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Abstract 

 

Survival analysis is a commonly used tool in many fields but has seen little use in 

education research despite a common number of research questions for which it is well suited. 

Researchers often use logistic regression instead; however, this omits useful information. In 

research on retention and graduation for example, the timing of the event is an important piece of 

information omitted when using logistic regression. A simulation study was conducted to 

evaluate four methods of analyzing competing risks survival data, Cox proportional hazards 

regression, Weibull regression, Fine and Gray’s Method, and Cox proportional hazards 

regression with frailty. College student retention and graduation is presented as an example.  The 

results indicate that there is no one best model for all simulated scenarios. Instead, it appears the 

selection of the method of analysis should be based on the characteristics of the data. Both Cox 

proportional hazards and the Weibull regression are accurate with the base combination (sample 

size of 500 per group, continuous event time format, no correlation between event times, 

homogeneous shape parameter for both events for both groups, homogeneous failure rates for 

both events for both groups, and no frailty) as well as when one parameter is changed from the 

base combination. In addition, for data where the event time distribution shape does not differ by 

event, the accuracy of the models is quite similar. However, differences begin to emerge with 

some combinations of conditions. Cox performs especially poorly with data sets containing both 

differing event time distribution shapes by event and differing failure rates by group or event 

while Weibull is least accurate with the combination of homogeneous event time distribution 

shape, heterogeneous failure rate by group and/or event, and discrete format time. Fine and 

Gray’s method was often ranked last by accuracy, but there are some situations where its 

accuracy is quite good including retention and graduation data. Cox proportional hazards 



 
 

regression with frailty performed very similarly to the Cox regression without frailty with no 

clear benefits. 
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Chapter I: Introduction 

Attempts to understand the world around us using basic statistics is far from being a 

recent trend. Early empires collected data on geographical size, wealth, and population. 

Navigators, astronomers, and cartographers collected observational data on planets, locations, 

and directions.  As human curiosity and numerical methods increased, the process of analyzing 

these collected data began to take shape.  

Over the course of history, the study of survival has received much attention. One of the 

early pioneers in the field of statistical analysis, John Graunt, was a relatively uneducated man 

who was a member of London’s Common Council and who became fascinated with mortality 

data. Graunt poured over seventy years of the Bills of Mortality (lists of the deceased) which 

were published in England starting in 1592 and gained popularity during the Great Plague in the 

early seventeenth century as well as christening records from local churches. Using this 

information he wrote Natural and Political Observations mentioned in a following index, and 

made upon the Bills of Mortality With reference to the Government, Religion, Trade, Growth, 

Ayre, diseases, and the several Changes of the said City, which summarized these data and 

arguably birthed modern statistics. In his own words, his aim was “to have reduced several great 

confused volumes into a few perspicuous Tables, and abridged such Observations as naturally 

flowed from them, into a few succinct Paragraphs, without any long series of multiloquious 

Deductions” (Graunt, 1662, pp. 6–7). 

Though his methods were rudimentary, his contributions to our understanding of 

mortality and to the field of statistics were invaluable. Aside from his mortality contributions, 

which included time-trends for diseases, a refutation of some incorrect beliefs about the 
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spreading of the plague, and incidence of various causes of death, Graunt also introduced the 

world to statistical sampling and what have since become known as life tables. Using these life 

tables, which are extensively used in the insurance industry in modern day, Graunt was able to 

predict survival rates to successive ages and life expectancy for different groups (“John Graunt,” 

2004). 

In scientific research, two of the most basic questions asked are when and why. In 

biostatistics the when and why are often centered on the event of death. In criminology 

researchers investigate time to arrest, rehabilitation, and recidivism. In workforce development 

researchers are interested in the timing and occurrence of job acquisition, promotions, layoffs, 

and retirement. Demographical studies focus on births, deaths, marriages, and divorces. In 

engineering researchers investigate time-to-failure of various machines and materials. In 

education, researchers are interested in the progression of a student’s education, generally 

marked by a graduation of one stage to the next. In many areas of statistics the change over time 

is an area of great concern – the gradual education of a child, the health or wealth of a person, or 

the rise and fall of governments and economies. While many of these changes are slow and occur 

over time, in nearly every case there are distinct turning points or milestones that represent the 

culmination of these effects. The study of these distinct events is known as event history 

analysis. The graduation of a student from high school, the marriage of a couple, the birth of a 

child, all these are part of the growth of humans, but represent a distinct change, a move to the 

next stage of life. 

Statement of the Problem 

 Though conceptually very simplistic, event research becomes more complicated when 

timing, number, and repeatability of events are all accounted for. In biological sciences one may 
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only be interested in the mortality of a subject and the lifespan. In criminology one may be 

interested in not only the occurrence and timing of criminal activity, but in the number of 

occurrences. In substance abuse research one may be interested in the onset of drug use as well 

as the frequency and type of drug used.  

 Likely due to the complexity of modeling event histories, researchers often choose to 

omit information for the sake of simplicity and interpretability. Instead of examining the timing 

and type of drug use, a researcher may only be interested in if drug use occurs during a time 

period (Lee, 2012; Low et al., 2012; Ramirez, Hinman, Sterling, Weisner, & Campbell, 2012). 

Rather than examining when a student will graduate or drop out, a researcher may choose to 

simply investigate if a student graduates within six years (Astin & Osegura, 2005; Berkovitz & 

O’Quin, 2006; Zhang, Anderson, Ohland, & Thorndyke, 2004). While the omission of timing 

and/or event types simplifies the analysis and interpretation of these research questions, the lost 

information may play a substantial role in the true nature of the condition. 

Purpose of the Study 

 The purpose of this study is to compare methods of analyzing competing risks models to 

investigate the effects that varying parameters have on model estimates. The parameters of data 

to be analyzed far exceed the research into the effects of these data parameters on the models 

being used. Varying data parameters will be analyzed to investigate the accuracy of four methods 

of analysis: Cox proportional hazards regression, Weibull regression, Fine and Gray’s method, 

and Cox proportional hazards regression with frailty. College student retention and graduation 

data is presented as an example. 
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Primary Research Questions 

 How can event history best be modeled in the presence of competing events with varying 

data parameters? What are the effects of modeling event history when heterogeneity of variance 

is not accounted for and thus violating the assumption that all covariates are included in the 

model? 

Significance of the Study 

 Many articles in current literature simplify multiple-event history data into simple 

dichotomies or single-event survival analysis and do not account for heterogeneity of variance. 

As methods for analyzing multiple-event data are relatively recent in development and statistical 

packages with programmed functions to perform the analyses are few, it is likely that many 

researchers are unfamiliar with the more complicated models. This study seeks to add to the 

knowledge-base on event history analysis by comparing multiple models using simulated data to 

manipulate various parameters. 
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Chapter II: Literature Review 

 In much of education research, the questions researchers ask lie in measuring outcomes. 

The most common of these outcomes are measurements of academic ability such as test scores, 

grades, and proficiencies. Also of importance are milestones – passing a grade, graduating high 

school, graduating college, etc. In these events often the question is not how well a person 

performed, but only if he or she performed well enough to satisfactorily complete a course of 

study.  The outcome measure for the questions is therefore binary, either the event occurs or it 

does not. The most straightforward way to look at graduation is simply by examining if the event 

occurs. A logistic regression is a fine choice for such an analysis as it is able to predict 

membership in one of two groups, in this case graduates and non-graduates. Separating students 

into these two groups is very common in current literature (Arredondo & Knight, 2005; 

Berkovitz & O’Quin, 2006; Chimka, Reed-Rhoads, & Barker, 2007; Zhang et al., 2004) as well 

as one of the largest studies of graduation in higher education, the 2005 study out of the Higher 

Education Research Institute which provides formulas for predicting student degree attainment 

(Astin & Osegura, 2005). Other researchers have looked at the event of first-year retention with 

the two groups being those retained and those not retained. This method is also very common in 

literature (Braunstein, Lesser, & Pescatrice, 2008; Herzog, 2005; Robertson & Taylor, 2009; 

Szafran, 2001; Williams & Luo, 2010). 

 The most straightforward method of analyzing a question is not always the most thorough 

method however. While many researchers examining graduation data are satisfied with only the 

occurrence of graduation within six years, and researchers examining persistence to the second 

year are satisfied with only the occurrence of retention, both of these omit much useful 

information. For example, one may be interested in the timing of such an event. When will the 
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student graduate? Will the event occur after four years? Will it occur within seven years? If the 

student does not graduate, how long will they have attempted before abandoning their 

educational pursuit? How many credit hours would they have completed? Universities are also 

very interested in being able to predict enrollment totals which require examining not just 

retention or graduation rates, but retention and graduation rates. 

Survival Analysis 

 To answer these questions, a statistical test which incorporates the timing of such events 

is needed. Survival analysis, a subset of event history analysis, is a class of longitudinal 

statistical methods that involves both the timing and occurrence of events. As its name implies, 

the test’s origins stem back to the life table data introduced by John Graunt.  

When examining college graduation, much like logistic regression, the event in question 

in survival analysis is often student graduation. In logistic regression all subjects are classified 

into two groups: graduates and non-graduates. This is however, an over-simplification of the true 

nature of the situation. In reality, the two groups are: those who have graduated, and those who 

have not graduated yet. It is still possible for those students who have yet to complete a degree to 

eventually earn one. The difference between categorizing students who have not graduated as 

“not experiencing the event” and “not experiencing the event yet” is an important one. It means 

the outcome variable is not “no event,” it is simply that the timing of the event is unknown, or 

missing for many students.  

In logistic regression the unknown timing information is lost due to its categorization as a 

non-event. Students who have entered college and have completed less than six years, even if 

they have graduated, are excluded from the analysis as researchers cannot categorize the cohort 
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until all students have had a full six years in which to graduate. In survival analysis, this missing 

information is retained and is considered censored. Censored data indicates that the observation 

of a subject is not yet complete as the event of interest has not yet occurred. It is also assumed 

that its incompleteness is independent of the event time. There are different forms of censoring 

including left censoring, in which a subject experiences an event before the onset of the study; 

interval censoring, in which the exact time of the event is unknown but a time interval is; and 

right censoring, in which censoring occurs with the end of subject observation. Right censoring 

is the most common form used and is the type of censoring discussed in this paper. A student 

studying at a university would be right censored for one of three reasons depending on the event 

of interest: either he or she graduates (if the event of interest is retention), leaves the university 

without completing a degree (if the event of interest is graduation), or the end of the study is 

reached. Each of these types of censoring are right censoring due to the fact that the study 

concludes at the end of the time period, the right side of a timeline with the occurrence of the 

event of interest, a competing event, or the end of the study. 

The survival function. Survival analysis consists of two basic complementary parts: the 

survival function and the hazard function. The survival function models the probability of a 

subject experiencing the event before a certain time t and the hazard function is the event rate at 

time t given the subject has survived until time t. This survival function is defined as:  

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) 

where P stands for probability and T is the time of the event. In other words, the survival 

function is the probability that a subject’s event time T is later than some specified time t. At 

time 0 it is assumed that 𝑆(0) = 1. If modeling the survival of an animal, this would indicate that 
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the moment the study begins the animal is known to be alive. In reference to the college student 

example, this would indicate that at the moment a student begins college he or she has a 100% 

chance of not graduating at that same moment, which would seem to be a tenable assumption for 

this example. Also assumed is that lim
𝑡→∞

𝑆(𝑡) = 0.  Cox (1972, p. 188) explained “the only 

information available about the failure time of a censored individual is that it exceeds the 

censoring time.” Again, if modeling the survival of an animal, this means that if one were to 

observe the animal indefinitely then it must at some point succumb to mortality. In the college 

student example, this would indicate that if one were to observe the student indefinitely then he 

or she must eventually graduate. This assumption is likely not tenable and is addressed later in 

this study. 

The hazard function. For the first time period, the survival probability is simply the 

percentage of subjects who survived through the entire time period. The hazard function is the 

converse. The hazard function, as proposed by Cox (1972), is the instantaneous risk of 

experiencing the event given no previous event has occurred and is defined as: 

ℎ(𝑡) =  lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡)

∆𝑡
. 

In other words, the hazard that a subject will experience the event at time T is the probability that 

the event time T is experienced during the time period from t to Δt given that the subject has not 

experienced the event at time t. 

 If we assume that time is measured in discrete intervals of time rather than continuously, 

which is discussed later in this study, we can simplify this formula to 

ℎ(𝑡) = 𝑃(𝐼𝑗 ≤ 𝑇 < 𝐼𝑗+1|𝑇 ≥ 𝐼𝑗) 
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With Ij, j=1,…m-1 where m is the number of time intervals and T is the time of the event. 

Written another way, the formula is: 

ℎ(𝑡) =  
Number of subjects who experienced the event in interval j

Number of subjects who did not experience an event prior to interval j
 

The hazard rate is therefore the ratio of people who experienced the event in a certain time 

period to the number of people who were still at risk for experiencing the event in that time 

period. This is the converse of the survival probability which is the number of people not 

experiencing an event in a certain time period and not having experienced the event prior. In the 

first time period this is computed simply by subtracting the hazard probability from 1 or 𝑆(𝑡) =

1 − ℎ1. For all future time periods the survival probability is found by subtracting the hazard 

probability from 1 then multiplying times the probability of surviving through all previous 

intervals. The survival function can therefore be written as a function of the hazard hk as: 

𝑆(𝑡) = (1 − ℎ1) ∙ (1 − ℎ2) ∙ (1 − ℎ3) ∙∙∙ (1 − ℎ𝑗) 

=  ∏(1 − ℎ𝑘)

𝑗

𝑘=1

 

Let us examine a fictional example of the survival of ten subjects listed in Table 1 as an 

illustration.  
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Table 1 

Example Survival Table  

Subject 
Time Period 

1 2 3 4 5 

1 0 0 0 1 . 

2 0 0 0 0 0 

3 0 1 . . . 

4 0 0 0 0 1 

5 0 0 1 . . 

6 1 . . . . 

7 0 0 0 0 1 

8 0 0 0 1 . 

9 0 1 . . . 

10 0 0 0 0 . 

 

In this table, a data value of “0” indicates the subject survives through the time period, a “1” 

indicates the subject has passed away during the time period, and a “.” indicates that the subject 

is right-censored and is no longer being observed as they are no longer at risk for death. In the 

case of subject 10, who is censored without an event, it is assumed this subject was lost to 

follow-up. As nine of the ten subjects survived time period one, the survival probability would 

be 
9

10
 and the hazard probability would be 

1

10
. For time period two only nine subjects were at risk 

and two did not survive through the time period. The hazard probability would therefore be 
2

9
 and 

the survival probability would be 
7

9
 times the survival probability from the first time period 

9

10
. 

S(2) is therefore 
7

9
∙

9

10
=

7

10
. The remaining hazard ratios for intervals 3, 4 and 5 are 

1

7
,

1

3
,

2

3
  

respectively. The probability of surviving all five time periods is the product of the compliments 

of the hazard probabilities for each interval 
9

10
∙

7

9
∙

6

7
∙

2

3
∙

1

3
=

2

15
 . This probability is known as the 

Kaplan Meier product-limit estimate. This estimate, developed by Kaplan and Meier in their 
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seminal 1958 paper, has the advantage of utilizing subject information even in the case of 

censoring. Subject 10 for example, though lost to follow-up with survival status unknown, still 

contributes to the hazard and survival probabilities for time periods 1-4. Since subjects do not all 

have to be studied for the exact same period of time, this also allows subjects to enter the study at 

different time points. Time 0 is able to represent a subject’s entry into the study even if time 0 

has a different calendar date for different subjects. 

 These calculations are of course quite simple when operating in the absence of covariates. 

The proportional hazard model proposed by Cox (1972) allows for covariates by modeling the 

hazard at time t as the product of the baseline hazard function – which is the hazard at time t in 

the absence of covariates – and an exponential equation of unknown parameters and covariates. 

The proportional hazards model is: 

ℎ(𝑡|𝑿) = ℎ0(𝑡)𝑒∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1  

where ℎ0(𝑡) is the baseline hazard, β is a p × 1 vector of unknown parameters, and X is a p × 1 

vector of independent variables. As seen in the formula, the baseline hazard portion involves no 

X’s and is therefore the hazard unaffected by the covariates, while the exponential portion 

involves no time component t which therefore assumes the covariates act on subjects irrespective 

of time – hence the name of proportional hazards (Kleinbaum, 1995). 

Discrete-time and continuous-time. In event history analysis, the event in question 

always represents some sort of a distinct change, a turning point, or a milestone. For each event, 

there is always an exact time that can be pointed to as the occurrence of that event: the birth of a 

child, the graduation of a student, the failure of a machine. Depending on the situation being 

measured, time data will be in one of two formats – discrete-time or continuous-time. When 
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measuring time to injury of an athlete, for example, it is likely easy to pinpoint the exact moment 

an ACL tear occurs as it is a painful event that generally occurs during physical activity. 

However, in many other situations the only information known is a time period during which the 

event occurred. For example, trying to determine the exact date and time of catching a cold is 

quite difficult as the occurrence of symptoms begin gradually. Likely a subject can determine a 

small time period, a specific day, or even part of a specific day during which it became clear that 

he or she had caught a cold. The difference between these two types of measured data can be, in 

some situations, very small as all time measurements, no matter how small, are measured in 

discrete units. The exact hour, minute, and second of a day is, for most practical purposes, 

continuously measured, though of course even seconds are discrete-time units. In Allison’s 

(1982, p. 70) paper on the subject of discrete-time, he summarizes the decision logic as such: 

“When these discrete units are very small, relative to the rate of event occurrence, 

it is usually acceptable to ignore the discreteness and treat time as if it were 

measured continuously. When the time units are very large – months, years, or 

decades – this treatment becomes problematic.” 

He discusses in a later work, however, that the choice will likely have little statistical 

impact as both methods give very similar results and “while there is some loss of 

information that comes from not knowing the exact time of the event, this loss will 

usually  make little difference in the estimated standard errors (Allison, 1984, p. 22).”  

Masyn (2003) suggests the distinction that discrete-time data should be measured in large 

enough intervals such that multiple events occur during each interval and continuous-

time data should be measured in small enough intervals such that no “ties” occur. The 

MPLUS statistical program requires this to be the case for analyses to be performed while 

other programs, such as R, allow for ties through exact partial likelihood, originally 
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proposed by Cox (1972), exact marginal likelihood, or approximations using Efron or 

Breslow’s methods. 

Though discrete-time and continuous-time methods have been in use for approximately 

the same time period, most literature on event history analysis is focused on continuous-time 

survival models. The reason for this is not entirely clear, though it is likely influenced by the 

“less-than-ideal situation of not knowing the exact time-of-event” (Masyn, 2003, p. 4) and the 

fact that, until relatively recently, the additional computing time necessary for discrete-time 

survival analysis was prohibitive. With modern computing, this has essentially become a non-

issue and analyses with discretely measured time are increasing in popularity (Allison, 1984). 

For the college graduation example used in this paper, discrete-time is used. This is for a 

few reasons. First, though exact time of graduation and drop-out is known, because students 

often experience these events en masse, graduation occurs only at the end of the semester and 

most students who drop out also do so at the end of a semester, it makes more sense to measure 

time in discrete-time units (i.e., semesters). While not addressed in this paper, using discrete-time 

would also allow for time varying covariates such as GPA by term or class attendance. This 

adheres to the assumptions of discrete-time survival analysis that for each discrete-time interval 

each independent variable has one and only one value, and that if the discrete-time intervals are 

created from underlying continuous-time, that censoring occurs at the endpoint of the discrete-

time interval. If time-varying covariates are present, discrete-time survival analysis also does not 

require the proportionality of hazard curves that is assumed in survival analysis methods (Masyn, 

2003). 
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Assumptions of survival analysis. One of the assumptions of a survival analysis is that 

censoring is non-informative, that is, the censoring of a subject is independent of his or her 

likelihood of experiencing the event. At the end of the study it is assumed that if a student has 

not graduated that he or she still may or may not graduate, but the end of the study is 

independent of the occurrence of that event. This also means that if a subject is lost to follow-up 

that it is assumed that the subject still may or may not graduate, but in either case their 

graduation is independent of being lost to follow-up.  

This presents the first of two main issues when using survival analysis to analyze events 

such as graduation. Under the model most commonly used, students who graduate are said to 

have experienced the event, and those who drop out or have not graduated by the end of the 

study are censored. Students who drop out are censored at the time at which they drop out; 

however, this censoring is informative. Once the student has dropped out, it can be reasonably 

assumed that the student has a lower likelihood of graduating, a zero percent chance to be exact 

unless they re-enroll. Censoring from drop-out is therefore far from independent of the subject 

experiencing the event of graduation. Also, because these subjects are censored in the same way 

that a student who is still enrolled at the end of the study, both are treated the same in the 

statistical test, though the researcher knows the students do not have the same chances of 

eventually graduating. 

 While the graduation of its students is certainly the end goal of all universities, it is not 

the only outcome measure universities are interested in. Present in much of literature regarding 

post-secondary student success is also the topic of retention – a measure of how well a school 

retains its students from year to year. Generally the most common metric is the first-year 

retention rate. While this is certainly closely linked to graduation, the timing of this occurrence is 
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also of importance to a university. Improving graduation rates for a university that loses most 

students after their second year requires a completely different approach than if the university 

loses most students after the first year. This presents the second main issue with survival analysis 

as it is most commonly used in modeling college student graduation – the number of events. As 

survival analysis is most commonly used, the event of interest is student graduation which treats 

students who drop out and those who continue their studies but have not yet graduated as the 

same. This scenario is illustrated below in Table 2 with subjects 2 and 3 treated the same as both 

are non-graduates. 

Table 2 

Survival Data with Event of Graduation 

Subject 
Time Period 

Description 
1 2 3 4 5 

1 0 0 0 1 . Graduated Time Period 4 

2 0 0 0 0 0 
Did not Graduate 

(Enrollment Uncertain) 

3 0 0 0 . . 
Missing Data 

(Non-Informative Censoring) 

 

Conversely, if the event of interest was student drop-out, the analysis would treat those 

who graduate and those who continue their studies but have not yet graduated the same. This 

scenario is modeled below in Table 3 with subjects 2 and 3 treated the same as both have not 

dropped out. 

 

 



16 
 

Table 3 

Survival Data with Event of Drop-Out 

Subject 
Time Period 

Description 
1 2 3 4 5 

1 0 0 0 1 . Drop-Out Time Period 4 

2 0 0 0 0 0 
Did not Drop Out 

(Graduated or Still Enrolled) 

3 0 0 0 . . 
Missing Data 

(Non-Informative Censoring) 

 

As mentioned previously, one of the assumptions of survival analysis is that lim
𝑡→∞

𝑆(𝑡) = 0 which 

indicates that it is assumed that every subject is at risk for the event until they have experienced 

the event, or that every college student is assumed to graduate eventually. This is of course not 

the case. Nationally the average six-year graduation rate is only 59% (NCES 2013). In fact, for 

many of the previously mentioned uses of survival analysis – marriage, divorce, child birth, etc. 

– it cannot be reasonably assumed each subject will eventually experience the event.  

Competing Risks 

 In Graunt’s life tables, there existed only one event of interest, that of mortality. Though 

through his study, he examined many causes of mortality. This was crucial as when predicting 

lifespan it is indeed very important to distinguish between things like accidents and war and 

things like the plague and heart attack. Those who perish in workplace accidents, for example, 

are certainly removed from the risk of perishing from a heart attack, though certainly not by any 

measure of good fortune. The idea of cause-specific hazards was developed by Daniel Bernoulli, 

whose paper on the advantages of smallpox inoculation included a hypothetical life table 

mapping the mortality of individuals at different ages were smallpox to be eradicated (Klein & 
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Moeschberger, 2003). His methodology included examining subjects who moved from state A 

(those not having smallpox) to state B (those having smallpox) before perishing.  

This idea of examining if a subject will experience one event before another event of 

interest occurs is particularly important in the medical field – especially cancer research (Belot, 

Abrahamowicz, Remontet, & Giorgi, 2010; Chapman et al., 2008; Chu-Ling et al., 2009; Ryberg 

et al., 2008; Schairer, Mink, Carroll, & Devesa, 2004). To study the mortality of cancer patients 

it is certainly necessary to distinguish between cancer patients who perish from cancer-related or 

non-cancer-related causes. In essence, researchers examine the likelihood that a subject is to 

perish from cancer before they would perish from some other cause. In the case of mortality, 

death from one cause precludes death from another cause and as such, these events are thought to 

be in competition with one other or, in other words, competing risks.  

Cause specific hazards. The hazard function defined above in a single-event 

survival analysis must be amended to account for the competing risks. In contrast with a 

single-event survival analysis for which there is only one type of event of interest and 

therefore only one hazard function, a competing risks analysis will include a hazard 

function for each event type called a cause-specific hazard function. As defined earlier, 

the single-event survival analysis hazard function is the instantaneous risk of 

experiencing the event given no previous event has occurred. The competing risk cause-

specific hazard is likewise the instantaneous risk experiencing a specific event given no 

previous event, of any type, has occurred and is defined as: 

ℎ𝑖(𝑡) =  lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝛿 = 𝑖|𝑇 ≥ 𝑡)

∆𝑡
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where i = 1,…,K with K (K≥2) event types and T =Min(X1,…,XK) survival time (Klein & 

Moeschberger, 2003). We are interested in only the minimum value for T due to the fact that, as 

defined above, the occurrence of a competing risk precludes the occurrence of any other risk. A 

cancer patient, for example, who perishes from heart disease, is of course no longer at risk of 

death from cancer. While it is certainly possible that had the patient not perished from heart 

disease they would have eventually perished from cancer-related causes, this cannot be known as 

the occurrence of the first event, death from heart disease, precluded any possibility of the 

occurrence from the second event, death from cancer. 

 The overall hazard rate, the total risk of experiencing an event of any type, at time t is: 

ℎ(𝑡) = ∑ ℎ𝑖(𝑡)

𝑘

𝑖=1

 

irrespective of whether the events are independent of one another, which is discussed at the end 

of this chapter. At the time of event occurrence of type i the probability of that event occurring is 

therefore ℎ𝑖(𝑡)/ℎ(𝑡) (Cleves, 2010). 

 Cumulative incidence function. As with single-event survival analysis, 

competing risks is not only interested in the hazard present, but also in the probability of 

the occurrence of a competing risk. Due to the nature of competing risks, this cannot be 

summed up in a single-event survival probability as before but with three different 

probabilities: crude, net, and partial crude. The crude probability describes the probability 

of experiencing a certain event in a world where the subject is at risk of experiencing all 

competing risks. This probability is calculated by the cumulative incidence function. The 

net probability describes the probability of experiencing a certain event in a world where 
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that certain event is the only event the subject is at risk for. The partial crude probability 

describes the probability of experiencing an event in a world where some event types 

have been eliminated (Klein & Moeschberger, 2003) 

The survivor function at time t describes the probability of surviving, or not 

experiencing the event of interest, past time t and was defined previously as 𝑆(𝑡) =

𝑃(𝑇 > 𝑡). The creation of an opposing function that models the probability of failing or 

experiencing the event of interest, up to and including time t, would be calculated by 

simply subtracting the survivor function from 1. This failure function would therefore be: 

𝐹(𝑡) = 1 − 𝑃(𝑇 > 𝑡) = 𝑃(𝑇 ≤ 𝑡). 

where T is the time of the event. While this is essentially modeling the same thing and simply 

changing the direction one is interpreting from, it becomes advantageous to the survivor function 

when discussing competing risks. This is due to the fact that, as mentioned previously, with 

competing events we are only interested in the time to the occurrence of the first event. To use 

the student retention and graduation example, one could ask “What is the probability that a 

student will drop out within the first two years?” or “What is the probability that a student will 

graduate within four years?” and both questions could be easily interpreted as the occurrence of 

either event indicates the other event did not occur previously. Both of these involve asking 

about the probability of experiencing an event, or “failing” before a certain time. Conversely, we 

could ask “What is the probability that a student will not drop out during the first two years and 

that after that they will not drop out but will graduate?” or “What is the probability that a student 

will not graduate within the first four years and after that will not graduate but will drop out?” 

Both of these questions involve asking about the probability of not experiencing the event or 
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“surviving” past a certain time. Simply by the wording of the questions it is clear that asking and 

interpreting questions in the presence of competing risks is far easier when done from the 

perspective of “failing” or experiencing the event, than “surviving” or not experiencing the 

event. It is for this reason that with competing risks, rather than investigating a modified survivor 

function, we are instead interested in a modified failure function known as the cumulative 

incidence function (Cleves, 2010). The probabilities computed with this function are the crude 

probabilities mentioned earlier which model a world in which a subject is at risk for all possible 

competing events. With i = 1,…,K event types, this function is defined as 

CIF𝑖 = 𝑃(𝑇 ≤ 𝑡, 𝛿 = 𝑖) 

where T is the time of the event. This can be seen to be only a slightly modified version of the 

failure function above. Put simply, the cumulative incidence function is the probability of 

experiencing event i by time t (Klein & Moeschberger, 2003). 

 Models. Analyzing competing risks data involves utilizing one of two general 

methods – modeling the risks separately, or simultaneously. Modeling the risks 

separately involves analyzing time to a specific event of interest and treating all other 

events as censored utilizing either a parametric survival model, such as Weibull or 

Gompertz, or a semi-parametric survival model such as Cox Proportional Hazards. This 

process is then repeated by replacing the event of interest with a different competing risk 

and treating all others as censored. This will result in K different models, where K is the 

number of competing risks. Modeling the risks simultaneously involves utilizing a 

method proposed by Fine and Gray (1999). Deciding how to model the competing risks is 

not an issue when modeling hazard functions as the overall hazard function h(t) is simply 
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a sum of all cause-specific hazards and, as demonstrated by Cleves (2010), results from 

simultaneous modeling identically matches that of separate modeling. This, however, is 

not the case when modeling survival or failure probabilities, though both modeling risks 

separately and modeling them simultaneously can be seen to have advantages and 

disadvantages. While survival analysis via the Kaplan-Meier estimator or Cox 

proportional hazard regression is generally included in most commercial statistical 

software, this cannot be said of competing events analysis using Fine and Gray’s method. 

Though different competing risks models can be run in programs like SAS or SPSS, it 

often requires intensive programming or is limited to modeling risks separately as there is 

no pre-programmed competing risks function for either program. Other programs, such as 

STATA and R, do have this ability, but are less widely used. This alone may be part of 

the reason that modeling risks separately, or just modeling one risk, appears to be more 

common in literature (Chimka et al., 2007; Heilig, 2011; Min, Zhang, Long, Anderson, & 

Ohland, 2011; Murtaugh, Burns, & Schuster, 1999). 

Modeling cumulative incidence functions using cause-specific hazards. Separate 

modeling has the benefit that estimating models for each risk separately allows for far more 

flexibility in parameters and models used. This is because each risk can be modeled in a different 

way having different independent variables used. It also allows for the exclusion of events that 

are not of interest, though certainly much caution must be taken if doing so (Allison, 1984). 

There are, however, downsides of this modeling process that are solved by modeling 

simultaneously. First, when modeling risks separately it is done so assuming that competing risks 

are uncorrelated, which is unlikely for many if not most scenarios. Second, the failure function 

𝐹(𝑡) = 1 − 𝑆(𝑡) does not account for the possibility of competing risks. As mentioned 
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previously, it is assumed that lim
𝑡→∞

𝑆(𝑡) = 0 and therefore it follows that lim
𝑡→∞

𝐹(𝑡) = 1. However, 

while the failure function will indeed always approach one when modeling risks separately, the 

cumulative incidence function (which models risks simultaneously) for each event type must 

have a limit of strictly less than one due to the fact that each competing risk must have some 

probability of occurring (Cleves, 2010). If this were not the case, it would certainly be 

unnecessary to use a competing risks analysis as a traditional single-event survival analysis 

would suffice. 

Modeling cumulative incidence functions using subdistribution hazards. Modeling the 

risks simultaneously has the advantage that it does not assume the competing risks are uncorrelated 

and does account for the possibility of more than one event; however, it also has its disadvantages. 

To describe these, it is necessary to backtrack to the earlier discussion of hazard probabilities for 

an illustrative comparison. In a single-event survival analysis the interpretation of a hazard 

probability in the presence of a covariate is quite straightforward. For simplicity sake, take an 

example of an analysis with a treatment group and a control group. If the hazard probability for 

treatment is .8, this would indicate that the hazard on the treatment group is 80% of the hazard on 

the control group or that the survival of the control group is 80% of the treatment. This could be 

translated into survivor functions for both control and treatment where the control survivor 

function is raised to the .8 power as such 

𝑆𝐶(𝑡).8 = 𝑆𝑇(𝑡). 

As such, the hazard probability is a clearly understood summary of the comparison. It is 

unfortunately not as clear when discussing cause-specific hazards. To return to the college 

student retention and graduation model, if one were to model time to the competing events of 
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retention and graduation with the covariate of gender, for example, the resulting cumulative 

incidence functions would depend on the effect of gender on graduation and the effect of gender 

on retention, both the graduation baseline hazard and retention baseline hazard, and also on time 

itself (Cleves, 2010).  This makes for a cumbersome and complicated interpretation. A model 

proposed by Fine and Gray (1999) sought to solve this issue by instead modeling an alternative 

subdistribution hazard (or subhazard) function that is more easily interpreted for cumulative 

incidence functions. This semi-parametric model for the hazard of experiencing event i is: 

ℎ̅𝑖(𝑡) =  lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝛿 = 𝑖|𝑇 > 𝑡 ∪ 𝑡 ≤ 𝑇, 𝛿 ≠ 𝑖)

∆𝑡
 

The subhazard is therefore the instantaneous probability of experiencing event i at time t given 

that no event had been experienced before t or that an event other than event i had been 

experienced prior to time t. In other words, this subhazard function models the hazard of 

individuals experiencing event i but, unlike the previously defined cause-specific hazard, does 

not remove the subject from risk when a competing event occurs. Using our earlier college 

student example this would be akin to saying a student who has graduated from college is still at 

risk of dropping out, which is of course not the case. The authors do point out that this is indeed 

an “un-natural” risk set but also point out that this methodology is not unique to their model but 

is also used in the cure model also known as the long-term survivor model. This model is a type 

of survival analysis where individuals who have been “cured” are still included in the analysis of 

the survival model and thus are considered at risk (Fine & Gray, 1999, p. 497). 

 However, despite all this, the subhazard is indeed a very convenient way to model the 

cumulative incidence function for a specific event i because it is modeled as a function of solely 
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event i. This has the benefit of allowing an easy interpretation of covariate effects on the 

cumulative incidence function due to the direct link between them.  

Identifiability dilemma. In competing risks analysis, we observe only the event with 

minimum time t to event i. In many cases, the occurrence of event i precludes the occurrence of 

any other event, but does not indicate that no other event could have occurred. Take for example 

a competing risks analysis examining time to death of patients with competing risks of cancer, 

heart disease, and other. Should a patient perish due to cancer, it certainly cannot be said that that 

person would never have died of heart disease in the absence of cancer, only that in the presence 

of cancer it would be the cause of death. If there were a cure to cancer, this subject would surely 

have perished of another cause eventually, possibly of heart disease. This presents us with the 

identifiability dilemma. Since the separate modeling of cause-specific hazards assumes 

independence of event times, it is surely important to ensure this is the case. However, since we 

cannot observe the eventual event times of events that did not occur first, it is not possible to test 

the assumption that event times are independent (Klein & Moeschberger, 2003). We are 

therefore unable to distinguish between event times that are independent and infinitely many 

dependent event times that result in identical cause-specific hazards (Rodriguez, 2005). 

Frailty 

 In a traditional linear regression, all sources of variation not accounted for by the 

independent variables are combined into a random error term. This error term is necessary as it is 

highly unlikely that in any empirical research that all sources of variation are accounted for by 

the independent variables. This is, however, the assumption of survival analysis, which includes 

no random error term and therefore assumes all sources of variation have been observed  

(Masyn, 2003). These sources of population heterogeneity may be covariates that were not 
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included in the model or covariates that are simply unobservable. In any case, these sources of 

variation are, by definition, not estimated by the data. A frailty model is one that accounts for 

unobserved heterogeneity of variance by modeling a random-effects model that contains within-

group correlation where the groups are unobserved. In any set of subjects it is likely that certain 

subgroups of the population – subgroups that are unknown to the researcher – not only exist but 

have hazards which differ from those in other subgroups. Defined in Klein and Moeschberger 

(2003, p. 51), a frailty is “an unobservable random effect shared by subjects within a subgroup.” 

An easy example would be a study of mortality in which a subgroup of the population had an 

unknown heart defect. Certainly it is reasonable to assume that these subjects are likely to be 

more at risk of death than the general population. These subgroups would therefore have 

different frailties that may be able to be estimated by the model.  

Vaupel (1979), who coined the term frailty, notes that the frailty of an individual does not 

vary over time, but remains the same from birth to death. The authors also defined frailty in 

relative terms where an individual with a frailty of 1 would be considered the standard, with 

frailty values less than 1 indicating the individual is less frail or less likely to experience the 

event, and frailty values greater than one indicating an individual is more frail or more likely to 

experience the event. An individual with a frailty value of 2 would be considered twice as frail as 

the standard individual. The frailties are a multiplicative effect that acts directly on the hazard of 

an individual. We can therefore account for these frailties in the hazard function as such 

ℎ(𝑡𝑗|𝑿, 𝛼𝑗) = ℎ0(𝑡)𝛼𝑗𝑒∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1  

where αj is the frailty of individual j, ℎ0(𝑡) is the baseline hazard, β is a p × 1 vector of unknown 

parameters, and X is a p × 1 vector of independent variables (Cleves, 2010).  
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 Since the subgroups are, by definition, unobserved, it is necessary to note that it is often 

not possible to empirically distinguish between a heterogeneous population made up of 

unobserved subgroups and a homogeneous population that simply changes over time (Trussell & 

Richards, 1985). For example, should a study investigate time to first injury of mountain bikers 

and find a decreasing hazard over time, one of two things could be inferred. One could infer that 

the decreasing hazard occurs because the population contains two subgroups with one group 

composed of those not predisposed for mountain biking who would therefore fail early leaving 

those who are better suited and at less risk to comprise the population, or one could infer that the 

population is homogeneous and the decreasing hazard over time is due to the fact that the more 

experienced the mountain biker is, the less likely he or she is to be injured. It is therefore 

important that care is taken in applying these methods to certain situations. 

 Ignoring unobserved heterogeneity of variance. In literature modeling college student 

success, certain predictors are quite common. These are things like high school grade point 

average, high school rank, standardized test scores, early college grade point average, ethnicity, 

and gender. However, even if a researcher had access to the entirety of a university’s data 

warehouse and included predictors such as family income, first-generation status, high school 

attended, college major, scholarship and other financial aid information, hours attempted, and 

standardized test sub-scores, it would still be far from including every source of variation in 

student success. If it were true that all covariates have been included, as is the assumption of 

survival analysis, it would indicate that given two students who are identical in academic scores, 

demographics, family background, etc., we would expect the exact same likelihood of success 

for these two students. However, intelligence and family background paint only a part of the 

picture. Work ethic and motivation play a large part in student success though are unlikely to be 
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observed. Teachers and other educators could likely point to a litany of other unmeasured factors 

that play roles in how and why students succeed.  

 It is widely known that the omission of variables in a standard regression model leads to 

bias in the parameter estimates unless the omitted variables are uncorrelated with those variables 

that are included.  This, however, is not the case with survival analysis. Suppose a population of 

1,000 consists of two unobserved groups, A and B, of size 500 which, unknown to the 

researcher, each experience a constant hazard function with group A being at a lower risk of 

hazard (ℎ(𝑡) = .1) and B being at a higher risk of hazard (ℎ(𝑡) = .3) similar to the mountain 

biking example above. The population sizes over time are listed below in Table 4. 

Table 4 

Unobserved Group Population Size Over Time 

Group 
Time Period 

1 2 3 4 5 6 7 8 9 10 

A 500 450 405 365 328 295 266 239 215 194 

B 500 350 245 172 120 84 59 41 29 20 

Total 1000 800 650 536 448 379 325 280 244 214 

 

During the first time period it would simply appear as though the entire population was at 

moderate risk of hazard. However, recall that the hazard probabilities are conditional on the 

proportion of the population that has yet to experience an event. As time proceeds and members 

of group B experience events at a higher frequency to members of group A due to their higher 

hazard, the overall hazard will be based increasingly on members of group A who experience a 

lower hazard. This can be seen in Table 5 below. 
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Table 5 

Unobserved Group Hazard Rate Over Time 

Group 
Time Period 

1 2 3 4 5 6 7 8 9 10 

A 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

B 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 

Overall 0.200 0.188 0.175 0.164 0.154 0.144 0.136 0.129 0.124 0.119 

 

This will have the effect of the appearance of a time interaction where the hazard decreases with 

time. In other words, as time progresses and an increasing number of members of group B are 

censored, the overall hazard function will converge to the constant hazard of group A as 

eventually all members of group B will be censored leaving only group A members (Masyn, 

2003; Trussell & Richards, 1985) as seen below in Figure 1.  
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Figure 1. Unobserved group and overall hazard rate over time. 

 

It can therefore be seen that in any population that contains two or more groups with differing 

hazard rates that the overall hazard rate will always converge to the rate of the lowest hazard 

group given a study of sufficient length. It is therefore important to account for such groups to 

avoid bias in the hazard function. 

Summary 

 Literature on event analysis is widespread and present in a vast variety of fields. The 

methods of analysis used in these studies, however, are often simplified by omitting useful 

information. The inspiration for this paper was born, as many ideas are, out of necessity when 

trying to answer the question, “how likely is a college student to graduate, and if they do not, 

when will they drop out and why?” A review of literature on the topic found a significant portion 

of these studies employed logistic regression as the principal method of analysis (Berkovitz & 

O’Quin, 2006; Herzog, 2005; Robertson & Taylor, 2009; Szafran, 2001; Williams & Luo, 2010; 
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Zhang et al., 2004). However, using this methodology, event data are condensed to only a single 

dichotomy and time data are omitted entirely. Survival analysis addresses the timing issue and 

has the benefit of not restricting that all participants enter the study at the same time, subjects 

may enter and leave the study at will and still contribute useful information to the analysis, but 

competing risks are often omitted. Use of survival analysis to model retention and graduation 

data are present in literature and is becoming more common (Chimka et al., 2007; Min et al., 

2011; Murtaugh et al., 1999), though likely due to the difficulty of obtaining all the necessary 

time data and the more complicated interpretation; it still appears to be less common than logistic 

regression in literature. However, it does have the benefits of wide availability in commercial 

statistical programs and frequent use in other fields in literature. 

 While survival analysis does have its advantages, it often presents issues when modeling 

time to events other than death. In its traditional use, survival analysis is used to model the 

lifetime of a subject with the single event death as the event of interest. Because this is the 

original purpose, it is logically assumed that all subjects are at risk of perishing until they 

eventually perish. This presents an issue when modeling time to an event that does not 

necessarily occur for all subjects. Since all subjects are assumed to eventually experience an 

event, there must be an end event for all subjects. If a subject is, for some reason, no longer at 

risk for the event of interest, the subject can then be considered “cured,” which is identified as a 

second type of event as opposed to the non-occurrence of the event of interest. It is necessary to 

consider this as a second type of event due to the fact that the lack of occurrence of an event, also 

known as censoring, must be independent of a subject experiencing an event. This is known as 

non-informative censoring. Likely due to the complexity of dealing with a second event, much of 

the literature dealing with such circumstances treats those who will not experience the event as 
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censored – which violates the assumption of non-informative censoring. This indeed does have 

its consequences. In an analysis of coronary heart disease, Wolbers et al. (2009) found that 

ignoring a competing risk resulted in a significant overestimation of coronary heart disease risk 

when compared to a model that accounted for the competing risk. Likewise, Kim (2007) found a 

substantial overestimation of cumulative incidence of relapse in examining allogeneic 

hematopoietic stem cell transplantation when time was modeled to relapse with transplant-

related mortality treated as censored. 

 To account for multiple types of events, a competing risks analysis must be used. This 

type of analysis allows for the modeling of time to two or more competing events where the 

occurrence of one event precludes the occurrence of other events. There are two common 

methods of analyzing competing risks data: analyzing risks separately using cause-specific 

hazards, and analyzing risks simultaneously using subdistribution hazards. Each method has its 

advantages; however, any analysis of competing risks will violate at least one assumption 

regardless of the method used, or at the very least, will have an assumption that is not possible to 

prove has not been violated.  

Modeling risks separately using cause-specific hazards assumes the competing risks are 

independent – an assumption which is impossible to prove outside of simulation given the nature 

of the data. Modeling risks simultaneously using subdistribution hazards has no such 

assumptions, but does assume that individuals are still at risk of a competing event even after 

experiencing an event – which is contrary to the definition of competing risks. Literature 

comparing these methods shows mixed results with no clear advantage of one method over the 

other for all circumstances. An article on coronary heart disease by Wolbers et al. (2009) found 

quite similar, though not identical, results when using the Fine and Gray subdistribution hazard 
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model as when modeling separately using cause-specific hazards. A simulation study by Dignam 

et al. (2012) suggests that both models perform similarly when event times are uncorrelated and 

group membership is also uncorrelated to event time. The authors also found that when event 

times are uncorrelated and group membership is correlated to event time that modeling risks 

separately using cause-specific hazards appears more accurate. When event times are positively 

correlated however, the authors found mixed results, with cause-specific hazards performing 

better when one group experiences a higher hazard for both competing events, subdistribution 

hazards performing better when groups experience different hazards on both competing events, 

and similar performance when group membership was uncorrelated with event type. Williamson 

et al. (2007) also found mixed results with a simulation study comparing these two methods. 

They similarly found that the cause-specific hazard method is more accurate when event times 

are uncorrelated and group membership is correlated with the subdistribution hazard method -  

inflating type 1 error. The authors found that the subdistribution hazard method has greater 

power in detecting differences in treatment and improves in performance as event times are 

increasingly negatively correlated. The authors ultimately recommend that researchers utilize 

both methods in any analysis of competing risks data. A simulation study by Freidlin and Korn 

(2005) found the subdistribution hazard method to be unreliable in detecting group differences, 

especially when group affects both event types, and found the cause-specific hazard method to 

be more robust. These results, however, only examined positive and zero correlations between 

event times. The authors also found that when group membership affected only one event type 

and event types were highly correlated that the subdistribution hazard method had a higher 

power to detect group differences than the cause-specific hazard method. 
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Though competing risks addresses many of the issues of the previously mentioned 

methods, there is still one assumption that is likely not to hold in any survival analysis. Because 

survival analysis contains no error term, it is assumed that in any analysis that every source of 

variation, i.e. every covariate, has been included in the analysis. It is highly unlikely that any 

study outside of a laboratory can control for every possible source of variation. To account for 

the possibility of uncontrolled covariates requires the modeling of frailty. Literature on frailty 

suggests that indeed omitting these variables from the analyses creates bias in the results, though 

accounting for these unobserved sources of heterogeneity by modeling frailty requires caution. 

Using an application of the Cauchy-Schwartz theorem, Heckman and Singer (1984) were able to 

demonstrate that the presence of uncontrolled variables, whether they be observable or 

unobservable, creates bias in the estimated hazard function that has the effect of a sharper decline 

or slower rise in the overall hazard function than would be seen in the presence of the covariates. 

However, the authors do warn that the results can be sensitive to the parametric form chosen for 

the frailty model. Trussell and Richards (1985) confirm and extend this warning to 

nonparametric representations of heterogeneity, which are sensitive to hazard choice. 

 As interest has grown in modeling time-to-event data, survival analysis is increasing in 

occurrence in current literature in a variety of fields. However, when survival analysis is used to 

analyze data where more than one event is possible, at least one assumption is violated regardless 

of the method of analysis used. The effects of varying data parameters on survival analysis with 

competing risks, which lead to different violations of assumptions, while receiving some 

attention in current literature, are still largely unknown. This purpose of this study is to compare 

methods of analyzing competing risks models to investigate the effects that varying parameters 

have on model estimates.  
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Chapter III: Method 

 This study was designed to supplement current event history literature by investigating 

unresolved issues in modelling competing risks data. In current literature, survival methods are 

used in varying fields under a multitude of conditions. Many of these conditions do not satisfy 

the assumptions of these tests which may invalidate the results of these studies. These 

assumptions are: 1) lim
𝑡→∞

𝑆(𝑡) = 0 which indicates that all subjects will experience the event 

eventually, 2) censoring is non-informative, and 3) all sources of variation have been observed 

and are included in the model. Issues arise with the first assumption when studies model time to 

an event that is not death such as relapse, recidivism, graduation, episode of drug abuse, and 

other such events where it is quite possible that the subject will never experience the event of 

interest. The second assumption requires attention when competing events are possible. When 

modeling time to an event such as death by cancer, high school drop-out, component failure or 

other such events where competing events are possible, it is common to see these competing 

events treated as censored or missing when the information these competing risks provide is 

likely informative. The third assumption is likely never met. Except in the most highly controlled 

laboratory experiments, it is highly unlikely that any study can claim to include even most 

sources of variation, let alone all sources. 

To investigate the effects of these assumptions on different models, a simulation study 

was conducted using a variety of parameter combinations. In this simulation study four methods 

of survival analysis will be tested modeling two groups with two competing risks or events. The 

methods of survival analysis are: separate event modeling using cause-specific hazards and 

treating the competing risk as censored which will be modeled both in a parametric model and a 

semi-parametric model, simultaneous modeling of subdistribution hazards using Fine and Gray’s 
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method, and modeling separately using cause-specific hazards with frailty. The variables 

manipulated in this study are: sample size, correlation between event times, event time format, 

group failure rates by event type, event time distribution shape, and frailty. 

Manipulated Model Parameters 

 Sample size. The first parameter manipulated is the sample size of the groups. In this 

study, two balanced groups are utilized for comparison. Simulation studies in current literature 

have not varied sample size, so implications are unknown. Sample size per group was selected as 

250 and 500 for total sample sizes of 500 and 1000. Sample sizes were chosen to represent small 

and moderate size cohorts in universities with the belief that samples larger than 1000 will not 

significantly increase statistical power. 

 Correlation between event times. The next parameter manipulated is the correlation 

between event times. This parameter can only be theorized because in practice only one event 

will actually occur. It is therefore impossible to find the correlation between two events with one 

event having an unknown time. However, despite not knowing the timing of the second event, it 

is quite likely that two competing events could be correlated or could be independent depending 

on the type of event. If, for example, one were interested in time to death by heart disease a 

competing event could be death by auto accident. As death by auto accident is often unrelated to 

the age or health of the individual, it is likely that the timing of a possible death by auto accident 

would be uncorrelated with the timing of a possible death by heart disease. Alternatively if one 

were interested in time to first arrest of disadvantaged youths in the inner city with competing 

events of vandalism and theft, it could certainly be hypothesized that the timing of a possible 

arrest due to vandalism could be correlated with the timing of a possible arrest due to theft. 
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Likewise, in the student retention and graduation example, it is unlikely that the events of drop-

out and graduation would be uncorrelated. 

 Although it is difficult to theorize possible correlations, since it is possible that the event 

times could be correlated, it is necessary to control for this possibility. In this simulation study 

two event times, one for each event type, are created with the minimum of these times being 

selected as the event time and the corresponding event selected as the event type. Simulation 

studies by Dignam et al. (2012) and Williamson et al. (2007) both suggest that when event times 

are uncorrelated, separate modeling using cause-specific hazards performs better. However, 

when event times are correlated, both papers found mixed results. As separate modeling using 

cause-specific hazards assumes event times are uncorrelated and simultaneous modeling using 

subdistribution hazards does not, different results are unsurprising.  

Since correlation between event types is purely theoretical, it is impossible to determine 

what values are likely in practice. It is hypothesized that a very strong correlation between event 

times is unlikely in most situations and that moderate and weak correlations are more likely. To 

examine what the effects are of correlations on the stronger side of what is hypothesized to be 

possible, correlations between event times used in this study are -0.4 and 0.4 with 0 included to 

represent events that are uncorrelated. Weaker correlations would be expected to have less of an 

effect on results than ±0.4 but more of an effect than no correlation. 

 Event time format. The next parameter manipulated is the format the event times are 

recorded in. Most literature on survival analysis is focused on data that is recorded continuously, 

with exact times and dates for the event recorded. However, it is not always possible or 

economical to measure time data continuously. It is also sometimes advantageous, such as in the 
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presence of time varying covariates, to have time data recorded in discrete intervals. In the 

student retention and graduation data used, data are recorded in discrete-time. This is due to the 

fact that while often the exact date is generally known for graduation, students do not always 

formally drop out but often simply stop coming or registering for classes. Data are first simulated 

as continuous then converted to a discrete format for comparison of analysis results. 

 Group failure rates by event type. The next parameter manipulated is the failure rate of 

each group for each event type. In this simulation group is the sole independent variable with 

differences between the groups being different likelihoods of experiencing the events. Results of 

these statistical analyses are displayed as hazard ratios of one group to the other. Failure rates of 

0.5 and 1 are used to investigate the ability of the statistical tests when failure rates are: equal 

across groups and events, equal across events but double for one group, unequal across events 

with one event being more likely for one group and both events equally likely for the other. 

Failure rate combinations were chosen to represent: no covariate effect, equal covariate effect for 

both event times, and unequal covariate effect for event times respectively. Unequal covariate 

effect for event times is hypothesized for graduation and retention as it is likely that covariates 

would affect these events differently. The ratio of the failure rate of group 2 to the failure rate of 

group 1 is referred to as the hazard ratio. 

 Event time distribution shape. The next parameter manipulated is the event time 

distribution shape. The most common method of analyzing survival data, the Cox proportional 

hazard regression, is a semi-parametric test which makes no assumptions about the underlying 

hazard distribution. The Fine and Gray model also makes no such assumptions. Other parametric 

models, such as Weibull and exponential, make assumptions about the underlying hazard 
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distribution. To evaluate the performance under different distributions, survival times are drawn 

from a Weibull distribution, as is commonly done in literature, using the quantile function 

𝑄(𝑝; 𝑘, 𝜆) = 𝜆(− ln(1 − 𝑝))1/𝑘 

where λ is the scale parameter and k is the shape parameter. With k = 1 the Weibull distribution 

is the exponential distribution. Shape parameter k = 1 is used as a comparison due to its 

commonplace in recent literature. Shape parameter k = 2 is used due to its similarity with the 

student graduation distribution shown later in Figure 5. Both distributions are positively skewed 

though the graduation distribution is shifted further right. In Figures 2 and 3 below the Weibull 

distribution with both of the shape distributions are illustrated. A sample of 10,000 survival times 

was drawn from each of the distributions to create the following figures.  

 

Figure 2. Weibull distribution with shape parameter k=1. 
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Figure 3. Weibull distribution with shape parameter k=2. 

Frailty. The last parameter manipulated is frailty. Frailty accounts for unobserved 

heterogeneity of variance. Frailties are chosen such that the average frailty is constant across 

groups while the variance within group is acted on multiplicatively by the frailty parameter. 

Levels of the frailty parameter are set at no multiplicative frailty variance within group, moderate 

multiplicative frailty variance within group (multiplicative factor of 1.5 on standard deviation) 

and large multiplicative frailty variance within group (multiplicative factor of 2 on standard 

deviation).  

Analyses 
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interest and treats all event 1 times as if they are censored. These analyses are conducted using 

the coxph function included in the Survival package in R. 

The second method is separate analysis of competing risks using two Weilbull 

regressions. The first analysis distinguishes event 1 as the event of interest and treats all event 2 

times as if they are censored. The second analysis distinguishes event 2 as the event of interest 

and treats all event 1 times as if they are censored. These analyses are conducted using the 

survreg function included in the Survival package in R. 

 For the third method, two competing risks regressions are conducted in modeling the 

risks simultaneously using Fine and Gray’s method. The first analysis distinguishes event 1 as 

the event of interest and treats event 2 as a competing event. The second analysis distinguishes 

event 2 as the event of interest and treats event 1 as a competing event. These analyses are 

conducted using the crr function included in the CMPRSK package in R. 

 The fourth method, like the first method, utilizes two Cox proportional hazard regressions 

to model competing risks separately with each analysis treating one event as the event of interest 

and the other as censored. This method however adds gamma frailty to the Cox proportional 

hazards regression. These analyses are conducted using the frailtypenal function included in the 

frailtypack package in R.  

The results of these tests are averaged over the 1,000 repetitions. The model estimates are 

then compared with the set hazard ratios for the simulated data to investigate each method’s 

ability to estimate the relative difference in failure rates between groups. The test of proportional 

hazards will be computed for each simulated data set. The proportion of these analyses found to 
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have significantly non-proportional hazards at α=0.05 will be calculated. The test of proportional 

hazards is conducted using the cox.zph function included in the Survival package in R. 

In total 216 combinations of conditions are evaluated. These conditions are summarized 

below in Table 6 and listed in detail in Table A1. 

Table 6 

Simulation Conditions 

  

Number of 

Levels 
Conditions 

Sample Size 2 500 1000   

Event Time Correlation 3 -0.4 0 0.4 

Event Time Format 2 Continuous Discrete   

Failure Rate: 

Number of 

Failures per 

Time Period 

Group 1 
Event 1 

3 

1 0.5 0.5 

Event 2 1 1 0.5 

Group 2 
Event 1 1 1 1 

Event 2 1 1 1 

Shape: 

Weibull 

Shape 

Parameter k 

Group 1 
Event 1 

2 

1 2   

Event 2 1 1   

Group 2 

Event 1 1 2 
 

Event 2 1 1   

Frailty: 

Standard 

deviation 

Multiplicative 

Factor 

Group 1 
Event 1 

3 

1 1.5 2 

Event 2 1 1.5 2 

Group 2 
Event 1 1 1 1 

Event 2 1 1 1 
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Simulation 

 Event times are simulated in r by sampling n event times for both event types from the 

standard normal distribution. A Cholesky decomposition is then multiplied by this 𝑛 × 2 matrix 

to obtain times that are correlated at the level set by the simulation. These times are then 

transformed into Weibull distributed data by calculating the cumulative density of these event 

times is then applying the Weibull quantile function. These Weibull times follow the function 

𝑒(𝑥) =  
𝑘

𝜆
(
𝑥

𝜆
)𝑘−1𝑒−(𝑥 𝜆⁄ )𝑘

     𝑥 ≥ 0 

where k and λ are the Weibull shape and scale parameters respectively.  

The shape parameter is assigned as 1 or 2 by the simulation and the scale parameter, the 

inverse of the failure rate, is likewise assigned as 1 or 2 by the simulation. An 𝑛 × 1 vector of 

normal distributed data was sampled with mean 1 and standard deviation assigned by the frailty 

factor and multiplied by the failure rate. The smallest event time is then selected as the 

“winning” competing risk. For discrete time simulations these event times are multiplied times 

four, shifted right one, and rounded to the nearest whole number to simulate student drop-out and 

graduation data. 

The data are then analyzed by each of the four models and the resulting output, the 

estimated hazard ratio, was averaged over each of the 1000 repetitions. This average is then 

compared with the hazard ratio set by the simulation, by the formula below. 

|𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜 − 𝑆𝑒𝑡 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜|

𝑆𝑒𝑡 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜
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The absolute value is taken of the difference to allow for average results by groups of similar 

conditions. The results prior to the absolute value can however be negative, indicating the error 

is an underestimate, or positive, indicating the error is an overestimate. 

Student Retention and Graduation Data 

 As an illustrative example, each model will be fitted to a student data set to examine 

performance with real data. The student data are a sample of 5,419 students from a four-year 

Midwestern university. Definitions for events and other terms are chosen to best approximate the 

goals of a university administration interested in retaining and graduating students and 

minimizing drop-outs. 

Enrollment. Student data spans six years with a record for each fall and spring semester 

indicating the student’s enrollment status as a student for each semester. Semester 12 is therefore 

considered the conclusion of the study. The student census is taken at the 11th day of the 

semester with any subject who was enrolled until at least the 11th day counted as being enrolled 

for that semester. Enrollment was defined as registration for any university program of study 

with any non-zero number of credit hours. 

Graduation. A student is considered graduated as long as he or she completes a program 

of study within six years of his or her first enrollment. A student who begins in a fall semester 

has until the end of the summer term of his or her sixth year to graduate to be counted among the 

graduates. This definition is used because six-year graduation rates are those published and of 

interest to universities. 

Drop-out. A student is considered retained so long as he or she is enrolled for the 

eleventh day census for each subsequent semester. As students may skip a semester between 
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enrollments, it is necessary to define a single, non-repeatable event as drop-out to permit 

evaluation as a competing risk. The event of drop-out is therefore defined as occurring directly 

before the first semester during which a student is not enrolled for the eleventh day census. A 

student is also said to experience the event of drop-out if he or she has not graduated within six 

years – even if the student stays enrolled. This is because a student who continues past six years 

without graduating is counted the same as a student who has dropped out in a university’s six-

year graduation rate. Students who drop out during or directly after their second semester, for 

example, would have an event time of 2. To account for students who stop out for a period of 

time before returning and completing a program of study within six years, the event of drop-out 

is ignored and replaced with graduate should a student complete his or her degree within six 

years. From the perspective of a university administration, for a student who drops out and later 

returns but does not graduate within six years, the first drop-out is likely to be the event of 

highest interest. For a student who drops out and later returns to graduate within six years, a 

university administration would have no reason to see that student as unsuccessful. 

Covariate. One categorical variable is included in the model. The categorical variable is 

a socioeconomic status proxy variable indicating if a student is either a first-generation student – 

a student who does not have a parent who has graduated from an institution of higher education – 

or is classified as a low-income student. A student meeting either condition is coded as 1; 

students meeting neither condition are coded 0. 

Event time distributions. Due to the nature of the issue being studied, the distributions 

for the two events are quite dissimilar. Students who experience event 1, drop-out, have an 

average event time of 5.34 with a standard deviation of 3.82. Drop-outs peak after the second 

semester and start a gradual downward trend ending with a sharp increase after semester 12 due 
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to the conclusion of the study and the subsequent conversion of all who have not graduated to the 

event of “drop-out” as previously defined. This distribution is displayed below in Figure 4. 

 

Figure 4. Event 1: Student drop-out occurrences by time. 

 

Students experiencing event 2, graduation, have an average event time of 8.76 with a 

standard deviation of 1.23. Event times for graduation are highly clustered at time period 8, 

which represents the standard four-year graduation time for a bachelor’s degree. This distribution 

is displayed below in Figure 5. 
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Figure 5. Event 1: Student graduation occurrences by time. 
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Chapter IV: Results 

 The following chapter presents a summary of the analyses conducted. The first section 

details the results of the simulation study which consists of 216 condition combinations each 

averaged over 1000 simulated data sets. Results are discussed as a comparison of the hazard ratio 

estimated by the model with the hazard ratio specified in the simulation. The estimated hazard 

ratio is computed by taking the exponential of the coefficient of the independent variable group 

while the simulation hazard ratio is computed by dividing the group 2 failure rate by the group 1 

failure rate. The second section details the results of the student retention and graduation 

analyses. Full results are found in Table A2.  

 This paper will define the following combination of conditions as the “base combination” 

from which comparisons will be made: sample size of 500 per group, continuous event time 

format, no correlation between event times, homogeneous shape parameter for both events for 

both groups, homogeneous failure rates for both events for both groups, and no frailty. For this 

condition, the parameter estimate is very accurate for all models as seen below in Table 7. 

Table 7 

Percentage Difference Between Model Estimates and Set Hazard Ratios 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards 

Regression with 

Frailty 

 
Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

Base 

Condition 
0.50% 0.56% 0.55% 0.58% 0.43% 0.44% 0.54% 0.57% 
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If any one parameter is changed from the base condition, most of the models are still able to 

estimate the parameter with good to fair accuracy as seen below in Table 8 – the main exception 

to this being Fine and Gray’s method when failure rate varies by group or event. 

Table 8 

        Percentage Difference Between Model Estimates and Set Failure Rates 

Parameter 

Changed from 

Base Condition 

Cox 

Proportional 

Hazards 

Regression 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox 

Proportional 

Hazards 

Regression 

with Frailty 

  Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

n=250 0.57% 1.42% 0.52% 1.52% 0.17% 1.60% 0.54% 1.47% 

Frailty = 1.5 2.43% 3.33% 2.46% 3.36% 1.58% 2.77% 2.45% 3.37% 

Frailty = 2 4.27% 5.71% 4.30% 5.72% 2.84% 4.64% 4.37% 5.74% 

Failure Rates 

0.5,1 
0.85% 0.38% 0.80% 0.31% 11.57% 30.75% 0.94% 0.33% 

Failure Rates 

0.5,0.5 
0.68% 0.71% 0.55% 0.58% 43.48% 43.52% 0.76% 0.72% 

Shape Parameter      

E1 k=1, E2 k=2 
0.52% 0.63% 0.16% 0.66% 0.29% 0.53% 0.52% 0.70% 

r = -0.4 0.60% 0.61% 0.54% 0.56% 0.44% 0.44% 0.61% 0.63% 

r = 0.4 0.46% 0.52% 0.54% 0.57% 0.42% 0.44% 0.48% 0.52% 

Discrete Time 0.49% 0.56% 0.30% 0.32% 0.37% 0.39% 0.72% 0.76% 

Note. Cells are shaded darker as the values deviate further from zero. 
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 The overall pattern of results is displayed below in Figure 6. Cells in this figure represent the 

deviation from zero of the absolute percentage difference between the estimated hazard ratio and the 

set hazard ratio. Values closer to zero are lighter in color and values further from zero are darker in 

color. From this it can be seen that the error in estimations by Cox proportional hazards are generally 

small but for certain blocks of parameter combinations these errors are quite large. A very similar 

pattern is seen in Cox proportional hazards with frailty. For the Weibull regression it can be seen that 

most errors are fairly small and for Fine and Gray’s method it can be seen that the errors are either 

moderate or small. Detailed results from this figure are discussed in the following sections. 
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Method 1: Cox Proportional Hazards Regression 

 In survival analysis, Cox proportional hazards regression is the standard. Its ease of use, 

straight forward interpretation, semi-parametric nature and inclusion in commercial statistical 

programs makes it a popular choice among researchers. Studies by Dignam et al. (2012) and 

Williamson et al. (2007) suggest it performs well under a variety of conditions. While this 

method does not assume a shape to the distribution, it does assume that the hazards are 

proportional. This assumption is tested and the results are reported below. 

 Overall model accuracy. Model accuracy is judged by the absolute percentage 

difference between the hazard ratio, set at either 1 or 2 by the simulation, and the model estimate 

of the same ratio. In general, this model’s errors were overestimates with no clear pattern of 

conditions for the minority that were underestimates for event 1. For event 2 underestimates 

were less likely for data where failure rates were equal. Overall, the average percentage 

difference between the model estimate and the set hazard ratio is 45.91% for event 1 and 5.22% 

for event 2.  

Examining each parameter independent of the others, in other words, changing just one 

parameter at a time from the base combination, Cox proportional hazards regression performs 

well with: a) both group sample sizes (250 and 500), b) positive, negative and zero correlation 

(0.4, -0.4, 0) between event times, c) both continuous and discrete data, d) varying failure rates 

between and within groups, e) different event time distribution shapes, and f) it performs 

moderately well with frailty. Looking at these parameters independent of the others, the 

percentage difference between the average model estimate and the set hazard ratio is 1.01% for 

event 1 and 1.34% for event 2. This method is also able to perform well with some combinations 

of conditions; however, some combinations cause the model estimate to deviate considerably 
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from the set hazard ratio. Of some concern are data sets containing positively correlated 

continuous event times, and differing failure rates by group. The percentage difference between 

the model estimates and the set hazard ratios averaged 8.20% for event 1 and 3.97% for event 2 

for these conditions.  

However, the model performs especially poorly with data sets containing both differing 

event time distribution shapes by event and differing failure rates by group or event. The 

percentage difference between model estimates for data sets containing this combination and the 

set hazard ratios is 127.13% for event 1 and 6.38% for event 2.  

 Differences by parameter. For some parameters, the model estimates of the Cox 

proportional hazards regression are similar regardless of the condition level, for others, model 

estimates vary greatly by condition level. The differences between model estimates of condition 

levels are presented as a percentage of the set hazard ratios by the simulation. The robustness of 

the model is judged based on these differences – with smaller differences indicating the model is 

robust with respect to the condition levels. 

Sample size. Group sizes of 250 and 500 are simulated for each set of conditions for a 

total of 500 and 1000 respectively. 

Examining the Cox proportional hazards results, the average percentage differences 

between the deviations of the model estimates from the set hazard ratios of identical 

combinations, save for sample size, are relatively small at 1.75% for event 1 and 0.94% for event 

2. Percentage differences in model estimates between sample sizes appears to be the smallest 

when failure rates are the same for both events across both groups, regardless of what other 

conditions are present. Percentage differences are somewhat larger if failure rates are 
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heterogeneous between group or within group or if event times are correlated and are largest 

when distribution shape differs by event type and failure rates are heterogeneous between group 

or within group. Average percentage differences between the deviations of the model estimates 

from the set hazard ratios of identical combinations, save for sample size is minimal between 

different event time formats and frailties. 

Correlation between event times. Correlation between Event 1 and Event 2, for both 

groups, is set at either -0.4, 0, or 0.4 as seen in Table 9. 

Table 9 

Event Time Correlation Conditions 

Even Time Correlation Group 1 Group 2 

Condition 1 -0.4 -0.4 

Condition 2 0 0 

Condition 3 0.4 0.4 

 

Examining the Cox proportional hazards regression results, the average percentage 

differences between the deviations of the model estimates from the set hazard ratios of identical 

combinations, save for event time correlation, range from minimal to quite large. The average 

percentage differences between the deviations of the model estimates from the set hazard ratios 

between event time correlation conditions 1 and 3 is 24.56% for event 1 and 5.29% for event 2, 

between event time correlation conditions 1 and 2 the difference is 6.83% for event 1 and 4.07% 

for event 2, while the difference between event time correlation conditions 2 and 3 is 21.17% for 

event 1 and 3.07% for event 2. This trend in percentage differences, larger between event time 

correlation conditions 1 and 3, smaller between event time correlation conditions 2 and 3, and 

smaller still  between event time correlation conditions 1 and 2, holds for most, but not all 
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conditions. Percentage differences between event time correlation conditions 2 and 3 or 1 and 3 

are smaller than between correlation conditions 1 and 2 for event 1 under two scenarios: when 

failure rates differ by group and event times are in continuous format, and when failure rates 

differ by group, event times are in discrete-time format, and event time distributions differ by 

event type. Event 2 differences exhibit a similar trend, though differ for some condition 

combinations when event time distributions or failure rates differ by event type. 

 The percentage difference between each pair of correlations is the smallest when failure 

rates are the same for both events across both groups, regardless of what other conditions are 

present with an average percentage difference of 1.34% for event 1 and 0.53% for event 2. 

Larger percentage differences are found in model estimates between each pair occur in 

combinations of condition levels containing differing event time distribution shapes and failure 

rates which differ by group and event type with an average percentage difference of 72.49% for 

event 1 and 6.63% for event 2. These differences are larger still when event time distribution 

shape differs by event type and frailty is present. Average percentage differences between the 

deviations of the model estimates from the set hazard ratios of identical combinations, save for 

event time correlation, are minimal between sample sizes and even time formats. 

 Event time format. Time data are simulated in two formats, discrete and continuous, with 

discrete data created as rounded continuous data. Examining the Cox proportional hazards 

regression results, the average percentage differences between the deviations of the model 

estimates from the set hazard ratios between event time formats are 5.88% for event 1 and 5.24% 

for event 2. These differences are the smallest when failure rates are the same for both events 

across both groups, regardless of what other conditions are present. These differences are slightly 

larger when the failure rate of one event for one group differs, but are much larger when failure 
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rates for both events in one group differ from those of the other group. These differences are 

most pronounced when failure rates differ by group, event time distribution shape differs by 

event type, and frailty is present. Average percentage differences between the deviations of the 

model estimates from the set hazard ratios of identical combinations, save for event time format, 

are higher when a negative correlation between even times is present, smaller when event times 

have no correlation, and smaller still when event times are positively correlated. These 

differences are essentially the same for both sample sizes. 

 Group failure rates by event type. Group failure rates are simulated in three 

combinations with group 2 serving as the control with equal failure rates for both events. The 

combinations are: homogeneous failure rates within group 1 which equal those of group 2 

(failure rate condition 1), homogeneous failure rates within both groups but heterogeneous 

between groups (failure rate condition 2), and heterogeneous failure rate within group 1 (failure 

rate condition 3).  These can be seen in Table 10.  

Table 10 

Failure Rate Conditions: Number of Failures per Time Period 

 
Group 1 Group 2 

Failure Rate Event 1 Event 2 Event 1 Event 2 

Condition 1 1 1 1 1 

Condition 2 0.5 0.5 1 1 

Condition 3 0.5 1 1 1 

 

Examining the Cox proportional hazards regression results, the average percentage differences 

between the deviations of the model estimates from the set hazard ratios of identical 

combinations, save for group failure rates by event type, range from minimal to very large. The 
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average percentage difference between failure rate conditions 1 and 2 is 117.32% for event 1 and 

8.08% for event 2, between failure rate conditions 1 and 3 the difference is 69.30% for event 1 

and 4.04% for event 2, while the difference between failure rate conditions 2 and 3 is 22.16% for 

event 1 and 2.65% for event 2. These differences are smaller when distribution shape does not 

differ by event type, and smallest when that is combined with a zero correlation. In general an 

examination of differences in model estimates that includes failure rate condition 3, which has 

heterogeneous failure rates within group 1, will find much larger differences. The difference in 

model estimates between conditions 1 and 2 is generally small except when in the presence of 

the combination of non-zero correlation of event times and distribution shapes that differ by 

event type. Differences in model estimates are slightly smaller with larger sample sizes when the 

event time is discrete. 

 Shape parameter for event time distributions. The shape parameter is simulated such 

that it is either homogeneous within and between groups or heterogeneous within groups with the 

same heterogeneity for both groups as seen in Table 11. 

Table 11 

Shape Parameter Conditions: Weibull Shape Parameter k 

 
Group 1 Group 2 

Shape Parameter Event 1 Event 2 Event 1 Event 2 

Condition 1 1 1 1 1 

Condition 2 2 1 2 1 

 

Examining the Cox proportional hazards regression results, the average percentage 

differences between the deviations of the model estimates from the set hazard ratios of identical 

combinations, save for even time shape distribution, are 84.30% for event 1 and 1.37% for event 
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2. The large discrepancy between percentages for event 1 and event 2 is not unexpected as it is 

event 1 for both groups that the event shape differs; event 2 shape does not differ. The large 

percentage difference for event 1 is also not entirely unexpected. While Cox Proportional 

Hazards does not assume an event distribution, it does assume that the hazards are proportional – 

an assumption true for each of the other models as well. With many combinations including 

different failure rates by group and different event time distribution shapes, it was possible that 

this assumption might be violated for some combinations of conditions. It is standard procedure 

to test for proportional hazards prior to conducting a proportional hazards regression. This test of 

proportional hazards was conducted for each simulation, with an average of 3.73% of 

simulations indicating hazards were not proportional at an alpha of 0.05. This suggests that the 

simulated data sets, by and large, do not violate the proportionality assumption of the test. 

The average percentage differences between the deviations of the model estimates from 

the set hazard ratios of identical combinations, save for even time shape distribution, are quite 

minimal, 0.15% for event 1 and 0.12% for event 2, if the failure rates do not vary between or 

within groups and there is no frailty. These differences are moderately larger with larger frailty 

and dramatically smaller when failure rates differ by group or within group. The percentage 

differences in model estimates are larger for positively correlated event times than zero or 

negatively correlated event times and are relatively equal between sample sizes and event time 

formats. 

 Frailty. The frailty parameter is simulated such that it is homogeneous within groups for 

both event types at three levels: no frailty, moderate frailty, and high frailty as seen in Table 12. 
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Table 12 

Frailty Conditions: Standard Deviation Multiplicative Factor 

 
Group 1 Group 2 

Frailty Condition Event 1 Event 2 Event 1 Event 2 

Condition 1 1 1 1 1 

Condition 2 1.5 1.5 1 1 

Condition 3 2 2 1 1 

 

 Examining the Cox proportional hazards regression results, the average percentage 

differences between the deviations of the model estimates from the set hazard ratios of identical 

combinations, save for frailty, are smallest between no frailty and moderate frailty, largest 

between no frailty and high frailty, and in the middle between moderate frailty and high frailty 

for nearly all conditions with a different pattern occurring only when the differences between the 

conditions are less than 1%. 

 Overall the average percentage differences between the deviations of the model estimates 

from the set hazard ratios of identical combinations, save for frailty, are 7.63% for event 1 and 

2.84% for event 2 between no frailty and moderate frailty, 8.34% for event 1 and 2.42% for 

event 2 between moderate frailty and high frailty and 15.96% for event 1 and 5.15% for event 2 

between no frailty and high frailty. When event time shape distribution is the same for both 

events, differences are minimal and change very little with differing failure rates between or 

within groups.  Average percentage differences between the deviations of the model estimates 

from the set hazard ratios of identical combinations, save for frailty, are larger with positively 

correlated event times than for negative or zero correlations. These differences are minimally 

affected with different sample sizes and time formats. These differences are larger than average 
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when event time shape distributions differ by group and are larger still when event times are 

positively correlated and failure rates differ between or within group. 

Method 2: Weibull Regression 

 The Weibull regression is a parametric test that assumes the distribution of event times is 

Weibull distributed. Like Cox proportional hazards regression, Weibull regression analyzes one 

event at a time while treating the competing event as censored. For a small subset of the 

simulations, the Weibull regression failed to converge. These failed analyses represent 0.14% of 

the Weibull analyses. Descriptive statistics were used to compare data whose analyses did 

converge to data whose analyses did not converge with. No discernable differences or anomalies 

were found. It is assumed that these failed analyses resulted due to limitations of the software. 

Overall model accuracy. Model accuracy is judged by the absolute percentage 

difference between the ratio of failure rates of group 2 and group 1, the hazard ratio, set at either 

1 or 2 by the simulation, and the model estimate of the same ratio. In general, this model’s errors 

were overestimates with underestimates more likely with discrete data and heterogeneous failure 

rates. Overall, the average percentage difference between the model estimate and the set hazard 

ratio is 6.61% for event 1 and 5.75% for event 2.  

Examining each parameter independent of the others, in other words, changing just one 

parameter at a time from the base combination, Weibull regression performs well with: a) both 

group sample sizes (250 and 500), b) positive, negative and zero correlation (0.4, -0.4, 0) 

between event times, c) both continuous and discrete data, d) varying failure rates between and 

within groups, e) different event time distribution shapes, and f) it performs moderately well with 

frailty. Looking at these parameters independent of the others, the percentage difference between 
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the average model estimate and the set hazard ratio is 0.93% for event 1 and 1.31% for event 2. 

This method is also able to perform well with many combinations of conditions.  

However, there are two combinations of parameters that appear to cause larger 

percentage differences between model estimates and the set hazard ratios. First is the 

combination of differing failure rates by group or event and discrete-time data. The average 

percentage difference between the model estimate and set hazard ratio for this combination is 

12.33% for event 1 and 9.21% for event 2. Second is the combination of continuous time data, 

differing failure rates by group and event, and positively correlated event times. The average 

percentage difference between the model estimate and set hazard ratio for this combination is 

17.79% for event 1 and 4.71% for event 2. Model estimates for this combination of conditions 

differs even further from the set hazard ratios when correlation between event times is negative. 

Omitting these combinations, the percentage difference between the average model estimate and 

the hazard ratio of the remaining 144 condition combinations is 2.47% for event 1 and 3.95% for 

event 2. The average percentage differences are similar between large and small sample size and 

homogeneous and heterogeneous event time shape distributions. 

Differences by parameter. For some parameters, the model estimates of the Weibull 

regression are similar regardless of the condition level, for others, model estimates vary greatly 

by condition level. The differences between model estimates of condition levels are presented as 

a percentage of the set hazard ratios by the simulation. The robustness of the model will be 

judged based on these differences – with smaller differences indicating the model is robust with 

respect to the condition levels. 
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Sample size. Group sizes of 250 and 500 are simulated for each set of conditions for a 

total of 500 and 1000 respectively. 

Examining the Weibull regression model estimates of identical conditions, save for 

sample size, the average percentage differences between the deviations of the model estimates 

from the set hazard ratios are very small with an average percentage difference in model 

estimates of 0.16% for event 1 and 0.72% for event 2. These differences change very little when 

examining different levels of conditions with all but two differences under 1% for event 1.  

Correlation between event times. Correlation between Event 1 and Event 2, for both 

groups, is set at either -0.4, 0, or 0.4. Correlation conditions are listed above in Table 9. 

Examining the Weibull regression model estimates of identical conditions, save for event 

time correlation, average percentage differences between the deviations of the model estimates 

from the set hazard ratios range from minimal to quite large. The average percentage differences 

between the deviations of the model estimates from the set hazard ratios between event time 

correlation conditions 1 (r = -0.4) and 3 (r = 0.4) is 7.68% for event 1 and 3.57% for event 2, 

between event time correlation conditions 1 and 2 (r = 0) the difference is 2.80% for event 1 and 

2.24% for event 2, while the difference between event time correlation conditions 2 and 3 is 

4.88% for event 1 and 2.17% for event 2. This trend in percentage differences, larger between 

event time correlation conditions 1 and 3, smaller between event time correlation conditions 2 

and 3, and smaller still between event time correlation conditions 1 and 2, holds for most 

combination conditions for event 1. For event 2, differences are still larger between correlation 

conditions 1, 3 for the most part but are mixed between conditions 2, 3 and 1, 2. 
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 This percentage difference between each pair of correlations are small when failure rates 

are the same for both groups, even if they are different between groups, regardless of what other 

conditions are present with an average percentage difference of 1.04% for event 1 and 1.26% for 

event 2. Also notable for this model, the average percentage difference between model estimates 

when event time distribution shape differs by event type is actually smaller than when event time 

distribution shape does not differ by event type. The largest average percentage differences 

between the deviations of the model estimates from the set hazard ratios of identical 

combinations, save for event time correlation, occur in combinations containing failure rates 

which differ by group and event type with an average percentage difference of 13.27% for event 

1 and 5.47% for event 2. Percentage differences in model estimates differ only slightly between 

sample sizes, event time formats, event time distribution shapes and frailties. 

Event time format. Time data are simulated in two formats, discrete and continuous, with 

discrete data created as rounded continuous data. Examining the Weibull regression model, the  

average percentage differences between the deviations of the model estimates from the set 

hazard ratios of identical combinations, save for event time format vary greatly between 

condition combinations with an average percentage difference of 10.91% for event 1 and 6.99% 

for event 2. These differences are the smallest, 0.97% on average for event 1 and 1.78% for 

event 2, when failure rates are the same for both events and groups, regardless of what other 

conditions are present. These differences are considerably larger when the failure rates differ by 

group but not event within each group. The average percentage difference is larger at 13.39% for 

event 1 and 15.61% for event two when failure rates differ by group and event type. These 

differences are largest when differing failure rates by group and event type are combined with 
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positively correlated event times and frailty. Percentage differences in model estimates between 

event time formats are not notably different between the different simulated sample sizes. 

Group failure rates by event type. Group failure rates are simulated in three 

combinations with group 2 serving as the control with equal failure rates for both events. The 

combinations are: homogeneous failure rates within group 1 which equal those of group 2 

(failure rate condition 1), homogeneous failure rates within both groups but heterogeneous 

between groups (failure rate condition 2), and heterogeneous failure rate within group 1 (failure 

rate condition 3). These can be seen above in Table 10.  

Examining the Weibull regression, the average percentage differences between the 

deviations of the model estimates from the set hazard ratios of identical combinations, save for 

group failure rates by event type range from minimal to moderately large. The average 

percentage difference in model estimates between failure rate conditions 1 and 2 is 13.02% for 

event 1 and 12.56% for event 2, between failure rate conditions 1 and 3 the difference is 11.28% 

for event 1 and 4.57% for event 2, while the difference between failure rate conditions 2 and 3 is 

6.51% for event 1 and 5.51% for event 2. For event 1 the percentage differences in model 

estimates between failure rate conditions 2 and 3 are largest when event time is continuous and 

event times are positively correlated while differences between failure rate conditions 1, 3 and 1, 

2 are largest when event time is discrete and events are negatively correlated. For event 2 these 

differences are largest when event time is discrete and event times are negatively correlated.  

Differences in model estimates of identical conditions, save for group failure rates by event type, 

are similar between the different simulated sample sizes, event time distribution shapes, and 

frailties. 
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Shape parameter for event time distributions. The shape parameter is simulated such 

that it is either homogeneous within and between groups or heterogeneous within groups with the 

same heterogeneity for both groups. Shape parameter conditions are listed above in Table 11. 

Examining the Weibull regression results, the average percentage differences between the 

deviations of the model estimates from the set hazard ratios of identical combinations, save for 

even time shape distribution,  are relatively small with an average percentage difference of 

2.08% for event 1 and 0.85% for event 2. 

The average percentage differences between the deviations of the model estimates from 

the set hazard ratios of identical combinations, save for even time shape distribution, are largest, 

6.05% for event 1 and 2.94% for event 2, when failure rates vary both between and within 

groups and events are positively correlated. These differences are larger for positively correlated 

event times and discrete-time format but are minimally different between the different simulated 

sample sizes and frailties. 

Frailty. The frailty parameter is simulated such that it is homogeneous within groups for 

both event types at three levels: no frailty, moderate frailty, and high frailty. Frailty conditions 

are listed above in Table 12. 

 Examining the Weibull regression results, average percentage differences between the 

deviations of the model estimates from the set hazard ratios of identical combinations, save for 

frailty, are similar between frailty conditions 1 and 2 (no frailty and moderate frailty) and frailty 

conditions 2 and 3 (moderate and high frailty) and largest between frailty conditions 1 and 3 (no 

frailty and high frailty). 
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 Overall average percentage differences between the deviations of the model estimates 

from the set hazard ratios of identical combinations, save for frailty, are 1.68% for event 1 and 

2.44% for event 2 between no frailty and moderate frailty, 1.73% for event 1 and 1.97% for 

event 2 between moderate frailty and high frailty and 3.41% for event 1 and 4.38% for event 2 

between no frailty and high frailty. These differences are largest when event times are in 

continuous time format and events are positively correlated. The average percentage differences 

between the deviations of the model estimates from the set hazard ratios of identical 

combinations, save for frailty, are minimal with different sample sizes, event time distribution 

shapes and failure rates.  

Method 3: Fine and Gray’s Method 

 Fine and Gray’s method is the only method tested that is able to model the competing 

events simultaneously by treating one event as the event of interest and the other as a competing 

event. All other methods simply treat the competing risk as censored and instead analyze only 

the event of interest. Because of this, it is also the only method that does not assume event times 

are uncorrelated.  

Overall model accuracy. Model accuracy is judged by the absolute percentage 

difference between the ratio of failure rates of group 2 and group 1, the hazard ratio, set at either 

1 or 2 by the simulation, and the model estimate of the same ratio. In general, this model’s errors 

were underestimates with no clear pattern of conditions for the minority that were overestimates. 

Overall, the average percentage difference between the model estimate and the set hazard ratio is 

21.49% for event 1 and 25.18% for event 2.  
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Examining each parameter independent of the others, in other words, changing just one 

parameter at a time from the base combination, Fine and Gray’s method performs well with: a) 

both group sample sizes (250 and 500), b) positive, negative and zero correlation (0.4, -0.4, 0) 

between event times, c) both continuous and discrete data, d) different event time distribution 

shapes, and e) with frailty. It performs less well with varying failure rates between and within 

groups. Looking at these parameters independent of the others, omitting failure rate, the 

percentage difference between the average model estimate and the set hazard ratio is 0.71% for 

event 1 and 1.21% for event 2.  

Looking at a varying failure rate between groups independent of the other parameters, the 

percentage difference between the average model estimate and the set ratio of failure rates is 

43.48% for event 1 and 43.52% for event 2 when failure rates differ by group and event. This 

method is also able to perform well with most combinations of conditions that do not include 

varying failure rates.  

Omitting condition combinations with varying failure rates, the percentage difference 

between the average model estimate and the set ratio of failure rates of the remaining 72 

condition combinations is 2.50% for event 1 and 3.52% for event 2. Examining only the 

condition combinations with varying failure rates, the average percentage difference is 30.98% 

for event 1 and 36.01% for event 2. Differences are larger when event times are positively 

correlated or event time distribution shape differs by event. These differences are larger when 

failure rate differs only between groups than when they differ both between and within groups. 

Differences by parameter. For some parameters, the model estimates of Fine and Gray’s 

method are similar regardless of the condition level, for others, model estimates vary greatly by 
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condition level. The differences between model estimates of condition levels are presented as a 

percentage of the set hazard ratios by the simulation. The robustness of the model will be judged 

based on these differences – with smaller differences indicating the model is robust with respect 

to the condition levels. 

Sample size. Group sizes of 250 and 500 are simulated for each set of conditions for a 

total of 500 and 1000 respectively. 

Examining Fine and Gray’s method, the average percentage differences between the 

deviations of the model estimates from the set hazard ratios, save for sample size, are very small 

with an average percentage difference in model estimates of 0.23% for event 1 and 0.96% for 

event 2. These differences change very little when examining different levels of conditions with 

nearly all under 1%. The relatively larger differences, the largest of which being 3.03%, occur 

when event times are positively correlated and have differing distribution shapes, failure rates 

differ by group and event type, and when frailty is present. Percentage differences between 

identical conditions, save for sample size, are relatively unchanged between event time formats.  

Correlation between event times. Correlation between Event 1 and Event 2, for both 

groups, is set at either -0.4, 0, or 0.4. Correlation conditions are listed above in Table 9. 

Examining Fine and Gray’s method results, the average percentage differences between 

the deviations of the model estimates from the set hazard ratios of identical combinations, save 

for event time correlation, range from minimal to quite large. The average percentage differences 

between the deviations of the model estimates from the set hazard ratios between event time 

correlation conditions 1 (r = -0.4) and 3 (r = 0.4) is 14.38% for event 1 and 4.12% for event 2, 

between event time correlation conditions 1 and 2 (r = 0) the difference is 4.06% for event 1 and 
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1.64% for event 2, while the difference between event time correlation conditions 2 and 3 is 

10.37% for event 1 and 2.51% for event 2. This trend in percentage differences, larger between 

event time correlation conditions 1 and 3, smaller between event time correlation conditions 2 

and 3, and smaller still between event time correlation conditions 1 and 2, holds for most, but not 

all condition combinations. Those that do not hold to this trend have minimal differences of less 

than 1%. 

 The percentage difference between each pair of correlations are the smallest when failure 

rates are the same for both events across both groups, regardless of what other conditions are 

present with an average percentage difference of 1.30% for event 1 and 1.05% for event 2. The 

average difference is only moderately larger at 1.78% for event 1 and 0.97% for event 2 when 

event time distribution shape differs by event type. Larger percentage differences in model 

estimates of identical conditions, save for event time correlation, occur in combinations 

containing failure rates which differ by group and event type with an average percentage 

difference of 26.91% for event 1 and 6.76% for event 2. These differences are larger still when 

event time distribution shape differs by event type and frailty is present. Percentage differences 

in model estimates differ only slightly between the different sample sizes and event time formats. 

Event time format. Time data are simulated in two formats, discrete and continuous, with 

discrete data created as rounded continuous data. Examining Fine and Gray’s method, the 

average percentage differences between the deviations of the model estimates from the set 

hazard ratios of identical combinations, save for event time format are relatively small at 1.60% 

for event 1 and 0.88% for event 2. These differences are the smallest, only 0.17% on average for 

event 1 and 0.31% for event 2, when failure rates are the same for both events across both 

groups, regardless of what other conditions are present. These differences are only slightly larger 
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when the failure rates differ by group but are the same for both events within each group. The 

average percentage difference increases to 3.53% for event 1 and 0.99% for event 2 when failure 

rates differ by group and event type. These differences are largest when differing failure rates by 

group and event type are combined with differing event time distribution shapes. Percentage 

differences in model estimates between event time formats are not notably different between the 

different simulated correlations or sample sizes. 

Group failure rates by event type. Group failure rates are simulated in three 

combinations with group 2 serving as the control with equal failure rates for both events. The 

combinations are: homogeneous failure rates within group 1 which equal those of group 2 

(failure rate condition 1), homogeneous failure rates within both groups but heterogeneous 

between groups (failure rate condition 2), and heterogeneous failure rate within group 1 (failure 

rate condition 3). These can be seen above in Table 10.  

Examining Fine and Gray’s method model estimates of identical conditions, save for 

group failure rates by event type, percentage differences in estimations between the correlations 

range from minimal to very large. The average percentage differences between the deviations of 

the model estimates from the set hazard ratios between failure rate conditions 1 and 2 is 42.55% 

for event 1 and 39.61% for event 2, between failure rate conditions 1 and 3 the difference is 

39.68% for event 1 and 27.12% for event 2, while the difference between failure rate conditions 

2 and 3 is 51.75% for event 1 and 52.11% for event 2. The differences in model estimates 

between conditions are smaller when distribution shape does not differ by event type. 

Differences in model estimates of identical conditions, save for group failure rates by event type, 

are similar between the different simulated event time correlations when event time distribution 

shape is the same for both groups. If event time distribution shape differs by group these 
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differences are largest for positively correlated event times and smallest for the negatively 

correlated event times. 

Shape parameter for event time distributions. The shape parameter is simulated such 

that it is either homogeneous within and between groups or heterogeneous within groups with the 

same heterogeneity for both groups. Shape parameter conditions are listed above in Table 11. 

Examining Fine and Gray’s method, the average percentage differences between the 

deviations of the model estimates from the set hazard ratios of identical combinations between 

homogeneous shape parameters within groups and heterogeneous shape parameters within group 

are 14.78% for event 1 and 1.63% for event 2. The discrepancy between percentages for event 1 

and event 2 is not unexpected as it is event 1 for both groups that the event shape differs; event 2 

shape does not differ.  

The average percentage difference for the model estimates are quite minimal, 1.85% for 

event 1 and 0.46% for event 2, if the failure rates do not vary between or within groups and 

frailty is zero. These differences are moderately larger when failure rates differ by group but not 

by event type within group and are dramatically larger when failure rates differ by group and by 

event type. The differences also increase moderately as frailty increases. The percentage 

differences in model estimates are larger for positively correlated event times than zero or 

negatively correlated event times and are relatively equal between sample sizes and event time 

formats. 

Frailty. The frailty parameter is simulated such that it is homogeneous within groups for 

both event types at three levels: no frailty, moderate frailty, and high frailty. Frailty conditions 

are listed above in Table 12. 
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 Examining Fine and Gray’s method model estimates of identical conditions, save for 

frailty, percentage differences in estimations are smallest between no frailty and moderate frailty, 

largest between no frailty and high frailty, and in the middle between moderate frailty and high 

frailty for all 216 differences for events 1 and 2.  

 Overall the average percentage differences between the deviations of the model estimates 

from the set hazard ratios of identical combinations, save for frailty, are 2.42% for event 1 and 

1.90% for event 2 between no frailty and moderate frailty, 2.79% for event 1 and 1.49% for 

event 2 between moderate frailty and high frailty and 5.21% for event 1 and 3.38% for event 2 

between no frailty and high frailty. These differences are smallest when failure rates differ by 

group but not by event type and event times are negatively correlated. Percentage differences in 

model estimations are larger than average when event time shape distributions differ by group. 

These differences are minimal with comparing condition combinations with different sample 

sizes and event time formats. 

Method 4: Cox Proportional Hazards Regression with Frailty 

 Similar to Method 1, Method 4 utilizes Cox proportional hazards regression as the 

method of analysis. In this method, a shared gamma frailty model is added. Like Method 1, 

hazards are assumed to be proportional and events are modeled independent of one another.  

 Overall model accuracy. Model accuracy is judged by the absolute percentage 

difference between the ratio of failure rates of group 2 and group 1, the hazard ratio, set at either 

1 or 2 by the simulation, and the model estimate of the same ratio. This model’s errors were 

almost exclusively overestimates. Overall, the average percentage difference between the model 

estimate and the set hazard ratio is 53.69% for event 1 and 8.66% for event 2.  



71 
 

Examining each parameter independent of the others, in other words, changing just one 

parameter at a time from the base combination, Cox proportional hazards regression with frailty 

performs well with: a) both group sample sizes (250 and 500), b) positive, negative and zero 

correlation (0.4, -0.4, 0) between event times, c) both continuous and discrete data, d) varying 

failure rates between and within groups, e) different event time distribution shapes, and f) it 

performs moderately well with frailty.  

Looking at these parameters independent of the others, the average percentage difference 

between the model estimates and the set hazard ratio is 1.07% for event 1 and 1.39% for event 2. 

This method is also able to perform well with some combinations of conditions.  

There are however, some combinations cause the model estimate to deviate drastically 

from the set hazard ratio. Most different are combinations of conditions including different event 

time distribution shapes and differing failure rates by group or event. The percentage difference 

between the model estimates and the set hazard ratios averaged 145.02% for event 1 and 11.53% 

for event 2 for these conditions. When these combinations are not present, these differences are 

considerably smaller at 8.02% for event 1 and 7.23% for event 2. These differences are 

moderately larger than the overall average when event times are in discrete format, frailty is 

present, or event times are positively correlated. Differences are not substantially different 

between the different sample sizes. 

 Differences by parameter. For some parameters, the model estimates of the Cox 

proportional hazards regression with frailty are similar between the condition levels. However, 

for others, model estimates vary greatly between the condition levels. The differences between 

model estimates of condition levels are presented as a percentage of the set hazard ratios by the 
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simulation. The robustness of the model is judged based on these differences – with smaller 

differences indicating the model is robust with respect to the condition levels. 

Sample size. Group sizes of 250 and 500 are simulated for each set of conditions for a 

total of 500 and 1000 respectively. 

Examining the model estimates of identical conditions, save for sample size, the average 

percentage differences between the deviations of the model estimates from the set hazard ratios 

between groups of 250 and 500 are relatively small for Cox proportional hazards with frailty 

with an average percentage differences of 2.40% for event 1 and 1.01% for event 2. Between 

sample sizes these differences appear to be the smallest when failure rates are the same for both 

events across both groups, regardless of what other conditions are present. Percentage 

differences are somewhat larger if failure rates are heterogeneous between group or within group 

or if event times are positively correlated and are largest when distribution shape differs by event 

type and failure rates are heterogeneous between group or within group. The average percentage 

differences between the deviations of the model estimates from the set hazard ratios are minimal 

between different event time formats and frailties. 

Correlation between event times. Correlation between Event 1 and Event 2, for both 

groups, is set at either -0.4, 0, or 0.4. These can be seen above in Table 9. 

Examining the Cox proportional hazards regression with frailty, the average percentage 

differences between the deviations of the model estimates from the set hazard ratios of identical 

combinations, save for event time correlation, range from minimal to quite large. The average 

percentage differences between event time correlation conditions 1 and 3 is 23.11% for event 1 

and 7.49% for event 2, between event time correlation conditions 1 and 2 the difference is 7.74% 
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for event 1 and 5.15% for event 2, while the difference between event time correlation conditions 

2 and 3 is 20.20% for event 1 and 3.36% for event 2. This trend in percentage differences, larger 

between event time correlation conditions 1 and 3, smaller between event time correlation 

conditions 2 and 3, and smaller still between event time correlation conditions 1 and 2, holds for 

most conditions combination comparisons. However, when failure rates differ by group but not 

event within group and event time distribution shape does not differ by event, the differences are 

smallest between correlation conditions 2 and 3. When failure rates differ by group but not event 

within group and event time distribution shape does differ by event, the differences are smallest 

between correlation conditions 1 and 3 for event 1 and between correlation conditions 2 and 3 for 

event 2. 

 The percentage difference between each pair of correlations are the smallest when failure 

rates are the same for both events across both groups, regardless of what other conditions are 

present with an average percentage difference of 1.20% for event 1 and 0.43% for event 2. Large 

percentage differences in model estimates between each pair occur in combinations of condition 

levels containing differing event time distribution shapes and failure rates which differ by group 

and event type with an average percentage difference of 69.92% for event 1 and 8.49% for event 

2. These differences are larger still when frailty is present. The average percentage differences 

between the deviations of the model estimates from the set hazard ratios of identical 

combinations, save for correlation, are minimal for different sample sizes and even time formats. 

 Event time format. Time data are simulated in two formats, discrete and continuous, with 

discrete data created as rounded continuous data. Examining the Cox proportional hazards 

regression with frailty results, the average percentage differences between the deviations of the 

model estimates from the set hazard ratios of identical combinations, save for event time format, 
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are 11.75% for event 1 and 7.87% for event 2. These percentage differences are smallest when 

failure rates are the same for both events across both groups, regardless of what other conditions 

are present. These differences are slightly larger with frailty and positively correlated event 

times, but are notably larger when failure rates differ by group or event within group, event time 

distribution shape differs by event type, events are positively correlated, and frailty is present. 

These differences are essentially the same between sample sizes. 

 Group failure rates by event type. Group failure rates are simulated in three 

combinations with group 2 serving as the control with equal failure rates for both events. The 

combinations are: homogeneous failure rates within group 1 which equal those of group 2 

(failure rate condition 1), homogeneous failure rates within both groups but heterogeneous 

between groups (failure rate condition 2), and heterogeneous failure rate within group 1 (failure 

rate condition 3).  These can be seen above in Table 10.  

Examining the Cox proportional hazards regression results, the average percentage 

differences between the deviations of the model estimates from the set hazard ratios of identical 

combinations, save for group failure rates by event type, range from minimal to very large. This 

average percentage difference between failure rate conditions 1 and 2 is 144.76% for event 1 and 

21.67% for event 2, between failure rate conditions 1 and 3 the difference is 77.29% for event 1 

and 6.31% for event 2, while the difference between failure rate conditions 2 and 3 is 22.39% for 

event 1 and 8.42% for event 2. The differences between conditions are considerably smaller 

when distribution shape does not differ by event type with overall averages of 12.43% for event 

1 and 11.57% for event 2, and smallest when that is combined with a zero correlation. The 

average percentage differences between the deviations of the model estimates from the set 

hazard ratios of identical combinations, save for group failure rates, are largest for event 1 when 
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event time distribution shapes differ and correlation is non-zero. This does not hold true for event 

2 however, where the largest percentage differences occur with discrete time format and 

homogeneous event time distribution shapes. These percentage differences are minimal between 

sample sizes and relatively small between differing frailties. 

 Shape parameter for event time distributions. The shape parameter is simulated such 

that it is either homogeneous within and between groups or heterogeneous within groups with the 

same heterogeneity for both groups. These can be seen above in Table 11. 

Examining the Cox proportional hazards regression with frailty results, the average 

percentage differences between the deviations of the model estimates from the set hazard ratios 

of identical combinations, save for event time distribution shape, are between 91.91% for event 1 

and 1.57% for event 2. The percentage differences are quite minimal, 0.22% for event 1 and 

0.16% for event 2, if the failure rates do not vary between or within groups and there is no 

frailty. These differences increase moderately as frailty increases and are dramatically larger 

when failure rates differ by group or within group. The percentage differences are larger for 

positively correlated event times and smaller with zero correlated event times with negatively 

correlated event times falling in between. These differences are slightly larger for discrete-time 

format and relatively minimal for the different sample sizes. 

 Frailty. The frailty parameter is simulated such that it is homogeneous within groups for 

both event types at three levels: no frailty, moderate frailty, and high frailty. These can be seen 

above in Table 12. 

 Examining the Cox proportional hazards regression with frailty results, the average 

percentage differences between the deviations of the model estimates from the set hazard ratios 
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of identical combinations, save for frailty, are, for event 1, smallest between no frailty and 

moderate frailty, largest between no frailty and high frailty, and in the middle between moderate 

frailty and high frailty for nearly all conditions with a different pattern occurring only when the 

differences between the conditions are less than 1%. For event 2 however, the percentage 

differences between moderate frailty and high frailty are smaller than between no frailty and 

moderate frailty. 

 Overall average percentage differences between the deviations of the model estimates 

from the set hazard ratios of identical combinations, save for frailty, are 8.72% for event 1 and 

3.72% for event 2 between no frailty and moderate frailty, 9.49% for event 1 and 2.75% for 

event 2 between moderate frailty and high frailty and 18.21% for event 1 and 5.79% for event 2 

between no frailty and high frailty. When event time shape distribution is the same for both 

events, these differences are minimal and change very little with differing failure rates between 

or within groups. These percentage differences are moderately larger with positively correlated 

event times than for negative or zero correlations. Percentage differences in model estimations 

are larger than average when event time shape distributions differ by group. These differences 

are larger still when combined with event times that are positively correlated and failure rates 

differ between or within group. The average percentage differences between the deviations of the 

model estimates from the set hazard ratios of identical combinations, save for frailty, are minimal 

between different sample sizes and event time formats. 

Student Retention and Graduation Results 

 Each of the four methods was used to analyze a student data set containing retention and 

graduation data. Like the simulations, this data contains two events, graduation and drop-out, 

which are defined above in Chapter 3. The resulting model estimates are listed in Table 13. 
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Table 13 

Student Data Model Estimates 

 
Model Estimates 

 
Event 1 Event 2 

Cox Proportional Hazards Regression 1.420 0.685 

Weibull Regression 1.390 0.929 

Fine and Gray's Method 1.603 0.655 

Cox Proportional Hazards Regression 

with Frailty 
1.530 0.654 

 

The model estimates represent the hazard ratio – a ratio of the failure rate of group 2 to 

the failure rate of group 1. As such a model estimate of 1 would indicate equal failure rates by 

group, or in other words, no group effect. A model estimate greater than 1 would indicate that 

group 2 is at a higher risk of the event while a model estimate less than 1 would indicate that the 

reference group is at a lower risk of the event. For the student data, group 2 is composed of 

students who are low socio-economic status (either first-generation or low-income) and group 1 

is composed of students who are high socio-economic status (neither first-generation nor low-

income). Event 1 is drop-out while event 2 is graduation. 

For each method, the model estimates suggest that students who are of low socio-

economic status are significantly more likely to experience the event of drop-out. The model 

estimates of each method also suggest that students who are of low socio-economic status are 

significantly less likely to experience the event of graduation. While the direction of the effect is 

agreed upon by the methods, the magnitude of the effect is not. To determine which method 
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likely has the closest model estimates, the simulation results are considered. Though no 

simulation condition combination perfectly matches the real data, it is hypothesized that the 

closest combination of conditions is large sample size (n=500), time data in discrete form, 

negatively correlated event times, heterogeneous event time distribution shape, and 

heterogeneous failure rates between groups and events. Large sample size is chosen as the data 

set contains approximately 5400 subjects. Discrete-time form is not chosen but simply is the 

format the data are in. Negatively correlated event times is chosen due to the likelihood that, 

should it be possible to both drop out and graduate, students whose drop-out time is earlier 

would have a later graduation time giving the event times a negative correlation. Heterogeneous 

event time distribution shape is based on the time distributions for the events shown above in 

Figure 4 and Figure 5 which appear to be heterogeneous. Heterogeneous failure rates between 

groups and events is chosen based on descriptive statistics suggesting that each group 

experiences each event at different rates. Frailty is, by definition, unknown and therefore not 

hypothesized.  

Based on the analyses of the simulated data sets under this combination of conditions, the 

most accurate method is likely Fine and Gray’s method. The simulations suggest this model is 

more accurate regardless of the level of frailty. Though this method does not estimate the second 

event rate as well as the Weibull regression under these conditions, it does estimate the first 

event, which has a Weibull shape parameter of 2, more accurately. As this event shape is more 

closely related to the student data events than a shape parameter of 1, the accuracy in estimating 

the first event is likely more crucial.  
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The percentage differences between model estimates and the set hazard ratios for this 

combination of conditions are listed below in Table 14 for no frailty, moderate frailty, and high 

frailty respectively. 

Table 14 

Percentage Difference Between Model Estimates and Set Hazard Ratios 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards Regression 

with Frailty 

 
Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

193 77.15% 1.15% 19.06% 10.02% 0.78% 28.43% 103.01% 18.17% 

195 86.72% 1.60% 18.09% 11.74% 3.16% 27.13% 115.51% 21.82% 

197 96.71% 3.85% 17.16% 13.08% 5.97% 26.18% 129.71% 24.76% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 

 

 While Fine and Gray’s method appears to be the most accurate for this data, it is possible 

that the results may be inaccurate as a test of proportional hazards, an assumption of each 

method, concluded that the hazards are not proportional. However, as the proportional hazards 

test statistic is a chi-square, it is sensitive to sample size and thus may be significant based only 

on the large sample size. A second method of testing for proportional hazards is with Kaplan-

Meier survival curves. For hazards to be proportional, the effect on each group should remain 

relatively constant over time. Graphically this would appear as parallel lines where the effects 

may be stronger on one group, but not different over time. If the survival curves do not cross, 

this would indicate the lines are approximately parallel and that the hazards are approximately 

proportional. An examination of these curves for event 1 and event 2 can be found in Figure 7 

and Figure 8 respectively. As the curves do not cross, the hazards appear to be proportional. 
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Figure 7. Kaplan-Meier survival curves for event 1 – drop-out. 
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Figure 8. Kaplan-Meier survival curves for event 2 – graduation. 
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Chapter V: Discussion 

The purpose of this study was to compare methods of analyzing competing risks models 

to investigate the effects that varying parameters have on model estimates. Specifically, this 

study sought to add to current literature an analysis of simulated data sets which contain differing 

sample sizes, event time distribution shape parameters, time data in discrete form, and frailty. 

Other parameters, correlation between event time, and failure rate by group and event, occur in 

current literature and were also included in this study. The results from this simulation study 

were used to aid in the selection of a model for student retention and graduation research. 

Summary of Results 

 It is clear from the results that there is no one best model for all scenarios. Instead, it 

appears the selection of the method of analysis should be carefully considered by the researcher 

based on the characteristics of the data. While the more traditional Cox proportional hazards 

regression estimates model estimates accurately under many scenarios, there are many 

combinations of conditions that cause the model estimates to deviate drastically from the actual 

ratio of failure rates. The Weibull Regression appears to be the most accurate model for most 

combination of conditions; however, it is important to consider that the event time data was 

simulated as Weibull distributed data, and as such these results can only be generalized if the 

event time data are in fact Weibull distributed. It is notable, however, that the Weibull regression 

was able to accurately estimate model parameters for various versions of the Weibull distribution 

with different shape and scale parameters. Fine and Gray’s method was often ranked last by 

accuracy, but there are some situations where its accuracy is quite good. In addition, its more 

conservative estimates result in less drastic errors than the other methods. Cox proportional 

hazards regression with frailty performed very similarly to the Cox regression without frailty. It 
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is unclear if this is a limitation to the software or if the simulated conditions did not deviate 

drastically enough to produce different results. 

 Method selection. In this section, the advantages and disadvantages of each method will 

be discussed in comparison to other methods. Its aim is to aid empirical researchers in selecting 

the optimal method based on the type of data they are analyzing. 

 Cox proportional hazards regression. The results of this study, and previously cited 

research, lend credence to Cox being the default method of survival analysis for statistical 

software packages as well as for many researchers. For data where the event time distribution 

shape does not differ by event, the accuracy of the model was, for the most part, quite similar to 

that of the Weibull regression. While the model estimates often deviated slightly more from the 

set hazard ratio than the Weibull regression, as a semi-parametric test the Cox regression is 

attractive for data where event times do not follow a Weibull distribution. It is advantageous over 

the Weibull distribution under most condition combinations involving homogeneous event time 

distribution shapes, and heterogeneous failure rates between groups and events.  

 Great care should be taken when selecting the Cox model should the event time 

distribution shapes differ by event. Should failure rates also differ by event or by group, which is 

often not easily discernable, results deviate considerably from the true parameters. This is 

illustrated below in Table 15. These condition combinations include different event time 

distribution shapes by event and different failure rates by group and/or event. 

 

 



84 
 

Table 15 

Percentage Difference Between Model Estimates and Set Hazard Ratios 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards Regression 

with Frailty 

 
Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

13 104.55% 1.27% 0.22% 1.16% 18.11% 33.09% 104.79% 1.20% 

14 103.57% 1.63% 0.12% 1.31% 40.41% 40.88% 103.89% 1.61% 

15 118.08% 4.31% 2.07% 4.20% 22.57% 31.44% 118.75% 4.25% 

16 118.00% 4.71% 2.02% 4.30% 39.16% 39.34% 118.82% 4.65% 

17 134.03% 6.74% 3.95% 6.73% 27.79% 30.16% 134.09% 6.72% 

18 133.30% 7.18% 3.63% 6.92% 37.77% 38.12% 134.12% 7.16% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 

 

 Should data contain differing event time distribution shapes by event and Cox 

proportional hazards be chosen as the method of analysis, it is recommended that the researcher 

analyze additional methods in addition to ensure these drastic deviations have not occurred. 

 Weibull regression. As the data was generated to be Weibull distributed, it is not entirely 

unexpected for the Weibull regression to most accurately estimate the model parameters. Out of 

216 condition combinations the Weibull regression proved most accurate, in terms of the 

percentage difference between model estimates and set ratios of failure rates, in 149 condition 

combinations. The method’s main drawback appears with the combination of homogeneous 

event time distribution shape, heterogeneous failure rate by group and/or event, and discrete 

format time. For this combination of conditions, the Weibull regression is more accurate than 

Fine and Gray’s method, but is easily surpassed by the Cox proportional hazards regression. 

Under this combination of conditions Cox is the clear choice. When instead event time 

distribution shape is heterogeneous with the above combination of conditions, the accuracy of 
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the Weibull method is not optimal, but it is more accurate than the other models tested.  This can 

be seen below in Table 16. 

Table 16 

Percentage Difference Between Model Estimates and Set Hazard Ratios 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards Regression 

with Frailty 

 
Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

175 98.17% 7.44% 12.92% 6.24% 14.37% 32.57% 120.71% 9.99% 

176 84.55% 8.26% 11.21% 13.43% 41.44% 42.85% 120.82% 16.31% 

193 77.15% 1.15% 19.06% 10.02% 0.78% 28.43% 103.01% 18.17% 

194 90.54% 2.41% 12.46% 14.50% 41.00% 42.64% 137.65% 24.70% 

211 169.95% 14.48% 3.55% 0.98% 45.83% 37.96% 192.01% 1.57% 

212 100.83% 13.09% 9.96% 12.44% 41.42% 42.76% 131.16% 10.13% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 

 

 Caution should be taken when selecting this method if the data does not display a clear 

Weibull distribution shape. The accuracy of this method outside of Weibull distributed event 

time data is beyond the scope of this study, and as such these results should not be generalized to 

other event time distributions. 

 Fine and Gray’s Method. When failure rates do not vary by group or event, the accuracy 

of Fine and Gray’s method, in terms of the percentage difference between model estimates and 

set ratios of failure rates, is generally on par with or even better than Cox proportional hazards or 

Weibull regression. When failure rate varies between groups but not within groups this accuracy 

falls considerably. This can be seen below in Table 17. 
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Table 17 

Percentage Difference Between Model Estimates and Set Hazard Ratios 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards Regression 

with Frailty 

 
Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

68 101.75% 0.67% 0.06% 0.66% 40.39% 41.40% 101.95% 0.75% 

86 117.03% 9.83% 0.10% 0.54% 39.68% 41.07% 117.74% 6.35% 

104 114.26% 6.13% 0.08% 0.75% 40.57% 41.37% 111.44% 3.60% 

176 84.55% 8.26% 11.21% 13.43% 41.44% 42.85% 120.82% 16.31% 

194 90.54% 2.41% 12.46% 14.50% 41.00% 42.64% 137.65% 24.70% 

212 100.83% 13.09% 9.96% 12.44% 41.42% 42.76% 131.16% 10.13% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 

 

 It is noteworthy, however, that while the accuracy of Fine and Gray’s model under this 

combination of conditions is not optimal, the model estimates deviate from the set hazard ratios 

considerably less than Cox proportional hazards. Should the event time data deviate drastically 

from a Weibull distribution, it may be that Fine and Gray’s method would produce the most 

accurate model estimates, though certainly still less than optimal. 

 As indicated in the student data example, there are also combinations of conditions for 

which Fine and Gray’s method appears to be well suited. These combinations are few, but they 

present interesting results. For data sets containing discrete event times, negative event time 

correlation, heterogeneous event time shape distributions by event, and failure rates that differ 

both by group and by event, Fine and Gray’s method is able to accurately estimate the model 

parameters far more accurately than the other methods, but only for event 1. The estimates 
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produced by Cox proportional hazards regression, in comparison, are quite accurate for event 2 

but not for event 1. This comparison can be seen below in Table 18.  

Table 18 

Percentage Difference Between Model Estimates and Set Hazard Ratios 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards Regression 

with Frailty 

 
Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

139 78.93% 0.59% 19.13% 10.38% 0.80% 27.88% 106.72% 19.03% 

141 89.71% 2.32% 18.10% 12.13% 3.21% 26.57% 120.70% 22.89% 

143 100.82% 4.71% 17.15% 13.57% 5.75% 25.58% 136.57% 26.10% 

193 77.15% 1.15% 19.06% 10.02% 0.78% 28.43% 103.01% 18.17% 

195 86.72% 1.60% 18.09% 11.74% 3.16% 27.13% 115.51% 21.82% 

197 96.71% 3.85% 17.16% 13.08% 5.97% 26.18% 129.71% 24.76% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 

 

These results may indicate that, under similar combinations of conditions, Fine and 

Gray’s method is better suited to analyze event time shape distributions more similar to event 2 – 

a Weibull distribution with shape parameter k = 2 while Cox proportional hazards regression is 

better suited to analyze event time shape distributions more similar to event 1 – a Weibull 

distribution with shape parameter k = 1. As simulations where event time distribution shapes for 

both events are distributed Weibull with k > 1are beyond the scope of this study, this postulation 

is just that and cannot be directly inferred from the results. 

Cox proportional hazards with frailty. Results from this method closely mirror those of 

method 1, the Cox proportional hazards without frailty. While differences in accuracy, in terms 

of the percentage difference between model estimates and set ratios of failure rates, do exist, they 
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are generally minimal and do not display a clear pattern of increased accuracy for the model with 

frailty over the model without. It is unclear if this is due to the software or due to the data being 

modeled in a way that does not take full advantage of the test. What is clear is that the Cox 

model with frailty is noticeably less accurate when analyzing discrete-time data than the Cox 

model without frailty. For continuous time data the accuracy is nearly identical between the Cox 

models. Based on the results of this study, there are no combinations of conditions for which this 

clearly is the best method.  

Limitations  

 Originally included in this study was a fifth method of analyzing competing risks – 

Weibull regression with gamma frailty. Like the Weibull regression, this was planned to be 

analyzed using the survreg package in R. However, it was found that the results of the Weibull 

regression with gramma frailty were exactly identical to the Weibull regression without frailty. 

Further investigation revealed that the gamma frailty model in survreg is an invalid model. For 

this reason this model was omitted. 

Recommendations for Future Research 

 Studies involving simulations on the effects of varying conditions on competing risks 

analyses are few in current literature. This study sought to expand upon current literature by 

including additional conditions and analyses; however, the combinations of conditions presented 

in this study comprise a mere fraction of the combinations likely to be encountered by applied 

researchers. Previous research has focused on events with an exponential event time which is 

equivalent to the Weibull distribution with shape parameter k = 1. Event times with this 

distribution, seen in figure 2, occur most frequently at the beginning of the time period and occur 

in declining frequency from there. For the events of drop-out and graduation, as seen in figures 4 
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and 5, it is clear that neither of these events follow this distribution. While this study expanded 

research to include event time data with a Weibull distribution with shape parameter k = 2 for 

one event, further research is needed to examine results of analyses where both events have 

Weibull distributed event times with shape parameter k = 2. Further analyses involving 

combinations of event times with a Weibull distribution and shape parameters k > 1 are also 

needed. Specifically, research is needed into competing risks data where events 1 and/or 2 have 

shape parameters of k = 2 and k = 3. Research into non-Weibull data is also needed. 

 Additionally, this study is focused on compete or uncensored data, that is, data in which 

the event time is known for every subject. One benefit of survival analysis over logistic 

regression is that the event of interest need not have occurred prior to analysis. At least six years 

had passed for all students in the retention and graduation example, so all could be coded as 

graduated or drop-out, though this required omitting many students who had begun their studies 

less than six years ago. Research is needed to examine the effects of varying proportions of 

censoring on these methods under these conditions. 

Event time correlation for this study was set equally by group between the event types at 

either -0.4, 0, or 0.4. Though impossible to prove in true competing events, is certainly likely that 

it is possible that events could be correlated differently for different groups. In addition to 

analyzing these possibilities, stronger correlations should also be examined for their effects on 

these methods. In the same manner, it is also likely that failure rates could differ by event but in 

the same manner for both groups. 

Lastly, and likely most importantly for practitioners, is a need for study on the effects of 

numerical covariates, both time dependent and time independent, tested as a part of combinations 
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of conditions included in this study. While categorical variables are common in education, 

continuous and finite numerical variables in the form of test scores, GPAs, and credit hours, are 

essential in analyzing student data. 

Implications for Educational Researchers 

 For educational researchers searching for a better method to analyze competing risks 

data, this study is unfortunately not a panacea. Though many questions were researched here, 

there remain far more. Until more research is done, it is recommended that the methods in this 

study should be used to supplement traditional methods of analysis, especially outside of tested 

conditions. However, researchers should not shy away from these methods as they are able to 

utilize more of the available data and allow for greater flexibility in analysis. Care should be 

taken and results should be compared with survival curves, traditional methods, and descriptive 

statistics to ensure results are likely valid. It is the opinion of this researcher that these types of 

analyses should become the future of educational research. Current methods in use in current 

education literature are insufficient in modeling student progress through educational 

institutions. Though this study merely scratches the surface on the topic of using these analyses 

in education, it is hoped that future research will enable them to become a part of the mainstream 

for educators and educational researchers interested in student success. 
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Appendix 

Table A1 

Simulation Conditions 

Condition 

Number 

Group 

Size 

Event 

Time 

Format 

Correlation 

Between 

Event 

Times 

Shape Parameter Weibull k Failures per Time Period Frailty Multiplicative Factor 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

001 250 Continuous 0 1 1 1 1 1 1 1 1 1 1 1 1 

002 250 Continuous 0 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

003 250 Continuous 0 1 1 1 1 1 1 1 1 2 2 1 1 

004 250 Continuous 0 1 1 1 1 0.5 1 1 1 1 1 1 1 

005 250 Continuous 0 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

006 250 Continuous 0 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

007 250 Continuous 0 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

008 250 Continuous 0 1 1 1 1 0.5 1 1 1 2 2 1 1 

009 250 Continuous 0 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

010 250 Continuous 0 2 1 2 1 1 1 1 1 1 1 1 1 

011 250 Continuous 0 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

012 250 Continuous 0 2 1 2 1 1 1 1 1 2 2 1 1 

013 250 Continuous 0 2 1 2 1 0.5 1 1 1 1 1 1 1 

014 250 Continuous 0 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

015 250 Continuous 0 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

016 250 Continuous 0 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

017 250 Continuous 0 2 1 2 1 0.5 1 1 1 2 2 1 1 

018 250 Continuous 0 2 1 2 1 0.5 0.5 1 1 2 2 1 1 

019 250 Continuous -0.4 1 1 1 1 1 1 1 1 1 1 1 1 

020 250 Continuous -0.4 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

021 250 Continuous -0.4 1 1 1 1 1 1 1 1 2 2 1 1 
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Table A1 (Cont.) 

Simulation Conditions 

Condition 

Number 

Group 

Size 

Event 

Time 

Format 

Correlation 

Between 

Event 

Times 

Shape Parameter Weibull k Failures per Time Period Frailty Multiplicative Factor 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

022 250 Continuous -0.4 1 1 1 1 0.5 1 1 1 1 1 1 1 

023 250 Continuous -0.4 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

024 250 Continuous -0.4 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

025 250 Continuous -0.4 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

026 250 Continuous -0.4 1 1 1 1 0.5 1 1 1 2 2 1 1 

027 250 Continuous -0.4 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

028 250 Continuous -0.4 2 1 2 1 1 1 1 1 1 1 1 1 

029 250 Continuous -0.4 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

030 250 Continuous -0.4 2 1 2 1 1 1 1 1 2 2 1 1 

031 250 Continuous -0.4 2 1 2 1 0.5 1 1 1 1 1 1 1 

032 250 Continuous -0.4 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

033 250 Continuous -0.4 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

034 250 Continuous -0.4 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

035 250 Continuous -0.4 2 1 2 1 0.5 1 1 1 2 2 1 1 

036 250 Continuous -0.4 2 1 2 1 0.5 0.5 1 1 2 2 1 1 

037 250 Continuous 0.4 1 1 1 1 1 1 1 1 1 1 1 1 

038 250 Continuous 0.4 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

039 250 Continuous 0.4 1 1 1 1 1 1 1 1 2 2 1 1 

040 250 Continuous 0.4 1 1 1 1 0.5 1 1 1 1 1 1 1 

041 250 Continuous 0.4 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

042 250 Continuous 0.4 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

043 250 Continuous 0.4 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

044 250 Continuous 0.4 1 1 1 1 0.5 1 1 1 2 2 1 1 

 



 

 
 

9
7 

Table A1 (Cont.) 

Simulation Conditions 

Condition 

Number 

Group 

Size 

Event 

Time 

Format 

Correlation 

Between 

Event 

Times 

Shape Parameter Weibull k Failures per Time Period Frailty Multiplicative Factor 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

045 250 Continuous 0.4 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

046 250 Continuous 0.4 2 1 2 1 1 1 1 1 1 1 1 1 

047 250 Continuous 0.4 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

048 250 Continuous 0.4 2 1 2 1 1 1 1 1 2 2 1 1 

049 250 Continuous 0.4 2 1 2 1 0.5 1 1 1 1 1 1 1 

050 250 Continuous 0.4 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

051 250 Continuous 0.4 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

052 250 Continuous 0.4 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

053 250 Continuous 0.4 2 1 2 1 0.5 1 1 1 2 2 1 1 

054 250 Continuous 0.4 2 1 2 1 0.5 0.5 1 1 2 2 1 1 

055 500 Continuous 0 1 1 1 1 1 1 1 1 1 1 1 1 

056 500 Continuous 0 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

057 500 Continuous 0 1 1 1 1 1 1 1 1 2 2 1 1 

058 500 Continuous 0 1 1 1 1 0.5 1 1 1 1 1 1 1 

059 500 Continuous 0 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

060 500 Continuous 0 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

061 500 Continuous 0 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

062 500 Continuous 0 1 1 1 1 0.5 1 1 1 2 2 1 1 

063 500 Continuous 0 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

064 500 Continuous 0 2 1 2 1 1 1 1 1 1 1 1 1 

065 500 Continuous 0 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

066 500 Continuous 0 2 1 2 1 1 1 1 1 2 2 1 1 

067 500 Continuous 0 2 1 2 1 0.5 1 1 1 1 1 1 1 
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Table A1 (Cont.) 

Simulation Conditions 

Condition 

Number 

Group 

Size 

Event 

Time 

Format 

Correlation 

Between 

Event 

Times 

Shape Parameter Weibull k Failures per Time Period Frailty Multiplicative Factor 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

068 500 Continuous 0 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

069 500 Continuous 0 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

070 500 Continuous 0 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

071 500 Continuous 0 2 1 2 1 0.5 1 1 1 2 2 1 1 

072 500 Continuous 0 2 1 2 1 0.5 0.5 1 1 2 2 1 1 

073 500 Continuous -0.4 1 1 1 1 1 1 1 1 1 1 1 1 

074 500 Continuous -0.4 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

075 500 Continuous -0.4 1 1 1 1 1 1 1 1 2 2 1 1 

076 500 Continuous -0.4 1 1 1 1 0.5 1 1 1 1 1 1 1 

077 500 Continuous -0.4 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

078 500 Continuous -0.4 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

079 500 Continuous -0.4 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

080 500 Continuous -0.4 1 1 1 1 0.5 1 1 1 2 2 1 1 

081 500 Continuous -0.4 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

082 500 Continuous -0.4 2 1 2 1 1 1 1 1 1 1 1 1 

083 500 Continuous -0.4 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

084 500 Continuous -0.4 2 1 2 1 1 1 1 1 2 2 1 1 

085 500 Continuous -0.4 2 1 2 1 0.5 1 1 1 1 1 1 1 

086 500 Continuous -0.4 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

087 500 Continuous -0.4 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

088 500 Continuous -0.4 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

089 500 Continuous -0.4 2 1 2 1 0.5 1 1 1 2 2 1 1 

090 500 Continuous -0.4 2 1 2 1 0.5 0.5 1 1 2 2 1 1 
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Table A1 (Cont.) 

Simulation Conditions 

Condition 

Number 

Group 

Size 

Event 

Time 

Format 

Correlation 

Between 

Event 

Times 

Shape Parameter Weibull k Failures per Time Period Frailty Multiplicative Factor 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

091 500 Continuous 0.4 1 1 1 1 1 1 1 1 1 1 1 1 

092 500 Continuous 0.4 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

093 500 Continuous 0.4 1 1 1 1 1 1 1 1 2 2 1 1 

094 500 Continuous 0.4 1 1 1 1 0.5 1 1 1 1 1 1 1 

095 500 Continuous 0.4 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

096 500 Continuous 0.4 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

097 500 Continuous 0.4 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

098 500 Continuous 0.4 1 1 1 1 0.5 1 1 1 2 2 1 1 

099 500 Continuous 0.4 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

100 500 Continuous 0.4 2 1 2 1 1 1 1 1 1 1 1 1 

101 500 Continuous 0.4 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

102 500 Continuous 0.4 2 1 2 1 1 1 1 1 2 2 1 1 

103 500 Continuous 0.4 2 1 2 1 0.5 1 1 1 1 1 1 1 

104 500 Continuous 0.4 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

105 500 Continuous 0.4 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

106 500 Continuous 0.4 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

107 500 Continuous 0.4 2 1 2 1 0.5 1 1 1 2 2 1 1 

108 500 Continuous 0.4 2 1 2 1 0.5 0.5 1 1 2 2 1 1 

109 250 Discrete 0 1 1 1 1 1 1 1 1 1 1 1 1 

110 250 Discrete 0 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

111 250 Discrete 0 1 1 1 1 1 1 1 1 2 2 1 1 

112 250 Discrete 0 1 1 1 1 0.5 1 1 1 1 1 1 1 

113 250 Discrete 0 1 1 1 1 0.5 0.5 1 1 1 1 1 1 
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Table A1 (Cont.) 

Simulation Conditions 

Condition 

Number 

Group 

Size 

Event 

Time 

Format 

Correlation 

Between 

Event 

Times 

Shape Parameter Weibull k Failures per Time Period Frailty Multiplicative Factor 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

114 250 Discrete 0 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

115 250 Discrete 0 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

116 250 Discrete 0 1 1 1 1 0.5 1 1 1 2 2 1 1 

117 250 Discrete 0 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

118 250 Discrete 0 2 1 2 1 1 1 1 1 1 1 1 1 

119 250 Discrete 0 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

120 250 Discrete 0 2 1 2 1 1 1 1 1 2 2 1 1 

121 250 Discrete 0 2 1 2 1 0.5 1 1 1 1 1 1 1 

122 250 Discrete 0 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

123 250 Discrete 0 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

124 250 Discrete 0 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

125 250 Discrete 0 2 1 2 1 0.5 1 1 1 2 2 1 1 

126 250 Discrete 0 2 1 2 1 0.5 0.5 1 1 2 2 1 1 

127 250 Discrete -0.4 1 1 1 1 1 1 1 1 1 1 1 1 

128 250 Discrete -0.4 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

129 250 Discrete -0.4 1 1 1 1 1 1 1 1 2 2 1 1 

130 250 Discrete -0.4 1 1 1 1 0.5 1 1 1 1 1 1 1 

131 250 Discrete -0.4 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

132 250 Discrete -0.4 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

133 250 Discrete -0.4 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

134 250 Discrete -0.4 1 1 1 1 0.5 1 1 1 2 2 1 1 

135 250 Discrete -0.4 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

136 250 Discrete -0.4 2 1 2 1 1 1 1 1 1 1 1 1 
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Table A1 (Cont.) 

Simulation Conditions 

Condition 

Number 

Group 

Size 

Event 

Time 

Format 

Correlation 

Between 

Event 

Times 

Shape Parameter Weibull k Failures per Time Period Frailty Multiplicative Factor 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

137 250 Discrete -0.4 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

138 250 Discrete -0.4 2 1 2 1 1 1 1 1 2 2 1 1 

139 250 Discrete -0.4 2 1 2 1 0.5 1 1 1 1 1 1 1 

140 250 Discrete -0.4 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

141 250 Discrete -0.4 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

142 250 Discrete -0.4 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

143 250 Discrete -0.4 2 1 2 1 0.5 1 1 1 2 2 1 1 

144 250 Discrete -0.4 2 1 2 1 0.5 0.5 1 1 2 2 1 1 

145 250 Discrete 0.4 1 1 1 1 1 1 1 1 1 1 1 1 

146 250 Discrete 0.4 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

147 250 Discrete 0.4 1 1 1 1 1 1 1 1 2 2 1 1 

148 250 Discrete 0.4 1 1 1 1 0.5 1 1 1 1 1 1 1 

149 250 Discrete 0.4 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

150 250 Discrete 0.4 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

151 250 Discrete 0.4 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

152 250 Discrete 0.4 1 1 1 1 0.5 1 1 1 2 2 1 1 

153 250 Discrete 0.4 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

154 250 Discrete 0.4 2 1 2 1 1 1 1 1 1 1 1 1 

155 250 Discrete 0.4 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

156 250 Discrete 0.4 2 1 2 1 1 1 1 1 2 2 1 1 

157 250 Discrete 0.4 2 1 2 1 0.5 1 1 1 1 1 1 1 

158 250 Discrete 0.4 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

159 250 Discrete 0.4 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 
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Simulation Conditions 

Condition 

Number 

Group 

Size 

Event 

Time 

Format 

Correlation 

Between 

Event 

Times 

Shape Parameter Weibull k Failures per Time Period Frailty Multiplicative Factor 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

Event 

1 

Event 

2 

160 250 Discrete 0.4 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

161 250 Discrete 0.4 2 1 2 1 0.5 1 1 1 2 2 1 1 

162 250 Discrete 0.4 2 1 2 1 0.5 0.5 1 1 2 2 1 1 

163 500 Discrete 0 1 1 1 1 1 1 1 1 1 1 1 1 

164 500 Discrete 0 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

165 500 Discrete 0 1 1 1 1 1 1 1 1 2 2 1 1 

166 500 Discrete 0 1 1 1 1 0.5 1 1 1 1 1 1 1 

167 500 Discrete 0 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

168 500 Discrete 0 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

169 500 Discrete 0 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

170 500 Discrete 0 1 1 1 1 0.5 1 1 1 2 2 1 1 

171 500 Discrete 0 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

172 500 Discrete 0 2 1 2 1 1 1 1 1 1 1 1 1 

173 500 Discrete 0 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

174 500 Discrete 0 2 1 2 1 1 1 1 1 2 2 1 1 

175 500 Discrete 0 2 1 2 1 0.5 1 1 1 1 1 1 1 

176 500 Discrete 0 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

177 500 Discrete 0 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

178 500 Discrete 0 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

179 500 Discrete 0 2 1 2 1 0.5 1 1 1 2 2 1 1 

180 500 Discrete 0 2 1 2 1 0.5 0.5 1 1 2 2 1 1 

181 500 Discrete -0.4 1 1 1 1 1 1 1 1 1 1 1 1 

182 500 Discrete -0.4 1 1 1 1 1 1 1 1 1.5 1.5 1 1 
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Simulation Conditions 

Condition 

Number 
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Time 
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1 
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2 
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1 

Event 

2 

Event 

1 

Event 

2 
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1 
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2 

Event 

1 
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2 

Event 

1 

Event 

2 

183 500 Discrete -0.4 1 1 1 1 1 1 1 1 2 2 1 1 

184 500 Discrete -0.4 1 1 1 1 0.5 1 1 1 1 1 1 1 

185 500 Discrete -0.4 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

186 500 Discrete -0.4 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

187 500 Discrete -0.4 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 

188 500 Discrete -0.4 1 1 1 1 0.5 1 1 1 2 2 1 1 

189 500 Discrete -0.4 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

190 500 Discrete -0.4 2 1 2 1 1 1 1 1 1 1 1 1 

191 500 Discrete -0.4 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

192 500 Discrete -0.4 2 1 2 1 1 1 1 1 2 2 1 1 

193 500 Discrete -0.4 2 1 2 1 0.5 1 1 1 1 1 1 1 

194 500 Discrete -0.4 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

195 500 Discrete -0.4 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

196 500 Discrete -0.4 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

197 500 Discrete -0.4 2 1 2 1 0.5 1 1 1 2 2 1 1 

198 500 Discrete -0.4 2 1 2 1 0.5 0.5 1 1 2 2 1 1 

199 500 Discrete 0.4 1 1 1 1 1 1 1 1 1 1 1 1 

200 500 Discrete 0.4 1 1 1 1 1 1 1 1 1.5 1.5 1 1 

201 500 Discrete 0.4 1 1 1 1 1 1 1 1 2 2 1 1 

202 500 Discrete 0.4 1 1 1 1 0.5 1 1 1 1 1 1 1 

203 500 Discrete 0.4 1 1 1 1 0.5 0.5 1 1 1 1 1 1 

204 500 Discrete 0.4 1 1 1 1 0.5 1 1 1 1.5 1.5 1 1 

205 500 Discrete 0.4 1 1 1 1 0.5 0.5 1 1 1.5 1.5 1 1 
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206 500 Discrete 0.4 1 1 1 1 0.5 1 1 1 2 2 1 1 

207 500 Discrete 0.4 1 1 1 1 0.5 0.5 1 1 2 2 1 1 

208 500 Discrete 0.4 2 1 2 1 1 1 1 1 1 1 1 1 

209 500 Discrete 0.4 2 1 2 1 1 1 1 1 1.5 1.5 1 1 

210 500 Discrete 0.4 2 1 2 1 1 1 1 1 2 2 1 1 

211 500 Discrete 0.4 2 1 2 1 0.5 1 1 1 1 1 1 1 

212 500 Discrete 0.4 2 1 2 1 0.5 0.5 1 1 1 1 1 1 

213 500 Discrete 0.4 2 1 2 1 0.5 1 1 1 1.5 1.5 1 1 

214 500 Discrete 0.4 2 1 2 1 0.5 0.5 1 1 1.5 1.5 1 1 

215 500 Discrete 0.4 2 1 2 1 0.5 1 1 1 2 2 1 1 

216 500 Discrete 0.4 2 1 2 1 0.5 0.5 1 1 2 2 1 1 
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Table A2 

Percentage Difference Between Model Estimates and Set Failure Rates 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards 

Regression with 

Frailty 

  Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

1 0.57% 1.42% 0.52% 1.52% 0.17% 1.60% 0.54% 1.47% 

2 2.71% 4.55% 2.54% 4.57% 1.31% 4.04% 2.75% 4.54% 

3 4.71% 6.97% 4.50% 7.01% 2.57% 5.88% 4.72% 7.06% 

4 1.10% 1.30% 0.78% 1.25% 11.80% 29.96% 1.20% 1.27% 

5 1.09% 1.70% 0.52% 1.52% 43.63% 42.85% 1.10% 1.76% 

6 3.26% 4.34% 2.76% 4.28% 10.68% 28.64% 3.37% 4.31% 

7 3.27% 4.84% 2.54% 4.57% 43.07% 41.61% 3.26% 4.86% 

8 5.31% 6.80% 4.62% 6.76% 9.46% 27.63% 5.42% 6.80% 

9 5.34% 7.32% 4.50% 7.01% 42.44% 40.68% 5.37% 7.33% 

10 0.76% 1.30% 0.11% 1.37% 0.29% 1.40% 0.68% 1.32% 

11 7.81% 4.34% 2.08% 4.35% 3.00% 4.41% 7.88% 4.33% 

12 15.21% 6.86% 3.99% 6.94% 5.90% 6.83% 15.11% 6.94% 

13 104.55% 1.27% 0.22% 1.16% 18.11% 33.09% 104.79% 1.20% 

14 103.57% 1.63% 0.12% 1.31% 40.41% 40.88% 103.89% 1.61% 

15 118.08% 4.31% 2.07% 4.20% 22.57% 31.44% 118.75% 4.25% 

16 118.00% 4.71% 2.02% 4.30% 39.16% 39.34% 118.82% 4.65% 

17 134.03% 6.74% 3.95% 6.73% 27.79% 30.16% 134.09% 6.72% 

18 133.30% 7.18% 3.63% 6.92% 37.77% 38.12% 134.12% 7.16% 

19 0.57% 1.45% 0.39% 1.32% 0.16% 1.61% 0.50% 1.47% 

20 2.72% 4.44% 2.14% 3.88% 0.92% 3.54% 2.75% 4.40% 

21 4.78% 6.81% 3.83% 5.90% 1.89% 4.91% 4.64% 6.79% 

22 1.32% 9.40% 7.80% 8.16% 18.30% 25.40% 1.94% 8.90% 

23 8.40% 9.05% 0.39% 1.32% 43.10% 42.30% 7.12% 7.82% 

24 0.82% 12.70% 6.30% 11.06% 17.69% 24.16% 0.08% 12.17% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 
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Table A2 (Cont.) 

Percentage Difference Between Model Estimates and Set Failure Rates 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards 

Regression with 

Frailty 

  Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

25 10.80% 12.37% 2.14% 3.88% 42.74% 41.33% 9.42% 11.02% 

26 2.86% 15.33% 4.80% 13.31% 16.85% 23.32% 2.11% 14.79% 

27 13.12% 14.92% 3.83% 5.90% 42.27% 40.65% 11.63% 13.53% 

28 0.73% 1.31% 0.11% 1.19% 0.35% 1.38% 0.72% 1.28% 

29 7.44% 4.28% 1.85% 3.72% 2.27% 3.85% 7.41% 4.19% 

30 14.43% 6.66% 3.62% 5.73% 4.50% 5.71% 14.41% 6.53% 

31 88.85% 9.64% 7.05% 7.26% 4.61% 28.87% 89.54% 7.84% 

32 119.23% 10.77% 0.30% 1.12% 39.72% 40.52% 119.82% 7.28% 

33 101.71% 12.91% 5.46% 10.01% 7.19% 27.44% 102.32% 11.01% 

34 134.25% 14.04% 1.74% 3.83% 38.89% 39.27% 135.19% 10.38% 

35 114.11% 15.55% 4.01% 12.31% 9.88% 26.36% 114.73% 13.53% 

36 150.04% 16.65% 3.14% 5.63% 37.86% 38.34% 151.01% 12.85% 

37 0.60% 1.45% 0.60% 1.64% 0.17% 1.60% 0.56% 1.49% 

38 3.06% 5.20% 3.22% 5.76% 2.10% 5.29% 3.18% 5.31% 

39 5.73% 8.25% 6.13% 9.20% 4.41% 8.26% 5.80% 8.35% 

40 12.34% 7.87% 17.92% 8.15% 3.40% 37.15% 12.88% 7.94% 

41 2.09% 1.49% 0.60% 1.64% 43.91% 43.14% 1.92% 1.28% 

42 14.99% 4.65% 20.76% 4.77% 5.57% 35.45% 15.48% 4.73% 

43 0.31% 2.16% 3.22% 5.76% 42.94% 41.25% 0.52% 2.35% 

44 17.93% 2.04% 24.04% 1.95% 8.28% 34.15% 18.51% 2.11% 

45 2.74% 5.05% 6.13% 9.20% 41.77% 39.74% 3.10% 5.30% 

46 0.88% 1.27% 0.13% 1.47% 0.37% 1.31% 0.76% 1.29% 

47 10.26% 4.79% 2.41% 5.43% 4.82% 5.31% 10.15% 4.76% 

48 20.58% 7.80% 4.80% 8.83% 9.64% 8.65% 20.53% 7.80% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 
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Table A2 (Cont.) 

Percentage Difference Between Model Estimates and Set Failure Rates 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards 

Regression with 

Frailty 

  Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

49 173.08% 7.21% 11.51% 6.65% 50.34% 38.73% 168.15% 6.40% 

50 116.09% 5.34% 0.07% 1.48% 40.47% 40.95% 113.71% 2.88% 

51 204.95% 4.23% 14.77% 3.34% 65.08% 36.82% 200.72% 3.39% 

52 136.26% 2.10% 2.45% 5.38% 38.35% 38.91% 133.69% 0.44% 

53 242.57% 1.85% 17.95% 0.56% 82.87% 35.28% 236.33% 0.92% 

54 157.72% 0.55% 4.58% 8.76% 36.01% 37.20% 155.61% 3.25% 

55 0.50% 0.56% 0.55% 0.58% 0.43% 0.44% 0.54% 0.57% 

56 2.43% 3.33% 2.46% 3.36% 1.58% 2.77% 2.45% 3.37% 

57 4.27% 5.71% 4.30% 5.72% 2.84% 4.64% 4.37% 5.74% 

58 0.85% 0.38% 0.80% 0.31% 11.57% 30.75% 0.94% 0.33% 

59 0.68% 0.71% 0.55% 0.58% 43.48% 43.52% 0.76% 0.72% 

60 2.71% 3.21% 2.71% 3.17% 10.53% 29.42% 2.82% 3.20% 

61 2.58% 3.47% 2.46% 3.36% 42.91% 42.33% 2.68% 3.51% 

62 4.57% 5.61% 4.55% 5.54% 9.30% 28.41% 4.65% 5.60% 

63 4.45% 5.83% 4.30% 5.72% 42.29% 41.38% 4.50% 5.93% 

64 0.52% 0.63% 0.16% 0.66% 0.29% 0.53% 0.52% 0.70% 

65 6.69% 3.52% 1.99% 3.51% 3.01% 3.54% 6.69% 3.58% 

66 13.36% 5.93% 3.84% 5.91% 6.06% 5.92% 13.40% 5.93% 

67 102.44% 0.49% 0.35% 0.33% 18.17% 33.76% 102.63% 0.36% 

68 101.75% 0.67% 0.06% 0.66% 40.39% 41.40% 101.95% 0.75% 

69 114.68% 3.34% 2.24% 3.16% 22.96% 32.18% 115.15% 3.19% 

70 114.01% 3.52% 2.01% 3.49% 39.11% 39.85% 114.19% 3.60% 

71 127.80% 5.74% 3.95% 5.59% 28.02% 30.86% 127.76% 5.67% 

72 127.27% 5.87% 3.98% 5.88% 37.64% 38.64% 127.36% 6.04% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 
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Table A2 (Cont.) 

Percentage Difference Between Model Estimates and Set Failure Rates 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards 

Regression with 

Frailty 

  Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

73 0.60% 0.61% 0.54% 0.56% 0.44% 0.44% 0.61% 0.63% 

74 2.54% 3.27% 2.19% 2.86% 1.26% 2.24% 2.55% 3.27% 

75 4.39% 5.56% 3.75% 4.81% 2.18% 3.66% 4.36% 5.52% 

76 1.55% 8.54% 7.76% 7.37% 18.12% 26.18% 2.19% 7.98% 

77 8.02% 8.04% 0.54% 0.56% 42.93% 42.99% 6.83% 6.74% 

78 0.35% 11.55% 6.28% 10.00% 17.50% 25.02% 0.36% 10.96% 

79 10.11% 10.92% 2.19% 2.86% 42.55% 42.08% 8.83% 9.56% 

80 2.08% 14.12% 4.87% 12.18% 16.73% 24.15% 1.36% 13.48% 

81 12.13% 13.40% 3.75% 4.81% 42.10% 41.36% 10.76% 11.98% 

82 0.73% 0.64% 0.24% 0.53% 0.42% 0.46% 0.72% 0.60% 

83 6.46% 3.43% 1.83% 2.93% 2.35% 2.99% 6.56% 3.33% 

84 12.50% 5.76% 3.40% 4.88% 4.51% 4.88% 12.60% 5.63% 

85 86.78% 9.01% 6.97% 6.56% 4.61% 29.50% 87.52% 7.03% 

86 117.03% 9.83% 0.10% 0.54% 39.68% 41.07% 117.74% 6.35% 

87 97.36% 12.04% 5.52% 9.19% 7.12% 28.08% 98.04% 10.03% 

88 129.73% 12.91% 1.61% 2.91% 38.83% 39.79% 130.28% 9.30% 

89 108.46% 14.61% 4.06% 11.19% 10.10% 27.05% 109.02% 12.47% 

90 143.07% 15.42% 3.35% 4.90% 37.82% 38.83% 143.35% 11.72% 

91 0.46% 0.52% 0.54% 0.57% 0.42% 0.44% 0.48% 0.52% 

92 2.74% 4.04% 3.08% 4.41% 2.40% 4.03% 2.80% 4.10% 

93 5.14% 7.01% 5.81% 7.74% 4.66% 6.95% 5.18% 7.08% 

94 11.79% 8.65% 17.60% 9.00% 3.42% 37.77% 12.26% 8.75% 

95 2.50% 2.48% 0.54% 0.57% 43.76% 43.79% 2.30% 2.33% 

96 14.45% 5.71% 20.85% 5.87% 5.85% 36.17% 14.87% 5.78% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 
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Table A2 (Cont.) 

Percentage Difference Between Model Estimates and Set Failure Rates 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards 

Regression with 

Frailty 

  Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

97 0.35% 0.78% 3.08% 4.41% 42.77% 41.95% 0.09% 1.05% 

98 17.06% 3.16% 23.93% 3.12% 8.34% 34.84% 17.46% 3.18% 

99 1.89% 3.57% 5.81% 7.74% 41.62% 40.46% 2.21% 3.95% 

100 0.37% 0.67% 0.04% 0.72% 0.16% 0.63% 0.36% 0.73% 

101 9.05% 4.00% 2.34% 4.55% 4.80% 4.55% 8.82% 3.99% 

102 19.06% 6.70% 4.80% 7.62% 10.19% 7.62% 18.66% 6.72% 

103 170.06% 7.90% 11.70% 7.44% 50.32% 39.32% 165.00% 7.12% 

104 114.26% 6.13% 0.08% 0.75% 40.57% 41.37% 111.44% 3.60% 

105 197.14% 5.07% 14.59% 4.22% 63.78% 37.35% 191.00% 4.18% 

106 132.39% 3.15% 2.38% 4.48% 38.32% 39.36% 128.99% 0.44% 

107 229.26% 2.71% 17.80% 1.50% 79.84% 35.80% 221.75% 1.69% 

108 153.09% 0.70% 5.65% 7.53% 35.67% 37.79% 149.02% 2.17% 

109 0.48% 1.44% 0.14% 0.75% 0.12% 1.44% 0.69% 1.63% 

110 2.49% 4.49% 1.37% 2.60% 1.19% 3.71% 3.23% 5.20% 

111 4.51% 6.97% 2.57% 4.07% 2.37% 5.44% 5.61% 7.89% 

112 0.40% 4.44% 19.09% 3.87% 14.27% 29.03% 6.96% 6.41% 

113 5.23% 4.57% 13.52% 12.96% 44.62% 43.92% 13.48% 14.30% 

114 2.50% 1.60% 18.08% 5.92% 13.22% 27.79% 9.69% 9.89% 

115 3.19% 1.60% 12.30% 11.17% 44.10% 42.74% 16.39% 18.30% 

116 4.50% 0.74% 17.11% 7.61% 12.07% 26.83% 12.22% 13.08% 

117 1.30% 0.71% 11.18% 9.78% 43.51% 41.87% 19.02% 21.44% 

118 0.59% 1.26% 0.14% 0.63% 0.22% 1.20% 0.98% 1.36% 

119 7.29% 4.41% 1.43% 2.26% 2.82% 3.96% 8.74% 4.64% 

120 14.44% 7.03% 2.74% 3.69% 5.58% 6.19% 16.85% 7.45% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 
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Table A2 (Cont.) 

Percentage Difference Between Model Estimates and Set Failure Rates 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards 

Regression with 

Frailty 

  Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

121 99.33% 6.77% 13.05% 6.68% 14.31% 31.97% 124.02% 10.98% 

122 85.64% 7.42% 11.30% 13.16% 41.46% 42.39% 122.83% 17.38% 

123 112.25% 3.92% 11.88% 8.64% 18.57% 30.44% 141.31% 14.57% 

124 98.53% 4.59% 9.91% 11.61% 40.26% 40.96% 141.87% 21.22% 

125 127.11% 1.68% 10.71% 10.25% 23.52% 29.25% 161.11% 17.54% 

126 112.10% 2.36% 8.57% 10.36% 38.94% 39.83% 161.92% 24.36% 

127 0.37% 1.38% 0.02% 0.56% 0.08% 1.41% 0.69% 1.46% 

128 2.29% 4.25% 1.12% 2.13% 0.78% 3.19% 3.23% 4.97% 

129 4.21% 6.51% 2.15% 3.34% 1.67% 4.47% 5.90% 7.73% 

130 3.41% 1.76% 24.70% 8.30% 20.82% 24.57% 4.56% 15.45% 

131 0.77% 0.12% 15.26% 14.78% 44.31% 43.59% 21.80% 22.72% 

132 1.56% 4.74% 23.84% 10.20% 20.28% 23.43% 7.25% 19.37% 

133 1.26% 2.87% 14.21% 13.27% 43.99% 42.68% 25.03% 26.96% 

134 0.29% 7.10% 23.06% 11.62% 19.50% 22.64% 9.80% 22.54% 

135 3.25% 5.13% 13.22% 12.12% 43.55% 42.04% 28.06% 30.34% 

136 0.72% 1.27% 0.02% 0.49% 0.28% 1.18% 0.96% 1.34% 

137 6.56% 4.18% 1.25% 1.94% 2.07% 3.43% 8.13% 4.66% 

138 12.90% 6.52% 2.45% 3.06% 4.17% 5.13% 15.97% 7.44% 

139 78.93% 0.59% 19.13% 10.38% 0.80% 27.88% 106.72% 19.03% 

140 92.33% 1.60% 12.59% 14.29% 41.04% 42.16% 140.49% 25.83% 

141 89.71% 2.32% 18.10% 12.13% 3.21% 26.57% 120.70% 22.89% 

142 104.31% 1.27% 11.38% 12.94% 40.25% 41.00% 159.50% 29.94% 

143 100.82% 4.71% 17.15% 13.57% 5.75% 25.58% 136.57% 26.10% 

144 117.27% 3.52% 10.15% 11.85% 39.28% 40.15% 179.97% 33.30% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 
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Table A2 (Cont.) 

Percentage Difference Between Model Estimates and Set Failure Rates 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards 

Regression with 

Frailty 

  Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

145 0.57% 1.48% 0.26% 0.92% 0.13% 1.47% 0.75% 1.66% 

146 3.03% 5.35% 1.74% 3.35% 1.97% 4.97% 3.57% 5.79% 

147 5.78% 8.52% 3.38% 5.31% 4.18% 7.79% 6.50% 9.16% 

148 12.88% 12.54% 9.09% 2.99% 0.64% 36.06% 18.30% 4.03% 

149 6.83% 6.20% 11.86% 11.24% 44.74% 44.01% 9.29% 10.09% 

150 15.56% 9.40% 7.86% 0.56% 2.69% 34.44% 21.52% 0.35% 

151 4.55% 2.66% 10.40% 8.89% 43.83% 42.22% 12.42% 14.58% 

152 18.56% 6.90% 6.48% 1.39% 5.27% 33.20% 24.87% 2.88% 

153 2.17% 0.14% 8.85% 7.03% 42.70% 40.77% 15.69% 18.27% 

154 0.80% 1.26% 0.10% 0.73% 0.31% 1.15% 1.25% 1.33% 

155 10.14% 5.05% 1.92% 2.76% 4.59% 4.83% 11.31% 4.94% 

156 20.32% 8.25% 7.88% 4.46% 9.20% 7.95% 22.84% 8.14% 

157 172.16% 13.83% 3.77% 1.50% 45.83% 37.41% 195.60% 2.33% 

158 102.32% 12.37% 9.94% 12.11% 41.34% 42.38% 133.92% 11.07% 

159 203.99% 11.00% 1.92% 3.67% 59.96% 35.64% 234.50% 5.87% 

160 120.87% 9.30% 8.23% 10.22% 39.29% 40.49% 159.39% 15.05% 

161 242.33% 8.70% 0.04% 5.47% 76.99% 34.19% 280.14% 8.79% 

162 141.11% 6.72% 6.63% 8.56% 37.04% 38.90% 188.92% 18.50% 

163 0.49% 0.56% 0.30% 0.32% 0.37% 0.39% 0.72% 0.76% 

164 2.35% 3.37% 1.43% 2.02% 1.45% 2.57% 2.90% 3.85% 

165 4.16% 5.76% 2.50% 3.39% 2.63% 4.33% 4.96% 6.45% 

166 0.32% 5.29% 18.98% 3.34% 14.05% 29.74% 6.60% 5.41% 

167 5.47% 5.47% 13.37% 13.35% 44.48% 44.52% 13.03% 12.93% 

168 2.08% 2.64% 18.04% 5.27% 13.09% 28.50% 8.82% 8.73% 

169 3.72% 2.85% 12.28% 11.73% 43.96% 43.39% 15.41% 16.52% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 
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Table A2 (Cont.) 

Percentage Difference Between Model Estimates and Set Failure Rates 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards Regression 

with Frailty 

  Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

170 3.90% 0.40% 17.16% 6.86% 11.93% 27.54% 10.99% 11.63% 

171 2.01% 0.68% 11.26% 10.41% 43.37% 42.50% 17.86% 19.56% 

172 0.52% 0.64% 0.12% 0.33% 0.23% 0.46% 0.90% 0.76% 

173 6.42% 3.66% 1.44% 1.92% 2.85% 3.23% 7.47% 3.82% 

174 12.88% 6.15% 2.75% 3.16% 5.74% 5.43% 15.24% 6.36% 

175 98.17% 7.44% 12.92% 6.24% 14.37% 32.57% 120.71% 9.99% 

176 84.55% 8.26% 11.21% 13.43% 41.44% 42.85% 120.82% 16.31% 

177 109.87% 4.81% 11.75% 8.07% 18.94% 31.10% 136.98% 13.44% 

178 95.64% 5.61% 9.90% 11.94% 40.21% 41.41% 136.39% 19.89% 

179 122.47% 2.57% 10.68% 9.58% 23.75% 29.88% 152.31% 16.43% 

180 107.52% 3.49% 8.62% 10.79% 38.81% 40.30% 153.76% 22.90% 

181 0.59% 0.63% 0.30% 0.32% 0.39% 0.39% 1.15% 1.10% 

182 2.40% 3.17% 1.31% 1.72% 1.14% 2.05% 3.28% 3.87% 

183 4.11% 5.35% 2.24% 2.88% 1.98% 3.37% 5.33% 6.57% 

184 3.55% 0.97% 24.59% 7.91% 20.68% 25.26% 4.15% 14.41% 

185 1.04% 1.01% 15.05% 15.03% 44.17% 44.20% 21.43% 21.42% 

186 1.81% 3.72% 23.76% 9.67% 20.10% 24.19% 6.61% 18.00% 

187 0.78% 1.54% 14.09% 13.70% 43.81% 43.35% 24.16% 24.94% 

188 0.22% 5.99% 23.03% 11.06% 19.39% 23.39% 8.76% 21.06% 

189 2.54% 3.74% 13.18% 12.58% 43.39% 42.68% 26.82% 28.26% 

190 0.70% 0.63% 0.08% 0.30% 0.37% 0.39% 1.25% 0.93% 

191 5.92% 3.45% 1.29% 1.67% 2.19% 2.72% 7.48% 4.00% 

192 11.35% 5.69% 2.37% 2.74% 4.21% 4.43% 14.26% 6.67% 

193 77.15% 1.15% 19.06% 10.02% 0.78% 28.43% 103.01% 18.17% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 
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Table A2 (Cont.) 

Percentage Difference Between Model Estimates and Set Failure Rates 

Condition 
Cox Proportional 

Hazards 

Weibull 

Regression 

Fine and Gray's 

Method 

Cox Proportional 

Hazards 

Regression with 

Frailty 

  Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 Event 1 Event 2 

194 90.54% 2.41% 12.46% 14.50% 41.00% 42.64% 137.65% 24.70% 

195 86.72% 1.60% 18.09% 11.74% 3.16% 27.13% 115.51% 21.82% 

196 101.23% 0.26% 11.35% 13.24% 40.19% 41.46% 153.42% 28.45% 

197 96.71% 3.85% 17.16% 13.08% 5.97% 26.18% 129.71% 24.76% 

198 112.47% 2.47% 10.26% 12.21% 39.23% 40.58% 170.73% 31.71% 

199 0.47% 0.53% 0.29% 0.32% 0.38% 0.40% 0.57% 0.62% 

200 2.77% 4.18% 1.70% 2.58% 2.25% 3.81% 3.05% 4.35% 

201 5.26% 7.26% 3.18% 4.44% 4.40% 6.59% 5.67% 7.61% 

202 12.41% 13.28% 9.16% 3.55% 0.64% 36.63% 17.49% 4.92% 

203 7.15% 7.15% 11.81% 11.78% 44.60% 44.63% 8.75% 8.71% 

204 15.11% 10.46% 7.83% 1.32% 2.95% 35.11% 20.67% 1.57% 

205 5.08% 3.96% 10.44% 9.60% 43.66% 42.87% 11.47% 12.76% 

206 17.79% 7.98% 6.62% 0.57% 5.31% 33.84% 23.50% 1.48% 

207 2.94% 1.26% 9.03% 7.83% 42.57% 41.45% 14.30% 16.39% 

208 0.34% 0.70% 0.43% 0.39% 0.14% 0.56% 1.00% 0.71% 

209 9.03% 4.27% 1.51% 2.30% 4.61% 4.18% 9.83% 4.12% 

210 19.20% 7.16% 3.13% 3.87% 9.79% 7.03% 20.80% 6.95% 

211 169.95% 14.48% 3.55% 0.98% 45.83% 37.96% 192.01% 1.57% 

212 100.83% 13.09% 9.96% 12.44% 41.42% 42.76% 131.16% 10.13% 

213 197.26% 11.79% 1.88% 3.16% 58.75% 36.11% 224.38% 4.91% 

214 117.76% 10.21% 8.29% 10.62% 39.25% 40.89% 153.53% 13.88% 

215 229.43% 9.55% 0.06% 4.85% 74.13% 34.67% 262.30% 7.82% 

216 137.26% 7.91% 6.59% 9.22% 36.70% 39.44% 180.28% 17.02% 

Note. Percentages greater than 50% are in italics and those greater than 100% are in bold. 
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