

as commands) to alter the real data in the table in the business relational database, which is located 

on cloud servers. If a client tries to update sensitive data stored in a business relational database 

on cloud servers, the data control table(s) must also be updated. In some circumstances the data 

dictionary table might need to be updated as well. If non-sensitive data is updated, the table in the 

business relational database on cloud servers will be updated and the data modification process 

will be done. During the data modification process and in case of updating the sensitive data items 

(here referred as the first phase), before updating a data control table and the data dictionary table, 

we should check data (both real data and data control) in order to verify that data is trustable and 

it doesn't consist of maligned information. Checking data is a part of the second phase of the data 

modification process.  
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In our model, we apply the command on the real data first. For better performance, we postpone 

the checking data phase, known as rollback command process, until the end of a day or a specific 

time (here referred as rollback command time interval). Using this process, we read the command, 

parse it, and then apply the command on the real data. Then at the specific time, we perform the 

rollback command process to ensure the data, including real data and control data, has been 

updated only by authorized user. During the data modification, the command is applied to the real 

data as long as the query parser process is parsing the received command and storing extracted 

information from the command into log files.  

The query parser is a process that reads the command, tokenizes the command in order to 

extract several vital objects from the command, such as the type of the command (INSERT, 

UPDATE, DELETE), the name of the table and its columns which are expected to be updated, the 

column’s value, and a conditional part (WHERE clause). If this query tries to alter data in the 

column of a table which is defined as sensitive data in the data dictionary, this process returns a 

list of several objects which have been mentioned before; otherwise it returns an empty list. If the 

list is not empty, it means the table and its columns being updated have been defined as sensitive 

in the data dictionary table.  

While the command is run on the real data and updated the real data, we must save numerous 

data in two log tables, namely command table and command_detail table. The command table 

might include several fields as follows:  

 Sequential number: Created by database management system. The primary key of the table. 

 Command type: The type of command. The value might be like “1” representing 

INSERTION,”2” representing DELETION, and “3” representing UPDATE. 

 Command: The command which has been requested by client. 
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 Table name: The name of the table which has been mentioned in the command. 

 Date & Time: The date and time when the command was added to the log files. 

 Status: The result of a roll backed command. When the command has been inserted to this 

table its value is “I” –“Inserted”. If the command is rolled back successfully, this value will 

be changed to “A” – “Applied”. If it cannot be done, this value will be changed to “R” – 

“Error”, and if the whole process is done successfully, this value will be “D” – “Done” 

The following table shows the various commands: 

Field Name Type Opt  

Sequential Number N N  

Command Type String N  

Command String N  

Table Name String N  

Date & Time Date N  

Status Char N  “I” –“Inserted 

 “A” – “Applied” 

 “R” – “Error” 

 “D” – “Done” 
Figure 8: Command Table Structure 
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The command_detail table, as follows, keeps the detail information of command: 

 Sequential Number: Created by database management system and is the primary key of the 

table. 

 Record number: The sequential number of a record in the table that keeps real data. This 

record is involved in the data modification process. This sequential number referees the 

command that was run on real data. 

 Column name: The name of the column which has been mentioned in the command and 

keeps sensitive data. 

 New value: The final value of the data item after the update. 

 New Partition: The partition that includes the new value for the column of the specified 

table in the command. 

 Old value: The final value of the data item before it was updated. 

 Old Partition: The partition that includes the old value.  

 Status: The status of this partition in the real data. The value could be “C” – “Correct”, or 

“E” – “Error”.  
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The following shows the structure of command_detail table: 

Field Name Type Opt  

Sequential Number N N  

Record Number String N  

Column Name String N  

New Value String Y  

New Partition N N  

Old Value String Y  

New Partition N N  

Status Char N  “C” –“Correct” 

 “A” – “Error” 
Figure 9: Command Detail Table Structure 

After parsing the command, the command will be applied to the real data. The data 

modification process continues to update the data control table in the event that the command tries 

to update at least one of the sensitive data items. In other words, if the query parser process returns 

a non-empty list, the data control table(s) corresponding to the column(s) of the table that keeps 

sensitive data must be updated. If we keep a hash value of that control table in the data dictionary 

table, we must update the data dictionary table also. Before updating the data control table(s), we 

have to ensure the validity of data, including real data and data control. We must check data 

because they might be altered by an unauthorized user. If we save the data control tables, we must 

guarantee the information of the data control table, which corresponds to the column containing 

sensitive data and involved in updating data process. Furthermore, we must confirm the validity 

of data in the real data table. The process of verifying real data is done by the update verification 

process; this process includes the rollback command and update control data process. 
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The rollback command process reads all commands saved in the log command table. It reads 

the last received command first and rolls back the data in the corresponding table in order to 

retrieve data in the table to an earlier state. This process will be done after reading all records in 

the command table whose status is “I”. This process may not be able to roll back a command if 

that data has been changed by an unauthorized user. In this case, the partition including tampered 

data will be recognized and its status in command_detail table will be changed to “E” (“Error”) 

which helps for the later data recovery process. After running the rollback command process, data 

will be in the state before applying the all commands of the last rollback command time interval. 

After processing all commands in the command table, we should process the status of all 

partitions in the command_detail table. This process checks the status of each partition. This means 

that if two different commands alter the same partition and the status of the partition altered by 

one command is “C” and status of the same partition altered by the another command is “E”, we 

must change the status of the partition affected by both commands to “E”, because in the recovery 

process we restore the last backup, which has not been applied by any commands in the last update. 

Consequently we must change the status of the command in the command table to “R”.     

The update control data process will start after the rollback command process completed its 

task. This process starts with reading command table if this process finds a command whose status 

is “R”. This means all partitions involved in updating real data by using this command will be a 

candidate for data recovery. On the other hand, knowing the partitions that are involved in the 

rollback command process, the update control data process computes the hash value of the partition 

of the retrieved data and compares it with the corresponding hash value kept in the data control 

table. If both hash values are the same, it shows that the data is trustable, so we compute hash value 

of the partition, including recently updated real data, and replace it with a corresponding hash 
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value in the data control table. Then we should change the status of the command in command 

table to “D”. Otherwise we cannot trust the real data and we must recover that partition.  

During the recovery process we must restore that partition of data from the last backup and 

apply all the commands stored in the log command table related to the last rollback command time 

interval.    

In the case of updating real data and the corresponding data control table, this process 

completes the following task. For simplifying, based on the command type (insertion, deletion, 

and update) we show three examples that demonstrate the output list generated by the query parser, 

the rollback command process, and the updating of the data control table. 

Suppose that a client sends a command to insert a record into “employe_ personal 

_information” table. The command could be structured like the following: “INSERT INTO 

employee_personal_information (Emp_ssn, First_name, Last_name, Emp_id, ‘Birth_date’) 

VALUES (‘999999999’, ’John’, ‘Smith’, ‘202020’, ‘01012000’)”. First the query parser reads the 

command, tokenizes it, and then stores the extracted information into command table and 

command_detail table like as follows:  
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Sequence 

number 

Command type Command 

type 

Table name Date & 

Time 

Status 

1 INSERT INTO 

employee_personal_informatio

n (Emp_ssn, First_name, 

Last_name, Emp_id, 

‘Birth_date’) VALUES 

(‘999999999’, ’John’, ‘Smith’, 

‘202020’, ‘01012000’) 

1 employee_

personal_in

formation 

03/01/2015

: 10:00 

I 

Figure 10: Command Table Example 

Sequence 

number 

Rec # Field 

nam

e 

New field 

value 

Old 

field 

value 

New 

partition

# 

Old 

partition

# 

Reference 

to 

Command 

table 

Status 

1 20 Emp

_ssn 

999999999  9  1  

Figure 11: Command_detail table Example 

If several columns which hold sensitive data have been mentioned by the command, the 

command_detail must have a record for each of them. In this example, the client tries to update a 

table which holds a sensitive data item, so besides updating that table, the data control table which 

keeps the information of “Emp_ssn” column must also be updated as well. Insert commands may 

address columns either explicitly or implicitly. Let’s look at a general insertion command. If 

columns appear in an insertion command, the command addresses columns explicitly. In contrast, 

an insertion command may prepare without explicitly showing columns. In the latter case, 

regarding the values that have been appeared in VALUES clause, corresponding columns can be 

recognized, and then they will get new values. If the command addresses several columns which 

all or some of them keep sensitive data, several corresponding data control tables must be updated 

also.   

Next we should compute the partition. For computing the partition which is updated by the 

insertion command, we should use LBound, UBound, Cell#, and the partitioning method (Equal-
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width) for that table. This information has been stored in the data dictionary table. Determining 

the partition is possible, and it will be done using the following formula:  

Partition_group = UBound-LBound/ Cell#, 

Partition# = new data/Partition_group. The last formula returns the ID of the partition. 

In case of a delete command, suppose that a client sends a command in order to delete a record 

from “employe_ personal _information” table. The command could be structured as follows: 

“DELETE FROM employee_personal_information WHERE Last_name LIKE ‘Smith’”.  Like the 

previous example, the query parser reads the command, tokenizes it, and then stores the extracted 

information into a command table and command_detail table like as follows: 

Sequence 

number 

Command type Command 

type 

Table name Date & 

Time 

Status 

2 DELETE FROM 

employee_personal_informatio

n WHERE Last_name LIKE 

‘Smith’ 

3 employee_

personal_in

formation 

03/01/2015

: 11:30 

I 

Figure 12: Command Table Example 

Sequence 

number 

Rec # Field 

nam

e 

New 

field 

value 

Old field 

value 

New 

partition

# 

Old 

partition

# 

Reference 

to 

Command 

table 

Status 

2 10 Emp

_ssn 

 909090909 9 9 2  

Figure 13: Command_detail Table Example 

If we look at the general statement of a delete command, we notice that the list of columns has 

not been presented explicitly. By using the data dictionary table, determining which columns 

which hold sensitive data is possible. In this example, the “employee_personal_information“ table 

has several columns, but only one of them is defined in the data dictionary table (“Social security 

number”). For running this command, by searching in the “employee_personal_information“ table 

we have the value of the field “Social security number”, and by using the formula shown in the 
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insertion example, the partition ID will be determined. It is obvious if several columns, which keep 

sensitive data, have been mentioned by the command or the delete command removes several 

records from the table kept real data, the command_detail must have several records.  

In case of an update command, suppose that a client sends a command in order to update 

record(s) from “employe_ personal _information” table. The command could be structured as 

follows: “UPDATE employee_personal_information SET Emp_ssn=’808080808’ WHERE 

Emp_id = ‘101010’”.  Like the previous example, the query parser reads the command, tokenizes 

it, and then stores the extracted information into a command table and command_detail table, as 

follows:  

Sequence 

number 

Command type Command 

type 

Table name Date & 

Time 

Status 

3 UPDATE 

employee_personal_informatio

n SET Emp_ssn=’808080808’ 

WHERE Emp_id = ‘101010’ 

2 employee_

personal_in

formation 

03/01/2015

: 11:45 

I 

Figure 14: Command Table Example 

Sequence 

number 

Rec 

# 

Field 

nam

e 

New field 

value 

New 

partitio

n# 

Old field 

value 

Old 

partition

# 

Reference 

to 

Command 

table 

Status 

3 15 Emp

_ssn 

808080808 9 508080802 5 2  

Figure 15: Command_detail Table Example 

At the end of the rollback command time interval, we require updating data control table(s), 

and we will probably update the data dictionary table as well. The rollback command process is 

responsible for that task. This process reads the command table from the last update until the first 

one which occurred during the last rollback command time interval. Let us look at the functionality 

of this process for three different types of command. 
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In case of insertion command, by using the data of “Table name”, “Record#”, and “Partition#” 

in the command and command_detail table, the rollback command process tries to find that record 

in the table, which has been updated by the insertion command. If this process finds the record, 

deletes the record, and then extracts all records included in that partition and saves into a temporary 

storage. This process changes the status of the current command to “A”. This means the current 

command has been rolled back successfully. If the process does not find that record in the table, it 

shows this record has been removed by an unauthorized user and this process cannot delete the 

record. So this process changes the status of this record in the command table to ‘R’. This means 

that partition has been candidate for later recovery.     

Similarly, in case of a deletion command, by using the data of “Table name” in the command 

table and one or several “Record#” and “Partition#” in the command_detail table, the rollback 

command process tries to find record(s) in the table that have been deleted by the deletion 

command. If this process does not find the record(s), this record is inserted into the table using the 

command and command_detail tables. Then all records included in the specified partition are 

extracted and saved into temporary storage. This process changes the status of the command to 

“A”. This means this command has been rolled back successfully. Any other way, it shows that 

the record has been inserted by an unauthorized user. This process changes the status of this record 

in the command table to ‘R’ in such circumstances.  This means that this partition is a candidate 

for later recovery.   

In the case of an update command, like previously, this process tries to find all records that 

exist in the command_detail table corresponding to this update command. If each one exists in the 

table that was mentioned in the update command, and each column carries the value equals to 

value, which has been given in the update command as a new value, the process updates the 
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specified record in the reverse direction. Then the process extracts all records included in the 

specified partition and saves them into temporary storage. The process then changes the status of 

the command to “A”. Any other way it shows the record has been updated by an unauthorized user 

and this process cannot finish this task successfully. This process changes the status of this record 

in the command table to ‘R’ in this case. This means this partition is a candidate for later recovery. 

The rollback command process will be finished by checking all records from the 

command_detail table. This process makes a decision about the status of a partition based on the 

policy that was mentioned previously. After termination of the rollback command process, we 

require the related data control table(s) to be updated. Before updating data control table, however, 

we need to confirm that the real data is trustable. To do so, we must read all records with no “R” 

status from command_detail table, and compute a hash value of that partition from the temporary 

storage and compare it to the corresponding hash value stored in the data control table. If both hash 

values are the same, we change the status of the partition to “D”, indicating that the process 

completed successfully. Then we compute hash value of that partition from the permanent table 

and replace it with the corresponding partition in the data control table. For the rest of the records 

in command_detail whose status is not equal to ”D”, we must restore the real data related to the 

damaged partition from the last backup, apply those commands whose status is not equal to “D”, 

and then compute the hash value of the partition and update the corresponding record in data 

control table.  

The algorithm for this process is provided in Algorithm 2 below.    
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3.7 Integrity Verification 

The data stored in the cloud service provider’s servers should be checked from time to time. If 

any unauthorized users changed the data in the database, the data integrity verification process can 

be used to inform the data owner about the spoiled data and try to recover it.  

The frequency of the data integrity check is entered in the data dictionary table by the data 

owner. According to the sensitivity of the data and the rate of updating data, the frequency will be 

determined from daily to yearly. Besides the time period, the data owner should create a time 

scheduler for each sensitive data item and add the time of checking the integrity of data into this 

table. This scheduler represents the date of data integrity check for each sensitive data item and 

the result of performing the check as well. This table can be viewed as a history of the data integrity 

verification system, and the results of process are also reflected in the table.  

Verification of the real data is done in several steps. This process starts with finding all tables 

and their columns which must be checked at the time. After searching in the time scheduler table, 

the data owner can extract the table(s) which must be investigated at the time. Afterwards, by using 

the data dictionary table, the data owner is able to determine the column(s) of that table(s). The 

process of checking data integrity must be continued for each column. Using the data dictionary 

table, the data owner must get the information corresponding to that table and its columns 

mentioned in the data integrity scheduler. So the data owner requires extracting information from 

the data dictionary in order to create partitions and compute the hash value. If the data owner keeps 

data control tables in the local servers, data in data control tables are trusted. Otherwise, we need 

to be sure about the quality of information in data control tables. In order to achieve this goal, we 

can compare the hash value stored in the data dictionary table with the concatenation of all hash 

vales stored in the data control table. If they match, we can trust data in data control table. If the 
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data control table has not been tampered with, the process will be continued by computing a hash 

value for each partition of the real data and comparing it with the corresponding hash value stored 

into the data control table. This means by using the data dictionary table and by knowing the 

number of partitions, and lower bound and upper bound of the entire data in the column, the data 

owner must compute all partitions from data, compute the hash value of real data for each partition, 

and compare it to the corresponding partition’s hash value saved in the data control table. If any 

difference is found, the data owner can determine the group or set of records that have been 

tempered with. To fix this issue, the data owner must restore the backup of the real data previously 

stored by cloud service provider. Using that backup, the data owner must update the data which is 

held in a partition or partitions that have been tampered. In addition, there may exist other tables 

that are related to a damaged table. Those should be checked as well and in case of any damage, 

that related data must be restored too. To clarify this process, assume several records which show 

the time of data integrity checking for Salary in Employee_financial_information were added into 

data integrity scheduler by data owner. 

The follow table shows some record of the scheduler table. 

ID ID_dataDictionary Check_date Situation Description 

1 2 12-22-14 Done Trustable data 

2 2 12-29-14 Done Trustable data 

3 2 01-05-15 Done Unreliable data  

4 2 01-12-15 Scheduled  

5 2 01-19-15   

6 2 01-26-15   
Figure 16: Scheduler Table Example 

The process will be started by reading from the data integrity scheduler table. Records whose 

Check_date’s values match the date will be selected. Then situation will be changed to 

‘Scheduled’. The data integrity verification process starts by selecting records whose situation is 
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‘Scheduled’. Those situations will be changed to ‘Running’, and the process is started.  If data had 

been tampered with and the backup had been restored, the description filed will be changed to 

“Unreliable data”.  

The algorithm for this process is provided in Algorithm 3 below. 
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4. Evaluation  

To validate our solution, we implemented three parts of the data integrity verification process: 

data generation, data modification, and data verification. We only define “salary” as a sensitive 

data item, so we create one data control table for that field. For the first part we randomly generate 

two hundred thousand salaries having values in a range between twenty thousand and two hundred 

thousand. That data is saved in a file. In order to determine the performance of our solution, we 

carried out the three processes for different size of data. This means each process was run three 

times, first for one hundred thousand data values, next for a hundred and fifty thousand, and the 

last for two hundred thousand data values. By using several different widths, we divide data into 

ten sets. In the first set we scatter the entire data into ten partitions where all partitions have equal 

width. For the second set we scatter the whole data into twenty partitions with equal width and so 

on. Then for each set, we compute the hash value of each partition.  

Figure 17 gives information about the partitioning data and computed hash values. For each 

data size, this linear graph shows the running time of scattering data into ten sets, each having 

different width, and computing of hash values of data for each set by using the SHA512 

cryptographic hash function. As can be seen from the graph, execution time generates a curve 

depending on the size of a partition. When the number of partitions becomes very large, the curve 

levels off. There is a sharp decrease in the case where we generate twenty partitions compared to 

ten partitions. If we divide the data into fifty and sixty partitions and the size of data is one hundred 

thousand, the graph shows an unexpected change. It may be that there are several partitions without 

data, and the number of partitions including data is less than the case of defining fifty partitions. It 

also might be the size of the data if having sixty partitions is greater than the size of data in fifty 

partitions. We can see an increase for eighty and ninety partitions when we have two hundred 
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thousand data points also. At first sight, it seems that using equal depth gives us better performance 

than using equal width. This may not be true. For the data modification process, once a new record 

is inserted or deleted, all of the data must be repartitioned again, which is exceptionally time 

consuming. Generally, as we know, the data modification rate is remarkably high in a real business 

system, so using the equal depth method will have a negative impact on the performance of the 

system. Overall, there is a strong downward trend in the time of dispensing data into ten sets in 

which each set has different number of partitions; the greater number of partitions, the less 

execution time we have. Providing a balance of data size for partitions, we could achieve better 

performance.  

We should mention that before partitioning the data, it must be sorted. If we don’t sort it, when 

we want to fetch the data that belongs to a specific partition, we might get different ordering which 

would cause it to have a different hash value. This situation should be avoided. It is necessary 

whenever the data of one partition is brought into the main memory, as the order of data has not 

been changed.  
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Figure 17: Data Generation Graph 

The implementation of the data manipulation starts with generating random data between the 

aforementioned ranges. Then this process adds the generated data into the dataset and updates the 

corresponding partition’s hash value with the new one. Figure 18 represents the execution time of 

inserting one datum. Again the graph execution time generates a curve that depends on the size of 

a partition. This graph shows that the greater number of partitions, the less execution time we have. 

 

Figure 18: Data Modification Graph 
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The third test is to analyze whether the data integrity verification is correct.. For each of the 

sets of data, we compute a hash value of each partition and compare it to the hash value of that 

partition we saved before. Again we see a curve in execution time that depends on the size of 

partitions. Figure 19 depicts this behavior.  

 

Figure 19: Data Verification Graph 
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5. Algorithms 

Algorithm 1: Data Generation 

Comments: following algorithm is the main process of generating data control tables 

DataGeneration() { 

1:  Do while !EOF (data dictionary) {  

2:   Read data from data dictionary 

3: Call Create_DataControlTable (A record  from data dictionary)  

4: } 

 

Comments: following algorithm reads records of a column which keeps the real data, then sorts 

the data and splits data into several partitions.  

Create_DataControlTable (Data dictionary record) { 

1: Extract the table_name, column_name, LBound, UBound, and Cell# from data dictionary table 

to calculate the partition 

2: Sort column_name in table_name  

3: Partition_size = (Ubound – Lbound) / Cell#  

4: For l=1 to Cell# {        //Create partitions for the first level 

5:  Ubound = Partition_size+Lbound 

// Read  data from column which keeps sensitive data 

6:  Partition = Read column_name from table_name where 

Lbound<=column_name.data<=Ubound    

// make substring to compute hash value 

7:  Compute hash value of all column_name.data in Partition  

8:  Insert the calculated hash value into the data control table   

9:  Lbound = Ubound +1 

10: } 
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Algorithm 2: Data Modification 

Comments: following algorithm is the main process of data modification process 

DataModification() { 

1: Command_Table = Query_Parser (Command) 

2: Run the command on relational database 

3: If (! Empty(Command_Table) ) { 

4:  Rollback_Command(Command_Table) 

5:  Data_Recovery(Command_Table) 

6: Modify_DataControl(Command_Table) 

7: } 

 

Comments: following algorithm parses the query, extracts important information, and stores into 

log tables 

Query_Parser(command) { 

1: Token = Read command, and tokenize 

2: if (Seek Token.table_name in the data dictionary) { 

3: Select Token.command_type{ 

4: Case: “Insert” {  

5: if (Seek Token.table_name and Token.column in the data dictionary) 

6:   Command_type = 1  

7:   Status = ‘I’  

8:   Insert into Command values (Command_type, Command, Table_name, Status) 

9:   do while (Columns) { 

10:    Insert into Command_detail  

11:   } 

12:  }  

13: } 

14: Case: “Update” {  
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15:  if (Seek Token.table_name and Token.column in the data dictionary)  { 

16:  Command_type = 2 

17:   Status = ‘I’  

18:   Insert into Command values (Command_type, Command, Table_name, Status)  

19:  Insert into Command_detail 

20: } 

21: } 

22: Case: “Delete” {  

23:  Command_type = 3  

24:  Status = ‘I’  

25:  Insert into Command values (Command_type, Command, Table_name, Status) 

26:  do while (Columns) { 

27:   Insert into Command_detail  

28:  } 

29: } 

30: } 

31: } 

 

Comments: following algorithm returns the database to previous state, indicating the state before 

applying the current set of commands 

Rollback_Command(Command_Table) { 

1: Read from Command, Command_detail ordered by Command.Sequence_number  Desc 

2: If (Retrieve real date to the earlier state) { 

3: Change Command.Status = ‘A’ 

4: }  

5: Else { 

6: Change Command.Status = ‘R’ 
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7: } 

8: } 

 

Comments: following algorithm recovers damaged data from the last backup 

Recovery_Data(Command_Table) { 

1: rec = Read from Command, Command_detail where Command.Status = ‘R’  

2: Do while (!rec) { 

3:  Partition = generate a list of partitions which has been damaged 

4:} 

5: Do while (!Partition) { 

6:  Restore real data from the last safe backup 

7: } 

8: Do while (!rec) { 

9: Apply rec.Command on the real data  

10:  Change rec.Command.Status = ‘A’ 

11: } 

12: } 

 

Comments: following algorithm updates the data control table 

Modify_DataControl(Command_Table) {  

1: Partition = Read from Command, Command_detail where Status = ‘A’ 

2: Do while (!Partition) { 

3:  Compute hash value of partition 

4: Update the data control  

5: } 

6: } 
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Algorithm 3: Data Integrity Verification 

Comments: following algorithm verify the integrity of the real data 

DataIntegrityVerification() { 

1: Scheduler_rec = Read records from Scheduler table which date is Todaye   

2: Do While !eof (Scheduler_rec) { 

3:  Extract the table_name, column_name, LBound, UBound, and Cell# from data dictionary 

table to calculate the partition 

4:  Sort column_name in table_name  

5:  Partition_size = (Ubound – Lbound) / Cell#  

6:  For l=1 to Cell# {        //Create partitions for the first level 

7:   Ubound = Partition_size+Lbound 

  // Read  data from column which keeps sensitive data 

8:  Partition = Read column_name from table_name where 

Lbound<=column_name.data<=Ubound    

  // make substring to compute hash value 

9:   Compute hash value of all column_name.data in Partition  

10:   if (! Compare the new hash value to that one stored in data control table) { 

Partition = generate a list of partitions which has been damaged 

11:  } 

12: } 

13:  Do while (!Partition) { 

14:   Restore real data from the last safe backup 

15:  } 

16: } 
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6. Conclusion 

We have presented a new security model to verify the data integrity for an outsourced database. 

This method defines some control data to recognize data updates in case that the data is altered by 

an unauthorized user. To achieve faster query response time, we store the real data in a relational 

database as plaintext on a remote server. In order to verify integrity of the real data that is 

integrated, we generate metadata (kept as cipher text) and a table which stores information about 

all sensitive data items as plaintext. Using simulation, we proved that our method is efficient in 

that when the number of partitions increase, there is a decrease in processing time.  



52 
 

7. References 

[1]  “Security and IBM Global Technology Services,”. Technical White Paper high availability in 

cloud computing environments. 

[2]  "IBM Cloud Computing". IBM. Retrieved 22 July 2011. 

[3]  Virginia’s Community College, ”Sensitive data definition,”, June 2009. 

[4] California State Polytechnic University, Pomona (2012, July 25). Available: 

“https://ehelp.wiki.csupomona.edu/Information_Security:_Defining_Sensitive_Data”. 

[5] Gerard Conway, Edward Curry, “Managing Cloud Computing: A Life Cycle Approach,” 

Innovation Value Institute, National University of Ireland, Maynooth, and 2Digital Enterprise 

Research Institute, National University of Ireland, Galway.  

[6] Hakan HacigÄumÄus, Sharad Mehrotra, and Balakrishna R. Iyer. “Providing database as a 

service,”. In ICDE, pages 29. IEEE Computer Society, 2002.  

[7]  “Introduction to Cloud Computing”, “www.priv.gc.co”. 

[8] Einar Mykletun, Maithili Narasimha, Gene Tsudik, “Authentication and Integrity in 

Outsourced Databases”, Computer Science Department School of Information and Computer 

Science, University of California, Irvine. 

[9]  Matthias Nicola, “XML versus Relational Database Performance“, The XML database blog, 

IBM Developer works, March 17, 2011. 

[10] IBM, “Comparing XML and relational storage: A best practices guide”, Storage best practice, 

March 2005. 

[11] Frank Font (2005, Sep 11). Available: “http://www.room4me.com/index.php” . 

[12] Hakan HacigÄumÄus, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. “Executing SQL 

over encrypted data in the database service provider model”. In SIGMOD, 2002. 

[13] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. “Order-preserving 

encryption for numeric data”. In SIGMOD, 2004.  

[14] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. “Authentication and integrity in 

outsourced databases”. In NDSS. The Internet Society, 2004. 



53 
 

[15] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. “Verifying 

completeness of relational query results in data publishing”. In Fatma Ä Ozcan, editor, 

SIGMOD Conference, pages 407{418. ACM, 2005. 

[16] Radu Sion. “Query execution assurance for outsourced databases”. In Klemens BÄohm, 

Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-ºAke Larson,and Beng Chin Ooi, 

editors, VLDB, pages 601{612. ACM, 2005. 

[17] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. “Dynamic 

authenticated index structures for outsourced databases”. In Surajit Chaudhuri, Vagelis 

Hristidis, and Neoklis Polyzotis, editors, SIGMOD Conference, pages 121{132. ACM, 2006. 

[18] Einar Mykletun, Maithili Narasimha, Gene Tsudik, “Authentication and Integrity in 

Outsourced Databases”, Computer Science Department School of Information and Computer 

Science, University of California, Irvine. 

[19] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and Veri_ably Encrypted 

Signatures from Bilinear Maps in Advances in Cryptology”. EUROCRYPT '2003 (E. Biham, 

ed.), Lecture Notes in Computer Science, International Association for Cryptologic 

Research, Springer-Verlag, Berlin Germany, 2003. 

[20] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private Information Retrieval,” Journal 

of ACM, vol. 45, pp. 965.981, Nov. 1998. 

[21] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting Data Privacy in Private 

Information Retrieval Schemes,” in 30th Annual Symposium on Theory of Computing 

(STOC), (Dallas, TX, USA), ACM Press, 1998. 

[22] B. Chor, N. Gilboa, and M. Naor, “Private Information Retrieval by Keywords,” Tech. Rep. 

TR CS0917, Department of Computer Science, Technion, 1997. 

[23] Hakan HacigÄumÄus, B. Iyer, and S. Mehrotra, “Encrypted Database Integrity in Database 

Service Provider Model,” in International Workshop on Certi_cation and Security in 

Eservices (CSES'02 IFIP WCC), 2002. 

[24] D. Song, D. Wagner, and A. Perrig, “Practical Techniques for Searches on Encrypted Data,” 

in 2000 IEEE Symposium on Security and Privacy, May 2000. 

[25] E.-J. Goh, “Secure Indexes for Efficient Searching on Encrypted Compressed Data,” 

Cryptology ePrint Archive, Report 2003/216, 2003. http://eprint.iacr.org/2003/216/. 



54 
 

[26] Min Xie, Haixun Wang, Jian Yin, Xiaofeng Meng, “Integrity Auditing of Outsourced Data” 

,Renmin University of China Beijing 100872, China, IBM T. J. Watson Research Center, 

Hawthorne, NY 10532, USA. 

[27] Puya Ghazizadeh, Ravi Mukkamala,Stephan Olariu “Data Integrity Evaluation in Cloud 

Database-as-a-Service,” Department of Computer Science, Old Dominion University, 

Norfolk, Virginia. 

[28] A. Juels and B.S. Kaliski, Jr., “Pors: proofs of retrievability for large files,” in CCS ’07: 

Proceedings of the 14th ACM conference on Computer and communications security. 

[29] Saxena, Sravan Kumar and Ashutosh,”Data Integrity Proofs in Cloud Storages”, IEEE 2011. 

[30] Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. “Provable 

Data Possession at Untrusted Stores. “ACM Conf. Computer and Comm. Security (CCS ’07), 

598-609, 2007.” 

[31] Georg Becker, “Merkle Signature Schemes, Merkle Trees and Their Cryptanalysis,” August 

2008.  

[32] Phil Bagwell, “Ideal Hash Trees,” [1-1] Igor Tatarinov, Stratis Viglas, Kevin Beyer, Jatavel 

Shanmugasundaram, Eugene Shekita, Chun Zhang, “Storing and Queryring Ordered XML 

Using a Relational Database System”, University of Wisconsin, IBM Almaden Research 

Center. 

[33] Min Xie, Haixun Wang, Jian Yin, Xiaofeng Meng, “Providing Freshness Guarantees for 

Outsourced Databases” ,Renmin University of China, IBM T. J. Watson Research Center, 

Hawthorne, NY 10532, USA. 

[34] “Introduction to Cloud Computing,”. Office of the privacy of commissioner of Canada. 

[35] Igor Tatarinov, Stratis Viglas, Kevin Beyer, Jatavel Shanmugasundaram, Eugene Shekita, 

Chun Zhang, “Storing and Queryring Ordered XML Using a Relational Database System”, 

University of Wisconsin, IBM Almaden Research Center. 

[36] Information and Technology Services, University of Michigan. Available: 

“http://safecomputing.umich.edu/protect-um-data/examples.php”. 

[37] Susan Landau, “Find Me a Hash,” Notices of the American Mathematical Society, 53(3), 

March 2006, 330 – 332. 

[38] Lars R. Knudsen,”SMASH - A Cryptographic Hash Function,” Department of Mathematics, 

Technical University of Denmark. 

 

[39] Georg Becker, “Merkle Signature Schemes, Merkle Trees and Their Cryptanalysis,” 18.07.08. 



55 
 

 

[40] Richard Spillman, “Classical and Contemporary Cryptology,” Prentice Hall, 2005.  

[41] A. Menezes, P. van Oorschot, and S. Vanstone, “Applied Cryptography,” CRC Press, 1996. 

[42] Nedhal A. Al-Saiyd, Nada Sail, “Data Integrity In Cloud Computing Security,” Journal of 

Theoretical and Applied Information Technology, 31st December 2013. Vol. 58 No.3. 

[43] Wikipedia, Security Management (2015, Feb 26). Available: 

“http://en.wikipedia.org/wiki/Security_management”. 

[44] Colby College Information System and Data Security, “Definition of Sensitive Information”.  

[45]  W. Wei, T. Yu, R. Xue, “iBigTable: Practical Data Integrity for BigTable in Public Cloud”, 

North Carolina State University. North Carolina, United States, State Key Lab. Information 

Security, Institute Of Information Engineering Chinese Academy Of Science, China. 

[46] Wikipedia (2015, Feb 17). Available: “http://en.wikipedia.org/wiki/Security_controls”. 

[47] Vitthal Raut, Suhasini Itkar, Department Computer Engineering, PES Modern College of 
Engineering, Pune, India “A Survey on Data Integrity of Cloud Storage in Cloud Computing”, 

International Journal of Advance Foundation and Research in Computer (IJAFRC) Volume 

1, Issue 2, Feb 2014. ISSN 2348 – 4853. 
 
 


	Data Integrity Verification in Cloud Computing
	Citation

	tmp.1484665928.pdf.r9ghw

