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Abstract 

There has been a growing interest in using low cost material as a substrate for the large 

grained polycrystalline silicon photovoltaic devices. The main property of those devices is the 

potential of obtaining high efficiency similar to crystalline Si devices efficiency yet at much 

lower cost because of the thin film techniques. Epitaxial growth of Si at low temperatures on low 

cost large grained seed layers, prepared by aluminum induced crystallization method (AIC), 

using hot wire chemical vapor deposition (HWCVD) system is investigated in this thesis. In this 

work, different parameters have been studied in order to optimize the growth to reach the goal of 

epitaxial growth. The growth of epitaxial silicon using HWCVD system is controlled by four 

parameters: flow rate of gases, pressure, substrate temperature and filament temperature. As a 

result, in this work, those four factors were varied to optimize the growth process. 

Crystallinity quality is a significant factor toward confirming the epitaxial layer. Raman 

scattering, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission 

Electron Microscope (TEM) were used to determine the crystallinity. Epitaxial growth of Si at 

500 °C was obtained even with a low vacuum of 1×10-3 torr.  

Furthermore, heavily doped large grained polycrystalline silicon seed layers were formed 

at first using AIC on Indium Tin Oxide (ITO) coated glass substrates to be ready for the 

following step which was epitaxial growth of Si. The grains were continues in the center of the 

film which was a single crystal that no one has reported it before. Epitaxial growth of Si was 

successfully achieved as the SEM results showed similar grain sizes before the epitaxial growth 

and after the epitaxial growth. The TEM results confirmed the epitaxial growth but stacking 

faults were observed. Also, different orientations were present as Moiré Fringes was seen in the 

TEM images.  
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Chapter 1: Introduction and Motivation 

1.1 Introduction 

   Interest in sustainable energy has increased worldwide due to the environmental 

consequences of using fossil fuels such as carbon emission and acid rain. Fossil fuels such as oil 

and gas are limited natural resources. Once consumed, they need millions of years to form again. 

The problem is that if the growth rate of human population remains the same, in 50 years the 

number of people on earth will be doubled. Consequently, the need for energy will increase, 

which will increase energy prices as well.  

   Natural resources are materials that occur in nature and can be consumed for economic 

gain. The most common types are water, fertile lands, forests, and minerals. Throughout history, 

natural resources have been increasingly exploited in the development of civilizations. From 

cooking on wood fires to propelling airplanes using enormous fuel engines across oceans, natural 

energy resources are essential for any society to progress.  

   At the current rate of consumption, natural energy resources will be depleted in the future, 

since these resources are finite. Over-use of these natural resources can also have negative 

impacts on the environment, such as global warming due to greenhouse gas emission. As a 

result, the push toward renewable energy use as a solution for many global issues has resulted in 

increased funding for promising alternative energy research. Such research holds the potential to 

impact multiple facets of global human interest from poverty to pollution.  

   Sun radiation could be the solution that covers this growing demand for energy by way of 

the photoelectric effect. When light hits solar cells, electrons get excited so that electricity is 

generated. Solar cells work as a p-n junction, which consists of two kind of materials: p-type and 
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n-type semiconductor materials. A better understanding about silicon (Si) is needed in order to 

further explain p-n junctions. 

   Silicon is a chemical element that has an atomic number of 14 and has four electrons in its 

outermost shell. These four electrons are shared with adjacent silicon atoms to form an orbital of 

eight atoms. Silicon is not only a poor electrical conductor but also a poor insulator, therefore it 

is called a semiconductor. It is also an indirect band gap material.  

   The band gap in the solid state represents the energy difference between the top of the 

valance band and the bottom of the conduction band. There are some materials that are direct 

band gap such as GaAs and others are indirect band gap such as Si. In direct band gap materials, 

the top of the valance band is aligned with the bottom of the conduction band because they have 

the same momentum value, which results in light emission when electrons excite these materials. 

However, indirect band materials have their top of valance band and bottom of conduction band 

at different values of momentum.  

   Thermal energy can break the Si-Si bonds and create a free electron. When an electron gets 

excited to a higher energy level it leaves behind a hole that has a positive charge. In pure 

semiconductors, the number of electrons and the number of holes are equal and they are termed 

the intrinsic carrier concentration (ni). At room temperature, 300 K, the intrinsic carrier 

concentration (ni) in silicon is about 1.4 x 1010 cm-3[1]. 

   Silicon is a great choice for photovoltaic devices since it is abundant and non-toxic. In 

addition, the electrical conductivity of Si can be improved and controlled when adding some 

other materials such as group three (III) or group five (V) elements of the periodic table that are 

called impurities.  
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   Column IV of the periodic table has the semiconductor elements such as silicon and 

germanium, all of which form the same bonding where all four electrons in the outermost shell 

are bound to its four neighboring atoms resulting in a stable arrangement. Their conductivity 

depends on temperature change, optical excitation, and doping content. This electrical property 

that provides control of the required conductivity makes semiconductor materials significant for 

electronic devices. Figure 1 shows a p-n junction solar panel. 

 

 

 

 

 

 

 

 

 

In order to form a p-n junction, elements from group three or five of the periodic table are 

bound to silicon. Column III elements such as boron have three electrons in their outermost shell 

so they create a p-type semiconductor when added to column IV elements. These three electrons 

bind with three Si electrons which leave one hole so the number of holes is larger than number of 

electrons (p-type material). On the other hand, column V has elements that have five electrons in 

their outermost shell, such as phosphorus, so they form n-type semiconductors when added to 

 Figure 1. A schematic diagram of solar panel 
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column IV elements. Introducing those elements of group three and five of the periodic table to 

group four, semiconductor elements, is what is termed doping. Doping in semiconductors can be 

performed using diffusion or ion implantation [2].  

   There are two different kinds of solar cells: crystalline Si (c-Si) based solar cells and thin 

film Si based solar cells. Currently, the most common solar cell products are based on c-Si, 

which is expensive in terms of initial costs but generates high efficiency. Crystalline silicon solar 

cells were the first generation of photovoltaic devices and are still the most common because of 

their high efficiency. The thickness of the silicon wafer that is used in c-Si solar cells is between 

200 and 500 µm[3].  

The solar cell industry depends on either increasing the solar cells efficiency or decreasing the 

cost of manufacturing, without sacrificing the device efficiency. The cost of solar cells depends 

greatly on the c-Si substrates. In the last six years, a worldwide demand for photovoltaic devices 

has increased by over 30% per year[4]. In 2011, the solar cell industry produced about $125 million 

in revenue. The growth rate of the revenue from 2010 to 2011 was 81.4%[5]. 

    Thin film silicon solar cells have many advantages over c-Si solar cells. One such 

advantage is that they have a lower cost due to the fact that thin film technology is using less 

active materials. A thin-film photovoltaic cell (TFPV) is a solar cell that is fabricated by 

depositing one thin layer, or several thin layers of photovoltaic material on an inexpensive 

substrate. The thickness varies from a few nanometers to tens of micrometers. Thus, the active 

materials included in the thin film solar cells such as silicon are less compared to normal solar 

cells. “Conventional solar cells use silicon wafers that are over 100 micrometers thick, while 

thin-film devices have thicknesses of a few micrometers”[6].  
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   Thin film technology has the ability of separating the active materials from the mechanical 

support material. This can be done by depositing a thin layer of active materials on a low cost 

substrate such as glass. As a result, the cost of these solar cells compared to the c-Si solar cells is 

lower due to using less Si in the thin film technology. 

   However, the problem associated with thin film solar cells is that their relatively low 

efficiency compared to the efficiency of c-Si solar cells puts thin film solar cells at a 

disadvantage despite their lower production cost. Therefore, increasing the quality of thin film 

solar cells toward having a higher efficiency is a topic of great interest which has been 

researched for decades. 

   There are different types of thin film solar cells, such as amorphous Si based thin film solar 

cells (a-Si) and CdTe based thin film solar cells. Large grained polycrystalline silicon solar cells 

are another type that have many advantages over their other thin film solar cell counterparts. Due 

to the health risks of using cadmium in the fabrication of solar cell, new regulations in the 

European Union was implemented to ban using CdTe solar cells[7]. According to United Solar 

LLC, currently their commercial a-Si solar cells have low efficiency of about 9.5%[4]. 

   This type of solar cells could have the potential to have efficiency of about 15% like 

crystalline Si solar cells but at lower costs[4]. Therefore, epitaxial growth on large grained 

polycrystalline silicon seed layers is just one significant improvement of thin film technology in 

the solar cell industry and is the focus of investigation which is detailed in this thesis. 

1.2 Motivation for Epitaxial Growth 

   The increasing cost that is anticipated in the future of solar cells is the leading motivation 

for using less active photovoltaic materials, which would decrease the price of c-Si solar cells even 

more. Decreasing the amount of active materials in photovoltaic devices is one of the main targets 
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for the leading companies in the solar cell industry. Thus, thin film technology is a solution that 

would lead to a competitive advantage for these companies.  

   Epitaxial growth is a technique that has drastically improved thin film technology due to the 

high quality deposition that is produced. The quality of a solar cell is extremely important and 

needs to be taken into consideration because of the way it impacts the device efficiency. The silicon 

wafer manufacturing process has been improved significantly, but defects on the surface remain 

which are produced during crystal growth. Any type of defect, such as interstitials or vacancies, 

can damage device performance. Due to the thickness of the epitaxially grown layer, a mechanical 

support is needed. Thus, an inexpensive substrate such as glass was used and prepared by 

aluminum induced crystallization (AIC) to be seed layers for the epitaxial thickening.  

   Using AIC method on glass provides large grains compared to directly depositing Si on glass 

which results in small grains. The grain boundaries are recombination sites for the charge carriers 

that result in a drastic reduction of their lifetime. This affects the efficiency of the device which 

means that the grains must be larger than the thickness of the solar cells. 

   This work demonstrates epitaxial growth on large grained poly-crystalline Si seed layer by 

means of AIC with the goal of reducing the high cost of crystalline silicon (c-Si) substrates and 

providing high quality thin layers. 

1.3 Organization of Thesis 

  This thesis begins with a brief introduction about the driving force for thin film 

photovoltaic devices in general and, more specifically, for epitaxial growth of Si. Chapter two 

introduces a theoretical background about different techniques of thin film deposition and ends 

with aluminum induced crystallization. Literature reviews on epitaxial growth of Si on c-Si 

substrates and seed layer substrates are then discussed in chapter three.  Chapter four presents the 
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experimental methodology and the equipment that was used to make this work possible. Chapter 

five contains a description of the results and discussion. The final conclusion is presented in 

chapter six with suggested future work.   
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Chapter 2: Theoretical Background 

2.1 Epitaxial Growth 

One of the major methods of crystal growth is that of thin film on a matched substrate. 

This is called an epitaxial growth[8]. The term “Epitaxy” has Greek roots that are “epi” and 

“taxis”. The first syllable “Epi” means above and “taxis” means “an ordered manner” [9]. 

Therefore, epitaxial growth generally means growth of a single crystal that is in an ordered 

manner on top of a crystalline substrate.  

Using thin film manufacturing procedures plays a major role in cost reduction efforts. 

Therefore, epitaxial growth on large grained seed layer is an efficient approach for the future of 

renewable energy. The devices that are produced by this approach and followed by HWCVD at 

low temperatures to deposit epitaxial Si on top of the substrate could be the next generation of 

photovoltaic devices[10]. 

There are two types of epitaxial growth: homo-epitaxy and hetero-epitaxy. Homo-epitaxy 

is an epitaxial layer of a material that is the same as the substrate. An example of this kind is the 

epitaxial growth of Si on crystalline Si substrate[11]. This kind can be used to grow a film that is 

more pure than the original substrate. Also, it can be used to form layers that are different in 

doping levels. It is usually easier to grow an epitaxial layer on top of the same material, due to 

lattice matching. 

 Hetero-epitaxy is epitaxial growth of a material that is different from the substrate. An 

example of this is the epitaxial growth of Si on glass or seed layers [11]. Hetero-epitaxy can be 

used to fabricate combined crystalline layers from various materials. As aforementioned, hetero-

epitaxy is more difficult to achieve but possible under suitable conditions. 

B. Lattice matching 
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Lattice matching is an important factor to obtain epitaxial growth. In homo-epitaxial 

junctions, it is easier to get a high quality single crystal because of the structure matching. 

However, Si epitaxial growth on top of a different material than the substrate, such as hetero-

epitaxial junctions is possible. 

It is important that the lattice structure of the substrate matches the lattice structure of the 

epitaxial layer. For example: GaAs has the same zinc blende structure as AlAs does. The lattice 

constant for this structure is about 5.65A. As a result, the epitaxial growth of AlGaAs is possible 

on a GaAs substrate [8].  

Figure 2 shows three different cases of lattice structure matching. In general, matched 

lattice structure enables the epitaxial growth easier than the other types. In matched lattice 

structures, the quality of the film is higher than the other matching conditions and there are fewer 

defects. Also, here the mobility of electrons is highest.  

Strained lattice happens when there is a mismatch in the lattice structures, so the film 

may strain to adapt to that difference. However, if the accommodation to the strain is difficult, 

defects and dislocation may occur. In this case the change is called relaxed matching [12]. When 

less than ~9% lattice mismatch is present, the first layers of film will grow 

“pseudomorphically”[10]. 

 

 

 

 

 

 
Figure 2. A Schematic diagram of lattice strains: A. matched lattice structure, B. strained lattice 

structure, and C. Relaxed lattice structure.  

A. matched  

Substrate Substrate Substrate 

Film Film Film 

B. strained  C. relaxed 
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C. Methods of epitaxial growth 

There are many techniques to obtain thin film deposition. The two main categories are: 

chemical vapor deposition (CVD) and physical vapor deposition (PVD).  Plasma enhanced 

chemical vapor deposition (PECVD) and hot wire chemical vapor deposition (HWCVD) are two 

significant types of CVD methods. However, the focus of this thesis is solely on HWCVD.  

D. The substrate orientation 

  The orientation of the c-Si substrate is significant in epitaxial growth due to some 

orientation plane properties which exhibit preference to grow epitaxially than other types. In this 

work (100) c-Si was chosen to grow the epitaxial layer of Si on top of it. Many studies suggested 

that (100) c-Si planes have an advantage over (111) c-Si planes because of the fact that each Si 

atom has two bonds that can be incorporated in a lattice location. On the other hand, the Si atoms 

in the planes of (111) have only one bond which might not be enough to grow an epitaxial 

layer[13]. 

2.1.1 Chemical Vapor Deposition (CVD) 

2.1.1.1 Plasma Enhanced Chemical Vapor Deposition (PECVD) 

A thin film of various materials can be deposited using plasma enhanced chemical vapor 

deposition (PECVD) technique. A thermal source is incorporated in the chamber of PECVD in 

order to initiate the chemical reactions. Adding the plasma source in this method allows the 

deposition to occur at lower temperatures than those methods that have only a thermal source. A 

typical PECVD chamber has parallel electrodes where one electrode is grounded while the other 

one is RF-energized[14]. The lower temperatures that are required for the deposition make the 

PECVD advantageous over the CVD method. High quality SiO2 films can be obtained in the 
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PECVD system at 300˚ to 350 °C, whereas the CVD system requires higher temperatures that 

range from 650 to 850 °C.  

Plasma in the PECVD technique is used to decompose the introduced gases in the 

chamber to ions, atoms, molecules, reactive radicals, and other species. These species will 

interact at the substrate surface[15]. Some of the applications of PECVD are: “the deposition of 

dielectric films and passivation films like silicon oxide or nitride or ONO layers at low 

temperature”[16]. 

One of the disadvantages of the PECVD system is the accelerated ions that are produced 

in the chamber and go directly toward the surface of the substrate. This could be harmful to the 

deposited film and can damage the quality of the film substantially. The high cost of the PECVD 

equipment is another disadvantage factor[17][4].  

2.1.1.2 Hot Wire Chemical Vapor Deposition (HWCVD) 

Hot wire chemical vapor deposition or catalytic chemical vapor deposition are methods 

that use a hot filament to break the chemical bonds in SiH4, H2 or other gases. Hot wire chemical 

vapor deposition is of great importance in the thin film industry. Not only because of the cost 

reduction, but also because it causes less ion damage in comparison with other methods such as 

PECVD. 

 In the HWCVD technique, a heated filament decomposes a gas mixture that is 

introduced in the chamber into radicals. Then, the product of the decomposed gas mixture is 

deposited on the surface of the substrate. “The chemical composition of the layers can be 

adjusted very well by way of the selection and the mixing ratio of the types of gas that are 

employed.” [18] 
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The precursors in the HWCVD after thermal decomposition have an energy of about 0.2 

eV which is less energetic than the accelerated ions in PECVD. The growth rate is also a factor 

due to the low growth rate which can create defects and increase the cost of capital. HWCVD 

system “offers a high deposition rate of up to 5 nms-1” [4] . By using HWCVD, the uniformity of 

the film can be increased when using more than one filament. The disorder decreases when 

depositing Si by HWCVD more than it does with PECVD [19]. The filament can play a great 

role in the passivation of the bulk and the film [4][20]. There are four critical factors that control 

growth in the hot wire chemical vapor deposition method: flow rate of gases, pressure, substrate 

temperature and filament temperature[21]. 

Using a hot filament at temperatures ranging from 1200-2000 ˚C can fully break SiH4 and 

H2. The products are then deposited on top of a substrate, which is heated by either an external 

source or by the hot filament at temperatures ranging from 200 to 800 °C. This method is much 

cheaper than PECVD or MBE. The filament material choice is important because it has a great 

effect on the epitaxial growth process.  

The materials that have been used by different research groups are: tungsten (W), 

tantalum (Ta), and graphite (C) filaments. Tungsten at a temperature of about 1500 °C has a very 

high cracking factor for silane. This is very important for gas consumption. Tantalum is more 

expensive than tungsten, but it produces a larger thickness film than tungsten in the same 

circumstances. Graphite is quite new in reference to hot wire chemical vapor deposition. It does 

not contaminate the film with carbon any more than tungsten would, as was previously thought.  

If there is any contamination, it is not as damaging as the other filament materials such as 

tungsten and tantalum. The filament temperature also affects the cracking process and the 
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contamination level of the film. The species coming off of the filament are created based on the 

filament temperature [22].  

In general, any temperature above 1500 °C will provide a dominant silicon in the 

outcomes species in the case of tungsten filament (W). As a result, the experiments in this work 

were performed at 1900 °C and above to guarantee the species that will result are predominantly 

silicon. At lower temperatures, some species such as SiH2, SiH3 could be present because SiH4 

will not be fully decomposed. At high temperatures, some residue products form gases which can 

be found in the film. Because W has a successful history, it will be used as the filament material. 

There are four main sources to produce silicon for commercial epitaxial growth. They 

are: silicon tetrachloride (SiCl4); trichlorosilane (SiHCl3); dichlorosilane (SiH2Cl2); and silane 

(SiH4) [23]. In this research, SiH4 will be discussed as the source of silicon. Growth of Si from a 

gas source reduces the cost of solar cell materials. Moreover, Si can be reused due to this thin 

film technology which increases the utilization of materials and cuts the industrial cost [22]. 

Silane gas can be used pure or mixed with other gases like atomic hydrogen or argon 

(Ar). The results from the diluted mixture of hydrogen and Si were a combination of amorphous 

and crystalline Si as the pure SiH4 results. However, the crystalline fraction Xc increased when 

using diluted SiH4 in atomic hydrogen. There is no evidence or clear understanding of the 

behavior of the deposition when adding hydrogen, except that atomic hydrogen helps the 

epitaxial growth by lowering the deposition rate to increase the crystallinity[24]. 

The overall chemical reaction of the epitaxial silicon growth using SiH4 is not fully 

known, but can be written as: SiH4 => Si + 2H2 [23]. The structure of the resulted thin films of Si 

in this work differ from one set of conditions to another.  
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2.1.2 Physical Vapor Deposition (PVD) 

Using physical processes to deposit a film instead of chemical reactions as in CVD 

system is another avenue of thin film deposition. This physical process is called physical vapor 

deposition (PVD). In PVD systems almost any kind of material can be deposited, which make 

them more flexible than CVD systems. The two types of PVD methods are evaporation and 

sputtering. They have been utilized for over one hundred years for thin film metal coating. The 

most common method today is sputtering, but evaporation is still utilized for some 

applications[1]. 

2.1.2.1 Evaporation 

 

In evaporation systems, the chamber is pumped down to less than 10-5 torr to obtain a 

high vacuum. Then a source is heated so the atoms of the source evaporate and condense on the 

surface of the samples. The probability of the atoms to be scattered is low due to the atoms 

traveling in a high vacuum, unlike CVD systems [1]. 

2.1.2.2 Sputter Deposition 

Sputtering is a process where a substrate is placed in a high vacuum chamber to be 

coated. This chamber contains a target source of the material that will be deposited on the 

substrate surface. A negative charge is applied to the target source so that a plasma will glow. 

Electrons are emitted from the target source and flow colliding with Ar atoms. Therefore, the 

negatively charged Ar atoms will be positively charged ions that will be “attracted to the 

negatively charged target material at a very high velocity that ‘sputters off’ atomic size particles 

from the target source”[25].  

Sputter deposition has some advantages over evaporation thus it is used in many 

technologies. It does not require high vacuum, so a vacuum ranging from 1 to 100 mTorr is 



15 

 

enough. On the other hand, evaporation requires less than 10-5 torr. Even though sputtering is 

favored over evaporation, the high pressure in sputtering can cause contamination. As a result, 

evaporation is thought more desirable for special applications and technologies[1]. 

2.2 Aluminum Induced Crystallization 

Aluminum-induced crystallization (AIC) for seed layer preparation:  

The most common approach to prepare seed layers on glass for solar cell fabrication is 

aluminum-induced crystallization which is also identified as aluminum-induced layer exchange 

(ALILE) [26]. A continuous large grained poly-silicon seed layer can be obtained by AIC. The 

resulting seed layers will be a heavily doped p-type due to the fact that aluminum functions as an 

acceptor in silicon [4]. 

For the AIC process, a layer of oxide on top of aluminum before an a-Si deposition is 

obtained by exposing the sample to ambient air. This oxide layer separates the a-Si layer and the 

aluminum layer during the process. It acts as a permeable membrane and controls the diffusion 

of the a-Si and aluminum [20]. In general, transformation from amorphous phase to crystalline 

phase can be achieved when some metals are in contact with a-Si. Some examples of metals that 

can be used to crystallize a-Si are: Al, Ag, Au, Sb, Cu, and Ni. 

The significance of metal and a-Si structure comes from the fact that a-Si interacts with 

metals and transforms from amorphous phase to crystalline phase at lower temperatures than the 

eutectic temperature of the Si-Al contact (577 ºC)[27]. Otherwise, a-Si requires temperatures 

above the eutectic temperature of the Si-Al contact. 
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The conversion temperatures must be below the eutectic temperatures of the metal and a-

Si system. Below is a table of the metals and their eutectic temperatures (Teu) when they are in 

contact with amorphous silicon. Table 1 below shows the eutectic temperatures for some metals 

when they interact with a-Si 

 

The interaction between the metal and a-Si is defined by the difference in their chemical 

potential, called free energy. The free energy of the a-Si is higher compared to metals which 

initiate the chemical reactions to reduce it.  

Another contribution to the chemical reactions is the large amount of stress in a-Si. Dries 

Van Gestel et al [28] pointed out a basic model to understand the interaction in which the metal 

(Al in this case) induces decomposition of Si atoms at the interface between aluminum and a-Si.  

Annealing enhances the diffusion of the Si atoms through the aluminum oxide to the Al 

layer. At this point, nucleation has happened and the driving force is the difference in Gibbs free 

energy. This causes a silicon concentration in aluminum which is above the critical concentration 

of silicon nucleation. Then, silicon grains will start to grow in all directions until they reach the 

substrate which limits the grains to lateral growth. Aluminum diffuses during the Si grain growth 

into the top layer to decompose Si atoms. A secondary AIC will occur on the top layer when Al 

atoms interact with the remaining a-Si [28]. 

Metal Teu (°C) 

Al 577 

Ag 830 

Au 360 

Sb 630 

Cu 802 

Ni 964 

 

Table 1. The eutectic temperatures for some metals when they interact with a-Si [50]. 

 

Table 2: The eutectic temperatures for some metals when they interact with a-Si [50]. 
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The driving force toward choosing Al over the other metals is because when Al is 

incorporated in the poly-Si atoms as an impurity, new energy levels will be present. There are 

two kinds of new energy levels: shallow energy levels that are close to the valance or conduction 

bands and deep energy levels that are close to the middle of the band gap.  

Aluminum introduces an energy level that is close to the valance band, which is an 

advantage of Al over the other metals. The reason for this is the reduction in recombination that 

is caused by Al due to the energy level near the valance band. There are only two cases that can 

happen to the carriers: re-excitation or recombination. What happens here is re-excitation which 

reduces the harmful consequences caused by the other metals[27]. There are two configurations 

of AIC growth: aluminum induced crystallization (AIC) or seeding structure and top-down 

aluminum induced crystallization (TAIC) also known as capping structure[29]. 

2.2.1 Aluminum Induced Crystallization (AIC) 

The structure of this type begins with an Al layer on a glass substrate and then an a-Si:H 

layer will be deposited on top of it so the configuration of this type is (glass/Al/a-Si:H). After 

annealing, the resulting order will be (glass/poly-Si/Al). In this case, Si islands will be present on 

the surface as a secondary crystallization as mentioned previously. This work includes more 

results of the configuration of AIC than TAIC[29]. A schematic diagram of a fabrication process 

of AIC is shown in Figure 3. 
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Figure 3. A schematic diagram of AIC fabrication process. 
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2.2.2 Top-Down Aluminum Induced Crystallization (TAIC) 

The reverse aluminum-induced crystallization (R-AIC) or top-down aluminum-induced 

crystallization (TAIC) has an opposite configuration than the normal aluminum-induced 

crystallization (AIC). It starts with a glass substrate and then a-Si:H is deposited on it and lastly 

is an Al layer. The configuration can be written as (glass/a-Si/Al). The resulting structure will be 

(glass/Al/poly-Si) as shown in Figure 4. 

The smooth surface of seed layers that have been prepared using TAIC is a definite 

advantage. Silicon islands that are present in AIC, on the top layer in this case, are underneath 

the poly-silicon layer, which means no further removal process is required. In addition, another 

advantage of TAIC is the very conductive layer that is formed on glass and can be utilized as a 

back contact in the solar cell. This highly conducting layer reduces resistance, which results in 

higher efficiency of the solar cell[26] . 

 

 

Glass 

 

Al 

 a-Si:H 

 

Poly-Si 

Glass 

 

Al 

Figure 4. A schematic diagram of TAIC fabrication process. 
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Chapter 3: Literature Reviews 

3.1 Epitaxial Growth of Si on c-Si  

In 1999, Thiesen et al. [21] successfully performed epitaxial growth at temperatures 

ranging from 195˚ to 325 ˚C. They used c-Si as a substrate that was cleaned using the RCA 

cleaning procedure. The cleaned substrate was loaded in a chamber which was then evacuated to 

3x10-7 torr.  

When the filament reached a temperature between 1800˚ and 2200 ˚C, SiH4 gas was 

introduced to the chamber with a flow rate of 5-40 sccm and pressure of 5 and 40 mtorr with 

different growth times. They reported an epitaxial layer up to 4500 Å thick and stacking faults 

were observed in the film. The experiment was done using only pure SiH4 without any additional 

H2[21].  

In 2000, Seitz and Schroder[30] studied the effect of filament temperatures on the 

dissociation of SiH4 and the radicals that were formed, and how it affected the deposition rate. 

They found that deposition rate, substrate temperature, and gas pressure determine the formation 

of c-Si, a-Si, or mixed phase.  

They observed the formation of a mixed phase of amorphous silicon and crystalline 

silicon at a deposition rate of 2 Å sec-1. Also, there was a linear decrease in the crystalline 

volume fraction during the deposition. Furthermore, the epitaxial growth had been achieved as 

the deposition rate went down to 1Å sec-1 at a substrate temperature of 300˚C without having 

surface roughening and stacking faults. They also noticed that the epitaxial films had a low 

density of defects near the c-Si and epitaxial film interface[30].  

In 2003, Mason et al. [31] achieved the epitaxial growth of thin Si film by HWCVD on Si 

substrate at low temperatures (300 ˚C). They deposited a 300 nm thick Si film on silicon 
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substrate and SiO2 substrates using 20 sccm of H2 at a pressure of 70 mtorr and SiH4 diluted in 

hydrogen with flow rate and pressure of 20 sccm and 100 mtorr, respectively. The filament in 

this experiment was at a distance of 5 cm from the substrate and heated to 1850 ˚C.  

The results of the work of Mason et al. confirmed the existence of epitaxial growth using 

TEM cross section. However, the film-substrate interface was rough, which was expected due to 

the effect of the surface etching process by atomic hydrogen during the growth. After the epitaxy 

continued growing to a thickness of 240 nm, the film’s structure changed to highly twinned[31]. 

In 2005, Richardson et al.[32] used a high hydrogen partial pressure dilution ratio of 50:1 

in order to promote crystalline growth. They used tungsten wire of 0.5 mm diameter placed at a 

distance of 2.5 cm from the substrate. 

 The wire temperature was 1800 ˚C with a growth rate of 1Å sec-1, while the substrate 

temperatures were set from 300˚ to 475 ˚C. They observed four phases of growth with this 

dilution ratio and temperatures. They derived a phase diagram which is a plot of the substrate 

temperatures against the thickness from their results that showed the four phases. At 300 ˚C, 

epitaxial phase and twinned phase were the most dominant phases with polycrystalline growth 

occurring at 1 and 2 micron thickness. 

 The epitaxial and twinned phases no longer existed as the temperature was increased, 

while the polycrystalline Si growth occurred at smaller film thickness. They believed that this 

was due to contamination in the chamber[32]. 

3.2 Epitaxial Growth on Seed Layers 

In 2005, Stradal et al.[33] used the University of New South Wales’s (UNSW) system to 

produce large-grained polycrystalline seed layers on borofloat glass substrate using the 
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aluminum induced crystallization method at temperatures below 500˚C with a deposition rate of 

10 Å sec-1.  

The seed layer had a thickness of 150-300 nm.  The resulted grains have three major 

orientations, which were (100), (220), and (311). The (220) and (311) orientations are not as easy 

as (100) grains to grow epitaxial layer. 

For the epitaxial growth, they cleaned the seed layers with piranha etch followed with HF 

dip to enable achieving a thick epitaxial layer. The epitaxial growth was done using HWCVD in 

PASTA, multi-chamber Ultra–high vacuum system. They achieved epitaxial growth at a 

temperature of 370˚C with a deposition rate of 1Å sec-1.[33].  

In 2007 another group Lee et al. [22] fabricated the epitaxy layer on polycrystalline layer 

using two steps for the preparation. First, they prepared the seed layer on oxidized Si wafers 

using vapor induced crystallization (VIC) method. In the VIC method, two heating zones were 

used for heating and annealing. The source consist of AlCl3/NiCl2 (10:1). The temperatures that 

were used for evaporation and annealing during the crystallization of a-Si were 200 ˚C and 480-

500˚C for 60 min. The second step was the growth of 40 nm of epitaxial Si in the HWCVD at a 

filament temperature of 1900 ˚C. During this step, 20% silane diluted with Ar gave a deposition 

rate of 2.6 Å/s at 450 ˚C of substrate temperature.  

The vacuum pressure and chamber pressure are 5x10-7 torr and 100 mtorr. The XRD 

showed strong diffraction peaks of Si <111>, <220>, and <311>. From planar and cross-

sectional TEM analyses, epitaxial Si by HWCVD at 450°C was successfully grown on the poly-

Si seed film. They also found that the two steps helped in reducing the concentration of Ni and 

Al at the surface of the poly-Si[22]. 
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In 2011, Young et al.[24] used two types of surfaces, n+ Si:P wafers and LT c-Si films 

oxide-bonded Corning glass (SiOG) to investigate the influence of the different seed layer types 

in obtaining low-defect density epitaxial films. Then, they explored the effect of material quality 

and device characterization on these two substrates. They used hot wire CVD for epitaxial 

growth on the LT seed layer at temperature ranges from 650– 830˚C. They used a heterojunction 

structure and hydrogenated amorphous silicon to form the emitter of the solar cell device.  

Also, they used In2O3: Sn film as a transparent conducting contacting layer and an 

antireflective coating. For the solar cell device that was formed on n+ Si:P wafers, the contact 

was made directly with the highly conducting wafer with no need for the  n+ layer. The result of 

the solar cell device on LT c-Si films oxide-bonded Corning glass (SiOG) was an open-circuit 

with voltages (Voc) above 560 mV.  

The reason behind the high voltage is the low-defect epitaxial Si (epi-Si) growth and 

effective hydrogen passivation of defects. The open circuit voltage of solar cell devices that was 

formed on n+ Si:P wafers was around 630 mV with efficiency of 8% with no dependence on light 

trapping features[24]. 

The National Renewable Energy Laboratory (NREL) has conducted much research on 

HWCVD epitaxial growth on AIC seed layers. In 2007, NREL worked with Hahn-Meitner-

Institute in Berlin, Germany on epitaxial growth of Si on poly-crystalline Si seed layers on 

glass[34].  

The seed layers that were produced using the AIC method were large grained poly-Si thin 

layer that had grain size of about 10 μm. They first deposited a 300 nm thick Al layer on 

borosilicate glass and then a-Si layer that had thickness of 375 nm. After annealing and layer 
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exchange during this annealing, a poly-crystalline Si layer was achieved. Chemical mechanical 

polishing was done to remove the top Al(+Si)layer.  

Then, NREL cleaned the seed layers before the epitaxial growth in an organic solvent, 

with the oxide on the surface being removed by HF dip for 30 seconds. In the HWCVD chamber, 

the base pressure reached down to 10-6 torr. The W filament was heated to 2100 ˚C and the flow 

rate of SiH4 was 20 sccm with no additional hydrogen being introduced in the chamber. Also, 

they added an additional filament of Ta to heat the substrate. At a chamber pressure of 10 mtorr 

and 5 min. deposition time, they reported an epitaxial growth of 0.5 μm at 670 ˚C.  

They confirmed their results using SEM images for the seed layer before and after 

epitaxial growth. The grain boundaries were visible and both results have similar grain size, 

which confirmed the epitaxial growth. Their TEM results gave interesting observations at the 

interface. The propagation of the film was not normal and was attributed to the difference in the 

growth rate for each orientation. 

 They suggested that this growth rate difference could be helpful to grow larger grains 

since the faster growing grains could surpass slower growing grains. Additionally, they noted 

some defects and nucleation at the epitaxy/seed interface. There was not a breakdown into a-Si 

or poly-Si phase in the only first 600 nm of deposition which requires further optimization in 

order to use them in solar cells[34].  

In 2010, NREL[35] fabricated an epitaxial layer on display glass using HWCVD for solar 

cell applications. Their results indicated that decreasing the substrate temperature leads to an 

increase in the defect density. However, they achieved an epitaxial layer of approximately 2 μm 

at low dislocation densities of 6 × 10-4 cm-2 using HWCVD at substrate temperature of 760 ˚C. 



24 

 

 They reduced the dislocation densities using hydrogenation treatment to passivate the 

surface prior to epitaxial growth. As a result, the efficiency of solar cell had been improved due 

to decreasing defects and contamination on the surface[36].  

The cooperation between NREL and Corning Incorporated resulted in an epitaxial Si 

solar cell that has open-circuit voltage (Voc) > 560 mV. They accomplished this high voltage 

because of the high quality epitaxial layer with low defects as a result of the hydrogenation 

treatment. Since the temperature of the Corning glass that they used as a substrate cannot tolerate 

the high temperature of hydrogen annealing, they examined two ways to smooth the surface. The 

first approach was a chemical mechanical polishing, being careful not to remove the 600 nm 

thick film. 

 Using this technique, grooves were present in the surface, which are not desired. Thus, 

the other approach was explored, which was annealing the seed layer at 800 ˚C in hydrogen for 

30 min. However, this method did not provide sufficient results of decreasing the roughness of 

the film. Their previous research showed oxide on the surface prior to the deposition in the 

HWCVD chamber, which creates dislocations in the grown epitaxial layer. Thus, HWCVD was 

used to deposit epitaxial layer of Si, using oxygen-filtered SiH4 in response to their previous 

findings [24].  

Wu et al in 2012 [37] accomplished grain size of 700 nm using the AIC method. At room 

temperature Al was deposited on Corning glass substrate at a thickness of 500 nm using an E-

Beam evaporator. Then, buffer oxide etching diluted in deionized water for 30 seconds was 

performed to remove Al-oxide. After that, the sample was exposed to ambient air for 24 hours to 

form Al-oxide.  
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The process of removing Al-oxide before the exposure to ambient air ensured the same 

oxide thickness in all the samples. After that, HWCVD was utilized to deposit an a-Si layer 300 

nm thick. Raman results demonstrated that increasing annealing temperature and duration could 

help to obtain higher crystallinity[37]. 

In 2013, Gestel et al.[38] reported that seed layers with large grains up to 100 μm had 

been achieved. They used AIC in order to crystallize a-Si on flowable oxide that was coated with 

alumina or SiO2 using an E-beam evaporator.  

They deposited Al first with 250 nm thickness which was then exposed to ambient air to 

form Al-oxide. After that, a-Si with 270 nm thickness was deposited on the Al-oxide. Annealing 

was performed to obtain large grained poly-crystalline Si seed layer at 500 ˚C for four hours.  

Then, wet chemical etching was used to remove the Al layer that was on top of the seed 

layer. For the epitaxial growth, they used high temperature atmospheric pressure chemical vapor 

deposition (APCVD) at 1130 ˚C. Passivation was done using hydrogen to enhance the 

performance of the solar cell and plasma texturization to trap the light[38]. 

The Silicon Materials and Devices Group and NREL [39] achieved epitaxial growth of Si 

on seed layer on display glass, dead wafers and oxide coated metal foil substrates at 620 ˚C to 

800 ˚C. They accomplished epitaxial growth at a thickness of 2.5 μm on dead Si substrate. 

Although the substrate was not hydrogenated and did not have any light trapping textured, open 

circuit voltage in 2 μm solar cell was 0.57 V.  

The dislocation densities was lowered to 6×10-4 cm-2 by reducing the surface impurities 

at the initial stage of growth. The seed layers were obtained using AIC that was prepared by the 

Hahn-Meitner Berlin group, and the grain size was above 10 μm. Then, HWCVD was used to 

grow an epitaxial layer of Si at 670 ˚C.  
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The epitaxial layer was attained without significant breakdown in the grown layer. From 

their results, they developed a model that describes their epitaxial growth. This model suggested 

that even at higher deposition rate, epitaxial growth can be achieved. Also, they believed that 

with few modifications this model could be applied to any material[40]. 

Epitaxial growth on poly-crystalline seed layers has a great potential to compete with 

other photovoltaic technologies that dominate the market right now. Further investigation is 

significant in order to optimize this technology. The goal of this research was to fabricate larger 

grained heavily doped p-type poly-crystalline Si seed layer on inexpensive substrate. Then, the 

subsequent step was the growth of epitaxial layer of Si on this seed layer at low temperature. 

Achieving these objectives could have a great impact on the photovoltaic industry and could 

replace the dominant technologies such as c-Si solar cells. 
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Chapter 4: Experimental Methodology and Equipment 

4.1 Growth and Processing Approach  

This chapter presents the methods and parameters that were used in order to deposit Si on 

c-Si substrates, glass, and ITO coated glass substrates. Figure 5 is a flow chart that shows the 

steps of c-Si deposition used to achieve the epitaxial growth on large grained polycrystalline seed 

layers. The ITO glass was used in this order to get a back contact for the fabrication of solar cells 

in future work. 
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Figure 5. A schematic diagram of the methodology that had been performed in order to obtain 

the objective of this work. 
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Figure 6 shows a schematic diagram of the experimental procedure that was followed in 

this work from seed layer preparation to epitaxial growth. Step one was to understand epitaxial 

growth of Si at low temperatures using the HWCVD technique on c-Si substrate. Step two was 

epitaxial growth on AIC large grained seed layers on glass. 
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Figure 6. A schematic diagram of the experimental process. 
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4.2 Detailed Growth Steps 

4.2.1 Epitaxial Growth of Si on c-Si and Glass 

Before the deposition process, the substrates must be cleaned, due to the very sensitive 

nature of the growth to any organic contamination or oxidation and water vapor on the surface. 

Contamination on the surface can prevent epitaxial growth. 

4.2.1.1 Substrate Cleaning 

There are different methods of cleaning samples depending on whether they are glass or 

c-Si substrates, and also geared toward specific types of contamination (silicon dioxide, organic 

contamination such as fingerprint, or water vapor). 

4.2.1.1.1 Crystalline Si Substrate Cleaning 

Before loading the silicon samples into the chamber, they were cleaned in a two-step 

process.  The first step was Piranha etch which is a mixture of sulfuric acid (H2SO4) and 

hydrogen peroxide (H2O2) in a 50:50 ratio. Piranha etch was used to clean the Si surface from 

any organic contamination such as fingerprints. Then, the second step was using hydrofluoric 

acid (HF) with deionized (DI) water in a 1:10 ratio to clean the surface of the Si from silicon 

dioxide (SiO2).  

4.2.1.1.2 Borosilicate Glass (Corning 1737) Cleaning 

Ultrasonic bath was used to clean borosilicate glass (Corning 1737) substrates to remove 

organic contamination. “Sonication is a process in which sound waves are used to agitate 

particles in solution.  Such disruptions can be used to mix solutions, speed the dissolution of a 

solid into a liquid (like sugar into water), and remove dissolved gas from liquids”[41].  

Ultrasound waves with frequencies above 20 kHz are typically used in sonication baths. 

Glass samples were immersed in heated acetone at 40 °C for 10 min. then dried using a nitrogen 
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gun. The samples were immersed for 10 min. a second time but in heated methanol at 40 °C, and 

a steady stream of nitrogen was used as the final step to dry the samples. 

4.2.1.2 Epitaxial growth of Si on c-Si and glass substrates 

As mentioned in chapter one, the goal of this work was to achieve epitaxial growth on 

large grained polycrystalline silicon seed layers. To accomplish this goal, there were different 

growth processes to fully understood how to get the epitaxial layer on the ideal substrate and to 

accomplish the optimal results.  

At first, the HWCVD technique was utilized to deposit Si on p-type c-Si substrates with 

an orientation of (100). Parameters were varied to optimize the results, such as substrate 

temperatures and dilution ratio (by either changing the SiH4 flow rate or the H2 flow rate). Tables 

2,3,4,5, and 6 show the conditions that were used during the growth. 

 

 

 

 

 

 

Table 3. Parameters used during epitaxial growth using HWCVD system by varying the 

substrate temperature. 

Sample 
code 

SiH4 flow 
rate 

(sccm) 

H2 flow 
rate 

(sccm) 

Time 
(min) 

Substrate 
temperature (˚C) 

Filament 
temperature (˚C) 

Chamber 
pressure 

(torr) 

HW3 5 10 30 400 1900 0.1 

HW4 5 10 30 600 1900 0.1 

HW5 5 10 30 500 1900 0.1 

HW6 5 10 30 700 1900 0.1 

HW7 5 10 30 750 1900 0.1 

 

Table 2. Parameters used during epitaxial growth using HWCVD system by varying the dilution 

ratio. 

Sample 
code 

SiH4 flow 
rate 

(sccm) 

H2 flow 
rate 

(sccm) 

Time 
(min) 

Substrate 
temperature (˚C) 

Filament 
temperature (˚C) 

Chamber 
pressure 

(torr) 

HW1 5 0 30 400 1900 0.1 

HW2 5 5 30 400 1900 0.1 

HW4 5 10 30 400 1900 0.1 

HW5 5 30 30 400 1900 0.1 
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Table 4. Parameters used during epitaxial growth using HWCVD system by increasing the 

dilution ratio. 

Sample 
code 

SiH4 
flow 
rate 

(sccm) 

H2 flow 
rate 

(sccm) 

Time 
(min) 

Substrate 
temperature 

(˚C) 

Filament 
temperature 

(˚C) 

Chamber 
pressure 

(torr) 

HW8 1 200 30 600 2200 0.4 

HW9 2 200 30 600 2200 0.4 

HW10 4 200 30 600 2200 0.4 

HW11 6 200 30 600 2200 0.4 

 

Table 5. Parameters used during epitaxial growth using HWCVD system by varying the growth 

temperature at fixed SiH4 flow rate of 1 sccm. 

Sample 
code 

SiH4 
flow 
rate 

(sccm) 

H2 flow 
rate 

(sccm) 

Time 
(min) 

Substrate 
temperature 

(˚C) 

Filament 
temperature 

(˚C) 

Chamber 
pressure 

(torr) 

HW12 1 200 30 550 2200 0.4 

HW13 1 200 30 600 2200 0.4 

HW14 1 200 30 650 2200 0.4 

HW15 1 200 30 700 2200 0.4 

 

Table 6. Parameters used during epitaxial growth using HWCVD system by varying the growth 

temperature at fixed SiH4 flow rate of 2 sccm. 

Sample 
code 

SiH4 
flow 
rate 

(sccm) 

H2 flow 
rate 

(sccm) 

Time 
(min) 

Substrate 
temperature 

(˚C) 

Filament 
temperature 

(˚C) 

Chamber 
pressure 

(torr) 

HW16 2 200 30 550 2200 0.4 

HW17 2 200 30 600 2200 0.4 

HW18 2 200 30 650 2200 0.4 

HW19 2 200 30 700 2200 0.4 

 

4.2.2 Epitaxial Growth of Si on Seed Layers 

Seed Layer Preparation: 

Crystalline Si substrates (100) and ITO coated glass substrates were prepared to serve as 

a seed layer for the following step. Then, the following step was an epitaxial growth on the seed 
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layers using HWCVD. Two methods of seed layer preparation were examined: aluminum 

induced crystallization (AIC) and top down aluminum induced crystallization (TAIC).  

4.2.2.1 Top-down Aluminum Induced Crystallization (TAIC) 

In this research, top-down aluminum induced crystallization (TAIC) seed layer was 

formed on glass samples (Corning 1737). Then, hot wire chemical vapor deposition technique 

was used to grow an epitaxial layer.  

The TAIC method began with depositing a thin layer (300 nm) of a-Si:H on the oxide 

layer. Afterward, the sample was exposed to air for 10 minutes and then exposed to oxide plasma 

for one second.  

A thin layer of aluminum (140 nm) was deposited on the previous layers using a thermal 

evaporator. After that, IR-belt furnace was used to anneal the sample at different zone 

temperatures as the belt was moving (Zone 1 = 200 °C, Zone 2 = 500 °C, Zone 3 = 500 °C) in 

order to initiate a layer exchange process. It is believed that the oxide layer serves as a substrate 

so that it can restrict silicon atoms from diffusing into the glass sample.  

4.2.2.2 Aluminum Induced Crystallization (AIC) 

An inverted configuration, called aluminum induced crystallization (AIC) was performed 

to get large grained polycrystalline silicon seed layers. In this method, the order of the deposited 

layers was glass/aluminum/Al-oxide/a-Si:H and the final structure after annealing was  

glass/polycrystalline Si/Al-oxide/ aluminum. Here is the detailed process of the AIC method for 

the seed layers in preparation for the subsequent step. 

4.2.2.2.1 Al Deposition 

         A 300 nm thick layer of Al was deposited on c-Si substrates and ITO coated glass using an 

E-beam evaporator. The samples were then exposed to the ambient air for different periods of 
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time ranging from 1-10 days. Exposure time to the atmosphere was varied to study its effect on 

the crystallization process.  

4.2.2.2.2 Amorphous Si Deposition  

        A 300 nm thick layer of a-Si:H (same thickness of aluminum layer) was applied on the Al-

oxide layer. Plasma enhanced chemical vapor deposition (PECVD) was used to create the a-Si:H 

layer at a power of 4 Watt. The substrate temperature was 250 °C and at base pressure of 2.3 × 

10-7 torr. The flow rate of SiH4 was 20 sccm for 21 minutes deposition time. 

4.2.2.2.3 Annealing System 

Infrared belt furnace (IR-belt furnace) was utilized to anneal the samples in order to 

initiate the layer exchange. Further information is provided in the next section. The samples were 

exposed to three zones of temperatures in this furnace. The first zone was 350°C, the second 

zone was 500°C, and the third zone was 350°C. After about 8 hours of annealing, the Al 

segregated into the amorphous Si layer, which results in crystallization of the a-Si layer. 

4.2.2.2.4 Al Etching 

After a complete layer exchange had been done, the Al layer had to be removed. A wet 

chemical etching was performed using Al etchant type D. It is basically a composition of 

phosphoric acid, Sodium-M-Nitrobenzene Sulfonate, acetic acid, and water. 

Optical microscope, and SEM images were taken before etching the Al layer. Then, the samples 

were immersed in the Al etchant type D at 50 ˚C for 40 seconds.  

4.2.2.2.5 Seed layers Cleaning 

Before the epitaxial growth, the samples had to be cleaned to remove the silicon dioxide 

layer. The c-Si substrates were dipped in HF for 30 seconds. 
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4.2.2.2.6 Epitaxial growth  

When heavily p-type doped polycrystalline Si seed layers were complete, the samples 

were ready for epitaxial growth by using HWCVD. The optimal results from Si deposition on c-

Si substrates were applied on the seed layers. 

4.3 Deposition Equipment 

4.3.1 Hot-Wire Chemical Vapor Deposition (HWCVD) 

The hot –wire chemical vapor deposition process can be implemented using a single 

chamber system that is made up of a small stainless steel tee, which is the main vacuum. A 

capacitive coupled electrode was housed inside the stainless steel tee that is powered by an RF 

generator. A pancake heater was used to heat the substrates by placing the heater directly above 

the substrate inside the vacuum chamber. The rest of the vacuum parts were below the table that 

the tee is set on.  

The gate valve separated the turbo pump from the main processing chamber. A 

mechanical rotary vane pump supported the turbo-molecular pump.  The exhaust of the rotary 

vane pump was attached to the original plumbing of the building, which removed the exhaust of 

the rotary vane pump to the outside of the building.  

A throttle valve controlled the pressure, which was manipulated via computer control. A 

roots blower pump directs the corrosive gas load then removed it from the chamber to the 

Edwards Inc. GRC gas abatement system. A manually controlled high vacuum valve was located 

behind the throttle valve to ensure complete separation from the roots blower pump and 

processing chamber. A control panel consisting of a computer and monitor, operated the throttle 

valve that was responsible for controlling pressure in the chamber. It also contained a switch 
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box, which controlled the pneumatically operating vacuum valves that were responsible for gas 

flow in the gas manifold.  

Also, contained with the control panel were: the RF generator, SiH4 mass flow controller, 

pressure measurement gauges and turbo power supplier. Mass flow controllers and manually 

operated valves were housed in the gas manifold. Figure 7 is a schematic diagram of the 

HWCVD system that was used in this work. Figure 8 is the HWCVD system that was used in 

this work. 
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Figure 7. A schematic diagram of the single chamber that was used for HWCVD method. 
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4.3.2 Multi-Vacuum System (MVS) 

 The system of MVS that was used in this research consists of seven stations. Each station 

had a different purpose than the others, as shown in Figure 9. Station seven, six and three were 

the stations that were used in this work. Station three and station two were used for the PECVD 

method. Station four and station five were used for sputtering processes, and station six was used 

for the E-beam evaporator. 

 

 

Figure 8. The single chamber that was utilized for HWCVD method in this research (picture 

taken by the author). 
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Station seven was where the sample was loaded and transferred to any station under 

vacuum. A robotic arm took the sample holder and placed it according to the command entered 

in the robotic arm controller. When the arm took the sample to the desired chamber, it would go 

back to station seven until the deposition was done. Figure 10 shows the multi chamber tool that 

was used in this work.  
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Station 3 

PECVD 
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Sputtering for AZO 

deposition 

Station 5 

Sputtering for 

Si deposition 

Station 6 

E-beam evaporator 

Robotic arm 

Figure 9. A diagram of the multi-chambers system that has PECVD chamber and E-beam 

evaporator chamber. 
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4.3.3 Infrared Belt Furnace (IR-Belt furnace) 

The IR-Belt furnace is a long tunnel that has a moving belt which transfers the sample. 

There are three independent temperature zones. Control thermocouples above the moving belt 

that sense any change in the temperature are used to maintain the temperature in each zone. The 

control panel is on the front side of the furnace to power on the furnace and to set the 

temperatures and the speed of the belt. Figure 11 shows the IR belt furnace at High Density 

Electronics Center (HiDEC) that was used in this research.  

Figure 10. The multi-vacuum system that has PECVD chamber and E-beam evaporator chamber 

(picture taken by the author). 
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4.4 Analytical Techniques 

4.4.1 Raman Scattering 

Raman spectroscopy is a common method utilized to characterize mixed phase Si layers. 

It does not require any type of sample preparation and is a non-destructive technique. Raman 

scattering is an inelastic scattered light when an incident photon interacts with lattice vibrations, 

called phonons, in the film. The interaction between the lattice vibrations and incident light results 

in scattering the incoming beam.  

The scattered beam can have the same energy as the incident light, called Rayleigh 

scattering, or can be shifted and have the same energy as the photons, called Raman scattering. 

Figure 12 shows a schematic of Raman scattering when a light beam from a source interacts with 

lattice vibrations. The Raman scattering energy (VRaman) is measured via a spectrometer and is 

subtracted from the incident beam energy (VLaser) to find the lattice vibrations (Δv) according to 

Equation 4.1[42]. 

Figure 11. The IR-Belt furnace at HiDEC (picture taken by the author). 

 



40 

 

 

 

 

 

 

                                       Δv (cm-1) = VLaser - VRaman                                       (Equation 4.1) 

The crystalline quality of the Si samples in this research were characterized using Raman 

scattering spectroscopy with a 632 nm laser source. The uniform and symmetrical bonds of 

crystalline silicon generate a sharp strong peak at 520 cm-1. However, amorphous silicon bonds 

are different with wide angles resulting in a broad peak at 480 cm-1.  

There are two types of scattering when light hits an atom: elastic scattering that is called 

Rayleigh scattering and inelastic scattering that is called Raman scattering. In Rayleigh 

scattering, the energy of the incident light is the same as the energy of the scattered photons. 

However, Raman scattering has two types based on their energy level: Stokes scattering and anti-

Stokes scattering [43]. Figure 13 demonstrates Raman scattering and Rayleigh scattering. Figure 

14 shows Raman setup that was utilized in this work. 
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Figure 12. A schematic of Raman scattering that showed the interactions between the incident beam 

and lattice vibrations. 
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Figure 13. The interaction of the incident light and the vibration of the molecular. 
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4.4.2 X-Ray Diffraction (XRD) 

X-rays, discovered in 1895, enable the analysis of the structure of a crystal at the atomic 

level. X-ray is a type of electromagnetic radiation which has a wavelength similar to the height 

of an atom, which is about 1 Å (10-10 m). 

 X-ray diffraction was discovered in 1912. Analyzing the structure of a crystal and 

fingerprint characterization are two main things that have been performed using X-ray 

diffraction. Figure 15 shows the main parts that exist in any X-ray diffraction process which are: 

X-ray source, X-ray detector, and sample stage. When the X-ray hits the atoms, part of it scatters 

while the other part passes through to the next atomic level. Then, the X-ray in the next level 

Figure 14. A schematic diagram of Raman setup that was used in this work 
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scatters partially and the other part passes through. A diffracted peak happens only when Bragg’s 

law is satisfied [44]. 

                                            n λ  =2d Sin θ                                          (Equation 4.2) 

Where n is an integer number, λ is the wavelength, d is the distance between diffracted planes and 

θ is the angle of incidence of the X-ray. Figure 16 demonstrates the atomic levels and the X-ray 

interaction with the atoms. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. XRD diffraction process that consists of: X-ray source, X-ray detector, and sample 

stage. 
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 To calculate the angle the peaks of poly-crystalline Si occur, this relationship in Equation 

4.3 between the spacing (d) between planes and the lattice structure (a) will be used. 

     
2 2 2

2 2

1 h k l

d a

 
     (Equation 4.3) 

 

In this equation h, k, and l are the Miller indices. From Equation 4.2 and Equation 4.3 this 

relationship between theta and the Miller indices can be derived as follow. 

    
2

2 2 2 2

2
sin (h k l )

4a


       (Equation 4.4) 

The sum of the Miller indices is always an integer number and the lattice constant (a) of Si 

is 5.42 Å. Using Equation 4.4, the orientations and their corresponding peaks angles can be 

calculated. Table 7 shows silicon XRD peaks and their corresponding orientations. 

Table 7. Silicon XRD peaks and their corresponding orientations. 

Peak Angle (2Theta (Deg)) 

(111) 28.49 

(220) 47.38 

(311) 56.22 

(400) 69.25 

θ θ 

d 

Figure 16. The atomic levels and the X-ray interaction with the atoms according to Bragg’s 

law. 
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4.4.2.1 Grazing Incidence X-ray Diffraction 

 Using a small incident X-ray beam angle, the beam’s penetration will be limited. Thus, 

grazing angle can be utilized to study the surface instead of having contribution from the 

substrate. In this case, the detector will be moving and measuring at different angles while the 

sample will be fixed as well as the incident beam. In this work, the incident X-ray beam was 

fixed at 3 degrees. Figure 17 shows a schematic diagram of grazing angle XRD analysis. 

 

 

 

 

 

 

4.4.3 Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy is a non-destructive technique that has been used to 

analyze a material’s surface. Unlike a conventional optical microscope which forms the image 

using light when photons are reflected from the sample surface, SEM forms the image using 

electrons. The interactions between the electron beam and the atoms in the material’s surface 

generate various signals.  

These signals can be detected so that an image of the sample is formed. The SEM has a 

significant role in all fields which require solid material analysis. Some advantages of the SEM 

Figure 17. Schematic diagram of grazing incidence XRD. 
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over the optical microscope are the high resolution of the produced images. Based on the fact 

that each element emits a certain wavelength, energy dispersive X-ray spectroscopy (EDX) was 

utilized to analyze the sample and give a distribution curve of the materials.  

Even though EDX was meant to be an examination for the materials on the surface, the 

produced X-ray does not come only from the surface. It penetrates deeper in the sample based on 

the atomic number Z of the element and the energy of the electron beam. When the atomic 

number is low, the penetration in the sample is deeper. However, when the energy of the electron 

beam is higher, the depth of the penetration increases. Figure 18 shows a standard components of 

SEM. Figure 19 shows SEM instrument that was used in this research. 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. A schematic diagram of a standard SEM. 
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4.4.4 Transmission Electron Microscopy (TEM) 

Transmission electron microscopy is similar to SEM in some aspects, such as the imagery 

being a result of electron interactions. However, TEM images are generated by the transmission 

of electrons through a sample, while SEM images are generated because of the electrons being 

reflected from the sample’s surface. As a result, TEM samples require special treatment so that 

the thickness of the samples is less than 100 nm before it can be analyzed.  

The sample’s preparation involves cutting, gluing, polishing and thinning to acquire the 

cross sectional TEM image. A strip of the sample was cut to about 1mm in width and then cut in 

half length-wise. Then, these two pieces were glued together face-to-face using a special glue.  

After that, the samples were polished mechanically using disk grinder with a SiC 

polishing pad and diamond polishing pad. Lubricant was used during polishing process in order 

to reduce the fraction and also to remove the particles after polishing away from the sample. 

Figure 19. Scanning electron microscope (SEM) that was used in this research (picture taken 

by the author). 
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When the thickness of the sample reached about 1 µm, it was thinned by making a hole in 

the middle to less than 100 nm using ion-milling technique. Figure 20 demonstrates a schematic 

representation of a standard TEM. Figure 21 shows the FEI Titan HRTEM that was used in this 

research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. A schematic representation of a standard TEM. 

 

Figure 21. FEI Titan HRTEM that was used in this research (picture taken by the author). 
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4.4.5 Dektak Profilometer 

The depth of the grown layer can be determined by a profilometer which has a needle that 

scans the surface in a contact mode measurement. The scan parameters can be chosen according 

to the sample properties. Then, the location of the samples will be shown on a video camera to 

place the sample properly. Next, the needle is lowered down to scan the surface. The scan results 

are shown on the screen and can be leveled as well in the software.  

Also, the data can be printed with the height shown dependent upon on where you put the 

cursors in the software. The Dektak measurement error is +/- 500 angstrom (Å). In the case of 

having a thickness less than 1000 Å, AFM should be used instead of the Dektak. Figure 22 

shows the Dektak at HiDEC that was used in this work. 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Dektak at HiDEC that was used in this work (picture taken by the author). 
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Chapter 5: Results and Discussions 

This chapter presents the results, analysis and discussion of the experiments conducted 

during the period of this thesis work. As indicated in Chapter Four, a set of experiments were 

performed to obtain epitaxial growth of Si on c-Si substrates. Other sets of experiments were 

performed on glass substrates to achieve epitaxial growth of Si on low cost materials. 

Additionally, seed layers were prepared by means of AIC on ITO coated glass substrates. The 

images and plots from these experiments are presented in this chapter. Characterization tools 

such as SEM, XRD, Raman scattering and TEM were utilized to analyze the samples.  

5.1 Epitaxial Growth of Si on c-Si Substrate and Glass 

Hot-wire CVD (HWCVD) technique was used to deposit Si on c-Si substrates and on 

Corning glass substrates. As indicated in Chapter Two, the growth of epitaxial silicon using 

HWCVD is controlled by four parameters: flow rate of gases, pressure, substrate temperature 

and filament temperature. As a result, in this work those four factors were varied to determine 

the optimal growth process.  

For most of the samples at the same conditions, the results on both c-Si and Corning glass 

substrates were similar when comparing their Raman shift and the corresponding FWHM. The 

experiments were implemented under two distinct conditions. The first one was when the single 

chamber was utilized at low vacuum (10-3 torr) which was a limitation of the machine. Next, a 

turbo pump was added to help the vacuum to achieve a pressure of 10-5 to 10-6 torr.  

Raman scattering spectroscopy showed that all the samples at low vacuum (10-3 torr) 

were not fully crystalline even at high diluted SiH4. Those samples had some crystalline phase 

peaks at 520 cm-1 with amorphous peaks at 480 cm-1 but with different crystalline quality. At 

high vacuum (10-5 to 10-6 torr) there were similarities to the low vacuum results in the crystalline 
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quality in terms of Raman shift and FWHM at low dilution ratio. Nevertheless, there was a 

significant change in the crystallinity of the film when the dilution ratio of the introduced gases 

was very high (up to 200 sccm of H2 flow rate to 1-6 sccm of SiH4).  

5.1.1 Characterization of Epitaxial Growth of Si on c-Si 

5.1.1.1 The Effect of Atomic Hydrogen on Epitaxial Growth 

Starting the first set of experiments without the use of the high vacuum chamber affected 

the results substantially. The Si film deposited on c-Si substrate with pure SiH4 at low vacuum 

displayed a broad peak at about 480 cm-1, which is a typical Raman value for the amorphous Si 

phase. Broader peaks in Raman scattering usually are present when there is inhomogeneous 

bonding among the atoms.  

This implies that the atoms are not in an ordered arrangement. The flow rate of SiH4 was 

5 sccm, the substrate temperature was 400 °C, and the growth time was 30 min. However, at the 

same conditions adding 5 sccm of H2 showed a shoulder towards lower wavelength numbers at 

480 cm-1 with a sharp peak at about 519 cm-1, which is very close to the typical Raman peak of 

crystalline Si at 520 cm-1. This suggests that the grown film was improved in terms of crystalline 

quality and was not fully crystallized but contained an amorphous phase. Figure 23 demonstrates 

Raman intensity against Raman shift.  

The FWHM was compared with regard to the FWHM of the c-Si substrate, which was 

about 10-11 cm-1. The pure SiH4 sample was found to have a very broad peak so the FWHM was 

84 cm-1 whereas the diluted SiH4 sample exhibited a sharper peak that had FWHM of about 11 

cm-1. Hydrogen atoms play a major role during the growth as they clean the chamber from any 

contamination and passivate the surface. Hydrogen is known for its ability to induce desorption 

of oxygen from the surface and also to avoid water vapor and oxygen adsorption. 
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Furthermore, H2 enhances crystallinity due to its ability to reduce the activation energy of 

nucleation, hence, the grain boundaries growth. To evaluate the crystalline volume fraction, Xc, 

Figure 23. Raman scattering for two samples at the same condition but: A. with pure SiH4, B. 

with diluted SiH4 in H2. 
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from Raman spectra, the integrated intensities of crystalline peaks ( I520), the defects peaks I515, 

and the amorphous peaks I480 have been calculated as follows [45], [42]: 

  Xc = (I520+I515)/(I520+I515+I480) × 100%  (Equation 5.1) 

This method was developed by Seth Shumate from Silicon Solar Solutions (SSS) [45] 

and Figure 24 shows those peaks. The dotted peaks is the sum of the four peaks where it should 

be fitted with the results of this work to calculate the crystalline volume fraction. 

 

 

 

 

 

 

 

 

 

 

 

The calculated crystalline volume fraction, Xc, for the pure SiH4 peak was about 1%, 

whereas diluted SiH4 gave a crystalline fraction of 60%. Many studies have suggested that 

hydrogen is important but without fully understanding the reasons. However, it could be as a 

result of many factors such as passivation of the surface or pushing the Si atoms to find their 

lower energy state faster than defect growth.  

Figure 24. Crystalline fraction template peaks. 
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It could also be because of the preferential etching of defects faster than crystalline 

growth. In general, atomic hydrogen has an undeniably significant role during the epitaxial 

growth when hydrogen reduces the defect density by reducing Si dangling bonds. This, increases 

the crystallinity of the film so the electrical properties will be improved.  

5.1.1.2 The Effect of Substrate Temperature on Epitaxial Growth 

Next, the substrate temperature was varied, but the dilution ratio remained fixed to study 

the effect of the substrate temperature. Increasing the substrate temperature had a major impact 

on the deposited film. As the substrate temperature was raised, the peak position of the Raman 

spectrum became increasingly closer to 520 cm-1, and the intensity of the shoulder at 480 cm-1 

became less.  Figure 25 demonstrates Raman spectrum of several Si films that were deposited by 

using HWCVD method at temperatures: 300 °C, 400 °C, 500 °C, 600 °C, 700 °C and 750 °C. 

These experiments were performed at a fixed SiH4 flow rate of 5 sccm, fixed H2 flow rate of 10 

sccm, a filament temperature of 1900 °C, and a 30 min. deposition time.  

The crystalline volume fraction, Xc, increased as the substrate temperature was raised. It 

went from only about 1% crystalline fraction at 300 and 400 °C to about 85% crystalline fraction 

at 700 and 750 °C. At 500 °C, the crystalline fraction was almost fully crystallized and the Xc 

was about 100%.  However, at 600 °C, there was unexpected results as Raman peak showed an 

amorphous phase at 480 cm-1 with the crystalline peak at about 520 cm-1. In addition to that, the 

crystalline volume fraction dropped to only about 20%. This observation could be a result of the 

cleaning process not being enough to remove all the contamination or silicon dioxide from the 

surface. It also could be related to oxidation of the surface just before loading the substrate in the 

chamber. 
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There were encouraging results which suggested the need for further investigations to 

determine whether or not the film is epitaxially grown. At 500 °C, the Raman spectrum 

displayed a narrow peak at 519 cm-1 and the amorphous broad peak was hardly present. 

Figure 25. Raman scattering for samples at the same conditions but with different substrate 

temperatures. 

 

300 °C 400 °C 

500 °C 600 °C 

700 °C 750 °C 
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However, Raman scattering gives only an indication whether or not the film is crystalline, but it 

cannot ensure whether the crystalline peak is coming from the film. It depends on the thickness 

of the film and the power of the laser. In this case, TEM was performed to evaluate the 

crystalline quality of the layer grown and confirm the epitaxial growth. 

Figure 26 shows the images taken using TEM analysis. The thickness of the film was 

about 150 nm which was enough for the Raman beam to scatter from the film. The images show 

an epitaxial film considering it had the same orientation as the substrate orientation. 

Interestingly, it was observed that at the interface the atoms arranged themselves epitaxially for a 

few nanometers followed by kind of an amorphous layer. However, the interface was difficult to 

evaluate due to the Fresnel fringe effect.  

When the electrons experience a difference in the scattering beam to the incident electron 

beam, fringes occur. The possibility of these fringes occurring increases when the two layers 

have different atomic numbers or different scattering powers more than if the two materials have 

less difference. “The visibility of the fringes increases with increasing defocus away from 

minimum contrast, while optimum resolution in bright-field imaging is obtained at the Scherzer 

defocus, which is about 100 nm from the minimum contrast for most high resolution 

microscopes. Fresnel fringes are thus present when imaging at optimum defocus.”[46] 

Contamination on the surface, oxide, or defects could also contribute to this effect because of the 

use of a non-ultra-high vacuum chamber. Despite the random growth that occurred in the film, 

the atoms in some areas rearranged themselves similarly to the substrate atoms while some other 

areas took on another orientation. The amorphous layer was SiO2 which had to be addressed to 

avoid the breakdown in the grown film to either poly-crystalline or amorphous phase.  
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The oxide seems like it was not continuous so the surface was partially oxidized. As a 

result, the grains that are attached to the surface atoms grew epitaxially while the other grains 

grew randomly but at some point the growth rate of the epitaxially grown grains was faster.  

 

Figure 26. Cross-sectional TEM image of Si film grown on (100) c-Si substrate. 
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This difference in the growth rate seems to be helpful because the epitaxially grown 

grains expanded to join the grains that were next to them which created a larger epitaxial layer. 

Another possible explanation would be that the surface had a very thin layer of oxide so the 

atoms during the growth could still maintain the surface atoms orientation and get to the proper 

sites. 

X-ray diffraction was also performed and the scan pattern θ-2θ shown in Figure 27 

indicates that the film was epitaxially grown on the substrate, as only one peak at (400) was 

present. This peak corresponds to the orientation (100), and infers that the atoms aligned 

themselves on the surface of (100) c-Si substrate. The absence of the other poly-crystalline Si 

peaks in the XRD resulted pattern was evidence that the majority of the grains grew epitaxially.   

 

 

 

 

 

 

 

 

 

Figure 27. XRD pattern of θ-2θ scan that shows a sharp peak at (400) which corresponds to 

(100) orientation. 
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In summary, at low temperature (500 °C) and low vacuum (10-3 torr) it was possible to 

deposit this epitaxial layer. Nevertheless, there were still many issues that needed to be 

optimized in order to obtain the desired results.  

One of the biggest concerns in the epitaxial growth process was contamination on the 

surface of the substrate. The interface contamination increases the dislocation density in the 

deposited film. Epitaxial growth is very sensitive so the substrate needs special preparation 

before the growth. The contamination can be native oxide, water vapor, or organic contamination 

such as fingerprints. The samples, therefore, were dipped in a sulfuric acid to remove any 

organic contamination and then immersed in hydrofluoric dip (HF) to remove SiO2 from the 

surface. Transmission electron microscopy results in Figure 26 indicated that there was a layer of 

SiO2, which was a barrier for the atoms to find their proper sites to match the atoms underneath 

which resulted in a breakdown into a polycrystalline film or amorphous film. Different 

orientations were present in the deposited layer, as highlighted in TEM images.  

The reason is thought to be that despite the special cleaning process, the surface can still 

be oxidized in the low vacuum chamber. In order to solve this issue, hydrogenation was 

performed prior to the deposition process for 15 min. Hydrogen at 200 sccm was introduced in 

the chamber to clean the chamber and prevent oxidation during the deposition. Figure 28 shows 

four samples at the same condition before and after hydrogenation.  

Unlike the results from un-hydrogenated deposition, H2 atoms helped the Si atoms to 

grow with higher crystalline quality. The peaks for the samples that were not hydrogenated were 

broader so at 400 and 700 °C the FWHM was about 85 cm-1 and 21 cm-1 respectively. Then, the 

samples that were at the same condition but were hydrogenated displayed sharper peaks so the 

FWHM was 11 cm-1 at 400 °C and 10 cm-1 at 700 °C.  
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In addition, the amorphous content decreased after the hydrogenation process according 

to the crystalline volume fraction values. At 400 °C, the crystalline volume fraction went up 

from about 15% to 60% when the growth was hydrogenated first. On the other hand, even 

though at 700 °C, before applying hydrogenation process, the crystalline fraction increased to 

60% due to the high temperature, the crystallinity increased even more up to 80% with use of a 

hydrogenation process prior to deposition. 

The high substrate temperatures led to low defect density because of the high growth rate 

similar to the effect of atomic hydrogen at low temperature. At low substrate temperatures, the 

growth required assistance, in this case the atomic hydrogen, in order to passivate the dangling 

bonds and increase the deposition rate.

 

Figure 28. Raman scattering for samples at 400 and 700 °C in (A) and (C) before hydrogenation 

and in (B) and (D) after hydrogenation. 

A. Before hydrogenation at 400 °C B. After hydrogenation at 400 °C 

D. After hydrogenation at 700 °C C. Before hydrogenation at 700 °C 
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5.1.1.3 The Effect of Increasing the Dilution Ratio on Epitaxial Growth 

Due to the encouraging results of both pre-deposition hydrogenation and dilution of SiH4 

in H2, adding hydrogen was investigated in the next set of experiments. Additionally increasing 

the flow rate of H2 (up to 200 sccm) over the flow rate of SiH4 (which was only 1 to 6 sccm) 

resulted in a significant change in the crystalline quality at high vacuum (10-5 torr).  

Possibly it was the ability of hydrogen atoms to preferentially etch the defects and amorphous Si 

atoms faster than those Si atoms which are in epitaxial growth. In other words, hydrogen 

decomposes the weak Si-Si bonds and creates free sites for crystalline Si to form. Raman 

characterization was conducted to study the crystalline quality of the samples.  

Raman scattering in Figure 29 confirmed the significance of hydrogen atoms prior to and 

during growth. The crystallinity had been improved up to about 90% but it was decreasing to 

about 60 to 70% as the flow rate of SiH4 was increased. Figure 29 shows that using less SiH4 (1 

to 2 sccm) resulted in greater crystallinity compared to introducing 4 to 6 sccm of SiH4. The 

FWHM and the corresponding Raman shift for them are demonstrated in Figure 30. Graph A 

demonstrates that as the dilution ratio increased the FWHM increased correspondingly which 

means the peak was not as sharp as a typical c-Si peak. 

The relationship between Raman shift and the SiH4 flow rate is plotted in graph B. of 

Figure 30. It was found that as the flow rate of SiH4 was increased, the Raman shift decreased 

from a typical Raman shift of c-Si substrate which indicates that there is a possibility of stress in 

the grown film that could be either a tensile stress or compressive stress. In general, compressive 

stress results produce higher wave numbers of Raman shift, while a tensile stress results in lower 

wave numbers of Raman shift.  
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A possible explanation for the relationships in graph A and B is that when there were 

fewer Si atoms, in the case of high dilution ratio, the time was sufficient for them to arrange 

themselves in the proper sites. In this case, hydrogen atoms aided the Si atoms in ushering them 

to their proper sites.  

The growth rate of Si atoms has to be slower so that the Si atoms can find their lowest 

energy states. On the other hand, at low dilution ratio the Si atoms oriented themselves more 

quickly to their sites which prevented them from arranging themselves properly. 

Figure 29. Raman scattering for samples at substrate temperature of 600 °C and H2 flow rate of 

200 sccm but with different SiH4 flow rates: A. 1 sccm, B. 2 sccm, C. 4 sccm, and D. 6 sccm. 

Xc=  91%

 
Xc=  90%

 

Xc=  70%

 
Xc=  60%

 



63 

 

 

Figure 30. A. The relationship between SiH4 flow rate and FWHM, and B. The relationship 

between SiH4 flow rate and Raman shift. 

A 

B 
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X-ray diffraction (XRD) analyses are shown in Figure 31, Figure 32 and Figure 33. In 

XRD analysis, θ-2θ scan was done and a grazing around the orientation (004) at an incident 

angle of 3 degrees was performed. A typical 2θ value for (100) is 69.142° which corresponds to 

(004) reflection and this peak represents the c-Si substrate. The (111) orientation is located at 

28.447° in the XRD pattern. 

 The X-ray diffraction pattern demonstrates several strong Si peaks that are typical results 

for a poly-crystalline thin layer as shown in Figure 31. The deposition of this sample was done at 

600°C and a dilution ratio of 2:200 sccm. This result was a confirmation that the film is a poly-

crystalline Si as different Si peaks were present in the XRD pattern. 

 

 

 

 

 

 

 

 

 

The standard X-ray diffraction powder patterns of poly-Si are shown in Table 8 

below[47]. They show the percentage of each orientation in a relation to (111) orientation. 

Figure31. X-ray diffraction of a poly-Si layer. 
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Table 8. The standard X-ray powder diffraction patterns of poly-Si [47]. 

No. h k l 
2 Theta 

(Deg) 
I (%) 

1 1 1 1 28.443 100 

2 2 2 0 47.304 55 

3 3 1 1 56.122 30 

4 4 0 0 69.132 6 

 

Getting the same percentages of peak intensities as this standard XRD pattern of poly-Si 

means that the grains in the grown film are randomly oriented. Thus, by comparing the Si peaks 

intensities with this standard pattern, the sample that is shown in Figure 33 shows that the 

crystalline grains distributed along a preferred orientation of (220).  

The percentage of the intensity at 47. 325° to the intensity at 28.443° was 143.64% while 

56.19° was 16.95%. Therefore, the orientation at 47.325° which is (220) was a preferred 

orientation. 

Figure 32. XRD pattern for two samples at the same growth conditions but with different SiH4 

flow rates: A. 1 sccm: 200 sccm, and B. 2 sccm: 200 sccm. 
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Even though the other samples showed a strong peak of (100) orientation and several 

weak peaks such as (111) orientation, this observation does not imply that the film had a 

preferred orientation around (100).  Figure 32 shows the XRD pattern of poly-crystalline Si that 

was deposited at the same conditions but with different SiH4 flow rates.  

It must be said that these results are not enough to confirm that the film was epitaxially 

grown on the (100) orientation c-Si substrate. It could be a diffracted peak from the substrate 

itself. Therefore, further investigations were done using XRD measurement. 

 Grazing around (400) that corresponds to (100) orientation was performed for the same 

samples to prove whether the peak is coming from the film or not. Figure 33 demonstrates the 

grazing results around (400) and (111) at an incident angle of 3 degrees. 

 

 

 

 

 

 

Figure 33. Grazing angle around (400) and (111) for: the sample in A and C was at 1 sccm SiH4 

flow rate and the sample in B and D was at 2 sccm SiH4 flow rate. 
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When comparing the intensity of (111) in XRD grazing measurement for the two 

samples, it was found that there was a preferred direction for the deposited film along (111) in 

the samples compared to the other diffracted peaks intestines. However, the peak around (220) 

was a preferred direction over (111) orientation at 2 sccm of SiH4 flow rate. At 1 sccm flow rate 

of SiH4, it was a random oriented film.  

Due to the absence of the sharp peak at 69.142°, it can be assumed that the film in both 

samples was not epitaxially grown. The reason for the unsuccessful epitaxial growth is not fully 

understood, but it is thought to be related to the pre deposition cleaning or the conditions during 

the process. It could also be related to the quality of the substrate before the growth. Growth rate, 

growth chemistry, high vacuum and deposition rate play a large role in the epitaxial growth 

process.  

Unfortunately, the high vacuum that was used in this work might not be strong enough to 

provide a clean chamber during the deposition so oxidation could occur. The high growth rate of 

silicon could also be another factor that detrimentally affected the epitaxial growth.  

Epitaxial growth requires a slow deposition rate to allow the atoms to align themselves on 

the substrate atoms. Otherwise, more Si atoms will accumulate on the surface while other atoms 

are not in their lowest energy state. This leads the atoms to grow randomly in different 

directions. In summary, a very low deposition rate could lead to higher costs, and a very high 

deposition rate could lead to breakdown of the crystalline phase into poly-Si or amorphous 

phase. Thus, the growth rate is very critical in the process of epitaxial growth of Si and must be 

taken into consideration. Also, prior to the deposition, even with the HF treatment, the c-Si 

substrate could develop oxide on the surface just before loading them in the chamber. All of 
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these difficulties that were encountered during epitaxial growth of Si at a low temperature 

affected the final results and led to a thin a-Si layer or a poly-Si thin layer.  

5.1.2 Characterization of Si Growth on Glass 

Similar results were achieved at the same growth conditions on c-Si and Corning glass 

substrates. This result was very important because the glass is amorphous material which is 

typically more difficult to grow a crystalline phase. However, as crystalline phase was 

accomplished on c-Si substrate, it was also reached on glass substrates. Figure 34 shows a 

comparison between the Raman peaks of the film grown on Corning glass and on c-Si substrates. 

 

 

 At a substrate temperature of 600 °C, SiH4 flow rate of 4 sccm, H2 flow rate of 200 

sccm, and filament temperature at 2200 °C, the FWHM for the film grown on c-Si substrate and 

on Corning glass was about 15 and 18 cm-1 respectively. Raman shift for both samples was 517 

cm-1. Even though the growth was at different epitaxial growth types which are homo-epitaxy (c-

Figure34. Raman scattering for two samples at the same growth conditions. 
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Si substrates) and hetero-epitaxy (ITO coated glass substrates), the results for both cases were 

similar in terms of FWHM and Raman shift.  

Crystallinity fraction Xc was about 60% in the glass sample and about 80% in the c-Si 

sample. This crystallinity fraction does not mean epitaxial growth. It could be poly crystalline 

with small grains. Figure 35 shows SEM results of the growth of epitaxial Si directly on c-Si 

substrate and on glass substrate.  

The results of SEM shows that both samples had small grains and rough surface. This 

showed that directly depositing on glass and c-Si substrate resulted in small grains which require 

further surface treatments. Thus, aluminum induced crystallization method (AIC) was the next 

step used to get larger grains.  

 

Figure 35. SEM images for two samples at the same growth conditions but on different 

substrates. 
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5.2 Epitaxial Growth of Si on Seed Layers 

The main focus of this work was to achieve epitaxial growth on glass substrates, but this 

kind of substrate requires special treatment to make the epitaxial growth possible. Chapter Two 

reported that a continuous polycrystalline Si film at low temperatures could be achieved on 

inexpensive substrates, such as glass, when applying the AIC process. Thus, ITO coated glass 

was utilized to have the advantage of the high conductivity of the ITO film which could be a 

back contact in the fabrication of solar cell.  

Many questions may be raised about this film, such as Al content, structure of the grain 

boundaries, and the electrical properties. This section includes a detailed characterization of the 

polycrystalline Si film to answer these questions. The Al content in the polycrystalline Si layer 

was examined after applying the AIC process. Scanning electron microscopy images were taken 

for this poly-silicon film before and after Al etching. Energy-dispersive X-ray spectroscopy 

(EDX), was used to quantify the content of the Al. To examine the structure of the film, TEM 

was used to study the samples after the epitaxial growth. 

5.2.1 Preparation of Heavily Doped p-type Large Grained Poly-Si Seed Layers 

The objective of the first experiments was to identify the optimal conditions that would 

allow a complete layer inversion to occur. The seed layer configuration was bare glass/a-

Si:H/SiO2/Al, which is called top-down aluminum induced crystallization (TAIC) as shown in 

Figure 36. Hydrogenated a-Si of 300 nm thick was grown by PECVD and then the samples were 

exposed to ambient air for 10 min. to develop native oxide. Plasma enhanced chemical vapor 

deposition was then used to deposit oxide for one second. Then, a thermal evaporator was 

utilized to grow an Al layer of 140 nm thickness.  
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The next step used the IR belt furnace with three temperature zones. The first zone was 

set to 200 °C, the second zone was set to 500 °C, and the third zone was set to 500 °C as well. 

The time of annealing was varied to examine the effect of annealing time on the layer exchange 

process. Then, Al was etched in Al etchant type D for 30 seconds. Figure 37 shows SEM images 

for three samples that had the same growth conditions but at different annealing times (10 min., 

30 min., and 60 min.). 

Even though the SEM images did not show significant change, the 60 min. time frame 

started to show larger grain boundaries. Unfortunately, these results were not desirable for 

epitaxial growth since the grains were not large enough and the poly-Si layer was not continuous. 

There were gaps in between the grain boundaries which implies that the crystallization process 

was not complete due to either the annealing time or the annealing temperature not being 

sufficient.  

Figure 36. A schematic diagram for TAIC process before and after annealing. 
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Figure 37. SEM images for three samples that had the same growth conditions but at different 

annealing time: a.10 min, b. 30min, c. 60 min. 
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The grain boundaries and defects negatively affect the electrical properties of the device 

and increase the electron-hole recombination. Additionally, the oxide thickness could have 

contributed to small grains and the discontinuous poly-Si layer. The EDX results in Figure 38 

show that there was still Al content even though it was etched. The samples needed to have been 

immersed in the Al etchant type D longer.    

The other materials that were present in the EDX mapping with Si and Al peaks were due 

to the ITO coated glass substrate. Although the EDX analysis is known for studying the materials 

on the surface, the electrons can penetrate deeper than the surface depending on the atomic 

number Z of the sample and on the energy of the incident electron beam as was explained in 

Chapter Four. As a result, the material from the substrates are shown in the EDX mapping due to 

the X-ray that emits from the substrate. 

To optimize the results, the opposite configuration was applied as shown in Figure 39, 

ITO glass/Al/AlO2/a-Si:H, and is called aluminum induced crystallization (AIC). Electron beam 

evaporator was used to deposit 300 nm thick layer of Al on (100) oriented c-Si substrate. Then, 

the samples were exposed for different periods of time to the ambient air to develop Al-oxide to 

study the effect of oxide thickness. Figure 40 shows optical images for the AIC seed layer on 

ITO coated glass substrates after Al etching that was exposed to ambient air for different periods 

of time. 

The optical images show improvement in the crystallization growth after three days of 

exposure to ambient air. As the Al-oxide thickness increased, the grain growth increased as well 

and it became a more continuous layer of poly-crystalline Si. 
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Figure 38. EDX mapping spectrum for a sample that was crystallized using AIC method at 

annealing time of 10 min. 

 

Figure 39. A schematic diagram for AIC process before and after annealing. 
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In Figure 40 and Figure 41, c-Si and ITO coated glass samples are shown after the AIC 

process and at different oxide thicknesses.  

Crystalline silicon substrates demonstrated similar results to the ITO glass samples. Three 

days of oxidation allowed the crystallization process to achieve a more continuous layer. Larger 

Figure 40. Optical micrographs for AIC seed layer on ITO coated glass samples that were 

exposed to ambient air for A. one day, and B. three days. 

 

Figure 41. Optical micrographs for AIC seed layer on Si substrates after AIC that were exposed 

to ambient air for: A. one day, and B. three days. 
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grains were grown on the c-Si substrate compared to the grains at the one-day oxidation because 

the oxide layer acted as a membrane that controlled the diffusion of a-Si and Al atoms. 

Scanning electron microscopy images were taken to study the grain boundaries in more 

detail. Figure 42 and Figure 43 show SEM characterization for AIC seed layer on ITO glass and 

c-Si substrates that were exposed to air for one and three days to develop Al-oxide before a-Si 

deposition. As the exposure time of the oxide increased, the grain sizes increased in both ITO 

and silicon substrates.  

Figure 43. SEM images for c-Si samples after AIC process at different oxide thickness: A. one 

day oxidation, and B. three days oxidation. 

Figure 42.  SEM images for glass samples after AIC at different oxide thickness: A. one day 

oxidation, and B. three days oxidation. 
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From SEM images in Figure 44, it is observed that there are three regions or layers on top 

of each other. The substrate is the first region followed by the primary crystallized layer where 

the layer exchange happened. In this case, the defect energy was the driving force for the atoms 

to recrystallize.  

The chemical potential of the a-Si phase and the defects is higher than the crystalline 

phase. This drives the atoms to lower their potential energy to be in their lowest state, which is 

the crystalline phase.  

In general, atoms like to go into a more ordered arrangement to acquire a lower energy 

state. The three layers that appeared in SEM images can be explained as following: Al induced 

the dissociation of Si, Si diffused to the Al, and Al diffused to a-Si:H. Silicon atoms nucleated at 

the Al layer, and the Si grains started to grow which happens in any thin film deposition process.  

Atoms nucleate first on the substrate, and then they start to grow and expand. Thus, at 

first a continuous crystallized layer grew in the primary crystallization phase. However, during 

the growth some of the primary crystallized grains had excess Al that initiated a secondary 

growth. Those Al atoms dissociated more Si atoms and induced the formation of Si islands on 

top of the primary grown layer grain. Consequently, the surface was rough due to many Si 

islands that formed on top of the crystallized layer.  

It was observed that the grain boundaries were only at the edges of the samples while the 

center was almost continuous. There were some holes but the distance between two holes was 

about 100-150 µm as shown in Figure 45. This indicates that a single crystal was obtained in the 

center of the samples and TEM investigation confirmed that as shown later in Figure 51. 
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Figure 44. SEM images for a sample that were crystallized using AIC method at different 

magnifications. 
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The reason for the growth differences is related to the thickness of the a-Si that was 

deposited in PECVD. At the edges, the thickness of the a-Si was less than the thickness at the 

center of the sample. The size of the electrode and the frequency of the RF controlled the voltage 

distribution on the electrode. A non-uniform voltage distribution led to a non-uniform density of 

plasma and hence a non-uniform deposition. 

 

Figure 45. SEM images for: A. AIC seed layer on c-Si and B. AIC seed layer on ITO glass. 
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Raman scattering in Figure 46 shows that the samples were crystallized by AIC 

according to the sharp peak at 519 cm-1 on c-Si substrate and 515 cm-1 on ITO coated glass 

substrate, but this peak at 515 cm-1 is shifted toward lower wavelength numbers. Thus, the film 

had a strain thought to be tensile. The FWHM of the samples were about 12 cm-1 compared to 

10-11 cm-1 a FWHM of c-Si value. The crystalline fraction was about 93% on c-Si substrate and 

about 91% on ITO glass. 

  

 

 

In X-ray diffraction pattern, different orientations were observed in both ITO glass 

samples and c-Si samples with a strong (111) peak. Also, other peaks of Si were present in the 

AIC seed layer on ITO glass substrate that were at (220) and (311) orientations.  

The other peaks were coming from the ITO glass substrate. At 20° the orientation is 

(211), at 30° it is (222), at 35° it is (004), and at 50° it is (044). Figure 47 demonstrates the strong 

peaks around (111) and the other weak peaks that were present as well in both samples at 

different oxidation thicknesses.  

Figure 46. Raman scattering for samples after AIC process: A. ITO coated glass substrate, and 

B. c-Si substrate. 
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The ITO coated glass seed layer XRD results at three days oxidation were similar to the 

results at one day oxidation. Figure 47 shows XRD pattern for ITO glass seed layer and c-Si seed 

layer that were exposed to ambient air for three days to develop native oxide on the Al layer 

before the deposition of a-Si:H.  

On the other hand, c-Si substrate showed different XRD patterns at one day of Al 

oxidation and three days of Al oxidation in the ambient air. At one day oxidation, only one 

strong peak was present with noise that makes it difficult to evaluate the pattern. At three days 

oxidation there were multiple peaks of Si at (111), (220), and (311).  

The noise that was present with (111) peak could be explained that the intensity of the 

other orientations was very weak due to small grain sizes and low density of crystals. Then, at 

three days of Al oxidation, the grains were larger and so more orientations were present in the 

XRD pattern as shown in Figure 48. This result agrees with many studies which suggested that 

the oxide thickness controls the grains sizes[48]. The grain size increases with increasing the 

oxide thickness.   

Pole figure measurements were also done around (111) to examine the direction of the 

grown film. Figure 49 shows pole figure images for the samples that were exposed to ambient air 

to develop Al-oxide for one day and three days before a-Si deposition. It appears that the 

deposited film was grown in one direction (111) in the seed layer that was deposited on ITO 

glass substrate. 
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 Figure 47. XRD results of θ-2θ scan for two samples that were fabricated using AIC method 

(one day oxidation): A. ITO glass and B. c-Si seed layer. 
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 Figure 48. XRD results of θ-2θ scan for two samples that were fabricated using AIC method 

(three days oxidation): A. ITO glass and B. c-Si seed layer. 
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In the seed layer that was deposited on c-Si substrate there was a contribution coming 

from the substrate that led to the presence of the four strong peaks. It seems that the film was 

randomly oriented due to the same density that is distributed everywhere. However, there are 

also four other weak peaks in the center, which are coming from the film, and are going the same 

direction as the strong peaks.  

Figure 49. XRD pole figure results for the AIC seed layers that were exposed to ambient air 

for three days: A. ITO glass seed layer, and B. c-Si seed layer. 
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The weak intensity of these peaks differentiates them from the high intensity of the strong 

four peaks. The fact that both sets of peaks are going in the same direction means that some of 

the grains in the film grew epitaxially on the (100) c-Si substrate. The differing intensities of the 

peaks shows that the set with the stronger intensity came from the substrate, and the set with the 

weaker intensity came from the film. 

Transmission electron microscopy images showed that the seed layer was a single crystal 

and it was difficult to find the grain boundaries. Although some stacking faults were present, the 

orientation was maintaining the crystalline Si substrate orientation. Figure 50 shows TEM image 

for the seed layer on c-Si substrate.  

 

 

 

 

 

 

 

 

 

 

Figure 51 shows a cross sectional TEM image for the seed layer and c-Si substrate at 

higher magnification. The orientation of seed layer is the same as the c-Si substrate which was 

something that no one has reported before. The peaks in the XRD pattern can be explained that 

Figure 50. TEM cross sectional image that shows seed layer growth on c-Si substrate. 



86 

 

they are coming from the small islands on the continuous seed layer. The interface according to 

EDX analysis is Al which was not completely removed by wet etching. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.1.1 Hall Effect measurement  

Electrical properties of the seed layers were determined using Van der Pauw Hall Effect 

measurement.  

Figure 51. A cross-sectional TEM image that shows the single layer of Si that were growing 

using AIC. 
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Table 9.  Electrical properties of poly-crystalline Si thin film seed layer on different substrates. 

Samples 

Resistivity Hall 

Coefficient 

(RH) 

Mobility(µm) 
Carrier 

Concentration (cm-3 ) 

Dopant 

type 
(ρ )(Ω.cm) (cm 2/(V.s) 

Poly-Si/ glass 

substrate 

(TAIC) 

1.78 x10-1 4.7 26.4 1.33x10 18 p-type 

Poly-

Si/ITO/glass 
5.88x10-4 -1.99x10-2 33.84 3.14x1020 n-type 

Substrate 

(AIC) 

Poly-Si/c-Si 

Substrate 

(AIC) 

5.47x10-3 3.85 703.8 1.6x10 18 p-type 

 

After the fabrication of the seed layers by means of AIC method, resistivity, mobility, 

carrier concentration and Hall coefficient were measured. Table 9 demonstrates the electrical 

properties of the large grained poly-crystalline Si thin film seed layer on bare glass, ITO glass 

and c-Si substrates. The negative hall coefficient indicates that the material is an n-type material 

while a positive hall coefficient indicates a p-type material. Although Hall coefficient shows that 

the large grained poly-crystalline Si is an n-type material, it is unexpected results as AIC method 

provides a heavily doped p-type seed layer. This is because Al has three atoms in outer most 

shell so it behaves as an acceptor in Si. Thus, it must be a result that came from using ITO coated 

glass substrate for the seed layer.  

The ITO coated glass is a good contact and a heavily doped n-type material which can 

form a tunneling junction with the heavily doped p-type thin seed layer. When performing Hall 

measurement, the current goes through the poly-crystalline Si film to the ITO film because of the 

high conductivity compared to the poly-crystalline thin film. Additionally, the resistivity of the 
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ITO thin film is lower, which makes the current tunnels through the poly-crystalline layer to the 

ITO layer. 

 Similarly, the c-Si substrate is a p-type material, which means that the Hall coefficient is 

a result coming from the substrate. Only the bare glass result provides evidence that the poly-Si 

seed layer was a p-type material. In summary, the resulting large grained poly-crystalline Si was 

a p-type material despite the Hall effect measurements. 

5.2.2 Epitaxial Growth on the Seed Layers 

 After preparing the heavily doped p-type poly-crystalline Si seed layers, the seed layers 

were dipped in HF acid for about 30 mins. It was difficult to clean silicon dioxide that developed 

on the surface of the seed layer on a glass substrates because the HF acid etches the glass. As a 

result, two approaches were performed on the seed layers that were on c-Si substrates before 

using the glass substrates. The first approach was etching the oxide using HF dip before loading 

them in the chamber for epitaxial growth. The other approach was using the seed layer on c-Si 

without etching the oxide. 

 Figure 52 shows SEM micrographs with HF etching and without HF etching after 

epitaxial growth. The deposition was done in HWCVD chamber at a base pressure about 10-5 torr 

and substrate temperature of 600 °C and diluted SiH4 in H2 1:200 sccm. 
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The morphology of the surface appeared different in the SEM images. The grain 

boundaries were present in both samples but there was unexpected morphology on the seed layer 

that was cleaned with HF dip. 

 The grain boundaries looked like a 3D-like shaped structure. On the other hand, for the 

sample that was not cleaned with HF acid, the result was similar to the seed layer before epitaxial 

growth. Figure 53 shows SEM image for the seed layer on c-Si before and after epitaxial growth. 

Figure 52. SEM micrographs with different magnifications for two samples: A and C were with 

HF treatment, B and C were without HF treatment. 
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The similarity in the grain sizes suggested that the epitaxial growth of Si was successfully 

obtained on the majority of the grain orientations.  

 

The seed layers on ITO glass substrates were loaded in the chamber without HF cleaning. 

The results after the epitaxial growth were similar to those for in c-Si substrate as similar grain 

sizes before epitaxial growth and after the growth were obtained. Figure 54 demonstrates the 

morphology of the surface before epitaxial deposition and after epitaxial deposition on ITO glass 

substrates. It can be said that the epitaxial growth was successfully attained. Otherwise, smaller 

grain sizes would be present after the epitaxial growth. 

Figure 53. SEM micrographs of AIC seed layer on c-Si substrate before and after epitaxial 

growth. 
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Raman characterization for both epitaxial growth of Si on c-Si and on ITO glass 

substrates are shown in Figure 55. A c-Si sharp peak at 519.8 cm-1 is present in the epitaxial 

growth of Si on the seed layer that was deposited on c-Si substrate and the corresponding 

FWHM is 11 cm-1. On the other hand, the epitaxial growth of Si on the seed layer that was 

deposited on ITO glass substrates shows a sharp peak at 518.9 cm-1 and the FWHM was 13 cm-1. 

Figure 54. SEM images for seed layers on ITO glass before epitaxial growth and after epitaxial 

growth. 
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The crystalline volume fraction, Xc, calculated for both substrates was 93% on c-Si 

substrate but 90% on the ITO coated glass substrate. Therefore, the crystalline quality was high 

and may indicate that the film grew epitaxially on the substrate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55. Raman scattering for epitaxial growth of Si on large grained poly Si on: A. c-Si 

substrate, and B. ITO coated glass substrate. 



93 

 

 The XRD pattern results were investigated as shown in Figure 56. When removing the 

silicon dioxide on the seed layer prior to the epitaxial growth, the results showed a strong peak at 

(400) direction. Conversely, the seed layer that was not cleaned before the epitaxial growth, 

showed a peak at (400) but with other weak peaks at (111) and (220). 

 It could be explained that HF dip reduced the grain boundaries and defect density so that 

the grains epitaxially grown diffracted a peak at (400). Another possibility might be related to a 

thinner film that was left after the removal of the surface oxide. Thus, the diffracted peak could 

be coming out from the c-Si substrate. Further investigation is required in order to understand 

this result.  

 

 

 

 

Figure 57 demonstrates XRD results of poly-crystalline Si layer on ITO coated glass 

substrate. Different peaks are present which are a strong sharp peak at (111), and weak peak at 

(220), (311) orientations and other weak peaks. The poly-crystalline thin layer on ITO glass 

substrate showed more random growth orientations compared to the c-Si substrate. It is an 

Figure 56. XRD pattern of: A. the poly-Si layer on c-Si without HF cleaning, and B. the poly-Si 

layer on c-Si with HF cleaning. 
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expected result as the hetero-epitaxial growth is more difficult than homo-epitaxial growth as 

previously explained in Chapter Two. 

 

 

 

 

 

 

 

 

 

 

 

The TEM cross sectional image in Figure 58 shows the structure c-Si substrate/AIC seed 

layer/ epitaxial growth of Si + poly Si. The TEM image suggests that the AIC seed layer had 

large grains that could be a very large single crystal but with stacking faults that were observed 

as well. It is an interesting result that even with the stacking faults, the orientation continued to 

be the same as the orientation before the stacking faults. The seed layer thickness was about 250 

nm while the epitaxial thickening of Si was about 200 nm.  

In Figure 59, the TEM image gives a closer look at the AIC seed layer/epitaxial growth 

of Si interface where different material was observed which could affect the epitaxial growth. 

This material is Al that was left after Al etching according to EDX results. It could be the reason 

for the Moiré fringes that appeared in the TEM image.  

Figure 57. XRD pattern for poly-crystalline Si layer on ITO glass substrate. 
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Figure 58. TEM cross-sectional image for epitaxial growth of Si on AIC seed layer. 

Figure 59. TEM image for epitaxial growth of Si on AIC seed layer. 
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Moiré fringes in TEM images means that there are different crystal orientations on top of 

each other. Moiré fringes are defined as “set of dark fringes produced when two ruled gratings or 

uniform patterns are superimposed”[49]. These fringes can be seen as parallel dark/light bands in 

the TEM images. 

The growth rate of epitaxial Si layer was only about 7 nm /min which is a very low 

growth rate so defects could have occurred. This low growth rate was because the SiH4 flow rate 

was only 1 sccm. In summary, the epitaxial growth was obtained at 600 °C with highly diluted 

SiH4 in hydrogen (200:1 sccm) and further optimization is required. The factor that needs to be 

addressed by future work according to the TEM results is the poly-Si/epitaxial growth of Si 

interface.  
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Chapter 6: Conclusion and Future Work 

 Most of studies in the solar cells industry aim to either increase the efficiency of solar 

cells or reduce the cost of solar cells. This work focused on reducing the cost of solar cells. A 

drastic reduction in the cost might possibly attained when using glass as a substrate instead of 

using Si. Epitaxial growth was first done directly on c-Si and Corning glass substrates. The 

optimized results of this process were applied to the seed layers. Aluminum induced 

crystallization was utilized to crystallize a-Si:H at low temperatures to prepare the seed layers on 

glass substrates. 

The effort of this project was aimed at preparing large grained poly-Si seed layers to be 

used for a subsequent step of epitaxial growth of Si. Therefore, heavily doped p-type poly-Si 

seed layers were grown successfully on ITO and c-Si substrates. Next, epitaxial growth of Si 

using HWCVD was performed on the seed layers on the various substrates: ITO coated glass and 

c-Si. Scanning electron microscopy confirmed that the epitaxial layer was successfully 

accomplished due to the similar grain sizes before the epitaxial growth and after the epitaxial 

growth. The TEM results showed very large grained AIC seed layer which was almost single 

crystal as well as epitaxial growth of Si with 200 nm thick. 

Future work arising from this conclusion could be geared toward optimizing the process 

of fabricating a heavily doped p-type poly-Si seed layers for larger grains and a smoother surface 

followed by deposition of an epitaxial layer of Si for the absorber layer. Lastly, continuing the 

fabrication of this device to form a solar cell by depositing an n-type heavily doped Si layer and 

then adding Al contacts could also be investigated. 
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Appendix A: Description of Research for Popular Publication 

Better ways for cost-effective solar cells 

By: Manal Aldawsari 

A step toward a cost effective solar cell was taken at the University of Arkansas in 

Fayetteville in a project to obtain epitaxial growth on large grained poly-crystalline Si performed 

in Dr. Hameed Naseem’s lab and led by Manal Aldawsari, a scientist and a graduate student in 

the Microelectronics-Photonics program. 

Crystalline Si (c-Si) solar cells of approximately 200-500 µm thick dominate the solar 

cell market. Currently, the Si material accounts for about 50% of the cost of solar cells, because 

Si is the second most abundant element on earth’s crust, thus, c-Si solar cells are reasonably 

affordable. Silicon can be found in clay, rocks, soils, and sand.  

Despite its abundance, an increased demand for solar energy every year will inevitably 

cause the price of Si to be driven up within the next 50 years. Thus, making solar cells by 

directly depositing a high quality, thin c-Si layer of about 1 µm thick would not only ease the 

production of c-Si but also would provide more solar cells at the same price as producing only 

one conventionally manufactured c-Si solar cell. However, a thin layer of c-Si only 1 µm thick 

cannot be handled by itself, so, mechanical support is required. This gave rise to the idea of using 

an inexpensive substrate such as glass as a c-Si substrate replacement to decrease the cost of 

material and installation.  

Glass is amorphous material, which means that the atoms are arranged in random order 

which makes depositing a layer of c-Si directly difficult. The question is: how can atoms arrange 

themselves in a crystal order while the underlying substrate is not? Fortunately, Dr. Hameed 

Naseem of the University of Arkansas has been successful in preparing inexpensive seed layers 

by using the aluminum induced crystallization (AIC) method. So what if these seed layers were 
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to be used as substrates for the epitaxial growth of silicon? The resulting solar cells would be 

more cost effective in response to the ever-increasing demand. 

The most pressing issue has been the need for an ultra-high vacuum in order to enable the 

epitaxial growth. Any contamination on the surface would hinder the success in obtaining a high 

quality epitaxial growth without breakdown into poly-crystalline Si phase or amorphous-Si 

phase. Different approaches were taken in order to solve this dilemma such as hydrogenation 

prior the epitaxial growth in the chamber. Hydrogen atoms play an important role as they etch 

the defects and a-Si faster than the crystalline Si and passivate the surface. 

Despite these challenges, Mrs. Manal Aldawsari managed to produce epitaxial growth on 

very large grained poly-crystalline Si seed layer at low temperature of 600 °C using hot wire 

chemical vapor deposition, as part of her graduate project for her master’s degree from the 

University of Arkansas. Mrs. Manal Aldawsari says, “this will significantly improve the solar 

cell industry as it will make the production of solar cells faster, lower cost and with higher 

quality.”  
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Appendix B: Executive Summary of Newly Created Intellectual Property 

Growth of epitaxial layer of Si on heavily doped p-type low cost substrate at low 

temperature. 
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Appendix C: Potential Patent and Commercialization Aspects of Listed Intellectual Property 

Items 

 

There are no potential patent and commercialization aspects of listed intellectual property 

items. 

C.1 Patentability of Intellectual Property (Could Each Item be Patented) 

 There is no patentability of IP in this research. 

C.2 Commercialization Prospects (Should Each Item Be Patented) 

There is no commercialization prospects in this work. 

 C.3 Possible Prior Disclosure of IP 

There is no possible prior disclosure of IP in this work. 
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Appendix D: Broader Impact of Research 

D.1 Applicability of Research Methods to Other Problems 

The process of epitaxial growth of Si on large grained poly-Si seed layers has potential 

for other technologies. Photovoltaic devices are one significant application to use this process in 

order to decrease the price of the solar panels. Epitaxial growth of Si could also be used in 

bipolar junction transistors (BJTs). 

 The heterojunction bipolar transistor (HBT) is an area of in the BJT technology which is 

usually created using epitaxial growth techniques. In general, silicon based manufacturing 

methods such as complementary metal–oxide–semiconductors (CMOS) can be developed using 

epitaxy. 

D.2 Impact of Research Results on U.S. and Global Society 

 Thin film solar cells have been considered as cost-effective solar cells due to the drastic 

reduction of the active photovoltaic materials. The epitaxial growth technique can be used to 

produce thin film solar cells at low temperatures which are equivalent to c-Si solar cells. 

 In this way, the United States and the rest of the world could benefit not only 

economically but also environmentally. This would make it possible for the world to have a 

sustainable energy source at an affordable price which would help fulfil the growing demand for 

energy. 

D.3 Impact of Research Results on the Environment 

 In this work, developing a technology that can be used for solar cells could improve the 

solar industry. One of the environmental effects of using solar energy is reducing the dependence 

on fossil fuels and hence the pollution will be reduced.  
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 In addition, the epitaxially grown thin film does not have any harmful effects on the 

environment, but the processes to produce it gives way to some concerns if they are not handled 

properly. Using the HWCVD technique to produce epitaxial growth of Si requires the 

introduction of some gases in the chamber such as H2 and SiH4. However, those dangerous gases 

are well known and have been used in the solar cell industry for decades.  

Thus, disposing this waste has been well understood and controlled in this project. 

Hydrofluoric acid was used as well to remove the native oxide from Si substrate and sulfuric acid 

for organic contamination removal. Nevertheless, all standard safety system guidelines were 

adhered to with all of the chemicals used in this research.  
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Appendix E: Microsoft Project for Ms MicroEP Degree Plan 
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Appendix F: Identification of All Software Used in Research and Thesis/Dissertation Generation 

 

Computer #1: 

Model Number: HP ENVY 14t-u000 Windows 8 Business Laptop PC 

Serial Number: 5CD4386MS1 

Location: 1764 North Leverett Ave. Fayetteville Arkansas 72703 

Owner: Manal Aldawsari  

Software #1:  

Name: Microsoft Office 365-Student Version 

  Purchased by: Manal Aldawsari  

Software #2:  

Name: Origin Pro 2015 – Student Version 

Purchased by: Manal Aldawsari 

Computer #2: 

Model Number: x86-64Full_14Sep2 

Serial Number: Dell 1707FP 

Location: ENRC 

Owner: Department of Electrical Engineering  

Software #3:  

Name: Microsoft Office 2007 

Purchased by: UA Department of Electrical Engineering 
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Appendix G: All Publications Published, Submitted and Planned 

 

 There are no publications published or submitted for this work. 
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