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Abstract 

 Aerial thermography is one of the least utilized archaeological prospection methods, yet 

it has great potential for detecting anthropogenic anomalies. Thermal infrared radiation is 

absorbed and reemitted at varying rates by all objects on and within the ground depending upon 

their density, composition, and moisture content. If an area containing archaeological features is 

recorded at the moment when their thermal signatures most strongly contrast with that of the 

surrounding matrix, they can be visually identified in thermal images.  

 Research conducted in the 1960s and 1970s established a few basic rules for conducting 

thermal survey, but the expense associated with the method deterred most archaeologists from 

using this technology. Subsequent research was infrequent and almost exclusively appeared in 

the form of case studies. However, as the current proliferation of unmanned aerial vehicles 

(UAVs) and compact thermal cameras draws renewed attention to aerial thermography as an 

attractive and exciting form of survey, it is appropriate and necessary to reevaluate our approach.   

 In this thesis I have taken a two-pronged approach. First, I built upon the groundwork of 

earlier researchers and created an experiment to explore the impact that different environmental 

and climatic conditions have on the success or failure of thermal imaging. I constructed a test site 

designed to mimic a range of archaeological features and imaged it under a variety of conditions 

to compare and contrast the results. Second, I explored a new method for processing thermal data 

that I hope will lead to a means of reducing noise and increasing the clarity of thermal images. 

This step was done as part of a case study so that the effectiveness of the processing method 

could be evaluated by comparison with the results of other geophysical surveys. 
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1. Introduction 

 Remote sensing technologies are increasingly ubiquitous in modern archaeological 

prospection. Researchers rely heavily upon these technologies in many field projects, employing 

them with a frequency that may even surpass the employment of traditional methods such as 

pedestrian survey and excavation (e.g. Dockrill et al. 1995; Hodder 2006; Kvamme 2008a). 

Entire journals dedicated to the exploration and application of these methods include 

Archaeological Prospection and Archaeometry.  

 A primary attraction for many archaeologists is the non-destructive efficiency of remote 

sensing-based approaches to archaeological investigations (Kvamme 2008b: 66; Neubauer 2004: 

160). In projects with limited time, budgets, and labor, remote sensing tools operated by just one 

or two individuals can gather huge quantities of data over relatively little time. Archaeologists 

can then analyze and apply this information in a variety of ways, from situating an 

archaeological site within its larger regional context, to deriving plan-view maps of entire 

buildings and other major features, to directing attention to specific areas of a site that may be 

the most promising focal points for further intensive study and excavation. 

 Remote sensing technologies not only save time, but extend and improve our perception 

beyond the natural human senses (Buck, Sabol, and Gillespie 2003: 973). They enable 

archaeologists to discover subtle anthropogenic anomalies by detecting physical characteristics 

normally imperceptible to humans, such as changes in magnetism (e.g. Gaffney and Gater 2010: 

25–54; Kvamme 2003). This reduces error by minimizing human sensory bias.  

 The variety of remote sensing technologies is as extensive as they are common. 

Archaeologists routinely employ a combination of tools including aerial and satellite imagery, 

ground-based geophysical survey, pedestrian survey, and excavation in their research (e.g. 
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Kvamme 2006). New technologies are constantly being tested, adapted, and added to the 

toolbox. Aerial thermography is among the most recent innovations. 

 Thermography, or thermal imaging, is the recording and measurement of heat radiation 

with specially-designed cameras. Until very recently this technology has seen relatively little use 

in archaeological contexts. While satellites have been collecting thermal data for several decades, 

their resolution is extremely low. Even Landsat 8, launched in February of 2013, only has a 

thermal infrared ground resolution of 100 m, which is entirely unsuitable to most archaeological 

investigations (Landsat: A Global Land-Imaging Mission 2013). For many years the only 

alternative was the scanning radiometer.  They were expensive, airplane mounted systems which 

required intensive image correction, georectification, and data coding and processing (e.g. 

Scollar et al. 1990: 611–618; Périsset and Tabbagh 1981: 170). In addition, many archaeologists 

were put off by the added layer of difficulty and expense of hiring a pilot and an airplane to 

conduct aerial survey. A few curious researchers tested thermal applications in the 1970s and 

1980s, but in the end most chose not to invest their limited time and money in this untested 

technology.  

 Today high-quality, compact thermal cameras are at last reasonably priced. Combined 

with the current proliferation of Unmanned Aerial Vehicles (UAVs), the deployment of aerial 

thermography has become a feasible prospecting method for archaeologists. However, the 

thermal imaging strategies currently being employed by archaeologists are largely based on a 

limited amount of dated research. While there have been modern site-based case studies (see 

Casana et al. 2014; Poirier, Hautefeuille, and Calastrenc 2013; Kvamme 2006, 2008), few 

systematic experiments have been conducted to study the general efficacy of aerial thermography 

in archaeological contexts (one exception is Buck, Sabol, and Gillespie 2003). Archaeologists 
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are without detailed guidelines describing when, where, and how aerial thermography can and 

should be applied to ensure the highest probability of collecting productive data.  

 With this thesis I aim to verify previous assumptions as well as add to our existing 

knowledge regarding the appropriate application of thermal imaging in archaeological 

prospecting. I have taken a two-pronged approach: a controlled, experimental study and a site-

based case study.  

 For the experimental portion of this research I constructed a test plot designed to mimic a 

variety of subsurface archaeological features. I buried a series of simple features common to 

many archaeological sites beneath two distinct types of soil. I then collected thermal images of 

this test plot under a variety of environmental conditions to observe at what times and under 

what climatic conditions the various features are the most identifiable. The experimental site is 

described in Chapter 4. 

 The site-based case study was primarily used to test an experimental thermal data 

processing method designed to reduce vegetation noise in thermal imagery. Following methods 

for data collection and image processing described by Casana et. al (2014), I collected thermal, 

near-infrared, and color images of a known archaeological site and combined them in a 

Geographic Information Systems (GIS) program. I then compared the raw and processed data 

with the results of previous geophysical surveys conducted at the same site to identify potential 

archaeological features and assess the performance of the processing technique. This portion of 

my research is described in Chapter 5. 
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2. Background 

2.1. The Science of Aerial Thermography 

 The earliest form of remote sensing used in archaeology was aerial imaging (Scollar et al. 

1990: 26). The types of aerial data collected today range from black and white photographs to 

multispectral images that record wavelengths well outside of the visible light spectrum (Leisz 

2013:14). Aerial imaging allows quick coverage of extensive areas which would be impractical 

to thoroughly traverse on foot. It also offers the archaeological surveyor easy access to areas 

where hostile terrain would make pedestrian survey challenging if not impossible. Furthermore, 

aerial imaging can be used to detect surface and subterranean features not immediately visible 

from a ground-level perspective.  

 O.G.S. Crawford, a pioneer of the method, used aerial photography to discover and map 

the remains of road and field systems in Wessex and Sussex, England that dated to before the 

Roman conquest (Crawford 1923: 342). In addition to those features that have left obvious 

remains on the surface, he noted that buried features may leave discolorations known as soil 

marks in the topsoil. To the observer on the ground these appear as just a random, “confused 

tangle,” but when viewed from above “an orderly system is visible” (Crawford 1923: 343). 

Roads, walls, and other features may be revealed in soil marks as clearly as if they were drawn 

on a blueprint. Since this early work, aerial imaging has remained among the most commonly 

employed forms of remote sensing used by archaeologists (see Leisz 2013).  

 While thermography may sound like an exclusively modern invention, archaeologists 

have been indirectly taking advantage of thermal data for the last century. Just as discolorations 

in the soil may indicate the presence of subterranean features, patterns seen in melting frost and 

snow may also signal the location of an archaeological site (Scollar et al. 1990: 48–49, 591; 
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Stanjek and Faßbinder 1995: 91). These frost or snow marks are created by the uneven melting 

of frost and snow over the top of buried archaeological features which retain and reradiate heat at 

varying rates depending on their physical composition. Like soil marks, they have been known to 

reveal a vivid birds-eye-view map of the archaeology which could not normally be seen by a 

person standing on the ground’s surface, but which immediately become clear when recorded in 

simple aerial photographs (e.g. Braasch 1983).  

 The analysis of frost and snow marks has several major disadvantages. Their appearance 

relies on precise conditions of climate, weather, and lighting (Stanjek and Faßbinder 1995: 99). 

They are difficult to predict, never guaranteed, and their transient nature makes thoroughly 

recording such features challenging on the occasions when they do appear. Thankfully, the 

physical phenomenon that creates these frost and snow marks, the unequal heating and cooling 

rates of different materials in the ground, can now be measured directly via thermal cameras.  

 Thermal cameras record heat, or thermal infrared radiation (TIR). Thermal radiation is a 

type of electromagnetic wave located within the infrared range of the electromagnetic spectrum 

(Figure 1). While the wavelengths of visible light range from 0.4 – 0.78 μm, infrared radiation is 

longer, ranging from 0.78 – 1000 μm (Mehta 2011). The infrared spectrum can be further 

subdivided into near infrared (NIR 0.78 – 2.5 μm), mid infrared (MIR 2.5 – 10 μm), and far 

infrared (FIR 10 – 1000 μm) (Mehta 2011). What is commonly referred to as thermal radiation 

overlaps both mid and far infrared, occupying the range of 8 – 15 μm wavelengths (Science 

Mission Directorate 2010). This is the range in which ground temperature, in the form of radiant 

heat, can be measured without interference from the ambient air temperature (Scollar et al. 1990: 

610; Science Mission Directorate 2010).  
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 Surface temperature is not directly equivalent to the amount of thermal infrared radiation 

emitted from the sun. “Soil temperature depends on solar radiation and exchanges with the 

atmosphere” (Périsset and Tabbagh 1981: 169). Many electromagnetic waves are reflected back 

into space by gasses in the Earth’s atmosphere. The radiation that successfully passes through the 

atmosphere is then absorbed and reflected at different rates by the materials located on and near 

the Earth’s surface (Abrams and Comer 2013: 59, 61). Finally, absorbed heat is re-emitted at 

varying rates depending on the physical and chemical characteristics of the material in which it 

has been stored (Abrams and Comer 2013: 62).  

 Archaeological sites consist of a mixture of several materials. They may contain stone 

walls, packed clay floors, organically-enriched middens, or areas where topsoil was removed or 

added during the construction of earthworks. If these materials’ thermal absorption and emission 

properties are measurably distinct from the soil matrix in which they are embedded, the resulting 

variations of thermal radiation across a site may trace the locations of archaeological features 

(see Kvamme 2008b: 66). When recorded by a thermal camera, these patterns of warm and cool 

areas can be just as revealing as Crawford’s soil marks. 

 There are several related characteristics that affect the thermal behavior of materials. 

Thermal conductivity, heat capacity, thermal inertia, and diffusivity are primary factors. The 

relationships among these variables and how they may be manifested in archaeological contexts 

 

Figure 1: Thermal infrared radiation, circled in green (redIRIS Infrared Inspections 2009) 
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have been researched and described in-depth by Périsset and Tabbagh (1981), Scollar et al. 

(1990), and Stanjek and Faßbinder (1995), among others. A clear understanding of these factors 

is helpful in predicting when thermal imaging may be most productive, as well as in interpreting 

results.  

 Périsset and Tabbagh conducted a series of controlled experiments from the early 1970s 

through the 1980s to quantify the thermal behavior of archaeological features (e.g. Périsset 1980; 

Périsset and Tabbagh 1981; Tabbagh 1977; Tabbagh 1979). They are credited with laying out the 

initial ground rules for the appropriate application of aerial thermography which archaeologists 

still refer to today. Most of their work is only available in French at the present time; however, a 

few summaries of their research have been published in English, including Interpretation of 

Thermal Prospection on Bare Soils (1981). It is a thorough treatise on soil thermodynamics 

which provides detailed mathematical formulas for several physical properties as well as 

descriptions of how these abstract equations can be applied to archaeological field research. They 

also share the results of several controlled experiments and case studies which they used to 

confirm and improve their analyses, which will be discussed in the following section.  

 Périsset and Tabbagh (1981) focused on several thermal properties necessary to 

understand the behavior of heat in soil. The first of these is thermal conductivity, k, which 

describes the ability of a material to transport heat (Périsset and Tabbagh 1981: 170; Stanjek and 

Faßbinder 1995: 96–97). You are more likely to burn yourself by touching a pan on the stovetop 

than by hovering your hand directly over the heating element because metals have much higher 

thermal conductivity than air (Stanjek and Faßbinder 1995: 97). This property is defined as the 

constant k which relates heat flux ∅ to temperature gradient ∇θ  in Fourier’s Law: 
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∅ = −𝑘∇𝜃 

(Périsset and Tabbagh 1981: 170; Scollar et al. 1990: 594).  

 The temperature gradient ∇θ describes the temperature difference between the  material 

under consideration and its surroundings (Scollar et al. 1990: 594). The heat flux ∅ is a vector 

unit which refers to both the rate and direction of travel of heat (Périsset and Tabbagh 1981: 

170–171). When the soil is warming, heat is traveling into the ground and we have positive heat 

flux. When the soil is cooling, heat is traveling into the air and heat flux is negative. The larger 

the heat flux value (in either the positive or negative direction), the faster the change is 

occurring.  

 The second key thermal property is the volumetric specific heat Cv, defined by the 

equation: 

𝑑𝑄 = 𝐶𝑣
𝑑𝜃

𝑑𝑡
 

where dQ is the amount of heat stored by unit volume during the time dt  (Périsset and Tabbagh 

1981: 170). It describes the heat capacity of a material, i.e. the amount of thermal energy that it 

can retain. This is determined by the physical characteristics of the individual components that 

make up the material as well as its density (Stanjek and Faßbinder 1995: 97). A useful property 

which describes the relationship between conductivity and volumetric specific heat is the 

diffusivity Г. Diffusivity is the ratio of the conductivity to the volumetric specific heat: 

Г =
𝑘

𝐶𝑣
 

(Périsset and Tabbagh 1981: 170; Stanjek and Faßbinder 1995: 98). A material with high 

conductivity and low volumetric specific heat will have high diffusivity, meaning that heat 
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travels through it quickly without being retained. If the material has low conductivity and high 

volumetric specific heat, it will retain more heat. 

 The diffusivity Г is closely related to another frequently referenced property, thermal 

inertia. Thermal inertia, P, is written: 

𝑃 =
𝑘

√Г
= √𝑘𝐶𝑣 

(Périsset and Tabbagh 1981: 170). This describes a material’s tendency to resist changes in 

temperature (Danese et al. 2010: 484). A material with high thermal inertia, like water, is slow to 

heat up or cool down. Sand, on the other hand, will heat more quickly in the sun and cool just as 

fast at night due to its lower thermal inertia. Thermal inertia, as shown by the above equation, is 

another way to describe the complex relationship between thermal conductivity, volumetric 

specific heat, and diffusivity. It is also an extremely useful value for estimating the potential 

strength of anomalies in different contexts. 

 Périsset and Tabbagh (1981) set up several experiments to test how these equations are 

expressed in the physical world. They designed a software program to analyze the thermal 

response of two- and three-media models for any combination of flux over time (Périsset and 

Tabbagh 1981: 169). The two-media model consists of a feature embedded in and covered by a 

single soil type. The three-media model represents a cylindrical feature embedded in a subsoil 

layer and covered by a superficial layer (Figure 2).  
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 Périsset and Tabbagh (1981) also constructed several physical models to verify the 

computer-generated results. They dug a ditch into a limestone subsoil and buried it in topsoil, 

buried building materials in sand, and buried building materials in gravel, and collected data with 

an ARIES scanning radiometer (Périsset and Tabbagh 1981: 170–171). From this experimental 

data they were able to extrapolate rules which describe how the layers of soil overlaying and 

surrounding an archaeological feature will affect the thermal signature of that feature.  

(1) If the superficial layer increases in thickness or conductivity and decreases in diffusivity, 

the thermal signature of the feature will attenuate.  

(2) The superficial layer “has no effect on the sign of the anomaly which only depends on the 

properties of the features…and of the surrounding soil” (Périsset and Tabbagh 1981: 

171). 

(3) Features located within low conductivity and low diffusivity subsoil will have a stronger 

thermal signature on the surface (Périsset and Tabbagh 1981: 171). 

 The relationship between superficial and subsoil layers can also be expressed through the 

ratio: 

 

Figure 2: The three-media model. (1) superficial layer (2) feature (3) subsoil 

(Périsset and Tabbagh 1981: 171). 
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𝑃2 − 𝑃1

𝑃2 + 𝑃1
 

for a two-layer model where P1 is the thermal inertia of the superficial layer and P2 is the thermal 

inertia of the subsoil (Périsset and Tabbagh 1981: 171). That is, the greater the difference 

between thermal inertias of the two layers, the more the second layer will affect the thermal 

signature of the first. If we expand this concept to the three medium model in Figure 2 composed 

of superficial layer (1), anomaly (2), and subsoil layer (3) (with respective thermal inertias P1, 

P2, and P3) we can extrapolate a contrast coefficient 

𝑐 =
𝑃3 − 𝑃2

𝑃3 + 𝑃2
 

(Périsset and Tabbagh 1981: 171). The contrast coefficient c describes the potential strength of 

the anomaly’s thermal signature. It will also have the same sign as c if the flux is positive (soil is 

warming) or the opposite sign as c if the flux is negative (soil is cooling) (Périsset and Tabbagh 

1981: 171). In other words, the potential strength of thermal anomalies depends on the relative 

thermal inertias of the archaeological feature and the surrounding subsoil in which it is 

embedded. 

 Archaeological features are not guaranteed to always display visible thermal signatures 

simply because they have different thermal properties. While subterranean features will heat and 

cool at separate rates depending on their thermal inertias, a long stretch of stable weather 

conditions might allow time for the temperatures of all features and layers to equalize. 

Thermography must be done while the temperatures of materials are still adjusting and 

differences are at their maximum.  

 Périsset and Tabbagh firmly state that diurnal variation of heat flux lacks the penetration 

depth needed to affect materials below the surface layer (1981: 169). They claim that slow, 
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transient heat flux variation determines when an anthropogenic anomaly will be at its most 

visible (Périsset and Tabbagh 1981: 169). If, for example, a week of warm weather in which all 

materials have become thoroughly heated is followed by a week of cold weather, materials with 

low thermal inertia will cool quickly while those with high thermal inertia will remain relatively 

warm. The ideal time for thermal imaging is during this period of change, in their experience 

generally two or three days after a reversal of heat flux, when the temperature difference between 

features is at its greatest (Périsset and Tabbagh 1981: 172–175).  

 All of the above analyses are concerned only with the thermal properties of bare soils. As 

Périsset and Tabbagh point out, “In the presence of vegetation one does not measure the ground 

surface temperature but that of the plants, which is controlled by plant transpiration” (1981: 169). 

In other words, plant cover acts as a screen which filters and may even block the thermal 

response of the soil and features below. Aerial thermography of a vegetated area is only an 

indirect measurement of soil temperature and will not provide as clear a picture as can be 

expected of bare soil. 

 Scollar collaborated with Tabbagh, Herzog, and Hesse to publish the most 

comprehensive review to date of archaeological thermography as the last chapter in 

Archaeological Prospecting and Remote Sensing (1990: 591–635). Much of the chapter is a 

clarification of Périsset and Tabbagh’s previous work, but Scollar and the others added in several 

insightful caveats and clarifications. 

 Scollar and coauthors began with an overview of thermodynamics as described above. 

This included perceptive commentary on some of the previous claims regarding diurnal versus 

transient heat flux. They agreed with Périsset and Tabbagh that slow, transient variations of heat 

flux are the most productive as they have the best  penetration and can expose anomalies linked 
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to archaeological features far below the surface (Scollar et al. 1990: 598). However, they 

amended Périsset and Tabbagh’s previous statement that diurnal heat flux is never strong enough 

to create useful anomalies. While deeply buried features may not be directly affected by diurnal 

flux, this flux can still be revealing in the right context “inasmuch as the properties of the surface 

layer often reflect contrasts which are much deeper” (Scollar et al. 1990: 598). Scollar and 

coauthors also clarified that yearly seasonal heat flux changes are not useful for archaeological 

prospection. While seasonal flux does have deep penetration, other surface changes throughout 

the year caused by vegetation growth, humidity, plowing, and transient heat flux variations 

create so much noise that anomalies are obscured (Scollar et al. 1990: 597–598). Relying on 

transient or diurnal heat flux removes many of these complicating variables and provides a 

clearer picture.  

 Scollar and coauthors also added in a discussion of microrelief and its expression in 

thermograms (Scollar et al. 1990: 601). Subterranean features may create minute variations in 

surface topography, such as tiny dips over filled ditches, which in turn create subtle warm and 

cool zones depending on their angle of exposure to the sun (Scollar et al. 1990: 601). Easily 

obscured by temperature noise from shade and shadows, thermal imaging of microrelief is most 

useful in uniform fields free of vegetation and standing water (Scollar et al. 1990: 601). 

However, in the right environment surface-level temperatures do have the possibility of 

providing useful information, as we will see in the next section. 

  Scollar et al. (1990) next elaborated upon the role of the surface layer. If the surface layer 

is composed of homogenous material it will uniformly dampen the thermal responses of any 

subterranean features (Scollar et al. 1990: 605). The amount of dampening depends on the 

thickness, thermal diffusivity, and thermal conductivity of this surface layer. As Périsset and 
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Tabbagh previously stated, a thick surface layer or a surface layer with low diffusivity will 

attenuate the strength of anomalies (1981: 171). Scollar and coauthors pointed out that these 

characteristics will also delay the appearance of anomalies (1990: 605). On the other hand, 

increased conductivity attenuates anomalies, but does not affect their timing (Scollar et al. 1990: 

605). Thus a thin surface layer or one with high diffusivity is a prime environment for thermal 

prospecting. Plowed fields are also favorable as the aeration caused by plowing will reduce 

conductivity, but not affect diffusivity (Scollar et al. 1990: 605). 

 The surface layer plays a more complex role when it is of heterogeneous composition. 

This is also the most common situation as surface inhomogeneities are frequently introduced by 

human agricultural and construction activities, variations in subsurface rock, hydrology, and 

archaeological material (Scollar et al. 1990: 606). These inclusions can be helpful if they are 

surface reflections of deep archaeological features, or they may have the opposite effect of 

overwhelming and masking subsurface features. These shallow inhomogeneities are strongly 

affected by diurnal variations and most visible in the afternoon, as Scollar and coauthors 

observed in a survey of several agricultural fields (Scollar et al. 1990: 606). Based on this 

information and their understanding of transient heat flux variations, Scollar and coauthors 

established three rules regarding the appropriate time to conduct thermal survey: 

“(1) It is preferable to make measurements without clouds in order to record anomalies due 

to microrelief… 

(2) It is better to take readings during the morning so that the effects of diurnal variation on 

surface inhomogeneitites do not mask deeper weak anomalies. A flight during the first 

half of the night might be of interest, but the microrelief will not appear… 
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(3) It is better to fly after a sufficiently well-marked long variation in transient flux. 

Calculations of slow variations in transient flux using data from meteorological stations 

allow verification of whether or not this condition has been fulfilled” (Scollar et al. 1990: 

609). 

  Finally, Scollar et al. ended with a discussion of the role of vegetation in thermal 

imaging. Dead or inactive plants have poor heat conduction, and the temperature of living plants 

is regulated by transpiration, not by the surface on which they grow (Périsset and Tabbagh 1981: 

169). As previously mentioned, this causes vegetation to act as a screen which obscures the 

thermal response of any features below. However, thermography of vegetated areas can 

occasionally provide indirect information about subsurface features (e.g. Tabbagh 1979). 

Subterranean features may affect the growth of vegetation over them either positively or 

negatively. For example, stone walls will impede root growth and stunt plants, while a trash pit 

might be especially nutrient-rich and encourage thick growth (Giardino and Haley 2006: 60). 

Plant transpiration will change with the health of the plants, which in turn alters plant 

temperature (Scollar et al. 1990: 631–633). 

 Few archaeologists have added to the foundations of thermal prospection laid out by 

Périsset, Tabbagh, and Scollar. Among those who have described additional fundamental rules of 

thermal behavior are Stanjek and Faßbinder (1995), who provided an excellent overview of the 

effects of water and soil density. They determined that these characteristics will affect all of the 

factors previously identified, including volumetric specific heat, diffusivity, and thermal 

conductivity.  

 As mentioned previously, volumetric specific heat, or heat capacity, depends on soil 

composition. The total heat capacity of a soil matrix is simply the sum of the specific heats of all 
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the soil components multiplied by the bulk density (Stanjek and Faßbinder 1995: 97). Therefore, 

as density increases so does the heat capacity. Density, the ratio of mass to volume, can be also 

assessed by considering the porosity of soils (Stanjek and Faßbinder 1995: 95). Porous soils are 

less dense and will generally have lower heat capacity, but this property is easily affected by 

moisture content. While air has a very little heat capacity, water has twice as much heat capacity 

as some common minerals such as quartz (Stanjek and Faßbinder 1995:97). Therefore, dry 

porous soil will contain a fair amount of air and have low heat capacity, while in moist soil water 

replaces the air between particles and increases heat capacity.  

 Water content can also improve the thermal conductivity of soils. Even though water 

does not have as high thermal conductivity as minerals, it is still higher than that of air (Stanjek 

and Faßbinder 1995: 97). In dry soil, low-conducting air fills the space in between soil particles, 

thereby limiting heat transfer. When the soil water content increases the air is replaced with 

water which improves overall conductivity (Stanjek and Faßbinder 1995: 97).  

 As we can recall from above, thermal diffusivity is the ratio of thermal conductivity to 

volumetric specific heat (Г =
𝑘

𝐶𝑣
). Thermal diffusivity will increase quickly with small increases 

in water content since conductivity increases more quickly than volumetric specific heat as water 

is added (Stanjek and Faßbinder 1995: 98). However, as the ground becomes saturated the trend 

will reverse and diffusivity will begin to decrease (Stanjek and Faßbinder 1995: 98). More 

energy must be used to heat or cool the large amount of water, which has very high thermal 

inertia. 

 As areas such as filled ditches or pits tend to retain water, these areas may often create 

thermal anomalies due to the reduced thermal inertia of the moist soil they contain. Conversely, 

stone walls contain less water and have higher heat diffusivity and lower heat capacity, which 
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may lead to swift, strong cooling when the air temperature drops (Stanjek and Faßbinder 1995: 

100).  

 

2.2. Processing Thermal Data 

 The results of a thermal survey are visually represented by images referred to as 

thermograms (Danese et al. 2010: 484). Although most modern thermal cameras record video 

feeds, it is possible to extract still frames which can be studied individually or mosaicked into a 

single image for analysis (see Chapters 4 and 5). These thermograms are stored as raster files for 

data processing. A raster is composed of a grid of cells where each cell represents a geographic 

location and contains data values for that location (Wheatley and Gillings 2002: 50). In the case 

of a thermogram, each cell identifies the average temperature in the area represented by that cell. 

Although any range of colors may be used to represent temperature variations, thermograms are 

usually grayscale images with black cells assigned to the coldest areas and white cells for the 

warmest. This is a relative scale that depends on the range of temperatures within each frame; in 

other words, specific temperatures are not consistently represented by designated gray values. 

 The quality of a thermogram is determined by several factors, including temperature 

resolution, spectral resolution, radiometric resolution, and spatial resolution. The temperature 

resolution depends on the sensitivity of the thermal camera and refers to what temperature 

increments the camera is capable of detecting. A camera with high temperature resolution can 

distinguish between very close temperatures. The spectral resolution describes which 

wavelengths, or range of wavelengths, are recorded (Abrams and Comer 2013: 64). The 

radiometric resolution refers to the way data is encoded (Abrams and Comer 2013: 65). Most 

modern thermal data is recorded at 8-bit resolution, meaning that temperatures are distributed 
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across 256 shades of gray. Higher radiometric resolution would allow smaller temperature 

increments to be recorded across a larger range of gray values, and vice versa. Finally, the spatial 

resolution refers to the cell size, or the real physical area each cell represents (Abrams and 

Comer 2013: 64). The higher the resolution, the more information a thermogram can offer; 

however, too much detail can look noisy and be difficult to interpret.  

 Once a thermogram is acquired it can be georeferenced to real-world coordinates and 

then compared with photographs, maps, or other geophysical data to aid in interpretation (e.g. 

Casana et al. 2014; Kvamme 2008a). This is usually done in a Geographic Information Systems 

(GIS) program where the data may also be filtered and otherwise manipulated to highlight subtle 

anomalies (Giardino and Haley 2006: 61–65; see also Wheatley and Gillings 2002). Several 

archaeologists have had great success discovering archaeological features by combining aerial 

thermography with other remote sensing or geophysical methods, as will be discussed in the 

following section. 

 The research of Bellerby, Noel, and Branigan (1990) provides some interesting ideas for 

the thermal prospector. They applied a direct-contact method by inserting temperature probes 20 

cm into the ground in a grid pattern across archaeological sites. The data was then compiled into 

a low-resolution thermogram (Bellerby, Noel, and Branigan 1990: 200–201). While this labor-

intensive method is unlikely to persist now that aerial thermography has become a more feasible 

option, the data processing techniques developed by Bellerby and his coauthors may endure.  

 Bellerby et al. (1990) developed a noteworthy method for filtering out surface-layer noise 

created by diurnal variation, irregular topography, and soil inhomogeneities. During each survey, 

they collected multiple temperature readings over time at each point in the survey grid and at a 

base station. They interpolated a linear function from the first and last base station readings and 



 

19 

 

subtracted it from the total set of base station data. This was then converted into a Fourier series 

and subtracted from the site grid data (Bellerby, Noel, and Branigan 1990: 197–199). Reducing 

thermal noise in this manner allowed them to isolate deep features from surface anomalies. 

Perhaps this technique could be applied to aerial thermography by the addition of a base station 

when collecting thermal data. 

 Another interesting analytical technique was presented by Danese et al. (2010). They 

were not using thermography as a prospecting method, but as a means for detecting decay in 

historic buildings. However, the data processing approach they describe may be applied to aerial 

thermography. In addition to the standard practice of visually identifying hot and cool anomalies 

in individual thermograms, Danese and coauthors suggest searching for temporal anomalies by 

comparing multiple sequential thermograms. “[P]ixels that follow a similar temperature profile 

throughout the sequence of thermal images…represent thermal inertia, which measures the 

tendency of a substance to resist changes in temperature” (Danese et al. 2010:484). In other 

words, a particular cluster of pixels might not stand out as a noticeably hot or cold anomaly on 

an individual thermogram, but when studied over time it may be observed that this same cluster 

of pixels has significantly less or more variance than its neighbors. This would indicate the 

presence of a material with higher or lower thermal inertia, i.e. more resistant or more 

susceptible to temperature changes.  

 

3.  Previous Archaeological Applications 

 Among the earliest researchers to employ aerial thermography were geologists. As early 

as 1934, Van Orstrand employed thermal imaging for geological reconnaissance (Bellerby, Noel, 
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and Branigan 1990: 191). It was not until the 1960s that some geologists realized the potential 

that thermal imaging holds for archaeologists.  

 In April 1966, the National Aeronautics and Space Administration conducted a thermal 

survey of the San Francisco volcanic field northeast of Flagstaff, Arizona. The data was being 

collected for the Earth Resources Survey Program directed by the U.S. Geological Survey 

(Berlin et al. 1977: 588). Flying at an altitude of 762 m at 4:00 pm, they collected thermograms 

with an H.R.B. Singer Co. Reconofax IV scanning radiometer. It recorded wavelengths between 

8 and 14 µm at a temperature resolution of 0.25° C (Berlin et al. 1977: 588; Schaber and 

Gumerman 1969: 712). They also collected simultaneous black and white panchromatic 

photographs with a ground resolution of 0.3 m (Berlin et al. 1977: 588–589). Upon reviewing 

their data, the NASA and USGS scientists were surprised to discover three groups of parallel 

linear anomalies in the thermograms. These anomalies are nearly indistinguishable in the 

panchromatic photographs despite their fairly high resolution (Schaber and Gumerman 1969: 

712).  

 Gerald Schaber of the USGS and archaeologist George Gumerman performed the initial 

investigation of these anomalies and published a brief report in 1969. They visited the locations 

identified in the thermograms and were able to confirm via soil and pollen analysis that the sites 

were ancient agricultural plots, even though only one of the three anomalies was actually visible 

on the ground surface (Schaber and Gumerman 1969: 712–713). They also found small 

habitation sites nearby where they collected diagnostic potsherds that dated to the Sinagua Period 

between circa AD 1067 to 1200 (Schaber and Gumerman 1969: 712–713).  

 Schaber and Gumerman (1969) determined that the linear thermal anomalies were the 

ridges and swales of ancient agricultural fields. Although these features had fairly subtle 
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topography, ranging from 3 to 4 m across and only 5 to 30 cm of vertical relief, they were 

comprised of two types of soil with distinct thermal characteristics. The ridges were composed of 

a basaltic ash which has a very low thermal inertia, causing them to warm quickly during the 

day. The swales, consisting of a buff soil with higher thermal inertia and partially sheltered from 

the sun by their lower relief, remained cooler (Schaber and Gumerman 1969: 713).  

 Berlin et al. (1977) conducted further extensive fieldwork at these agricultural plots in the 

early 1970s. They focused on one field measuring 265 m by 67 m composed of 10 ridge-swale 

pairs (Berlin et al. 1977: 590). Numerous samples confirmed that the ridges had a 10 to 30cm 

cap of basaltic ash beneath which lay 5 to 20 cm of brown-buff soil. The swales consisted of this 

same buff soil with occasional patches of basaltic ash ranging from 2 to 5 cm thick (Berlin et al. 

1977: 590). Soil temperature was recorded over a 24-hour period on four of the ridge-swale pairs 

in early May of 1975. During daylight the ridges measured 1.1° to 6.2° C warmer than the 

swales, but at night they cooled swiftly until at midnight the ridge temperature actually dropped 

below that of the swales (Berlin et al. 1977: 590–591). These results are consistent with the ash 

having lower thermal inertia than the buff soil.  

 After this initial foray into the use of aerial thermography for archaeological prospection, 

several archaeologists set out to test the method by more vigorous means. Périsset and Tabbagh, 

introduced in the previous section, began their work around this time. In addition to their 

theoretical, physics-heavy research described above, they carried out multiple field-based case 

studies. For all field research, they used an ARIES radiometer mounted on a small, low-flying 

aircraft (Périsset and Tabbagh 1981: 170). The spatial resolution of the ARIES varies with 

altitude and velocity of the aircraft, but can be as high as 1.13 m by 1.17 m (Scollar et al. 1990:  

618).   
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 One early case study was thermal survey of the necropolis of La Tombe in Seine et 

Marne, France (Périsset and Tabbagh 1981: 181). Aerial photography had previously revealed a 

square enclosure, but no excavation had been conducted. The enclosure appeared as a cold 

anomaly in the thermogram. As the subsoil was known to be a high thermal inertia clay, this 

indicated that the enclosure was formed by a ditch containing low thermal inertia fill which had 

cooled more quickly than its surroundings (Périsset and Tabbagh 1981: 181).  

 In another case study, Périsset and Tabbagh (1981) surveyed the route of a planned 

motorway. The flux was not strong enough to induce strong temperature changes at depth, yet 

several ancient roads and field boundaries were clearly visible among the modern agricultural 

fields (Périsset and Tabbagh 1981: 184). The visibility of the ancient fields alongside the modern 

indicates that the ancient features were in the superficial layer (Périsset and Tabbagh 1981: 185). 

 In their most elaborate case study, Périsset and Tabbagh (1981) surveyed several known 

Neolithic ditches in Seine et Marne, France. They took samples of soil across the sites and flew 

aerial survey in three different seasons, attaining the best thermal response in May. They 

observed that filled pits were visible when dug into compact, high conductivity and high 

diffusivity gravel, but not in silty ground (Périsset and Tabbagh 1981: 175–176). Since silt and 

fill material have a low contrast coefficient while gravel and fill together have a high contrast 

coefficient, this was exactly the response they had anticipated. In contrast, data collected during 

their December flights had very poor results. At one site thick vegetation obscured all subsurface 

thermal signatures. A second, unvegetated site had a poor response as well, which was attributed 

to the late flight time. They were able to see only anomalies in the superficial surface layer that 

had been exposed by the diurnal heat flux, but no deeper anomalies (Périsset and Tabbagh 1981: 

180).   
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 Scollar (1990) presented the results of several other aerial thermography surveys 

conducted by Périsset and Tabbagh that were not described in their 1981 article. The first was a 

survey of a Gallo-Roman structure in Leyment, France. No structure was visible in standard or 

near infrared photographs. However, thermal imagery collected three days after the transient heat 

flux had reversed from negative to positive clearly exposed structure foundations as a cold 

anomaly (Scollar et al. 1990: 620, 623). The high thermal inertia of the stone foundations had 

caused them to warm slowly relative to the surrounding soil matrix. 

 In another case study in Seine et Marne, microrelief turned out to be a useful 

phenomenon in a survey of ancient field systems. Soil had piled up at the ends of agricultural 

fields, perpendicular to the movement of the plow. While too subtle to be visible to the naked 

eye, the increased thickness of the topsoil in these regions altered the thermal response just 

enough to be identifiable in the thermograms as linear anomalies marking the location of field 

boundaries (Scollar et al. 1990: 623–624). 

 Périsset and Tabbagh also used aerial thermography to pinpoint the location of a deserted 

village at St Vincent. Survey was conducted after several days of positive heat flux. Multiple 

large rectilinear anomalies, interpreted as cold stone foundations, were clearly visible. The 

identification of the site was confirmed by comparison with historic texts (Scollar et al. 1990: 

621, 625).  

 Other field research described by Scollar et al. (1990) took place at a Gallic and Gallo-

Roman complex at Maillys, France. There had been no strong variations in transient heat flux 

leading up to the survey. By the rules established in the previous section, this makes it likely that 

any observed thermal anomalies would be near-surface and a product of diurnal, not transient, 

flux. Several cold anomalies indicated a road, Roman camp, and Iron Age rural settlement. Many 
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of these remains had been previously recorded in standard aerial photography, which further 

supports the analysis that the thermal survey only recorded those near-surface features affected 

by diurnal heat flux (Scollar et al. 1990: 621–623).  

 In an aerial survey of a prehistoric complex at Villeneuve La Guyard, a large Gallo-

Roman enclosure was visible even through a layer of growing wheat. This was not the result of 

subterranean thermal anomalies powerful enough to be seen even through vegetation cover. 

Rather, the composition of subterranean features affected the growth of vegetation over them, 

which led to altered plant transpiration, which was then recorded by the thermal camera (Scollar 

et al. 1990: 631–633). 

 While others were working in France, Bengt Lundén of the University of Stockholm had 

been researching thermal applications since 1976 (see Lundén 1985). As a professor in the 

Department of Physical Geography, his initial work focused on using thermography to test 

subsurface geological conditions and vegetation health. His first attempt at an archaeological 

application was conducted as part of a rescue archaeology project (Lundén 1985: 162). A new 

road being constructed in Dalecarlia, Central Sweden, was to cross an area known to contain 

medieval settlements. Topsoil had already been stripped, so Lundén took advantage of the lack 

of vegetation noise to collect several unobstructed images. He surveyed the area from a 

helicopter to acquire color photographs during the day and thermal data shortly before midnight 

(Lundén 1985: 162). Lundén preferred night thermography as it avoids reflected radiation or an 

overly warm surface layer that could obscure the thermal signatures of buried features. By 

collecting thermal data at night, he ensured that only re-radiated heat would be recorded. The 

timing also guaranteed that diurnal flux would have recently inverted from positive to negative. 
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It can be inferred from his statement “The day before, like the whole summer, was characterized 

by dry, warm weather” that he did not take transient flux into account (Lundén 1985: 162).  

 Lundén’s (1985) thermal data was collected by a radiometer capable of recording 

wavelengths in the range of 8 – 12 µm and sensitive to temperature increments of 0.1° C. This 

data was recorded to a video cassette which was then reviewed on a monitor. Comparing the 

thermograms to the color images and maps produced during rescue excavation, he noted a strong 

correlation between warm areas and archaeological features. Since heat flux was negative at the 

time of his survey, this indicated that the features had higher thermal inertia than the background 

environment and were likely stone foundations (Lundén 1985: 163–165).  

  The earliest example of digital video aerial thermography, the type still employed today, 

was presented by a team of researchers from Tel Aviv University in Israel. Ben-Dor et al. (1999) 

mounted a thermal infrared video radiometer on a helicopter and flew it over the Bronze Age 

settlement Tel Leviah, Israel. They used an Inframetrics Model 760, capable of capturing 

wavelengths from 3 – 12 µm and temperatures between -20° C and 400° C, accurate to less than 

0.1° C at 30° C. They flew several pre-dawn passes at varying altitudes between 1000 and 5000 

feet, resulting in spatial resolution ranging from 60 cm to 3 m. By comparing the resultant 

thermograms with maps of the area, several previously unrecognized linear features were 

discovered. Ground survey of the anomalies found basalt stones, probably buried walls. Ben-Dor 

and coauthors emphasize “It is important to mention that these patterns would never have 

attracted out attention were it not for the additional information provided by the thermal image” 

(1999: 124).  

 A few years later, Bryan Haley, Jay Johnson, and Richard Stallings received a grant from 

the Office of Naval Research to conduct an extensive case study on archaeological thermal 
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prospecting (2002). They begin their report by stating that while Périsset and Tabbagh made an 

excellent case for the benefits of employing long-term heat flux to detect archaeological features 

at depth, the calculation of this variation is generally too complicated to be practical in most 

archaeological research (Haley, Johnson, and Stallings 2002: 3). Transient flux determination 

requires extended monitoring of soil temperatures, and even when optimal conditions are 

reached, most archaeologists do not have the ability to visit their sites on a moment’s notice. 

Bearing this in mind, Haley and coauthors focused on the utility of thermal imaging when only 

diurnal heat flux is considered.  

 Haley et al. (2002) employed a FLIR Agema 570 for their research at the Mississippian-

period Hollywood Mounds Site. The Agema is capable of recording wavelengths from 7.5 to 13 

µm at a sensitivity of 0.2° C onto a 320 by 240 pixel video image (Haley, Johnson, and Stallings 

2002: 6). The camera was mounted on a helium blimp for the four surveys conducted between 

July and December (Haley, Johnson, and Stallings 2002: 7). They collected data during several 

day and night flights. During each survey they tracked relative temperature, humidity, and 

sunrise/sunset times to study the impact of these factors upon the thermal data. 

 Haley et al. (2002) georeferenced their thermograms to the Hollywood site grid to allow 

comparison with the results of previous geophysical surveys and test excavations. Most thermal 

images collected during daylight hours only recorded reflected surface radiation and did not 

reveal subsurface features. The exception was a house feature visible as a cool anomaly recorded 

shortly before midday in July  (Haley, Johnson, and Stallings 2002: 13–14). The surrounding soil 

had warmed just slightly faster than the house materials. Surprisingly, this feature was not visible 

in any other images, likely because it had nearly identical thermal properties to the surrounding 

soil matrix. The other house features successfully identified in the thermal imagery were only 
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seen in data collected at night, while known mound remnants were not identifiable  (Haley, 

Johnson, and Stallings 2002: 14).  

 The most interesting results of Haley, Johnson, and Stallings’ study were the impact of 

local weather patterns on thermal behavior. They were startled to observe that rainfall appeared 

to have no consistent impact on the quality of thermal data, despite the known effects of water 

content on thermal inertia (Haley, Johnson, and Stallings 2002: 16). They also noted that the 

daily temperatures prior to data collection did not seem to have an entirely predictable effect 

either. They had predicted that a day with a 25° F temperature range would create stronger 

anomalies than a day with a 20° F range, but the opposite proved true in one survey. They 

hypothesized that sun intensity and cloud cover, which were not tracked, may have made the 

difference  (Haley, Johnson, and Stallings 2002: 16). 

 Archaeological aerial thermography has focused almost exclusively on identifying large 

features, due to the common assumption that that individual artifacts are too small relative to the 

spatial resolution of most geophysical methods to be detected (Buck, Sabol, and Gillespie 2003: 

974). Buck et al. (2003) set out to challenge this belief by testing for the thermal detection 

threshold of artifact assemblages.  

 The idea of a detection threshold was originally established by Sabol, Adams, and Smith 

(1992). They realized that if artifacts within a pixel are sufficiently dense and their spectral 

response contrasts well with the background environment, they will change the average spectral 

value of the pixel enough to create a noticeable anomaly (Sabol, Adams, and Smith 1992: 2660). 

The minimum fraction of the pixel that must be occupied by artifacts varies depending on their 

physical characteristics and the spectral range being recorded. That fraction is the detection 

threshold (Buck, Sabol, and Gillespie 2003: 975).  
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 Buck et. al. (2003) collected thermal images of obsidian and ceramic artifact assemblages 

to calculate the thermal detection thresholds for these materials. They collected data in two field 

environments, the Mojave Desert and the Pajarito Plateau, and at the Jet Propulsion Laboratory. 

Field data was collected with a modified FLIR infrared camera. Laboratory data was collected 

using the Nicolet Spectrometer Model 520, capable of recording wavelengths between 2 and 15 

µm. The laboratory data was then resampled to simulate the output of different imaging systems 

to test the effectiveness of various imaging systems. Detection thresholds varied depending on 

the background environment and the spectral range of the equipment in use.  The obsidian 

detection threshold in thermal images ranged from 4% to 14% against bare ground and up to 

nearly 30% as vegetation cover approached 100%. Ceramics were more difficult to identify 

thermally, having a detection threshold ranging from 12% against a bare mineral surface to 67% 

against vegetation. Both materials needed to have at least 85% coverage to be detected by visible 

(VIR)  and near-infrared (NIR) imaging sensors in any environment (Buck, Sabol, and Gillespie 

2003: 978–984).  

 Buck and coauthors clearly demonstrated that small artifact assemblages, not just major 

features, can be detected via remotely-sensed spectral data. This breakthrough should trigger a 

realization that many archaeologists have been setting our expectations too low, and that it may 

be time to rethink and re-test the limits of our technology. Furthermore, the knowledge that 

thermal infrared imaging is far more effective than either VIR or NIR for detecting certain 

materials is a revelation. These results indicate that thermography has the potential to go beyond 

replicating other survey results, to uncovering information not obtainable through other methods.  

 The benefits of conducting aerial thermography in addition to other survey methods are 

underlined by two case studies conducted by Kenneth Kvamme of the University of Arkansas. 
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At Army City, Kansas, he employed six different geophysical remote-sensing technologies in 

order to demonstrate several methods for integrating and analyzing discrete data sets (Kvamme 

2006). A second survey at Double Ditch State Historic Site, North Dakota, also combined the 

results of several prospecting methods (Kvamme 2008a). At both locations thermal images were 

acquired with a Raytheon Palm-IR250, which records eight-bit data in the 10 µm band and is 

sensitive to 0.1° C temperature increments. Evening flight data was recorded from the seat of a 

manned powered parachute flown at an altitude of 250 to 500 m above the sites, resulting in 

spatial ground resolution up to 10 cm. Still frames were extracted from the thermal video and 

manually mosaicked, a painstaking process (Kvamme 2006: 60; Kvamme 2008a: 74). 

 Both of Kvamme’s case studies found occasions where features overlooked by other 

methods were identifiable in the thermal images. At Army City, suspected cellars and streets are 

visible only in the thermograms (Kvamme 2006: 59). The presence of these features could have 

been inferred from the foundations and street gutters detected by the ground-penetrating radar 

and electrical resistivity surveys, but complementary data sets give more confidence to final 

analysis. At Double Ditch State Historic Site, thermal anomalies successfully matched up with 

houses, pits, roads, and ditches identified in other surveys (Kvamme 2008a: 74). Thermography 

was unable to reach the same depths as other technologies, but the anomalies which were visible 

were strongest in the thermal data sets. In addition, thermography seemed uniquely able to 

distinguish the lived-in, cultural landscape from the surrounding environment (Kvamme 

2008a:74–75). In fact, Kvamme stated that while there is certainly some overlap between the 

types of features visible in all data sets, “analyses…indicate the thermal data to be most 

independent of other data sets” (2006: 66). However, while thermal data collection proved 
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efficient and productive, its success was somewhat offset by the increased amount of processing 

time required to prepare and composite images (Kvamme 2008a: 77).  

 The recent proliferation of UAVs combined with the emergence of photogrammetric 

image processing software is proving to be a watershed moment for aerial archaeological 

investigations. While initial equipment costs may exceed those associated with hiring a small 

plane for one day of survey, ownership of a UAV which can be flown frequently for several 

years with relatively little advance planning or training makes the investment worthwhile. UAVs 

are also capable of flying at lower altitudes and slower speeds than private planes, drastically 

improving the spatial resolution of remotely-sensed data and aerial images. Several recent 

studies have explored these and other benefits of UAV-based aerial thermography. 

 The newly-established Archéodrone project at the University of Toulouse 2, France, is 

conducting ongoing UAV-based thermography research (Poirier, Hautefeuille, and Calastrenc 

2013). They use a radio-controlled octocopter equipped with global positioning system (GPS) 

and an inertial stabilization system and is capable of lifting 3 kg. The thermal camera used is a 

FLIR T620 that has a resolution of 640 by 480 pixels and is capable of detecting temperature 

increments as small as 0.04° C. Automatic flight paths are created using the MikroKopter Tool 

software which allows the user to program waypoints, flight speed, and altitude onto a map 

downloaded from Google Earth or similar websites. 

 Poirier and coauthors published a short report on preliminary Archéodrone project results 

in 2013. They conducted surveys at Saint-Bertrand-de-Comminges, an ancient roman town in 

southern France, and at Kroomdraï and Sterkfontein, prehistoric sites in the South-African 

Cradle of Humankind (Poirier, Hautefeuille, and Calastrenc 2013: 206). Images from these 

surveys were monitored live, and still frames were extracted and processed to enhance thermal 
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anomalies, but were not composited to create complete site maps. Results at the former site 

found that linear thermal anomalies corresponded well with streets and buildings. At the latter 

locations, they were able to detect several underground cavities (Poirier, Hautefeuille, and 

Calastrenc 2013: 306). This outcome confirms the results of previous research as well as 

highlights the potential of aerial thermography to discover not just cellars and storage pits, but 

cave sites, which can be valuable sources of well-preserved artifacts, ancient art, and human 

remains. 

 Jesse Casana, John Kantner, Adam Wiewel, and Jackson Cothren conducted a similar 

UAV-based thermal survey at the Blue J community in New Mexico (2014). The southwest is 

known to be problematic for most types of geophysical remote sensing, as the terrain is too 

rough for ground-penetrating radar and the common stone building materials are generally 

undetectable by magnetic gradiometry or electrical resistivity (Casana et al. 2014: 217–218). 

Casana and his coauthors sought an alternate solution by means of aerial thermography.  

 Casana et al. (2014) used a FLIR Tau II LWIR thermal camera mounted on a gimbal 

fixed to a Cinestar 8 octocopter. The camera was sensitive to 0.05° C temperature increments 

and recorded 640 by 512 pixel video at 8-bit radiometric resolution (Casana et al. 2014: 210). 

Using MikroKopter, they programmed the UAV to follow transects at a speed of 5 m per second 

and an altitude of 70 m. This speed and altitude were selected as a compromise between the need 

to collect high-resolution images over a large area and the limitations of the Cinestar, which has 

a maximum flight time of approximately 15 minutes. They spaced these transects only 20 m 

apart to ensure that the resulting images had sufficient overlap for photogrammetric processing 

(Casana et al. 2014: 211–212).  
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 Casana et al. (2014) collected four thermal videos, one in the evening and three in the 

early morning, as well as a set of color aerial images. Using AgiSoft PhotoScan and Microsoft 

Image Composite Editor (ICE), video frames were extracted, mosaicked, and georeferenced with 

ground control points. These software programs allowed the creation of a site-wide, high 

resolution composite image with a mere fraction of the manual labor previously required. The 

final image had a ground resolution of 6 to 7 cm and covered a 220 by 360 m total surface area 

(Casana et al. 2014: 212). 

 Casana et al. (2014) compared their thermograms to the color images and records of the 

Blue J site created during 2004 and 2006 archaeological surveys and excavation. Several 

roomblocks and plazas had been mapped during the previous excavation and then backfilled, 

leaving only a few remains visible on the surface. Casana et al. successfully detected most of 

these known archaeological features, which appeared as high-value areas in the thermograms due 

to the low thermal inertia of the stone building materials. They also detected several anomalies 

that seem to indicate the presence of previously undetected architecture and warrant further 

investigation (Casana et al. 2014: 217).  

 In the analysis of their results, Casana and coauthors noted that their first morning flight 

at 5:18 am, just before sunrise, seemed to be the best for detecting archaeological features 

(Casana et al. 2014: 213). The stone architecture had retained enough heat to stand out in the 

thermograms while most of the surrounding soils and vegetation had cooled with the change in 

diurnal flux. The evening flight was heavily obscured by warm vegetation noise, since the water 

content in the vegetation allowed even small grasses to retain heat into the evening and mask the 

thermal response of the ground. The later morning flights did not capture clear images of 

subsurface features as the warming surface had already started to cover their responses, although 
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their 7:18 flight did produce a crisp image of microtopography in the reflected thermal radiation. 

However, perhaps the most exciting of their observations was that well-timed thermal imaging 

was consistently successful at detecting ancient stone architecture in rocky, sandy soil where 

other remote sensing techniques had repeatedly failed (Casana et al. 2014: 218).  

 Throughout the brief history of aerial thermography, the technology and methodology 

have steadily improved. Thermal cameras have evolved from large, airplane-mounted scanners 

to tiny handheld varieties. Spatial resolution has increased from just over one meter to under ten 

centimeters. Image processing now allows the swift and relatively simple creation of large-scale, 

high-resolution image composites. However, in nearly all case studies the quality of thermal data 

has only been judged by comparison with other types of data sets, such as site maps or the results 

of other geophysical surveys, the only exceptions being Périsset and Tabbagh (1981) and Casana 

et al (2014). To accurately assess the most productive conditions for aerial thermography, we 

must also compare sets of corresponding thermograms that were collected at the same location, 

but under a wide variety of conditions.  

   

4. Experimental Plot 

4.1. Setup 

 Périsset and Tabbagh’s argument for the benefits of planning a thermal survey around 

long-term heat flux is strong. However, tracking this flux is a very involved, time-consuming 

process that is generally beyond the scope of most archaeological field research projects (see 

Périsset and Tabbagh 1981: 174–175; Scollar et al. 1990: 598–600; Haley, Johnson, and 

Stallings 2002: 3). Instead, most archaeologists will have to rely only on diurnal flux due to their 

limited field time. Acknowledging this reality, I designed an experiment to help assess the best 
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time of day as well as the best weather conditions for data collection. I built a test site that could 

be monitored and recorded at regular intervals in all conditions. To narrow my focus and reduce 

variables, I included only a limited combination of simple features in this experimental plot.  

 The area in which I set up the experimental plot was a level patch of open grassland 

among the fields owned by the University of Arkansas’ agricultural research department in 

Fayetteville. I selected a rectangular area measuring approximately 4 m by 6 m and oriented 

roughly north-south along the long axis. It was located on level ground in an open field, away 

from any trees or other structures that might create shade.  

 University agricultural department personnel used a backhoe to excavate the plot to a 

depth of about 0.3 m. I then added several simple feature types common to many archaeological 

sites within this test plot. Each feature was oriented east-west, parallel with the short sides of the 

test plot. They included a ditch, a clay berm, and six walls (Figure 3). The ditch measures 30 cm 

wide and 30 cm deep. This puts the bottom of the ditch 60 cm below the level of the ground 

surface. The clay berm was constructed out of the material removed from the ditch. It was hand-

packed into a rough mound measuring approximately 30 cm across at the base, with its top lying 

15 cm below the surface.  
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Figure 3: Plan view of the experimental plot before backfilling (Image: Autumn Cool). 
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 I constructed the walls with the assistance of several students (Figure 4). The three stone 

walls were made with of Arkansas Fieldstone purchased from a local landscaping supplier. 

Arkansas Fieldstone is a type of sandstone quarried from the Hartshorne formation in the Ozark 

Mountains of Arkansas. It has a density of 149.3 lbs per cubic foot and an absorption rate of 

2.8% (Stone Descriptions & Specs 2013). The individual stones are fairly flat and uniform in 

size, averaging roughly 5 cm thick and 15 cm diameter. The stone walls were formed by stacking 

a single row of stones mortared with a simple mixture of water and native clay. We built one 

stone wall to a height of 25 cm so that its top lay just 5cm below the level of the original ground 

surface. The second and third stone walls were only 15 cm tall, leaving their tops approximately 

15 cm below the level of the original ground surface. 

 

Figure 4: Students constructing walls in the test plot (Image: Autumn Cool). 
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 The three mudbrick walls we constructed were assembled out of 105 hand-made 

mudbricks. Undergraduate students prepared the first 40 bricks as an experimental archaeology 

lab activity (Figure 5). We mixed the bricks in a wheelbarrow using a combination of the clay 

which had been excavated from the test pit, sand, and hay. We did not measure the proportions 

of each component as the bricks were mixed, so there were inconstancies between batches. We 

shaped the bricks in a wooden mold that could produce three 25 cm by 25 cm by 8 cm bricks at 

once and then sun-dried them for several 

days. As with the stone walls, I 

constructed the three mudbrick walls by 

stacking single rows of bricks to create 

one shallow and two deep walls. The final 

mudbrick walls were 25 cm wide and lay 

roughly 5 and 15 cm below the surface.  

 To create additional variation in 

the wall features, I burned one each of the 

deep stone and mudbrick walls (Figure 6). 

The firing took place over two days. I 

maintained the first fire for approximately 

3 hours and the second fire for 4 hours. 

Wary of creating a large, indistinguishable burned area, I tried to keep the fire isolated from the 

surrounding floor and sides of the test pit by focusing it solely on the tops of the walls. I did this 

by layering wood charcoal, kindling, and damp hay on each wall top. As the kindling and 

charcoal caught fire, I added more damp hay on top to maintain a hot, smoldering fire. Although 

 

Figure 5: Mudbricks dry in the sun while a student 

prepares the mold for a new batch (Image: Autumn 

Cool). 
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this method prevented 

the walls from heating 

all the way through to 

their bases, and the fire 

did not match the heat 

of a kiln, my hope was 

that this would be a 

fairly accurate imitation 

of an accidental burning 

of a dwelling or storage 

structure. 

 After completing construction of the features, I divided the plot in half along the north-

south, or long, axis. With the help of several students, I refilled the western half of the plot with 

the original clay soil and the eastern half with fill sand purchased from a local quarry. By 

backfilling in this manner, I ensured that each feature was buried half under clay and half under 

sand. Unfortunately, a small section of the shallow stone wall was knocked over by the sand as it 

was poured out of the dump truck. I then leveled the backfill to be even with the surrounding 

undisturbed ground. I placed aluminum pie plates at the corners of the test plot to act as ground 

control points (GCPs), which aid in georeferencing the data. I later added four additional GCPs 

made out of aluminum foil crosses to the sides of the plot after several attempts at georeferencing 

data failed. Throughout the study this plot remained naturally free of vegetation due to the winter 

season. It was also not covered with sod or topsoil, which would obscure any patterns in the 

 

Figure 6: Wall burning (Image: Autumn Cool). 
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thermal images. Thus all of the experimental plot data is concerned only with thermal 

prospection on bare soil. 

 

4.2. Data Collection 

 The data I collected at the experimental plot consisted of both color images and thermal 

video. I recorded a set of color images prior to backfilling as a visual record of the features and 

so that I could reconstruct a 3D model of the walls, ditch, and berm in PhotoScan (Figure 3, 

Figure 10). The color images were taken with a Samsung Galaxy S3’s 8 megapixel camera with 

the resolution set at 3264 by 2448 pixels.  

 The thermal camera used was FLIR’s Tau II LWIR uncooled camera core with a 19mm 

lens. This camera records thermal radiation between 7.5 and 13 μm at a sensitivity of <50 

milliKelvins. This sensitivity rating indicates that the FLIR can distinguish between temperatures 

that differ by less than 50 mK (equivalent to 0.05° C). It is capable of operating in ambient 

temperatures ranging from -40 to 160° C and has a high lens speed of f/1.0. It records 8-bit video 

at a 30 Hz frame rate with a resolution of 640 by 512 pixels and pixel pitch of 17 μm (FLIR 

Systems 2015).  

 I used an Orion StarShoot LCD-DVR was used to record the thermal video to an SD 

card. The StarShoot records video with a maximum input resolution of 720 by 576 pixels at a 30 

Hz frame rate (Orion StarShoot LCD-DVR 2015). It records the thermal data on a relative 8-bit 

scale. Each video frame is a grayscale image made of 256 different shades, where black cells 

represent the coldest values and white the warmest. As the camera films it constantly adjusts the 

distribution of these gray values to fit the range of temperatures in each frame. One effect of this 
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constant calibration is that identical temperatures in different frames will not always be 

represented by the same gray value. 

 The FLIR was housed in a custom-made aluminum case and powered by an external USB 

battery. Initially, I placed the FLIR and accessories in a picavet attached to the end of a painter’s 

16-foot extension pole. A picavet is a suspension system used by kite photographers to stabilize a 

camera (e.g. Digital Camera Setup 2013). A single string is threaded through a series of U-hooks 

fastened to the rim of a plastic tub and then through two carabiners. I later replaced this system 

with a more stable hinged camera housing built by Jesse Casana (Figure 7).  

 

 The camera was originally powered by a Duracell USB battery with 500 mAh. This 

battery had a tendency to lose power quickly, especially in colder temperatures, which caused 

 

Figure 7: The string picavet (left) and the hinged suspension system (right) (Image: Autumn 

Cool). 
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fogginess to obscure the thermal video. Most videos remained clear for five to six minutes, but 

some became unusably clouded within two minutes. This issue was resolved by switching to an 

Asus USB battery with 3000 mAh. 

 I collected thermal video by walking transects across the test plot with the FLIR 

suspended from the end of the painter’s extension pole (Figure 8). As I did not use a harness or 

other stabilization system for the pole, the angle at which I held it varied between approximately 

60° and 70°. This resulted in thermal images with spatial resolutions varying between 0.3 and 0.4 

cm. These images were collected over the course of three months during both day and night and 

under a variety of weather conditions to create a diverse data set. At each collection, the current 

time, weather conditions, air temperature, wind speed, and humidity were recorded in a field 

notebook (Appendix B).  

 

 

Figure 8: The author collecting thermal data of the experimental plot (Image: Autumn Cool). 
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 After recording the thermal video, I used a Raytek MiniTemp MT4 infrared thermometer 

to measure the ground surface temperature at three points each in the sand and clay sections of 

the test plot. This IR thermometer is effective in ambient temperatures between 0 and 50° C and 

capable of recording surface temperatures from -18 to 400° C. It is accurate to within 2° C when 

the actual temperature is between -1 and 400° C, or to within 3° C when the actual temperature is 

between -18 and -1° C (MiniTemp: Portable Infrared Thermometer 2004). When recording 

surface temperature, the MiniTemp thermometer was always oriented vertically and held 24 cm 

above the ground surface to maintain consistency between measurements.  

 In addition to recording temperature, I collected soil moisture content data. For this step I 

used a Delta-T SM150 Soil Moisture Sensor with the HH150 Hand Held Meter attachment. This 

sensor records the soil moisture as a percentage by volume with an accuracy of within 3% 

(Delta-T Devices 2015). I took measurements at three separate points in both the sand and the 

clay sections of the test plot to establish a mean value. Soil moisture and sand temperature are 

summarized in Appendix B. 

 Finally, I acquired additional temperature data and sunrise/sunset times from Weather 

Underground (The Weather Channel, LLC. 2015). Weather Underground hosts a historic archive 

of National Weather Service meteorological data which allowed me to supplement my field 

notes with detailed reports of the weather conditions leading up to each data collection event. 

The data I selected originated at weather station KFYV, the nearest official NWS station to the 

experimental plot. Located at Drake Field in Fayetteville Arkansas, the KFYV station records 

climatic conditions every hour. This data has been charted in Appendix A. 
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4.3. Data Processing 

 To prepare my data for analyses I created thermograms from the thermal video feed. For 

this process I first attempted to use AgiSoft PhotoScan, which is able to stitch together 

overlapping photos to create 3D representations of scenes or objects by identifying common 

points between images to reconstruct geometry (AgiSoft PhotoScan User Manual: Professional 

Edition, Version 1.0.0 2013: 4). It is now being widely used by archaeologists to create 

everything from orthorectified digital elevation models and site maps to 3D models of individual 

artifacts (e.g. Casana et al. 2014; Magnani 2014; Verhoeven 2011). However, I discovered that 

still frames extracted from my thermal videos would not align in PhotoScan. This is likely due to 

the constant auto-calibration of the FLIR as thermal data is recorded. Since identical 

temperatures are not recorded as identical gray values across frames, it is difficult for PhotoScan 

to pinpoint corresponding points in overlapping images. In addition, many images may have 

been either too blurred or simply too uniform for PhotoScan to correctly match corresponding 

points. This issue continued even after adding more GCPs to assist with image alignment. 

 I was able to successfully create thermograms of the test plot using Microsoft Image 

Composite Editor, a free photo-stitching program. Microsoft ICE is capable of creating mosaics 

directly from most videos or collections of photographs. I found that my thermal data had too 

much blurring and too little contrast for the automatic mosaic from video function to work. 

Instead, I first used the free program ImageGrab to extract one frame per second from the video 

feed (Glagla 2010). I then manually sorted through the frames to remove blurry images before 

importing them into Microsoft ICE for automatic mosaicking. The final image composites were 

saved as Tiff files. 
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 This image mosaicking process often took multiple attempts to select the best frames for 

compositing. Several early videos never produced a useable thermogram. This issue was almost 

completely resolved after blurring was significantly reduced by switching from the string picavet 

to the hinged suspension system. Adding additional GCPs also improved photo alignment. 

However, even many of the successful thermograms contain visual artifacts created by the 

FLIR’s auto-calibration process. Inconsistencies between the relative grayscales used to 

represent temperatures on separate transects and individual image frames create light and dark 

patches in the thermograms that are not associated with physical features within the experimental 

plot ( ). 
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 I used AgiSoft PhotoScan to process the color images of the features in the experimental 

plot. PhotoScan is able to stitch together sets of overlapping images by first identifying common 

points to create a sparse point cloud. It then uses this sparse point cloud to calculate the original 

camera positions and parameters, as well as to build a 3D polygonal mesh that links overlapping 

images. Next, I visually identified the GCPs in the individual images, marked them, and 

imported their coordinates. PhotoScan uses these coordinates and the estimated camera positions 

to correct image alignment and create a dense point cloud (Figure 10). It then constructs a new 

3D polygonal mesh out of this dense cloud to fill in the detailed geometry of the surface. The 

final product was a full-color, geometrically correct map of the features within the experimental 

plot (Figure 3). I exported this image as a Tiff file for further processing.  

   

Figure 9: The dotted line on the 

thermogram indicates a visual artifact 

created by the FLIR’s auto-

calibration process. To the right of the 

line, the image is light because the 

original transect overlapped the very 

cold grass at the edge of the test plot. 

To the left of the line the image is 

darker with more contrast because the 

temperature range within that transect 

was smaller.  
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 I used ArcMap 10.1 to georeference the color feature map and the thermograms. I used 

an arbitrary coordinate system based on the actual plot dimensions. With ArcMap’s 

georeferencing tool I assigned coordinates to each visible ground control point. ArcMap uses 

these coordinates to transform and align the images, so the later images with more GCPs had 

significantly better alignment. I then layered them to help identify the source of visible 

anomalies as well as to allow comparison between thermograms. I visually assessed the results 

of the thermal imaging to determine which features were visible in each thermogram. I cross-

referenced this information with the ambient temperature, soil temperature, soil moisture, time of 

day, and weather conditions to look for correlations. 

 In addition to creating the thermograms and color reference image, I processed several 

thermograms together to look for temporal thermal anomalies as described by Danese et al. 

(2010, also see section 2.2). To apply their analytical method to my data, I needed to calculate 

the standard deviation of corresponding cells across several thermograms. I selected the seven 

 

Figure 10: Dense point cloud of the experimental plot, produced in AgiSoft PhotoScan. Blue 

squares represent estimated camera positions. 
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thermograms that had been acquired during the evening of March 22 and the morning of March 

23 as they were among the highest-quality images and had strong alignment.  

 To calculate the standard deviation of cell values, we must first calculate the mean 

thermal value of the thermograms on a per cell basis. If xi is the value of cell X in thermogram i, 

the mean µ of all values of xi is calculated by the equation: 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

The standard deviation σ of the values of cell X can then be calculated with the equation: 

𝜎 = √
1

𝑁
 ∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 

Again, this calculation is repeated for each cell to find the thermal variation per cell. The 

outcome is a new raster dataset where each cell no longer represents a temperature, but instead 

displays the standard deviation of all of the temperature ranges within each corresponding cell 

across the seven thermograms. I used IDRISI’s map calculator tool to apply these equations to 

the dataset. The resulting images will be discussed in the next section. 

 

4.4. Results 

 Out of the forty thermal videos recorded I was able to create twenty-six orthorectified 

thermograms (see Appendix D for complete collection). Seven of these were only partial images 

or were poorly mosaicked with obvious errors. Five of the poor images were collected before the 

new battery and stable camera mount were incorporated. The remaining two may have been 

blurred due to weather interference or human error. From these results I have been able to draw 
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several conclusions regarding the effects of the soil matrix, feature characteristics, weather, and 

timing have on the success of thermal imaging. 

 The soil matrix or background environment in which archaeological features are 

embedded can be the deciding factor in the success or failure of thermal prospection.  As stated 

in Section 2.1, dense or slightly moist soil generally has higher diffusivity (the ratio of 

conductivity to heat capacity) than dry or porous soil of the same type. However, very high water 

content will actually begin to decrease soil diffusivity as increasingly more thermal energy is 

used to heat and cool the water, which has both high heat capacity and high thermal inertia (see 

also Stanjek and Faßbinder 1995: 97–98). These properties can be clearly observed in the 

thermal behavior of the sand and clay matrixes of the experimental plot. 

 The sand-filled experimental plot had by far the best results, revealing at least one feature 

in nearly all images. The large-grained, porous sand has less heat capacity than the clayey soil 

and high conductivity, resulting in high diffusivity and very low thermal inertia. The sand warms 

quickly during the day and cools just as fast at night. The high diffusivity enables thermal energy 

to travel through the matrix with little attenuation, allowing subsurface features with higher 

thermal inertia to transmit their thermal signatures to the surface. However, it is also a very noisy 

matrix as even slight variations in the surface topography of the sand are visible. In the case of 

my experimental plot, the sand section is riddled with footprints in all thermograms. At night 

these footprints are warmer than the ridges in between then, and during the day they are cooler. 

This trait can be ascribed to the mild compaction of the footprints, which has slightly increased 

heat capacity and thermal inertia compared to the loose sand of the ridges. 

 Water content alters the thermal properties of sand to a limited degree. When damp, the 

sand has increased conductivity and diffusivity, which in turn increases its thermal inertia. The 
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diffusivity allows subsurface features to remain visible, but the increased thermal inertia 

somewhat minimizes the strength of their anomalies. This can be seen in the comparison of the 

March 15 and 22 8:30 pm thermograms (Figure 11). Both data sets were collected an hour after 

sunset and had very similar ambient and soil temperatures, but the March 15 data collection 

followed two days of rain and the recorded soil moisture was over one standard deviation above 

the mean and 2.5% higher than on March 22 (Appendix B, D). The anomaly created by the 

shallow mudbrick wall, although visible in both images, is much crisper in the March 22 image. 

However, the quick drainage properties of this porous sand prevents it from ever becoming so 

saturated that the very high thermal inertia of water itself would block deeper thermal signatures. 

 

 

Figure 11: March 15, 8:30 pm (left) and March 22, 8:30 pm (right). Arrows indicate shallow 

mudbrick wall. Respective air temperatures were 58° F and 54° F. 
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 In the clay half of the experimental plot I observed the opposite situation. Anomalies 

caused by the buried features are almost nonexistent. This is due to the high moisture content and 

density of the clay soil. While these characteristics allow it to retain large amounts of heat, it is 

resistant to temperature changes and conducts heat poorly. This results in low diffusivity, or a 

reduced ability to transport thermal energy. The clay ends up acting as a filter which blocks most 

heat from being absorbed and attenuates the transfer of what thermal energy does manage to 

penetrate the surface. This prevents features buried in the clay from warming or cooling quickly, 

regardless of their own inherent thermal properties, and also impedes whatever signals may be 

originating below the surface. 

 The characteristics and location of archaeological features determine their visibility in 

thermal images. The only feature that is visible in nearly all thermograms is the shallow 

mudbrick wall (Figure 11). It stands out brightly in the sand-filled half of the experimental plot. 

This is due to the water retention properties of the clay and straw mixture. The moist, dense 

mudbrick has high thermal inertia, so it remains cool well into the day and retains heat 

throughout the night. On the other hand, the more deeply buried mudbrick walls and the clay 

berm are not visible in any images. The depth at which these features are buried insulates them 

from most of the thermal radiation that creates changes in surface temperature. With their high 

thermal inertia, what little heat does make it to depth is unable to affect them.  

 The stone walls, with their high density and low absorption rate, have little water content. 

This results in lower heat capacity than moist materials such as the mudbrick walls. On the other 

hand, dense stone has high thermal conductivity, which increases diffusivity and thermal inertia. 

Thus while they cannot store as much heat as mudbrick, they are still slightly more resistant to 

temperature changes than dry or porous soils such as sand. With one exception, I was never able 
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to distinguish any of the stone walls in the experimental plot using the thermal camera. In the 

west, clay-filled half of the plot this is unsurprising as the clay matrix blocks most thermal 

signals. In the eastern sandy portion, this is likely due to the close physical similarities between 

the sandstone and the sand itself, which produces very similar thermal signatures. If either a 

different type of stone or soil had been used, the results may have been very different. 

 The single instance when the stone walls were identifiable occurred at noon on March 2 

(Figure 12). A light layer of snow on the ground had begun to melt, leaving very distinct snow 

marks over the experimental plot. Solid snow covered the clay half of the plot and the shallow 

mudbrick wall, the areas with the highest thermal inertia. A thinner layer remained over the 

ditch. Over the stone walls, however, the sand was bare. This was at first surprising as the stone 

walls should have slightly higher thermal inertia than the sand. However, this can be explained 

by the increased water content from the melting snow. While the stone walls do not absorb water 

readily, the sand around them became saturated, increasing its thermal inertia until it surpassed 

that of the stone walls.  
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 The final feature in the experimental plot, the ditch, is visible in half of the thermograms. 

Its signature is generally very faint. Surprisingly, the ditch is most often visible as a light, warm 

area in the clay half of the plot (Figure 13). This may be a result of the clay being less densely 

packed in the ditch. However, the warm anomaly in the clay also spreads a bit north from the 

ditch to cover part of the clay berm. This could indicate that the anomaly is not caused directly 

by the ditch itself, but by an inclusion in the clay matrix. When the experimental plot was 

excavated I noted that the topsoil had a higher loam-to-clay ratio than the subsoil. The ditch was 

the last area to be completely filled in, so we had been approaching the bottom of our pile of 

material and some of the loamy topsoil may have mixed in with the clay. Still, this should not 

necessarily be considered a flaw in the experiment design. Ancient ditches in archaeological sites 

  

 Figure 12: Thermogram (left) and color image (right) collected at noon on March 2. The sand 

above the stone walls is bare, but snow remains over the rest of the features. Note that colors 

are inverted as thermograms indicate warm areas with white (Photograph: Autumn Cool).  
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are also usually filled with a higher concentration of topsoil, whether they were gradually filled 

over time by natural processes or backfilled by human hands. 

 The ditch is also visible in the sand matrix in several thermograms. It is most visible in 

two daytime images where it occurs as a cool, dark anomaly (Figure 12, Figure 13). The ditch is 

likely trapping water, which takes longer to heat than the rest of the plot. At night this water 

remains slightly warmer than the surrounding sand and the anomaly is reversed (Figure 13). In 

most thermograms, however, the ditch is not visible in the sand matrix, perhaps due to the 

overall low water content.  

 

 

Figure 13: The ditch, indicated by arrows, appears as a light linear anomaly on March 23, 

12:30 am (left) and as a dark anomaly at noon on February 27 (right). 
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 While my data collection occurred over the course of only a single season, some small 

effects of weather on thermal prospecting may be observed in my thermal data. The clearest 

example is the March 2 image, where the snow marks as well as the thermal image revealed 

several features (Figure 12). As previously discussed, high water content due to the melting snow 

may have played a large role in the expression of the anomalies at this time. Therefore it is also 

possible that collecting thermal data shortly after a heavy rainfall, as the ground is beginning to 

dry, could have similarly crisp results. 

 The amount of cloud cover throughout the day does not appear to significantly affect 

thermal results. Instead, sustained high temperature appears to be much more important (Figure 

14). The temperature variations on March 7
 
and March 11 follow a similar curve throughout the 

day. March 7 was clear while March 11 was mostly overcast and foggy. I collected thermal data 

one hour after sunset on both days. The March 11 thermogram has marginally better results 

despite the overcast day, probably due to the higher peak temperature. However, both 

thermograms are of relatively low quality and reveal only the faintest anomaly over the shallow 

mudbrick wall. In comparison, March 22 was overcast yet had on average higher sustained 

(although not absolute) temperatures throughout the 24 hours leading up to the data collection. 

The thermogram recorded one hour after sunset on this day has a much stronger anomaly over 

the same mudbrick wall. The sustained warm temperatures leading up to this data collection 

allowed the heat to penetrate the features better, so they had more absorbed thermal radiation to 

emit once the sun had set.  
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 Perhaps the most important consideration when conducting a thermal survey is timing. 

As previous researchers have noticed, most thermography conducted during daylight hours will 

only reveal surface features and topography due to the reflected radiation. I have noted two 
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exceptions to this rule (Figure 12 and 13). These two noon images revealed cold anomalies over 

the shallow mudbrick wall and the ditch. These thermograms were collected on overcast days 

while the temperature was still far from its peak, so the thermal radiation had not yet penetrated 

to subsurface features and there was less reflected radiation to mask their signals. However, other 

images taken in the afternoon show nothing but surface topography. This can be useful when 

topography reflects subsurface features, such as a shallow dip over an ancient ditch, but these 

topographic features are already identifiable by several other methods. Thermography is most 

revealing when used at night to discover subsurface features. 

 I have found it challenging to interpret exactly at what point during the night it is best to 

collect thermal data. My results are somewhat inconsistent. I collected thermal data every two 

hours during the nights of March 22-23 and 23-24 (Figures 15, 16, and 17). On the first night, the 

temperature continued to drop steadily until sunrise. All thermograms collected that night reveal 

fairly strong anomalies, with the clearest appearing between 10:30 pm and 4:30 am, 3 to 9 hours 

after sunset (Figure 16).  

 The second night, March 23-24, is less consistent. The best thermograms for identifying 

anomalies in this set are the 10:30 pm and the 2:30 am images (Figure 17). The 12:30 am, 4:30 

am, and 6:30 am images show faint or no anomalies. The two later data sets may be accurate 

images as the temperature stayed fairly constant throughout this night. There was little diurnal 

flux to create thermal anomalies and what anomalies did exist would have faded into the 

background by this time. However, it is unclear why the 2:30 am thermogram would show strong 

anomalies while the 12:30 am does not. This may be due to a technical error that occurred during 

data collection or processing.  
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Figure 15: Chart of thermal data collection times compared to daily temperature. 
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Figure 16: Thermograms collected the night of March 22 – 23. 
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Figure 17: Thermograms collected the night of March 23 – 24. 
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 From this data I can draw the rough conclusion that collecting data several hours after 

diurnal flux has changed from positive to negative generally provides a clearer picture in this 

particular context. This change usually occurs in the late afternoon and early evening with the 

drop in air temperature, so that the ideal imaging time starts two or three hours after sunset (see 

Appendix A for complete temperature data). Within the first hour or two after sunset, this change 

is relatively recent. Materials are still just beginning to cool, so there are few obvious thermal 

differences between the archaeological features and their surrounding soil matrix. As the night 

passes the differences grow more pronounced. Materials with low thermal inertia, such as the 

sand, cool quickly while high thermal inertia features buried within this matrix, such as the 

mudbrick wall, still retain heat. In other contexts this timing will vary. If the soil matrix of a site 

has an even lower thermal inertia than sand, anomalies will be visible earlier in the night. If the 

thermal inertia is higher, features and the background environment may remain indistinguishable 

until near sunrise. If there is no significant diurnal flux variation or temperature change as day 

goes into night, collecting quality data may not be possible. 

 At the time of year in which my data was collected, late winter and early spring, the 

diurnal flux does not become positive again until sunrise (Appendix A). It can be inferred from 

Périsset and Tabbagh (1981) that the thermal signatures of data collected after the morning 

transition from negative to positive flux will follow the same pattern as the night data, although 

anomalies will be reversed. Images taken immediately after the change to positive flux will show 

little distinction since all materials are just beginning to warm, while images taken several hours 

after diurnal flux transition will have stronger anomalies. I do not have any data for the hours 

immediately after sunrise, but my data collected in the late morning does show some strong 

anomalies despite significant noise from reflected radiation. In the late summer when this 
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transition from negative to positive flux begins several hours before sunrise, it should be possible 

to capture these stronger anomalies closer to sunrise before reflection noise causes major 

interference. 

 The previous paragraphs discuss at which point during the day, based on lighting and 

diurnal flux variations, thermal data should be collected. It is also interesting to consider which 

type of flux, diurnal or transient, actually has the largest impact on the strength of recorded 

thermal anomalies, or if perhaps another variable is more influential than either flux type.  

 As discussed in Section 2.1, Périsset and Tabbagh (1981) state that transient flux 

variations are primarily responsible for creating thermal anomalies. They claimed that diurnal 

flux does not penetrate deeply enough to reveal to reveal subsurface features (Périsset and 

Tabbagh 1981: 169). Scollar (1990) countered that diurnal flux can produce useful 

anthropogenic anomalies (598). To make my own assessment, I again considered the 

thermograms collected approximately one hour after sunset on March 7, 11, and 22 (Figure 19). I 

compared them with the daily (Figure 18) and weekly (Figure 20) temperature variations to 

estimate the impact of diurnal versus transient flux. 

 

 
Figure 18: Daily temperature variation for March 7, 11, and 22. 
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Figure 19: March 7, 11, and 22 

thermograms and associated metadata. 

 



 

63 

 

 

   

 

 

 

Figure 20: Weekly temperatures prior to data collection, with fourth-order polynomial trend 

line to estimate transient flux. 
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 As previously pointed out, the March 22 thermogram clearly has the best results despite 

having the least dramatic diurnal flux (Figures 18 and 19). I stated that this may be due to the 

higher sustained temperature throughout the day leading up to data collection, which would have 

allowed more thermal energy to penetrate to subsurface features. It appears that the strength or 

amplitude of the diurnal flux variation itself does not have a major impact on the visibility of 

thermal anomalies.  

 In my consideration of transient flux I looked at temperature variations over the week 

prior to each data collection event (Figure 20). I did not apply the complex flux calculation 

methods presented by Périsset and Tabbagh (1981: 175-175) because air temperature, as the 

physical phenomena that creates flux, is a reasonable stand-in. I did create a fourth-order 

polynomial trend line to estimate general temperature trends over each week. 

  The week prior to the March 7 thermogram shows two flux variations, the second 

occurring approximately 48 hours prior to data collection. The week preceding the March 11 

thermogram shows only a steady warming period with no flux variation. The week leading up 

the March 22 thermogram has three flux variations, the last occurring no more than 24 hours 

prior to data collection. These results are contrary to those of Périsset and Tabbagh, whose 

research generally indicated that data collected two or three days after a change in transient flux 

would have the most visible anomalies (1981: 172-175). If that had held true in this experiment, 

the March 7 thermogram would have been the clearest. Instead, it was the least revealing of the 

datasets. However, their claim is somewhat supported by the fact that the March 22 thermogram, 

recorded one day after a transient flux variation, is stronger than the March 11 thermogram, 

which had no preceding transient flux variation. Perhaps the timing of data collection with 

regards to transient flux is highly dependent upon the seasons or the amplitude of transient flux 
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variations. In the spring, data collection might be ideally conducted very shortly after a change in 

transient flux, as is the case in my experiment. Perhaps in warmer months or regions with more 

drastic flux and temperature ranges, Périsset and Tabbagh’s two or three day delay would 

produce better results. It is also possible that other variables, such as the amount of solar 

radiation the surface is exposed to each day, is actually more influential than temperature and 

flux. This is a variable which I did not consider during data collection, but should be investigated 

in the future. 

 The final set of results wanting discussion is that obtained by attempting the temporal 

processing technique suggested by Danese et al. (2010: 484). Her technique was based on the 

idea that temporal variation, or the lack thereof, in thermal anomalies may reveal subsurface 

features. By comparing thermal variation across corresponding thermograms and combining 

thermograms into a single comprehensive dataset, more anthropogenic anomalies may be 

discovered. 

 I used ArcMap 10.1’s raster calculator function to create a thermal mean values image 

and a thermal standard deviation image from the March 22-23 thermograms (Figure 21). These 

images show the thermal mean and standard deviation on a per-cell basis using data from seven 

different thermograms. At least in this example, Danese’s processing technique failed. The 

standard deviation raster reveals not a single identifiable anomaly. However, the thermal mean 

image highlights the shallow mudbrick wall under the sand as well as the ditch in both the clay 

and sand sections. I found this image to be extremely helpful, as until I created it I had not 

noticed the subtle, light ditch anomalies in the individual thermograms. While this processing did 

not provide the exact results I hoped for, it was still very informative and I will continue to 

experiment with mean values and standard deviations in the future. 
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5. The Collins Site 

5.1. Background 

 In addition to the experimental plot discussed in the previous section, I was interesting in 

employing aerial thermography in a field setting. Real archaeological sites rarely have so few 

environmental variables as my experiment and I was curious to see if field applications would be 

as productive. Furthermore, Jesse Casana and I were interested in exploring methods for 

reducing vegetation noise. As previously described in Périsset and Tabbagh (1981: 169), Scollar 

et al. (1990: 630-631), and Lundén (1985: 161), among others, vegetation acts a screen which 

  

Figure 21: Thermal Mean (left) and Thermal Standard Deviation (right).  

Clay Sand Clay Sand 

Mudbrick Wall 

Ditch Ditch 
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obscures or distorts the thermal signatures of features on and below the ground surface. This has 

been a major limiting factor in the application of thermal prospection which archaeologists are 

still working to resolve (e.g. Bellerby, Noel, and Branigan 1990). 

 The Collins site, designated 3WA1, is multi-mound civic ceremonial center located 

alongside the White River in northwest Arkansas (Sullivan and McKinnon 2013; Kay, Sabo III, 

and Merletti 1989; Vogel 2005). It is currently being used as a cattle pasture and is covered with 

a thick layer of grasses, presenting an excellent opportunity for experiments with vegetation 

noise reduction. The Collins site dates to ca. AD 900 – 1400 in the Early to Middle Mississippian 

period (Sullivan and McKinnon 2013: 72). The site is located in an alluvial valley and remains 

relatively well preserved. It contains five documented mounds, A through E, that range from 0.5 

to 3 m in height (Figure 22). No other archaeological features are visible on the surface. 

 

 

 Figure 22: Map of the Collins Site (Sullivan and McKinnon 2013: 73). 
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 Sullivan and McKinnon (2013: 79–81) conducted extensive geophysical surveys at the 

Collins site, and a magnetic gradiometry survey across the northern portion of the site reveals the 

presence of several structures located on and off of the mounds. The largest structure, on top of 

Mound C, is characterized by a very high magnetic signature. It was likely a charnel house used 

for the temporary interment of the dead. At designated times during the ritual calendar the dead 

were removed and the house was cleaned and ritually burned. A fresh layer of soil was spread 

over the remains and a new structure was built in the same location to restart the cycle. 

Repetitions of this process contributed to the formation of the mound. Mounds B and D also 

contained rectilinear structures, but their function is more ambiguous. In addition to the 

structures over the mounds, a number of smaller, off-mound rectilinear structures and a possible 

plaza area were also detected. A comparison of these magnetic gradiometry results with data 

collected during excavations of similar sites in the region suggests that the Collins site once 

served as a civic ceremonial center.  

 Stephanie Sullivan, Adam Wiewel, and Jesse Casana, and I conducted a thermal survey at 

Collins Mounds in the spring of 2014. We anticipated that this survey would provide a 

complementary dataset offering further information on the subsurface features identified with 

magnetic gradiometry. Furthermore, I saw the fairly homogenous layer of pasture grass covering 

the site as an opportunity to test a new thermal data processing technique that uses the 

Normalized Difference Vegetation Index (NDVI) to remove vegetation noise (see section 5.3). 

This research was originally described in a paper and video submitted to DRS Technologies’ 

Student Infrared Imaging Competition (Cool, Wiewel, and Sullivan 2014; University of 

Arkansas DRS 2014 Thermal Imaging Competition Entry 2014).  
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5.2. Data Collection 

 We used a Cinestar 8 UAV made by Freefly Systems to collect aerial thermal, near 

infrared, and color images of the Collins site (Figure 23). This UAV has eight rotors and can lift 

approximately 2 kg. Average flight time of the laden craft is about 10 to 12 minutes, so to 

maximize efficiency we designed a flight path in the MikroKopter Tool program. MikroKopter 

guides the UAV along a series of transects between designated waypoints through the use of 

GPS. This also helped ensure that our final images would have sufficient overlap for mosaicking 

with photogrammetric software. We set the craft to fly at a 60 m altitude, at a speed of 4 m/s, 

along 200 m transects spaced roughly 20 m apart. We reserved manual flying of the UAV for 

takeoff and landing only. 

 

 We flew three flights over the Collins site to collect data. The color and NIR images were 

collected on March 24
th

 at approximately 4:30 in the afternoon. The thermal video was recorded 

shortly before sunrise on March 25
th

, at approximately 6:45 am. The cameras were mounted on a 

 

Figure 23: The Cinestar 8 with FLIR in aluminum case mounted on the gimbal (Image: 

Autumn Cool). 
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gimbal fixed to the bottom of the UAV. A gimbal allows the camera to move independently and 

maintain a predetermined angle regardless of the rotation or tilt of the main body of the craft.  

  We again used the FLIR Tau II for the thermal data collection (see section 4.2). For 

color images we used a Nikon D600 digital SLR. This is a 24.3 megapixel camera with a 

35.9 mm by 24.0 mm sensor. We set the D600’s timer to take images at one-second intervals to 

guarantee complete, overlapping coverage of the site. For near infrared imagery, we used a 

Nikon D200 digital SLR, also set to collect images at one-second intervals. The D200 is a 10.2 

megapixel camera with a 28 mm fixed focus lens. It had a modified Bayer filter installed to block 

any wavelengths below 0.72 µm (see Barnes 2013). This filter blocks visible blue and green 

wavelengths while allowing some visible red and NIR through. NIR-only is recorded in bands 2 

and 3 of the Bayer filter, while band 1 records both NIR and partial visible red.  

 Twelve ground control points (GCPs) were distributed on the ground across the survey 

area in advance of the flights to aid in georeferencing the final image mosaics. Each GCP was 

mapped in real world coordinates through real-time kinematic survey with survey-grade GNSS 

(Global Navigation Satellite System). The aerial images were collected over Mounds C and B of 

the Collins site where the most striking features in the magnetic gradiometry data are located.  

 

5.3. Data Processing 

 Our primary goal in the data processing described here was to find a method for reducing 

vegetation noise in thermal imagery. As few archaeological sites are covered only by bare soil, 

this is perhaps the primary obstacle deterring many would-be thermal prospectors. I hoped to 

minimize this concern by reducing vegetation noise using the Normalized Difference Vegetation 

Index (NDVI). The NDVI is an image processing method normally used to map and quantify 
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vegetation health. By creating raster thermal and NDVI images and subtracting the latter from 

the former, we theorized that we could remove vegetation noise from the thermogram. 

 NDVI is calculated with the simple equation  

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

where NIR is reflected near-infrared and R is reflected visible red light. This formula is based on 

the spectral reflectance properties of plants. Chlorophyll, which gives plants their green color, 

strongly absorbs visible red light, while the cell structure of leaves reflects near-infrared light 

(Weier and Herring 2000). Healthy, leafy vegetation will then absorb most red light, resulting in 

an NDVI value close to 1. Unhealthy vegetation lacking in chlorophyll will instead reflect red 

light, resulting in NDVI values close to -1. A zero value indicates no vegetation. 

 To collect the information necessary to test this processing method, I needed to create a 

set of thermal, NIR, and red images. The first step was to extract still frames from the thermal 

video feed. For this process I again used the free program ImageGrab to extract one frame per 

second from the video (see Glagla 2010). I then manually sorted the thermal, color, and NIR 

images to delete pre- and post-flight photos taken while the UAV was on the ground as well as 

photos that were extremely blurry or lay outside the main survey area.  

 As in the previous chapter, I used Agisoft PhotoScan to produce orthorectified thermal, 

NIR, and color images of the entire survey area. I exported the final georeferenced images from 

PhotoScan as GeoTiff files. I also used the full-color images, the highest-resolution dataset, to 

export a digital elevation model (DEM) to retain natural and anthropogenic topographic 

information. I completed the remainder of the processing using ESRI’s ArcMap 10.1.  
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  The PhotoScan-created GeoTiff files each contain four raster bands, including three 

normally used for RGB color display and one transparency layer. For the full-color image I 

imported all bands into ArcMap to display a realistic RGB image (Figure 24). For the thermal 

image I imported Band 1 only since all of the bands contained identical grayscale information 

(Figure 25). Similarly, I only imported band 3 from the NIR image as it is the IR-only band, 

while the other bands contained some visible red. All of these images are 8-bit files, meaning the 

cells in each raster band contain values ranging from 0 to 255. 

 

 

Figure 24: Color image of the Collins Site. 
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 I used ArcMap’s Raster Calculator tool to compute the NDVI using the red band from the 

full color image, the IR band, and the NDVI formula described in the previous section. The 

resultant NDVI raster contained values ranging from -1 to 1 (Figure 26).  

 

Figure 25: Original thermal image of the Collins site. 
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 To facilitate further map algebra with the other images, it was necessary to convert the 

NDVI back to a 0 to 255 range raster. In order to preserve the relative distribution of values and 

avoid losing any individual data points, this was accomplished with an affine transformation: 

𝑇𝑜 𝑚𝑎𝑝 𝑣𝑎𝑙𝑢𝑒 𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 [𝑎, 𝑏] 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 [𝑐, 𝑑] 

𝑦 = (𝑥 − 𝑎)
(𝑑 − 𝑐)

(𝑏 − 𝑎)
+ 𝑐 

In this case the affine transformation is calculated with the formula 

𝑦 = (𝑥 + 1)127.5 

This equation can then be entered into the Raster Calculator with the original NDVI layer input 

for x. The output raster is visually identical to the original image, but with the NDVI values now 

mapped onto the 0 to 255 range. Values below 127.5 indicate poor or unhealthy vegetation, 

 

Figure 26: NDVI of the Collins site. Green areas indicate healthy vegetation. 
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values above 127.5 indicate healthy vegetation, and values exactly 127.5 indicate the absence of 

vegetation. 

 The final processing step in this experiment was to subtract the remapped NDVI from the 

thermal image to create a “sans vegetation” thermal image raster (Figure 27). This can then be 

overlain and compared with the other layers in ArcMap. I also imported the final images into 

ESRI’s ArcScene and draped them over the PhotoScan-generated DEM. This lets the images be 

viewed as pseudo-3D models and can often aid interpretation.   

 

 

5.4. Results 

 Upon first glance at the final thermal-NDVI image, it is apparent that not all vegetation 

noise was removed. By comparing the final product to the thermal and NDVI images, we can see 

 

Figure 27: Thermal – NDVI. 
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that some areas of noise were reduced while others actually became more prominent. Some of 

these flaws may have been potential derived from imperfectly georeferenced images. I had 

experienced some difficulty identifying GCPs in the thermal data. If any were inaccurately 

marked, this would have resulted in subtracting high-NDVI (thick vegetation) values from areas 

where there was in fact no vegetation, skewing the results. However, there is an alternative 

interpretation for these results. 

 The increase in noise is especially noticeable on top of Mound C. The original thermal 

image shows a dark, cool area in the center of the mound. The NDVI indicated a corresponding 

area of thick vegetation (Figure 28). Subtracting this high, healthy vegetation value from a 

relatively low thermal value has resulted in a very low value in the final Thermal-NDVI image 

that does not correspond to the actual thermal properties of the earth or archaeological features in 

that area. Instead of creating a true “sans vegetation” thermal image, the final image appears to 

work best as a map of cool, thickly vegetated areas.  
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 While this map of cool vegetation does not directly or consistently indicate the presence 

of archaeology, it may be an effective way of discovering certain types of archaeological 

features. Ditches, packed floors, and storage pits are likely to collect water. The presence of 

water creates an environment where vegetation can flourish and lowers thermal inertia so that 

area remains cool throughout the day. This theory is supported by the presence of one of these 

cool, thickly vegetated areas over the location of a suspected charnel house on top of Mound C 

(Sullivan and McKinnon 2013: 75–76). Further testing of this method in sites known to contain 

features such as pit-houses could confirm this result. 

 

 

Figure 28: Thermal – NDVI image (top) compared to the magnetic gradiometry data 

(bottom). Red arrow indicates the feature at the top of Mound C (Magnetic data 

Sullivan and McKinnon 2013: 75; Grid alignment Stephanie Sullivan 2014). 
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6. Discussion 

6.1. Experimental Plot 

 Based on the information gathered over the course of this limited experiment, some 

conclusions can be drawn regarding the appropriate and productive application of aerial 

thermography. Any area with very dense, moist soil, such as clay, is unlikely to produce clear 

thermal results. This type of matrix will block most thermal radiation from penetrating the 

surface and will also mask the responses of buried features. On the other hand, soils with low 

thermal inertia, such as sand or silt, are more likely than dense or moist soils to be amenable to 

thermal prospection. Areas with very dry climates such as the Near East and the American 

southwest would be excellent places for thermal prospection, especially if they are only sparsely 

vegetated, as illustrated by Casana et al. (2014). However, thermal prospection is limited to near-

surface archaeology. This will reduce its usefulness in parts of the Near East where many 

features are buried under a meter or more of soil. Additionally, if common building materials 

share similar physical properties with their surrounding environment, even near-surface features 

may be difficult to detect.  

 The ideal time for thermal data collection is at night, several hours after diurnal heat flux 

has transitioned from positive to negative. In my data sets, the ideal time started halfway through 

the period of negative flux, approximately eight to ten hours after daytime temperature had 

peaked. While daytime thermograms had some minor success, they did not show any unique 

anomalies not already visible in the night images, and most anomalies were obscured by 

reflected radiation. The exact timing of this data collection will vary with the magnitude of 

diurnal flux, which depends on the season as well as short-term weather, and the thermal inertia 

properties of the background environment.  



 

79 

 

 In my consideration of transient versus diurnal flux and their impact on the strength of 

thermal anomalies, I determined that the amplitude of the diurnal flux does not appear to affect 

the visibility of anomalies. Instead, diurnal flux is primarily useful for determining at what point 

during the day data collection should occur. I also showed that transient flux variations do not 

always reliably produce highly visible thermal anomalies. Thermal data collected two days after 

transient flux variation revealed no anomalies, but data collected only one day after flux 

variation had excellent results. This could indicate that the ideal time window for collecting 

thermal data is very narrow and must be carefully calculated, taking into account the amplitude 

of transient flux and temperature ranges preceding data collection. However, this line of 

reasoning is called into question by the mediocre thermogram collected after a week with no 

transient flux variations. Assuming flux variation determines the quality of thermal anomalies, 

this should have been the worst thermogram of the set, but it was not. Clearly transient flux 

variation is not the only factor to be considered. Another possibility is that a completely different 

variable, such as solar radiation, is the primary source for highly visible thermal anomalies. 

These possibilities require further investigation, but should not preclude the use of aerial 

thermography in current archaeological research. Productive data is still easily acquired, even if 

we have not yet pinpointed the ideal timing. 

 As UAV technology becomes more accessible, archaeological prospecting via aerial 

thermography will become even more efficient and inexpensive. There can be a steep learning 

curve for UAV piloting and some devices are prone to malfunction, as described by Casana et al. 

(2014). However, growing consumer demand for these vehicles is prompting manufacturers to 

develop more user-friendly and reliable versions, so I expect that these concerns will soon 

become negligible.  
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 Although nighttime data collection is somewhat inconvenient it can hardly be described 

as labor-intensive or time-consuming, especially when compared to other archaeological 

prospecting methods. If one night has poor results, the entire process can be repeated again on 

the next night. Video feeds can be monitored live, as in the case of Poirier et al. (2013), to aid in 

on-the-spot decision making. Detailed processing can be done on a field computer or in the lab 

and has recently been drastically simplified by the use of automatic image stitching software 

such as AgiSoft PhotoScan or Microsoft ICE, as demonstrated by Casana et al. (2014) and in this 

research. With the combination of these two technologies and their success in recent thermal 

surveys in New Mexico (Casana et al: 2014) and at the Collins site in Arkansas (Chapter 5; Cool 

et al.: 2014), my certainty that aerial thermography can be a reliable and feasible archaeological 

prospecting method only continues to increase. 

 

6.2. The Collins Site 

 Although unplanned for, the map of cool, vegetated areas created by subtracting the 

NDVI from the thermogram may actually be beneficial in archaeological prospecting. At least in 

this case study there is a definite correlation between dark areas of the thermal-NDVI image and 

areas containing archaeological features. We know from previous research that Mound C 

contains a large structure, probably a charnel house (Sullivan and McKinnon 2013: 75–76). The 

packed floor of this house may be trapping water above it. The high water content increases 

thermal inertia, creating a cool thermal anomaly while the rest of the soil begins to warm with 

the coming dawn. Additionally, this surplus of water creates an environment where vegetation 

can flourish. In a homogeneously-planted field, such a feature would likely have appeared as a 

distinct crop mark. In the patchy cow pasture of the Collins site, no easily identifiable crop marks 
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were present. Adding this extra processing step allowed significant vegetation patterns to be 

identified. Further research into this and similar potential correlations is certainly worth 

exploring. 

 As encouraging as these results are for prospection in general, I have not reached my 

original goal of reducing vegetation noise in thermal images. By treating the NDVI as a proxy 

for vegetation-based thermal anomalies, I disregarded the fundamental fact that the NDVI 

measures chlorophyll content, not transpiration. Transpiration is the characteristic that 

determines the thermal properties of plants. While it seems reasonable that there is a connection 

between the chlorophyll content of healthy vegetation and their rate of transpiration, it is unlikely 

to be a one-to-one relationship. Furthermore, thermal vegetation noise may manifest as either an 

increase or a decrease to the thermal signatures of the background environment depending on the 

time of day in which the data is collected as well as the properties of the soil matrix. In the 

thermograms of my experimental plot, the vegetation growing alongside appears cooler than the 

bare soil during the day and warmer at night.  

 While the NDVI works as an excellent method for mapping the location of vegetation, it 

does not provide sufficient information for the removal of thermal vegetation noise. We must 

find a means of measuring or calculating the thermal properties of plants directly. We must also 

take into account the time at which thermal images are collected to ensure that processing will 

reduce and not increase this issue. If we subtract values from thermal data where vegetation is 

having a cooling effect, we will only increase the noise. We must identify when plants are 

relatively warm or cool in each environment and learn to quantify their impact before they can be 

effectively removed. 
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6.3. Future Directions 

 My goal has been to provide some general guidelines for archaeologists interested in 

adding aerial thermography to their toolbox and to set the stage for future investigations into 

thermal prospecting. I only considered a small handful of variables in this preliminary research, 

and I am unlikely to exhaust new lines of inquiry any time in the near future. 

 In further research I hope to expand my study by creating a larger experimental plot that 

incorporates more variables, such as additional features, soil types, and ground cover. Ideally I 

would like to spend at least a year collecting data to observe how thermal responses change with 

the seasons. This would also allow time for gathering enough data to conduct meaningful 

statistical analyses relating factors such as soil moisture, solar radiation, and diurnal and transient 

flux variations to the manifestation of anthropogenic thermal anomalies. Furthermore, I am 

interested in exploring the relationship between transpiration and the thermal properties of 

plants. This may help me to derive a more accurate method or algorithm for reducing vegetation 

noise.  

 Throughout this study technical issues such as low-quality batteries, too few ground 

control points, and my unstable picavet suspension system created persistent problems that 

reduced data quality. While I resolved many of these issues during the course of research, for 

future experimental plot-based data collection I plan to establish a permanent, stable recording 

station. This would increase the consistency and quality between thermograms. If possible, this 

recording platform will have a permanent supply of electricity so that the thermal camera can be 

left running for extended periods. The ability to gather thermal data over the course of a full day 

would be a significant asset when attempting to pinpoint the precise times for obtaining 

maximum results.  
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 A few of the quality issues I encountered can be attributed to the innate limitations of 

current thermal imaging technology. The primary such challenges I experienced were due to the 

low bit-rate of the recording device and the auto-calibration feature of the thermal camera. The 

low bit-rate resulted in low-resolution images. This can make identifying smaller features or less 

intense anomalies impossible to identify due to insufficient contrast for visual analysis. The low 

resolution also reduces the ability of photo-stitching programs such as AgiSoft PhotoScan and 

Microsoft ICE to mosaic individual frames as common points between images are difficult to 

distinguish. The use of a DVR with a higher bit-rate will improve the resolution problem. Even a 

small increase in radiometric resolution from 8-bit to 16-bit will increase the number of distinct 

values from 256 to 65,536. This will drastically improve visualization and alignment. 

 The challenges I encountered while attempting to mosaic images were further 

exacerbated by the auto-calibration feature of the thermal camera. This feature constantly shifted 

the relative grayscale so that identical shades of gray did not represent identical temperature 

values between frames. There are several possible ways to address this problem. It may be 

possible to run a histogram equalization process on each individual frame before mosaicking to 

match their grayscale ranges, but this could result in the loss of outlier information and a 

reduction in already-low resolution. Another solution is to record the entire site within a single 

frame instead of in overlapping transects. This would ensure that a single visual scale is used for 

the entire site; however, data would have to be recorded from a much higher altitude to fit the 

entire site within a single frame, which would result in the loss of ground resolution. I believe the 

ideal solution would be a camera setting that allows the user to calibrate it once at the beginning 

of a recording session and then maintain that setting for the duration of data collection. This is, 
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of course, up to the thermal camera manufacturers to implement, so we must make sure that we 

are providing them with regular feedback to encourage such developments. 

 UAV technology also comes with a set of technological challenges and limitations. 

UAVs still have a fairly steep learning curve and occasional tendency to malfunction. 

Inexperienced archaeologists may feel hesitant to load them with several thousand dollars’ worth 

of equipment. I myself did not feel comfortable piloting a UAV alone and simply monitored the 

flight telemetry while my more experienced colleagues took the wheel. Thankfully, these issues 

are easily resolved. Would-be pilots can be trained by practicing with $20 miniature UAVs to 

hone their skills and gain confidence before conducting fieldwork. In addition, UAVs are 

becoming more reliable and user-friendly every day as consumer demand continues to soar. Soon 

aerial thermography will be listed among the most feasible and reliable forms of prospection for 

all archaeologists. 
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Appendix A: Experimental Plot Data Collection Times and Temperature 

Data from National Weather Service Station KFYV (The Weather Channel, LLC. 2015).  
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Appendix B: Experimental Plot Conditions Summary 

Date Time Weather 

Air 

Temp 

° F 

Wind 

mph 

Humidity 

% 

Soil 

Temp 

Sand 

° C 

Soil 

Temp 

Clay 

° C 

Soil 

Moisture 

Sand 

% BV 

Soil 

Moisture 

Clay 

% BV 

2/8/2015 11:30 AM Slightly Cloudy 59 10 69 19.0 15.2 4.9 25.5 

2/8/2015 2:30 PM Slightly Cloudy 67 9 48 24.8 18.6 4.7 21.3 

2/8/2015 5:45 PM Clear, indirect light 67 9 38 10.5 9.0 4.6 26.3 

2/8/2015 8:30 PM Night, clear skies 48 4 65 5.8 5.2 4.6 24.6 

2/8/2015 11:30 PM Night, clear skies 41 calm 85 2.3 1.8 3.7 24.6 

2/9/2015 2:30 AM Night, clear skies 36 4 92 0.7 -1.0 3.8 26.9 

2/9/2015 5:30 AM Night, clear skies 32 calm 95 -0.7 -1.0 4.5 26.1 

2/9/2015 8:30 AM Overcast 39 7 92 1.7 0.0 5.7 24.9 

2/17/2015 2:30 PM Overcast, snow 2cm deep 33 10 81 -10.3 -10.4 3.6 17.7 

2/17/2015 6:30 PM Overcast, sunset was 5:59 31 9 92 -8.8 -10.3 6.6 17.5 

2/27/2015 12:00 PM Overcast, some snow 19 8 49 -7.0 -10.3 1.2 6.0 

3/2/2015 12:00 PM Overcast, some snow 34 7 72 -1.3 -7.5 13.6 11.8 

3/7/2015 3:00 PM clear, sunny 61 6 34 22.5 14.2 6.6 36.0 

3/7/2015 7:00 PM clear, sunset 6:18 50 5 46 3.5 1.8 6.1 35.2 

3/8/2015 9:00 PM 

Night, partly cloudy, sunset 

7:18 46 calm 70 2.5 1.5 5.1 34.7 

3/8/2015 11:00 PM Night, partly cloudy 40 calm 92 1.3 1.2 4.2 34.3 

3/9/2015 7:00 AM Night, cloudy, sunrise 7:36 42 calm 95 2.7 1.8 4.1 35.0 

3/11/2015 8:00 PM Night, sunny day 65 calm 37 10.2 8.0 6.5 35.7 

3/12/2015 5:30 AM Night, sunrise 7:32, cloudy 41 calm 84 2.3 2.0 6.4 35.8 

3/15/2015 11:15 AM 

Sunny, clear, last 2 days 

rainy 57 calm 58 24.7 19.3 9.1 38.5 

3/15/2015 8:30 PM Clear, sunset 7:23 58 7 74 11.5 10.7 7.8 36.4 
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Date Time Weather 

Air 

Temp 

° F 

Wind 

mph 

Humidity 

% 

Soil 

Temp 

Sand 

° C 

Soil 

Temp 

Clay 

° C 

Soil 

Moisture 

Sand 

% BV 

Soil 

Moisture 

Clay 

% BV 

3/15/2015 11:30 PM Clear 49 5 96 8.7 7.7 6.2 35.4 

3/16/2015 5:30 AM clear, sunrise 7:26 43 calm 86 4.5 4.5 5.7 36.2 

3/22/2015 6:30 PM Sunny, day cloudy 61 6 74 17.0 13.3 5.1 33.9 

3/22/2015 8:30 PM Sunset 7:29, clear 54 calm 86 8.8 8.5 5.2 32.7 

3/22/2015 11:00 PM clear 50 calm 99 6.5 5.7 5.1 32.2 

3/23/2015 12:30 AM clear 47 calm 99 6.0 5.3 6.3 35.3 

3/23/2015 2:30 AM Misty 43 calm 98 4.0 3.7 5.2 34.1 

3/23/2015 4:30 AM foggy 41 calm 99 2.2 2.3 4.7 33.8 

3/23/2015 6:30 AM Foggy, Sunrise 7:16 41 calm 99 1.2 1.7 4.7 34.8 

3/23/2015 8:30 PM Clear, sunset 7:30 66 calm 61 14.5 12.3 6.0 31.5 

3/23/2015 10:30 PM clear 62 calm 61 11.0 10.0 5.4 30.7 

3/24/2015 12:30 AM clear 59 2 70 10.3 8.7 4.9 30.8 

3/24/2015 2:30 AM partly cloudy 55 calm 76 7.8 7.5 4.3 31.6 

3/24/2015 4:30 AM partly cloudy 56 calm 73 10.0 8.5 4.6 31.6 

3/24/2015 6:30 AM overcast, Sunrise 7:14 57 calm 72 9.2 8.0 4.5 30.8 

    
Average: 6.7 4.9 5.4 29.7 

    

Standard 

Deviation: 8.29 7.35 1.94 7.41 
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Appendix C: Experimental Plot Results Summary  

Thermal Metadata Location of Visible Features 

Date Time 
Video 

Quality 

Thermogram 

Quality 

Stone 

Shallow 

Stone 

Deep 

Brick 

Shallow 

Brick 

Deep 

Clay 

Berm 
Ditch 

Burned 

Stone 

Burned 

Brick 

2/8/2015 11:30 AM 

OK til 

6:00 Fair                 

2/8/2015 2:30 PM Good Good                 

2/8/2015 5:45 PM Good Good     Sand           

2/8/2015 8:30 PM 

OK til 

3:45 

Fair, only 

sand     sand           

2/8/2015 11:30 PM fair 

Fair, gap in 

sand     sand           

2/9/2015 2:30 AM Poor n/a                 

2/9/2015 5:30 AM Poor n/a                 

2/9/2015 8:30 AM Poor n/a                 

2/17/2015 2:30 PM Poor n/a                 

2/17/2015 6:30 PM Poor n/a                 

2/27/2015 12:00 PM Good 

Fair, only 

sand     sand     sand     

3/2/2015 12:00 PM Fair 

Fair, only 

sand sand   sand   sand sand sand   

3/7/2015 3:00 PM Good Good     sand     sand     

3/7/2015 7:00 PM Good Good                 

3/8/2015 9:00 PM Good unusable                 

3/8/2015 11:00 PM fair-feet unusable                 

3/9/2015 7:00 AM 

Poor-

fogged? n/a                 

3/11/2015 8:00 PM Good Fair     sand     clay? sand?   
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Thermal Metadata Location of Visible Features 

Date Time 
Video 

Quality 

Thermogram 

Quality 

Stone 

Shallow 

Stone 

Deep 

Brick 

Shallow 

Brick 

Deep 

Clay 

Berm 
Ditch 

Burned 

Stone 

Burned 

Brick 

3/12/2015 5:30 AM fair unusable                 

3/15/2015 11:15 AM 

Poor - 

didn't 

record? n/a                 

3/15/2015 8:30 PM Good Good     sand     clay? sand?   

3/15/2015 11:30 PM Good Good     sand     both     

3/16/2015 5:30 AM Good Good     sand           

3/22/2015 6:30 PM Good Good     sand           

3/22/2015 8:30 PM Good Good     sand     clay both   

3/22/2015 11:00 PM Good Good     sand     clay     

3/23/2015 12:30 AM Good Good     sand     both     

3/23/2015 2:30 AM Good Good     sand     both     

3/23/2015 4:30 AM Good Good     sand     both     

3/23/2015 6:30 AM Good Good     sand     both     

3/23/2015 8:30 PM Good Good     sand     both     

3/23/2015 10:30 PM Good Good     sand     both     

3/24/2015 12:30 AM Fair Good                 

3/24/2015 2:30 AM Good Good     sand     both     

3/24/2015 4:30 AM Fair Fair                 

3/24/2015 6:30 AM Fair Fair     sand           
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Appendix D: Experimental Plot Thermograms 

 
February 8 11:30 am 
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February 8 2:30 pm 
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February 8 6:00 pm 
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February 8 8:30 pm 
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February 8 11:30 pm 
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February 27 12:00 pm 
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March 2 12:00 pm 
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March 7 3:00 pm 
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March 7 7:00 pm 
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March 11 8:00 pm 
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March 15 8:30 pm 
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March 15 11:30 pm 

 



 

112 

 

 
March 16 5:30 am 
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March 22 6:30 pm 
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March 22 8:30 pm 
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March 22 11:00 pm 
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March 23 12:30 am 

 



 

117 

 

 
March 23 2:30 am 
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March 23 4:30 am 
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March 23 6:30 am 
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March 23 8:30 pm 
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March 23 10:30 pm 
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March 24 12:30 am 
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March 24 2:30 am 
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March 24 4:30 am 
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March 24 6:30 am 
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