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Abstract 

 

Staphylococcus aureus is one of the most important pathogens, causing various diseases in 

humans and animals. In addition, S. aureus is a common foodborne pathogen. As methicillin- 

resistant S. aureus (MRSA) becomes increasingly prevalent, controlling this pathogen in animals 

and humans with standard antibiotic treatment has become challenging. Combinations of 

different antimicrobial agents represent one of the most promising approaches for combating 

multidrug – resistant bacteria both for treatment of clinical disease as well as in food. Two such 

antimicrobials with potential application in the food industry include essential oils (EO) and 

host-specific bacteriophage (phage). The objectives of this study were 1) to determine the 

efficacy of varying concentrations of pure EOs compounds against S. aureus and 2) to evaluate 

the efficacy of a S. aureus-specific bacteriophage against 4 strains of S. aureus. The overall goal 

was to combine these antimicrobials to determine potential synergism and possible application 

for the control of S. aureus on raw chicken products. Four EO compounds were evaluated by 

disc diffusion assay to determine inhibitory effects against five strains of S. aureus. Next, a 

growth inhibition assay was performed using a 96-well plate bioassay to measure change in 

optical density over a 48-hour period. Phage adsorption assays were performed up to 120 h at 6, 

13, and 37°C to determine lytic activity. The results from disc diffusion, growth inhibition, and 

phage adsorption assays indicate that EO compounds and bacteriophage can be used as 

antimicrobials against S. aureus. For application in the food industry, these antimicrobials were 

evaluated for their efficacy against S. aureus on raw chicken pieces at 6, 13, and 25°C. Results 

indicate that at 25°C phage K alone inhibits S. aureus growth better as compared to other 

antimicrobial combination. At 6 and 13°C, there was no significant effect of EO and phage alone 

or in combination against S. aureus when applied on the raw chicken pieces. Therefore, for these 



antimicrobials to work in vivo such as raw meat products, a better delivery method should be 

employed for a uniform application on meat. 
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Chapter 1: Literature Review  

Staphylococcus aureus  

Introduction 

Staphylococcus aureus is an aerobic Gram-positive bacterium that occurs in grape like clusters. 

They are non-motile, non-spore forming, spherical cells of 1 µm in diameter. It is a member of 

the Micrococcaceae family (Franklin, 1998). The organism was first discovered in 1880 by a 

surgeon named Sir Alexander Ogsten. In 1884, Rosenbach proposed two pigmented types of the 

cocci. The bacterium that produced yellow colonies was known as S. aureus and the one that 

produced non-pigmented or white colonies was known as S. epidermidis. It is an opportunistic 

pathogen found in humans and animals and is one of the most common sources of hospital and 

community-acquired infections (Alsaimary, 2012). The organism is a commensal colonizer of 

the skin and is common inhabitant of the nasal passage (25-30% of people), mucous membranes 

(e.g., throat, axilla, and rectum) and other anatomical locales on humans and other warm-blooded 

mammals (Chao et al., 2008). 

 

Biochemical Characteristics 

 
 

According to a review by Panneerseelan and Muriana (2009), Staphylococcus aureus are 

facultative anaerobes and they can grow by aerobic respiration or by fermentation producing 

lactic acid. The organism can grow at a wide temperature range (15°C to 45°C), a pH range of 4 

to 11 and at NaCl concentrations as high as 15%. These characteristics enable S. aureus to grow 

in  a  wide  variety  of  environments  including  foods.  The  bacteria  are  catalase-positive  and 
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oxidase-negative. It is hemolytic on blood agar and almost all strains of S. aureus produce the 

enzyme coagulase. The organism ferments glucose and mannitol producing lactic acid. 

 

Antibiotic Resistance 

 
 

The widespread use of antibiotics has provoked an exponential increase in the incidence of 

antibiotic resistance in several bacterial groups in recent years. Staphylococcus aureus are 

notorious for their resistance to antibiotics. The occurrence of methicillin resistant S. aureus 

(MRSA) and the detection of a vancomycin resistance gene in S. aureus during the late 1950s 

and the early 1960s, has led to increased concern regarding this microorganism (Panneerseelan 

and Muriana, 2009). 

 

Methicillin Resistance 

 
 

Methicillin-resistant S. aureus is a special type of S. aureus that is resistant to the antibacterial 

activity of methicillin and other related antibiotics of the penicillin class (Alsaimary, 2012). 

Staphylococcus aureus infections are traditionally treated with penicillins. The organism 

developed resistance to penicillins via the BlaZ penicillinase (β-lactamase). In this mechanism, 

β-lactamase produced by the bacteria provide antibiotic resistance by breaking the β-lactam ring 

during hydrolysis, thus deactivating the antibiotic’s antibacterial properties (Alsaimary, 2012). In 

1959, Beecham developed a penicillinase-stable penicillin called methicillin to overcome this 

resistance mechanism (Wendlandt et al., 2013). The first isolates of MRSA were documented in 

the late 1950s. By 1967, multidrug resistant MRSA were reported from Switzerland, India, 

France, Denmark, England and Australia (Grundmann et al., 2006). Virulence and quorum- 

sensing mechanisms allow S. aureus to cause a broad variety of serious infections in humans 

(Miller et al., 2001). The genetic diversity and ability to acquire exogenous genes allows MRSA 



3  

to modulate its pathogenicity by adapting to changing environmental conditions and thus 

acquiring resistance to multiple antibiotics (Wendlandt et al., 2013). The U.S. Centers for 

Disease Control and Prevention (CDC) have reported that the proportion of overall 

staphylococcal infections due to MRSA has risen from 2% in 1974 to 22% in 1995, and then to 

65% in 2004 in the U.S. (Chao et al., 2008). Methicillin-resistant S. aureus are one of the most 

common nosocomial pathogens throughout the world causing a wide range of hospital-linked 

infections (Lee, 2003). Now concerns have intensified as MRSA has resulted in human 

infections linked to unexpected community settings: children in day-care centers, army recruits, 

athletes in contact sports, prison populations, and intra-venous drug users (Klevens et al., 2007). 

Methicillin-resistant S. aureus also been detected in food animals and in food such as meat, milk 

and dairy products and fishery products (Lee, 2003). 

 

Vancomycin Resistance 

 
 

Vancomycin has been a reliable treatment for gram positive bacterial infection for more than 30 

years. Injectable forms of vancomycin were introduced in 1991 and since then have been used 

for MRSA infection. The first report on a strain of S. aureus with reduced susceptibility to 

vancomycin was reported in 1996 (Hiramatsu et al., 1997). It was called Mu 50 (vancomycin 

minimum inhibitory concentration [MIC] 8 mg/L). The bacterial strain had an intermediate 

resistance to vancomycin and was known as vancomycin-intermediate S. aureus (VISA). By 

2002, eight documented cases of infection with VISA were reported (Smith et al., 1999). A CDC 

report in 2002 reported on the first documented case of S. aureus infection caused by 

vancomycin resistant S. aureus (VRSA) (Smith et al., 1999). 
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Enterotoxins 

 
 

Staphylococcus aureus produces enterotoxins that are the causative agents of foodborne 

intoxications. Enterotoxins are single chain polypeptides with a molecular weight of 26-28 kDa 

and contains 228-239 amino acid residues (Muller-Alouf et al., 2001). There are twenty 

serological types of staphylococcal enterotoxins (SEs), the most common of which are SEA, 

SEB, SEC, SED and SEE. They are classified into classical and novel enterotoxins. The 

enterotoxin genes are present on regions of the chromosome known as staphylococcal 

pathogenicity islands (SaPIs) (Balaban and Rasooly, 2000). The genes expressed in one 

environment may not be expressed in another (Normanno et al., 2005). These enterotoxins are 

active in minute quantities and are resistant to conditions such as heat treatment and low pH that 

would normally kill the bacteria that produce them. They can remain potent in the digestive tract 

as they are also resistant to proteolytic enzymes (Argudin et al., 2010). As a result, toxins present 

before cooking may not be killed in most food preparation regimens (Panneerseelan and 

Muriana, 2009). 

 

Staphylococcal enterotoxins belong to a large family of staphylococcal and streptococcal 

pyrogenic exotoxins, sharing common phylogenetic relationships, structure, function, and 

sequence homology. These toxins cause toxic shock-like syndromes and have been implicated in 

several allergic and autoimmune diseases along with food poisoning (Balaban and Rasooly, 

2000). Duration of the illness usually lasts 6-24 h and prolonged illness or death can occur in 

infants, elderly, and severely immune compromised persons (Panneerseelan and Muriana, 2009). 

Staphylococcus aureus enterotoxins are also powerful super antigens (SAgs) that are able to 

stimulate polyclonal proliferation response of human T-lymphocytes (O’Hehir and Lamb, 1990). 

The  T-cell  proliferation  results  in  a  massive  release  of  chemokines  and  pro-inflammatory 
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cytokines by bypassing conventional antigen recognition by T-cell receptors; thus, this T-cell 

mediated response can affect the immune system of infected individuals, leading to potential 

toxic shock syndrome and emesis in the case of food poisoning (Argudin et al., 2010). This helps 

in the early detection of the infection in the body as the body shows the symptoms of 

intoxication at an early stage (Panneerseelan and Muriana, 2009). 

 

Transmission of Staphylococcus aureus in food 

 
 

Food poisoning is a common form of illness, and it can vary in severity from being mild to fatal 

(Loir et al., 2003). Food poisoning caused by infectious agents (bacteria, viruses, parasites) can 

be broadly classified into two categories, namely foodborne infections and foodborne 

intoxications. Foodborne infections occur when food consumed is contaminated with pathogens. 

The pathogen causes inflammation, resulting in poor absorption of water and nutrients. Food 

intoxications on the other hand may result from ingesting food contaminated with preformed 

toxins produced by foodborne pathogens (Bergdoll et al., 1989). Hence even if the 

microorganisms are destroyed during cooking or processing, some of the toxins which are heat 

stable may persist in foods and may still cause intoxication (Panneerseelan and Muriana, 2009). 

 

Staphylococcus aureus is a commensal and lives on the anatomical locales of humans and 

animals. Hence food handlers are the common source of contamination of foods (Gutierrez et al., 

2012). Foods such as salads including egg, chicken or potato salads and sandwiches which are 

hand-made and require no additional cooking are common sources of S. aureus. Other sources of 

food contamination include the equipment and surfaces on which food is prepared. The bacteria 

can multiply quickly at room temperature to produce SEs. The organism also enters the food 

during processing of animal products. Staphylococcal enterotoxins in suspect foods must be 
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identified quickly because they are potent even in very minute quantities. In dairy products a 

concentration of SEs as low as 0.5 ng/ml have resulted in 850 cases of foodborne illness in 

children (Panneerseelan and Muriana, 2009). 

 

Staphylococcal food poisoning results from the consumption of food contaminated with one or 

more staphylococcal enterotoxins (SEs). The toxins of S. aureus are known as enterotoxins 

because they are able to promote water loss from the small intestine mucosa resulting in 

vomiting and diarrhea (Martin et al., 2003). It can also cause acute enteric responses such as 

nausea, abdominal cramps, and changes in blood pressure. Staphylococcal food poisoning is 

characterized by a short onset time (2 to 6 h) after ingestion of preformed toxins (Panneerseelan 

and Muriana, 2009). Staphylococcal enterotoxin A is the most common enterotoxin implicated in 

food-poisoning outbreaks in the US (77.8% of all outbreaks) followed by SED (37.5%) and SEB 

(10%) (Balaban and Rasooly, 2000). However, it is not clear if an outbreak is caused as a result 

of an individual toxin or if it is caused due to a combination of multiple toxins. Considerable 

research has been conducted in detection of enterotoxins in foods. Development of 

immunoassays has revolutionized the process; however, the need for improving the limit of 

detection is important as SEs are potent in minute quantities (Balaban and Rasooly, 2000). 

 

Staphylococcus aureus is also known to form biofilms on food surfaces (Gutierrez et al., 2012). 

Biofilms are the most common bacterial lifestyle in nature. A biofilm is any group of 

microorganisms in which cells stick to each other on a surface (food products). After initial 

attachment of cells to a surface, they start to multiply and secrete a consistent matrix of 

extracellular polymeric substances in which cells are wrapped (Gutierrez et al., 2012). S. aureus 

is one of the major causative agents of food-borne diseases in humans. O’Brien et al. (2012) 

showed that S. aureus were prevalent in 64.8% pork samples (256 out of 395) collected across 
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the U.S. (36 stores) and both susceptible and methicillin-resistant S. aureus were detected. 

Overall, outbreaks caused by S. aureus in meat and poultry dishes caused 55% of the reported S. 

aureus outbreaks from 1998-2008 with pork and pork dishes such as ham being the most 

common (Bennett et al., 2013). 

 

Poor hygiene practices in food processing plants can result in the contamination of food products 

with pathogens potentially causing serious health issues for consumers. Since bacteria can attach 

to food contact surfaces and form biofilms, the complete elimination of pathogens from the food 

processing environment has been a difficult task as biofilms protect bacteria from the effects of 

antimicrobial agents (Savage et al., 2013). Moreover, pathogens can survive even after cleaning 

and disinfection. S. aureus can survive in hostile environments such as food industry surfaces 

through their ability to form biofilms on food surfaces (Gutierrez et al., 2012). 

 

Essential oil Compounds as Antimicrobials 

Introduction 

An essential oil (EO) is a concentrated hydrophobic liquid containing volatile aroma compounds 

from plants. It has an oily consistency (Palmer et al., 1998). Essential oils are also known as 

volatile oils, ethereal oils or aetherolea. Most of them are liquid at room temperature though a 

few of them can be solid or resinous (Bassole et al., 2012). Their colors range from pale yellow 

to emerald green and from blue to dark brownish red (Balz, 1999). Most of the plant organs such 

as buds, flowers, leaves, barks, fruits, seeds, etc. synthesize essential oils and store them in 

secretory cells, cavities, canals and epidermic cells (Upadhyay et al., 2010). 
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Essentials oils do not form a distinctive category for any medical, pharmacological or culinary 

purpose. They are generally extracted by distillation, often by using steam. They are used in 

perfumes, cosmetics, soaps and other products, for flavoring food and drink and for adding 

scents to incense and household cleaning products (Ciocan et al., 2007). 

 

Mode of Action 

 
 

Most of the antimicrobial activity in EOs appears to derive from terpenoids particularly phenolic 

terpenes, phenylpropanoids and alcohols. Other constituents such as hydrocarbons show low 

activities but can be used in combinations to increase their bioactivities (Bassole et al., 2012). 

Interactions between these compounds may lead to antagonistic, additive or synergistic effects. 

The most common mechanism of antimicrobial interaction is by synergism (Ciocan et al., 2007). 

This includes the sequential inhibition of a common biochemical pathway, inhibition of 

protective enzymes, and the use of cell wall active agents to enhance the uptake of other 

antimicrobials. This mechanism involving a combination of components having  synergistic 

effect will then reduce the concentration needed to yield the same microbial effect when 

compared with the sum of the purified components. There are many studies that have 

demonstrated that crude EOs have higher antimicrobial activity than the mixtures of their major 

components. When a combination of EOs is used, their synergistic activity can play a critical 

role in the overall antimicrobial activity (Palmer et al., 1997). 

 

Application in food products 

 
 

It is widely believed that EOs and other plant products have healing powers. There is evidence 

that Neanderthals living 60,000 years ago used a plant called hollyhock for medicinal purposes, 

and today, it is still used in ethno medicine around the world (Burt, 2004). Today around one- 
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half of all pharmaceuticals dispensed in the U.S. have plant origins; however, very few of them 

are used as antimicrobials (Ciocan et al., 2007). As drug resistance in microbes is becoming 

increasingly prevalent, plant origin herbal medicines are considered as alternatives to synthetic 

drugs and possess antimicrobial, anticancer, and antioxidant properties. There are some forms of 

traditional medicines such as Ayurveda, Homeopathy, and Unani, which utilize plant products 

for drug production (Upadhyay et al., 2010). Plant derived medicines have made large 

contributions to human health and well-being (Upadhyay et al., 2010). Plant derived products act 

either as natural blueprints for the development of new drugs or a phytomedicinals to be used for 

the treatment of disease. The primary benefits of using such products are that they are 

comparatively safer than the synthetic alternatives, thus offering therapeutic benefits and 

affordable treatment (Edwards-Jones et al., 2004). 

 

Food products may become easily contaminated with microbes such as bacteria, yeasts and 

fungi. These microorganisms cause undesirable effects such as deterioration of the flavor, odor, 

color, sensory, and textual properties of foods. In packaged foods, pathogenic microorganisms 

including Listeria monocytogenes, S. aureus, Campylobacter, Salmonella, Escherichia coli, and 

Clostridium perfringens, may continue to grow and survive, despite changes that may occur in 

intrinsic factors such as pH, water activity, and lower oxygen level or extrinsic factors such as 

temperature, time and humidity (Nazzaro et al., 2013). As a result, food products such as 

cheeses, meats, poultry, and baked products are susceptible to microbial spoilage even after 

packaging (Kuorwel et al., 2011). To prevent the growth of spoilage and pathogenic 

microorganisms on foods, new preservation techniques have been developed as consumers 

demand safe, fresh, and minimally processed foods. “Active packaging” (AP) technologies are 

the latest technique to provide safe food products with longer shelf lives (Kuorwel et al., 2011). 
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The AP technologies are primarily based on the use of synthetic or natural antimicrobial (AM) 

agents such as EOs. In food industries, food spoilage caused by microorganisms is reduced by 

the use of different AM agents that are incorporated directly into the food. According to Kuorwel 

et al. (2011), this method has some disadvantages including (i) consumers may prefer food 

products with no or minimal synthetic agents because of concerns about potential side-effects; 

(ii) incorporation of such AM agents in the bulk of the food may not be justified as food spoilage 

occurs primarily on the surface; (iii) these agents might possess a distinct flavor which may 

render the food flavor; and (iv) if AM agents are used in the food product, they have to be 

declared on the package which may deter some consumers from purchasing the product. In spite 

of these disadvantages, AM agents are still used as an additional protective barrier in food 

industries (Kuorwel et al., 2011). Also, in order to obtain antimicrobial activity against 

microorganisms on food products, the concentration of EOs is generally higher than the 

concentration applied for flavoring purposes. This may result in food tainting or adverse 

sensorial effects to certain food products (Bassole et al., 2012). In order to reduce adverse 

sensory issues in food products that may be caused due to the presence of EO, lower 

concentrations of EO must be used that can yield a similar antimicrobial activity (Bassole et al., 

2012). 

 

Potential as Anti-Staphylococcal Compounds 

 
 

Due to the widespread use of antibiotics during 1960s in order to minimize the spread of S. 

aureus spread, resistant forms of S. aureus (MRSA and VRSA) were isolated soon. The public 

health impact of both widespread VRSA and MRSA can be quite significant. In short it became 

essential to find alternative, natural antimicrobials to treat staphylococcal infections (Li et al., 

2011).  Plant  sources  of  antimicrobial  compounds  are  good  candidates  for  limiting  MRSA 



11  

without doing any harm to humans since some oils have been used in the past for curative 

purposes (Li et al., 2011). 

 

Methicillin resistant S. aureus is susceptible to tea tree oil but there are concerns about its 

toxicity (Chao et al., 2008). Tea tree oil obtained from the Australian tree, Melaleuca 

alternifolia, is a powerful antimicrobial agent against bacteria, fungi, and viruses and is used 

commercially in a wide range of products (Edwards-Jones et al., 2004). According to Cox et al. 

(2000), tea tree oil has the ability to disrupt the permeability barrier of cell membranes of 

bacteria such as E. coli and S. aureus which results in the loss of chemiosmotic control in the 

organisms. Upadhyay et al. (2010) reported that Ajwaine oil is highly lethal to S. aureus, 

Streptococcus pneumonia, and Lactobacillus acidophilus. These authors also  showed  that 

bavchi oil and olive oil have antimicrobial activity against S. aureus. In addition, Chao et al., 

(2008) reported inhibitory zones of 45 to 83 mm against S.aureus with EOs such as lemongrass, 

lemon myrtle, mountain savory, cinnamon bark and Melissa. 

 

There are hundreds of other EOs available for use, many with known antimicrobial properties 

(Chao et al., 2008). These oils contain numerous constituents that contribute to the /characteristic 

odor and medical effects. The presence and quantity of the various chemical compound 

components varies between oils and this determines the individuality of the oil. Due to the lack 

of scientific evidence of their efficacy as conventional antimicrobial treatments combined with 

their toxicity issues, medical teams rarely use EOs in spite of their proven antimicrobial 

properties (Edwards-Jones et al., 2004). 
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Bacteriophage therapy 

Introduction 

The widespread emergence of multiple antibiotic resistant pathogenic bacteria including strains 

of E. coli, Staphylococcus sp., Streptococcus sp., Pseudomonas sp., etc., has become a 

significant problem in treating bacterial infections of humans and animals. Scientists are now 

predicting a return to the pre-antibiotic era in order to find alternatives to the use of antibiotics to 

control bacterial pathogens (Rapson, 2002). A varied and large source of antibiotic agents 

specifically active against a wide range of bacterial infections (including MRSA) is the lytic 

bacteriophage population (Rapson, 2002). Bacteriophages are bacterial viruses that are able to 

infect specific bacterial species. Similar to other viruses, they are obligate parasites that are able 

to replicate only in living cells. A bacteriophage particle usually consists of a single nucleic acid 

molecule which may be single-stranded or double-stranded, linear or circular DNA, or single- 

stranded linear RNA. The three major morphological classes of the bacteriophages are 

icosahedral, icosahedral tailed, and filamentous (Platt, 2010). Bacteriophages have a specific 

host range because they require specific receptors on the host cell surface to bind and initiate an 

infection (Balasubramanian et al., 2007). They are nontoxic to humans, animals, and plants. 

 

Bacteriophages were first discovered in 1915 from Staphylococcus sp. by a  British 

bacteriologist, Frederick W Twort, and independently in 1917 from Shigella dysenteriae by a 

Canadian medical bacteriologist, Felix Hubert d’Herelle (Summers, 2001). D’Herelle named the 

invisible microbe that was an obligate parasite of living bacteria he found “a bacteriophage” or 

by the shortened term “phage”. The therapeutic potential of bacteriophages was also realized 

early on by d’Herelle who laid the foundation for experimental phage work, and by 1940, 
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research involving bacteriophage therapy applications were being published in great numbers 

indicating the utility of bacteriophage as a promising antibacterial agent. 

 

Mode of Action 

 
 

Bacteriophages have two distinct life cycles, lytic and lysogenic. In the lytic cycle, 

bacteriophages utilize the host cells’ replication machinery and precursors to produce many 

phage particles, and then end the cycle by lysing the host cells. In the lysogenic cycle, no 

progeny particles are produced and the bacteriophage DNA usually becomes part of the bacterial 

chromosome by site-specific recombination (Platt, 2010). Examples of lysogenic phage include λ 

phage of E. coli and P22 of Salmonella Typhimurium (Platt, 2010). The decision on whether to 

utilize lytic or lysogenic growth depends on several factors, including the expression of the 

bacteriophage repressor and the nutritional status of the host (Platt, 2010). A phage capable only 

of lytic growth is called a virulent phage while a bacteriophage capable of both lytic and 

lysogenic growth is called a temperate phage. The bacterial host that contains a complete set of 

bacteriophage DNA in the chromosome is called a lysogen. A bacteriophage whose genome is 

inserted and integrated into a bacterial DNA chromosome is called a prophage (Summers, 2001). 

Some prophages in a population of lysogens may switch to the lytic growth cycle and continue to 

release small amount of progeny bacteriophages into the environment. The progeny 

bacteriophages will then repeat the infection cycle in their susceptible host (Platt, 2010). 

 

Limitations of Bacteriophage therapy 

 
 

In spite of the successes in the bacteriophage therapy studies, it is not found routinely in the 

toolkits of infectious disease specialists, public health workers, and hospital infection control 

officers, because of its limitations (Summers, 2001). The causes of its limitations included the 
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narrow host range of a particular bacteriophage, and a specific bacteriophage is needed to treat a 

specific bacterial infection. If an infection is caused by a mix of bacterial pathogens, one 

bacteriophage could not stop the infection but rather a mixture of different bacteriophages 

specific to each bacterial pathogen would be required (Summers, 2001). The emergence of 

bacteriophage resistant bacteria is also possible through the selection of mutants (Platt, 2010). 

Furthermore, lysogen of a temperate bacteriophage can become immune to a super infection with 

the same bacteriophage and able to perpetuate the infection (Platt, 2010). 

 

Staphylococcus aureus specific bacteriophage 

 

Staphylococcus aureus bacteriophages encode proteins that target components of the DNA 

replication and RNA transcription machinery of S. aureus (Kwan et al., 2005). Kwan et al. 

(2005) have reported the complete genomic sequences and predicted proteins of 27 

bacteriophages of S. aureus. In dairy industry, mastitis caused by S. aureus is a major concern, 

and the most important source of milk contamination. The ability of the lytic S. aureus 

bacteriophage K to eliminate bovine S. aureus intramammary infection during lactation has been 

studied; however, Garcia et al. (2008) reported that the infused phage showed significant 

degradation or inactivation within the gland. Phage K inactivation was also reported in raw milk, 

likely due to the adsorption of whey proteins to the cell surface that interfere with phage 

attachment (Garcia et al., 2008). However, it has been documented that a cocktail of two lytic 

phages of dairy origin can successfully inhibit S. aureus in acid and enzymatic manufacturing 

processes (Garcia et al., 2008). 

 

Detection of harmful pathogens such as S. aureus at low levels is vital in industry and has a huge 

environmental and economic impact. Balasubramanian et al. (2007) emphasized the use of 

bacteriophage immobilization technique to detect S. aureus. In this study, a lytic bacteriophage 
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was used as a highly specific and selective biorecognition element combined with a surface 

Plasmon resonance-based detection sensor. The authors found a detection limit of 10,000 colony 

forming units per ml, suggesting that lytic bacteriophage can be used as a probe for bacterial 

detection. 

 

Application in food industry 

 
 

There are various reliable techniques that are used in present day to kill or inactivate bacterial 

pathogens in food animals as well as food products including 1) antibiotics administered at 

production (Zaczek et al., 2015); 2) chlorine to inactivate pathogens on various food products 

including raw meat (Buncic and Sofos, 2012), fruits and vegetables (Beuchat, 2008); 3) thermal 

pasteurization of liquid foods (Corry et al., 1995); and 4) food irradiation (Farkas, 1998). 

However, due to continuous increase in several foodborne diseases, a possible alternative to 

chemical-based bactericides might be the use of natural antimicrobials such as bacteriophage. 

 

Contaminating bacteria can enter the food supply during slaughter, milking, fermentation, 

processing, storage or packaging (Zaczek et al., 2015). Studies on bacteriophage molecular 

biology have shed light on its various applications including nanotechnology, vaccine 

development, therapeutic delivery, and bacterial detection systems (Summers, 2001). The 

application of bacteriophages as novel, natural antimicrobials in food to inhibit undesirable 

bacteria is also very promising (Garcia et al., 2008). Exploring bacteriophages as new biocontrol 

agent against antibiotic-resistant bacteria has become an important topic of research with 

products based on bacteriophage therapy are already available in the market (Zaczek et al., 

2015). Moreover, several companies are using bacteriophages as tools for detecting pathogens in 

feed  and  foodstuffs.  For  example,  the  U.S.  Environmental  Protection  Agency  approved 
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OmniLytics, Inc to use their product ‘Agriphage’ against plant pathogenic bacteria. In the food 

manufacturing industry, Listex P100 has been approved by EBI Food Safety for controlling 

Listeria in meat and cheese products. The U.S. Food and Drug Administration (FDA) in 2006 

approved the use of LMP 102 (Intralytix, Inc.) targeting Listeria in ready-to-eat meat and poultry 

products (Garcia et al., 2008). 

 

The concept of fighting bacterial pathogens in food by means of bacteriophages can be addressed 

at all stages of production. This can be applied in the classic “farm to fork’ concept. 

Bacteriophage is suitable for enhancing microbiological safety in food because of the following 

reasons: (i) it prevents or reduces the colonization of bacteria in livestock (bacteriophage 

therapy); (ii) it can decontaminate carcasses and raw products, such as fruits and vegetables; (iii) 

it can be used to disinfect equipment and contact surfaces (i.e. bacteriophage bio sanitation and 

bio control); and (iv) it can be used to extend the shelf life of perishable manufactured foods as 

natural preservatives (i.e. bio preservation) (Zaczek et al., 2015). Bacteriophage can also be used 

in hurdle technology in combination with other preservation methods (Martinez et al., 2008). 

 

Despite the advantages offered by bacteriophages, they can be commercially damaging as well. 

For instance, in the fermentation industry, harmful bacteriophages are those which contaminate 

the process. These bacteriophages also became a major problem in the dairy industry, causing 

considerable economic losses by destroying starter cultures and disrupting fermentation 

(Lawrence et al., 1976). Other industries using bacteria for fermentation have experienced losses 

from bacteriophage contamination as well. 
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Strategies for Controlling Staphylococcus aureus in food 

 
 

It is well known that many pathogenic microorganisms such as S. aureus form biofilms on food 

and food-contact surfaces under appropriate environments (Shi et al., 2009). In the food 

processing environment, biofilm formation is favored by many conditions (e.g., flowing water, 

suitable attachment surfaces, ample nutrients, and raw materials) (Shi et al., 2009). The time 

available for biofilm formation depends on the frequency of cleaning regimes. Product contact 

surfaces should typically be cleaned several times per day while environmental surfaces such as 

walls may be cleaned once per week (Gibson et al., 1999). An investigation by Sharma and 

Anand (2002) revealed that S. aureus could establish biofilms on the equipment surfaces of the 

production lines such as pasteurization lines of dairy processing plants. Pathogenic 

microorganisms can also attach to and grow on food and food contact surfaces under appropriate 

environments by forming biofilms (Shi et al., 2009). A number of studies have shown that 

bacterial pathogens can attach to food surfaces such as L. monocytogenes to beef surfaces 

(Dickson, 1990) and Salmonella spp. to chicken skin (Campbell et al., 1987). However, humans 

are the main source of transmission of these pathogens from one place to another (e.g., food 

handlers contaminate food via manual contact or by coughing and sneezing). Nevertheless, in 

foods such as raw meat, sausages, raw milk, and raw milk cheese, contaminations from animal 

origins are more frequent and due to animal carriage or due to infections (e.g., mastitis) (Loir et 

al., 2003). Therefore, it is very important to develop cleaning and disinfection methods and 

control systems in food-processing plants and environments. Good Manufacturing Practice and 

Hazard Analysis and Critical Control Points have been established for controlling food quality 

and safety (Shi et al., 2009). Moreover, cleaning-in-place (CIP) procedures have been employed 

in dairy processing lines. Some physical methods such as mechanical brushing, chemical agents 
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such as detergents and biological means such as enzymes are applied to CIP procedures in order 

to obtain a biofilm-free industrial environment (Shi et al., 2009). In addition, suitable contact 

precautions should be taken such as using antimicrobial soap for washing hands—particularly 

under fingernail area—vigorously before handling and preparing food. It is also suggested that 

gloves should be worn when touching any ready-to-eat food items though this is controversial 

(Herwadlt, 1999). The use of hand gloves has been much debated since it does reduce the 

likelihood of transmitting bacteria from a food worker’s hand to food; however, the gloves may 

pick up bacterial pathogens from food or work surfaces touched, thus significantly reducing the 

effectiveness of gloves if they are worn for longer periods of time without changing (Lues et al., 

2005). 

 

Even after using an efficient cleaning procedure, microorganisms often remain and form 

biofilms on equipment surfaces (Shi et al., 2009). Residual microflora sometimes persists on 

food equipment surfaces after CIP treatment (Dunsmore, 1981; Sharma and Anand, 2002). 

Gibson et al. (1999) tested the resistance of biofilm to sanitizers, and they found that the 

commercial products Easyclean (an alkaline detergent) and Ambersan (an acidic cleaner) were 

not effective against Pseudomonas aeruginosa and S. aureus biofilms on stainless steel surfaces 

(Shi et al., 2009). Therefore, novel and innovative methods should be employed in order to battle 

this problem. The excessive use of chemical substances, some of which are suspect because of 

their potential toxicity, has resulted in increasing pressure on food manufacturers to either 

completely remove chemical preservatives from their food manufacturing systems or to adopt 

more “natural” alternatives for the maintenance or extension of a product’ shelf life. There is 

considerable interest in the possible use of such natural alternatives which can prevent the 

growth  of  foodborne  pathogens  such  as  S.  aureus  on  food  products  (Nychas,  2007).  The 
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protective and therapeutic effects of bacteriophage against a wide range of bacterial pathogens 

have been well demonstrated (Monk et al., 2010). In addition, natural antimicrobials such as EOs 

from plant sources can be good candidates for limiting S. aureus infections (Li et al., 2011). 

More research should be done in this field so that a novel product can be developed which can 

utilize the antimicrobial properties of both EOs and bacteriophage to treat infections caused by 

pathogen such as S. aureus. 

 

Research Objective 

 
 

Since bacterial pathogens such as S. aureus have shown resistance against traditional 

chemotherapeutic agents such as antibiotics and other disinfectants, new natural approaches to 

control their growth in food and on food surfaces is pressing. In this research the possibility of 

using EOs and bacteriophage alone and in combination to prevent the growth of S. aureus in 

vitro has been evaluated. The hypothesis of this research is that combination of EOs and 

bacteriophage will control the growth of S. aureus more effectively than either treatment 

performed alone. To test this, two main objectives were set: 1) to determine the efficacy of 

varying concentrations of pure EOs compounds against S. aureus and 2) to evaluate the efficacy 

of a S. aureus-specific bacteriophage against S. aureus. The ultimate goal was to evaluate if the 

combination of these antimicrobials has potential synergism and possible application in food 

industry for controlling of S. aureus on raw chicken products. 
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Chapter  2:  Application  of  Essential  Oil  Compounds  and  Bacteriophage  alone  and  in 

combination to Control Staphylococcus aureus in vitro. 
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Abstract 

 
 

The present study aimed to investigate the combination of essential oils (EO) and bacteriophages 

as alternative antimicrobials to control S. aureus in food. Four EO compounds were evaluated by 

disc diffusion assay to determine inhibitory effects against five strains of S. aureus. Next, 48- 

hour growth inhibition assays were performed using a 96-well bioassay. Phage adsorption assays 

were performed with phage K up to 120 h at 6, 13, and 37°C to determine lytic activity. 

Combinations of phage K and EOs against S. aureus were also evaluated at 37°C using a 96-well 

bioassay. Disc diffusion assays indicate that the zone of inhibition (IZ) of alpha-pinene (IZ=10- 

23mm) has a significantly higher inhibitory effect against S. aureus strains when compared to 

other EOs tested. Growth inhibition assay indicated that all four S. aureus strains showed 

significantly reduced growth (p < 0.006) when compared to the positive control over the 48 h 

period. Alpha-pinene at 1.5% and 3.28% showed the highest significant difference for inhibition 

of all S. aureus strains when compared to their respective positive controls. . Phage adsorption 

assays indicate that phage K has high lytic activity at 37°C with at least a 1.5 log increase in the 

number of PFU depending upon the strains when compared to 6 and 13°C, possibly impacting 

applicability in food industry. With phage and EO evaluated together, all four S. aureus strains 

showed a significant reduction in growth (p < 0.05) when compared to its normal growth curve. 

Results from the combined effect of EO and phage indicate that the phage alone inhibits S. 

aureus in vitro at 37°C as effectively as EO alone or the combination of EO and phage although 

there is variability between strains. The results from disc diffusion, growth inhibition, and phage 

adsorption assays indicate that EO compounds and bacteriophage can be used as antimicrobials 

against S. aureus. This study provides novel findings on the antibacterial properties of pure 

compounds found in crude pine oils and phage K against multiple strains of S. aureus. In 
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addition, the data presented here demonstrate the potential of these natural antimicrobials as a 

new approach for biocontrol of S. aureus. 
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Introduction 

 
 

Staphylococcus aureus is considered one of the most important pathogens and can cause 

illnesses ranging from minor skin infections to life-threatening diseases such as pneumonia and 

bacteremia (Yoon et al., 2013). Food production animals such as dairy cows and broiler chickens 

can also be infected with S. aureus resulting in bovine mastitis and chicken arthritis 

(Vanderhaeghen et al., 2010). Although these ailments are harmful to the animals, these 

infections can also threaten food safety and cause food intoxications (due to production of 

enterotoxins) through contamination of foods such as salads including egg, chicken or potato 

salads and sandwiches which are made with hand contact and require no additional cooking. 

(Gutierrez et al., 2012) Unfortunately, management of S. aureus infections in humans  has 

become compromised as a result of multiple antibiotic resistant strains including methicillin 

resistant S. aureus (MRSA) and vancomycin resistant S. aureus (VRSA). (Panneerseelan and 

Muriana, 2009). 

 

Staphylococcus aureus is an aerobic, non-motile, non-spore forming Gram-positive bacterium. It 

is a commensal colonizer of the skin, nasal passage (25 to 30% of people), and mucous 

membranes (throat, axilla and rectum) of humans and warm-blooded mammals (Chao et al., 

2008). Staphylococcus aureus has the ability to grow in wide temperature ranges (4°C to 45°C), 

pH levels (4 to 11), and salt concentrations (10 to 20%) allowing it to be a common foodborne 

pathogen (Panneerseelan and Muriana, 2009). 

 

Due to the resistance of S. aureus to traditional chemotherapeutic agents, researchers are now 

evaluating other antimicrobial agents to fight against this pathogen such as essential oil (EO) 

compounds (Nazzaro et al., 2013). Essential oils are concentrated hydrophobic liquids derived 
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primarily from terpenoids (i.e. phenolic terpenes, phenylpropanoids, and alcohols) and have been 

recognized for their antimicrobial properties (Bassole and Juliani, 2012). Interactions between 

hydrocarbons present in EO compounds can lead to antagonistic, additive, or synergistic effects 

with synergism being the most common (Ciocan et al., 2007). Essential oils are capable of 

inhibiting or slowing the growth of bacteria, yeasts and molds by targeting the membrane and 

cytoplasm, and in some cases, they completely change the morphology of the cells. (Nazzaro et 

al., 2013). As a result, EOs and their components are widely used in medicine and food industry 

as they show promising activities against many food-borne pathogens, including S. aureus, when 

tested in vitro (Bassole and Juliani, 2012). 

 

In contrast to EO compounds, lytic bacteriophage may be used as alternative antimicrobials with 

enhanced specificity to the microorganisms or pathogen of interest (Rapson, 2002). 

Bacteriophages are bacterial viruses that require specific receptors on the bacterial cell surface to 

bind and initiate an infection (Balasubramanian et al., 2007). Their specificity for a particular 

bacterial species and their lack of impact upon other micro flora make them efficient 

antibacterial agents (El-Shibiny et al., 2009). With respect to S. aureus, there are several well- 

characterized lytic bacteriophage. For example, bacteriophage K has been applied in the dairy 

cow industry for the elimination of bovine S. aureus intramammary infections during lactation 

(Garcia et al., 2008). In general, the application of bacteriophages to control foodborne 

pathogens such as S. aureus, Listeria monocytogenes, Salmonella, and Escherichia coli is 

steadily growing (Hudson et al., 2010; Hagens and Loessner, 2010). For instance, bacteriophage 

specific to Shiga toxin-producing E. coli (STEC) has been reported to reduce STEC on leafy 

green vegetables by 3 logs (Viazis et al., 2011). Moreover, bacteriophages are now accepted as 

natural food additives since they are naturally present in the digestive tract of humans and 
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throughout the environment (Monk et al., 2010). Here I propose combining S. aureus-specific 

bacteriophage with EOs as a way to inhibit the growth of S. aureus. Therefore, based on the 

reported antimicrobial potential of both EOs and host-specific bacteriophage, I investigated the 

efficacy of varying concentrations of EOs alone and in combination with S. aureus specific 

bacteriophage in order to determine potential synergistic effects. More specifically, I aimed 1) to 

determine the efficacy of varying concentrations of pure EOs compounds against S. aureus; 2) to 

evaluate the efficacy of a S. aureus-specific bacteriophage against 4 strains of S. aureus and 3) to 

combine these antimicrobials to determine potential synergism and possible application for the 

control of S. aureus in vitro. The overall goal is to utilize these antimicrobial compounds for 

control of S. aureus as both a nosocomial and foodborne pathogen with potential applications in 

the medical industry such as the treatment of cutaneous infections caused by S. aureus as well as 

the food industry. 

 

Materials and methods 

Bacterial culture 

Five strains of S. aureus were maintained on tryptic soy agar (TSA, Acumedia, Lansing, MI, 

U.S.). The test strains included 3 MRSA (N315, COL, Mu50), 1 susceptible (ATCC 6538; 

American Type Culture Collection, Manassas, VA), and 1 susceptible clinical isolate (ASU 36) 

kindly provided by Dr. Dave Gilmore at Arkansas State University, Jonesboro, AR. For each 

experimental setup, one colony from each respective S. aureus strain was added to 5ml of tryptic 

soy broth (TSB, Acumedia, Lansing, MI, U.S.) and incubated at 37°C for 24 h with shaking at 

150 rpm. Inocula were prepared as described below for the assay to be performed. 
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Disc diffusion assay 

 
 

To evaluate the antimicrobial activity of four pure EO compounds against S. aureus a disc 

diffusion method previously described by Muthaiyan et al. (2012) was used with modifications. 

Four pure EO compounds commonly found in pine oils were used: alpha-pinene, 3-carene, (+)- 

limonene (ACROS Organics, Morris Plains, NJ, U.S.) and (1S)-(-)-β-pinene (referred to as beta- 

pinene for remainder of manuscript) (Alfa Aesar, Ward Hill, MA, U.S.). Alpha-pinene was 

evaluated alone and in combination with the three other EOs. Briefly, the overnight cultures of 

each S. aureus strain were diluted separately in TSB to achieve an optical density (OD) of 0.3 at 

600 nm. A 100 μl aliquot of prepared inoculum for each S. aureus strain was evenly spread on 

TSA plates to create a lawn of bacteria. Sterile, blank, 6-mm paper discs (Becton, Dickinson and 

Company, Sparks, MD, U.S.) were aseptically placed on TSA plates containing S. aureus and 10 

µl of EO were pipetted onto the discs and allowed to absorb for 5 min. For EOs in combination, 

5 μl of each EO was added to the disc. Sterile distilled water was used as a negative control. 

After 24 h of incubation at 37°C, diameters (in millimeters) of zones of inhibition were measured 

and recorded. The same method was followed at 6 and 13°C except lawns of S. aureus strains 

were prepared at 37°C prior to addition of EO saturated discs. 

 

Essential Oil Growth Inhibition Assay (GIA) 

 
 

A growth inhibition assay was performed to evaluate the susceptibility of the S. aureus strains to 

varying EO concentrations (0.5, 1.5, 3.28, and 5%) at 6, 13 and 37°C. At 37°C, a 96-well plate 

bioassay and an Infinite M200 micro plate reader (TECAN, San Jose, CA, U.S.) with shaking 

was used and at 6 and 13°C, a refrigerated shaker and, a spectrophotometer (Beckman Coulter 

DU® 640, Brea, CA, U.S.) was used. Growth of S. aureus during exposure to the EOs was 
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monitored over a 48 h period with absorbance readings (at 600 nm) recorded every 30 min when 

using the micro plate reader and at 0 to every 30 min for 7 h and then at 24, 26, 28, 32, 48, 56 

and 72 h when using the spectrophotometer. Essential oil solutions were prepared in  four 

different concentrations in 0.5% Tween 80 (Amresco, Solon, Ohio, U.S.). For the 96-well plate 

bioassay, 100 μl of prepared inocula in TSB was dispensed into each well followed by 100 μl of 

the EO solutions. For each S. aureus inoculum, 500 μl of overnight culture was diluted in 25 ml 

of TSB to achieve an OD of 0.08 at 600 nm. Combinations of EOs were added in equal parts (50 

μl + 50 μl) to achieve the same final concentration. Four controls were included in each 96-well 

plate including 200 μl of prepared inoculum without EOs; 200 μl of prepared inoculum + Tween 

80; 200 μl of Tween 80; and 200 μl of TSB. 

 

GIA – Essential Oils and Phage 

 
 

To evaluate the susceptibility of S. aureus to varying concentrations of EOs in combination with 

phage, a 96-well plate bioassay as described above was used. All S. aureus strains were tested in 

three combinations: 1) EOs alone, 2) phage alone and 3) EOs + phage along with positive and 

negative controls as described above for GIA with EO only. Bacteriophage K was added at an 

MOI of 0.1. 

 

At 6 and 13°C, the GIA described previously by Muthaiyan et al. (2012) was used with 

modifications. Inoculum for each S. aureus strain was prepared as described above. Individual S. 

aureus strains were mixed with varying concentrations of EO compounds in 50 ml Erlenmeyer 

flasks. The flasks were kept at 6 or 13°C with shaking. Growth inhibition of S. aureus at 6 and 

13°C was monitored at regular intervals. A negative control flask of bacterial culture without EO 

was included. 
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Bacteriophage Characterization 

Preparation of phage stock 

Two strains of bacteriophage, bacteriophage K (ATCC 19685-B1) and bacteriophage 92 (ATCC 

33741-B1) were initially used. A double overlay method was used to propagate the 

bacteriophage. Briefly, for propagation of bacteriophage K, 100 µl log phase S. aureus culture 

(ATCC 25923) was combined with 100 µl bacteriophage K in 5 ml of 0.7% TSA (soft agar). The 

soft agar was poured on TSA plates, allowed to solidify, and the plates were incubated at 37°C 

for 24 hours to allow for complete lysis of the bacterial lawn. After 24 hours, the soft agar was 

scraped off and placed in a 50 ml conical tube containing 15 ml of SM buffer (5.8 g NaCl, 1.2 g 

MgSO4, 50 mL 1M Tris-HCl (pH 7.5), 0.1 g Gelatin) and vortexed. The bacteriophage 

suspension was then kept in an incubator at 37°C with gentle shaking for 4 hours. The 

suspension was centrifuged at 580 × g for 25 min at 4°C to sediment the cellular debris and agar. 

The clear supernatant containing bacteriophage K was collected and passed through a 0.22 µm 

pore size cellulose acetate filter (VWR, Radnor, PA, U.S.) to obtain a homogenous phage stock. 

The concentration of bacteriophage K stock was determined using the double agar overlay 

method described above. Following titration, the bacteriophage K stock was stored in small 

aliquots at −80°C. For bacteriophage 92, the above method was followed with the exception of 

using nutrient broth (NB, Becton, Dickinson & Company, Annapolis, MD, U.S.) with 400µg/ml 

of CaCl2. 

 

Phage adsorption 

 
 

To evaluate adsorption properties of bacteriophage K and 92, phage adsorption assay as 

described previously by Hwang et al. (2009) was used with modifications. Briefly, S. aureus 
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strains were prepared in TSB with a final concentration of 108 CFU/ml. Bacteriophage K or 92 

was added to the cell suspension at a MOI of 0.1 (107 PFU/ml) and incubated at 37°C to allow 

adsorption to the bacterial cells. At time 0 and every 10 min for 1 h, phage-bacteria suspensions 

were collected and centrifuged at 14,000 × g for 10 minutes. The supernatant was decanted and 

serially diluted. Plaque assay using the double overlay method as described above was used to 

determine the number of bacteriophage in the supernatant and reported as plaque forming units 

(PFU). 

 

Inhibition of S. aureus in vitro 

 
 

Each S. aureus inoculum was mixed with bacteriophage K at a MOI of 0.1. At the designated 

time points (e.g., time 0 followed by every hour for 6 h, then at 24, 48, 72, 96 and 120 h), the OD 

at 600 nm was measured, and the sample was processed for recovery and detection of 

bacteriophage as described above in bacteriophage-adsorption. Inactivation of S. aureus by 

bacteriophage K was performed at 6, 13, and 37°C. 

 

Effect of essential oils on phage 

 
 

The inhibitory effect of EOs on bacteriophage K was examined. Bacteriophage inhibition was 

measured at 6, 13, and 25°C for designated time points (0, 1, 6, and 24 h). Briefly, bacteriophage 

suspension was mixed with EOs at select concentrations and incubated at the appropriate 

temperature. A double overlay assay was performed to determine the effect of EOs against 

bacteriophage K using S. aureus host ATCC 25924. 
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Statistical Analysis 

 
 

All experiments were repeated two times with duplicate plates. Before analysis, the mean of the 

duplicate plate counts from two replicates was converted to log10 PFU/ml. For disc diffusion 

assay, differences between means of zone of inhibitions were tested by least square difference, 

and statistical differences were examined using two factor factorial and randomized complete 

block diagram (RCBD). Population of S. aureus strains treated with bacteriophage-EOs cocktail 

were subjected to one-way analysis of variance (ANOVA) for a completely randomized design 

using JMP (Version 11.1.1, SAS Institute Inc., Cary, NC) to determine whether treatment with 

bacteriophage-EO significantly reduced the number of viable S. aureus cells. In all cases, the 

level of statistical significance was set at P < 0.05. 

 

Results 

 
 

Disc diffusion assay 

 
 

The antimicrobial effects of EOs against five S. aureus strains based on the disc diffusion assay 

are shown in Table 1. All five S. aureus strains showed varied susceptibility to the EO 

compounds at 37°C with zones of inhibition (IZ) ranging from 8 to 23 mm in diameter. More 

specifically, alpha-pinene alone had significantly higher inhibitory effect against S.  aureus 

strains (IZ = 10 to 23 mm) when compared to the use of the EO compounds in combination 

(Figure 1). This can probably be explained by the fact that 10 µl of each compound were used 

when evaluated alone whereas 5 µl of each compound was used when evaluated in combination. 

In addition, Mu50 strain was the least susceptible to the majority of EO compounds and thus was 

excluded from future experiments. With respect to EOs in combination, greater antimicrobial 

effects were observed with alpha-pinene + (+)-limonene (IZ =11 to 15 mm) when compared to 
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alpha-pinene used in combination with beta-pinene and 3-carene. Within S. aureus strains, COL 

had significantly different IZ with each of the four EO compounds (Table 1). Within EO 

compounds, all except alpha-pinene + (+)-limonene produced significantly different IZ across all 

five strains of S. aureus (Table 1). 

 

In addition to 37°C, the antimicrobial properties of these EO compounds were also tested at 6 

and 13°C. These temperatures were selected because it represents refrigeration temperature and 

temperature abuse of food products, respectively, in order to evaluate potential application in the 

food industry. However, the disc diffusion assay was not suitable for evaluation at these 

temperatures since lawns of S. aureus strains first had to be prepared at 37°C prior to addition of 

EO compounds which is counter indicative for this method (data not shown). 

 

Efficacy of essential oils against S. aureus 

 
 

To evaluate the inhibitory effect of EO compounds, growth inhibition assays were performed by 

exposing four S. aureus strains to various EO concentrations (0.5%, 1.5%, 3.28%, and 5%) over 

a 48-hour period at 37°C. All four S. aureus strains showed significantly reduced growth (p < 

0.006) when compared to the positive control over the 48 h period (Figure 2). As expected, the 

lowest concentration of EO (0.5%) had the least inhibitory properties against S. aureus growth 

when compared to subsequently higher concentrations. Conversely, higher concentrations of EO 

(3.28% and 5%) showed similar results with inhibition to S. aureus up to 48 hours depending on 

the strain. Similar to the disc diffusion assay, alpha-pinene showed higher inhibition of S. aureus 

growth when compared to the EOs in combination. However, out of the EO combinations 

evaluated, alpha-pinene + 3-carene inhibited S. aureus growth better than the other combined 

EOs. Alpha-pinene at 1.5% and 3.28% showed the highest significant difference for inhibition of 
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all S. aureus strains with p-values ranging between 0.0006 to 0.001 when compared to their 

respective positive controls. Based on these results, 1.5% and 3.28% concentrations of alpha- 

pinene alone and alpha-pinene + 3-carene were selected for further evaluation. The results of the 

growth inhibition assay with alpha-pinene alone and alpha-pinene + 3-carene at concentrations of 

1.5% and 3.28% against four S. aureus strains are shown in Figure 2. 

 

Phage characterization 

 
 

The lytic activity of the two S. aureus specific bacteriophage, bacteriophage K and 92 were 

tested against S. aureus strains. All five S. aureus were weakly susceptible towards 

bacteriophage 92 and thus the adsorption of the bacteriophage to the S. aureus strains was 

relatively low resulting in very few PFU (data not shown). Therefore, bacteriophage 92 was 

excluded from further experiments. Conversely, bacteriophage K showed high lytic activity 

against all S. aureus strains tested (Figure 3). For phage adsorption at 37°C, bacteriophage K 

showed a steady increase in the number of PFU over a period of 6 hours when incubated with all 

S. aureus strains (Figure 4C). After 6 hours at 37°C, S. aureus strains ASU 36 and ATCC 6538 

had more than a 2 log increase in the number of PFU, and S. aureus strains N315 and COL 

showed more than a 1.5 log increase in the number of PFU. At 6 and 13°C, the lytic activity of 

bacteriophage K gradually decreased over the 6 h period against S. aureus strains (Figure 4A-B). 

 

To investigate the antimicrobial activity of bacteriophage K over a prolonged period of time (24 

to 120 hours), phage adsorption was performed at 6, 13, and 37°C (Figure 5A-C). At 6°C, the 

replication of bacteriophage K in all S. aureus strains showed fluctuations in number of PFU 

before decreasing after 120 hours. At 13°C, the number of PFU remained more or less constant 

after 72 hours, ranging between 4 and 6 log10 PFU/ml depending on the strain (Figure 5B).  As 
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expected, at 37°C the number of PFU was 3 log higher after 24 hours as compared to 6 and 13°C 

(Figure 5). The lytic activity of bacteriophage K against S. aureus strain COL remained constant 

over a period of 120 hours. For other strains, the number of PFU slightly decreased after 72 

hours. In addition to direct count of PFU, OD readings were also measured prior to 

centrifugation to collect PFU; however, the pattern of OD readings varied with different strains 

and did not often correspond with PFU/ml (data not shown). 

 

Efficacy of combined phage and EO against S. aureus 

 
 

To evaluate the inhibitory effect of EO compounds (α-pinene and 3-carene) combined with 

bacteriophage K, GIAs were performed by exposing four S. aureus strains to two concentrations 

(1.5% and 3.28%) of EO as well as bacteriophage K at a MOI of 1 over a 48-hour period at 

37°C. All four S. aureus strains showed a significant reduction in growth (p < 0.05) when 

compared to its normal growth curve (Figure 6A-D). Both bacteriophage K alone and α-pinene 

alone at 1.5% and 3.28% showed similar inhibition trends as observed in phage adsorption and 

initial GIAs against all S. aureus strains, respectively. However, with bacteriophage K and EO 

combinations, bacteriophage K with 3.28% α-pinene inhibited S. aureus growth better than other 

combinations of EOs and bacteriophage depending upon the strain. For S. aureus strains N315 

and ASU 36, there was no significant difference between the treatments. For COL and ATCC 

6538, bacteriophage K had significantly higher inhibitory effect compared to other treatments 

such as 1.5% α-pinene and bacteriophage K + 1.5% α-pinene (p value ranging between 0.006 to 

0.021) (Figure 6C). The results of the GIAs with α-pinene and bacteriophage K alone and in 

combination at concentrations of 1.5% and 3.28% against four S. aureus strains are shown in 

Figure 6A through 6D. 
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Discussion 

 
 

Staphylococcus aureus is one of the major bacterial agents causing foodborne diseases  in 

humans primarily through the production of enterotoxins. In addition to this, S. aureus is also the 

most common nosocomial pathogen according to the National Nosocomial Infections 

Surveillance (Wunderink et al., 2003). Humans are common asymptomatic carriers of 

enterotoxigenic S. aureus in the nose, throat, and skin. (Gutierrez et al., 2012). Since S. aureus is 

becoming universally resistant to traditional chemotherapeutic agents, there is more focus on the 

pre-antibiotic era for alternative antimicrobials effective against S. aureus including EOs and 

bacteriophage (Panneerseelan and Muriana, 2009). 

 

In the present study, I evaluated the antimicrobial activity of four pure EO compounds that are 

common components of crude essential oils including those extracted from coniferous trees (e.g., 

loblolly pine or Pinus taeda L.), rosemary, citrus fruits, and cumin (Fu et al., 2007; Allahghadri 

et al., 2010). I focused on pure compounds from pine oils as a recent paper by Adams et al., 

(2014) determined that α-pinene, β-pinene, and limonene were major components in crude oils 

extracted from the loblolly pine, a major forestry product of Arkansas in the U.S. The study by 

Adams et al. (2014) also indicated some antimicrobial activity of the crude essential oil extracts 

against S. aureus; therefore, in the present study, I aimed to evaluate some of the major 

components separately and in combination. 

 

Numerous studies have evaluated the efficacy of a variety of EO compounds against bacterial 

pathogens in vitro including S. aureus. These EOs include bay, cinnamon, clove, lemongrass, 

lemon myrtle, mountain savory, Melissa, ajwaine oil, bavchi oil and oregano (Adukwu et al., 

2012; Hyun et al., 2014; Palmer et al., 1998 Upadhyay et al., 2010; Chao et al., 2008 and 
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Leuschner and Lelsch, 2003). Palmer et al. (1998) investigated the antimicrobial activity of 21 

plant essential oils against S. aureus. The authors reported that oils such as bay, cinnamon, clove, 

spearmint, thyme and eucalyptus had a high bacteriostatic and bactericidal effect against S. 

aureus with a zone of inhibition ranging from 8 to 11mm (disc diameter 4 mm) as compared to 

other plant essential oils tested. Another study by Adukwu et al. (2012) reported that low 

concentrations of lemongrass EO (0.03 to 0.06%, v/v) effectively inhibited the growth of S. 

aureus and was bactericidal at slightly higher concentrations (0.125%). Meanwhile, in the same 

study, the effective inhibitory and bactericidal concentrations of grapefruit EO against S. aureus 

were reported to be 10 to 100-fold higher than lemongrass. These results indicate that some EOs 

are effective at very low concentrations while others are effective at relatively higher 

concentrations. Therefore, in this study, I selected a range of concentrations (0.5, 1.5, 3.28 and 

5%) to better understand the effect of the components of pine EO against S. aureus. To date, 

there are very few studies that have investigated the antimicrobial activity of pine EO and its 

individual components against bacterial pathogens. 

 

Of direct relevance to the present study, Hong et al. (2004) reported that the EOs of pine needles 

exert antibacterial effects against L. monocytogenes, S. aureus, and Klebsiella pneumoniae with 

the zone of inhibition diameter in the range 11 to 14 mm. In the present study, the S. aureus 

strains showed varied zones of inhibition (IZ) to the EOs evaluated ranging from 8 to 23 mm in 

diameter. Palmer et al. (1998) studied the inhibitory effects of clove and rosemary EOs against S. 

aureus and reported IZ of 8 and 5.9 mm, respectively. Fu et al. (2007) investigated the same EOs 

for antimicrobial effects against S. aureus and observed zones of inhibition of 16.3 ± 0.7 and 

18.5 ± 1.3 mm, respectively. Although these two studies used different diameter discs—4 mm 

and 6 mm—the differences in the outcomes of these studies show that the disc diffusion assay 
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can result in varied outcomes when the same EOs are evaluated. In this study, I also evaluated 

the inhibitory effect of trans-cinnamaldehyde on S. aureus. The S. aureus strains showed a 

higher susceptibility towards trans-cinnamaldehyde as compared to pine EO compounds with IZ 

ranging from 28-44 mm in diameter. In order to investigate differences in IZ that might result 

from the use of different media, disc diffusion assay using trans-cinnamaldehyde was also 

performed on CHROMagar Staph aureus (CHROMagar, Springfield, NJ, U.S.) plates and TSA 

plates using the same method. Comparison between TSA and CHROMagar plates indicated that 

the IZ produced by trans-cinnamaldehyde on CHROMagar plates were slightly larger than the IZ 

produced on TSA plates (data not shown). This is evidence of the variability the disc diffusion 

assay can have with only a change in media thus indicating that this is truly a crude screening 

method. 

 

A novel aspect of the present study was the evaluation of combinations of pure EO compounds. 

Different terpenoid components of EOs can interact to either reduce or enhance antimicrobial 

efficacy (Delaquis et al., 2002). Synergism is observed when the effect of the combined 

substances is greater than the sum of the individual effects (Burt, 2004) while the absence of 

interaction is defined as indifference. Interestingly, phenolic monoterpenes and phenylpropanoid 

which typically show strong antimicrobial activities in combination with other components were 

found to increase the bioactivities of these mixtures. For instance, mixtures of menthol with 

geraniol yielded synergistic effects against S. aureus (Gallucci et al., 2009). Other monoterpenes 

have also been tested such as the oxide 1, 8-cineole in combination with aromadendrene and 

limonene and were found to have additive and synergistic effects against S. aureus, respectively 

(Mulyaningsih et al., 2010; van Vuuren and Viljoen, 2007). According to Tserennadmid et al. 
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(2011), monoterpene hydrocarbons (e.g., α-pinene) when combined with limonene or linalool 

exhibited synergistic effects against yeast. 

 

Mixtures of crude EOs have also been shown to interact with each other acting as additive, 

synergistic, and antagonistic agents (Kim et al., 1995). The EOs of basil (Ocimum basilicum) and 

peppermint (Mentha piperita) were shown to have synergistic effect against S. aureus, E. coli, 

and S. Typhimurium when used in combination (Bassole et al., 2012). In the same study, two 

lemon grass EOs, Cymbopogon citratus and C. giganteus, exhibited additive effects against S. 

aureus, E. coli, L. monocytogenes, and S. Typhimurium. Conversely, antagonistic effects have 

also been reported when antimicrobials are combined. Van Vuuren and Viljoen (2007) combined 

Melaleuca alternifolia EO (i.e. tea tree oil) and ciprofloxacin and reported an antagonistic effect 

against S. aureus. In the present study, the aim was to test the relationship (additive, synergistic 

or antagonistic) between pure EO compounds found in pine. The data indicate that EOs at 

different concentrations showed varied levels of inhibition against S. aureus, and in most cases, 

the combined EOs exhibited an additive effect against S. aureus. Here, the antimicrobial 

properties of S. aureus-specific bacteriophage were also investigated. Bacteriophage therapy is 

suggested as an alternative to treat bacterial infections due to its effectiveness against multidrug- 

resistant bacteria (e.g., MRSA), low cost, and self-replicative mode of action (Wang et al., 

2010). Capparelli et al. (2007) investigated the effectiveness of a S. aureus specific 

bacteriophage against MRSA in a mouse model and reported that 100% of the mice receiving 

bacteriophage therapy for treatment of MRSA infection survived compared to 20% for the 

control group. Although bacteriophage therapy is most often associated with investigating 

treatments for clinical infections—human and animal (Capparelli et al., 2007.) One of the aims 

of the present study was to understand the potential application of bacteriophage for control of 



48  

pathogens in other settings such as the food industry. More specifically, bacteriophage may be 

used as bio control agents during industrial food processing to reduce colonization of pathogens 

by application to food surfaces such as meats and fresh produce and through mixing with 

processed foods or even raw milk. However, a study by Goode et al. (2003) observed that 

bacteriophages are very effective against actively growing bacteria, but lose effectiveness in 

metabolically inactive bacteria which may be problematic in the food industry. Conversely, 

Greer (1998) reported that bacteriophage may continue to display lytic activity at temperatures as 

low as 1°C. Moreover, once foods are moved to room temperature, bacteriophage are capable of 

further controlling bacterial proliferation (Bigwood et al., 2008). For instance, Abuladze et al. 

(2008) evaluated the effectiveness of a cocktail of bacteriophage in the reduction of E. coli 

O157:H7 on vegetables. The authors reported that the bacteriophage cocktail reduced bacterial 

contamination on broccoli samples by 99.5%, 99% and 97% during storage at 10°C for 24, 120, 

and 168 h, respectively. Additional evidence of bacteriophage application in the food industry 

include Salmonella-specific bacteriophage applied to raw meats, ready-to-eat (RTE) foods, and 

fresh produce (Guenther et al., 2012); S. aureus-specific bacteriophage use during cheese 

manufacturing (Bueno et al., 2012); and commercially available bacteriophage cocktails (e.g., 

Listex™ P100 and ListShield™) for control of L. monocytogenes in raw and RTE foods (Soni et 

al., 2010). 

 

In the present study, bacteriophage K was shown to effectively reduce S. aureus concentrations 

in vitro at various temperatures with the greatest antimicrobial effect shown at 37°C. Additive or 

synergistic effects of the combination of bacteriophage K and pine-derived EO compounds 

against S. aureus were also investigated. To my knowledge, only a single previous study has 

considered  the  potential  synergism  between  bacteriophage  and  EO.    Viazis  et  al.  (2011) 
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investigated the potential synergism between E. coli O157:H7-specific bacteriophage and trans- 

cinnamaldehyde when applied to fresh produce. The authors observed at least a 1 log CFU 

reduction in the number of E. coli O157:H7 on organic baby spinach and baby romaine lettuce 

leaves after treatment with the combination of bacteriophage and EO suggesting a potential 

additive or even synergistic effect since the combination was more effective than either treatment 

alone. Additional studies have investigated the combination of bacteriophage with other 

antimicrobials such as nisin and bacterial strains exhibiting antagonistic activity towards 

pathogens (Martínez et al., 2008; Guenther et al., 2012; Table et al., 2012) 

 

The primary aim of this study was to understand combined effects of S. aureus specific 

bacteriophages with various EO compounds of pine oil against the growth of S. aureus. The data 

presented in this study proved that S. aureus specific bacteriophages combined with pine EO 

compounds is a potential method to control S. aureus in vitro. Unfortunately, the antimicrobial 

activity of both bacteriophage and EO is temperature dependent. In this study, the antimicrobial 

activity of EO at low temperatures did not yield successful results. It was noted that application 

of pine EO compounds (α-pinene) and bacteriophage K together resulted in higher reduction of 

S. aureus in vitro as compared to when applied alone. Thus, using bacteriophages in combination 

with EO to reduce growth of bacterial pathogens such as S. aureus, has the potential to be a 

novel approach for inhibiting S. aureus in various settings including clinical and within the food 

industry. 
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Table 1:  Zone of inhibition (mm) by essential oil compounds against S. aureus strains at 37°C. 

 

Figure 1. Disc diffusion assay. Susceptibility of S. aureus strains to (A) alpha-pinene and (B) 

alpha-pinene + 3-carene. 

Figure 2. Growth inhibition assay with two essential oil compounds at 1.5% and 3.28% 

concentrations against four S. aureus strains (A) ASU 36, (B) ATCC 6538, (C) COL and (D) 

N315. Line styles used in the graph are indexed as follows: 

 

 
 

Figure 3. Phage adsorption assay with bacteriophage K and S. aureus strains at 37°C. Four 

strains are i   

Figure 4. Phage adsorption assay of bacteriophage-bacteria suspension at various time points and 

three different temperatures; (A) 6°C (B) 13°C and (C) 37°C. Four strains are indicated by 

 
 

 

Figure 5. Phage adsorption assay with bacteriophage K and S. aureus strains at (A) 6°C, (B) 

13°C and (C) 37°C. Four strains show up as 

Figure. 6 Growth inhibition assay with bacteriophage K and two concentrations (1.5% and 

3.28%) of essential oil compound α-pinene alone and in combination against four S. aureus 

strains (A) N315 (B) ASU36, (C) COL and (D) ATCC 6538. Line styles used in the graph are 

indexed as follows: 
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Table 1:  Zone of inhibition (mm) by essential oil compounds against S. aureus strains at 37°C. 
 

 

Zone of inhibition (mm) 
S. aureus 
strains 

α-pinene 
α-pinene + 

β-pinene 

α-pinene + 

3 carene 

α- pinene + 

Limonene 

ATCC 6538 23(3.22)a,x
 10(1.4)b,x

 14(1.96)c,x
 11(1.54)b,x

 

ASU 36 18(2.52)a,y
 12(1.68)b,y

 14(1.96)c,x
 14(1.96)c,y

 

COL 19(2.66)a,y
 9(1.26)b,x

 12(1.68)c,y
 14(1.96)d,y

 

N315 18(2.52)a,y
 11(1.54)b,y

 12)(1.68)b,y
 15(2.1)c,y

 

Mu50 10(1.4)a,z
 8(1.12)b,z

 9(1.26)b,z
 11(1.54)a,x

 

 

x-zMeans in the same column are significantly different (p< 0.05). 

a-d Means in the same rows are significantly different (p< 0.05). 

Values in parenthesis are standard deviation observed. 
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Figure 1. Disc diffusion assay. Susceptibility of S. aureus strains to (A) alpha-pinene and (B) 

alpha-pinene + 3-carene. 

A B 
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Figure 2. Growth inhibition assay with two essential oil compounds at 1.5% and 3.28% 

concentrations against four S. aureus strains (A) ASU 36, (B) ATCC 6538, (C) COL and (D) 

N315. Line styles used in the graph are indexed as follows: 
 

 

C D 

B A 
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Figure 3. Phage adsorption assay with bacteriophage K and S. aureus strains at 37°C. Four 

strains are indicated by  
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Figure 4. Phage adsorption assay of bacteriophage-bacteria suspension at various time points and 

three different temperatures; (A) 6°C (B) 13°C and (C) 37°C. Four strains are indicated by 
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Figure 5. Phage adsorption assay with bacteriophage K and S. aureus strains at (A) 6°C, (B) 

13°C and (C) 37°C. Four strains show up as 

C 

B 

A 
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Figure. 6 Growth inhibition assay with bacteriophage K and two concentrations (1.5% and 

3.28%) of essential oil compound α-pinene alone and in combination against four S. aureus 

strains (A) N315 (B) ASU36, (C) COL and (D) ATCC 6538. Line styles used in the graph are 

indexed as follows: 
 

 

A B 

D C 
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Chapter 3: Application of bacteriophage and essential oils for the control of Staphylococcus 

aureus on raw chicken products 



64  

Abstract 

 
 

Multidrug-resistant (MDR) Staphylococcus aureus are increasingly prevalent and combinations 

of different antimicrobials represent an approach for combating MDR bacteria. Antimicrobials 

with potential food industry application include essential oils (EO) and bacteriophage. The aim 

of the present study was to investigate the combination of EOs and bacteriophages as alternative 

antimicrobials to control S. aureus on the surface of raw chicken products. To evaluate 

effectiveness on meat products, 2 cm × 2 cm pieces of chicken breast were inoculated with a 3 × 

107 CFU of a four strain cocktail of S. aureus followed by addition of bacteriophage alone, EO 

alone, or bacteriophage and EO in combination. Chicken pieces were incubated at 6, 13, and 

25°C, and samples were collected over time to measure reduction in S. aureus by bacterial 

spread plate method. Results indicate that at 25°C bacteriophage K alone inhibits S. aureus 

growth better as compared to other antimicrobial combination though these differences were not 

statistically significant. At 6 and 13°C, there was no significant effect of EO and bacteriophage 

alone or in combination against S. aureus when applied on the raw chicken pieces. Previous 

studies indicate that EOs and bacteriophage can be used as potential antimicrobials against S. 

aureus in vitro. However, for these antimicrobials to work in situ such as on raw meat products, 

a better delivery method should be employed for a uniform application on meat. 
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Introduction 

 
 

Staphylococcus aureus is commensal on human skin and is an important human  pathogen 

causing illnesses ranging from minor skin infections to life-threatening diseases such as 

pneumonia and bacteremia (Yoon et al., 2013). Food production animals such as chickens and 

pigs can also become infected with S. aureus resulting in bovine mastitis and chicken arthritis 

which can also threaten food safety and potentially cause food poisoning (Vanderhaeghen et al., 

2010). Multiple antibiotic resistance is becoming a serious issue in the management of S. aureus 

infections. Since few new antibiotics have been placed on the market since 1998 and there are 

fewer prospects for new antibiotic agents, future treatments may depend on researching 

alternative therapies (Rapson, 2002). Research has revealed some promising novel antimicrobial 

candidates including plant essential oils (EO) and host-specific bacteriophage (Chao et al., 

2008). 

 

The application of bacteriophages to control the growth of foodborne pathogens such as S. 

aureus, Listeria monocytogenes, Salmonella enterica, and Escherichia coli is steadily growing 

(Hudson et al., 2010; Hagens and Loessner, 2010). For the purpose of the present study, the 

focus will be on bacteriophage specific to S. aureus. Staphylococcus aureus bacteriophages are 

grouped into three classes based on genomic size: class I (<20kb), class II (~40kb) and class III 

(>125 kb) (Kwan et al., 2005). Bacteriophages belonging to class III are obligate lytic 

bacteriophages with relatively wide host ranges. For example, bacteriophage K—the 

bacteriophage used in the present study—belongs to class III (127 kb) (Kwan et al., 2005). 

Obligate lytic bacteriophages have received renewed interest as potential therapeutic agents to 

replace or supplement antibiotics in the treatment of methicillin resistant S. aureus (MRSA) or 

other antibiotic-resistant S. aureus strains (Yoon et al., 2013). Bacteriophages have also been 
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developed as a food surface decontaminant for other foodborne pathogens including Listeria, E. 

coli, and Salmonella (e.g. Listex P100, EcoShield, and SalmoFresh) (Soni et al., 2010). The 

acceptance of bacteriophages as natural food additives is based on the presence of naturally high 

levels of bacteriophages in the digestive tract of humans and throughout the environment. (Monk 

et al., 2010). 

 

In vitro data indicate that many plant-derived EOs have antimicrobial activity. For instance, 

forestry by-products such as turpentine have been used topically as a medicinal for centuries for 

treating human parasites and even a modern day vapor rub (i.e. Vicks®) for treating congestion 

and coughs contains turpentine (Hoon et al., 2004). According to Dryden et al. (2004), topical 

tea tree oil is an effective therapy for reducing MRSA nasal colonization. Antimicrobial 

components of Pelargonium EOs (i.e. citral and linalool) have been found to be effective against 

S. aureus and could be used as a novel food or cosmetic antimicrobial agents (Lis Balchin et al., 

1998). Adukwu et al. (2012) also reported that lemongrass EO at low concentrations (0.03 and 

0.06% (v/v)) was effective at inhibiting the growth of S. aureus strains in vitro. 

 

With respect to application of bacteriophage in food products, the use of bacteriophages for 

reduction of Campylobacter on meat products has been extensively investigated. For example, 

Bigwood et al. (2008) reported that Campylobacter-specific bacteriophage reduced C. jejuni 

inoculated on cooked and raw meat at 5°C and 24°C, by 2.4 log10 CFU/cm2 and 1.5 log10 

CFU/cm2, respectively. Additional applications of bacteriophage in food products have also been 

reported (Zaczek et al., 2015). Viazis et al. (2011) reported that E. coli O157:H7 specific 

bacteriophages significantly reduced the number of E. coli O157:H7 cells on baby romaine 

lettuce leaves. In addition, Salmonella bacteriophages (SSP5 and SSP6) have been shown to 

control Salmonella on alfalfa seeds (Kocharunchitt et al., 2009) while Listeria bacteriophages 
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were reported to suppress the growth of L. monocytogenes on honeydew melon (Leverentz et al., 

2004). 

 

Numerous studies have reported on the prevalence of various human pathogens including S. 

aureus on meat products. Waters et al., (2011) investigated the prevalence of S. aureus in U.S. 

meat and poultry samples (n = 136). Staphylococcus aureus contamination was most common 

among turkey samples (77%), followed by pork (42%), chicken (41%) and beef (37%). 

Similarly, Weese et al. (2010) reported the isolation of MRSA from 7.7% of pork samples tested 

(31/402). In another study by Hanson et al. (2011), S. aureus was isolated from 27 of 165 meat 

samples (i.e. turkey, pork, chicken, beef) from retail stores in Iowa with the highest prevalence in 

turkey (19.4%), pork (18.2%), and chicken (17.8%). Incidence of S. aureus on retail meat 

including MRSA have been reported in various other studies as well (Pu et al., 2008; Bhargava 

et al., 2011 and O’Brien et al., 2012). However, it is still unknown whether MRSA 

contamination of raw meats can play any role in the overall ecology and transmission of this 

organism (O’Brien et al., 2012). 

 

To control the potential regrowth of pathogens in food products, more specifically meat and 

poultry products, a combined bacteriophage and EO treatment may offer a more practical and 

cost-effective approach. Since bacteriophages are present in almost every environment and EOs 

can be easily extracted from plants, these antimicrobials tend to be less expensive than many 

antimicrobials on the market (Viazis et al., 2011). Both bacteriophages and EOs have been 

successfully applied to suppress the activity of food borne pathogens. For instance, Viazis et al. 

(2011) reported that the combination of E. coli O157:H7 specific bacteriophage BEC8 and the 

EO trans-cinnamaldehyde lead to complete inactivation (5 log CFU/leaf reduction) of E. coli 

O157:H7 within 10 minutes and 1 hour at all temperatures (4, 8, 23, and 37°C) for spinach and 
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lettuce, respectively. The bacteriophage treatment is a new and effective hurdle, which if applied 

with EOs may maximize the protection from food borne pathogens on both raw and processed 

food products. 

 

Since EOs have the potential to be used as natural agents for food preservation due to their 

content of antimicrobial compounds (Helander et al., 1998) and bacteriophages offer a natural 

method to control bacterial contamination of foods (Callaway et al., 2008), using a combination 

of these treatments may prove more beneficial as it may produce additive or synergistic effects. 

The multiplicity of infection (MOI) is considered to be a key parameter in bacteriophage 

application to food surfaces (Viazis et al., 2011). Hudson et al., (2013) reported that increasing 

bacteriophage concentrations result in greater reductions in the concentration of pathogenic 

bacteria. Therefore, with this proposed hurdle technology (i.e., bacteriophage combined with 

EO), lower concentrations of each antimicrobial could be employed in a specific sequence to get 

similar or better results than either alone and maximize protection from foodborne pathogens 

such as S. aureus on meat products can be achieved. Another advantage of using a combined 

treatment is overcoming the limitations of EO and bacteriophages when used separately. For 

instance, occurrence of bacteriophage resistance within bacterial populations can limit 

bacteriophage application in the food industry (Ye et al., 2010). Additionally, EOs can exhibit 

poor inhibitory effects against S. aureus at lower temperatures (6 and 13°C). To overcome the 

limited efficacy of bacteriophages and EO as antimicrobials used separately, this study 

investigates the effectiveness of their combined use against S. aureus on raw chicken products. 

 

Material and Methods 
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Preparation of meat 

 
 

Chicken breasts were purchased from a retail grocery store in Fayetteville, Arkansas. Packaging 

was removed using a razor blade sterilized with 10% bleach, and chicken breasts were 

transferred into individual zip lock bags and stored at -18°C for a maximum of 4 weeks and, 

before use, thawed and all excess liquid was removed. Raw chicken pieces were sliced 

aseptically into thin 2cm x 2cm squares using a sterile knife. The knife was sterilized with 70% 

ethyl alcohol followed by 10% bleach. The chicken pieces were then placed individually into 

pre-labeled Petri dishes and equilibrated to 6°C, 13°C, and 25°C for two hours prior to 

inoculation with S. aureus cocktail. 

 

Preparation of bacterial stocks 

 
 

Inocula of individual S. aureus strains (N315, ASU 36, ATCC 6538 and COL) were grown in 

tryptic soy broth (TSB, Acumedia, Lansing, MI, U.S.) overnight at 37°C with shaking at 150 

rpm. Enumeration of each S. aureus strain was performed to determine the final concentration. A 

S. aureus cocktail was prepared by mixing 1 ml from each overnight grown culture strain. Serial 

dilution and spread plating on tryptic soy agar (TSA, Acumedia, Lansing, MI, USA) plates was 

performed to determine the overall stock concentration of the cocktail (1.5 × 109 CFU/ml). 

 

Preparation of bacteriophage K 

 
 

Propagation of high titer stocks of bacteriophage K was carried out using double overlay method 

with S. aureus ATCC 25923 as host as described in Chapter 2. Briefly, for propagation of 

bacteriophage K, 100 µl of a log phase S. aureus culture was combined with 100 µl 

bacteriophage K (1011  PFU/ml) in 5 ml of 0.7% TSA (soft agar). The soft agar was poured on 
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TSA plates, allowed to solidify, and the plates were incubated at 37°C for 24 h to allow for 

complete lysis of the bacterial lawn. After 24 h, the soft agar was scraped off and placed in a 50 

ml conical tube containing 15 ml of SM buffer (5.8 g NaCl, 1.2 g MgSO4, 50 ml 1M Tris-HCl 

(pH 7.5), 0.1 g Gelatin) and vortexed for 2 min. The bacteriophage-SM buffer suspension was 

then kept in an incubator at 37°C with gentle shaking for 4 hours. The suspension was 

centrifuged at 580 × g for 25 min at 4°C to sediment the cellular debris and agar. The clear 

supernatant containing bacteriophage K was collected and passed through a 0.22 µm pore size 

cellulose acetate filter (VWR, Radnor, PA, U.S.) to obtain a homogenous bacteriophage stock. 

The concentration of bacteriophage K stock was determined using the double agar overlay 

method. Following titration, the bacteriophage K stock was stored in small aliquots at −80°C. 

The bacteriophage K stock concentration was 1 × 1011 PFU/ml which was diluted to 1 × 108 

PFU/ml using sterile 1× phosphate buffered saline (PBS). The bacteriophage K was added at 

MOI 0.1 with a final concentration of 2 ×106 PFU/20µl. Based on our previous bacteriophage 

adsorption studies (Chapter 2), bacteriophage K resulted in greater lytic activity against S. aureus 

strains at a MOI of 0.1 as compared to a MOI of 0.01 and 1. 

 

Preparation of essential oil 

 
 

Two EO compounds were selected for this study—alpha-pinene and 3-carene (ACROS 

Organics, Morris Plains, NJ, U.S.). Essential oil solutions were prepared in two different 

concentrations (1.5% and 3.28%) in 0.5% Tween 80 (Amresco, Solon, Ohio, U.S.). Based on our 

previous growth inhibition studies, 1.5% and 3.28% of alpha-pinene alone and alpha-pinene + 3- 

carene showed the highest inhibitory effect against all S. aureus strains compared to other 

treatments (Chapter 2). 
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Treatment of inoculated meat product with bacteriophage and/or EOs 

 
 

For experimental samples, 20µl aliquots of exponential phase S. aureus host cocktail containing 

approximately 3×107 cells total were carefully pipetted onto the upper surface of the 2 cm × 2 cm 

raw chicken piece and allowed to dry for 10 min at room temperature for maximum adhesion to 

the food matrix. Each sample of chicken was then treated with a 20µl solution of either 

bacteriophage with a MOI of 0.1 or EO diluted (1.5 or 3.28%) suspension. To examine the 

combined effect of bacteriophage K and EO on chicken pieces inoculated with S. aureus, 10µl of 

each antimicrobial solution was pipetted onto the inoculated surface of the chicken to give the 

same final concentrations at the treatments alone. For control samples, a positive control with the 

same concentration of S. aureus cocktail was used without addition of bacteriophage and/or EO 

suspension. Chicken pieces inoculated with 20µl of PBS and/or 0.5% Tween 80 were used as 

negative controls. After adding S. aureus cocktail and the appropriate antimicrobial treatment 

(phage and/or EO), the individual Petri dishes were incubated at 6, 13, and 25°C for varying time 

periods depending upon the temperature. 

 

Enumeration of bacteria on meat products 

 
 

For enumeration of S. aureus, chicken pieces were individually transferred to sterile Whirl-Pak 

bags (Nasco, Fort Atkinson, WI, U.S.). Five ml of PBS were added to the sample using a sterile 

serological pipet. Samples were then mixed vigorously by hand for two min. The liquid portion 

was transferred to a sterile 14 ml culture tube and vortexed for 20 s. After vortexing, 1 ml of the 

eluent was transferred to a micro centrifuge tube and centrifuged at 14,000 × g for 10 min. The 

supernatant was removed and the pellet was re-suspended in 1ml of PBS. The re-suspended 

pellet was then prepared in 10-fold dilutions in PBS and the appropriate dilution was applied to 
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CHROMagar Staph aureus plates (CHROMagar, Springfield, NJ, U.S.) using the spread plate 

method for enumeration of S. aureus at different time points (0, 1, 6, 24, 48, 72, 96 and 120 h). 

The plates were incubated at 37°C for 24 h. Each experiment was carried out in duplicate on two 

separate occasions. 

 

Statistical Analysis 

 
 

All experiments were repeated two times with duplicate plates. Population of S. aureus strains 

treated with bacteriophage and/or EOs solution was subjected to one-way analysis of variance 

(ANOVA) using JMP (Version 11.1.1, SAS Institute Inc., Cary, NC, U.S.) to determine whether 

treatment with bacteriophage and/or EO significantly reduced the number of viable S. aureus 

cells on raw chicken product. Results were considered significantly different at p 0.05. 

 

Results 

 
 

The antimicrobial treatments alone and in combination were tested against a cocktail of four S. 

aureus strains on raw chicken breast pieces at three temperatures (6, 13, and 25°C) to simulate 

refrigeration, temperature abuse, and room temperature, respectively. At all three temperatures 

(6, 13, and 25°C), there was no significant reduction in the number of bacterial colonies by any 

antimicrobial treatment when compared to the positive control at any given time point (Figure 1). 

In addition, there was no significant difference between the treatments at any temperature. 

Results indicate that at 13 and 25°C 1.5% alpha-pinene and bacteriophage K alone, respectively, 

inhibit S. aureus growth slightly better as compared to the other antimicrobial combinations 

though this was not significant. At 6 and 13°C, there was no significant effect of EO and 

bacteriophage alone or in combination against S. aureus when applied on the raw chicken pieces 

(Figure 1). 
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Discussion 

 
 

Foodborne pathogens can exist in raw and processed food, both in meat and vegetable products 

(Zaczek et al., 2015). The U.S. Food and Drug Administration stated that bacterial pathogens 

such as S. aureus, Shigella sp., and E. coli can be found in vegetables primarily leafy greens, 

tomatoes, and other fresh produce that make up salads and raw or ready-to-eat meat products 

(Zaczek et al., 2015). The concept of using natural antimicrobials such as bacteriophage and EO 

against spoilage bacteria and pathogens in foods has received increasing interest over time, and 

many studies support the value of this approach. For instance, Salmonella reduction after 

application of bacteriophages has been demonstrated for honeydew melon slices (Leverentz et 

al., 2001) and sprouts (Ye et al., 2010). Similarly, EO such as eugenol,  coriander,  clove, 

oregano, and thyme oils have been found to effectively inhibit L. monocytogenes and Aeromonas 

hydrophila in refrigerated, cooked poultry products (Skandamis and Nychas, 2001; Hao et al., 

1998). 

 

Based on this, the purpose of this study was to determine the effect of pure EO compounds and a 

 

S. aureus specific bacteriophage, individually and combined, against S. aureus present on the 

surface of raw chicken pieces. One previous study has successfully demonstrated the application 

of bacteriophage and EO to control E. coli O157:H7 present on baby spinach leaves and lettuces 

(Viazis et al., 2011). Other researchers have also reported that bacteriophages were able to 

effectively inactivate bacterial pathogens present on fresh produce and fruit such as lettuce 

(Sharma et al., 2009; Guenther et al., 2009), honeydew melon (Leverentz et al., 2004), tomatoes 

(Ye et al., 2009; Abuladze et al., 2008), spinach, and broccoli (Abuladze et al., 2008). However, 

these studies used high MOIs ranging from 1,000 to 100,000 and above. In this study, we applied 

bacteriophage at a relatively low MOI (0.1) to the chicken pieces inoculated with S. aureus. 

http://www.sciencedirect.com/science/article/pii/S0168160511007501#bb0170
http://www.sciencedirect.com/science/article/pii/S0168160511007501#bb0170
http://www.sciencedirect.com/science/article/pii/S0168160511007501#bb0285
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Studies have shown that the degree of inhibition/killing of bacterial host directly correlates with 

the total bacteriophage concentration (Hudson et al., 2013). Although the differences between 

the various treatments of bacteriophage and EOs were not statistically significant, there was an 

observed reduction of S. aureus counts with the bacteriophage treatment at 25°C which suggests 

that it may be possible to further improve the effectiveness of bacteriophage treatment by 

increasing the bacteriophage concentration and/or by using larger volumes of antimicrobial 

solution per unit of surface area. At 6 and 13 °C incubation, there was no significant decrease in 

the growth of S. aureus by any of the treatments. This effect can be explained by the 

immobilization of the bacteriophage particles on the chicken surfaces and matrix. Consequently, 

there was likely not an optimal distribution of the bacteriophage on the chicken surface in order 

to provide the highest probability for contact between bacteriophage and S. aureus. Our findings 

suggest that bacteriophage particles became immobilized on the chicken surfaces within the first 

few hours after addition, which in turn enabled survival of S. aureus in protected niches. Clearly, 

this is dependent on the surface properties and matrix of the raw chicken. Furthermore, 

bacteriophages can strongly bind to food molecules with hydrostatic interactions, resulting in 

loss of their lytic activity (Ye et  al.,  2009).  A  similar  phenomenon  has  been  observed 

with Listeria bacteriophage applied to contaminated surface-ripened soft cheese (Guenter and 

Loessner, 2011). The authors observed that the efficacy of bacteriophage treatment appeared to 

be highest at target cell concentrations at or below 100 cfu/cm2. Also, repeated bactriophage 

application did not enhance bacterial inhibition when compared to a single dose. There has been 

exploration on different bacteriophage delivery systems. Puapermpoonsiri et al. (2009) reported 

that bacteriophages specific for S. aureus or Pseudomonas aeruginosa could be encapsulated 

into  biodegradable  polyester  microspheres  via  a  modified  water/oil/water  double  emulsion 

http://www.sciencedirect.com/science/article/pii/S0168160511007501#bb1000
http://www.sciencedirect.com/science/article/pii/S0168160511007501#bb1000
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solvent extraction protocol resulting in only a partial loss of lytic activity. This type of delivery 

method can increase the solubility of bacteriophage in a food matrix such as raw chicken thus 

increasing the surface area for bacterial contact and improving the antimicrobial effectiveness 

(Shah et al., 2012). Despite the poor shelf-life of the formulation, the work is proof-of-concept 

for the formulation and controlled delivery of bacteriophages. 

 

With respect to EOs, the limited water solubility of EOs reduces their effectiveness (Sofos et al., 

1998), and the homogeneity of their distribution in food matrices (such as raw chicken) is 

required to ensure the inhibition of microbial growth throughout food products. The 

effectiveness of lipophilic EOs in foods may be further reduced because of the interaction with 

and/or solubilization by hydrophobic components of foods such as proteins and lipids. 

Challenges in dealing with such hydrophobic compounds can be overcome by dissolving them in 

a solvent with decreased polarity or dispersing them in emulsion droplets or biopolymer particles 

using nanoscale encapsulation systems (Shah et al., 2012). In a study by Gaysinsky et al. (2007), 

the antimicrobial activities of EO components such as eugenol and carvacrol against L. 

monocytogenes and E. coli O157:H7 were effectively improved by dissolving the EOs in 

surfactant micelles smaller than 100 nm. 

 

Conclusions 

 
 

Staphylococcus aureus are increasingly being reported with high prevalence on raw meat and 

ready-to-eat meat products. In the past few years, numerous research groups have evaluated 

natural antimicrobials as biocontrol agents for foodborne pathogens. Using S. aureus specific 

bacteriophages in combination with pure EO compounds to inhibit the growth of S. aureus on 

raw chicken products has the potential to be natural antimicrobials for reducing the incidence of 
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foodborne diseases. These natural antimicrobials have a long history and many areas linked with 

bacteriophage and EO application still need to be investigated. The data presented in this study 

emphasize the need for a more robust delivery technique of these antimicrobials on the meat 

surfaces in order to reach maximum inhibition of the target pathogen. 
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Figure 1. Effect of bacteriophage K and two essential oils at various time points on the survival 

of S. aureus at (A) 6°C, (B) 13°C and (C) 25°C. Line styles used in the graph are indexed as 

follows: 
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Figure 1. Effect of phage K and two essential oils at various time points on the survival of S. 

aureus at (A) 6°C, (B) 13°C and (C) 25°C. Line styles used in the graph are indexed as follows: 
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Chapter 4: Overall Conclusions 

 
 

Staphylococcus aureus is an important human pathogen whose ability to acquire resistance 

mechanisms and other pathogenic determinants has added to its emergence in both acute and 

community healthcare settings (Adukwu et al., 2012). Staphylococcus aureus are notorious for 

their resistance to antibiotics. The occurrence of methicillin resistant S. aureus (MRSA) and the 

detection of a vancomycin resistance gene in S. aureus has led to increased concern regarding the 

bacteria (Panneerseelan and Muriana, 2009). Since S. aureus is a commensal and lives on the 

anatomical locales of humans, food handlers are often a common source of contamination of 

foods with S. aureus (Gutierrez et al., 2012). Unfortunately, management of S. aureus infections 

in humans has become compromised as a result of multiple antibiotic resistant strains including 

MRSA and vancomycin resistant S. aureus (VRSA (Panneerseelan and Muriana, 2009). 

Numerous studies have discovered promising novel antimicrobial effects of plant-derived 

essential oils (EOs) and bacteriophages (Muthaiyan et al., 2012; Zaczek et al., 2015). Tea tree 

oil, ajwaine oil, citrus oil, olive oil, lemongrass, and cinnamon bark have been shown to be lethal 

to S. aureus (Chao et al., 2008; Upadhyay et al., 2010; Edwards-Jones et al., 2004). There are a 

number of host specific bacteriophages that are used in the food industry. For instance, S. 

aureus-specific bacteriophage use during cheese manufacturing (Bueno et al., 2012) and 

commercially available bacteriophage cocktails (e.g., Listex™ P100 and ListShield™) are used 

for control of L. monocytogenes in raw and RTE foods (Soni et al., 2010). Moreover, 

bacteriophages are now accepted as natural food additives since they are naturally present in the 

digestive tract of humans and throughout the environment (Monk et al., 2010). 

 

In the research presented here, I hypothesized that combining S. aureus-specific bacteriophage 

with EOs can inhibit the growth of S. aureus better than either treatment alone. This is a novel 
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approach as this is the first study to report on the use of these two antimicrobials against S. 

aureus. Similar research by Viazis et al. (2011) indicated that the combination of E. coli specific 

bacteriophage BEC8 and trans-cinnamaldehyde proved highly effective against E.coli O157:H7 

on leafy greens. Therefore, based on the reported antimicrobial potential of both EOs and host- 

specific bacteriophage, I proposed to investigate the efficacy of varying concentrations of EOs 

alone and in combination with S. aureus specific bacteriophage in order to determine potential 

synergistic effects. More specifically, I aimed 1) to determine the efficacy of varying 

concentrations of pure EOs compounds against S. aureus; 2) to evaluate the efficacy of a S. 

aureus-specific bacteriophage against four strains of S. aureus and 3) to combine these 

antimicrobials to determine potential synergism and possible application for the control of S. 

aureus on raw meat product such as chicken. Chapter 2 focused on the investigation of the 

efficacy of pine oil compounds alone in combination with S. aureus bacteriophage K. For the 

screening of the pure oil compounds, disc diffusion assay was used and four EOs were chosen 

including alpha-pinene, beta-pinene, 3-carene, and limonene as well as five different S. aureus 

strains. Based on the DDA, I concluded that alpha-pinene showed significantly higher effect 

against all S. aureus strains. Further, growth inhibition assay was performed to analyze which 

concentration of EO would have the greatest inhibitory effect. It was concluded that alpha-pinene 

and alpha-pinene+3-carene at 1.5% and 3.28% showed subsequently higher inhibitory effect. 

 

In order to evaluate the adsorption properties of bacteriophage K, a phage adsorption assay was 

used. I observed that at 37°C, all S. aureus strains were susceptible to bacteriophage K. 

Although, at 6 and 13°C, the lytic activity of bacteriophage K gradually decreased over a period 

of 6 hours against S. aureus strains. Phage adsorption assay was also performed over a prolonged 

period of time (24 to 120 hours) at 6, 13, and 37°C. At 6°C, the number of PFU against all S. 
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aureus strains showed fluctuations before decreasing after 120 hours. At 13°C, the number of 

PFU remained more or less constant after 72 hours. As expected, at 37°C the number of PFU 

was 3 log higher after 24 hours as compared to 6 and 13°C. Last, I tested the effect of both of 

these antimicrobials in combination in vitro. Over a period of time all four S. aureus strains 

showed a significant reduction in growth, though bacteriophage K with 3.28% α-pinene inhibited 

S. aureus growth better than other combinations of EOs and bacteriophage depending on the 

strain. 

 

The overall goal of this research was to utilize these antimicrobial compounds for control of S. 

aureus as a foodborne pathogen with potential applications in the food industry such as 

inactivation of S. aureus of raw chicken products. Hence, these antimicrobials were evaluated 

against S. aureus on raw chicken pieces at 6, 13 and 25°C. Interestingly, the inhibitory effect of 

these antimicrobials were limited on food matrix. Results indicated that at 25°C bacteriophage K 

alone inhibited S. aureus growth better as compared to other antimicrobial combination. At 6 and 

13°C, there was no significant effect of EO and bacteriophage alone or in combination against S. 

aureus when applied on the raw chicken pieces. This indicates that a better delivery method 

needs to be employed in order to get the desired inhibitory effect. 

 

Overall, this research has increased our knowledge related to interactions between antimicrobials 

against S. aureus. There is a need for more in depth studies related to the inhibitory effect of 

bacteriophage and EO together and alone against bacterial pathogens such as S. aureus. 
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