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ABSTRACT 

The Importance of gesture recognition has widely spread around the world. Many research 

strategies have been proposed to study and recognize gestures, especially facial and hand 

gestures. Distinguishing and recognizing hand gestures is vital in hotspot fields such as bionic 

parts, powered exoskeleton, diagnosing muscle disorders, etc. Recognizing such gesture patterns 

can also create a stress-free and fancy user interface for mobile phones, gaming consoles and 

other such devices.  

The objective is to design a simple yet efficient wearable hand gesture recognizing system. This 

thesis also shows that by taking both EMG and accelerometer data into account, can improve the 

system to recognize more patterns with higher accuracy levels. For this, a hand band embedded 

with a triple axis accelerometer and three surface EMG electrodes is employed to source the 

system. The non-invasive surface EMG electrodes senses muscle action while the accelerometer 

senses the hand motions. The EMG signal is passed through analog front-end module for noise 

filtering and signal amplification. An ARM Cortex processor converts the analog EMG and 

accelerometer signal into digital and transmits to a PC via Bluetooth protocol. On the receiver 

section, the raw EMG and acceleration data is further processed and decomposed offline using 

MATLAB tools to extract features such as root mean square, waveform length, threshold 

crossing, variance and mean. Extracted features are then fed through multi-class SVM (Support 

Vector Machine) process for pattern recognition. The chapters below discuss in greater detail on 

pattern recognition technique and other modules involved. 
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1. INTRODUCTION 

1.1. Electromyography 

Electromyography (EMG) is a practice adopted for evaluating and recording the 

electrical / neural activity of muscle tissue, using small electrodes attached to the skin or 

inserted into the muscle. It is most commonly represented as a visual display or audible 

signal. The device which plots this activity is called an electromyograph and the device 

which records this signal is called an electromyogram. EMG bio-potential signals are very 

sensitive to the muscle activity. This makes it a great tool for a variety of clinical and bio-

medical applications. Clinical applications mainly include: diagnosing abnormalities in the 

muscular activity, nerve dysfunction or to analyze bio-mechanics of human or animal body 

movements
 [1]

.  

 

Figure 1.1 – Block diagram of a simple electromyograph 
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An electrical signal is recorded at both instances: when the muscle is resting and 

when activated. Featuring parameters such as frequency, voltage and shape are taken into 

account and examined. Any abnormal readings indicate the presence of some muscle / nerve 

damage. 

A motor unit is defined as the one motor neuron and all of the muscle fibers it 

innervates. When a motor unit fires, the impulse (called an action potential) is carried down 

the motor neuron to the muscle. The area where the nerve contacts the muscle is called 

the neuromuscular junction, or the motor end plate
 [2]

.  

 

1.2. Electrical Characteristics 

The measured EMG potentials range between 0-10mV peak-to-peak depending upon 

the muscle under observation and electrode placement. The frequency range for examining 

the muscle contraction and relaxation lie 0.5Hz-500Hz
 [3]

. To be more particular, it is 

necessary to set the cut-off frequency of a low pass filter to 450Hz.  

 

1.3. EMG Electrodes 

The bio-potential electrodes are used to pick up EMG signals. Bio-potential 

electrodes are designed to operate under low voltage and low current
 [4]

. Electrodes convert 

the ionic currents generated by the muscles into electrical signals
 [5]

. There are two types of 

EMG electrodes: Intramuscular EMG and Surface EMG electrodes. To perform an 
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intramuscular EMG, a needle, or a needle containing two fine-wire electrodes, is inserted 

through the skin into the muscles tissue. Intramuscular EMG provides the state of the muscle 

and its innervating nerve; this method may be considered too invasive or unnecessary in 

some cases. Instead, a non-invasive approach, surface EMG electrodes are placed on the skin 

just above the muscle which needs to be studied. Comparing both, since needle electrode gets 

a direct contact with the muscle, it is capable of picking up more sensitive and informational 

data than surface EMG electrodes. The invasive method involves a small risk of bleeding or 

air leak when a needle is inserted into a muscle.  

 

Figure 1.2 – Surface Electrode (Left) and Needle Electrode (Right) 

It is not advisable to use needle electrode on older people who may experience skin 

damage while installing and removing surface electrode. Skin preparations are not mandatory 

for recording EMG signals using surface electrodes, but in some cases, due to excess fat or 

when you need better readings, it is necessary. Preparation of skin mainly involves removing 

the hair and cleansing the skin with antiseptic lotion.  
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1.4. EMG Signal Decomposition & Processing 

The bio-potential signal recorded is a constituent of various motor unit action 

potentials (MUAP) from various motor units. Therefore, placement of electrodes tends to 

play a major role in recording EMG signals. Electrodes placed on different motor unit shows 

distinct readings. Whereas, electrodes placed on the same motor unit at different locations 

may have almost the same MUAP readings with slight variations in frequency and amplitude
 

[6]
. It is easy to visually identify the abnormalities in the signals when two or three MUAPs 

are involved; but it becomes impossible to distinguish when four or more MUAPs are taken 

into account. This challenge attracts the researchers around the world and many approaches 

have been documented for decomposing EMG signals. Yet, it is impossible to completely 

decompose EMG signals into their respective MUAPs to obtain precise readings. 

In nature, raw EMG signals represent both negative and positive components along 

with some noise. Therefore, it is compulsory to process the signal before extracting the 

information to make the results more precise. The negative and positive components in the 

raw signal raw EMG signals may average to zero. Rectification is a widely adopted 

methodology to overcome this problem. There are two types of rectification: Full-length and 

half-length. Full-length rectifications convert the negative components of the signal into 

positive components; whereas, half-length rectification remove the negative components of 

the signal. In other words the difference between the two rectifications is that a full-length 

rectification takes the absolute value of the entire data
 [7] [8]

. Full-length rectification has more 

advantage than half-length since it preserves the entire set of data which is essential to make 

the results more accurate. 
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Figure 1.3 – MUAP recorded on same motor unit but at different locations 
[6]

 

 

1.5. Proposed System & Thesis Structure 

One of the challenging approaches in the wearable technology and human machine 

interface (HMI) field is to link bio-signals with the device that needs to be controlled. This 

thesis focuses on designing an efficient wearable gesture recognizing smart band. The smart 

band is capable of measuring electrical activity in muscle and hand movement instantly. 

These signals are then interpreted and translated into useful computer commands. Along with 

the bio-potential signal the smart band is outfitted with an accelerometer sensor which helps 

to recognize the pattern with much more accuracy. An ARM processor is interfaced with a 

Bluetooth 4.0 module which helps to collect and transmit the samples to a PC. The receiver 



6 

 

processes these signals through a FIR filter to remove the noise and then pass them for full-

length rectification and multi-class SVM for feature extraction and pattern extraction. 

This thesis is structured in a way to clearly detail the methods and procedures adopted 

to fulfill the needs of a proposed system. Chapter 2 describes the design, working and 

functions of different analog filters, such as high pass and low pass filters, instrumentation 

amplifier, low pass and band pass amplifier. Chapter 3 gives you an overall idea about 

Bluetooth technology along with its advantages over other communication protocols. Chapter 

4 describes the basics of MEMS technology and also details the specification of the 

accelerometer sensor used. Chapter 5 briefs the overall system architecture which includes 

hardware design, software design and pattern recognition technique with various plots and 

flow charts for better understanding. Chapter 6 details the testing procedures and results 

attained by this work. Chapter 7 describes the conclusion and the future work that can be 

incorporated in this thesis. 
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2. STATE OF ART AND LITERATURE REVIEW 

Recognizing hand gesture has a huge potential, especially in the field of human-

computer interaction and user-interface applications. The fundamental block of a gesture 

recognition system includes data acquisition, gesture modeling, feature extraction and hand 

gesture recognition. Different tools have been proposed for hand gesture recognition, mainly 

approaches based on computer vision, 3-D modeling, statistical modeling, template 

matching, neural networks, etc.
 [9]

. Some of them are discussed below in detail.  

 

2.2.1. Sources of Noise 

Amplitude of the EMG signal is random in nature, therefore, the occurrence of noise 

normal. Understanding the sources and elimination of noise is vital for better results. There 

are three types of noise: transducer noise, ambient noise and motion artifacts noise. 

Transducer noise: As the name indicates, this noise has its origin in the electrode. 

There are two types of transducer noise: DC voltage potential and AC voltage potential. The 

DC voltage potential is caused by the difference in the impedance between the skin and the 

electrode, and the chemical reactions occurring due to the conductive gel. The AC voltage 

potential is caused by the variation in impedance between the conductive transducer and the 

skin 
[6]

. 

Ambient Noise: This is caused by common factors such as power supply, magnetic 

radiation, radio waves, force plates, ECG intervention, etc., and has a wide range of 
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frequency components.  An AC power source has more influence when compared to other 

factors; therefore, the frequency mostly lies in the range of 50-60Hz 
[6]

. 

Motion Artifacts: These caused by two factors: disturbance between the skin and the 

electrode, and movement of the cable connecting the electrode and analog front end 

amplifiers. They can be suppressed by proper sensor placement and effective cabling 
[6]

. 

 

2.2.2. Techniques involved in EMG Signal Processing   

EMG signal processing is a fundamental block to eliminate the noises from the raw 

EMG signal and recognize the pattern. Artificial neural networks, principal component 

analysis, wavelet analysis and support vector machine are discussed below: 

Principal Component Analysis: PCA is used to reduce a large set of data variables 

using orthogonal transformation; it converts correlated variables with more variability into 

principal components. PCA mainly helps when only a few variables contain information in a 

large set of variables 
[10]

. Therefore, the number of uncorrelated variables is always less than 

or equal to the original data set. PCA is normally done by using a square matrix; this 

becomes complicated when more than two variables exist. 

Wavelet Analysis: Wavelet transformation can be used for both continuous and 

discrete signals; unlike Fourier transformation, wavelet analysis translates a signal into 

wavelets 
[11]

. Wavelet analysis is localized in the frequency and time region of the signal, but 

the cross-term effect is noisy which makes it unsuitable when more than one component is 

present 
[12]

.   
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Artificial Neural Networks: ANN is capable of predicting a result based on a large 

set of data with interconnection, which makes ANN best suited to predict neuromuscular 

diseases or other disorders 
[13]

. ANN consists of hidden layers called neurons which connect 

the input and output layers. These neurons are weighted based on the interconnection and it 

must be periodically updated for best results. Training of an ANN system consumes more 

time when compared to other techniques, especially when there are more hidden layers. 

Support Vector Machine: SVM is a supervised learning model that is capable of 

analyzing large data sets to recognize a pattern.  SVM can be classified into linear, non-

linear and soft margins. Classification is done based upon the training and test sets. Figure 

2.1 shows the difference between the three types of SVM. Training and test sets with large 

margins will be more efficient and accurate. Simple SVM, also called binary SVM can only 

be used to identify between two classes. If more than two classes can be predicted, multi-

class SVM can be used or more layers of binary SVMs can be designed.  

    

  
Figure 2.1 – Linear - Support Vector Machines

 [14]
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2.2.3. Accelerometer Based Pattern Recognition 

An acceleration based gesture recognition system may use one or more 3- axis 

accelerometer as input source. Like any other pattern recognition system, it initially collects 

the acceleration data for different hand postures. This data is fed through the signal 

processing unit for wave shaping and noise reduction. Lastly, the features are extracted and 

further processed for pattern recognition. Different pattern recognition approaches may be 

handled, but Frame-based Descriptor and multi-class SVM (FDSVM) are widely used which 

yield better results 
[15]

. A model of accelerometer based pattern recognition is best shown 

below in the figure 2.2. This methodology is a great fit to recognize the posture or orientation 

of the hand/palm; to recognize the finger movements a glove inbuilt with separate 

accelerometers for individual fingers is necessary. This increases the complexity of software 

and hardware section. And this method is only restricted to identify the gestures based on 

orientation and movements; it is not possible to identify finger/hand gestures that has no 

rotation along the axis of accelerometer. 

 

Figure 2.2 – Accelerometer based Hand pattern recognition 
[16]
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2.2.4. Vision Based Recognition of Hand Gestures 

Unlike the previous method, techniques that require a CCD camera as an input source 

can be classified as Vision based gesture recognition. It commonly involves software based 

image processing and template matching technique. In this technique, a video covering the 

hand pattern is first decomposed into individual frames and selects a frame which has best 

detail. The selected frame is then fed into the system for further decomposition and 

processing. Initially the system is programmed and trained with a set of images stored in the 

database. When a new input image is fed, the system processes the image (i.e. it filters the 

noise and subtracts the background) and finds the best match with the images stored in the 

database. Based on the match the system produces an output. Other image processing 

techniques involve edge detection, principal component analysis, boosting, contour and 

silhouette matching, model based recognition and Hidden Markov Model (HMM) 
[17]

. An 

example of finger-tip detection is shown below in the figure 2.3. This vision based technique 

is void when the environment is dark or when the contrast between the skin and background 

is dull or almost same (i.e. the system becomes inefficient in differentiating skin texture and 

background). This is because; the system becomes incapable of differentiating and isolating 

the hand from its background and thus stops further processing.  

 

Figure 2.3 – Vision Based Hand Gesture Recognition 
[17] 
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2.2.5. Thermal Scanning 

Thermal scanning is very similar to that of the vision based hand pattern sensing. The 

only difference is that the system is trained with a set of thermal images taken with a thermal 

camera or an infrared camera. These cameras sense the heat radiated body or an object, in 

this case, the camera senses the heat radiated by the hand. This helps to identify and 

recognize patterns even when there is dirt, cut or wound on the hand. The main advantage of 

this technique over vision based sensing is that thermal camera is resistant to noise and 

independent of light; i.e. thermal camera is capable of taking images in the dark and also 

eliminates the contrast and brightness error which is present in the vision based hand sensing. 

Presence of noise is less when compared to the CCD camera technique. The features are 

extracted from the gray scale of the image. Rest of the processing and pattern recognition is 

very similar to that of the vision based sensing 
[18]

. A block diagram representing gesture 

recognition system using thermal images is shown below in figure 2.4. The efficiency of this 

technique degrades as the background temperature and the hand temperature equals.  

 

Figure 2.4 – Block diagram of hand pattern recognition using thermal image 
[18] 
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2.2.6. EMG Based Hand Pattern Recognition 

EMG based pattern recognition challenges have been trending in the recent years; 

especially in the field of prosthetic hand, gaming, control devices, etc. Surface EMG 

electrodes are commonly used for this application. For better results, three to four channels 

are used to pick up EMG signals and amplified. Later, the signals are converted to digital 

format and further processed using digital filters. Wavelet transformation, FIR filter and IIR 

Filter are the most widely used digital filters. The signal is then decomposed to extract the 

features representing the hand gestures. Important features carrying the gesture information 

include root mean square (RMS), standard deviation and mean absolute value (MAV) in time 

domain. Finally, these features are classified to recognize the pattern. The major drawback of 

EMG based approaches is that it requires two or more than two channels to increase the 

accuracy and it does not capture patterns based on hand movements. 

 

Figure 2.5 – EMG processing using Multilayer Neural Networks
 [19] 
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3. FILTERS AND AMPLIFIERS 

3.1. Low Pass and High Pass Filter 

 Filters can be classified into active and passive filters. As the name indicates, active 

filter consists of active components such as op-amps, transistors, etc. while the passive filter 

includes only resistors, capacitors and other such frequency dependent components. The 

main disadvantage of the passive filter over the active filters is that the amplitude of the 

output signal is always less than the input signal. Filters can be classified into High pass and 

Low pass filter. As the names indicate, high pass filter allows only frequencies above the cut-

off frequency (fc), whereas low pass filter allows frequencies below the cut-off frequency (fc) 

of the filter. The frequency response of a High pass and low pass filter is shown below 

(Figure 3.1). 

 

Figure 3.1 – Frequency response of Low Pass Filter and High Pass Filter 

 A simple first order RC high pass filter is shown below in the figure 3.2. The cut-off 

frequency is given by the formula: 
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Figure 3.2 – Low Pass Filter (Left) and High Pass Filter (Right) 

 

3.2. Operational Amplifier 

An op-amp is an electronic circuit which amplifies the input signal in terms of voltage 

or current. And also, op-amps can be used condition the signals in terms of frequency, such 

circuits are called as active filters. An ideal op-amp has these characteristics: infinite voltage 

gain, infinite bandwidth, infinite input impedance, infinite Common Mode Rejection 

Ratio (CMRR), zero output impedance, zero input offset voltage and zero noise. Unlike 

passive filters, the bandwidth and frequency response can be altered effectively in an op-amp 

circuit. Active filters can be designed for low pass, high pass and bandpass filtering. Such 

filters are classified by the number of frequency dependent components employed and named 

as first order, second order, third order and so on. A simple RC filter is recognized as first 

order since only one capacitor is used.  
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2.2.1 Non-Inverting Low Pass Amplifier 

 A low pass amplifier is basically a filter that amplifies low frequency signals and 

attenuate signals with frequencies above the cut-off frequency (fc). The feedback look 

provides good stability and very high input impedance. The gain of the amplifier depends 

upon the resistors connected to the inverting terminal of the op-amp. RC combinations 

connected to the non-inverting terminal of the op-amp decide the cut-off threshold. A simple 

non-inverting low pass amplifier is shown below (Figure 3.3). 

 

Figure 3.3 – Non-Inverting Low Pass Filter 

           
  
  

 

                       
 

      
    

 The gain of the amplifier depends upon the frequency of the output signal. For 

low frequency signals, the circuit increases the gain of the amplifier and for high 

frequencies the gain decreases 
[20]

.  
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2.2.2 Bessel Filter 

 Bessel filter is named after a German mathematician Friedrich Bessel, who developed 

the mathematical model of this filter. It is also called as Bessel Thomson filter, named after 

W.E. Thomson who applied the mathematical model to design the actual working filter. 

Bessel filter is very similar to Gaussian filter; but it has better group delay, shaping factor 

and flat phase delay than the Gaussian filter of the same order. In other words, it has better 

amplitude and transient behavior when compared to other filters. For a square wave input, the 

Bessel filter can reproduce the input without any overshoot, but at the cost of slower 

attenuation rate above the cut-off frequency 
[21]

. The frequency response, group delay and 

step response of Bessel filter is shown below (Figure 3.5). 

 

Figure 3.4 – 3
rd

 Order Besselworth Filter 

 When the frequency of the input signal is less than the cut-off frequency (f<<fc), 

impedance of the R4C3 connected in parallel is dominated by the resistor R1 (R4||C3 = R4, 

Xc3>>R3), which increases the gain of the amplifier. When the cut-off frequency is less than 
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the input signal (f>>fc), impedance of R4C3 is dominated by the capacitor C1 (R4||C3 = Xc3, 

Xc3<<R3), reducing the gain of the amplifier to unity.  

 

 

 

 

Figure 3.5 – Frequency response, group delay and step response of Bessel filter 
[22]
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3.3. Instrumentation Amplifier 

 Instrumentation amplifier consists of a differential amplifier with the inputs fed 

through two buffer amplifiers. Instrumentation amplifiers eliminate the use of input 

impedance matching and provide low DC offset, low noise, low drift, high open loop gain, 

high CMRR, high input impedances. A schematic representation of an instrumentation 

amplifier is shown in the figure below.  

 

Figure 3.6 - Instrumentation Amplifier 

 The op-amp U3 is nothing but a differential amplifier with a gain of R3/R2 and 

differential input resistance 2*R2. Op-amps U1 and U2 are just buffer amplifiers where it 

becomes a unity gain buffer amplifier when Rgain is infinity. In this case the overall gain 

becomes 1 + (R3/R2). Therefore, Rgain is mainly used to enhance the buffers resistant to 
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common mode signals and as a result it increases the overall gain and the common mode 

rejection ratio (CMRR) of the circuit.  

Overall Gain =  
    

      
  (  

   

     
)
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4. MEMS ACCELEROMETER 

4.1. Introduction 

An accelerometer is an electromechanical device which can be used to measure the 

acceleration of a body relative to free-fall; this can be caused due to static or dynamic forces. 

Such accelerations are measured in terms of g-force (where g = 9.81 m/s
2
) therefore, at rest 

the accelerometer indicates 1g upwards. It can also measure tilt, vibration and shock of a 

body. Due to its low cost and efficiency, accelerometers are widely used in industrial 

applications, mobile phones, tablets, inertial navigation systems, vibration detectors, drones, 

digital cameras, joysticks and so on.  

 

Figure 4.1 – Axes of acceleration sensitivity 
[23]

 

MEMS or Micro Electro Mechanical Systems are nothing but small electro-

mechanical devices consisting of structures ranging in size between 1-100 µm. MEMS 

structures includes cantilevers, holes, cavity, etc. As a whole, a MEMS device measures from 

20 µm to 1 mm.   
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4.2. Technical Specification 

Device ADXL335 

Measurement Range ±3.6g 

Sensitivity 270-330mV/g 

Output Voltage 1.2-1.8V 

Frequency Bandwidth 1600Hz 

Power Supply 1.8 – 3.6V 

Operating Temperature -40 - +85 ºC 

Package LFCSP_LQ (4 x 4 x 1.45mm) 

Table 4.1 – Technical specifications of Accelerometer 
[23]

 

 

Figure 4.2 – ADXL335 Triple Axis Accelerometer 
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5. BLUETOOTH – WIRELESS PROTOCOL 

5.1. Introduction 

Bluetooth technology was originally developed by Ericsson in 1994 to enhance their 

smartphones to sync and communicate with a PC without using a conventional RS-232 cable. 

Bluetooth is one among many wireless technologies which is capable of transmitting a secure 

and lossless data over short distances. Other features of Bluetooth include ubiquitousness, 

low cost and low power. Currently, Bluetooth is managed and controlled by Bluetooth 

Special Interest Group (SIG) which means, SIG monitors the specifications, development 

and trademarks of Bluetooth and also a manufacturer must meet SIG standards to market a 

product as Bluetooth device. Depending upon the range of operation, Bluetooth devices are 

classified into Class1, Class2 and Class 3 devices. Class 1 has a range of about 100meters, 

Class 2 has about 10meters and Class 3 has about 1meter range 
[24]

.  

The IEEE standard for Bluetooth protocol is IEEE 802.15.1 and it works based on the 

master-slave principle. The Bluetooth protocol stack consists of the following layers: 

transport layer, middleware layer and application layer. The transport layer consists of radio, 

baseband and link layers. The middleware acts as a software tool to establish better 

communication layers 
[25]

. Bluetooth protocol uses Phase Shift Keying (PSK), Frequency 

Shift Keying (FSK) and Spread Spectrum (SS) as modulation schemes. 

Bluetooth v2.0+EDR extension was specially developed to improve the data rate of 

the communication. EDR extensions use π/4-Phase Differential Quaternary Phase-Shift 

Keying (π/4-DQPSK) and 8-Phase Differential Phase-Shift Keying (8DPSK) modulation but 

have no FEC 
[25]

.  
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5.2. Technical Specifications 

Data Rate 1 - 3Mbps 

Range 10 - 100m 

Power Consumption < 1W 

Network Topology Scatternet 

Spectrum 2.4 - 2.485GHz 

Spectrum Acceptance Worldwide 

Robustness Adaptive fast frequency hopping  

Security 56/128-bit AES Encryption 

Slaves 1 - 7 

Table 5.1 – Technical specifications of Bluetooth Technology 
[26] 

 

 

Figure 5.1 – Bluetooth HC-05 Module 
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5.3. Advantages of Bluetooth over other Communication Protocols 

Bluetooth vs. Wi-Fi 

 Wi-Fi is a wireless replacement for high speed cables which carry huge data; 

whereas, Bluetooth can only handle 1/10
th

 of the same data. This means Wi-Fi cost more and 

consumes more power when compared to Bluetooth modules.  

Bluetooth vs. Zigbee 

 Zigbee is capable of handling lossless data up-to 250kbps. Module loses data 

beyond 250kbps, to improve the transmission efficiency. For our application, the data 

sampling rate is high and any loss of data leads to incorrect results. Bluetooth can handle up-

to 1Mbps without losing data and it is present in all mobile phones, PDAs and computers 

which make the interface more user-friendly.  

Bluetooth vs. GSM 

 GSM can communicate over a huge area, but transmitting sensitive data 

involves high risk. GSM communication has less security than when compared to 128-bit 

AES encrypted Bluetooth communication. Also, GSM modules need excellent towers for 

lossless transmission. Finally, the power consumption is higher in GSM when compared to 

Bluetooth. 

Bluetooth vs. Infrared 

 Infrared communication is way cheaper than Bluetooth. But infrared 

communication needs a clear sight of view between the transmitter and the receiver modules, 

which is not necessary in the case of Bluetooth. Bluetooth can handle data transmission up to 

100m outdoor and up to 30m indoor.   
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6. SYSTEM DESIGN 

The prototype’s operation and design is best understood in this chapter. The first 

subsection gives you an overall insight on how the data is collected and processed. The other 

two sub-sections detail the hardware and software implementation in order to make the 

prototype work.  

 

6.1. Introduction 

The prototype implementation of this thesis involves both hardware and software. 

The hardware section consists of smart band and a transmitter module. The arm band has a 3-

axis MEMS accelerometer and three sEMG (surface EMG) electrodes which help to pick-up 

the bio-potential signals. The transmitter module consists of analog front end amplifiers, 

ARM processor, an HC-05 Bluetooth module and the power supply circuit. The power 

supply to the transmitter is provided by two Polymer Lithium Ion batteries. The analog front 

end amplifiers not only amplify the bio-potential signals but also remove noise. The 

amplified signal is then fed to the ARM microcontroller which converts the analog data into 

digital data. On selective intervals, i.e. when the microcontroller senses a sudden spike above 

a set threshold, the microcontroller starts recording the data for the next 500ms. This data is 

then sent to the receiver by a Bluetooth module interfaced to the microcontroller.  

The receiver section, normally a PC, has another Bluetooth module paired with the 

transmitter. Other than the Bluetooth receiver module, it only consists of software. The data 

transmitted is received by the receiver Bluetooth module and then logged using MATLAB 
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toolbox for feature extraction and to identify the gesture.  The offline processing in the 

receiver is detailed in the software section. Figure 6.1 shows the overall architecture of the 

system which includes both hardware and software 

 

Figure 6.1 – System Design 

 

6.2. Hardware Design 

Collecting bio-potential signal and amplifying is fundamental in this thesis. It is the 

hardware section that picks up the signal, amplifies, converts analog to digital and finally 

transmits the digital data to a nearby receiver. To do this, the hardware consists of sensors, 

analog front end amplifiers, ARM microcontroller and a Bluetooth module.  Individual 

blocks of the hardware section are discussed below in detail. 

 



28 

 

6.2.1. Sensors 

A basic passive metal electrode is used to pick up the EMG signals, shown below 

(Figure 6.2). These metal electrodes are cheaper and do not need any conductive gels which 

may cause skin allergy or incorrect readings when they dry out. Proper placement of sensors 

on the forearm is necessary to record noise free data. Two electrodes must be placed on the 

muscles critically responsible for the flexion/extension of fingers and wrist. To be more 

precise, electrodes must be placed on the Flexor Digitorum Superficialis muscles to 

recognize wrist flexion or on Extensor Digitorum muscles to recognize wrist extension 
[27]

. 

Also note that the electrodes should be placed longitudinal to the muscles and between two 

motor units and away from the tendons. The other reference sensor can be placed anywhere 

except the muscles responsible for flexion of fingers or wrist.  

A triple axis accelerometer ADXL335 is used to detect the orientation of the wrist. 

Here, the accelerometer is placed on the posterior side of the forearm. For better results, the 

accelerometer can be placed on the posterior side of the hand. 

   

Figure 6.2 – Smart Band 
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6.2.2. Analog Front End 

Bio-potential signals are normally weak and possess huge noises. Significant EMG 

ranges from a few Hz to 500Hz. Therefore we need to eliminate the noise signals (below 1Hz 

and above 500Hz) and amplify the weak signals. A functional block diagram along with the 

schematic of the analog front end amplifiers is shown below in the figure 6.3 and figure 6.4.  

 

Figure 6.3 – Front End Amplifier Design 

The front end amplifier consists of 4 components, namely: High frequency rejection 

block, instrumentation amplifier block, non-inverting gain amplifier bloc and a Bessel filter 

block. The instrumentation amplifier and gain amplifier is solely responsible for signal 

amplification. High pass filters and Besselworth filter are used to filter noises above and 

below the individual cut-off frequencies. Only the EMG signal requires this attention as it 

has low potential and more noise. The accelerometer signal does not need any amplification 

or noise filtering blocks as it is already filtered and amplified within the accelerometer IC. 

The analog section has a separate analog grounding and reference voltage block to improve 

the signal conditioning. 
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Figure 6.4 – Analog Front End and Bluetooth - Schematic 
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High Pass Filter: The cut-off frequency of all the first order high pass filters is set to 

0.1Hz, i.e. all frequencies below 0.1Hz are filtered as noise. The passive high pass filter not 

only filters low frequency signals but also blocks DC components present in the signal. 

Therefore, this is repeated at every stage.  

Instrumentation Amplifier: A Single supply INA321 instrumentation amplifier is 

used to amplify the difference between the two input voltages. The gain of the amplifier is set 

to 10, which is derived by the formula: 

                                     (  
  

  
)  

Non-Inverting Amplifier: The amplified signal is further amplified by passing 

through a non-inverting amplifier with a gain of 80. The gain is given by the formula: 

                                  (  
   

   
)  

3
rd

 Order Bessel Filter: The Bessel filter is the last stage of front-end amplifier 

where a low pass filter is planted with a cut-off frequency of 40Hz to filter out frequencies 

more than 50Hz. The gain is set to 3.5 and given by the formula: 

                                       (  
   

   
)  

Reference Voltage: A virtual ground is implemented using REF2912 to measure the 

EMG signal with a complete set of positive components. TI’s REF2912 virtual ground IC 

keeps the reference voltage at 1.25V. The circuit diagram is shown in figure 6.4. 
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6.2.3. Microcontroller 

The CPU block is nothing but a microcontroller itself which does the analog to digital 

conversion and transmission part. TM123GH6PM is a 32-bit microcontroller embedded in 

the smart band. It has an ARM Cortex M4F processor core designed for small embedded 

applications. It is an ultra-low power device that supports up to 80MHz of clock speed. It has 

256 KB of flash memory and 32KB of SRAM memory to store and run the program 
[28]

. A 

schematic of the CPU block is shown below in the figure 6.5. 

ADC Module: The microcontroller has a 12-bit precision ADC module with a 

maximum sampling rate of 1 million samples per second. The ADC module is isolated from 

the normal working of microcontroller, i.e. ADC samples the data and stores it in the buffer 

even when the microcontroller is busy performing other tasks. This enables the 

microcontroller to preserve the signal especially when it is busy transmitting the data to 

Bluetooth 
[28]

.  

USART Module: The microcontroller has 8 built-in USART (Universal 

Synchronous Asynchronous Receiver Transmitter) ports with maximum baud rate of 5Mbps. 

USART falls under the serial communication category and supports full duplex. To 

communicate with Bluetooth the baud rate is set to 115200 bps 
[28]

. The data is framed before 

transmission so as to make the receiver identify the start and end of a data set.  

Timer Module: The microcontroller has six 16/32 bit and six 32/64 bit 

programmable timers. A timer is necessary to track the transmission time of each data set. 

The timer should start when muscle activity is sensed and should stop the transmission at the 

end of 500ms. At the end of transmission the timer must reset to its initial value. For this, the 

microcontroller is programmed to use one 16 bit timer
 [28]

.  
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Figure 6.5 – Microcontroller (CPU) - Schematic 
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6.2.4. Wireless Transmission 

Bluetooth communication is held by a device HC-05 which is interfaced with the 

microcontroller. HC-05 is a fully qualified Bluetooth v2.0+EDR (Enhanced Data Rate) 

having up to 3Mbps of data rate. The module has a CSR Bluecore chip which is responsible 

for  the communication. Initially, a communication channel must be established to create a 

transparent port, i.e. to transmit and receive data transparently without encoding or decoding 

the data. The Bluetooth is programmed to communicate at a speed of 115200 bps. The 

framed data is received by a UART port present in the Bluetooth module.  

 

6.3. Software Design 

The software section involves two operations: making the microcontroller to transmit 

the data and to decode the raw EMG data for identifying the gestures. To do this, the first 

operation is done within the microcontroller and the later using a PC. Both the sections are 

briefly discussed below. 

 

6.3.1. Transmitter Section 

The software of the transmitter does the work of converting analog data into digital 

and making the Bluetooth to transmit data to the receiver section. An ARM Cortex 

microcontroller is used to perform this task; therefore, the software is written using 

Embedded C language.  
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At first, the microcontroller is programmed to initiate the UART, ADC and timer 

modules. UART module is responsible to establish a communication between 

microcontroller and HC-05 Bluetooth module. A 16-bit timer module is initiated to keep 

track of transmission period. The ADC module is set to use 4 ADC channels (one for EMG 

and three for accelerometer) with 12-bit precision (i.e. for a full scale 0-3.3V measurement, 

output ranges from 0-4096). Therefore, the microcontroller is interfaced with the front-end 

analog circuit which measures the EMG and accelerometer signal voltages and converts it to 

a digital format using an ADC module inbuilt within the microcontroller. This conversion is 

done at a sampling rate of 1600 Hz (i.e. 1600 samples per second). The ADC module dumps 

the digital data into a large buffer where the data is temporarily stored and fires an interrupt 

to let the processor know that the conversion is done. The ADC flushes the data from its 

buffer once the processor accesses it. The microcontroller continuously monitors the EMG 

analog channel for a voltage spike above the set threshold. When a spike occurs, the 

processor is programmed to start a 16-bit timer and send the data to Bluetooth for the next 

500ms. When the timer reaches 500ms, it stops the transmission and resets the timer. Before 

the transmission, one full set (i.e. one EMG data along with accelerometer data at one 

instance) of data is encoded to fit in a frame. Frame of the data is fixed and has a start and 

stop bit. Framing of data helps the receiver to identify the start and end of a data set. This 

frame is then sent to the Bluetooth module over a UART port (serial communication) which 

is programmed to handle 115200 bps. The serial port has inbuilt flow control and packet 

acknowledgement features which helps in transmitting data with no loss. The HC-05 module 

receives the data using same the serial port embedded in it and sends the data to the receiver 

once the communication channel is established.  
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Figure X.X – Transmitter Software Flow 
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6.3.2. Receiver Section 

The receiver’s software section plays the major role in this thesis which involves 

shaping, noise filtration, feature extraction and pattern recognition. The entire process is done 

offline to keenly evaluate and analyze each step. This section is done using MATLAB 

software as a simulation tool. The receiver Bluetooth module receives the data and sends it to 

the PC via serial port. This data is captured by the MATLAB using a serial port access tool. 

The baud rate of this communication is again set to 115200 bps, so as to maintain good 

transfer flow between the transmitter and the receiver. The simulation software is 

programmed to capture the data and log them for future use. At the time of pattern 

recognition, this data is accessed. Remember that each data set or each pattern is 500ms long. 

A block diagram representing the receiver’s software section is shown in the figure X.X and 

each block is detailed below. The second stage of the simulation software involves shaping 

the raw EMG signal. For this, the EMG signal is passed through a full-length rectification 

block where it converts the negative components into positive components. From there the 

signal is sent to FIR filter for noise filtering and reducing the frequency of the signal. Feature 

extraction is done for both EMG and accelerometer signals.  

 
Figure X.X – Receiver Software Flow  
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Raw accelerometer data has much less noise and therefore it can be directly used for feature 

extraction. Finally, multi-class SVM technique is employed to train and classify the patterns 

based on features extracted. 

Full Wave Rectification: Raw EMG data has both positive and negative components 

present in it.  The presence of negative components suppresses the features when we take 

mean. This may lead to loss of information in sensitive cases. To overcome this, the raw 

EMG signal can be half-length or full-length rectified. Half-length rectifies the negative 

components which may again lead to loss of information. Whereas, full-length rectification 

overcomes this problem as it converts the negative components to positive components of the 

signal.  

FIR Filter: FIR filters are finite impulse response digital filters and it can handle a 

finite series of data with more stability and linearity when compared to an IIR (Infinite 

Impulse Response) filter 
[29]

. FIR filter with a Hamming window of order size 48 is 

implemented in the filtering section. The sampling rate of this filter is 1600 Hz and the cut-

off frequency is set to 250Hz. As a result of windowing, a 30ms delay is introduced. A 

mathematical representation of FIR filter is given by, 

 ( )   ∑ ( )  (   )

 

   

 

where,   x(n) represents the filter input, 

 h(k)  represents the filter coefficients, 

 y(n)  represents the filter output, 

 n  is the number of filter coefficients (order) 
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Figure X.X – Raw EMG signal (Top), Full-length Rectified EMG Signal (Middle) and FIR 

filtered EMG signal (Bottom)  
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Figure X.X – Raw EMG signal (Top), Accelerometer Reading for X-Axis (Middle) and 

Accelerometer Reading for Y-Axis (Bottom) during Wrist Pronation 
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Feature Extraction: Raw EMG signals possess more noise but weighted information 

remains amalgam in it. Predicting the results based on raw EMG degrades the efficiency of 

the system to a great extent. For this, certain features carrying the right information are 

present in time, frequency and time-frequency domains 
[13]

. Therefore, considering time 

domain, five important features such as mean, variance, waveform length, root mean square 

and threshold crossing are extracted 
[30]

. The mathematical representations of these features 

are as follows:  
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Unlike EMG, raw accelerometer readings contain much less noise since the chip does 

all the necessary processing and filtering. Thus filtered EMG signals along with raw 

accelerometer readings are passed for feature extraction. The extracted features are then 

logged to train the system or to recognize the pattern.  
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Pattern Recognition: SVM is one of the most successful classifiers known in the 

field of pattern recognition. Multi-class SVM or multiple layers of binary SVM should be 

adopted since there are five input features and four output classes. There are two types of 

multi-class SVMs: one-against-all and one-against-one.  

The one-against-all approach trains the system to differentiate a class sample from all 

other class samples by building one class per SVM; whereas, one-against-one builds two 

classes per SVM (i.e. for n classes, n(n-1)/2 SVMs are built) 
[31]

.  

The one-against-one approach results are more promising when a large number of 

classes are present; on the other hand one-against-all is more practical and accurate for digit 

classes 
[31]

. SVM requires a set of training and test set data for training and testing the 

system. The training set is fed along with the results and based on these training sets the test 

data set is predicted for patterns. 

 

    

Figure X.X – Transmitter Hardware 
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7. TEST AND RESULTS 

7.1. Testing Procedure 

To test and validate the system, large sets of raw EMG and accelerometer readings 

representing different hand patterns are collected using the hardware. This data is then 

transmitted to the receiver and processed offline for feature extraction. The feature sets are 

then randomly split into training set and test set in the ratio of 10:1. Say for example, for each 

class 110 features are extracted out of which 100 belong to training set and 10 belong to test 

set. 

On the first iteration, only the EMG data sets are used for pattern recognition; during 

the second iteration, only accelerometer data was taken into account; on the third iteration 

both EMG and accelerometer data sets are used to recognize pattern. Finally, comparison of 

all three iteration results, presents us the possibility of recognizing more patterns and the 

accuracy levels with and without one another.    

 

7.2. Results on Pattern Recognition 

Ten classes representing five different hand patterns with two different orientations 

were accounted. Each class consisted of 25 training sets and 5 test sets; results were 

computed with and without accelerometer data. Results with only EMG data predicted only 

four hand gestures; results with only accelerometer predicted only six patterns. Whereas, 

results computed with both the features was able to identify all 10 patterns with more 

accuracy. 
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8. CONCLUSION AND FUTURE DEVELOPMENTS 

Hand pattern recognition techniques predict more patterns with higher accuracy levels 

when both hand movements and hand gestures are taken into account. To highlight this, 

EMG and accelerometer readings were first logged while exhibiting a hand pattern. This data 

is sampled and transmitted by a microcontroller and a Bluetooth module. Another Bluetooth 

receiver paired with the transmitter receives the signal and provides it to the MATLAB 

toolbox for filtering and feature extraction. These features are processed through multi-class 

SVM classifier by three different possibilities: only EMG features, only accelerometer based 

features and finally both features combined. The results proved that more patterns can be 

recognized with increased accuracy when both the feature sets are treated at the same time. 

Advancement and future developments of this thesis may include integrating a third set of 

feature sets representing the speed of hand movements.  
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APPENDIX 

clear all; 

close all; 

clc; 

 

%Temp 

%{ 

RMS_Final = []; 

Var_Final = []; 

Threshold_Final = []; 

Mean_Final = []; 

Wavelength_Final = []; 

%Final = [RMS_Final Var_Final Threshold_Final Mean_Final Wavelength_Final] 

%} 

 

%Fetch Data________________________________________________________________ 

%raw_data = csvread('FingerPopping3.csv',1,0); %-1 

%raw_data = csvread('HandTwist5.csv',1,0); 

%raw_data = csvread('MiddleFingerFlexion5.csv',1,0); 

%raw_data = csvread('RingFingerFlexion5.csv',1,0); %-1 

raw_data = csvread('WristCloseTightandLight4.csv',1,0); 

%plot(Raw_Data(:,1),Raw_Data(:,2)); 

%legend('Raw EMG'); 

%xlabel('Time (sec)'); 

%ylabel('Voltage (V)'); 

 

 

%FIR Filter________________________________________________________________ 

sample_rate = 1600; 

order = 40; 

voltage_data = raw_data(:,2); 

voltage_data = voltage_data-1.4; 

voltage_data = abs(voltage_data); 

fir_coeff = fir1(order, 50/800); 

%fvtool(fir_coeff, 'Fs', sample_rate); 

filtered_signal = filter(fir_coeff, 1, voltage_data); 

 

 

%Plot______________________________________________________________________ 

figure(1); 

subplot(2,1,1)                                                  % Raw EMG - First subplot 

plot(raw_data(:,1),voltage_data) 

title('Raw EMG'); 

xlabel('Time (sec)'); 

ylabel('Voltage (V)'); 
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subplot(2,1,2)                                                  % Filtered EMG - Second subplot 

%plot(Raw_Data(:,1),filtered_signal,'r') 

plot(raw_data(order:end,1), filtered_signal(order:end,:),'r'); 

title('Filtered EMG'); 

xlabel('Time (sec)'); 

ylabel('Voltage (V)'); 

 

 

%Window 

Data_______________________________________________________________ 

windowed_data=[]; 

i=1; 

for j = 1:size(filtered_signal)/1599; 

    for i = i:size(filtered_signal); 

        if (filtered_signal(i)>0.2); 

            windowed_data = [windowed_data filtered_signal(i:i+498)]; 

            i=i+498; 

            break 

        end 

    end 

end 

 

 

%Plot Windowed Data________________________________________________________ 

 for i = 2:size(windowed_data,2)+1; 

     figure(i); 

     subplot(2,1,2)                 

     plot(windowed_data(:,i-1)) 

     subplot(2,1,1)                             

     plot(filtered_signal); 

 end 

 

 

%Feature Extraction________________________________________________________ 

RMS_Samples = rms(windowed_data,1);                              %Absolute Value Measurement 

VAR_Samples = var(windowed_data,1);                              %Power Density Measurement 

Threshold_Crossing = sum(windowed_data>0.25,1);          %Samples Exceeding Threshold 

1.6V 

Mean_Samples = mean(windowed_data,1);                          %Mean Value 

Wavelength_Samples = sum(abs(diff(windowed_data)));%Cummulative absolute difference 

between samples 

 

RMS_Final = [RMS_Final;RMS_Samples'] 

Var_Final = [Var_Final;VAR_Samples'] 

Threshold_Final = [Threshold_Final;Threshold_Crossing'] 
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Mean_Final = [Mean_Final;Mean_Samples'] 

Wavelength_Final = [Wavelength_Final;Wavelength_Samples'] 

 

%Plot______________________________________________________________________ 

x = [1;2;3;4]; 

 

figure(2); 

 

subplot(2,2,1);  

scatter(x,Mean_Samples,40,'filled') 

axis([0,5,0,2]); 

title('Mean'); 

 

subplot(2,2,2);  

scatter(x,RMS_Samples,40,'filled') 

axis([0,5,0,2]); 

title('RMS'); 

 

subplot(2,2,3);  

scatter(x,VAR_Samples,40,'filled') 

axis([0,5,0,0.05]); 

title('Variance'); 

 

subplot(2,2,4);  

scatter(x,Wavelength_Samples,40,'filled') 

axis([0,5,0,15]); 

title('Wavelength'); 
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