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Abstract 

Adoption of management practices that maintain or increase soil organic matter (SOM), 

which contains 58% carbon (C) on average, may help to mitigate climate change by sequestering 

atmospheric C. Therefore, the main objective of this study was to determine the long-term trends 

in SOM, soil C and nitrogen (N),  bulk density, various soil chemical properties (i.e., pH, 

electrical conductivity [EC], and Mehlich-3-extractable nutrients) in the top 10 cm, and soybean 

yield as affected by residue burning (burning and non-burning), tillage (conventional and no-

tillage), irrigation (irrigated and non-irrigated), and N-fertilization/residue level (high and low) in 

a wheat (Triticum aestivum L.)-soybean [Glycine max (L.) Merr.], double-crop system in eastern 

Arkansas. The secondary objective was to determine the relationship between soil water 

potential (-MPa) and soil water content (g g
-1

) in the top 7.5 cm as affected by residue 

treatments. The field site has been consistently managed for 13 years at the University of 

Arkansas Lon Mann Cotton Research Station near Marianna, Arkansas on a Calloway silt loam 

(fine silty, mixed, active, thermic Glossaquic Fraglossudalf). Averaged across all other factors, 

SOM did not differ over time (P > 0.05) under irrigation, while SOM content increased over time 

(P < 0.05) until approximately nine years after initial conversion when SOM decreased thereafter 

under dryland production. Results indicated that irrigation management caused many of the 

largest differences in near-surface soil property trends over time, namely SOM and C, compared 

to the other field treatments. The relationship between the natural logarithm of soil water 

potential and the gravimetric soil water content was only affected (P < 0.05) by the N-

fertilization/residue level treatment. Averaged across tillage, burning, and irrigation, soil water 

contents under high residue treatment exceeded those water contents under low residue treatment 

at the same water potential. The increased soil water retention under high residue treatment may 



 

 

be related to increased biomass inputs, SOM accumulation, and soil aggregation at the < 2mm 

level compared with low residue treatment. Understanding the long-term effects of growing-

season weather patterns as well as irrigation, burning, tillage, and fertilization management on 

near-surface soil properties is critical to developing sustainable agricultural practices in the mid-

South. 
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Introduction 

The sustainability of soil and water resources in agroecosystems depends upon long-term 

agricultural management decisions. Agriculture currently places high demand on water resources 

and generates 10 to 12% of total global anthropogenic emissions of greenhouse gases (IPCC, 

2013) through the burning of fossil fuels and the oxidation of soil organic matter (SOM). 

However, the impact of agriculture on soil and water resources may vary according to 

management. Residue management practices such as tillage, burning, nitrogen (N) fertilization, 

and irrigation can strongly affect the fate of soil OM, carbon (C), N, water content, and several 

other soil physical and chemical properties that are relevant to crop yield and sustainability. 

Soil OM accumulation and oxidation over the long-term is determined by additions of 

biomass and the timeline of decomposition. Management practices such as tillage, burning, 

fertilization, and irrigation alter the soil physical and chemical environment, and therefore affect 

the activity of the microbes responsible for converting crop residues into stabilized fractions of 

SOM, as well as the activity of microbes responsible for attacking SOM. Management practices 

that promote the accumulation of SOM may also consequently increase plant available water 

(Nielson et al., 2002). Increases in SOM are often associated with changes in soil water retention 

characteristics, such as increased water infiltration, greater hydraulic conductivity, and increased 

water retention (Azooz and Arshad, 1996).  

Previous research has indicated a relationship between varying management systems of 

tillage, burning, fertilization, and irrigation, and long-term effects on soil properties such as 

SOM and soil C. Conventional tillage mixes the plow layer and tends to increase decomposition, 

while no-tillage tends to increase SOM accumulation (Horowitz, 2011; Morgan et al., 2010; 

Padgitt et al., 2000; Verkler et al., 2009; Zanatta et al., 2007). Burning crop residues is a 
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widespread practice in the mid-southern US (Frederick et al., 1998; Sanford, 1982), and is 

associated with increased pH and potassium (K) (Chan et al., 2005), decreased soil N, 

phosphorus (P), and sulfur (S) (Biederback et al., 1980), and decreased in SOM due to reduced 

biomass additions. N fertilization promotes wheat biomass and yield, which generally promotes 

SOM and soil C accumulation (Bowman and Halvorson, 1998; Halvorson et al., 1999), although 

some research has reported a decrease in soil C under increased N fertilization due to adverse 

effects on certain soil microorganism populations such as lignin decomposers (Lee and Jose, 

2003). Irrigation promotes both increased additions of plant and microbial biomass as well as 

microbial decomposition of residues and SOM (Churchman and Tate, 1986; Six et al., 

1999).Irrigation may have complex effects on soil properties over time, because many microbial 

processes are controlled by available moisture. Therefore, the effects of irrigation on SOM 

cycling can be difficult to predict. 

An evaluation of the long-term effects of common residue and water management 

practice effects on soil properties and crop productivity in a double-crop, wheat (Triticum 

aestivum L.)-soybean [Glycine max (L.) Merr.] system might offer valuable insights for soybean 

producers that have long-term sustainability goals for their soil and water resources. Results from 

this study might be especially useful for determining best management practices in areas such as 

eastern Arkansas that have experienced large-scale decreases in SOM and may face potential 

water shortages in the future (Scott et al., 1998). Therefore, the main objective of this study was 

to determine the long-term trends of near-surface soil C and N, other near-surface soil physical 

(i.e., bulk density) and chemical (i.e., pH, electrical conductivity (EC), and Mehlich-3-

extractable nutrients) properties, and soybean yield as affected by residue burning (burning and 

non-burning), tillage (conventional and no-tillage), irrigation (irrigated and dryland), and N-
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fertilization/wheat-residue level (high and low). A secondary objective of this study was to 

evaluate the long-term effects of residue burning, tillage, irrigation, and N-fertilization/wheat-

residue level on the relationship between soil water potential and soil water content in the top 7.5 

cm using a soil wetting-curve approach.                                        
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Literature Review 

Soybean Production in the United States 

As with many commodity crops in the United States, soybean [Glycine max (L.) Merr.] 

production has rapidly increased in the decades following World War II.  Planted soybean area in 

the United States has doubled from approximately 14 million hectares in 1965 to about 34  

million hectares in 2014, and is currently the second most widely grown crop in the United 

States in terms of hectares planted and harvested (USDA-NASS, 2015). Productivity has also 

increased from an average of 1.6 Mg ha
-1

 in 1965 to 3 Mg ha
-1

 in 2014 (USDA-NASS, 2015). 

New technologies are largely responsible for these rapid increases in scale and productivity. 

Genetically modified (GM) cropping systems have reduced weed pressure and increased yield, 

and glyphosate-resistant GM soybean now occupy 93% of the soybean area in the United States 

(USDA-NASS, 2013). Innovations in farm equipment, pesticides, and fertilizer have transformed 

agricultural labor efficiency, so that the average 11.1 hectares per worker in 1890 had increased 

to 300 hectares per worker by 1990 (Hunt, 2001). 

However, new obstacles to soybean production have emerged in recent decades as well. 

Natural resources in many soybean-growing regions have become overtaxed by the accumulated 

demands of years of cultivated agriculture, as evidenced by topsoil erosion in the Midwest 

(Dickey et al., 1985) and dwindling water tables in eastern Arkansas (Scott, 1998). Certain 

weeds have evolved resistance to glyphosate, rendering GM-soybean cropping systems less 

effective. This is especially true in Arkansas, where over 98% of soybean cropland is planted to 

glyphosate-resistant seed (Scott and Smith, 2011) and six species of glyphosate-resistant weeds 

have been confirmed, most notably palmer amaranth (Amaranthus palmeri) (Nandula, 2010). 

Another recent development that may compromise soybean production is climate change. 
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Changing weather patterns have implications for season length, precipitation, temperature, and 

other critical factors of crop production. Climate change has been partly generated by 

agriculture, due to fossil fuel use and oxidation of soil carbon (C; IPCC, 2013; Lal, 2004; Smith, 

2008). Given that many of today’s obstacles in soybean production are a cumulative result of 

past agricultural management, it is imperative to adopt management systems that balance 

production concerns with conserving natural resources, thereby preserving the ability of future 

generations to produce crops. Because soybean is such a prevalent crop in the USA, soybean 

residue management practices, tillage systems, and fertilization practices carry far-reaching 

ecological and economic consequences. 

 

Arkansas Soybean Production 

Overview 

In 2014, Arkansas ranked 11
th

 in planted soybean area nationwide (USDA-NASS, 2015). 

The average soybean yield in Arkansas in 2014 was 3.4 Mg ha
-1

, which was slightly greater than 

the national average of 3.2 Mg ha-
1
. Arkansas soybean production is primarily concentrated in 

the Southern Mississippi Alluvium [Major Land Resource Area (MLRA) 131A], especially in 

Mississippi, Poinsett, Clay, and Craighead Counties (Fig. 1). While Mississippi County 

surpassed other counties in area planted (120,596 ha) and harvested (120,151 ha) in 2013, Clay 

County led the state in productivity with a mean yield of 3.3 Mg ha
-1

 (USDA-NASS, 2015).  

 

Soils and Climate of Eastern Arkansas 

The viability of agriculture in eastern Arkansas is founded upon the region’s soils, 

relatively flat topography, and warm, wet climate. Eastern Arkansas soils formed fairly recently 
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in the late Holocene epoch, in rich alluvial deposits from the Ohio, Mississippi, and Arkansas 

Rivers (Foti, 1974). Coarser-textured soil particles settle out of suspension more rapidly than 

finer-textured soil particles (Allen, 1965), so the textural classes vary greatly depending on the 

site of alluvial deposition.  In eastern Arkansas, sandy and loamy sediments settled out of 

suspension rapidly to form low ridges and natural levees near water channels (NRCS, 2006). 

Many soils in this area are situated in low landscape positions, where clays and finer silts have 

settled out of suspension more slowly and formed fine-textured soils (Scott, 1998). This 

abundance of flat, low-lying bottomland is ideal for operating large-scale tractors and irrigating 

over long distances. The topography tends to be level to depressional to very gently undulating 

plains (NRCS, 2006), and local relief varies by less than 5 m in most areas in eastern Arkansas 

(NRCS, 2006).  

In addition to fine-textured soils and relatively flat topography, soybean production in 

eastern Arkansas is aided by a generally warm, wet climate. The dominant soil temperature 

regime is thermic (NRCS, 2006). In Stuttgart, (a city which approximates the middle of the 

Arkansas portion of MLRA 131-A) the mean maximum daily temperature exceeds 32°C in July, 

and the mean minimum daily temperature drops below 1°C in January. The normal daily range 

of temperature is approximately 6.7°C throughout the year, which is indicative of relatively high 

humidity conditions (Scott, 1998). Average annual rainfall ranges from 118 cm yr
-1

 at Saint 

Francis in the north to 134 cm yr
-1 

at Monticello in the south, with most weather stations 

scattered throughout the region reporting approximately 125 cm yr
-1

 (Scott, 1998). The annual 

distribution of rainfall tends to proceed along the following pattern: maximum rainfall occurs in 

March, April, and May; monthly precipitation significantly decreases in June, July, and August 

when the average cumulative water deficit is ~ 22 cm; and monthly precipitation greatly 
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increases again in September. Because a substantial portion of the growing season for 

commodity crops in the region occurs during the driest months, irrigation is often utilized to 

maximize plant productivity. 

Unfortunately, the same climatic factors that aid soybean production also make the soil 

organic matter (SOM) more susceptible to oxidation and decomposition under cultivated 

agricultural management (Reicosky et al., 1997; Brye et al., 2004). Several studies have 

examined the role of agricultural management practices in the depletion of SOM and oxidation 

of soil organic C in eastern Arkansas (Amuri et al., 2008; Brye et al., 2006; Verkler et al., 2009). 

When eastern Arkansas was covered by forested wetlands, the soils accumulated large 

concentrations of OM and C (Stanturf et al., 2000). Years of cultivated agriculture, however, 

have reduced SOM and C concentrations in the top 12 cm of cropland soil to 0.021% and 0.011 

%, respectively (DeLong et al., 2003), compared to 4.6 to 6.5 % SOM and 2.26 to 3.18 % C in 

undisturbed prairie soils in eastern Arkansas (Brye and Pirani, 2005). Adopting agricultural 

management practices which slow or even reverse losses of SOM and soil C is imperative for the 

sustainability of agriculture in Arkansas.  

 

Double-cropped Soybean  

Of the 1.4 million hectares in Arkansas planted to soybean in 2014, 11% were double-

cropped (USDA-NASS, 2015), or planted following a second crop. A common pairing with 

double-cropped soybean in Arkansas is winter wheat (Triticum aestivum L.) (ASPB, 1999). In a 

wheat -soybean, double-crop system, Arkansas growers plant soybean soon after a wheat 

harvest, generally between May 25 and June 20. Some producers will burn and/or till the field 

between wheat harvest and soybean planting. Soybean are then generally harvested between 
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October 15 and November 9 (UACES, 2000) and plant the field to wheat again after soybean 

harvest.  

The main disadvantage of a wheat-soybean double-crop system is that wheat must mature 

to a harvestable stage before planting soybean, thus shortening the soybean growing season and 

may consequently decrease soybean biomass and harvestable yield (MacKown et al., 2007). 

There are some instances, however, when the difference between early planting in a full-season 

soybean system and later planting in a wheat-soybean, double-crop system is inconsequential. In 

a wheat-soybean experiment conducted on Maury silt-loam soil (Typic Paleudalf) in Kentucky, 

Coale and Grove (1990) observed that early season drought negatively affected soybean seed 

germination and stand establishment in full-season soybean, thus decreasing plant root growth, 

biomass, and plant population compared to double-cropped soybean. Full-season soybean and 

double-cropped soybean may also produce similar soybean yields when wheat is grown solely as 

a cover crop and removed earlier in the season. Harvesting wheat for hay instead of grain can 

advance the soybean planting date by up to six weeks, as well as leave more soil water for the 

soybean crop (MacKown et al., 2007). 

 One advantage of double-crop systems is the additional revenue from a second harvested 

crop. A wheat-soybean, double-crop study conducted on a clay loam (Chromic Hapluderts) in 

Stoneville, MO showed that, despite a 10 to 40% greater yield from full-season soybean, the 

double-crop trials were more profitable due to additional revenue from the wheat crop. In fact, 

the revenue from winter wheat generated over 60% of the combined net returns (Kyei-Boahen et 

al., 2006). A three-year experiment in the eastern Great Plains similarly concluded that the net 

economic returns per area were greater in double-cropped systems, despite greater yields from 

single-crop systems (Kelley, 2003).  
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In addition to economic advantages, double-cropping has the ecological advantages of 

reducing nutrient leaching and providing soil cover (Scott, 1998). Water-soluble nitrogen (N) 

fertilizers, such as nitrate-N (NO3-N), can be easily transported into nearby aquatic ecosystems if 

not taken up by plants, resulting in financial losses for the producer and pollutants in the 

watershed (Scott, 1998; Dabney et al., 2001). Winter cover crops scavenge more excess N than 

volunteer vegetation, thereby reducing nutrient leaching (Dabney et al., 2001). Cover crops also 

prevent soil erosion by intercepting rain drops, thereby decreasing the likelihood of soil particle 

detachment, and increasing infiltration (Dabney et al., 2001).  

 

Importance of Soil Organic Matter 

Soil OM concentration strongly affects many soil properties that are relevant to crop 

production, such as soil fertility and water content, and is a determining factor in soil C 

sequestration (Follet et al., 2001). An increase in SOM content often decreases the need for 

fertilizer and irrigation inputs (Magdoff and Weil, 2004).  An increase in SOM also represents an 

increase in soil C due to the composition of humus, a main component of SOM. Humus is 

approximately 58% C, 3 to 6% N, and has a C:N ratio of 10 to 20:1 (Luo and Zhou, 2010). 

Considering SOM is typically composed of organic residues of plants, animals, microbes, and 

stabilized organic compounds, the long-term balance of SOM is determined by how much plant 

biomass is added to the system and the timeline of decomposition. Soil OM tends to decompose 

at an average rate of 5% or less per year (Luo and Zhou, 2010), but can decompose more quickly 

or more slowly depending on environmental conditions. Soil OM accumulates more readily in 

fine-textured soils (Luo and Zhou, 2010), soils with cool temperatures, and in wet-soil conditions 

(Lal 2004). Soil OM content rapidly decreases, however, under certain kinds of agricultural 
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management due to removal of residue or to oxidation of soil C by tillage (Follet et al., 2001; Lal 

2004; Morgan et al., 2010). Burning residue and conventional tillage (CT) are long-standing, 

widespread practices in eastern Arkansas, where soils have consequently decreased in SOM 

since the introduction of cultivated agriculture (DeLong et al., 2003). 

 

Soil Carbon Sequestration 

The largest terrestrial reserve of C exists in SOM in the form of soil organic carbon 

(SOC) (Follet et al., 2001; Lal, 2004). Estimations of global SOC range from 700 Pg C (Bolin 

1970) to 3150 Pg C, with the latter estimate including deeper soil layers as well as permanently 

frozen soils (Sabine et al., 2004). Even at the lower range of estimates, the SOC pool exceeds the 

amount of C in the atmosphere several times over (Brady and Weil, 2008), and SOM alone is 

estimated to contain three to four times the C content of the atmosphere (Stevenson, 1986). 

Atmospheric C initially enters the soil through the decaying tissue of photosynthetic organisms, 

primarily plants. Plants take in atmospheric C during photosynthesis and convert that C into 

simple plant sugars, ultimately depositing their residue in or on the soil.  

The resulting residue, or particulate organic matter (POM), undergoes several physical 

and chemical transformations in the soil as it is fed upon by microorganisms in a process 

generally referred to as decomposition (Paustian et al., 2000). The estimated C content of the 

total litter pool, or the global amount of POM existing at any given time, ranges from 42 Pg C 

(Bonan et al., 2003) to 382 Pg C (Esser et al., 1982). Decomposition of POM involves the 

leaching, fragmentation, and chemical alteration of dead tissue. Decomposition produces 

heterotrophic respiration of CO2, mineralizes nutrients such as inorganic N and C, and generates 

organic compounds that are incorporated into SOM (Luo and Zhou, 2010).  
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The amount of C in POM that becomes sequestered in the soil versus the amount of C 

that is respired depends on the activity of microorganisms. Microorganisms preferentially feed 

on easily decomposable carbohydrates in fresh residues, and in the process produce 

polysaccharides that bind the residue and soil particles into macroaggregates. The more 

recalcitrant intra-aggregate POM (iPOM) are less accessible to soil microorganisms, and 

consequently sequester C for longer periods of time. The iPOM bound and protected in soil 

aggregates decomposes more slowly than non-aggregate-bound POM, indicating that iPOM and 

aggregate stability are directly linked to a soil’s ability to store and retain C (Paustian et al., 

2000). For decomposing plant residues, approximately 70% of C is respired as CO2, while 30% 

is retained in the SOC pool at the end of the growing season (Stevenson, 1986).  

 By manipulating soil conditions affecting SOM decomposition, agriculture can either 

extend or shorten the residence time of SOC. The global, cumulative effects of agriculture 

throughout history have tended to decrease the residence time of SOC, releasing approximately 

78 Pg C to the atmosphere through land-use change and tillage (Lal, 2004).  

Conversely, agricultural soils are also capable of acting as C sinks. Management practices 

that maintain or increase SOM concentrations will also increase the amount of C sequestered in a 

soil. Morgan et al. (2010) estimated that improved cropland management can increase SOC 

sequestration rates by 0.1 to 1 Mg C ha
-1

yr
-1

, a rate which would necessarily level off after 

reaching a new equilibrium of maximized sequestration potential. Under improved cropland 

management, the global potential of SOC sequestration is 0.9 ± 0.3 Pg C yr
-1

, with a cumulative 

potential of 30 to 60 Pg within 25 to 50 years (Lal, 2004). Lal et al. (1999) suggested 

conservation tillage and residue management have great potential to increase SOC accumulation. 
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Focusing efforts on increasing SOC in agricultural soils through land management is an 

important step in mitigating climate change and promoting long-term sustainability.  

Observable differentiations in near-surface SOC between residue treatments require 

sufficient time for POM at the soil surface to decompose and enter the profile, which is an 

obstacle when comparing the carbon sequestration potential of management systems. The length 

of time required for observable differences is difficult to precisely determine, due to varying 

local conditions, but decades of management are likely to produce greater differences than just a 

few growing seasons. A wheat-soybean double-crop study conducted on a Norge silt-loam near 

El Reno, OK that only lasted three years reported little difference in soil C and N between 

treatments at the 0 to 15 cm and 15 to 30 cm depths (MacKown et Al., 2007). Likewise, Amuri 

et al. (2008) observed no significant change in OM, N, and total C between residue treatments 

after five years of consistent management. Amuri et al. (2008) did, however, report increasing 

total C (TC) over the first six years following conversion from a monocrop soybean to a wheat-

soybean, double-crop system, Six et al. (1999) observed small, insignificant differences in near-

surface C between tillage treatments at a site managed for nine years, but noticed large, 

significant differences at sites managed for 24 to 33 years.  

Some of the environmental and management factors that play critical roles in soil C 

sequestration include crop rotation, tillage system, and climate. On a Dewitt silt loam in eastern 

Arkansas, Motschenbacher et al. (2014) reported no difference in SOC between NT and CT 

treatments in the top 10 cm after 11 years of consistent management. However, Motschenbacher 

et al. (2014) did report 15 to 28% greater SOC contents in high-residue (i.e., winter wheat) 

containing rotations, compared to low-residue containing rotations. In a comparison study of 

various silt-loam soils in the Ozark Highlands and Grand Prairie Regions in Arkansas, Brye et al. 
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(2004) reported significantly greater total C, C:N ratios, and SOM concentrations in the upper 10 

cm in the Ozark Highlands region. The increased SOC and SOM accumulation in the Ozark 

Highlands region was attributed to climatic factors, rather than parent material. C sequestration 

increases as precipitation increases, and decreases as temperature increases. Brye et al. (2004) 

suggests that as some regions become warmer and wetter during the course of climate change, 

the potential of these soils to sequester C will decrease. 

          

Typical Crop Management Effects 

Effects of Burning Crop Residue 

 The burning of wheat residue in wheat-soybean production systems is a widespread 

practice in mid-southern USA (Frederick et al., 1998; Sanford, 1982). In wheat-soybean double-

crop systems, producers will typically burn wheat residue immediately before planting soybean 

as a means to control weed populations and prepare a proper seedbed. The burned residue creates 

what is sometimes called the ash-bed effect (Chan et al., 2005). As documented in a wheat-

fallow study conducted on a clay-loam Luvisol and a sandy-loam Alfisol in New South Wales, 

Australia, the ash-bed effect is associated with increased pH and K (Chan et al., 2005). Chan et 

al. (2005) also reported decreased weed and disease pressure, improved seed germination, and 

increased yields in burned compared to non-burned treatments.    

In contrast, residue burning can negatively impact SOM. Foremost, burning represents a 

lost opportunity to add organic matter to the soil. Secondly, burning destroys certain beneficial 

soil microorganisms. Depending on wind speed and amount of crop residue present on the soil 

surface as fuel, fires can reach temperatures that kill significant amounts of the soil bacteria, 

fungi, and macro-fauna populations (Biederbeck, 1980), all of which play critical roles in soil 
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aggregate formation, generation of SOM, and the sequestration of C. In a winter wheat-summer 

fallow experiment on a Walla Walla silt-loam (Haploxeroll) soil near Pendleton, OR, Wuest et 

al. (2005) linked residue burning to a significant decrease in glomalin, basidiomycetes 

populations, and earthworm counts in the top 15 cm, each of which are also all agents of soil 

aggregation. Burning has also been shown to decrease surface infiltration rates (Rasmussen et al., 

1980) and hydraulic conductivity (Biederback, 1980), which may be related to burning’s 

deleterious effects on aggregate stability and SOM.  

In addition to potentially negatively affecting aggregate stability and SOM, burning leads 

to a gradual decrease in plant available nutrients. Burning quickly releases plant-available, 

inorganic forms of N and phosphorus (P); however, these benefits are temporary in nature 

(Biederback et al., 1980). In an oat (Avena sativa L.) stubble experiment on a silty-clay Black 

Chernozem, a heavy clay Black Chernozem, and a Wood Mountain loam (Brown Chernozem) in 

Saskatchewan, Canada, Biederback et al. (1980) determined that burning increased yield in both 

fertilized and unfertilized control treatments, but had a cumulative effect of decreasing yield in 

the unamended control over 17 years. Biederback et al. (1980) concluded that long-term burning 

inflicted a slowly cumulative loss of N, P, sulphur (S), and boron (B) in the top 15 cm. Findings 

are consistent with an Indian study of a double-crop wheat and rice (Oryza sativa L.) system on a 

sandy-clay-loam Fluent, in which the residue-incorporated treatment showed increased rice and 

wheat yields, and organic C, available P, and available K concentration in the top 20 cm 

compared with burned treatment (Prasad et al., 1999). The yield results from Prasad et al. (1999) 

suggest that wheat can be planted immediately after the incorporation of rice residue and still 

produce yields that match or exceed those of wheat planted to a burned rice field.  

Some studies have reported that burning also significantly decreases soil C in the upper 
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15 cm (Biederback, 1980), while others have observed little to no change in total soil C (Brye et 

al., 2006; Chan et al., 2005; Rasmussen et al., 1980; Wuest et al., 2005). Wuest et al. (2005) 

suggested that because burning primarily affects elements at or above the soil surface, the effects 

of multiple growing seasons of repeated annual burning would need to accumulate in order to 

manifest into measurable changes in soil C. This is consistent with a 4-yr wheat-soybean study 

conducted on a Brooksville silty-clay (Aquic Chomudert) that reported increased SOM content 

in a non-burned/no-tillage (NT) compared with a burned/CT treatment combination (Sanford, 

1982). Conversely, another wheat-soybean study conducted on a Calhoun silt-loam (Typic 

Glossaqualf) and a Calloway silt-loam (Glossaquic Fragiudalf) that burning had no observable 

effect on loss of C as CO2 from the soil. However, OM and total C increased under NT compared 

to CT (Brye et al., 2006). Smith et al. (2014) also reported that soil C respiration was more 

strongly correlated with tillage treatment than burning, in an 11-yr wheat-soybean study 

conducted on a Calloway silt-loam (Glossaquic Fragiudalf). Others have speculated that 20 to 30 

years of residue burning would be needed in order for researchers to ascertain the full extent of 

the negative impact on SOM and yield (Rasmussen and Parton, 1994). 

 

Effects of No-Tillage Compared to Conventional Tillage 

Tillage systems can be classified into four categories: CT, which disturbs all of the soil 

surface and leaves less than 15% residue cover; reduced-tillage, which disturbs all of the soil 

surface and leaves 15 to 30% of the residue cover; conservation tillage, which implies any tillage 

or planting system that leaves 30% or more of the residue cover; and NT where the soil is left 

undisturbed after harvest, and is only minimally disturbed for planting (CTIC, 2014). 

Conventional-tillage systems in eastern Arkansas, and the Mississippi Delta in general, usually 
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involve disking the field followed by harrowing, with the goal of creating a fine seedbed that 

contains less than 15% residue on the surface to facilitate soybean planting (Padgitt et al., 2000).  

Conventional-tillage systems may vary in frequency and depth of tillage. For instance, tillage 

systems using a moldboard plow incorporate 75% of crop residues at a depth below 15 cm, and 

can penetrate the soil profile up to 30 cm. Other CT systems may use a chisel plow or disk, 

which rarely penetrate deeper than 15 cm and incorporate residue at depths shallower than 10 cm 

(Staricka et al., 1991). 

Compared to NT, CT offers tangible, immediate advantages by preparing finer seedbeds, 

reducing need for herbicides, and improving seedling germination (Chan et al., 2005). However, 

NT offers long-term benefits by increasing SOM accumulation, reducing the number of field 

passes with equipment, which is an economic and fuel savings, reducing soil erosion, and 

reducing greenhouse gas emissions (Horowitz, 2011; Morgan et al., 2010; Padgitt et al., 2000; 

Verkler et al., 2009; Zanatta et al., 2007). Weighing the immediate benefits to a crop against the 

long-term benefits to an agricultural soil is key to selecting the most appropriate tillage system.   

The primary purposes of tillage are seedbed preparation, destruction of germinating weed 

populations, and aeration of the plow layer. In each of these cases, CT imparts immediate, short-

term benefits to a crop, while simultaneously imparting long-term negative effects. Fine seedbed 

structure benefits a soybean crop because good seed-soil contact increases water penetration into 

seeds and improves germination and emergence (Guerif et al., 2001). However, over the long-

term, CT often creates soil compaction below the plow layer, impeding root elongation and 

encouraging soil crusting at the soil surface, thereby inhibiting seedling emergence (Guerif et al., 

2001). In contrast, NT systems generate neither the short-term benefits of fine seedbed structure 

nor the long-term drawbacks of soil compaction. However, surface residue may interfere with 
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crop establishment by obstructing seedling emergence, releasing growth-inhibiting allopathic 

compounds, decreasing soil temperature, and decreasing the efficacy of herbicides (Amuri et al., 

2008; Brye et al., 2006; Chan et al., 2005; Kaspar et al., 1990). It is difficult to model and predict 

the effects of tillage systems on seedling germination and emergence, given the large variation in 

local conditions (Guerif et al., 2001), but the benefits of crop establishment seem to trend 

towards CT. However, results from a soybean study in Wisconsin showed equivalent stand 

establishment could be achieved in NT compared to CT by increasing the seeding rate by 15 to 

32% (Oplinger and Philbrook, 1992).  

In CT, mechanical soil manipulation destroys weed seedlings that happen to be emerging 

at the time of cultivation, but can actually contribute to an overall increase in weed germination 

and emergence over time (Amuri et al., 2010; Botto et al., 1998; Mohler and Galford, 1997; 

Shrestha et al., 2002). Light stimulus during soil cultivation can trigger weed seed germination 

(Botto et al., 1998), and the vertical redistribution of weed seeds from deeper in the profile can 

position weed seeds at a more conducive depth for germination and emergence (Mohler and 

Galfor 2008). In a wheat-soybean double-crop system on a Calloway silt loam in eastern 

Arkansas, Amuri et al. (2010) observed greater total weed density under CT (513 plants m
-2

) 

than NT (340 plants m
-2

) in the early part of the 2006 growing season, although later in the 

season this trend reversed. Results imply late season weed density may increase under NT 

compared with CT because of reduced glyphosate (i.e., the Round-Up herbicide) efficacy in NT.  

With regards to soil aeration, CT has a positive effect on soil aeration in the short-term 

and, but may negatively affect soil aeration over the long term. A New Zealand study examining 

oxygen diffusion rate (ODR) in various tillage systems on a Moutoa silty-clay (Typic 

Haplaquoll) observed that CT increased aeration at the 5-, 10-, and 15 cm depths (Sojka et al., 
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1997). A similar study conducted on a lateritic sandy-loam (Typic Acrorthox) in the coastal belt 

of eastern India also reported that CT increased aeration and soil temperature in the plow layer, 

i.e., the top 15 cm (Khan, 1996). The increased ODRs were only temporary, however, due to soil 

reconsolidation (Khan, 1996). In some cases, ODR levels in a CT system may drop below pre-

tillage ODR levels within the same growing season (Khan, 1996; Sojka et al., 1997).  

Soil properties are strongly affected by tillage management. Conventional tillage exposes 

soil to increased wet-dry and freeze-thaw cycles, but NT offers a protective soil cover in the 

form of vegetation or residue, thereby increasing the opportunity for soil aggregation, fostering 

worm population growth, increasing fungal hyphae colonization, increasing humification of 

residue, and increasing sequestration of C (Amuri et al., 2008; Halvorson et al., 1999; Six et al., 

1999). Many of the specific benefits associated with NT are directly correlated to an increase in 

SOM. 

Numerous studies have documented increased SOM in NT soils (Balesdent et al., 2000; 

Dolan et al., 2006; Six et al., 1999). In a study conducted on four soils (i.e., a Haplustoll, 

Fragiudalf, Hapludalf, and Paleudalf) at various locations around the United States, Six et al. 

(1999) observed a greater loss of 53 to 250 µm sized iPOM in the top 5 cm under CT than under 

NT. Intra-aggregate POM is a labile fraction of SOM that is particularly biologically and 

chemically active (NRCS, 2011), and therefore a loss of iPOM has negative implications for 

plant growth. Similarly, Balesdent et al. (2000) concluded that the decomposition rate of SOM 

under CT occurred at more than double the decomposition rate under NT, largely due to the fact 

that SOM is more protected under NT and becomes more rapidly exposed under CT.  

The difference in SOM accumulations between tillage treatments is generally correlated 

with a difference in SOC accumulations as well. Paustian et al. (2000) analyzed the SOM and 
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SOC stocks in soils under different management systems, drawing data from various sources 

(Angers et al., 1993; Cambardella and Elliott, 1993; Beare et al., 1994; Franzluebbers and 

Arshad, 1996). Paustian et al. (2000) reported that the mean residence time of SOM and SOC 

stocks was approximately 73 yr in NT versus 44 yr in CT systems. Even though CT incorporates 

surface residue, thereby accelerating the process of soil aggregation, tillage has the stronger 

counter-effect of disrupting existing aggregates and increasing SOM decomposition, resulting in 

more rapid loss of soil C than in NT (Paustian et al., 2000). Similarly, a meta-analysis of 67 

long-term agricultural experiments across the globe reported that a change from CT to NT can 

sequester 57 ± 14 g C m
2
 yr

−1
 (West and Post, 2002). 

An experiment conducted by Six et al. (1999) also confirms the increased loss of C under 

CT.  On various loamy soils in corn (Zea mays L.), soybean, and wheat production, NT soils 

contained 9 to 16% greater concentrations of C in the top 20 cm than CT soils, with the greatest 

differences occurring at the 0- to 5-cm depth (Six et al., 1999). Similarly, in a 23-yr study with a 

soybean-containing rotation on a Waukegan silt loam (Typic Hapludoll), SOC and N increased 

more under NT compared to CT in the top 20 cm (Dolan et al., 2006).  

Several long-term studies have also observed lower C:N ratios in tilled soils compared 

with undisturbed soils. In a 17-yr study on an Acrisol sandy clay loam (Paludult) in Brazil, NT 

cropland and grasslands contained larger C:N ratios in the top 2.5 cm than CT (Diekow et al., 

2005). As depth increased, however, the C:N ratios of differentially managed agroecosystems 

became increasingly similar. Similarly, in an 18-yr Ohio study conducted on a Wooster silt loam 

(Typic Fragiudalf) and a Hoytville silty clay loam (Mollic Ochraqualf), Dick (1983) observed 

greater near-surface C:N ratios in NT than CT, but observed no significant differences in C:N 

ratio between tillage treatments when averaged across the 0 to 30 cm depth. Tillage appears to 
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significantly affect the C:N ratio in near-surface soil depths and less significantly in the subsoil 

below a depth of 20 cm, which may be explained by the fact that under NT plant residues 

accumulate at the surface. 

Other comparative studies of tillage treatments have reported no significant differences in 

total C, N, SOM, or C:N ratios. MacKown et al. (2007) conducted a 3-yr, double-cropped, 

wheat-soybean experiment on a Norge silt loam (Udic Paleustoll) in the southern Great Plains, 

and observed no significant difference in soil C and N levels between CT and NT. Similarly, 

Amuri et al. (2008) reported no significant variation in total C, N, OM, or C:N ratio between 

tillage treatments after five years of consistent management. In both cases, however, the 

similarity of soil properties between tillage treatments may be due to the relatively short 

durations of the studies.    

In addition to management effects on soybean plant growth and soil properties, there are 

financial aspects to consider when comparing tillage systems. The majority of growers are 

already invested in CT infrastructure, and a conversion to NT might require phasing out current 

equipment and/or making new purchases. A 2003 survey submitted to Arkansas growers 

reported that one of the most commonly cited reason for refusing to convert from CT to NT was 

the expense of purchasing NT equipment (Hill et al., 2003). After the initial expenses associated 

with conversion however, NT can be equally productive to CT in economic terms. No-tillage 

requires fewer inputs and fewer passes with a tractor, thus can reduce production expenses in the 

long run (Verkler et al., 2009).  

 

Effects of Irrigation Compared to Dryland Management  

Most soybean producers in Arkansas irrigate during the growing season for the purpose 
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of increasing yield. Between 1972 and 2003, the mean yield of irrigated soybean in Arkansas 

was estimated to be 2.5 Mg ha
-1

 compared to the dryland average yield of 1.5 Mg ha
-1

 (Egli, 

2008). While irrigation can increase soybean yield, irrigation can also increase production 

expenses and sometimes be less profitable than non-irrigated soybean (Parsch et al., 2001). 

Finer-textured soils may require less irrigation for optimal soybean yield, and certain 

management practices, such as NT, may decrease irrigation needs (Verkler et al., 2009). Verkler 

et al. (2008) reported that soil dried down more slowly under non-burn and NT management than 

under burned and CT management. Moreover, water is an increasingly precious resource in 

eastern Arkansas. According to Scott et al. (1998), available water in the Alluvial Aquifer will be 

exhausted by 2050, due to years of crop irrigation withdrawals that have exceeded the recharge 

rate.  

Irrigation strongly affects the activity of plants and soil microorganisms, leading to 

changes in SOM formation and decomposition. Lal and Bruce (1999) estimated that irrigated 

cropland sequesters between 50 to 150 kg ha
-1

 more C than non-irrigated cropland; however, Lal 

and Bruce (1999) also suggested that the effects of irrigation on SOC are complex and can be 

difficult to predict. Increased soil moisture promotes development of plant and microbial 

biomass, which can increase SOM and SOC (Blanco-Canqui et al., 2010). However, increased 

soil moisture also promotes microbial decomposition of SOM (Churchman and Tate, 1986) and 

slaking of unstable aggregates (Six et al., 2000b) resulting in a possible decrease of SOC. In a 

continuous corn and wheat-fallow study conducted on several silt-loam, loam, and clay-loam 

soils across the eastern United States, Linn and Doran (1984) reported that soil moisture tended 

to increase soil microbial activity and, consequently, soil respiration, up to 60% water-filled pore 

space, beyond which microbial activity and respiration decrease in the upper 7.5 cm.  
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Soil OM increases water infiltration rate, hydraulic conductivity, and water-holding 

capacity. Therefore, any management practice that increases SOM, such as NT, may decrease 

irrigation needs (Verkler et al., 2009). An 8-yr wheat study on a Bethany (Pachic Paleustoll) and 

a Renfrow (Udertic Paleustoll) silt loam near El Reno, OK reported significantly larger 

volumetric water contents in the 0- to 1.2-m depth of NT soils compared with CT soils (Dao 

1993). In the same study, CT decreased water infiltration and negatively affected precipitation 

storage (Dao, 1993). Allowing wheat residue to decompose on the surface, such as in a NT/non-

burn combination, will likely improve soil moisture storage capability (Amuri and Brye, 2008). 

Soil moisture retention is a critical factor of soybean production in eastern Arkansas, where hot, 

dry early summers often pose a threat to germination and stand establishment (Cordell et al., 

2007).  

 Soybean plant growth response is strongly affected by irrigation timing. Ashley et al. 

(1978) reported that irrigating prior to soybean flowering increases vegetative biomass, pod 

count, and weight, whereas waiting to irrigate until the start of soybean flowering produced no 

increase in vegetative biomass, but increased pod count and weight.  

  

Effects of Nitrogen-Fertilized Cover Crops  

 Unlike soybean, which can fix N and require little to no added N-fertilizer, wheat derives 

N entirely from the soil. Nitrogen fertilization tends to promote wheat biomass and yield, and 

split-application of N is particularly effective. Split-application reduces the loss of N through 

leaching and denitrification, thereby increasing plant uptake of N and increasing wheat yield 

(Sripada and Weisz, 2009). While a positive correlation exists between N-fertilization and wheat 

biomass, the effects of N-fertilization on SOM, SOC, and other soil chemical properties are more 
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complex, due to the various implications of increased N on residue decomposition and microbial 

activity (Banger et al., 2010; Hogberg et al., 2007; Lee and Jose, 2003).  

 One potentially negative impact of increased N-fertilization is soil acidification. While 

few N-fertilizers are acidic, N-fertilizers encourage acid-forming reactions, such as the microbial 

oxidation of ammoniacal fertilizer (Barak et al., 1997). In a 3-yr, NT, wheat-corn-fallow rotation 

study conducted on a Platner loam (Aridic Paleustoll) in the Great Plains, Bowman and 

Halvorson (1998) reported a significant correlation between increased N-fertilization and a 

reduction in soil pH (6.5 to 5.1) in the top5 cm (Bowman and Halvorson, 1998).  

 Another commonly observed effect of increased N-fertilization is increased SOM and 

SOC, due to the increased plant biomass resulting from N-fertilization. Bowman and Halvorson 

(1998) reported 40% increase in SOC in the top 5 cm under increased N-fertilization 

management. Likewise, after 10 years of consistent management of a Weld silt-loam (Aridic 

Agiustoll) in the Great Plains in a rotation that included winter wheat, SOC increased more in a 

high-N-rate (134 kg N ha
-1

 yr
-1

) than in low-N-rate treatments (Halvorson et al., 1999).  

While it might be expected for N-fertilization to increase C sequestration due to increased 

plant biomass and subsequent SOM, some studies have observed the opposite trend. In a 

cottonwood (Populus deltoides Marsh.) and loblolly pine (Pinus taeda L.) study conducted on a 

Redbay sandy loam (Rhodic Paleudlt) in Florida, an application of 50 kg N ha
-1

 yr
-1

 for eight 

consecutive years was correlated with observable, but statistically insignificant, decreases in 

SOC (Lee and Jose, 2003). Microbial biomass decreased by over 20%, which suggests that N 

fertilizer may have adverse effects on some soil microorganisms (Lee and Jose, 2003). Banger et 

al. (2010) suggested that N-fertilizer may preferentially stimulate activity of certain microbes, 

while inhibiting development of others, such as lignin decomposers.  
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Treatment Effects on Water-Retention Characteristics 

 While soil water-retention characteristics are seasonally variable due to wet-dry and 

freeze-thaw cycles (Unger, 1991), long-term changes in water-retention characteristics may also 

be affected in the long-term by agricultural management practices. In a comparison study of 

water-retention characteristics between cultivated agriculture and native prairie soils on a Dewitt 

silt-loam in eastern Arkansas, Brye (2003) reported that land use significantly affected the slope 

of the soil moisture release curve in the top 10 cm. Results indicated that as both the native 

prairie and cultivated agricultural soils reached the same water potential, the native prairie soil 

would have a higher water content. Conversely, as soils of both land uses reached permanent 

wilting point (i.e., -1.5 MPa), water content would be similar.  

 Other studies have similarly concluded that repeated years of cultivation can negatively 

affect soil water-retention characteristics. In a continuous-corn study conducted on a Canisteo 

clay-loam (Typic Haplaquoll) and a Nicollet loam (Aquic Hapludolls), soils managed with 

reduced tillage systems retained more plant-available water and maintained greater unsaturaSted 

hydraulic conductivities than soils under CT at the 5- to 7.5-cm and 10- to 12.5-cm depth. (Hill 

et al., 1985). Similarly, on a Donnelly silt-loam (Gray Luvisol) managed consistently for 14 yr 

and a Donnelly sandy-loam (Gray Luvisol) managed consistently for 5 yr in Alberta, Canada, 

Azooz and Arshad (1996) reported that soils under NT maintained pore structure, which resulted 

in greater hydraulic conductivity and infiltration rates in NT than in CT. 

 

Justification 

 An understanding of how different agricultural management practices impact SOM and 

SOC is essential for determining sustainable practices of food production. Mounting evidence 
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implicates agriculture as a major source of greenhouse gas emissions. The Intergovernmental 

Panel on Climate Change (IPCC) concluded that agriculture generates 10 to 12% of total global 

anthropogenic emissions of greenhouse gases, including 60% of the nitrous oxide (N2O) and 

50% of the methane (CH4) emissions (IPCC, 2013) through the burning of fossil fuels and the 

oxidation of SOM. Certain practices, such as NT, may increase accumulation of C in the soil, 

while simultaneously decreasing C emissions from cultural operations.  

 Soybean production must be economically viable as well as ecologically responsible, 

which requires an understanding of which management practices produce adequate yields. A 

long-term, consistently managed wheat-soybean study evaluating common residue and water 

management practice effects on SOM, carbon sequestration, and soybean yield might offer 

insight into how soybean production might become more sustainable, while maintaining 

productivity, in the future.   

 

Objectives 

The main objective of this study is to determine the long-term trends of near-surface soil 

C and N, other near-surface soil physical (i.e., bulk density) and chemical (i.e., pH, electrical 

conductivity (EC), and Mehlich-3-extractable nutrients) properties, and soybean yield as affected 

by residue burning (burning and non-burning), tillage (conventional and no-tillage), irrigation 

(irrigated and dryland), and N-fertilization/wheat-residue level (high and low). A secondary 

objective of this study is to evaluate the long-term effects of residue burning, tillage, irrigation, 

and N-fertilization/wheat-residue level on the relationship between soil water potential and soil 

water content in the top 7.5 cm using a soil wetting-curve approach.                                        
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Hypotheses 

 Non-burning is expected to increase SOM, SOC, and plant available nutrients, compared 

to burning. No-tillage is expected to increase SOM, SOC, and soil fertility compared to CT. 

Irrigation is expected to increase SOM and soybean yield compared to non-irrigation. High N-

fertilization/wheat-residue level is expected to produce more wheat residue biomass, thereby 

increasing SOM and SOC compared to low N-fertilization/wheat-residue level. The treatment 

combination of high N-fertilization/wheat-residue level, NT, non-burning, and irrigation is 

expected to increase SOM and SOC. Tillage is expected to strongly affect the relationship 

between soil water potential and soil water content in the top 7.5 cm, such that when soil water 

potential of CT and NT is equal, the NT soil water content will be greater compared to CT. 
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Fig. 1. County map of Arkansas soybean production, in bushels. Data reported from 1999.  

To convert bushels to Mg, multiply by 0.028. Adapted from ASPB (2014).  
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Fig. 2. Experimental layout at the Lon Mann Cotton Branch Experiment Station in eastern 

Arkansas depicting residue-level [high (H) and low (L)], burn, tillage [conventional 

tillage (CT) and no-tillage (NT)], and irrigation treatments. 
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Long-term Residue Management Effects on Soil Properties and Yields in a Wheat-soybean, Double-

crop System in Eastern Arkansas 
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Abstract 

Adoption of management practices that maintain or increase soil organic matter (SOM), 

which contains 58% carbon (C) on average, may help to mitigate climate change by sequestering 

atmospheric C. Therefore, the main objective of this study was to determine the long-term trends 

in SOM, soil C and nitrogen (N),  bulk density, various soil chemical properties (i.e., pH, 

electrical conductivity [EC], and Mehlich-3-extractable nutrients) in the top 10 cm, and soybean 

yield as affected by residue burning (burning and non-burning), tillage (conventional and no-

tillage), irrigation (irrigated and non-irrigated), and N-fertilization/residue level (high and low) in 

a wheat (Triticum aestivum L.)-soybean [Glycine max (L.) Merr.], double-crop system in eastern 

Arkansas. The field site has been consistently managed for 13 years at the University of 

Arkansas Lon Mann Cotton Research Station near Marianna, Arkansas on a Calloway silt-loam 

(fine silty, mixed, active, thermic Glossaquic Fraglossudalf). Averaged across all other factors, 

SOM did not differ over time (P > 0.05) under irrigation, while SOM content increased over time 

(P < 0.05) until approximately nine years after initial conversion when SOM decreased thereafter 

under dryland production. Soil OM content also decreased over time (P < 0.05) under residue 

burning, but increased over time under non-burning. The results of this study indicated that 

irrigation management was responsible for many of the largest differences in near-surface soil 

property trends over time, namely SOM and C, compared to the other field management 

practices evaluated. Understanding the long-term effects of growing-season weather patterns as 

well as irrigation, burning, tillage, and fertilization management on near-surface soil properties is 

critical to developing sustainable agricultural practices in the mid-South.  
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Introduction 

An understanding of how different agricultural management practices impact soil organic 

matter (SOM), soil carbon (C), other various soil properties, and crop yield is essential for 

determining sustainable practices of food production. The Intergovernmental Panel on Climate 

Change concluded that agriculture generates 10 to 12% of total global anthropogenic emissions 

of greenhouse gases (IPCC, 2013) through the burning of fossil fuels and the oxidation of SOM. 

Management of crop residues can strongly affect the fate of SOM in agricultural soils, as well as 

a host of other soil physical and chemical properties, which has implications for crop production 

in the short-term as well as sustainability in the long-term.  

The long-term balance of SOM is determined by how much biomass is added to the 

system and the timeline of decomposition. Biomass inputs primarily consist of plant residue, as 

well as animal and microbial tissues. Management factors such as tillage, burning, fertilization, 

and irrigation may influence the rate at which microbes convert organic residues into stabilized 

fractions of SOM, as well as the rate at which microbes decompose SOM by altering the physical 

and chemical soil environment. 

Tillage homogenizes the plow layer and alters the near-surface soil environment, which 

can have cumulative effects on various soil physical and chemical properties. Conventional 

tillage (CT) disturbs all of the soil surface and leaves less than 15% residue cover, while no-

tillage (NT) leaves the soil undisturbed after harvest, and causes minimal disturbance for 

planting (CTIC, 2014). Conventional-tillage systems in eastern Arkansas, and the lower 

Mississippi River Delta region in general, usually involve disking the field followed by 

harrowing, with the goal of creating a fine seedbed that contains less than 15% residue on the 

surface to facilitate soybean planting (Padgitt et al., 2000).   
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Compared to NT, CT offers tangible, immediate advantages by preparing finer seedbeds, 

reducing need for herbicides, and improving seedling germination (Chan et al., 2005). However, 

NT offers long-term benefits by increasing SOM accumulation, reducing the number of field 

passes with equipment, which is an economic and fuel savings, reducing soil erosion, and 

reducing greenhouse gas emissions (Horowitz, 2011; Morgan et al., 2010; Padgitt et al., 2000; 

Verkler et al., 2009; Zanatta et al., 2007). Weighing the immediate benefits to a crop against the 

long-term benefits to soil resource used for agricultural production is key to selecting the most 

appropriate residue management and tillage system.   

Burning crop residues is an alternative residue management with tillage and can also 

have cumulative effects on various soil properties. Burning wheat residue in wheat (Triticum 

aestivum L.)-soybean [Glycine max (L.) Merr.] production systems is a widespread practice in 

the mid-southern US (Frederick et al., 1998; Sanford, 1982). In wheat-soybean double-crop 

systems, producers will typically burn wheat residue immediately before planting soybean as a 

means to control weed populations and prepare a proper seedbed. The burned residue creates 

what is sometimes called the ash-bed effect (Chan et al., 2005). As documented in a wheat-

fallow study conducted on a clay-loam Luvisol and a sandy-loam Alfisol in New South Wales, 

Australia, the ash-bed effect is associated with increased pH and potassium (K) (Chan et al., 

2005). However, residue burning can negatively impact SOM because of the lost opportunity to 

add organic matter to the soil. Moreover, burning can lead to a gradual decrease in plant 

available nutrients. Burning quickly releases plant-available, inorganic nutrients such as nitrogen 

(N) and phosphorus (P), but may inflict a slowly cumulative loss of N, P, and sulfur (S) over 

time (Biederback et al., 1980).  

In addition to tillage and residue burning, N fertilization is a common management 
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practice that promotes wheat biomass and yield. Split application of N is particularly effective 

because the loss of N through leaching and denitrification is reduced and therefore plant uptake 

of N is increased (Sripada and Weisz, 2009). While a positive correlation exists between N 

fertilization and wheat biomass, the effects of N fertilization on SOM, soil C, and other soil 

chemical properties are more complex, due to the various implications of increased N on residue 

decomposition and microbial activity (Banger et al., 2010; Hogberg et al., 2007; Lee and Jose, 

2003). Bowman and Halvorson (1998) reported 40% increase in soil C in the top 5 cm under 

increased N-fertilization management. Likewise, after 10 years of consistent management of a 

Weld silt-loam (Aridic Agiustoll) in the Great Plains in a rotation that included winter wheat, 

SOC increased more in a high- (134 kg N ha
-1

 yr
-1

) than in low-N-rate treatments (Halvorson et 

al., 1999). In contrast, a cottonwood (Populus deltoides Marsh.) and loblolly pine (Pinus taeda 

L.) study conducted on a Redbay sandy loam (Rhodic Paleudlt) in Florida  reported a decrease in 

SOC in correlation with an application of 50 kg N ha
-1

 yr
-1

 for eight consecutive years (Lee and 

Jose, 2003). Microbial biomass decreased by over 20%, which suggested that N fertilizer may 

have adverse effects on some soil microorganisms (Lee and Jose, 2003). Banger et al. (2010) 

suggested that N-fertilizer may preferentially stimulate activity of certain microbes, while 

inhibiting development of others, such as lignin decomposers.  

Another potential effect of increased N fertilization is soil acidification. While few N 

fertilizers are themselves acidic, many N fertilizers encourage acid-forming reactions (i.e., 

nitrification; Barak et al., 1997). In a 3-yr, NT, wheat-corn (Zea mays L.)-fallow rotation study 

on a Platner loam (Aridic Paleustoll) in the Great Plains, Bowman and Halvorson (1998) 

reported a significant correlation between increased N fertilization and a reduction in soil pH 

(6.5 to 5.1) in the top 5 cm.    
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Similar to N fertilization, properly applied irrigation can greatly increase crop yield. 

Between 1972 and 2003, the mean yield of irrigated soybean in Arkansas was estimated to be 2.5 

Mg ha
-1

 compared to the dryland average yield of 1.5 Mg ha
-1

 (Egli, 2008). Consequently, the 

majority of soybean producers in Arkansas choose to irrigate during the growing season. 

However, irrigation also incurs added costs and can sometimes be less profitable than non-

irrigated production (Parsch et al., 2001; Verkler et al., 2009). Moreover, water is an increasingly 

precious resource in eastern Arkansas, and irrigation may become cost prohibitive in the near 

future. According to Scott et al. (1998), available water in the Alluvial Aquifer will be exhausted 

by 2050, due to years of crop irrigation withdrawals that have exceeded the recharge rate.  

Irrigation alters the soil moisture environment, thereby affecting the activity of plants and 

soil microorganisms and the cycling of SOM. Increased soil moisture promotes development of 

plant and microbial biomass, which can contribute to an overall increase in SOM. However, 

increased soil moisture also promotes the microbial decomposition of SOM and slaking of 

unstable aggregates (Churchman and Tate, 1986; Six et al., 1999), which can contribute to 

overall decrease in SOM. Therefore, the effects of irrigation on SOM cycling can be difficult to 

predict. 

Irrigation influences the accumulation and decomposition of SOM, and SOM likewise 

influences soil water. Soil OM increases water infiltration rate, hydraulic conductivity, and 

water-holding capacity. Therefore, any management practice that increases SOM, such as NT, 

may decrease irrigation needs (Verkler et al., 2009). An 8-yr wheat study on a Bethany (Pachic 

Paleustoll) and a Renfrow (Udertic Paleustoll) silt loam near El Reno, OK reported significantly 

larger volumetric water contents in the 0- to 1.2-m depth of NT soils compared with CT soils 

(Dao 1993). In the same study, CT decreased water infiltration and negatively affected 
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precipitation storage (Dao, 1993). Soil moisture retention is a critical factor orf soybean 

production in eastern Arkansas, where hot, dry early summers often pose a threat to germination 

and stand establishment (Cordell et al., 2007).  

 The effects of residue management on SOM and soil C have been previously studied in 

the lower Mississippi River Delta region of eastern Arkansas. On a Dewitt silt loam in eastern 

Arkansas, Motschenbacher et al. (2014) reported no difference in soil C between NT and CT 

treatments in the top 10 cm after 11 years of consistent management. However, Motschenbacher 

et al. (2014) reported 15 to 28% greater soil C content in high-residue (i.e., winter wheat) 

containing rotations compared to low-residue-containing rotations. In a comparison study of 

various silt-loam soils in the Ozark Highlands and Grand Prairie regions in Arkansas, Brye et al. 

(2004) reported significantly greater total C, C:N ratios, and SOM concentrations in the upper 10 

cm in the Ozark Highlands region. The increased soil C and SOM accumulation in the Ozark 

Highlands region was attributed to climatic factors, rather than parent material. Carbon 

sequestration tends to increase as precipitation increases, and tends to decrease as temperature 

increases. Brye et al. (2004) suggested that as some regions become warmer and wetter during 

the course of climate change, the potential of these soils to sequester C will decrease. 

When eastern Arkansas was covered by forested wetlands, the soils accumulated large 

concentrations of OM and C (Stanturf et al., 2000). Years of cultivated agriculture, however, 

have reduced SOM and C concentrations in the top 12 cm of cropland soil to 2.1% and 1.1 %, 

respectively (DeLong et al., 2003), compared to 4.6 to 6.5 % SOM and 2.3 to 3.2 % C in 

undisturbed prairie soils in eastern Arkansas (Brye and Pirani, 2005). Adopting agricultural 

management practices which slow or even reverse losses of SOM and soil C are imperative for 

the sustainability of agriculture, particularly in Arkansas. 
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 An understanding of how different agricultural management practices impact SOM and 

soil C is essential for determining sustainable practices of food production. A long-term, 

consistently managed wheat-soybean study evaluating common residue and water management 

practice effects on soil properties and crop productivity might offer insight into how soybean 

production might become more sustainable, while maintaining productivity, in the future. 

Therefore, the objective of this study was to determine the long-term trends of near-surface 

SOM,  C and N, bulk density, and other soil chemical properties (i.e., pH, electrical conductivity 

[EC], and Mehlich-3-extractable nutrients), and soybean yield as affected by residue burning 

(burning and non-burning), tillage (conventional and no-tillage), irrigation (irrigated and 

dryland), and N-fertilization/wheat-residue level (high and low) in a wheat-soybean, double-crop 

production system in eastern Arkansas. It was hypothesized that SOM, SOC, and plant available 

nutrients, would increase under non-burning compared to burning.  Soil OM, soil C, and plant 

available nutrients were hypothesized to increase under NT compared to CT.  SOM and soybean 

yield were hypothesized to increase under irrigation compared to dryland management.  The high 

N-fertilization/wheat-residue level treatment was hypothesized to produce more wheat residue 

biomass, thereby increasing SOM and soil C compared to low N-fertilization/wheat-residue 

level.  Soil OM and C were hypothesized to increase under the high N-fertilization/wheat-residue 

level, NT, non-burning, and irrigation treatment combinations. 
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Materials and Methods 

Site Description             

An on-going field study was initiated in Fall 2001 at the University of Arkansas Lon 

Mann Cotton Research Station (N34°, 44’, 2.26”; W90°, 45’ 51.56”, Cordell, 2007) in the 

Southern Mississippi Alluvium [Major Land Resource Area (MLRA) 131A]. Major Land 

Resource Area 131A extends along the Mississippi River alluvial plain, south of the confluence 

of the Ohio and Mississippi Rivers. Maximum local relief is approximately 5 m, however, the 

relief in most of the region is less than 5 m (USDA, 2006). The topography tends to be level to 

depressional to gently undulating plains (USDA, 2006). The warm and wet climate, the relatively 

flat topography, and the fertile alluvial sediments of MLRA 131A make for a highly 

agriculturally productive region. The site of this field study is on a Calloway silt loam (fine silty, 

mixed, active, thermic Glossaquic Fraglossudalf; Gray, 1977; NRCS, 2015)  which has 16% 

sand, 73% silt, and 11% clay in the top 10 cm (Brye et al., 2006). The 30-yr mean annual 

temperature of the region is 15.6°C and the 30-yr mean annual precipitation is 128 cm (NOAA, 

2002). The 30-yr mean maximum and minimum air temperatures of the region are 32.8°C in July 

and 2.4°C in January (NOAA, 2002). 

 

Experimental Design           

The original study used a three-factor, split-strip-plot, randomized complete block 

experimental design with six replications of each of eight treatment combinations (Cordell et al., 

2007). The three factors were i) residue level [high residue (H), achieved with a split application 

of N fertilizer, or low residue (L), achieved with minimal to no N additions]; ii) burning of 

residue [burning (B) or non-burning (NB)]; and iii) tillage (CT or NT) (Cordell et al., 2007).  In 
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2005, an irrigation factor was introduced when the original study area was divided into two 

irrigated (I) and two non-irrigated (NI; i.e., dryland) blocks (Verkler et al., 2009). Consequently, 

since 2005, the experimental area has consisted of 48, 3- x 6-m plots with six replications for 

every tillage-burning-residue-level combination and three replications for every tillage-

irrigation-burning-residue level combination (Fig. 1; Amuri et al., 2008). 

 

Field Management           

Prior to the initiation of the study in Fall 2001, the site was managed as a continuous, 

mono-cropped soybean system using CT (Cordell et al., 2007). The first field preparations in Fall 

2001 involved disking twice followed by broadcast applications of N, P, K, and pelletized 

limestone at rates of 20, 22.5, 56, and 1120 kg ha
-1

, respectively, prior to wheat planting. Wheat 

was drill seeded with a 19-cm row spacing each Fall. In early March 2002 through 2004, all plots 

were manually broadcast fertilized with urea (46% N) at the rate of 101 kg N ha
-1

. To produce 

different levels of wheat residue, high-residue plots (n = 24) were manually broadcast fertilized 

in late March at approximately the late-jointing stage with an additional 101 kg N ha
-1

. No N 

fertilizer was applied in Spring 2005 because the wheat stand failed to establish due to prolonged 

wet soil conditions in Fall 2004. Since 2006, the high-residue plots received an initial broadcast 

application of 56 kg N ha
-1 

as urea in approximately late February, followed by a split application 

of an additional 56 kg N ha
-1 

at the late-jointing stage in approximately late March, roughly one 

month later. The low-residue plots have not received any N fertilization since 2006 in order to 

achieve the desired residue-level difference.  

In approximately early June each year, wheat was harvested using a plot combine. 

Immediately following wheat harvest, wheat residue was uniformly spread by hand over each 
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plot. The remaining wheat stubble was mowed with a rotary mower to a maximum height of 3 

cm from the soil surface in order to achieve a uniform residue-covered surface for soybean 

planting. After mowing, the burning treatment was imposed on half of the plots by propane 

flaming. In 2005, 2007, and 2012 the residue-burning treatment was not able to be imposed 

because of the absence of a wheat stand in Spring 2005, prolonged wet soil conditions in Spring 

2007, and overly weedy conditions in 2012. Imposition of the burning treatment was followed by 

imposing the tillage treatment each year. The CT plots were disked at least twice with a tandem 

disk to a depth of approximately 10 cm followed by seedbed smoothing with at least three passes 

of a soil conditioner, which is representative of widely used pre-soybean-planting tillage 

operation in the region. 

In approximately mid-June each year, a glyphosate-resistant soybean cultivar, maturity 

group 5.3 or 5.4, was drill-seeded with 19-cm row spacing at a rate of approximately 47 kg seed 

ha
-1

. Potassium fertilizer was applied according to recommended rates (UACES, 2000) when the 

previous year’s soil test indicated K was needed. In 2002 through 2004, all plots were furrow-

irrigated as needed, three to four times each soybean-growing season. Since 2005, a levee was 

created to exclude furrow-irrigation water from the dryland treatment, which received only 

natural rainfall, while furrow-irrigation continued annually as needed in the irrigated treatment. 

Weeds and insects were managed annually the same throughout the entire study area as 

necessary based on University of Arkansas Cooperative Extension Service recommendations, 

which generally consisted of herbicide and insecticide applications during both the wheat and 

soybean growing seasons (UACES, 2000). In late October to early November, soybean were 

harvested with a plot combine. Soybean residue was left in place, into which the subsequent 

wheat crop was sown to begin the next cropping cycle.          
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Soil Sample Collection and Processing      

 Between 2002 and 2008, after wheat harvest and prior to residue burning, 10 soil cores 

from the top 10 cm were collected from each plot and combined into a single composite sample 

per plot. After 2008, a single soil sample was collected from the top 10 cm using a 4.8-cm-

diameter stainless steel core chamber between wheat maturity and residue burning. Soil samples 

were oven-dried for 48 hr at 70
o
C and ground to pass through a 2-mm mesh screen (Verkler et 

al., 2009) for soil chemical analyses (Brye et al., 2006). Soil pH and EC were determined 

potentiometrically using an electrode in a 1:2 (w/v) soil-to-water solution. Soil OM was 

determined by weight-loss-on-ignition after 2 hr at 360
o
C (Schulte and Hopkins, 1996). Total 

soil C and N were determined by high-temperature combustion with a LECO CN-2000 analyzer 

(LECO Corp., St. Joseph, MI) or an Elementar VarioMAX Total C and N Analyzer (Elementar 

Americas Inc., Mt. Laurel, NJ). All soil C was assumed to be organic C because the soil of the 

upper solum does not effervesce upon treatment with dilute hydrochloric acid (HCl) (Brye et al., 

2006). The soil C:N ratio was calculated from measured C and N concentrations. Soil was also 

extracted with Mehlich-3 extractant solution in a 1:10 (w/v) soil-to-extractant solution ratio 

(Tucker, 1992) and analyzed for extractable nutrients [i.e., P, K, calcium (Ca), magnesium (Mg), 

S, iron (Fe), sodium (Na), manganese (Mn), and copper (Cu)] by inductively coupled, argon-

plasma spectrophotometry (ICAPS;CIROS CCD model, Spectro Analytical Instruments, MA). 

All measured soil elemental concentrations (mg kg
-1

) were converted to contents (kg ha
-1

) using 

the measured bulk density and 10-cm sample depth interval.  

Soil samples were also collected between approximately 8 and 10 weeks after soybean 

planting by extracting a single 4.8-cm-diameter soil core from the top 10 cm using the methods 
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outlined by Brye et al. (2006). Mid-season soil cores were oven-dried at 70
o
C for 48 hr and 

weighed for bulk density determinations. 

 

Plant Sample Collection and Processing 

Each year, all wheat grain harvested from the middle 1.5-m of each plot was collected. 

After grain harvest each year, the standing wheat stubble was mowed with a rotary mower to a 

height of approximately 10 cm. A sample of aboveground residue was then collected from within 

a 0.25-m
2
 metal frame, oven-dried for 3 to 7 days at 55°C, and weighed to obtain an estimate of 

aboveground residue mass. All soybean grain harvested from the middle 1.5-m of each plot was 

also collected. Wheat and soybean grain were air-dried for approximately three weeks and 

weighed. Wheat and soybean yields were determined by oven-drying air-dried grain subsamples 

for 48 hr at 70°C, re-weighing, and adjusting to 13% moisture content for yield reporting (Smith, 

2014).  

 

Statistical Analyses          

 An analysis of covariance (ANCOVA) was conducted using SAS (version 9.3, SAS 

Institute, Inc., Cary, NC) to determine the effects of residue level, tillage, burning, and irrigation 

on the relationship between annual soil chemical properties, bulk density, and wheat and soybean 

yields (dependent variable) over time (i.e., 2007 through 2014; independent variable). Though 

the actual experimental design in the field was a strip-split-plot, randomized complete block, to 

facilitate the ANCOVA, the experimental designed was assumed to be completely random with 

three replications of each of 16 treatment combinations. The full ANCOVA model was reduced 

using a hierarchical principle to remove non-significant terms, except when non-significant terms 
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participated in higher-order, complex treatment combinations. An analysis of variance was also 

conducted using SAS, separately by year, to evaluate the effect of N-fertilization/residue level on 

aboveground residue mass.  When appropriate, means were separated by least significant 

difference (LSD) at the 0.05 level.  

 

Results and Discussion 

 The linear and quadratic slopes of regressions were evaluated in the statistical analysis 

for each variable. The intercepts of regressions, i.e., the values of measured soil properties at 

year 0, have been analyzed in previous studies (Brye et al., 2006; Amuri et al., 2008). Intercepts 

of regressions were uniform in the top 10 cm across field treatment factors, with a few 

exceptions. Soil Mg and P were greater for the burn than the no-burn treatment, and pH was 

greater for the no-burn than the burn treatment (Amuri et al., 2008). Due to the fact that 

intercepts of regressions have been analyzed in previous publications, and that the primary 

objective of this study was to analyze the trend over time rather than differences at any specific 

point in time, the intercepts of regressions were not evaluated in the final statistical analysis. 

 The high-N-fertilization rate achieved a numerically greater residue than the low-N-

fertilization treatment in seven of the eight years (i.e., 2008 to 2014), but did not achieve a 

numerically greater aboveground residue level in year 6 (i.e., 2007). The high-N-fertilization rate 

achieved a significantly greater (P < 0.05) residue level compared with the low-N-fertilization 

rate in six out of the eight years (i.e., years 7, 8, 10, 11, 12, and 13 or 2008, 2009, 2011, 2012, 

2013, and 2014, respectively), but did not achieve a significantly greater residue level in year 6 

and year 9 (i.e., 2007 and 2010; data not shown). 
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Bulk Density 

Over the course of seven complete wheat-soybean cropping cycles (i.e., 2007 to 2014), 

after six complete cropping cycles (i.e., 2001 to 2007) following conversion to alternative 

management practices in treatment combinations managed consistently for 13 consecutive years 

(i.e., 2002 to 2014), the trend in bulk density in the top 10 cm over time was affected (P < 0.05; 

Appendix A - Table 1) by all field treatment factors evaluated. Near-surface bulk density in all 

treatment combinations increased until approximately nine years after initial conversion then 

decreased thereafter (Fig. 2). Though there were many subtle differences among treatment 

combinations, the largest and most obvious differences occurred between tillage, residue level, 

and irrigation treatments, based on an interpretation of the LSDs between slope parameter 

estimates for the appropriate specific treatment combinations (Appendix B - Table 1). Clear 

differences existed between CT and NT treatments under high-residue, non-irrigated production. 

Averaged across burning, bulk density increased (P < 0.001) over time under the NT-H-NI at 

approximately three times the rate of increase under the CT-H-NI treatment combination 

(Appendix B - Table 1). Approximately nine years after initial conversion, bulk density began to 

decrease (P < 0.001) over time under the NT-H-NI at a greater rate than under the CT-H-NI 

treatment combination (Appendix B - Table 1). Results suggest that the effects of soil 

compaction under the weight of equipment for routine field operations exceeded the effects of 

improved soil structure (i.e., decrease in bulk density) associated with NT management. These 

results are consistent with an 11 yr corn study in Central Canada that reported 10% higher bulk 

density values in NT than in CT in the top 10 cm (Dam et al., 2005). However, these results are 

in contrast with an 8 yr winter wheat study near El Reno, OK that reported decreased near-

surface bulk density under NT compared CT (Dao, 1993). 
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 The measured bulk density values from each spring were used as part of the calculation 

to convert measured elemental concentrations (mg kg
-1

) of soil chemical properties (i.e., SOM, 

C, N, Fe, Na, S, P, Cu, Ca, Mg, Mn, K, and Zn) into contents (kg m
-2

). Therefore, the effects of 

field treatments on bulk density are embedded in all following soil content trends over time.  

 Another important contextual point for understanding the results of this study, which 

considers trends over time from years 6 to year 13 (i.e., 2007 to 2014) following conversion to 

new management practices, is the study many of similar properties after the first 6 years of 

consistent management. Trends over time in soil bulk density and soil C were affected by residue 

management. However, the majority of measured soil and plant properties (i.e., SOM and N 

contents, wheat and soybean yields, and most measured extractable nutrients) were unaffected 

over time by any of the imposed field treatments after the first 6 years following conversion to 

new management, likely due to an insufficient length of time for cumulative effects to have a 

measurable impact on soil and plant properties (Amuri et al., 2008). In contrast, many 

differences were observed in this study in the trends over time among soil and plant properties as 

affected by alternative residue management practices after 13 years following conversion to new 

management.  

 

Soil OM, C, and N 

Over the course of seven complete wheat-soybean cropping cycles (i.e., 2007 to 2014), 

after six complete cropping cycles (i.e., 2001 to 2007) following conversion to alternative 

management practices in treatment combinations managed consistently for 13 consecutive years 

(i.e., 2002 to 2014), the trends in SOM, C, and N contents (kg m
-2

) in the top 10 cm over time 

were affected (P < 0.05; Appendix A - Table 2) by all field treatment factors evaluated, and most 
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clearly affected by the irrigation treatment in particular.  

The trend in SOM content (kg m
-2

) in the top 10 cm over time was affected (P < 0.05; 

Appendix A - Table 2) by all field treatment factors evaluated. These results are in contrast to 

results analyzed from the first 6 years following conversion to new management practices, where 

SOM in the top 10 cm was unaffected by tillage, burning, and residue level but increased across 

all treatments at an average rate of 0.097 kg m
-2

 yr
-1

, likely due to the conversion from a 

monoculture to a more diverse crop rotation.  

Though there were many subtle differences among treatment combinations, the largest 

and most obvious differences between the trends over time in SOM content occurred between 

irrigated and non-irrigated treatments. Averaged across tillage, burning, and residue level, SOM 

content increased at a rate of 0.56 kg m
-2

 yr
-1

 (P < 0.001) over time under dryland production 

until approximately nine years after initial conversion, then decreased at a rate of 0.03 kg m
-2

 yr
-1

 

thereafter (Appendix B - Table 2; Fig. 3). In contrast, there was no change (P > 0.05; Appendix 

B - Table 2) in SOM content over time under irrigation.  Consequently, the original hypothesis 

that SOM content would increase over time under irrigated conditions was rejected.  

Irrigation strongly affects the activity of plants and soil microorganisms, leading to 

changes in SOM formation and decomposition. While increased soil moisture can increase SOM 

and soil C by promoting development of plant and microbial biomass, increased soil moisture 

also promotes microbial decomposition of SOM and respiration losses of C (Churchman and 

Tate, 1986). For example, Linn and Doran (1984) reported increases in soil respiration associated 

with increases in soil moisture, up to 60% water-filled pore space, beyond which microbial 

activity and respiration decrease in the upper 7.5 cm in a continuous corn and wheat-fallow study 

conducted on several silt-loam, loam, and clay-loam soils across the eastern United States. 
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Similarly, the results of this study suggest that microbial decomposition of SOM under dryland 

production was reduced by the lack of irrigation and human-induced wetting and drying cycles 

and that irrigation management, more than any other treatment factor, was responsible for the 

greatest differences in SOM and C trends over time.  

The maximum point in the SOM content trend over time under dryland production 

between years 9 and 10 (i.e., 2010 and 2011; Fig. 3) may have been influenced by changes in 

growing-season weather patterns. During the year 9 (i.e., 2010) growing season (i.e., June 

through October), total rainfall was 58% lower and daily mean air temperature was 5% greater 

than the 30-yr cumulative rainfall and mean air temperature, respectively, during the same time 

period (NOAA, 2002). The year 9 and year 10 (i.e., 2011 and 2012) growing seasons also had 15 

and 22% lower rainfall, respectively, compared to the 30-yr mean rainfall for the growing season 

(i.e., June through October; NOAA, 2002; Table 1; Appendix G). Furthermore, soybean yield 

sharply decreased under dryland production approximately year 9 (i.e., 2010), indicating a 

reduction in additions of plant biomass under dryland production. The hot, dry growing 

conditions occurring in year 9 (i.e., 2010) likely caused a reduction in crop biomass, microbial 

activity, and residue decomposition. 

Burning also significantly affected (P = 0.015) the trend in SOM content over time 

(Appendix A - Table 2; Fig. 3). Averaged across residue level, tillage, and irrigation, and similar 

to that hypothesized, SOM content decreased at a rate of -0.02 kg m
-2

 yr
-1

 over time under 

residue burning, but increased at a rate of 0.02 kg m
-2 

yr
-1

 over time under non-burning (Fig. 3). 

Clearly, burning crop residues reduces the amount of plant material returned to the soil for 

potential microbial decomposition and eventual conversion to SOM. This is consistent with a 4-

yr wheat-soybean study conducted on a Brooksville silty clay (Aquic Chromudert) in Mississippi 
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that reported increased SOM content under no-burn, NT treatment combinations compared with 

a burn, CT treatment combinations (Sanford, 1982). These results are in contrast with results 

analyzed after the first 6 years following conversion to alternative management practices, in 

which burning had no effect on changes in SOM over time (Amuri et al., 2008), likely due to an 

insufficient length of time for measurable differences to appear. 

As fractions of SOM, it would stand to reason that soil C and N contents would behave 

like SOM content trends over time.  Similar to SOM, the trend in C content (kg m
-2

) in the top 10 

cm over time was affected (P < 0.05; Appendix A - Table 2) by all field treatment factors 

evaluated. Also similar to SOM, the largest and most obvious differences occurred between 

irrigated and non-irrigated treatments (P < 0.05). Averaged across tillage, burning, and residue 

level, C content increased at a rate of 0.16 kg m
-2

 yr
-1

 (P < 0.05)  over time under dryland 

production until approximately nine years after initial conversion, then slightly decreased at a 

rate of 0.01 kg m
-2

 yr
-1

 (P < 0.05) thereafter (Appendix B - Table 3). In contrast, C content 

decreased at a rate of 0.16 kg m
-2

 yr
-1

 (P < 0.05) over time under irrigation until approximately 

nine years after initial conversion, then slightly increased at a rate of 0.01 kg m
-2

 yr
-1

 thereafter 

(Appendix B - Table 3; Fig. 4). This result somewhat negates the original hypothesis that C 

content would increase over time under irrigation. 94% of the measured C content values in the 

entire seven year study fell within a range of 1 to 1.6 kg C m
-2

 (data not shown). To put this 

range of C contents in context, 0.2 kg C m
-2

 extrapolated across 1 ha would equal 2000 kg C ha
-1

. 

Considering the 34 million ha planted to soybean in the United States in 2014 (USDA-NASS, 

2015), these observed differences in C content trends may have large-scale, real-world 

significance in the industry as a whole. 

These results are somewhat similar to what was reported after the first 6 years following 
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conversion to new management practices, in which soil C content increased at a greater rate 

under irrigation (0.11 kg C m
-2

 yr
-1

) than under dryland production (0.044 kg C ha
-1

 yr
-1

; Amuri 

et al., 2008). Similarly, Lal and Bruce (1999) suggested that soil C sequestration is strongly 

linked to irrigation practices, estimating that irrigated cropland sequesters between 50 to 150 kg 

ha
-1

 more C than non-irrigated cropland. Other studies have reported more significant effects on 

soil C as a result of tillage practices, i.e., greater soil C sequestration under CT than NT 

(Franzluebbers et al., 1998; Grandy et al., 2006) as a result of increased oxidation of SOM under 

CT management.  

The maximum points in the C content trends over time under irrigated and non-irrigated 

soybean production (Fig. 4) occurred at approximately the same time as the maximum point in 

the SOM trend over time under non-irrigated production (Fig. 3), and therefore may have been 

similarly influenced by changes in the growing-season weather patterns. The increase in 

temperature and decrease in moisture may have caused a reduction in crop biomass, microbial 

activity, and residue decomposition, which may account for the shift from increasing decreasing 

C content under dryland production between years 9 and 10 (i.e., 2010 and 2011). In contrast, the 

growing conditions under irrigated conditions were hot and moist, which may have increased 

microbial decomposition of crop residue and increased the amount of plant biomass converted 

into stabilized, recalcitrant fractions of C. It is also important to note that, for unknown reasons, 

the maximum point in the C content trend over time under irrigation occurred slightly earlier 

than that under dryland production. 

Furthermore, while soybean yield under irrigation began to slightly decrease 

approximately year 9 (i.e., 2010; P < 0.001; Appendix B - Table 8; Fig. 7), soybean yield under 

irrigation continued to exceed soybean yield under dryland production throughout the entire 
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measured time period, indicating that the crop growth under dryland production was more 

strongly affected by the change in growing-season weather patterns. The continued, annual 

additions of relatively large amounts of biomass under irrigation compared to dryland production 

may have influenced the quadratic increase (P < 0.05; Appendix B - Table 3; Fig. 4) in soil C 

content under irrigation.  

Also similar to SOM content, C content trends were affected (P = 0.002; Appendix A - 

Table 2) by burning in a manner consistent with the original hypothesis. Although the linear 

trend of soil C over time was unaffected (P > 0.05) by burning, the quadratic coefficient of soil C 

content was affected (P = 0.002) by burning (Appendix A - Table 2). Under residue burning, soil 

C content began to decrease over time beginning approximately year 9 (i.e., 2010; P < 0.05; 

Appendix B - Table 3). In contrast, under the no-burn treatment, soil C began to sharply increase 

over time beginning approximately year 8 (i.e., 2009; P < 0.05; Appendix B-Table 3). These 

results are somewhat similar to what was reported after the first 6 years following conversion to 

alternative management practices, in which the rate of increase in soil C was significantly (P = 

0.008) greater under non-burning than under burning (Amuri et al., 2008). 

The trend in the C fraction of SOM in the top 10 cm over time was affected (P < 0.05; 

Appendix A - Table 3) by all treatment factors evaluated. Though there were many subtle 

differences among treatment combinations, the largest and most obvious differences again 

occurred between irrigation treatments. Averaged across tillage, burning, and residue level, the C 

fraction of SOM slightly decreased (P < 0.05) over time under both irrigated and dryland 

production until approximately nine years after initial conversion, then increased (P < 0.05) 

thereafter (Appendix A - Table 3; Fig. 5). However, the C fraction of SOM under irrigation 

increased approximately three times faster than the rate under dryland production after year 9 



59 

 

(i.e., 2010; Appendix B - Table 4). The greater increase in C fraction of SOM over time under 

irrigation (Fig. 5) is consistent with the increase in C content over time under irrigation (Fig. 4) 

beginning approximately year 9 (i.e., 2010).  

Trends in soil C and/or SOM are often accompanied by similar trends in soil N.  The 

trend in soil N content (kg m
-2

) in the top 10 cm over time was affected (P < 0.001) by irrigation, 

and unaffected (P > 0.05) by any other treatment factor evaluated (Appendix A - Table 2). 

Averaged across tillage, burning, and residue level, soil N content increased at a rate of 0.03 kg 

m
-2

 yr
-1

 over time under dryland production until approximately nine years after initial 

conversion, then slightly decreased at a rate of 0.002 kg m
-2

 yr
-1

 thereafter (Appendix B - Table 

6; Fig. 6).  These results are in contrast to results reported after the first 6 years following 

conversion to alternative management practices, in which the trend in soil N content over time 

was unaffected by any imposed field treatments. The maximum point approximately year 9 (i.e., 

2010; Fig. 6) approximately corresponds to the maximum points in SOM content (Fig. 3), C 

content (Fig. 4), and C fraction of SOM (Fig. 5), and may have been similarly influenced by 

changes in growing-season weather patterns. In contrast, there was no change in soil N content 

over time under irrigation (P > 0.05; Appendix B - Table 6). The N fraction of SOM in the top 

10 cm over time was affected by tillage, irrigation, and residue level treatments (P < 0.023; 

Appendix A - Table 3). However, trends in N fraction of SOM over time contained no significant 

slope or quadratic terms, i.e., all treatment combinations were statistically similar (Appendix B - 

Table 7).  

Evaluated independently, soil C and N provide useful information, but evaluated together 

as the C:N ration can provide even more insight into the biogeochemical cycling of SOM.  The 

trend in soil C:N ratio in the top 10 cm over time was affected (P < 0.05; Appendix A -Table 3) 
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by all field treatments evaluated. Though there were many subtle differences among treatment 

combinations, the largest and most obvious differences occurred between high- and low-residue 

treatments. Averaged across tillage, burning, and irrigation, soil C:N ratio decreased (P < 0.05) 

over time until approximately nine years after initial conversion, then increased thereafter under 

both high- and low-residue treatments (Appendix B - Table 5; Fig. 5). However, soil C:N ratio 

decreased at a greater rate prior to year 9 and increased at a greater rate after year 9 (i.e., 2010) 

under the low- than the high-residue treatment (Appendix B - Table 5; Fig. 5). One possible 

explanation for this trend is the accumulation of soil N under the high-residue/high-fertilization 

treatment. Soil under the high-residue management received twice the amount of N fertilizer that 

soil under the low-residue management received, and therefore the slower rate of increasing C:N 

ratio under the high-residue management may have been influenced by the greater input of N 

fertilizer. This interpretation is consistent with a 50-yr wheat-fallow cropping study on a silt 

loam Typic Haploxeroll in Oregon, where unfertilized treatments had a greater C:N ratio than N-

fertilized treatments in the top 30 cm (Rasmussen et al., 1980). It is also possible that soil 

microbes under the low-residue/low-fertilization treatment lacked sufficient soil N to consume 

SOM as rapidly as microbes under the high-residue/high-fertilization treatment, especially given 

the high C:N ratio of the wheat residue (C:N≈ 55). The reduced efficiency of microbial 

respiration may account for the greater accumulation of soil C compared to soil N under the low-

residue/low-fertilization treatment. In contrast to this study, after the first 6 years following 

conversion to new management, no significant trends in C:N ratio over time were reported 

(Amuri et al., 2008). Another study similarly reported no significant effects on soil C and N 

dynamics as a result of high (134 kg N ha
-1

 yr
-1

) and low-N-rate treatments after 10 years of 

consistent management of a Weld silt-loam (Aridic Agiustoll) in the Great Plains (Halvorson et 
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al., 1999).  

 

Soybean and Wheat Yields 

Over the course of seven complete wheat-soybean cropping cycles (i.e., 2007 to 2014), 

after six complete cropping cycles (i.e., 2001 to 2007) following conversion to alternative 

management practices in treatment combinations managed consistently for 13 consecutive years 

(i.e., 2002 to 2014), the trend in soybean yield (Mg ha
-1

) over time was affected (P < 0.05) by 

only irrigation (Appendix A - Table 1). Soybean yield increased (P = 0.01) over time under 

irrigation until approximately nine years after initial conversion, then slightly decreased (P < 

0.001) thereafter (Appendix B - Table 8; Fig. 7). In contrast, soybean yield sharply decreased (P 

< 0.001) over time under dryland production until approximately 11 years after initial 

conversion, then slightly increased (P = 0.003) thereafter (Appendix B - Table 8; Fig. 7). The 

drought conditions during years 9 and 11 (i.e., 2010 and 2012) may have caused a reduction in 

crop growth and yield, with the sharpest decrease occurring between years 10 and 11 (i.e., 2011 

and 2012) under dryland production (Fig. 7). Soybean yields are strongly affected by water 

availability and air temperature (Andresen et al., 2001), which is a partially a function of climatic 

conditions and irrigation practices. In contrast to this study, soybean yields over time did not 

differ among field treatments in the first 6 years following conversion to alternative management 

practices (Amuri et al., 2008). 

In contrast to soybean yield trends, the trend in wheat yield (Mg ha
-1

) over time was 

affected (P < 0.05; Appendix A - Table 1) by all treatment factors evaluated. However, all 

treatment combinations decreased at the same rate over time (P < 0.001). Therefore, while all 

treatment factors significantly affected the trend in wheat yield over time, the differences over 
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time between specific treatment combinations were statistically insignificant. Wheat yield 

increased at a similar rate under all treatment combinations until approximately year 9 (i.e., 

2010), then slightly decreased thereafter (Appendix B - Table 9; Fig. 8). Irrigation was only 

provided during the soybean growing season, which may explain why irrigation clearly affected 

soybean yield trends (Fig. 7), but failed to directly affect wheat yield (Fig. 8). These results are 

similar the first 6 years following conversion to alternative management practices, during which 

wheat yields did not differ among field treatments (Amuri et al., 2008). 

   

Soil Chemical Properties 

Time Effects Only 

The trends in EC (dS m
-1

), and Fe, S, and N contents (kg ha
-1

) over time were unaffected 

by any of the treatment factors evaluated. However, similar to wheat yield, all treatment 

combinations increased or decreased at a statistically similar rate over time in each of these 

measured variables. The trend in soil EC in the top 10 cm over time had a slight increasing linear 

(P < 0.001) trend, followed by a slight decreasing quadratic (P < 0.001) trend.  However, the 

overall trend in soil EC appeared to decrease at approximately the same rate over time under all 

treatment combinations (Appendix B - Table 10; Fig. 9). The decrease in EC over time is 

consistent with the decreasing trend in sodium (Na) over time, indicating a lack of accumulation 

of salinity and soluble salts over time. These results are similar to what was reported following 

the first 6 years of consistent management, in which soil EC was unaffected by any field 

management practice in this study and decreased significantly over time (Amuri et al., 2008). 
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Similar to soil EC, the trends in Fe and S contents in the top 10 cm over time were also  

unaffected (P > 0.05; Appendix A - Table 4) by any of the field treatment evaluated. However, 

Fe and S contents varied in time (P < 0.001; Appendix B - Table 11 and Table 13, respectively). 

While the coefficient estimates indicated an increasing linear trend in Fe (Appendix B - Table 

11) and S (Appendix B - Table 13) content, followed by a slight decreasing quadratic trend (Fig. 

10; Appendix B -Table 11 and Table 13), the changes over time were minute from a production 

standpoint. Sulfur is rarely a limiting nutrient in soybean production, and no Fe deficiency for 

soybean has ever been diagnosed in Arkansas (Slaton et al., 2013). Therefore, the slight changes 

observed in the trends in Fe and S content trends over time were agronomically non-significant.   

Similar to EC and Fe and S contents, the trend in Na content in the top 10 cm over time 

was unaffected (P > 0.05; Appendix A - Table 4) by any of the field treatments evaluated. 

However, unlike EC and Fe and S contents, soil Na content only varied linearly over time (P < 

0.001; Appendix B - Table 12). Soil Na in all treatment combinations slightly decreased over 

time (Fig. 11). The lack of increasing salinity or EC over time, even under irrigation, may be 

partly explained by the low EC and Na and chloride (Cl) concentrations in the irrigation water 

used (Amuri et al., 2008). Furthermore, there may be enough ample moisture to remove Na from 

the top 10 cm so that the damaging effects of soil dispersion, possible crusting, and destruction 

of structure are likely to not be present. 

 

 Single Treatment Effects 

In contrast to the lack of clear residue management effects on EC and Fe, S, and Na 

contents, the trends in several measured soil properties, namely soil pH and P and Cu contents, 

exhibited large and obvious differences due to the imposition of a single treatment factor. The 
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trend in soil pH in the top 10 cm over time was statistically affected (P < 0.05; Appendix A - 

Table 5) by all field treatments evaluated, however, the largest and most obvious differences 

occurred between the high- and low-residue treatments (Appendix B – Table 14). Soil pH 

decreased over time under all treatment combinations until 10 years after conversion to new 

management, then slightly increased thereafter (Fig. 12). However, averaged across tillage, 

burning, and irrigation, soil pH decreased at a greater rate over time under the high- than under 

the low-residue treatment up to approximately year 10 (i.e., 2011; Appendix B – Table 14). 

Shortly after 10 years after conversion to new management, soil pH began to increase at a 

slightly greater rate over time under the high- than under the low-residue treatment (Fig. 12), 

with the exception of the NT-NB-H-I and CT-B-H-I treatment combinations (Appendix B - 

Table 14). Soil pH was not affected (P = 0.058) by any of the field treatments under the NT-NB-

H-I treatment combination, and soil pH under the CT-B-H-I treatment decreased until 10 years 

after conversion to new management, then increased at a statistically similar rate to soil pH under 

low-residue treatment (Appendix B; Table 14).  

In contrast to this study, soil pH was unaffected by residue level treatment, increased over 

time under irrigated treatment, and did not change over time under dryland production during the 

first 6 years following conversion to new management (Amuri et al., 2008). A possible 

explanation for the shift from irrigation-driven changes in pH during the first 6 years of 

management to residue level-driven changes in pH from year 6 to year 14 is that the lime applied 

at the initiation of the study in 2001 may have progressively dissolved at different rates under 

irrigated and non-irrigated management, thereby altering the soil pH most significantly according 

to irrigation treatment in earlier years and less significantly in later years. 

All of the observed differences in soil pH trends over time occurred well-above the 
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threshold of 6.0, below which soybean yield reductions can be expected on silt-loam soils 

(Slaton et al., 2013). Therefore, while the differences in soil pH trends over time may be 

statistically significant, they are agronomically non-significant with regards to soybean 

production on silt-loam soils in eastern Arkansas.  

The trend in P content in the top 10 cm over time was affected by irrigation (P = 0.019) 

and residue level (P < 0.001) and was unaffected by tillage and burning (P > 0.05; Appendix A - 

Table 5). Similar to SOM, C, and N contents, the largest and most obvious differences in soil P 

trends occurred between irrigation treatments (Appendix B - Table 15). Averaged across tillage, 

burning, and residue level, soil P content increased (P < 0.001) over time under dryland 

production until approximately nine years after initial conversion, then decreased thereafter 

(Appendix B - Table 15; Fig. 13). In contrast, soil P content decreased quadratically over time 

under irrigation (P = 0.02; Appendix B - Table 15). In contrast to this study, no significant 

differences were reported in the trends in soil P content over time between irrigation treatments 

during the first 6 years following conversion to alternative management practices (Amuri et al., 

2008). One possible explanation for why the trend in soil P content over time was most clearly 

affected by irrigation is that changes in soil P content are associated with changes in SOM 

(Rhoton, 2000), and the trend in SOM content over time was most clearly affected by the 

irrigation treatment. The trend in soil P content over time under dryland production (Fig. 13) 

approximately mirrors the trend in SOM content over time under dryland production (Fig. 3). 

The differences between trends in soil P content under irrigated and non-irrigated 

management are not only statistically significant, but agronomically significant as well. Soil P 

contents ranged between very low (< 19.5 kg ha
-1

) and medium (33.8 to 45.5 kg ha
-1

) soil test P 

levels, based on a conversion of the part per million (ppm) soil test P levels provided by the 
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Arkansas Soybean Production handbook (Slaton et al., 2013) and
 
using an assumed bulk density 

of 1300 kg m
-3 

in combination with the measured soil depth of 0.1 m. There is no evidence that P 

fertilization of soils with medium soil test P levels will produce a yield response, although 

fertilization may help maintain optimum P levels by replacing the portion of P expected to be 

removed by the harvested soybean grain (Slaton et al., 2013). The soil P content trend under 

dryland management occurred mostly within the medium soil test P level range (Fig. 13), 

indicating that P fertilization requirements for soybean on silt-loam soils in eastern Arkansas 

may possibly be reduced under dryland management compared to irrigation management. These 

results suggest that irrigation treatment effects may impact the necessity, amount, and/or 

frequency of P fertilization. However, it is important to note that P deficiency in soybean is much 

less common than other potential deficiencies, such as K (Slaton et al., 2013).  

Similar to P content, the trend in soil Cu content in the top 10 cm over time was affected 

(P = 0.009) by irrigation and was unaffected (P > 0.05) by tillage, burning, or residue-level 

treatments (Appendix A - Table 5). Averaged across tillage, burning, and residue level, Cu 

content decreased (P < 0.001) over time under irrigation until approximately 10 years after initial 

conversion, then slightly increased thereafter (Appendix B - Table 16; Fig. 13). In contrast, there 

was no change in soil Cu content over time under dryland production (P > 0.05; Appendix B - 

Table 16). In contrast to this study, no significant differences were reported in the trends in soil 

Cu content over time between irrigation treatments during the first 6 years following conversion 

to alternative management practices (Amuri et al., 2008). All soil Cu trend values occurred well-

above the threshold for low soil test Cu levels (< 1 kg ha
-1

; Slaton et al., 2013). Therefore, the 

trends in soil Cu content over time under irrigation were also agronomically non-significant. 
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Burning and Irrigation Treatment Effects 

  

While the largest and most obvious  the trends in trends in pH and P and Cu contents over 

time were only affected by a single treatment factor, the trends in Ca, Mg, and Mn contents (kg 

ha
-1

) over time were affected by irrigation and burning treatment combinations. The trend in Ca 

content in the top 10 cm over time was affected (P < 0.05) by all field treatment factors 

evaluated (Appendix A - Table 6). Tillage and residue-level participated in significant treatment 

combinations, but had no observable impacts on the trend in Ca content over time (Appendix B - 

Table 17). The largest and most obvious differences occurred between the irrigation and burning 

treatment combinations, based on an interpretation of the LSD between estimate parameters of 

specific treatment combinations (Appendix B - Table 17). Averaged across tillage and residue 

level, Ca content increased (P < 0.05) over time under most non-burned, non-irrigated treatment 

combinations until approximately nine years after initial conversion then decreased (P < 0.05) 

thereafter, with the exception of the CT-NB-L-NI treatment combination, exhibited no change 

over time (P > 0.05; Appendix B - Table 17; Fig. 14). In contrast, Ca content decreased (P < 

0.05) over time under non-burned, irrigated production until approximately ten years after initial 

conversion then increased (P < 0.05) thereafter (Appendix B - Table 17; Fig. 14). While the 

statistical differences between Ca content trends over time under different treatment 

combinations may be of scientific interest, all of the measured Ca contents exceed plant growth 

requirements for most row crops in eastern Arkansas (Slaton et al., 2013).  

Similar to Ca, the trend in soil Mg content in the top 10 cm over time was affected (P < 

0.05) by all field treatments evaluated (Appendix A - Table 6). Also similar to Ca, the largest and 

most obvious differences occurred between irrigation and burning treatment combinations 

(Appendix B - Table 18). Averaged across tillage and residue level, soil Mg content decreased (P 
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< 0.05) over time under burned, irrigated combinations until approximately eight years after 

initial conversion, then increased thereafter (Appendix B - Table 18; Fig. 14). In contrast, soil 

Mg content decreased (P < 0.001) over time under non-burned, irrigated combinations at 

approximately four times the rate of the decrease under burned, irrigated management until 

approximately eight years after initial conversion, then increased (P < 0.001) thereafter at 

approximately three times the rate of the increase under burned, irrigated management 

(Appendix B - Table 18; Fig. 14). However, Mg deficiencies are rare for soybean production in 

eastern Arkansas given that Mg is prevalent in the groundwater (Slaton et al., 2013). Moreover, 

measured Mg contents consistently occurred above the threshold for low soil test Mg levels (< 

45 kg ha
-1

; Slaton et al., 2013), thus Mg differences were also likely agronomically non-

significant. These results are in contrast to results reported after the first 6 years following 

conversion to new management, in which Ca and Mg contents increased at a greater rate over 

time under irrigation compared with dryland production, likely due to the gradual dissolution of 

the initial application of lime in 2001 (Amuri et al., 2008). 

The trend in Mn content in the top 10 cm over time was affected (P < 0.05) by tillage, 

burning, and irrigation (Appendix A - Table 6). Tillage and residue level contributed to 

significant higher-order interactions, but neither had an observable impact on the trend in Mn 

content over time (Appendix B – Table 19). Similar to Ca and Mg, the largest and most obvious 

differences in soil Mn content trends occurred between irrigation and burning treatments 

(Appendix B - Table 19). Averaged across tillage and residue level, soil Mn content sharply 

increased (P < 0.05) over time under the non-burned, irrigated treatment combinations until 

approximately 10 years after initial conversion, then decreased thereafter (Appendix B - Table 

19; Fig. 15). In contrast, soil Mn content increased (P < 0.05) over time under dryland 



69 

 

production at less than half the rate of the increase under the non-burned, irrigated combination 

until approximately nine years after initial conversion, then slightly decreased thereafter 

(Appendix B - Table 19; Fig. 15). However, measured Mn contents were consistently well-above 

the threshold for low soil test Mn levels (< 13 kg ha
-1

; Slaton et al., 2013), thus, like soil Ca and 

Mg, were also agronomically non-significant. These results are similar to results reported after 

the first six years following conversion to alternative residue management practices, in which the 

trend in Mn content over time was most significantly affected by irrigation. During the first six 

years following conversion to alternative residue management practices, the trend in Mn content 

increased under irrigation and did not change under dryland management. 

 

Complex Treatment Effects  

 

Compared to other observed trends in this study, the effects of residue management on 

soil K and Zn content trends over time were the most complex. The trend in soil K content in the 

top 10 cm over time was affected (P < 0.05) in some way by all field treatment factors evaluated 

(Appendix A - Table 7). There were many subtle differences in soil K content trends over time 

among treatment combinations. Based on LSDs among parameters estimates (Appendix B - 

Table 20), it appeared that burning and residue level had less of an impact on soil K content 

trends over time than did tillage and irrigation. Similar to Ca (Appendix B – Table 17), soil K 

content in the NT-B-H-NI, CT-NB-H-NI, and NT-NB-L-NI treatment combinations did not vary 

over time (Appendix B – Table 20). All other treatment combinations decreased (P < 0.05) over 

time until approximately 10 years after conversion to new management, then slightly increased 

thereafter (Appendix B – Table 20; Fig. 16). One statistically similar grouping of treatment 

combinations (Appendix B – Table 20) was the NT-NB-L-I, NT-NB-H-I, NT-B-L-I, and CT-B-
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H-I treatment combinations, which sharply decreased (P < 0.001) over time until approximately 

10 years after conversion to new management, then slightly increased thereafter (Appendix B – 

Table 20). In contrast, another statistically similar group of treatment combinations (i.e., CT-B-

H-NI, NT-B-L-NI, CT-B-L-I, NT-B-H-I, CT-NB-L-I, CT-B-L-NI, CT-NB-L-NI, NT-NB-H-NI, 

and CT-NB-H-I) decreased more gradually (P < 0.05) over time until approximately 10 years 

after conversion to new management, then some combinations (i.e., CT-B-L-I, NT-B-H-I, CT-

NB-L-I, CT-B-L-NI, CT-NB-L-NI, NT-NB-H-NI, and CT-NB-H-I) increased thereafter, while 

others (i.e., CT-B-H-NI, NT-B-L-NI) exhibited no quadratic trend (Appendix B – Table 20). 

The differences in K content trends over time observed in this study were agronomically 

significant because K contents ranged between very low to optimum soil test K levels. Soil K 

contents at or below 78 kg ha
-1

 were in the very low range and those between 170 and 228 kg ha
-

1
 were in the optimum soil test K range (Slaton et al., 2013). Between years 9 and 13 (i.e., 2010 

and 2014), the trend in soil K content generally occurred within the very low range in the NT-

NB-L-I, NT-NB-H-I, NT-B-L-I, and CT-B-H-I treatment combinations (Fig. 16). In contrast, 

within the same time period,  the trend in soil K content generally occurred within the medium 

range (i.e., 118 to 169 kg P ha
-1

) of soil test K in the CT-B-H-NI, NT-B-L-NI, CT-B-L-I, NT-B-

H-I, CT-NB-L-I, CT-NB-L-NI, NT-NB-H-NI, and CT-NB-H-I treatment combinations. 

However, given the complexity of the treatment effects, it is challenging to translate the 

variations in soil K content over time into practical recommendations for improved field 

management of soil K aside from maintaining adequate levels with periodic fertilization.  

In contrast to these results, the trends in soil K content over time differed between 

irrigation treatments during the first six years following conversion to alternative management 

practices. Soil K contents decreased linearly under irrigation, but increased under dryland 
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management, indicating a possible leaching of soil K due to irrigation treatment during the first 

six years following conversion to new management practices, in addition to increased plant 

uptake of soil K under irrigated production. 

Similar to K, the trend in soil Zn content in the top 10 cm over time was complex 

compared to other measured variables in the study, with many subtle differences between 

treatment combinations. While Zn content was affected (P < 0.05; Appendix A - Table 7) by all 

field treatments evaluated, the burn treatment appeared to have the most clearly discernible 

effects (Appendix B - Table 21). Soil Zn content increased (P < 0.05) over time in the NT-B-H-

NI, NT-NB-L-I, NT-NB-L-NI, and CT-NB-H-I treatment combinations until approximately 10 

years after conversion to new management, then decreased thereafter (Appendix B - Table 21; 

Fig. 17). In contrast, soil Zn content decreased (P < 0.05) over time in the NT-B-L-NI and CT-B-

H-I treatment combinations until approximately 11 years after conversion to new management, 

then slightly increased thereafter (Appendix B - Table 21; Fig. 17). In contrast to these results, 

Zn content increased under dryland management and did not change over time under irrigation 

during the first six years following conversion to alternative residue management practices 

(Amuri et al., 2008).While differences in soil Zn content trends among the various treatment 

combinations were statistically significant, no Zn deficiency has ever been observed or 

diagnosed in an Arkansas soybean crop (Slaton et al., 2013), thus, similar to soil pH, Fe, S, Cu, 

Ca, and Mg, differences in soil Zn were agronomically non-significant in terms of Arkansas 

soybean production.  

 

Summary and Conclusions 

 Over the course of seven complete wheat-soybean cropping cycles (i.e., 2007 to 2014), 
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after six complete cropping cycles (i.e., 2001 to 2007) following conversion to alternative 

management practices in treatment combinations managed consistently for 13 consecutive years 

(i.e., 2002 to 2014), all field treatments evaluated in this study affected trends in one or more 

measured soil properties over time. Irrigation management was responsible for the greatest 

differences in trends in soybean yield, C fraction of SOM, and SOM, C, N, P, Cu contents over 

time. Burning also significantly affected the trend in SOM and C contents over time. Irrigation 

and burn treatment combinations were responsible for the greatest differences in trends in soil 

Ca, Mg, and Mn contents over time. Residue level was responsible for the greatest differences in 

trends in soil C:N ratio and pH over time. Trends in wheat yield, EC, and Fe, Na, and S contents 

were unaffected by any of the field treatments evaluated, but all varied significantly over time. 

Trends in bulk density, and K and Zn contents over time were affected by complex treatment 

combinations that included interactions among tillage, burning, and irrigation. 

 As originally hypothesized, SOM and C contents increased over time under non-burning 

and decreased over time under burning. Contrary to original hypotheses, tillage and residue 

treatments failed to cause clear and obvious differences in the trends in SOM, C, and extractable 

nutrient contents over time. In fact, differences between irrigation treatments appeared the have 

the clearest, most obvious effects on the trends in SOM, C, N, P, and Cu contents over time. Also 

contrary to that hypothesized, SOM and C contents did not decrease under dryland soybean 

production. Rather, SOM and C contents increased over time under dryland production until 

approximately year 9 (i.e., 2010), then decreased thereafter.  

  Overall, it can be inferred from this study that irrigation management plays a critical role 

in the long-term trends in SOM, C, and N contents and other soil physical and chemical 

properties over time. Moreover, the accumulation of SOM, C, and N appears to be greatly 
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influenced by growing season weather patterns, especially under dryland production. Crop 

management that strikes a balance between increasing crop biomass and decreasing the rate of 

microbial turnover of SOM can maintain or increase SOM levels, and thereby work towards 

long-term soil improvement and soil C sequestration.   
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Table 1. Summary of soybean growing-season rainfall and average temperature from Year 6 to Year 13 

(i.e., 2007 through 2014). 

Month 

Precipitation (cm) 

30 yr 

Mean 

Year 6 

Mean 

Year 7 

Mean 

Year 8 

Mean 

Year 9 

Mean 

Year 

10 

Mean 

Year 

11 

Mean 

Year 

12 

Mean 

Year 

13 

Mean 

June 11.2 9.3 3.9 8.9 3.3 6.4 2.0 1.9 24.8 

July 9.7 15.3 5.4 21.8 6.7 12.3 6.5 7.1 6.5 

August 6.9 2.3 15.2 6.4 1.6 8.6 3.1 4.8 11.9 

September 8.0 7.6 6.6 12.3 2.1 5.6 12.3 11.1 3.4 

October 9.6 10.3 7.3 32.1 5.4 5.7 11.5 6.8 11.5 

Season 

Total 45.4 44.8 38.4 81.5 19.1 38.6 35.4 31.7 58.1 

          

 Temperature (°C) 

June 25 27 27 27 29 28 26 26 26 

July 27 26 28 26 28 29 28 26 25 

August 26 29 26 26 29 28 27 26 27 

September 23 24 23 23 25 21 24 24 23 

October 

Season 

Mean 

17 

 

23.6 

19 

 

25 

17 

 

24.2 

16 

 

23.6 

18 

 

25.8 

16 

 

24.4 

16 

 

24.2 

17 

 

23.8 

18 

 

23.8 
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Fig. 1. Experimental layout at the Lon Mann Cotton Branch Experiment Station in eastern 

Arkansas depicting 48, 3- x 6-m plots subjected to residue-level [high (H) and low (L)], burn, 

tillage [conventional tillage (CT) and no-tillage (NT)], and irrigation treatments. 
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Fig. 2 Influence of tillage [conventional tillage (CT) and no-tillage (NT)], residue-level [high (H) 

and low (L)], and irrigation [irrigated (I) and non-irrigated (NI)] on the trend in bulk density in 

the top 10 cm over time after initial conversion to alternative management practices after initial 

conversion to alternative management practices in a wheat-soybean, double-crop system in 

eastern Arkansas. 
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Fig. 3 Influence of burning [burn (B) and no-burn (NB)] and irrigation [irrigated (I) and non-

irrigated (NI)] on the trend in soil organic matter (SOM) content in the top 10 cm over time after 

initial conversion to alternative management practices in a wheat-soybean, double-crop system in 

eastern Arkansas. Soil OM content under the irrigated treatment did not differ over time and 

averaged 2.87 kg m
-2

.  
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Fig. 4 Influence of burning [burn (B) and no-burn (NB)] and irrigation [irrigated (I) and non-

irrigated (NI)] on the trend in soil carbon content in the top 10 cm over time after initial 

conversion to alternative management practices in a wheat-soybean, double-crop system in 

eastern Arkansas.  
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Fig. 5 Influence of residue-level [high (H) and low (L)], and irrigation [irrigated (I) and non-

irrigated (NI)] on the trend in carbon (C) fraction of soil organic matter (SOM) and C:nitrogen 

(N) ratio in the top 10 cm over time after initial conversion to alternative management practices 

in a wheat-soybean, double-crop system in eastern Arkansas. 
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Fig. 6 Influence of irrigation [irrigated (I) and non-irrigated (NI)] on the trend in nitrogen (N) 

content in the top 10 cm over time after initial conversion to alternative management practices in 

a wheat-soybean, double-crop system in eastern Arkansas. Soil N content under the irrigated 

treatment did not differ over time and averaged 0.14 kg m
-2

.  
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Fig. 7 Influence of irrigation [irrigated (I) and non-irrigated (NI)] on the trend in soybean yield 

over time after initial conversion to alternative management practices in a wheat-soybean, 

double-crop system in eastern Arkansas. 
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Fig. 8 Influence of burning [burn (B) and no-burn (NB)], residue-level [high (H) and low (L)], 

and irrigation [irrigated (I) and non-irrigated (NI)] on the trend in wheat yield over time after 

initial conversion to alternative management practices in a wheat-soybean, double-crop system in 

eastern Arkansas. 
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Fig. 9 Influence of tillage [conventional tillage (CT) and no-tillage (NT)], residue level [high (H) 

and low (L)], and irrigation [irrigated (I) and non-irrigated (NI)] on the trend in electrical 

conductivity (EC) in the top 10 cm over time after initial conversion to alternative management 

practices in a wheat-soybean, double-crop system in eastern Arkansas.
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Fig. 10 Influence of tillage [conventional tillage (CT) and no-tillage (NT)], burning [burn (B) 

and no-burn (NB)], and irrigation [irrigated (I) and non-irrigated (NI)] on the trend in iron (Fe) 

and sulfur (S) contents in the top 10 cm over time after initial conversion to alternative 

management practices in a wheat-soybean, double-crop system in eastern Arkansas. 
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Fig. 11 Influence of tillage [conventional tillage (CT) and no-tillage (NT)], burning [burn (B) 

and no-burn (NB)], and irrigation [irrigated (I) and non-irrigated (NI)] on the trend in sodium 

(Na) content in the top 10 cm over time after initial conversion to alternative management 

practices in a wheat-soybean, double-crop system in eastern Arkansas. 
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Fig. 12 Influence of tillage [conventional tillage (CT) and no-tillage (NT)], burning [burn (B) 

and no-burn (NB)], and residue level [high (H) and low (L)] on the trend in pH in the top 10 cm 

over time after initial conversion to alternative management practices in a wheat-soybean, 

double-crop system in eastern Arkansas. 
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Fig. 13 Influence of residue level [high (H) and low (L)] and [and irrigation [irrigated (I) and 

non-irrigated (NI)] on the trend in phosphorus (P) and copper (Cu) contents over time after initial 

conversion to alternative management practices in a wheat-soybean, double-crop system in 

eastern Arkansas. Soil Cu content under the non-irrigated treatment did not differ over time and 

averaged 2.01 kg ha
-1

.  
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Fig. 14 Influence of burning [burn (B) and no-burn (NB)] and irrigation [irrigated (I) and non-

irrigated (NI)] on the trend in calcium (Ca) and magnesium (Mg) contents in the top 10 cm over 

time after initial conversion to alternative management practices in a wheat-soybean, double-

crop system in eastern Arkansas. 
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Fig. 15 Influence of tillage [conventional tillage (CT) and no-tillage (NT)], burning [burn (B) 

and no-burn (NB)], and irrigation [irrigated (I) and non-irrigated (NI)] on the trend in manganese 

(Mn) content in the top 10 cm over time after initial conversion to alternative management 

practices in a wheat-soybean, double-crop system in eastern Arkansas. 
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Fig. 16 Influence of tillage [conventional tillage (CT) and no-tillage (NT)], burning [burn (B) 

and no-burn (NB)], and irrigation [irrigated (I) and non-irrigated (NI)] on the trend in potassium  



96 

 

(K) in the top 10 cm over time after initial conversion to alternative management practices in a 

wheat-soybean, double-crop system in eastern Arkansas. 

 

 

Fig. 17 Influence of tillage [conventional tillage (CT) and no-tillage (NT)], burning [burn (B) 

and no-burn (NB)], residue level [high (H) and low (L)], and irrigation [irrigated (I) and non-

irrigated (NI)] on the trend in zinc (Zn) in the top 10 cm over time after initial conversion to 

alternative management practices in a wheat-soybean, double-crop system in eastern Arkansas. 
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Long-term Effects of Alternative Residue Management Practices on Soil Water Retention 

in a Wheat-soybean, Double-crop System in Eastern Arkansas 
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Abstract 

Soil water retention characteristics are a critical aspect of agricultural management, 

especially in areas such as the delta region of eastern Arkansas that face potential water 

shortages in the near future. Previous studies have linked changes in soil water retention 

characteristics to agricultural management practices, especially as they affect the accumulation 

of soil organic matter (SOM). Therefore, the objective of this study was to determine the 

relationship between soil water potential and gravimetric soil water content in the top 7.5 cm as 

affected by residue burning (burning and non-burning), tillage (conventional and no-tillage), 

irrigation (irrigated and non-irrigated), and nitrogen (N)-fertilization/residue level (high and low) 

in a wheat (Triticum aestivum L.)-soybean [Glycine max (L.) Merr.], double-crop production 

system in eastern Arkansas using soil wetting curves. The field site has been consistently 

managed for 13 years at the University of Arkansas Lon Mann Cotton Research Station near 

Marianna, Arkansas on a Calloway silt-loam (fine silty, mixed, active, thermic Glossaquic 

Fraglossudalf). The slope terms characterizing the relationship between the natural logarithm of 

the soil water potential and the gravimetric soil water content was only affected (P < 0.05) by the 

N-fertilization/residue level treatment, and the intercept terms were statistically similar across all 

treatment combinations. Averaged across tillage, burning, and irrigation, the soil water contents 

under the high- exceeded those under low-N-fertilization/residue level treatment at the same 

water potential, with the greatest differences observed at the largest water contents (i.e., > 0.12 g 

g
-1

). Nitrogen-fertilization/residue level differences indicated greater soil water retention under 

the high- than the low-residue treatment, possibly as a result of increased biomass inputs, SOM 

accumulation, and soil aggregation. Understanding the ways in which alternative residue 

management practices affect soil water retention characteristics is an important component of 
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conserving irrigation water resources. 
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Introduction 

Management practices that promote formation of soil organic matter (SOM) and soil 

aggregation, such as reduced tillage and diversifying crop rotations, can  increase plant available 

water in the soil (Nielson et al., 2002) and likely have many more positive, long-term effects on 

soil water characteristics. For example, significant differences have been observed for soil 

moisture release curves for the top 10 cm between native prairie (SOM = 22 g kg
-1

) and 

cultivated agricultural soil (SOM = 10.8 g kg
-1

) in eastern Arkansas (Brye, 2003). Specifically, 

the native prairie soil contained a greater soil water content than the cultivated agricultural soil at 

the same water potential, indicating a possible correlation between increased SOM and water 

retention. Similarly, decreased soil water retention under conventional tillage (CT) management 

was reported compared to increased soil water retention and unsaturated hydraulic conductivity 

under no-tillage (NT) management in a continuous corn (Zea mays L.) study on Mollisols in 

Iowa (Hill et al., 1985). Verkler et al. (2009) reported a slower dry-down of soil under non-

burned management compared to burning management, as well as a slower dry-down of soil 

under NT compared to CT when examining soil water content dynamics in a wheat (Triticum 

aestivum L.)-soybean [Glycine max (L.) Merr.], double-crop system on a silt-loam soil in eastern 

Arkansas after three years and four complete cropping cycles. Clearly, residue and field 

management practices influence soil water retention characteristics, which may be related to 

agricultural management effects on soil aggregation and SOM.  

Increases in SOM have been associated with increased infiltration, greater hydraulic 

conductivity, and increased water retention (Azooz and Arshad, 1996). Therefore, management 

practices such as tillage and nitrogen (N)-fertilization that may affect the accumulation of SOM 

may also affect soil water retention characteristics. In a previous study of alternative residue 
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management practice effects on near-surface soil properties in a wheat-soybean, double-crop 

production system on a silt-loam soil in eastern Arkansas, Amuri et al. (2008) reported 

increasing soil carbon (C) and SOM over time in the top 10 cm across all treatment combinations 

over the course of six years and seven complete wheat-soybean cropping cycles following 

conversion to alternative management practices, likely due to the increase in crop residue 

returned to the soil as a result of conversion from monoculture soybean prior to double cropping. 

Smith et al. (2014) reported that the abundance of water-stable aggregates was affected (P < 

0.05) by tillage, irrigation, and N-fertilization treatments. Nitrogen-fertilizer promotes wheat 

biomass, which may eventually contribute to an increase in SOM and soil aggregation. 

Therefore, N-fertilization, and other management practices that promote SOM and soil 

aggregation, may affect the relationship between soil water content and the soil water potential. 

For example, Bowman and Halvorson (1998) reported significant increases in soil organic C 

(SOC), and therefore SOM, in the top 5 cm under increased N-fertilization management. 

Similarly, SOC and SOM increased at a greater rate under a high (134 kg N ha
-1

 yr
-1

) than under 

low N-rate treatment in a wheat-containing rotation managed consistently for 10 yr near Akron, 

Colorado (Halvorson et al., 1999).  

An understanding of soil water retention characteristics is critical to determining best 

management practices, especially in areas such as eastern Arkansas that face potential water 

shortages in the future. Scott et al. (1998) used a regression equation based on annual water use 

rate to determine that 75% of the Alluvial Aquifer, the shallowest aquifer underlying most of the 

delta region eastern Arkansas, will be depleted due to irrigation use by 2041. Therefore, the 

objective of this study was to determine the relationship between soil water potential and 

gravimetric soil water content in the top 7.5 cm as affected by residue burning (burning and non-
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burning), tillage (conventional and no-tillage), irrigation (irrigated and non-irrigated), and N-

fertilization/residue level (high and low) in a wheat-soybean, double-crop production system in 

eastern Arkansas using soil wetting curves.  It was hypothesized that tillage would strongly 

affect the relationship between soil water potential and soil water content in the top 7.5 cm, such 

that when soil water potentials for CT and NT were equal, the NT soil water content would be 

greater compared to that for CT. 

 

Materials and Methods 

Site Description             

A field study was initiated in Fall 2001 at the University of Arkansas Lon Mann Cotton 

Research Station (N34°, 44’, 2.26”; W90°, 45’ 51.56”; Cordell et al., 2007) in the Southern 

Mississippi Alluvium [Major Land Resource Area (MLRA) 131A], which is located along the 

Mississippi River alluvial plain. The relief in most of the region is less than 5 m (USDA, 2006), 

and topography tends to be level to depressional to gently undulating plains (USDA, 2006).  The 

30-yr mean air annual temperature of the region is 15.6°C and the 30-yr mean annual 

precipitation is 128 cm (NOAA, 2002). The 30-yr mean maximum and minimum air 

temperatures of the region are 32.8°C in July and 2.4°C in January, respectively (NOAA, 2002). 

The fertile alluvial sediments, relatively flat topography, and relatively warm and wet climate of 

MLRA 131A make for a highly agriculturally productive region. The site of this field study is on 

a Calloway silt loam (fine silty, mixed, active, thermic Glossaquic Fraglossudalf; Gray, 1977; 

NRCS, 2015), which has 16% sand, 73% silt, and 11% clay in the top 10 cm (Brye et al., 2006). 

The current study on this site was preceded by several other studies analyzing a variety of short- 

and long-term effects of alternative management practices effects on plant and soil physical and 
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chemical properties (Amuri et al., 2008; Verkler et al., 2009; Smith et al., 2014). 

 

Experimental Design           

Originally, the study utilized a three-factor, split-strip-plot, randomized complete block 

experimental design with six replications of each of eight treatment combinations (Cordell et al., 

2007). The three factors were i) N-fertilization/residue level (high N-fertilization/residue level, 

achieved with a split application of N fertilizer, or low N-fertilization/residue level, achieved 

with minimal to no N additions); ii) burning of residue (burning or non-burning); and iii) tillage 

(CT or NT) (Cordell et al., 2007). However, an irrigation factor was introduced in 2005 and 

divided the site into two irrigated (I) and two non-irrigated blocks (Verkler et al., 2009). Since 

2005, the experimental area has consisted of 48, 3- x 6-m plots with six replications for every 

tillage-burning-residue-level combination and three replications for every tillage-irrigation-

burning-residue level combination (Fig. 1; Amuri et al., 2008). 

 

Field Management           

Prior to the initiation of the study, the site was managed as a continuous, mono-cropped 

soybean system using CT (Cordell et al., 2007). Initial field preparations in Fall 2001 involved 

disking twice followed by broadcast applications of N, phosphorous, potassium, and pelletized 

limestone at rates of 20, 22.5, 56, and 1120 kg ha
-1

, respectively, prior to wheat planting. Wheat 

was drill seeded with a 19-cm row spacing each Fall. All plots were manually broadcast 

fertilized in early March 2002 through 2004 with urea (46% N) at the rate of 101 kg N ha
-1

. 

High-residue plots (n = 24) were manually broadcast fertilized in late March at approximately 

the late-jointing stage with an additional 101 kg N ha
-1 

to produce different levels of wheat 
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residue. No N-fertilizer was applied in Spring 2005 due to a failure to establish wheat stands 

caused by prolonged wet soil conditions in Fall 2004. Since 2006, initial application of 56 kg N 

ha
-1 

as urea were broadcast on high N-fertilization/residue level plots in approximately late 

February, followed by a split application of an additional 56 kg N ha
-1 

at the late-jointing stage in 

approximately late March. Since 2006, the low-residue plots have not received any N 

fertilization in order to achieve the residue-level difference.  

Wheat was harvested using a plot combine in approximately early June each year. Wheat 

residue left behind the plot combine was uniformly spread by hand over each plot immediately 

following wheat harvest. Any remaining wheat stubble was mowed with a rotary mower to a 

height of ~ 3 cm from the soil surface in order to achieve a uniform residue-covered surface for 

soybean planting. Following mowing, the burning treatment was executed on half of the plots by 

propane flaming. The residue-burning treatment was not able to be imposed in 2005, 2007, and 

2012 due to the absence of a wheat stand in Spring 2005, prolonged wet soil conditions in Spring 

2007, and weedy conditions in 2012. Imposition of the burning treatment was followed by 

imposing the tillage treatment each year. The CT plots were disked at least twice with a tandem 

disk to a depth of ~ 10 cm followed by seedbed smoothing with at least three passes of a soil 

conditioner, which is representative of widely used pre-soybean-planting tillage operations in the 

region. 

A glyphosate-resistant soybean cultivar, maturity group 5.3 or 5.4, was drill-seeded with 

19-cm row spacing at a rate of approximately 47 kg seed ha
-1 

in approximately mid-June each 

year. Potassium fertilizer was applied according to recommended rates (UACES, 2000) when the 

previous year’s soil test indicated potassium was needed. In 2002 through 2004, all plots were 

furrow-irrigated as needed, three to four times each soybean-growing season. A levee was 
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created in 2005 to exclude furrow-irrigation water from the non-irrigation treatment, which 

received only natural rainfall. Weeds and insects were managed consistently throughout the 

entire study area as necessary based on University of Arkansas Cooperative Extension Service 

recommendations, which generally consisted of herbicide and insecticide applications during 

both the wheat- and soybean-growing seasons (UACES, 2000). Soybean were harvested with a 

plot combine from late October to early November each year. Each year from May to June, the 

wheat crop was sown into the soybean residue, which was left in place.     

 

Soil Sample Collection and Processing         

To assess field treatment effects on the relationship between soil water potential and soil 

water content, in May 2014, 12, ~ 2-cm diameter soil samples were collected from each plot 

from the top 7.5 cm and combined into one sample per plot. Each sample was manually 

homogenized and air-dried for approximately 5 d, ground, and sieved to pass through a 2-mm 

mesh screen. Subsamples were weighed, oven-dried at 70°C for 48 hr, and reweighed to obtain 

the initial moisture content of the air-dried sample. Following the procedures of Brye (2003), 

seven, 5 ± 0.01-g subsamples of air-dried soil from each of the 48 plots were added to small 

mixing cups. Drops of distilled water (i.e., 2, 4, 6, 10, 12, 15, and 20 drops) were added to each 

of the seven mixing cups with an eyedropper and homogenized with a spatula to achieve a range 

of soil water contents. The moist soil in each mixing cup was transferred to small plastic 

instrument cups, 4 cm in diameter by 1 cm tall, and lightly packed to a uniform bulk density of ~ 

0.7 g cm
-3

. Instrument cups were capped and allowed to equilibrate overnight to room 

temperature (i.e., ~20
o 
C). The water potential was subsequently measured with a WP4 Dewpoint 

PotentiaMeter (Decagon Devices, Inc., Pullman, WA), which was calibrated using a standard 
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potassium chloride solution. After the water potential was recorded, each instrument cup was 

weighed, oven-dried at 70°C for 48 hr, then reweighed for gravimetric water content 

determination.  

10 soil cores from the top 10 cm were collected from each plot after wheat harvest and 

prior to residue burning, and combined into a single composite sample per plot from 2002 until 

2008. After 2008, a single soil sample was collected from the top 10 cm instead of 10 soil cores, 

using a 4.8-cm-diameter stainless steel core chamber. Soil samples were oven-dried for 48 hr at 

70
o
C, ground to pass through a 2-mm mesh screen (Verkler et al., 2009), and analyzed for soil 

chemical properties (Brye et al., 2006). Total soil C and N were determined by high-temperature 

combustion with a LECO CN-2000 analyzer (LECO Corp., St. Joseph, MI) or an Elementar 

VarioMAX Total C and N Analyzer (Elementar Americas Inc., Mt. Laurel, NJ), and all soil C in 

the top 10 cm was assumed to be organic C given the lack of effervesce upon treatment with 

dilute hydrochloric acid (HCl) (Brye et al., 2006). Soil C:N ratio was calculated from measured 

C and N concentrations. Soil OM was determined by weight-loss-on-ignition after 2 hr at 360
o
C 

(Schulte and Hopkins, 1996). Soil pH was determined potentiometrically using an electrode in a 

1:2 (w/v) soil-to-water solution.  

To determine bulk density using mid-season soil samples, soil cores were also collected 

between approximately 8 and 10 weeks after soybean planting by extracting a single 4.8-cm-

diameter soil core from the top 10 cm using the methods outlined by Brye et al. (2006). Soil 

cores were oven-dried at 70
o
C for 48 hr and weighed for bulk density determinations. 

 

Statistical Analyses             
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 An analysis of covariance (ANCOVA) was conducted using SAS (version 9.3, SAS 

Institute, Inc., Cary, NC) to evaluate the long-term effects of residue level, tillage, burning, and 

irrigation on the relationship between water potential (ψ) and gravimetric water content (θg) 

from the soil wetting-curve data. While the experimental field design was a strip-split-plot, 

randomized complete block, the experimental designed was assumed to be completely random 

with three replications of each of 16 treatment combinations in order to facilitate the ANCOVA. 

The full ANCOVA model was reduced using a hierarchal principle to remove non-significant 

terms, and non-significant terms were only included the final model when they participated in 

higher-order, complex treatment combinations. Original measured water potentials were natural-

log transformed to linearize the data and facilitate the ANCOVA. When appropriate, treatment 

means for linear slopes and intercepts from the log-transformed relationships were separated by 

least significant difference (LSD) at the 0.05 level. 

An analysis of variance (ANOVA) was also conducted, based on the strip-split-plot 

design of the field treatments (Fig. 1), to evaluate the effects of N-fertilization/residue level, 

tillage, burning, and irrigation on select soil properties from 2014 associated with soil water 

retention, i.e., bulk density (g cm
-3

), pH, SOM, total N and C contents (kg m
-2

), and C:N ratio, 

using samples collected from the top 10 cm. Due to practical limitations of the study area, the 

addition of the irrigation treatment since 2005 was superimposed on the burning treatment (Fig. 

1). Therefore, irrigation and burning treatments cannot be simultaneously analyzed within this 

experimental design. Two separate ANOVAs were conducted, each excluding one of the 

confounding factors. When appropriate, treatment means were also separated based on LSD at 

the 0.05 level. 
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Results and Discussion 

Initial Soil Properties 

After 13 complete wheat-soybean cropping cycles (i.e., 2001 to 2014) and 12 years of 

consistent management, soil C and N contents, soil C:N ratio, and soil pH in the top 10 cm were 

affected (P < 0.05) by field treatments.  Soil C content (P = 0.038) and soil C:N ratio (P = 0.033) 

differed between burn treatments in 2014.  Averaged across tillage, N-fertilization/residue level, 

and irrigation, soil C content averaged 1.22 and 1.42 kg m
-2

, while the soil C:N ratio averaged 

9.23 and 10.2 under burning and non-burning, respectively.  Furthermore, soil N content differed 

(P = 0.032) between the N-fertilizer/residue level treatments (Table 1). Averaged across tillage, 

burning, and irrigation, soil N content averaged 0.14 and 0.13 kg m
-2

 under the high- and low-N-

fertilization/residue level treatments, respectively. Similarly, the soil C:N ratio also differed (P = 

0.021) between the N-fertilizer/residue level treatments (Table 1).  Averaged across tillage, 

burning, and irrigation, the soil C:N ratio averaged 9.44 and 10.0 under the high- and low-N-

fertilization/residue level treatments, respectively.   

In 2014, soil pH in the top 10 cm differed (P = 0.021) between irrigation treatments 

within N-fertilizer/residue level treatments (Table 1). Averaged across tillage and burning, soil 

pH was greater under irrigation regardless of N-fertilization/residue level (i.e., soil pH averaged 

7.26 under the high and 7.28 under the low N-fertilization/residue level) than that under the 

dryland treatment, where soil pH averaged 6.67 under the low, which was greater than that under 

the high N-fertilization/residue level (i.e., pH averaged 6.48). However, all pH values, regardless 

of management, exceeded the minimum soil pH threshold of 6.0, below which soybean yield 

reductions can be expected on silt-loam soils in eastern Arkansas (Slaton et al., 2013). Therefore, 

the differences in soil pH among irrigation and N-fertilization/residue level treatment 
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combinations were agronomically non-significant with regards to soybean production on silt-

loam soils in eastern Arkansas. 

In contrast to other initial soil properties, after 13 complete wheat-soybean cropping 

cycles (i.e., 2001 to 2014) and 12 years of consistent management, bulk density and SOM were 

unaffected (P > 0.05) by any of the field treatments imposed in 2014 (Table 1). Therefore, in 

2014, averaged across all field treatments, bulk density averaged 1.21 g cm
-3

 [standard error (SE) 

= 0.01] and SOM content averaged 2.9 kg m
-2

 (SE = 0.06).  

 

Soil Water Retention 

As was expected, the relationship between the natural-logarithm-transformed water 

potential and gravimetric water content followed a curvilinear pattern, where the water potential 

increased exponentially as gravimetric soil water content increased (Fig. 2). After 13 complete 

wheat-soybean cropping cycles (i.e., 2001 to 2014) and 12 years of consistent management, the 

trend in the relationship between the natural logarithm of water potential and gravimetric water 

content in the top 7.5 cm was affected (P = 0.007) by only the N-fertilization/residue level 

treatment, and was unaffected (P > 0.05) by tillage, burning, and irrigation treatments or any 

interactions (Table 2). Averaged across tillage, burning, and irrigation, the gravimetric soil water 

content was greater under high- than under low-N-fertilization/residue management at the same 

water potential (Fig. 3). The greatest differences between high- and low-N-fertilization/residue 

treatments were observed at the largest water contents (i.e., approximately 0.16 g g
-1

; Fig. 3). 

Conversely, as soil water potential under both high- and low-N-fertilization/residue management 

decreased, gravimetric water contents became increasingly similar under both N-

fertilization/residue treatments. These results were similar to the soil moisture characteristic 
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curve results reported by Brye (2003) using a similar wetting-curve approach in which water 

contents in both native prairie and cultivated agricultural silt-loam soils in eastern Arkansas 

became increasingly similar as soil water potential approached permanent wilting point (i.e., -1.5 

MPa), regardless of field treatments imposed. Verkler et al. (2008) also reported numerically 

greater maximum soil water contents at the 7.5 cm depth under the high- compared with the low-

N-fertilization/residue level treatment, although the differences were statistically non-significant. 

Management practices that increase the amount of crop residue returned to the soil, such as with 

greater above- and belowground biomass achieved with differential N fertilization, have been 

shown to increase infiltration, bulk density, and water storage capacity (Shaver et al., 2002). 

Once the water potential data were natural-logarithm-transformed, the relationship with 

gravimetric soil water content became linearized to facilitate statistical analyses of treatment 

effects. The intercept terms characterizing the linear relationship between the natural logarithm 

of water potential and the gravimetric water content under high- and low-N-fertilization/residue 

management (3.11 and 3.36, respectively) were statistically similar (Table 3). However, the 

slope terms characterizing the linear relationship between the natural logarithm of water potential 

and the gravimetric water content under high- and low-N-fertilization/residue management (-

39.7 and -45.2, respectively) differed significantly (Table 3). As gravimetric water content 

increased, the natural logarithm of water potential under the low- decreased (P < 0.05) at a 

significantly greater rate than under the high-N-fertilization/residue management treatment 

combination (Table 3; Fig. 3). Though N-fertilization/residue level did not affect SOM contents 

in the top 10 cm in 2014, one possible explanation for the significant effect of N-

fertilization/residue level on the relationship between the natural logarithm of water potential and 

the gravimetric soil water content was that the high-N-fertilization/residue treatment promoted 
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increased soil structure development and SOM more than the low-N-fertilization/residue 

treatment. While it was concluded in a previous study analyzing soil properties in the same plots 

used in the current study that N-fertilization/residue level had no obvious, observable effects on 

the trend in SOM content (kg m
-2

) in the top 10 cm over time, N-fertilization/residue level did 

affect (P < 0.05) the trend in SOM content over time as part of complex treatment combinations 

(Norman et al., 2015). Moreover, it is possible that N-fertilization/residue level may have 

impacted SOM content and soil aggregates in the top 7.5 cm differently than in the top 10 cm, 

due to the greater accumulation of both above- and below-ground plant biomass concentrated 

near the soil surface. A previous study analyzing water-stable aggregates in the top 10 cm in the 

same plots used in the current study reported that the concentration of water-stable aggregates 

was 11% greater in the top 5 cm than in the 5 to 10 cm depth interval after 7 years of consistent 

management (Smith et al., 2013), suggesting that SOM and soil aggregates may be more 

concentrated in the 7.5 cm depth samples used for the current study than in the 10 cm depth 

samples used for previous studies (i.e., Amuri et al., 2008; Norman et al., 2015). Therefore, it is 

possible that the N-fertilization/residue level treatment affected the < 2-mm-sized soil 

aggregates, which may have occluded SOM, in the top 7.5 cm, without clearly and obviously 

affecting SOM contained in the aggregate size classes larger than 2 mm in the top 10 cm. Such 

an increase in occluded SOM in smaller aggregates might account for an increase in soil water 

content (Azooz and Arshad, 1996; Dao, 1993). For example, Brye (2003) reported greater soil 

water contents in the top 10 cm of a native prairie soil than soil water contents of cultivated 

agricultural soils at the same water potential, possibly as a result of the greater SOM content in 

prairie soils (SOM = 22 g kg
-1

) compared with cultivated agricultural soils  (SOM = 10.8 g kg
-1

). 

Tillage, burning, and irrigation treatments had no observable effect (P > 0.05; Table 2) on 
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the relationship between the natural logarithm of water potential and the gravimetric soil water 

content after 12 complete cropping cycles. These results are in contrast with the original 

hypothesis that tillage would strongly affect the relationship between soil water potential and soil 

water content, such that soil water content under NT would exceed that under CT at the same 

water potential. In contrast to these results, other soil moisture characteristic studies have 

reported significant relationships between cultivation and the near-surface soil water retention 

characteristics (Azooz and Arshad, 1996; Brye 2003; Hill et al., 1985), likely due to the 

increased hydraulic conductivity and infiltration rates associated undisturbed and NT soils. 

Similarly, it might be expected that the burning treatment would affect soil water retention 

characteristics in the top 7.5 cm due to the near-surface accumulation of ash, which can be 

hydrophobic. In contrast to these results, Verkler et al. (2008) reported that residue burning 

significantly affected maximum soil water contents during irrigation events, and that the mean 

maximum soil water content was 3% (v/v) greater under residue burning compared with non-

burning.  However, the water content measurements conducted by Verkler et al. (2008) were in 

situ, i.e., undisturbed, and are therefore fundamentally different from the oven-dried, ground, 

sieved, and rewetted samples used in the current study. 

It is possible that effects of tillage, burning, and irrigation were not be observed due to 

the sampling and measuring processes, which including oven-drying, grinding, and sieving out 

all particles greater than 2 mm. Effects which might have been observable in larger, intact soil 

cores may not have carried over to the < 2-mm-sized, sieved soil particles and aggregates. 

Tillage, for instance, may destroy larger soil aggregates while leaving smaller aggregates intact, 

thus leaving an occluded fraction of SOM more protected against oxidation. Therefore, the 

effects of tillage on certain soil properties associated with water retention characteristics, i.e., 
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SOM and bulk density, may be more apparent in samples using larger, undisturbed cores than in 

the ground and sieved samples used in the current study. A previous study analyzing soil 

properties in the same plots as the current study reported that irrigation was the most significant 

overall treatment factor affecting the change in SOM content (kg m
-2

) in the top 10 cm over the 

course of 13 consecutive years following conversion to alternative management practices 

(Norman et al., 2015). In the current study, irrigation may have affected the accumulation and 

decomposition of SOM in the top 7.5 cm, but too much variability occurred between irrigation 

treatments for a statistical relationship to be identified. In contrast, the significant effects of N-

fertilization/residue level treatment on the linear relationship between the natural logarithm of 

water potential and the gravimetric water content suggest that the N-fertilization/residue level 

treatment affected the accumulation of smaller aggregates and occluded SOM in the < 2-mm-

sized aggregates. 

 

Summary and Conclusions 

 Following conversion to alternative residue and water management practices and after 13 

consecutive years (i.e., 2001 to 2014) of management, the N-fertilization/residue level treatment 

significantly affected the linear relationship between the natural logarithm of water potential and 

the gravimetric soil water content as determined by soil wetting curves. The water-curve 

approach was useful to evaluate the various long-term field treatment effects on water retention. 

Contrary to the original hypothesis, tillage did not affect the same relationship, possibly due in 

part to the disturbed nature of soil samples used. It can be inferred from this study that 

differences in N-fertilization/residue level management affect soil water retention characteristics, 

possibly as a result of the increased soil aggregation and SOM associated with increased crop 
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residue, both above and below ground, under high residue level management. Consideration of 

soil water retention characteristics is vital to planning out sustainable use of irrigation water, 

especially in areas such as the Delta region of eastern Arkansas that will face potential water 

shortages in the near future. 
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Table 1. Analysis of variance summary of the effects of residue level (N), tillage (T), and 

irrigation (I) on soil bulk density (g cm
-3

), pH, soil organic matter (SOM; kg m
-2

), total carbon 

(C; kg m
-2

), total nitrogen (N; kg m
-2

), and the C:N ratio in the top 10 cm from spring 2014 in a 

wheat-soybean, double-crop system in eastern Arkansas.  

 

Source of 

Variation 

Bulk 

Density pH SOM C N C:N 

N ns† ns ns ns 0.032 0.021 

T ns ns ns ns ns ns 

I ns 0.023 ns ns ns ns 

   N*T ns ns ns ns ns ns 

   N*I ns 0.021 ns ns ns ns 

   T*I ns ns ns ns ns ns 

      N*T*I  ns ns ns ns ns ns 

† not significant (ns), i.e. P > 0.05.  
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Table 2. Analysis of covariance summary of the effects of residue level (N), burning (B), tillage 

(T), and irrigation (I) on the linear relationship between the natural logarithm of soil water 

potential and the gravimetric soil water content in the top 7.5 cm in a wheat-soybean, double-

crop system under consistent management for 13 years (i.e., 2001 to 2014) in eastern Arkansas. 

Non-significant interactions (P > 0.05) were removed in the final model, except when non-

significant terms participated in higher-order, complex treatment combinations. Water content 

refers to the linear term. 

 
Intercept term 

and interactions P  
Linear terms 

and interactions P  

  Water Content < 0.001 

N ns† N*Water Content    0.007 

B ns B*Water Content ns 

T ns T*Water Content ns 

I ns I*Water Content ns 

   N*B ns    N*B*Water Content ns 

   N*T ns    N*T*Water Content ns 

   N*I ns    N*I*Water Content ns 

   B*T ns    B*T*Water Content ns 

   B*I ns    B*I*Water Content ns 

   T*I ns    T*I*Water Content ns 

      N*B*T ns       N*B*T*Water Content ns 

      N*B*I ns       N*B*I*Water Content ns 

      N*T*I  ns       N*T*I *Water Content ns 

      B*T*I ns       B*T*I*Water Content ns 

         N*B*T*I ns          N*B*T*I*Water Content ns 

† not significant (ns), i.e. P > 0.05. 
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Table 3. Summary of estimate parameters of specific treatment combinations, i.e. residue-level 

[high (H) and low (L)], for the linear relationship between the natural logarithm of soil water 

potential and the gravimetric soil water content in the top 7.5 cm in a wheat-soybean, double-

crop system under consistent management for 13 years (i.e., 2001 to 2014) in eastern Arkansas. 

Coefficient estimates with the same lower case letter do not differ (P > 0.05). 

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P
†
 

Intercept 
 H 3.108 a < 0.001 

 L 3.357 a    0.002 

    

Linear 
 H -39.712 a < 0.001 

 L -45.207 b    0.001 
†
 P < 0.05 indicates coefficient estimate was significantly different from 0. 
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Fig. 1. Experimental layout at the Lon Mann Cotton Branch Experiment Station in eastern 

Arkansas depicting 48, 3- x 6-m plots subjected to residue-level [high (H) and low (L)], burn, 

tillage [conventional tillage (CT) and no-tillage (NT)], and irrigation treatments. 

 



121 

 

 

 

 

 

 

Fig. 2 Raw data from all treatment combinations depicting the relationship between the soil 

water potential and the gravimetric soil water content from soil wetting curves for the top 7.5 cm 

in a wheat-soybean, double-crop system in eastern Arkansas after 13 years (i.e., 2001 to 2014) of 

consistent management. 
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Fig. 3 Influence of residue level [high (H) and low (L)] on the relationship between the natural 

logarithm (LN) of water potential and the gravimetric soil water content from soil wetting curves 

for the top 7.5 cm in a wheat-soybean, double-crop system in eastern Arkansas after 13 years 

(i.e., 2001 to 2014) of consistent management. LN refers to the natural log of water potential. 
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Overall Conclusions 

All field treatments evaluated in this study affected trends in one or more measured soil 

properties over the course of seven complete wheat-soybean cropping cycles (i.e., 2007 to 2014), 

following conversion to alternative management practices in treatment combinations managed 

consistently for 13 consecutive years (i.e., 2002 to 2014). Irrigation management was responsible 

for the greatest differences in trends in soybean yield, C fraction of SOM, and SOM, C, N, P, Cu 

contents over time. Burning also significantly affected the trend in SOM and C contents over 

time. Irrigation and burn treatment combinations were responsible for the greatest differences in 

trends in soil Ca, Mg, and Mn contents over time. Residue level was responsible for the greatest 

differences in trends in soil C:N ratio and pH over time. Trends in wheat yield, EC, and Fe, Na, 

and S contents were unaffected by any of the field treatments evaluated, but all varied 

significantly over time. Trends in bulk density, and K and Zn contents over time were affected 

by complex treatment combinations that included interactions among tillage, burning, and 

irrigation. Tillage did not significantly affect either soybean or wheat yield, which indicates that 

some producers may be able reduce costs associated with tillage without significantly reducing 

crop yield. 

 As originally hypothesized, SOM and C contents increased over time under non-burning 

and decreased over time under burning. Contrary to original hypotheses, tillage and residue 

treatments failed to cause clear and obvious differences in the trends in SOM, C, and extractable 

nutrient contents over time. In fact, differences between irrigation treatments appeared the have 

the clearest, most obvious effects on the trends in SOM, C, N, P, and Cu contents over time. Also 

contrary to that hypothesized, SOM and C contents did not decrease under dryland soybean 

production. Rather, SOM and C contents increased over time under dryland production until 
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approximately year 9 (i.e., 2010), then decreased thereafter.  

  Following conversion to alternative residue and water management practices and after 13 

consecutive years (i.e., 2001 to 2014) of management, the N-fertilization/residue level treatment 

significantly affected the linear relationship between the natural logarithm of water potential and 

the gravimetric soil water content as determined by soil wetting curves. The water-curve 

approach was useful to evaluate the various long-term field treatment effects on water retention. 

Contrary to the original hypothesis, tillage did not affect the same relationship, possibly due in 

part to the disturbed nature of soil samples used. It can be inferred from this study that 

differences in N-fertilization/residue level management affect soil water retention characteristics, 

possibly as a result of the increased soil aggregation and SOM associated with increased crop 

residue, both above and below ground, under high residue level management. Consideration of 

soil water retention characteristics is vital to planning out sustainable use of irrigation water, 

especially in areas such as the Delta region of eastern Arkansas that will face potential water 

shortages in the near future. 

 Overall, it can be inferred from this study that irrigation management plays a critical role 

in the long-term trends in SOM, C, and N contents and other soil physical and chemical 

properties over time. Moreover, the accumulation of SOM, C, and N appears to be greatly 

influenced by growing season weather patterns, especially under dryland production. Crop 

management that strikes a balance between increasing crop biomass and decreasing the rate of 

microbial turnover of SOM can maintain or increase SOM levels, and thereby work towards 

long-term soil improvement and soil C sequestration.  
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Appendix A 

This appendix contains a summary of the analysis of covariance (ANCOVA) effects of residue 

level (N), burning (B), tillage (T), irrigation (I), and time (Year) on changes in soil and plant 

properties over time. 
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Table 1. Analysis of covariance (ANCOVA) summary on the effects of residue level (N), burning (B), tillage (T), irrigation (I), and 

time (Year) on changes in bulk density (BD; g cm
-3

) and wheat (Wht) and soybean (Soy) yields (Mg ha
-1

) over time between 2007 and 

2014 in a wheat-soybean, double-crop system in eastern Arkansas. Only significant interactions (P < 0.05) were included in the final 

model, except when non-significant terms participated in significant treatment combinations. Year refers to the linear term, and Year
2
 

refers to the quadratic term. 

 
Linear term and 

interactions BD† Wht† Soy† 

Quadratic term and 

interactions BD Wht Soy 

Year <0.001 <0.001 0.0178 Year
2
 <0.001 <0.001 ns 

N*Year ns‡ <0.001 ns N*Year
2
 Ns ns ns 

B*Year ns 0.002 ns B*Year
2
 Ns ns ns 

T*Year 0.006 <0.001 ns T*Year
2
 0.004 ns ns 

I*Year ns <0.001 <0.001 I*Year
2
 Ns ns <0.001 

   N*B*Year 0.015 ns ns    N*B*Year
2
 0.017 ns ns 

   N*T*Year ns ns ns    N*T*Year
2
 Ns ns ns 

   N*I*Year ns ns ns    N*I*Year
2
 Ns ns ns 

   B*T*Year ns 0.035 ns    B*T*Year
2
 Ns ns ns 

   B*I*Year <0.001 ns ns    B*I*Year
2
 Ns ns ns 

   T*I*Year 0.037 ns ns    T*I*Year
2
 0.047 ns ns 

      N*B*T*Year ns 0.007 ns       N*B*T*Year
2
 Ns ns ns 

      N*B*I*Year ns ns ns       N*B*I *Year
2
 Ns ns ns 

      N*T*I *Year 0.018 ns ns       N*T*I*Year
2
 0.015 ns ns 

      B*T*I*Year ns ns ns       B*T*I*Year
2
 Ns ns ns 

         N*B*T*I*Year ns ns ns          N*B*T*I*Year
2
 Ns ns ns 

† Degrees of freedom were 300 and 332 for BD and Soy respectively. Degrees of freedom were 34.7 and 331 for Wht linear terms and 

quadratic terms, respectively. 

‡ not significant (ns), i.e. P > 0.05. 
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Table 2. Analysis of covariance (ANCOVA) summary on the effects of residue level (N), burning (B), tillage (T), irrigation (I), and 

time (Year) on changes in soil organic matter (SOM), total carbon (TC), and total nitrogen (TN) contents (kg m
-2

) over time between 

2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. Only significant interactions (P < 0.05) were included in 

the final model, except when non-significant terms participated in significant treatment combinations. Year refers to the linear term, 

and Year
2
 refers to the quadratic term. 

 
Linear term and 

interactions SOM† TC TN 

Quadratic term and 

interactions SOM TC TN 

Year <0.001 ns <0.001 Year
2
 <0.001 ns <0.001 

N*Year ns‡ ns ns N*Year
2
 ns ns ns 

B*Year 0.015 ns ns B*Year
2
 ns 0.002 ns 

T*Year ns ns ns T*Year
2
 ns ns ns 

I*Year <0.001 <0.001 <0.001 I*Year
2
 <0.001 <0.001 <0.001 

   N*B*Year ns ns ns    N*B*Year
2
 ns ns ns 

   N*T*Year ns ns ns    N*T*Year
2
 ns ns ns 

   N*I*Year ns ns ns    N*I*Year
2
 ns ns ns 

   B*T*Year ns ns ns    B*T*Year
2
 ns ns ns 

   B*I*Year ns ns ns    B*I*Year
2
 ns ns ns 

   T*I*Year ns ns ns    T*I*Year
2
 ns ns ns 

      N*B*T*Year ns ns ns       N*B*T*Year
2
 ns ns ns 

      N*B*I*Year ns ns ns       N*B*I *Year
2
 ns ns ns 

      N*T*I *Year 0.011 0.044 ns       N*T*I*Year
2
 ns ns ns 

      B*T*I*Year ns ns ns       B*T*I*Year
2
 ns ns ns 

         N*B*T*I*Year ns ns ns          N*B*T*I*Year
2
 ns ns ns 

† Degrees of freedom were 325, 325, and 332 for SOM, TC, and TN, respectively. 

‡ not significant (ns), i.e. P > 0.05. 
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Table 3. Analysis of covariance (ANCOVA) summary on the effects of residue level (N), burning (B), tillage (T), irrigation (I), and 

time (Year) on changes in carbon to nitrogen ratio (C:N), carbon fraction of soil organic matter (C:SOM), and nitrogen fraction of soil 

organic matter (N:SOM) over time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. Only 

significant interactions (P < 0.05) were included in the final model, except when non-significant terms participated in significant 

treatment combinations. Year refers to the linear term, and Year
2
 refers to the quadratic term. 

 
Linear term and 

interactions C:N 

 

C:SOM N:SOM 

Quadratic term and 

interactions C:N 

 

C:SOM N:SOM 

Year    Year
2
    

N*Year ns ns ns N*Year
2
 0.0483 ns ns 

B*Year 0.015 ns ns B*Year
2
 <0.001 0.0015 ns 

T*Year ns ns ns T*Year
2
 Ns ns ns 

I*Year <.001 <.001 ns I*Year
2
 Ns <0.001 ns 

   N*B*Year ns ns ns    N*B*Year
2
 Ns ns ns 

   N*T*Year ns ns ns    N*T*Year
2
 Ns ns ns 

   N*I*Year ns ns ns    N*I*Year
2
 Ns ns ns 

   B*T*Year ns ns ns    B*T*Year
2
 Ns ns ns 

   B*I*Year ns ns ns    B*I*Year
2
 Ns ns ns 

   T*I*Year ns ns ns    T*I*Year
2
 Ns ns ns 

      N*B*T*Year ns ns ns       N*B*T*Year
2
 Ns ns ns 

      N*B*I*Year ns ns ns       N*B*I *Year
2
 Ns ns ns 

      N*T*I *Year 0.011 0.044 0.0232       N*T*I*Year
2
 Ns ns ns 

      B*T*I*Year ns ns ns       B*T*I*Year
2
 Ns ns ns 

         N*B*T*I*Year ns ns ns          N*B*T*I*Year
2
 Ns ns ns 

† Degrees of freedom were 325, 325, and 332 for SOM, TC, and TN, respectively. 

‡ not significant (ns), i.e. P > 0.05. 
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Table 4. Analysis of covariance (ANCOVA) summary on the effects of residue level (N), burning (B), tillage (T), irrigation (I), and 

time (Year) on changes in EC (dS m
-1

) and iron (Fe), sodium (Na), and sulfur (S) contents (kg ha
-1

) over time between 2007 and 2014 

in a wheat-soybean, double-crop system in eastern Arkansas. Only significant interactions (P < 0.05) were included in the final model, 

except when non-significant terms participated in significant treatment combinations. Year refers to the linear term, and Year
2
 refers 

to the quadratic term. 

 
Linear term and 

interactions EC† Fe  Na S 

Quadratic term and 

interactions EC Fe  Na S 

Year <0.001 <0.001 <0.001 <0.001 Year
2
 <0.001 <0.001 ns <0.001 

N*Year ns‡ ns ns ns N*Year
2
 ns ns ns ns 

B*Year ns ns ns ns B*Year
2
 ns ns ns ns 

T*Year ns ns ns ns T*Year
2
 ns ns ns ns 

I*Year ns ns ns ns I*Year
2
 ns ns ns ns 

   N*B*Year ns ns ns ns    N*B*Year
2
 ns ns ns ns 

   N*T*Year ns ns ns ns    N*T*Year
2
 ns ns ns ns 

   N*I*Year ns ns ns ns    N*I*Year
2
 ns ns ns ns 

   B*T*Year ns ns ns ns    B*T*Year
2
 ns ns ns ns 

   B*I*Year ns ns ns ns    B*I*Year
2
 ns ns ns ns 

   T*I*Year ns ns ns ns    T*I*Year
2
 ns ns ns ns 

      N*B*T*Year ns ns ns ns       N*B*T*Year
2
 ns ns ns ns 

      N*B*I*Year ns ns ns ns       N*B*I *Year
2
 ns ns ns ns 

      N*T*I *Year ns ns ns ns       N*T*I*Year
2
 ns ns ns ns 

      B*T*I*Year ns ns ns ns       B*T*I*Year
2
 ns ns ns ns 

         N*B*T*I*Year ns ns ns ns          N*B*T*I*Year
2
 ns ns ns ns 

† Degrees of freedom were 334, 334, 335, and 334 for EC, Fe, Na, and S, respectively. 

‡ not significant (ns), i.e. P > 0.05.
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Table 5. Analysis of covariance (ANCOVA) summary on the effects of residue level (N), burning (B), tillage (T), irrigation (I), and 

time (Year) on changes in pH and phosphorus (P) and copper (Cu) contents (kg ha
-1

) over time between 2007 and 2014 in a wheat-

soybean, double-crop system in eastern Arkansas. Only significant interactions (P < 0.05) were included in the final model, except 

when non-significant terms participated in significant treatment combinations. Year refers to the linear term, and Year
2
 refers to the 

quadratic term. 

 
Linear term and 

interactions pH† P Cu 

Quadratic term and 

interactions pH P Cu 

Year <0.001 <0.001 <0.001 Year
2
 <0.001 <0.001 0.002 

N*Year 0.003 <0.001 ns N*Year
2
 0.005 ns ns 

B*Year ns‡ ns ns B*Year
2
 ns ns ns 

T*Year ns ns ns T*Year
2
 ns ns ns 

I*Year <0.001 0.019 0.009 I*Year
2
 ns 0.026 0.015 

   N*B*Year ns ns ns    N*B*Year
2
 ns ns ns 

   N*T*Year ns ns ns    N*T*Year
2
 ns ns ns 

   N*I*Year 0.013 ns ns    N*I*Year
2
 ns ns ns 

   B*T*Year ns ns ns    B*T*Year
2
 ns ns ns 

   B*I*Year ns ns ns    B*I*Year
2
 ns ns ns 

   T*I*Year ns ns ns    T*I*Year
2
 ns ns ns 

      N*B*T*Year 0.025 ns ns       N*B*T*Year
2
 0.041 ns ns 

      N*B*I*Year ns ns ns       N*B*I *Year
2
 ns ns ns 

      N*T*I *Year ns ns ns       N*T*I*Year
2
 ns ns ns 

      B*T*I*Year ns ns ns       B*T*I*Year
2
 ns ns ns 

         N*B*T*I*Year ns ns ns          N*B*T*I*Year
2
 ns ns ns 

† Degrees of freedom were 318, 331, and 332 for pH, P, and Cu, respectively. 

‡ not significant (ns), i.e. P > 0.05. 
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Table 6. Analysis of covariance (ANCOVA) summary on the effects of residue level (N), burning (B), tillage (T), irrigation (I), and 

time (Year) on changes in calcium (Ca), magnesium (Mg), and manganese (Mn) contents (kg ha
-1

) over time between 2007 and 2014 

in a wheat-soybean, double-crop system in eastern Arkansas. Only significant interactions (P < 0.05) were included in the final model, 

except when non-significant terms participated in significant treatment combinations. Year refers to the linear term, and Year
2
 refers 

to the quadratic term. 

 
Linear term and 

interactions Ca† Mg  Mn 

Quadratic term and 

interactions Ca Mg Mn 

Year <0.001 <0.001 <0.001 Year
2
 <0.001 <0.001 <0.001 

N*Year ns‡ ns ns N*Year
2
 ns ns ns 

B*Year ns 0.004 0.032 B*Year
2
 ns 0.009 ns 

T*Year ns <0.001 0.002 T*Year
2
 ns ns ns 

I*Year <0.001 <0.001 ns I*Year
2
 <0.001 <0.001 ns 

   N*B*Year ns ns ns    N*B*Year
2
 ns ns ns 

   N*T*Year ns ns ns    N*T*Year
2
 ns ns ns 

   N*I*Year ns ns ns    N*I*Year
2
 ns ns ns 

   B*T*Year ns ns ns    B*T*Year
2
 ns ns ns 

   B*I*Year <0.001 <0.001 0.003    B*I*Year
2
 <0.001 <0.001 0.007 

   T*I*Year ns 0.029 ns    T*I*Year
2
 ns ns ns 

      N*B*T*Year <0.001 ns ns       N*B*T*Year
2
 ns ns ns 

      N*B*I*Year ns ns ns       N*B*I *Year
2
 ns ns ns 

      N*T*I *Year 0.012 0.003 ns       N*T*I*Year
2
 0.031 ns ns 

      B*T*I*Year ns ns ns       B*T*I*Year
2
 ns ns ns 

         N*B*T*I*Year ns ns ns          N*B*T*I*Year
2
 ns ns ns 

† Degrees of freedom were 313, 322, and 327 for Ca, Mg, and Mn, respectively.  

‡ not significant (ns), i.e. P > 0.05. 
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Table 7. Analysis of covariance (ANCOVA) summary on the effects of residue level (N), burning (B), tillage (T), irrigation (I), and 

time (Year) on changes in potassium (K) and zinc (Zn) contents (kg ha
-1

) over time between 2007 and 2014 in a wheat-soybean, 

double-crop system in eastern Arkansas. Only significant interactions (P < 0.05) were included in the final model, except when non-

significant terms participated in significant treatment combinations. Year refers to the linear term, and Year
2
 refers to the quadratic 

term. 

 
Linear term and 

interactions K† Zn  

Quadratic term and 

interactions K Zn  

Year <0.001 0.002 Year
2
 <0.001 0.002 

N*Year ns‡ ns N*Year
2
 ns ns 

B*Year ns 0.035 B*Year
2
 ns 0.095 

T*Year ns ns T*Year
2
 ns ns 

I*Year 0.002 0.032 I*Year
2
 0.007 ns 

   N*B*Year ns ns    N*B*Year
2
 ns ns 

   N*T*Year ns ns    N*T*Year
2
 ns ns 

   N*I*Year ns ns    N*I*Year
2
 ns ns 

   B*T*Year ns ns    B*T*Year
2
 ns ns 

   B*I*Year <0.001 0.001    B*I*Year
2
 ns 0.002 

   T*I*Year ns ns    T*I*Year
2
 ns ns 

      N*B*T*Year 0.014 0.004       N*B*T*Year
2
 0.032 0.005 

      N*B*I*Year ns ns       N*B*I *Year
2
 ns ns 

      N*T*I *Year 0.012 ns       N*T*I*Year
2
 0.013 ns 

      B*T*I*Year 0.011 ns       B*T*I*Year
2
 ns ns 

         N*B*T*I*Year ns ns          N*B*T*I*Year
2
 ns ns 

† Degrees of freedom were 312 and 316 for K and Zn, respectively. 

‡ not significant (ns), i.e. P > 0.05. 
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Appendix B 

This appendix contains a summary of least significant differences (LSD) among estimate 

parameters of specific treatment combinations. 
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Table 1. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for bulk density (g cm
-3

) 

trends over time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. 

Coefficient estimates are categorized according to least significant differences (LSD), and coefficient 

estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

 Coefficient 

estimate P 

Linear 

 NT-B-H-NI  0.269 a < 0.001 

 NT-NB-H-NI  0.194 ab < 0.001 

 NT-NB-L-I  0.174 b < 0.001 

 CT-B-H-I  0.163 b < 0.001 

 NT-B-H-I  0.155 bc < 0.001 

 CT-NB-L-I  0.141 bc < 0.001 

 NT-B-L-I  0.138 bc < 0.001 

 NT-NB-L-NI  0.118 bc < 0.001 

 CT-B-L-I  0.105 bc 0.001 

 CT-NB-H-I  0.103 bc 0.001 

 CT-B-H-NI  0.103 bc 0.001 

 NT-B-L-NI  0.098 bc 0.002 

 CT-NB-L-NI  0.096 bc 0.002 

 NT-NB-H-I  0.096 bc 0.002 

 CT-B-L-NI  0.076 c 0.014 

 CT-NB-H-NI  0.028 c 0.367 

     

Quadratic 

 CT-NB-H-NI  -0.002 a 0.317 

 CT-B-L-NI  -0.004 a 0.025 

 NT-B-L-NI  -0.005 a  0.003 

 CT-B-H-NI  -0.005 a 0.002 

 NT-NB-H-I  -0.005 a 0.002 

 CT-NB-L-NI  -0.005 a 0.001 

 CT-NB-H-I  -0.005 a 0.001 

 CT-B-L-I  -0.005 ab 0.001 

 NT-NB-L-NI  -0.006 b   < 0.001 

 CT-NB-L-I  -0.007 b < 0.001 

 NT-B-L-I  -0.008 b < 0.001 

 NT-B-H-I  -0.008 b < 0.001 

 CT-B-H-I  -0.009 b < 0.001 

 NT-NB-L-I  -0.009 bc < 0.001 

 NT-NB-H-NI  -0.010 cd < 0.001 

 NT-B-H-NI  -0.014 d < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 2. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for soil organic matter 

content (kg m
-2

) trends over time between 2007 and 2014 in a wheat-soybean, double-crop system in 

eastern Arkansas. Coefficient estimates are categorized according to least significant differences (LSD), 

and coefficient estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 CT-NB-H-NI 0.630 a < 0.001 

 CT-B-H-NI 0.592 a < 0.001 

 NT-NB-L-NI 0.572 a < 0.001 

 CT-NB-L-NI 0.562 a < 0.001 

 NT-NB-H-NI 0.561 a < 0.001 

 NT-B-L-NI 0.535 a < 0.001 

 CT-B-L-NI 0.524 a < 0.001 

 NT-B-H-NI 0.524 a < 0.001 

 CT-NB-L-I 0.072 b 0.495 

 NT-NB-H-I 0.057 b 0.590 

 CT-B-L-I 0.035 b 0.743 

 NT-NB-L-I 0.035 b 0.745 

 NT-B-H-I 0.020 b 0.853 

 CT-NB-H-I 0.017 b 0.875 

 NT-B-L-I -0.003 b 0.977 

 CT-B-H-I -0.021 b 0.844 

    

Quadratic 
 I -0.002 a 0.720 

 NI -0.029 b < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 3. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for carbon content (kg m
-2

) 

trends over time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. 

Coefficient estimates are categorized according to least significant differences (LSD), and coefficient 

estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 CT-H-NI 0.180 a < 0.001 

 NT-H-NI 0.159 a 0.002 

 NT-L-NI 0.157 a 0.002 

 CT-L-NI 0.152 a 0.002 

 CT-L-I -0.141 b 0.005 

 NT-H-I -0.161 b 0.001 

 NT-L-I -0.166 b 0.001 

 CT-H-I -0.170 b 0.001 

    

Quadratic 

 NB-I 0.010 a < 0.001 

 B-I 0.008 a 0.001 

 NB-NI -0.008 b 0.004 

 B-NI -0.009 b 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 4. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

burning [burn (B) and no-burn (NB)], tillage [conventional tillage (CT) and no-tillage (NT)], and 

irrigation [irrigated (I) and non-irrigated (NI)], for the trend in carbon fraction of soil organic matter over 

time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. Coefficient 

estimates are categorized according to least significant differences (LSD), and coefficient estimates 

sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 NT-B-NI -0.023 a 0.040 

 CT-NB-NI -0.025 a 0.027 

 NT-NB-NI -0.026 a 0.018 

 CT-B-NI -0.027 a 0.015 

 NT-NB-I -0.055 b < 0.001 

 CT-NB-I -0.056 b < 0.001 

 CT-B-I -0.057 b < 0.001 

 NT-B-I -0.063 b < 0.001 

    

Quadratic 
 I 0.003 a < 0.001 

 NI 0.001 b 0.016 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 5. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for carbon to nitrogen 

(C:N) ratio trends over time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern 

Arkansas. Coefficient estimates are categorized according to least significant differences (LSD), and 

coefficient estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 NT-B-H-I -0.635 a 0.006 

 CT-B-H-NI -0.657 ab 0.004 

 CT-B-H-I -0.686 abc 0.003 

 NT-NB-H-I -0.751 abcd 0.001 

 NT-B-H-NI -0.758 abcd 0.001 

 CT-NB-H-NI -0.773 abcde 0.001 

 CT-NB-H-I -0.802 abcde  0.001 

 NT-NB-H-NI -0.874 abcdef < 0.001 

 CT-B-L-I -1.184 abcdef < 0.001 

 NT-B-L-I -1.245 abcdef < 0.001 

 NT-B-L-NI -1.293 bcdef < 0.001 

 CT-NB-L-I -1.300 cdef < 0.001 

 NT-NB-L-I -1.361 def < 0.001 

 CT-B-L-NI -1.372 def  < 0.001 

 NT-NB-L-NI -1.409 ef < 0.001 

 CT-NB-L-NI -1.488 f < 0.001 

    

Quadratic 

 NB-L 0.080 a < 0.001 

 B-L 0.068 ab < 0.001 

 NB-H 0.047 b < 0.001 

 B-H 0.035 b 0.004 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 6. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

irrigation [irrigated (I) and non-irrigated (NI)], for nitrogen content (kg m
-2

) trends over time between 

2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. Coefficient estimates are 

categorized according to least significant differences (LSD), and coefficient estimates sharing a letter 

category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 
 NI 0.030 a < 0.001 

 I 0.003 b 0.531 

    

Quadratic 
 I < 0.001 a 0.498 

 NI -0.002 b < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 7. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for the nitrogen fraction of 

soil organic matter trends over time between 2007 and 2014 in wheat-soybean, double-crop system in 

eastern Arkansas. Coefficient estimates are categorized according to least significant differences (LSD), 

and coefficient estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 NT-H-NI 0.001 a 0.103 

 CT-H-I < 0.001 a 0.123 

 CT-L-NI < 0.001 a 0.460 

 NT-L-I < 0.001 a 0.989 

 CT-L-I < 0.001 a 0.668 

 NT-H-I < 0.001 a 0.629 

 NT-L-NI < 0.001 a 0.601 

 CT-H-NI < 0.001 a 0.282 

† Significant linear term indicates a trend over time that is statistically different from 0. No significant 

quadratic terms existed (Appendix A-Table 3) 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

141 

 

Table 8. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

irrigation [irrigated (I) and non-irrigated (NI)] for soybean yield (Mg ha
-1

) trends over time between 2007 

and 2014 in wheat-soybean, double-crop system in eastern Arkansas. Coefficient estimates are 

categorized according to least significant differences (LSD), and coefficient estimates sharing a letter 

category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 
I 0.654 a 0.010 

NI -1.502 b < 0.001 

    

Quadratic 
NI 0.069 a 0.003 

I -0.039 b < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 9. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for wheat yield (Mg ha
-1

) 

trends over time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. 

Coefficient estimates are categorized according to least significant differences (LSD), and coefficient 

estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 NT-B-H-NI 2.470 a < 0.001 

 NT-NB-H-NI 2.393 a < 0.001 

 CT-NB-H-NI 2.388 a < 0.001 

 CT-B-H-NI 2.382 a < 0.001 

 NT-B-H-I 2.336 a < 0.001 

 NT-B-L-NI 2.301 a < 0.001 

 CT-B-L-NI 2.292 a < 0.001 

 NT-NB-L-NI 2.287 a < 0.001 

 CT-NB-L-NI 2.268 a < 0.001 

 NT-NB-H-I 2.259 a < 0.001 

 CT-NB-H-I 2.255 a < 0.001 

 CT-B-H-I 2.248 a < 0.001 

 NT-B-L-I 2.168 a < 0.001 

 CT-B-L-I 2.159 a < 0.001 

 NT-NB-L-I 2.154 a < 0.001 

 CT-NB-L-I 2.134 a < 0.001 

    

Quadratic Quadratic‡ -0.119 a < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 

‡ Quadratic coefficient was significant, but not in combination with any field treatment. 
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Table 10. Summary of the separation of estimate parameters for electrical conductivity (dS m
-1

) trends 

over time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear Linear‡ 0.095 < 0.001 

    

Quadratic Quadratic‡ -0.005 < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 

‡ Coefficient was significant, but not in combination with any field treatment. 
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Table 11. Summary of the separation of estimate parameters for iron content (kg ha
-1

) trends over time 

between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear Linear‡ 28.5722 < 0.001 

    

Quadratic Quadratic‡ -1.3504 < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 

‡ Coefficient was significant, but not in combination with any field treatment. 
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Table 12. Summary of the separation of estimate parameters for sodium content (kg ha
-1

) trends over time 

between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear Linear‡ -1.365 < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 

‡ Coefficient was significant, but not in combination with any field treatment. 
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Table 13. Summary of the separation of estimate parameters for sulfur content (kg ha
-1

) trends over time 

between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear Linear‡ 19.522 < 0.001 

    

Quadratic Quadratic‡ -1.070 < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 

‡ Coefficient was significant, but not in combination with any field treatment. 
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Table 14. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for pH trends over time 

between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. Coefficient 

estimates are categorized according to least significant differences (LSD), and coefficient estimates 

sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 NT-B-L-I -0.327 a < 0.001 

 NT-B-L-NI -0.406 ab < 0.001 

 CT-NB-L-I -0.503 abc < 0.001 

 CT-NB-L-NI -0.582 abcd < 0.001 

 NT-NB-L-I -0.681 abcde < 0.001 

 NT-NB-L-NI -0.760 abcdef < 0.001 

 NT-NB-H-I -0.824 bcdef 0.004 

 CT-B-H-I -0.859 bcdef  0.001 

 CT-B-L-I -0.871 bcdef < 0.001 

 CT-B-L-NI -0.950 cdef < 0.001 

 NT-NB-H-NI -0.967 cdef 0.058 

 NT-B-H-I -0.969 cdef 0.019 

 CT-B-H-NI -1.002 def < 0.001 

 CT-NB-H-I -1.080 ef < 0.001 

 NT-B-H-NI -1.112 ef < 0.001 

 CT-NB-H-NI -1.223 f < 0.001 

    

Quadratic 

 CT-NB-H 0.056 a < 0.001 

 NT-B-H 0.050 ab < 0.001 

 CT-B-H 0.046 ab < 0.001 

 CT-B-L 0.044 ab 0.003 

 NT-NB-H 0.043 ab < 0.001 

 NT-NB-L 0.034 bc 0.069 

 CT-NB-L 0.027 bc < 0.001 

 NT-B-L 0.016 bc < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 15. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)] and irrigation [irrigated (I) and non-irrigated (NI)], for phosphorus 

content (kg ha
-1

) trends over time between 2007 and 2014 in a wheat-soybean, double-crop system in 

eastern Arkansas. Coefficient estimates are categorized according to least significant differences (LSD), 

and coefficient estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 L-NI 11.481 a < 0.001 

 H-NI 11.019 a < 0.001 

 L-I 3.960 b 0.08 

 H-I 3.497 b 0.12 

    

Quadratic 
 I -0.276 a 0.02 

 NI -0.651 b < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 16. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

irrigation [irrigated (I) and non-irrigated (NI)] for copper content (kg ha
-1

) trends over time between 2007 

and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. Coefficient estimates are 

categorized according to least significant differences (LSD), and coefficient estimates sharing a letter 

category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 
NI -0.105 a 0.466 

 I -0.642 b < 0.001 

    

Quadratic 
 I 0.030 a < 0.001 

 NI 0.004 b 0.612 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 17. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for calcium content (kg ha
-

1
) trends over time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. 

Coefficient estimates are categorized according to least significant differences (LSD), and coefficient 

estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 NT-NB-L-NI 414.550 a < 0.001 

 CT-NB-H-NI 391.220 a < 0.001 

 NT-NB-H-NI 264.420 a 0.010 

 CT-NB-L-NI 162.160 ab 0.111 

 NT-B-L-NI -34.718 bc 0.732 

 CT-B-H-NI -78.872 bc 0.437 

 NT-B-H-NI -155.310 cd 0.126 

 CT-B-L-I -187.640 cde 0.065 

 CT-B-L-NI -247.360 cde 0.015 

 NT-B-H-I -280.630 cdef 0.006 

 NT-B-L-I -401.580 defg < 0.001 

 CT-B-H-I -427.740 defg < 0.001 

 CT-NB-L-I -450.560 efg < 0.001 

 NT-NB-H-I -533.340 fg < 0.001 

 NT-NB-L-I -624.750 g < 0.001 

 CT-NB-H-I -630.090 g < 0.001 

     

Quadratic 

 CT-NB-H-I 32.488 a < 0.001 

 NT-NB-L-I 30.973 a < 0.001 

 NT-NB-H-I 26.424 ab < 0.001 

 CT-NB-L-I 23.105 ab < 0.001 

 CT-B-H-I 21.245 abc < 0.001 

 NT-B-L-I 19.730 abc < 0.001 

 NT-B-H-I 15.180 bcd 0.004 

 CT-B-L-I 11.861 bcd 0.026 

 CT-B-L-NI 11.748 cd 0.027 

 NT-B-H-NI 6.581 d 0.215 

 CT-B-H-NI 2.439 de   0.645 

 NT-B-L-NI 0.865 de 0.870 

 CT-NB-L-NI -9.990 ef 0.060 

 NT-NB-H-NI -15.157 f 0.005 

 CT-NB-H-NI -19.299 f < 0.001 

 NT-NB-L-NI -20.873 f < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 18. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for magnesium content (kg 

ha
-1

) trends over time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern 

Arkansas. Coefficient estimates are categorized according to least significant differences (LSD), and 

coefficient estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 CT-NB-H-NI -13.982 a 0.334 

 NT-NB-L-NI -14.149 a 0.328 

 CT-NB-L-NI -17.664 a 0.222 

 NT-NB-H-NI -21.246 a 0.142 

 CT-B-L-I -39.221 ab 0.007 

 CT-B-H-I -44.523 ab 0.002 

 NT-B-H-I -49.491 ab 0.001 

 NT-B-L-I -51.191 ab 0.001 

 CT-B-H-NI -66.097 b < 0.001 

 NT-B-L-NI -66.264 b < 0.001 

 CT-B-L-NI -69.779 b  < 0.001 

 NT-B-H-NI -73.362 b < 0.001 

 CT-NB-L-I -175.100 c < 0.001 

 CT-NB-H-I -180.400 c < 0.001 

 NT-NB-H-I -185.370 c < 0.001 

 NT-NB-L-I -187.070 c < 0.001 

    

Quadratic 

 NB-I 9.581 a < 0.001 

 B-NI 3.223 b < 0.001 

 B-I 3.025 c < 0.001 

 NB-NI 0.626 d 0.405 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 19. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

burning [burn (B) and no-burn (NB)], tillage [conventional tillage (CT) and no-tillage (NT)], and 

irrigation [irrigated (I) and non-irrigated (NI)], for manganese content (kg ha
-1

) trends over time between 

2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. Coefficient estimates are 

categorized according to least significant differences (LSD), and coefficient estimates sharing a letter 

category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 CT-NB-I 100.490 a < 0.001 

 NT-NB-I 97.112 a    0.002 

 CT-B-NI 52.793 b 0.001 

 NT-B-NI 49.414 b 0.001 

 CT-NB-NI 40.422 b 0.008 

 NT-NB-NI 37.044 b  0.015 

 CT-B-I 22.898 b 0.132 

 NT-B-I 19.520 b 0.199 

      

Quadratic 

 B-I -0.907 a 0.254 

 NB-NI -1.987 a 0.013 

 B-NI -2.586 a 0.001 

 NB-I -4.614 b < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 20. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for potassium content (kg 

ha
-1

) trends over time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern 

Arkansas. Coefficient estimates are categorized according to least significant differences (LSD), and 

coefficient estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 CT-NB-H-NI 14.370 a 0.395 

 NT-NB-L-NI -20.187 ab 0.232 

 NT-B-H-NI -29.996 abc 0.076 

 CT-B-H-NI -34.156 bcd 0.044 

 NT-B-L-NI -42.001 bcd 0.013 

 CT-B-L-I -44.093 bcd 0.009 

 NT-B-H-I -46.386 bcd 0.006 

 CT-NB-L-I -47.346 bcd 0.005 

 CT-B-L-NI -50.672 bcd 0.003 

 CT-NB-L-NI -52.872 bcd 0.002 

 NT-NB-H-NI -53.970 bcd 0.002 

 CT-NB-H-I -55.793 bcd 0.001 

 NT-NB-L-I -62.038 bcde < 0.001 

 NT-NB-H-I -73.395 cde < 0.001 

 NT-B-L-I -80.816 de < 0.001 

 CT-B-H-I -103.270 e < 0.001 

    

Quadratic 

 CT-B-H-I 4.730 a < 0.001 

 NT-B-L-I 3.824 ab < 0.001 

 NT-NB-H-I 3.325 abc < 0.001 

 NT-NB-L-I 2.945 abc < 0.001 

 CT-B-L-NI 2.714 abc  0.002 

 NT-NB-H-NI 2.610 abc 0.003 

 CT-NB-L-NI 2.484 abc 0.005 

 CT-NB-H-I 2.366 abc 0.008 

 CT-B-L-I 2.244 bc 0.012 

 CT-NB-L-I 2.014 bc  0.023 

 NT-B-H-I 1.950 bc 0.028 

 NT-B-L-NI 1.789 bc 0.044 

 CT-B-H-NI 1.435 bc 0.105 

 NT-B-H-NI 1.234 c 0.163 

 NT-NB-L-NI 0.911 c 0.303 

 CT-NB-H-NI -0.928 d 0.294 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 
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Table 21. Summary of the separation of estimate parameters of specific treatment combinations, i.e. 

residue-level [high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], for zinc content (kg ha
-1

) 

trends over time between 2007 and 2014 in a wheat-soybean, double-crop system in eastern Arkansas. 

Coefficient estimates are categorized according to least significant differences (LSD), and coefficient 

estimates sharing a letter category are statistically similar.  

 

Significant  

regression term† Treatment combination 

Coefficient 

estimate P 

Linear 

 NT-B-H-NI 0.855 a < 0.001 

 NT-NB-L-I 0.604 ab 0.002 

 NT-NB-L-NI 0.465 abcv 0.014 

 CT-NB-H-I 0.415 abc 0.029 

 CT-B-L-NI 0.356 abc 0.060 

 CT-NB-L-I 0.304 bc 0.108 

 CT-NB-H-NI 0.276 bc 0.145 

 NT-B-L-NI 0.218 bcd 0.248 

 NT-NB-H-I 0.215 bcd 0.255 

 NT-B-H-I 0.202 bcd 0.285 

 CT-NB-L-NI 0.165 bcd 0.383 

 CT-B-H-NI 0.124 bcd 0.512 

 NT-NB-H-NI 0.076 cde  0.687 

 CT-B-L-I -0.297 def 0.117 

 NT-B-L-I -0.435 ef 0.022 

 CT-B-H-I -0.529 f 0.005 

     

Quadratic 

 CT-B-H-I 0.024 a 0.014 

 NT-B-L-I 0.020 ab 0.045 

 CT-B-L-I 0.014 abc 0.162 

 NT-NB-H-NI -0.001 abcd 0.887 

 CT-B-H-NI -0.007 bcde 0.482 

 CT-NB-L-NI -0.007 bcde 0.475 

 NT-NB-H-I -0.009 cde 0.350 

 NT-B-L-NI -0.012 cde 0.241 

 CT-NB-H-NI -0.013 cde 0.184 

 NT-B-H-I -0.013 de 0.184 

 CT-NB-L-I -0.015 de 0.133 

 CT-B-L-NI -0.018 def  0.076 

 CT-NB-H-I -0.021 def 0.034 

 NT-NB-L-NI -0.022 def 0.024 

 NT-NB-L-I -0.030 ef 0.002 

 NT-B-H-NI -0.045 f < 0.001 

† Significant linear term indicates a trend over time that is statistically different from 0, and a significant 

quadratic term indicates a shift in the trend over time. 

  



 

155 

 

Appendix C 

This appendix contains an example of the SAS program used for the ANCOVA of residue level 

(N), burning (B), tillage (T), irrigation (I), and time (Year) effects on soil and plant properties 

trends over time. The full ANCOVA model was reduced using a hierarchal principle to remove 

non-significant terms, except when non-significant terms participated in higher-order, complex 

treatment combinations.   
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Title 'Ryan, N: Analysis of Co variance with all trt combn'; 

  

Data asa; 

length trtcode1 trtcode2 trtcode3 trtcode4 $16; 

 

infile 'OMcontent_sas_soils_data_2014.csv' firstobs=2 delimiter= "," lrecl=400;; 

 

input obs year actualyear Plot tblock bblock rep T $ B $  N $ I $ 

      OMcontent ; 

year2=year*year; 

Year3=year2*year; 

  

  

label obs='observation #' 

      year='year' 

      plot='plot #' 

      tblock='tillage block' 

      bblock='burning block' 

      rep='replication' 

      T='tillage' 

      B='burning' 

      N='NRate level' 

      I='Irrigation' 

      OMcontent='Total carbon content (kg/m2)' 

      year2='year square' 

      year3='year cube'; 

run; 

 

proc sort data=asa; 

by T B N I year; 

quit;  

ods rtf file='Final_OMcontent_122214.rtf' style=journal bodytitle; 

title3 'P<.05'; 

proc mixed data=asa method=type3 ; 

class T B N I rep; 

model OMcontent= T 

                 I 

                 B 

                 N  

                 T*I 

                 T*B 

                 I*B 

                 T*N 

                 I*N 

                 B*N  

                 T*I*B 

                 T*I*N 

                 T*B*N 

                 I*B*N  

                 T*I*B*N  

                 year  

                 year*T 

                 year*I 

                 year*B 

                 year*N  
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                 year*T*I                 

                 year*T*N 

                 year*I*N 

                 year*T*I*N       

                 year2                

                 year2*I                  

                / ddfm=kr ;  

random rep(T B N I) ; 

id T B N I; 

 

estimate 'Intercept CT-B-H-I'  intercept 1 t 1 0 b 1 0 n 1 0 i 1 0 t*b 1 0 0 0 t*n 1 0 0 0 t*i 1 0 0 0 b*n 1 0 0 0 b*i 1 0 

0 0 n*i 1 0 0 0 t*b*n 1 0 0 0 0 0 0 0 t*b*i 1 0 0 0 0 0 0 0 t*n*i 1 0 0 0 0 0 0 0 b*n*i 1 0 0 0 0 0 0 0 t*b*n*i 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 ; 

estimate 'Intercept CT-B-H-NI' intercept 1 t 1 0 b 1 0 n 1 0 i 0 1 t*b 1 0 0 0 t*n 1 0 0 0 t*i 0 1 0 0 b*n 1 0 0 0 b*i 0 1 

0 0 n*i 0 1 0 0 t*b*n 1 0 0 0 0 0 0 0 t*b*i 0 1 0 0 0 0 0 0 t*n*i 0 1 0 0 0 0 0 0 b*n*i 0 1 0 0 0 0 0 0 t*b*n*i 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 ; 

estimate 'Intercept CT-B-L-I'  intercept 1 t 1 0 b 1 0 n 0 1 i 1 0 t*b 1 0 0 0 t*n 0 1 0 0 t*i 1 0 0 0 b*n 0 1 0 0 b*i 1 0 

0 0 n*i 0 0 1 0 t*b*n 0 1 0 0 0 0 0 0 t*b*i 1 0 0 0 0 0 0 0 t*n*i 0 0 1 0 0 0 0 0 b*n*i 0 0 1 0 0 0 0 0 t*b*n*i 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 ; 

estimate 'Intercept CT-B-L-NI' intercept 1 t 1 0 b 1 0 n 0 1 i 0 1 t*b 1 0 0 0 t*n 0 1 0 0 t*i 0 1 0 0 b*n 0 1 0 0 b*i 0 1 

0 0 n*i 0 0 0 1 t*b*n 0 1 0 0 0 0 0 0 t*b*i 0 1 0 0 0 0 0 0 t*n*i 0 0 0 1 0 0 0 0 b*n*i 0 0 0 1 0 0 0 0 t*b*n*i 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 ; 

  

estimate 'Intercept CT-NB-H-I'  intercept 1 t 1 0 b 0 1 n 1 0 i 1 0 t*b 0 1 0 0 t*n 1 0 0 0 t*i 1 0 0 0 b*n 0 0 1 0 b*i 0 

0 1 0 n*i 1 0 0 0 t*b*n 0 0 1 0 0 0 0 0 t*b*i 0 0 1 0 0 0 0 0 t*n*i 1 0 0 0 0 0 0 0 b*n*i 0 0 0 0 1 0 0 0 t*b*n*i 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 ; 

estimate 'Intercept CT-NB-H-NI' intercept 1 t 1 0 b 0 1 n 1 0 i 0 1 t*b 0 1 0 0 t*n 1 0 0 0 t*i 0 1 0 0 b*n 0 0 1 0 b*i 0 

0 0 1 n*i 0 1 0 0 t*b*n 0 0 1 0 0 0 0 0 t*b*i 0 0 0 1 0 0 0 0 t*n*i 0 1 0 0 0 0 0 0 b*n*i 0 0 0 0 0 1 0 0 t*b*n*i 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 ; 

estimate 'Intercept CT-NB-L-I'  intercept 1 t 1 0 b 0 1 n 0 1 i 1 0 t*b 0 1 0 0 t*n 0 1 0 0 t*i 1 0 0 0 b*n 0 0 0 1 b*i 0 0 

1 0 n*i 0 0 1 0 t*b*n 0 0 0 1 0 0 0 0 t*b*i 0 0 1 0 0 0 0 0 t*n*i 0 0 1 0 0 0 0 0 b*n*i 0 0 0 0 0 0 1 0 t*b*n*i 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 ; 

estimate 'Intercept CT-NB-L-NI' intercept 1 t 1 0 b 0 1 n 0 1 i 0 1 t*b 0 1 0 0 t*n 0 1 0 0 t*i 0 1 0 0 b*n 0 0 0 1 b*i 0 

0 0 1 n*i 0 0 0 1 t*b*n 0 0 0 1 0 0 0 0 t*b*i 0 0 0 1 0 0 0 0 t*n*i 0 0 0 1 0 0 0 0 b*n*i 0 0 0 0 0 0 0 1 t*b*n*i 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 ; 

  

estimate 'Intercept NT-B-H-I'   intercept 1 t 0 1 b 1 0 n 1 0 i 1 0 t*b 0 0 1 0 t*n 0 0 1 0 t*i 0 0 1 0 b*n 1 0 0 0 b*i 1 0 

0 0 n*i 1 0 0 0 t*b*n 0 0 0 0 1 0 0 0 t*b*i 0 0 0 0 1 0 0 0 t*n*i 0 0 0 0 1 0 0 0 b*n*i 1 0 0 0 0 0 0 0 t*b*n*i 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 ; 

estimate 'Intercept NT-B-H-NI'  intercept 1 t 0 1 b 1 0 n 1 0 i 0 1 t*b 0 0 1 0 t*n 0 0 1 0 t*i 0 0 0 1 b*n 1 0 0 0 b*i 0 

1 0 0 n*i 0 1 0 0 t*b*n 0 0 0 0 1 0 0 0 t*b*i 0 0 0 0 0 1 0 0 t*n*i 0 0 0 0 0 1 0 0 b*n*i 0 1 0 0 0 0 0 0 t*b*n*i 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 ; 

estimate 'Intercept NT-B-L-I'   intercept 1 t 0 1 b 1 0 n 0 1 i 1 0 t*b 0 0 1 0 t*n 0 0 0 1 t*i 0 0 1 0 b*n 0 1 0 0 b*i 1 0 

0 0 n*i 0 0 1 0 t*b*n 0 0 0 0 0 1 0 0 t*b*i 0 0 0 0 1 0 0 0 t*n*i 0 0 0 0 0 0 1 0 b*n*i 0 0 1 0 0 0 0 0 t*b*n*i 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 ; 

estimate 'Intercept NT-B-L-NI'  intercept 1 t 0 1 b 1 0 n 0 1 i 0 1 t*b 0 0 1 0 t*n 0 0 0 1 t*i 0 0 0 1 b*n 0 1 0 0 b*i 0 

1 0 0 n*i 0 0 0 1 t*b*n 0 0 0 0 0 1 0 0 t*b*i 0 0 0 0 0 1 0 0 t*n*i 0 0 0 0 0 0 0 1 b*n*i 0 0 0 1 0 0 0 0 t*b*n*i 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 ; 

 

estimate 'Intercept NT-NB-H-I'  intercept 1 t 0 1 b 0 1 n 1 0 i 1 0 t*b 0 0 0 1 t*n 0 0 1 0 t*i 0 0 1 0 b*n 0 0 1 0 b*i 0 

0 1 0 n*i 1 0 0 0 t*b*n 0 0 0 0 0 0 1 0 t*b*i 0 0 0 0 0 0 1 0 t*n*i 0 0 0 0 1 0 0 0 b*n*i 0 0 0 0 1 0 0 0 t*b*n*i 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 ; 

estimate 'Intercept NT-NB-H-NI' intercept 1 t 0 1 b 0 1 n 1 0 i 0 1 t*b 0 0 0 1 t*n 0 0 1 0 t*i 0 0 0 1 b*n 0 0 1 0 b*i 0 

0 0 1 n*i 0 1 0 0 t*b*n 0 0 0 0 0 0 1 0 t*b*i 0 0 0 0 0 0 0 1 t*n*i 0 0 0 0 0 1 0 0 b*n*i 0 0 0 0 0 1 0 0 t*b*n*i 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 ; 



 

158 

 

estimate 'Intercept NT-NB-L-I'  intercept 1 t 0 1 b 0 1 n 0 1 i 1 0 t*b 0 0 0 1 t*n 0 0 0 1 t*i 0 0 1 0 b*n 0 0 0 1 b*i 0 

0 1 0 n*i 0 0 1 0 t*b*n 0 0 0 0 0 0 0 1 t*b*i 0 0 0 0 0 0 1 0 t*n*i 0 0 0 0 0 0 1 0 b*n*i 0 0 0 0 0 0 1 0 t*b*n*i 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 ; 

estimate 'Intercept NT-NB-L-NI' intercept 1 t 0 1 b 0 1 n 0 1 i 0 1 t*b 0 0 0 1 t*n 0 0 0 1 t*i 0 0 0 1 b*n 0 0 0 1 b*i 0 

0 0 1 n*i 0 0 0 1 t*b*n 0 0 0 0 0 0 0 1 t*b*i 0 0 0 0 0 0 0 1 t*n*i 0 0 0 0 0 0 0 1 b*n*i 0 0 0 0 0 0 0 1 t*b*n*i 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 ; 

  

estimate 'Slope CT-B-H-I'  year 1 year*t 1 0 year*b 1 0 year*n 1 0 year*i 1 0 year*t*n 1 0 0 0 year*t*i 1 0 0 0 

year*n*i 1 0 0 0 year*t*n*i 1 0 0 0 0 0 0 0 ; 

estimate 'Slope CT-B-H-NI' year 1 year*t 1 0 year*b 1 0 year*n 1 0 year*i 0 1 year*t*n 1 0 0 0 year*t*i 0 1 0 0 

year*n*i 0 1 0 0 year*t*n*i 0 1 0 0 0 0 0 0 ; 

estimate 'Slope CT-B-L-I'  year 1 year*t 1 0 year*b 1 0 year*n 0 1 year*i 1 0 year*t*n 0 1 0 0 year*t*i 1 0 0 0 

year*n*i 0 0 1 0 year*t*n*i 0 0 1 0 0 0 0 0 ; 

estimate 'Slope CT-B-L-NI' year 1 year*t 1 0 year*b 1 0 year*n 0 1 year*i 0 1 year*t*n 0 1 0 0 year*t*i 0 1 0 0 

year*n*i 0 0 0 1 year*t*n*i 0 0 0 1 0 0 0 0 ; 

 

estimate 'Slope CT-NB-H-I'  year 1 year*t 1 0 year*b 0 1 year*n 1 0 year*i 1 0 year*t*n 1 0 0 0 year*t*i 1 0 0 0 

year*n*i 1 0 0 0 year*t*n*i 1 0 0 0 0 0 0 0 ; 

estimate 'Slope CT-NB-H-NI' year 1 year*t 1 0 year*b 0 1 year*n 1 0 year*i 0 1 year*t*n 1 0 0 0 year*t*i 0 1 0 0 

year*n*i 0 1 0 0 year*t*n*i 0 1 0 0 0 0 0 0 ; 

estimate 'Slope CT-NB-L-I'  year 1 year*t 1 0 year*b 0 1 year*n 0 1 year*i 1 0 year*t*n 0 1 0 0 year*t*i 1 0 0 0 

year*n*i 0 0 1 0 year*t*n*i 0 0 1 0 0 0 0 0 ; 

estimate 'Slope CT-NB-L-NI' year 1 year*t 1 0 year*b 0 1 year*n 0 1 year*i 0 1 year*t*n 0 1 0 0 year*t*i 0 1 0 0 

year*n*i 0 0 0 1 year*t*n*i 0 0 0 1 0 0 0 0 ;  

  

estimate 'Slope NT-B-H-I'  year 1 year*t 0 1 year*b 1 0 year*n 1 0 year*i 1 0 year*t*n 0 0 1 0 year*t*i 0 0 1 0 

year*n*i 1 0 0 0 year*t*n*i 0 0 0 0 1 0 0 0 ; 

estimate 'Slope NT-B-H-NI' year 1 year*t 0 1 year*b 1 0 year*n 1 0 year*i 0 1 year*t*n 0 0 1 0 year*t*i 0 0 0 1 

year*n*i 0 1 0 0 year*t*n*i 0 0 0 0 0 1 0 0 ; 

estimate 'Slope NT-B-L-I'  year 1 year*t 0 1 year*b 1 0 year*n 0 1 year*i 1 0 year*t*n 0 0 0 1 year*t*i 0 0 1 0 

year*n*i 0 0 1 0 year*t*n*i 0 0 0 0 0 0 1 0 ; 

estimate 'Slope NT-B-L-NI' year 1 year*t 0 1 year*b 1 0 year*n 0 1 year*i 0 1 year*t*n 0 0 0 1 year*t*i 0 0 0 1 

year*n*i 0 0 0 1 year*t*n*i 0 0 0 0 0 0 0 1 ; 

 

estimate 'Slope NT-NB-H-I'  year 1 year*t 0 1 year*b 0 1 year*n 1 0 year*i 1 0 year*t*n 0 0 1 0 year*t*i 0 0 1 0 

year*n*i 1 0 0 0 year*t*n*i 0 0 0 0 1 0 0 0 ; 

estimate 'Slope NT-NB-H-NI' year 1 year*t 0 1 year*b 0 1 year*n 1 0 year*i 0 1 year*t*n 0 0 1 0 year*t*i 0 0 0 1 

year*n*i 0 1 0 0 year*t*n*i 0 0 0 0 0 1 0 0 ; 

estimate 'Slope NT-NB-L-I'  year 1 year*t 0 1 year*b 0 1 year*n 0 1 year*i 1 0 year*t*n 0 0 0 1 year*t*i 0 0 1 0 

year*n*i 0 0 1 0 year*t*n*i 0 0 0 0 0 0 1 0 ; 

estimate 'Slope NT-NB-L-NI' year 1 year*t 0 1 year*b 0 1 year*n 0 1 year*i 0 1 year*t*n 0 0 0 1 year*t*i 0 0 0 1 

year*n*i 0 0 0 1 year*t*n*i 0 0 0 0 0 0 0 1 ; 

  

estimate 'Quad coeff I'  year2 1 year2*i 1 0 ; 

estimate 'Quad coeff NI' year2 1 year2*i 0 1 ; 

run; 

 

Quit;  

proc print data=new noobs; 

  where actualyear < 2014 and abs(student) > 3.0; 

  var year actualyear Plot tblock bblock rep T B N I OMcontent predicted sepred 

    residual seresid student; 

run; 

  

ods rtf close; 
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Appendix D 

This appendix contains raw data from Chapter 2 used for the ANCOVA of residue level [i.e., 

Nrate; high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional tillage 

(CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)], and time (Year) 

effects on soil and plant properties trends over time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1
6
0
 

Soy yield (Mg ha
-1

), wheat yield (Mg ha
-1

), residue level (Mg ha
-1

), spring bulk density (g cm
-3

), summer bulk density (g cm
-3

), pH, 

electrical conductivity (EC; ds m
-1

), phosphorus (P; kg ha
-1

), potassium (K; kg ha
-1

), and calcium (Ca; kg ha
-1

). 

 

obs # yr 

actual 

yr plot 

T 

block 

B 

block rep till burn Nrate Irr 

Soy 

Yld 

Wht 

Yld 

Res 

Level 

Spring 

BD 

Summer 

BD pH EC P K Ca 

1 6 2007 1 1 1 1 CT NB H I 2.34 0.47 5.34 1.19 1.19 7.56 0.08 36 137 1661 

2 6 2007 2 1 1 1 NT NB L I 2.55 0.7 5.41 1.20 1.12 7.48 0.07 33 123 1791 

3 6 2007 3 2 1 1 NT NB H I 2.58 0.49 4.77 1.29 1.25 7.32 0.08 38 120 1746 

4 6 2007 4 2 1 1 CT NB L I 2.3 0.89 10.66 1.22 1.14 7.44 0.08 35 114 1642 

5 6 2007 5 3 1 2 NT NB L I 2.89 1.9 9.75 1.15 1.22 7.45 0.08 36 137 1894 

6 6 2007 6 3 1 2 CT NB H I 3.22 1.61 10.82 1.26 1.20 7.38 0.09 33 124 1758 

7 6 2007 7 1 1 2 CT NB L I 1.55 0.48 8.43 1.22 1.18 7.07 0.10 38 149 1752 

8 6 2007 8 1 1 2 NT NB H I 1.35 0.25 5.42 1.25 1.21 6.98 0.07 37 162 1743 

9 6 2007 9 2 1 3 NT NB L I 1.28 0.37 5.54 1.19 1.22 6.98 0.07 41 169 1973 

10 6 2007 10 2 1 3 CT NB H I 1.68 0.56 5.16 1.23 1.17 7.14 0.08 47 162 1800 

11 6 2007 11 3 1 3 NT NB H I 1.23 1.85 7.93 1.16 1.17 6.93 0.08 34 134 1715 

12 6 2007 12 3 1 3 CT NB L I 1.59 1.5 11.63 1.19 1.18 7.04 0.08 34 148 1864 

13 6 2007 13 1 1 1 CT B L I 2.78 1.23 9.16 1.19 1.19 7.73 0.10 44 106 1629 

14 6 2007 14 1 1 1 NT B L I 2.16 0.64 6.69 1.14 1.22 7.54 0.08 32 123 1484 

15 6 2007 15 2 1 1 NT B H I 1.82 1.55 9.72 1.20 1.22 7.46 0.08 29 127 1637 

16 6 2007 16 2 1 2 CT B L I 2.12 0.71 6.54 1.18 1.20 7.38 0.08 41 99 1380 

17 6 2007 17 3 1 2 NT B H I 2.17 1.75 8.37 1.17 1.28 7.47 0.08 26 88 1295 

18 6 2007 18 3 1 3 CT B L I 2.18 0.91 5.95 1.18 1.29 7.28 0.08 35 129 1727 

19 6 2007 19 1 1 1 CT B H I 2.38 0.43 7.21 1.21 1.22 6.96 0.09 46 187 2126 

20 6 2007 20 1 1 3 NT B H I 1.45 1.49 7.11 1.22 1.21 6.97 0.08 41 182 2029 

21 6 2007 21 2 1 2 NT B L I 1.49 1.16 8.98 1.24 1.20 7.03 0.08 40 174 2245 

22 6 2007 22 2 1 2 CT B H I 0.67 0.74 5.10 1.18 1.15 7.13 0.10 51 209 2282 

23 6 2007 23 3 1 3 NT B L I 1.45 0.97 5.43 1.22 1.25 7.28 0.10 43 178 2122 

24 6 2007 24 3 1 3 CT B H I 1.71 1.15 5.59 1.22 1.26 7.34 0.09 46 165 2033 

25 6 2007 25 1 2 1 CT B H NI 2.61 1.52 6.42 1.22 1.22 7.50 0.07 33 132 1720 



 

 

1
6
1
 

obs # yr 

actual 

yr plot 

T 

block 

B 

block rep till burn Nrate Irr 

Soy 

Yld 

Wht 

Yld 

Res 

Level 

Spring 

BD 

Summer 

BD pH EC P K Ca 

26 6 2007 26 1 2 1 NT B H NI 2.46 2.54 8.07 1.22 1.05 7.44 0.08 29 115 1767 

27 6 2007 27 2 2 2 NT B H NI 2.44 2.7 8.09 1.28 1.15 7.40 0.07 31 127 1940 

28 6 2007 28 2 2 1 CT B L NI 2.32 2.18 9.61 1.21 1.25 7.58 0.08 28 115 1816 

29 6 2007 29 3 2 3 NT B H NI 2.68 1.34 7.06 1.20 1.16 7.50 0.09 34 122 1776 

30 6 2007 30 3 2 2 CT B L NI 2.68 0.86 6.37 1.25 1.19 7.52 0.08 32 113 1741 

31 6 2007 31 1 2 3 CT B L NI 1.38 1.52 11.79 1.05 1.23 6.85 0.07 37 169 1929 

32 6 2007 32 1 2 1 NT B L NI 1.23 1.42 9.89 1.15 1.23 6.97 0.07 35 158 1738 

33 6 2007 33 2 2 2 NT B L NI 1.31 2.18 8.90 1.16 1.13 6.92 0.07 36 162 1924 

34 6 2007 34 2 2 2 CT B H NI 1.45 0.59 5.01 1.23 1.16 7.14 0.07 46 161 1897 

35 6 2007 35 3 2 3 NT B L NI 1.22 0.39 5.82 1.13 1.17 7.18 0.07 40 155 1778 

36 6 2007 36 3 2 3 CT B H NI 1.2 0.91 4.64 1.17 1.19 6.97 0.06 36 142 1824 

37 6 2007 37 1 2 1 CT NB H NI 2.77 1.5 6.28 1.12 1.21 7.70 0.08 42 122 1471 

38 6 2007 38 1 2 1 NT NB L NI 2.68 2.77 10.61 1.25 1.22 7.45 0.08 26 96 1270 

39 6 2007 39 2 2 1 NT NB H NI 2.29 1.49 7.32 1.22 1.26 7.45 0.08 26 105 1342 

40 6 2007 40 2 2 2 CT NB H NI 2.72 2.18 10.25 1.21 1.22 7.51 0.08 33 77 1285 

41 6 2007 41 3 2 2 NT NB L NI 2.72 1.13 6.96 1.22 1.28 7.22 0.07 31 94 1163 

42 6 2007 42 3 2 3 CT NB H NI 2.04 2.97 10.00 1.17 1.24 7.38 0.07 26 92 1206 

43 6 2007 43 1 2 1 CT NB L NI 1.24 0.4 4.79 1.22 1.18 7.07 0.08 53 187 2039 

44 6 2007 44 1 2 2 NT NB H NI 1.66 1.92 9.60 1.26 1.20 6.90 0.07 40 150 2048 

45 6 2007 45 2 2 3 NT NB L NI 1.23 0.87 5.98 1.28 1.21 7.08 0.07 42 155 1920 

46 6 2007 46 2 2 2 CT NB L NI 2.06 2.42 8.66 1.20 1.22 7.10 0.08 38 153 2149 

47 6 2007 47 3 2 3 NT NB H NI 1.61 0.94 5.74 1.21 1.23 7.06 0.09 45 194 2059 

48 6 2007 48 3 2 3 CT NB L NI 1.24 3.15 9.88 1.23 1.22 7.05 0.10 34 152 1970 

49 7 2008 1 1 1 1 CT NB H I 0.95 1.57 10.84 1.18 1.18 7.47 0.17 51 115 1474 

50 7 2008 2 1 1 1 NT NB L I 2.93 1.57 8.84 1.19 1.20 7.58 0.15 38 114 1264 

51 7 2008 3 2 1 1 NT NB H I 3.30 2.40 10.91 1.25 1.23 7.01 0.11 27 113 1230 

52 7 2008 4 2 1 1 CT NB L I 3.08 0.53 3.56 1.20 1.19 7.20 0.14 30 123 1269 

53 7 2008 5 3 1 2 NT NB L I 4.61 0.86 6.61 1.18 1.24 7.40 0.10 27 110 1306 

54 7 2008 6 3 1 2 CT NB H I 3.79 1.55 10.01 1.25 1.23 7.40 0.10 23 119 1503 
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obs # yr 

actual 

yr plot 

T 

block 

B 

block rep till burn Nrate Irr 

Soy 

Yld 

Wht 

Yld 

Res 

Level 

Spring 

BD 

Summer 

BD pH EC P K Ca 

55 7 2008 7 1 1 2 CT NB L I 1.60 0.36 7.43 1.20 1.22 7.40 0.13 38 103 1324 

56 7 2008 8 1 1 2 NT NB H I 1.68 0.82 9.41 1.24 1.23 7.32 0.10 24 83 1235 

57 7 2008 9 2 1 3 NT NB L I 3.91 0.80 5.33 1.21 1.25 7.25 0.09 23 94 1183 

58 7 2008 10 2 1 3 CT NB H I 3.60 0.18 9.72 1.21 1.20 7.24 0.12 25 97 1285 

59 7 2008 11 3 1 3 NT NB H I 1.06 1.34 11.27 1.17 1.25 7.04 0.12 24 103 1290 

60 7 2008 12 3 1 3 CT NB L I 3.75 0.80 9.29 1.21 1.25 7.35 0.12 30 127 1559 

61 7 2008 13 1 1 1 CT B L I 4.08 0.91 7.96 1.18 1.23 7.37 0.14 34 128 1485 

62 7 2008 14 1 1 1 NT B L I 3.94 1.91 8.62 1.15 1.25 7.47 0.15 29 128 1566 

63 7 2008 15 2 1 1 NT B H I 3.74 1.39 12.25 1.19 1.27 7.43 0.12 29 139 1668 

64 7 2008 16 2 1 2 CT B L I 3.95 0.45 5.06 1.16 1.24 7.35 0.16 34 128 1553 

65 7 2008 17 3 1 2 NT B H I 3.41 1.52 8.59 1.21 1.28 7.40 0.13 27 130 1689 

66 7 2008 18 3 1 3 CT B L I 4.03 0.65 3.71 1.20 1.27 7.45 0.12 33 121 1638 

67 7 2008 19 1 1 1 CT B H I 3.57 0.87 12.68 1.19 1.23 7.36 0.13 30 119 1385 

68 7 2008 20 1 1 3 NT B H I 3.83 1.06 11.75 1.22 1.26 7.35 0.14 31 138 1541 

69 7 2008 21 2 1 2 NT B L I 3.79 0.21 8.64 1.23 1.29 7.42 0.12 35 127 1586 

70 7 2008 22 2 1 2 CT B H I 3.91 0.65 15.91 1.21 1.22 7.46 0.13 30 124 1547 

71 7 2008 23 3 1 3 NT B L I 3.87 0.45 6.57 1.24 1.32 7.37 0.13 32 125 1579 

72 7 2008 24 3 1 3 CT B H I 3.96 0.43 8.81 1.22 1.26 7.36 0.13 33 123 1660 

73 7 2008 25 1 2 4 CT B H NI 3.72 1.76 11.74 1.23 1.27 6.90 0.13 34 138 1591 

74 7 2008 26 1 2 4 NT B H NI 3.01 2.38 8.04 1.21 1.21 6.78 0.12 35 143 1470 

75 7 2008 27 2 2 5 NT B H NI 2.75 2.52 9.89 1.24 1.25 6.83 0.12 30 135 1421 

76 7 2008 28 2 2 4 CT B L NI 3.29 0.44 7.24 1.19 1.25 6.91 0.13 36 148 1500 

77 7 2008 29 3 2 6 NT B H NI 2.67 2.13 10.40 1.20 1.27 6.92 0.12 33 145 1534 

78 7 2008 30 3 2 5 CT B L NI 2.92 0.96 6.28 1.24 1.26 7.06 0.11 40 158 1687 

79 7 2008 31 1 2 6 CT B L NI 3.98 0.70 5.06 1.16 1.22 7.13 0.12 40 141 1493 

80 7 2008 32 1 2 4 NT B L NI 3.43 1.13 10.21 1.19 1.30 7.06 0.13 44 152 1613 

81 7 2008 33 2 2 5 NT B L NI 2.78 0.66 6.74 1.19 1.21 6.95 0.14 41 159 1639 

82 7 2008 34 2 2 5 CT B H NI 3.10 0.93 7.45 1.21 1.21 7.03 0.10 37 156 1649 

83 7 2008 35 3 2 6 NT B L NI 2.23 0.75 8.43 1.17 1.24 6.96 0.11 33 144 1596 
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84 7 2008 36 3 2 6 CT B H NI 2.11 3.81 7.00 1.19 1.26 7.08 0.11 37 153 1695 

85 7 2008 37 1 2 4 CT NB H NI 4.08 1.12 12.45 1.16 1.26 7.12 0.13 40 143 1799 

86 7 2008 38 1 2 4 NT NB L NI 3.05 1.05 5.02 1.25 1.28 7.27 0.12 52 149 1986 

87 7 2008 39 2 2 4 NT NB H NI 1.23 1.36 12.73 1.22 1.32 7.13 0.12 37 145 1854 

88 7 2008 40 2 2 5 CT NB H NI 2.18 1.80 11.60 1.24 1.24 7.20 0.11 39 153 1959 

89 7 2008 41 3 2 5 NT NB L NI 3.41 1.62 6.01 1.22 1.33 7.20 0.12 39 149 1902 

90 7 2008 42 3 2 6 CT NB H NI 1.79 2.35 7.62 1.19 1.28 7.27 0.11 31 137 1923 

91 7 2008 43 1 2 4 CT NB L NI 3.47 1.07 8.02 1.23 1.24 7.26 0.13 49 170 1860 

92 7 2008 44 1 2 5 NT NB H NI 1.07 1.67 13.05 1.25 1.29 7.33 0.11 35 137 2027 

93 7 2008 45 2 2 6 NT NB L NI 1.81 1.07 6.34 1.27 1.28 7.27 0.13 43 172 2110 

94 7 2008 46 2 2 5 CT NB L NI 2.55 0.45 5.07 1.22 1.27 7.28 0.12 41 163 1964 

95 7 2008 47 3 2 6 NT NB H NI . 2.49 7.83 1.20 1.29 7.08 0.11 32 144 1869 

96 7 2008 48 3 2 6 CT NB L NI 2.88 1.09 7.23 1.20 1.28 7.30 0.11 39 159 1981 

97 8 2009 1 1 1 1 CT NB H I 2.64 4.67 5.43 1.16 1.17 7.01 0.11 52 89 1259 

98 8 2009 2 1 1 1 NT NB L I 2.72 1.60 2.21 1.17 1.27 7.26 0.11 47 81 1296 

99 8 2009 3 2 1 1 NT NB H I 2.68 2.46 6.47 1.22 1.21 6.72 0.08 25 71 1136 

100 8 2009 4 2 1 1 CT NB L I 2.78 1.62 4.44 1.18 1.24 7.16 0.09 33 74 1227 

101 8 2009 5 3 1 2 NT NB L I 2.76 1.55 3.41 1.20 1.26 7.15 0.09 29 86 1364 

102 8 2009 6 3 1 2 CT NB H I 2.54 3.68 5.87 1.23 1.27 7.02 0.10 26 84 1429 

103 8 2009 7 1 1 2 CT NB L I 2.48 2.31 4.01 1.18 1.27 7.33 0.09 43 78 1294 

104 8 2009 8 1 1 2 NT NB H I 2.79 2.20 8.12 1.23 1.25 7.16 0.13 29 76 1251 

105 8 2009 9 2 1 3 NT NB L I 2.20 1.83 4.04 1.22 1.28 6.96 0.09 36 87 1392 

106 8 2009 10 2 1 3 CT NB H I 2.21 3.53 4.15 1.19 1.22 7.14 0.12 27 67 1273 

107 8 2009 11 3 1 3 NT NB H I 2.88 3.06 4.20 1.19 1.34 7.03 0.10 36 90 1602 

108 8 2009 12 3 1 3 CT NB L I 2.29 2.09 2.13 1.23 1.33 7.43 0.10 45 100 1564 

109 8 2009 13 1 1 1 CT B L I 3.01 3.04 4.64 1.16 1.27 7.21 0.11 34 96 1460 

110 8 2009 14 1 1 1 NT B L I 2.34 2.79 2.87 1.16 1.27 6.94 0.13 26 96 1482 

111 8 2009 15 2 1 1 NT B H I 2.15 4.22 7.34 1.19 1.32 6.78 0.12 41 92 1682 

112 8 2009 16 2 1 2 CT B L I 1.93 2.74 3.01 1.15 1.28 7.36 0.12 28 87 1492 
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113 8 2009 17 3 1 2 NT B H I 2.10 3.78 4.62 1.24 1.28 7.00 0.10 41 94 1663 

114 8 2009 18 3 1 3 CT B L I 2.37 2.67 3.64 1.22 1.26 7.32 0.10 40 92 1442 

115 8 2009 19 1 1 1 CT B H I 2.47 4.42 4.87 1.18 1.24 6.86 0.11 39 92 1427 

116 8 2009 20 1 1 3 NT B H I 2.31 4.05 4.91 1.23 1.31 7.16 0.11 33 86 1609 

117 8 2009 21 2 1 2 NT B L I 2.42 2.93 2.61 1.22 1.38 7.30 0.12 41 91 1738 

118 8 2009 22 2 1 2 CT B H I 2.28 4.51 4.16 1.25 1.28 7.20 0.12 37 95 1718 

119 8 2009 23 3 1 3 NT B L I 2.25 2.71 2.85 1.27 1.38 7.36 0.10 33 89 1711 

120 8 2009 24 3 1 3 CT B H I 2.35 3.82 4.36 1.22 1.25 7.23 0.11 39 94 1746 

121 8 2009 25 1 2 4 CT B H NI 2.32 4.46 3.83 1.23 1.33 6.88 0.12 40 104 1719 

122 8 2009 26 1 2 4 NT B H NI 2.69 4.05 5.08 1.20 1.37 6.45 0.11 35 97 1501 

123 8 2009 27 2 2 5 NT B H NI 2.47 4.29 5.50 1.19 1.35 6.45 0.11 35 105 1516 

124 8 2009 28 2 2 4 CT B L NI 2.05 3.16 3.01 1.17 1.26 6.75 0.11 43 119 1642 

125 8 2009 29 3 2 6 NT B H NI 2.56 4.00 4.76 1.20 1.39 6.60 0.11 37 100 1545 

126 8 2009 30 3 2 5 CT B L NI 2.29 2.60 3.31 1.23 1.32 7.04 0.10 46 120 1744 

127 8 2009 31 1 2 6 CT B L NI 2.06 2.90 3.18 1.26 1.22 6.78 0.12 50 129 1780 

128 8 2009 32 1 2 4 NT B L NI 2.32 2.44 2.38 1.23 1.37 6.81 0.11 43 104 1688 

129 8 2009 33 2 2 5 NT B L NI 2.87 2.65 3.36 1.23 1.29 6.93 0.10 44 132 1844 

130 8 2009 34 2 2 5 CT B H NI 1.86 4.07 4.72 1.18 1.27 6.66 0.12 38 110 1627 

131 8 2009 35 3 2 6 NT B L NI 2.26 3.31 3.77 1.22 1.31 6.85 0.11 39 143 1871 

132 8 2009 36 3 2 6 CT B H NI 2.23 4.07 4.98 1.20 1.33 6.44 0.12 44 124 1724 

133 8 2009 37 1 2 4 CT NB H NI 2.19 4.04 5.41 1.20 1.31 6.86 0.12 44 131 1948 

134 8 2009 38 1 2 4 NT NB L NI 2.56 2.18 3.03 1.25 1.34 7.15 0.11 53 138 2143 

135 8 2009 39 2 2 4 NT NB H NI 2.30 3.60 3.82 1.23 1.39 6.82 0.12 41 115 1979 

136 8 2009 40 2 2 5 CT NB H NI 2.69 3.96 5.15 1.27 1.26 7.11 0.14 48 124 2256 

137 8 2009 41 3 2 5 NT NB L NI 2.68 2.10 3.25 1.22 1.37 6.88 0.11 45 138 2026 

138 8 2009 42 3 2 6 CT NB H NI 2.40 4.05 6.06 1.22 1.33 7.00 0.12 38 103 2111 

139 8 2009 43 1 2 4 CT NB L NI 1.89 2.91 5.23 1.24 1.30 6.96 0.13 56 145 2031 

140 8 2009 44 1 2 5 NT NB H NI 2.48 4.00 4.72 1.24 1.38 7.14 0.12 44 124 2224 

141 8 2009 45 2 2 6 NT NB L NI 2.14 2.55 2.86 1.25 1.36 7.10 0.11 45 128 2161 
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142 8 2009 46 2 2 5 CT NB L NI 2.60 2.36 4.97 1.24 1.33 7.05 0.13 52 133 2210 

143 8 2009 47 3 2 6 NT NB H NI 2.34 3.83 7.54 1.20 1.35 6.91 0.12 34 126 2094 

144 8 2009 48 3 2 6 CT NB L NI 2.22 2.32 2.22 1.17 1.35 6.92 0.12 46 122 1984 

145 9 
 

1 1 1 1 CT NB H I 1.10 5.17 11.32 1.25 1.29 6.90 0.08 37 64 1376 

146 9 2010 2 1 1 1 NT NB L I 1.66 2.73 4.52 1.26 1.29 7.28 0.06 40 68 1289 

147 9 2010 3 2 1 1 NT NB H I 1.46 3.01 8.57 1.24 . 6.45 0.07 22 67 1085 

148 9 2010 4 2 1 1 CT NB L I 1.15 2.59 5.93 1.29 . 7.03 0.08 31 75 1453 

149 9 2010 5 3 1 2 NT NB L I 1.17 2.40 6.72 1.26 1.29 6.90 0.06 22 68 1295 

150 9 2010 6 3 1 2 CT NB H I 0.82 3.45 6.50 1.31 1.27 6.70 0.07 22 70 1514 

151 9 2010 7 1 1 2 CT NB L I 1.76 2.68 9.07 1.29 1.25 7.08 0.07 33 66 1398 

152 9 2010 8 1 1 2 NT NB H I 1.73 3.64 13.58 1.20 1.12 6.14 0.07 24 57 946 

153 9 2010 9 2 1 3 NT NB L I 1.35 2.49 16.24 1.27 . 6.78 0.07 23 64 1191 

154 9 2010 10 2 1 3 CT NB H I 1.35 3.53 7.67 1.28 . 7.06 0.07 22 61 1358 

155 9 2010 11 3 1 3 NT NB H I 1.20 3.47 10.78 1.27 1.31 6.43 0.08 20 57 1133 

156 9 2010 12 3 1 3 CT NB L I 1.82 2.30 5.44 1.17 1.31 6.94 0.10 25 81 1703 

157 9 2010 13 1 1 1 CT B L I 1.85 1.90 4.12 1.28 1.29 6.92 0.07 28 82 1335 

158 9 2010 14 1 1 1 NT B L I 0.90 2.70 4.55 1.29 1.36 6.90 0.07 23 79 1590 

159 9 2010 15 2 1 1 NT B H I 1.07 3.79 6.86 1.27 . 6.60 0.09 21 78 1725 

160 9 2010 16 2 1 2 CT B L I 2.22 1.66 8.96 1.28 . 6.82 0.07 32 95 1541 

161 9 2010 17 3 1 2 NT B H I 1.34 3.45 7.18 1.31 1.33 7.04 0.09 31 91 1768 

162 9 2010 18 3 1 3 CT B L I 2.15 1.53 6.93 1.28 1.23 6.98 0.08 41 84 1774 

163 9 2010 19 1 1 1 CT B H I 1.42 3.40 7.03 1.32 1.23 6.74 0.07 27 68 1437 

164 9 2010 20 1 1 3 NT B H I 1.55 3.21 5.32 1.31 1.30 7.12 0.07 23 61 1628 

165 9 2010 21 2 1 2 NT B L I 1.50 2.01 3.48 1.29 . 7.12 0.08 32 79 1713 

166 9 2010 22 2 1 2 CT B H I 2.08 1.28 4.55 1.29 . 6.74 0.08 33 76 1669 

167 9 2010 23 3 1 3 NT B L I 1.67 2.07 3.61 1.34 1.28 7.24 0.09 32 71 1761 

168 9 2010 24 3 1 3 CT B H I 2.16 3.07 6.22 1.23 1.22 6.94 0.09 27 70 1607 

169 9 2010 25 1 2 4 CT B H NI 0.70 2.62 9.69 1.32 1.24 6.55 0.06 27 93 1687 

170 9 2010 26 1 2 4 NT B H NI 0.72 3.57 6.58 1.34 1.33 6.50 0.07 26 97 1633 
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171 9 2010 27 2 2 5 NT B H NI 0.85 3.62 7.76 1.30 . 6.21 0.08 30 94 1580 

172 9 2010 28 2 2 4 CT B L NI 0.89 2.29 8.95 1.35 . 6.30 0.08 31 106 1664 

173 9 2010 29 3 2 6 NT B H NI 0.78 3.36 10.76 1.31 1.37 6.21 0.09 28 107 1658 

174 9 2010 30 3 2 5 CT B L NI 0.60 2.10 5.58 1.29 1.31 6.61 0.09 37 105 1745 

175 9 2010 31 1 2 6 CT B L NI 0.84 2.06 8.79 1.32 1.31 6.37 0.06 33 103 1715 

176 9 2010 32 1 2 4 NT B L NI 1.01 1.76 15.20 1.32 1.32 6.28 0.07 36 99 1662 

177 9 2010 33 2 2 5 NT B L NI 0.81 2.14 6.86 1.29 . 9.32 0.10 40 117 1734 

178 9 2010 34 2 2 5 CT B H NI 0.94 2.50 5.71 1.27 . 6.20 0.08 31 102 1584 

179 9 2010 35 3 2 6 NT B L NI 0.95 2.20 10.20 1.33 1.20 6.58 0.11 30 112 1996 

180 9 2010 36 3 2 6 CT B H NI 0.62 3.09 9.04 1.29 1.30 6.23 0.08 28 106 1767 

181 9 2010 37 1 2 4 CT NB H NI 0.67 3.18 6.24 1.30 1.29 6.40 0.07 29 97 1880 

182 9 2010 38 1 2 4 NT NB L NI 0.90 1.61 7.96 1.30 1.26 6.51 0.09 44 117 1955 

183 9 2010 39 2 2 4 NT NB H NI 0.71 2.97 10.90 1.38 . 6.53 0.13 34 98 2163 

184 9 2010 40 2 2 5 CT NB H NI 0.54 3.21 8.80 1.32 . 6.46 0.12 38 110 2264 

185 9 2010 41 3 2 5 NT NB L NI 0.55 1.42 7.24 1.35 1.36 6.91 0.08 30 107 2172 

186 9 2010 42 3 2 6 CT NB H NI 0.57 3.15 9.91 1.29 1.26 6.70 0.08 47 138 1962 

187 9 2010 43 1 2 4 CT NB L NI 0.72 1.67 10.61 1.30 1.25 6.61 0.07 46 138 2003 

188 9 2010 44 1 2 5 NT NB H NI 0.69 2.90 7.10 1.35 1.33 6.71 0.08 39 109 2056 

189 9 2010 45 2 2 6 NT NB L NI 0.31 1.77 7.51 1.28 . 6.81 0.08 33 133 2100 

190 9 2010 46 2 2 5 CT NB L NI 0.46 1.96 4.28 1.31 . 6.74 0.09 38 125 2114 

191 9 2010 47 3 2 6 NT NB H NI 0.49 2.69 5.66 1.38 1.28 6.85 0.09 35 118 2314 

192 9 2010 48 3 2 6 CT NB L NI 0.81 1.54 5.51 1.36 1.32 7.03 0.09 40 135 2409 

193 10 2011 1 1 1 1 CT NB H I 2.89 2.67 5.98 1.29 1.30 6.30 0.20 60 63 1216 

194 10 2011 2 1 1 1 NT NB L I 3.21 2.12 5.44 1.29 1.23 6.74 0.20 48 96 1142 

195 10 2011 3 2 1 1 NT NB H I 2.67 3.14 7.76 1.27 1.28 6.32 0.23 47 63 1151 

196 10 2011 4 2 1 1 CT NB L I 3.04 1.51 2.75 1.26 1.24 6.65 0.20 45 82 1240 

197 10 2011 5 3 1 2 NT NB L I 3.43 1.56 2.87 1.32 1.32 6.55 0.16 33 71 1281 

198 10 2011 6 3 1 2 CT NB H I 3.27 2.35 7.05 1.35 1.26 6.32 0.26 47 74 1544 

199 10 2011 7 1 1 2 CT NB L I 2.66 2.40 2.47 1.28 1.29 6.35 0.21 57 65 1269 
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200 10 2011 8 1 1 2 NT NB H I 2.74 3.50 9.67 1.23 1.27 6.71 0.20 38 51 1200 

201 10 2011 9 2 1 3 NT NB L I 3.30 2.45 5.28 1.20 1.29 6.28 0.24 47 76 1203 

202 10 2011 10 2 1 3 CT NB H I 2.82 2.67 4.52 1.28 1.25 6.63 0.20 39 60 1280 

203 10 2011 11 3 1 3 NT NB H I 2.49 3.31 7.26 1.21 1.27 6.23 0.27 46 60 1333 

204 10 2011 12 3 1 3 CT NB L I 2.53 1.59 3.70 1.31 1.26 6.70 0.16 38 75 1470 

205 10 2011 13 1 1 1 CT B L I 4.09 2.10 5.43 1.31 1.32 6.81 0.17 42 74 1472 

206 10 2011 14 1 1 1 NT B L I 3.13 3.35 4.51 1.27 1.25 6.16 0.21 37 94 1356 

207 10 2011 15 2 1 1 NT B H I 3.05 4.46 8.94 1.30 1.28 6.24 0.18 34 80 1527 

208 10 2011 16 2 1 2 CT B L I 3.00 2.08 8.87 1.23 1.28 6.58 0.22 48 94 1485 

209 10 2011 17 3 1 2 NT B H I 3.18 4.14 8.18 1.32 1.27 6.32 0.17 33 78 1514 

210 10 2011 18 3 1 3 CT B L I 2.86 2.47 5.70 1.30 1.30 6.70 0.19 47 78 1649 

211 10 2011 19 1 1 1 CT B H I 3.30 2.58 9.81 1.31 1.28 6.68 0.19 38 69 1488 

212 10 2011 20 1 1 3 NT B H I 2.73 3.09 14.89 1.33 1.30 6.40 0.22 42 66 1399 

213 10 2011 21 2 1 2 NT B L I 2.90 2.27 8.10 1.33 1.29 6.80 0.22 47 86 1734 

214 10 2011 22 2 1 2 CT B H I 3.27 2.80 6.86 1.30 1.25 6.66 0.27 43 75 1644 

215 10 2011 23 3 1 3 NT B L I 3.06 2.57 3.04 1.25 1.27 6.78 0.24 40 86 1511 

216 10 2011 24 3 1 3 CT B H I 2.43 3.10 6.28 1.33 1.29 6.49 0.22 45 79 1632 

217 10 2011 25 1 2 4 CT B H NI 2.30 3.50 6.36 1.39 1.27 6.19 0.19 38 89 1717 

218 10 2011 26 1 2 4 NT B H NI 0.69 4.66 6.05 1.29 1.33 6.10 0.19 45 92 1685 

219 10 2011 27 2 2 5 NT B H NI 0.69 4.83 7.52 1.32 1.36 6.18 0.19 46 90 1632 

220 10 2011 28 2 2 4 CT B L NI 1.88 2.90 3.43 1.29 1.31 6.18 0.22 47 88 1591 

221 10 2011 29 3 2 6 NT B H NI 1.54 4.73 13.66 1.32 1.33 6.31 0.18 41 84 1502 

222 10 2011 30 3 2 5 CT B L NI 1.19 2.88 3.65 1.32 1.30 6.02 0.24 51 93 1618 

223 10 2011 31 1 2 6 CT B L NI 2.20 2.66 5.33 1.31 1.24 6.12 0.24 54 102 1615 

224 10 2011 32 1 2 4 NT B L NI 1.64 2.36 2.96 1.29 1.33 6.10 0.18 54 91 1534 

225 10 2011 33 2 2 5 NT B L NI 1.53 2.14 3.36 1.24 1.28 6.21 0.23 54 103 1591 

226 10 2011 34 2 2 5 CT B H NI 2.72 3.50 7.16 1.33 1.32 5.94 0.28 54 103 1582 

227 10 2011 35 3 2 6 NT B L NI 1.19 2.52 3.36 1.26 1.25 5.94 0.23 47 100 1450 

228 10 2011 36 3 2 6 CT B H NI 1.39 4.25 6.71 1.29 1.28 5.94 0.27 43 91 1524 
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229 10 2011 37 1 2 4 CT NB H NI 1.94 2.55 10.06 1.28 1.20 5.90 0.30 67 107 1777 

230 10 2011 38 1 2 4 NT NB L NI 1.79 2.22 3.95 1.30 1.20 6.27 0.18 53 99 1797 

231 10 2011 39 2 2 4 NT NB H NI 1.71 3.70 6.46 1.33 1.32 6.13 0.23 47 87 1958 

232 10 2011 40 2 2 5 CT NB H NI 1.60 3.94 8.98 1.25 1.27 5.97 0.25 45 90 1702 

233 10 2011 41 3 2 5 NT NB L NI 1.78 2.39 4.02 1.33 1.35 6.45 0.23 59 107 1911 

234 10 2011 42 3 2 6 CT NB H NI 2.15 2.89 9.75 1.34 1.20 6.23 0.23 44 97 1825 

235 10 2011 43 1 2 4 CT NB L NI 2.04 1.92 3.86 1.29 1.27 6.24 0.23 61 116 1828 

236 10 2011 44 1 2 5 NT NB H NI 1.52 4.17 9.23 1.29 1.31 6.17 0.27 54 106 1787 

237 10 2011 45 2 2 6 NT NB L NI 1.45 3.06 10.01 1.35 1.28 6.46 0.19 56 103 2167 

238 10 2011 46 2 2 5 CT NB L NI 1.80 2.98 4.32 1.29 1.24 6.23 0.23 51 110 1790 

239 10 2011 47 3 2 6 NT NB H NI 1.25 5.06 9.89 1.19 1.25 5.81 0.22 47 104 1639 

240 10 2011 48 3 2 6 CT NB L NI 1.26 2.07 3.07 1.31 1.28 6.50 0.26 56 95 1903 

241 11 2012 1 1 1 1 CT NB H I 3.07 1.87 3.12 1.33 1.30 7.36 0.13 34 49 1384 

242 11 2012 2 1 1 1 NT NB L I 2.54 1.72 7.04 1.26 1.23 6.83 0.10 24 56 1199 

243 11 2012 3 2 1 1 NT NB H I 2.51 1.41 12.13 1.26 1.28 6.40 0.09 18 51 1091 

244 11 2012 4 2 1 1 CT NB L I 3.10 0.47 4.46 1.24 1.24 7.18 0.12 27 75 1298 

245 11 2012 5 3 1 2 NT NB L I 2.75 1.45 6.83 1.32 1.32 6.86 0.11 22 62 1294 

246 11 2012 6 3 1 2 CT NB H I 2.63 2.99 2.98 1.24 1.26 6.90 0.10 21 59 1434 

247 11 2012 7 1 1 2 CT NB L I 2.57 0.36 5.37 1.23 1.29 7.26 0.12 35 69 1300 

248 11 2012 8 1 1 2 NT NB H I 3.08 3.55 7.13 1.29 1.27 6.75 0.11 21 47 1048 

249 11 2012 9 2 1 3 NT NB L I 2.98 1.81 4.96 1.25 1.29 6.71 0.10 21 61 1180 

250 11 2012 10 2 1 3 CT NB H I 2.89 2.12 11.57 1.26 1.25 6.90 0.13 20 52 1318 

251 11 2012 11 3 1 3 NT NB H I 1.80 3.05 9.89 1.22 1.27 6.10 0.11 18 59 1046 

252 11 2012 12 3 1 3 CT NB L I 2.21 1.37 3.94 1.37 1.25 7.30 0.11 25 65 1570 

253 11 2012 13 1 1 1 CT B L I 1.77 0.29 3.90 1.23 1.32 7.26 0.12 35 79 1520 

254 11 2012 14 1 1 1 NT B L I 0.26 1.92 4.46 1.36 1.25 6.73 0.07 18 71 1466 

255 11 2012 15 2 1 1 NT B H I 0.24 3.09 9.13 1.38 1.28 7.37 0.11 24 69 1830 

256 11 2012 16 2 1 2 CT B L I 2.71 1.12 2.52 1.30 1.28 7.14 0.12 31 80 1672 

257 11 2012 17 3 1 2 NT B H I 2.02 3.15 12.34 1.35 1.27 7.13 0.11 17 62 1641 
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258 11 2012 18 3 1 3 CT B L I 3.09 0.99 2.75 1.28 1.30 7.34 0.12 46 75 1735 

259 11 2012 19 1 1 1 CT B H I 2.07 1.76 6.70 1.34 1.28 7.25 0.10 29 68 1499 

260 11 2012 20 1 1 3 NT B H I 2.18 2.71 8.75 1.27 1.30 7.36 0.09 18 62 1489 

261 11 2012 21 2 1 2 NT B L I 2.53 1.84 6.34 1.34 1.29 7.27 0.11 30 73 1700 

262 11 2012 22 2 1 2 CT B H I 2.67 1.36 8.87 1.34 1.25 7.16 0.12 31 78 1596 

263 11 2012 23 3 1 3 NT B L I 2.36 1.76 5.62 1.26 1.27 7.27 0.10 23 73 1593 

264 11 2012 24 3 1 3 CT B H I 3.13 1.20 4.28 1.29 1.29 7.38 0.10 28 71 1663 

265 11 2012 25 1 2 4 CT B H NI 0.13 1.43 8.80 1.25 1.27 5.83 0.22 34 90 1408 

266 11 2012 26 1 2 4 NT B H NI 0.01 4.14 8.15 1.30 1.33 5.87 0.15 26 81 1456 

267 11 2012 27 2 2 5 NT B H NI 0.01 4.04 6.00 1.26 1.36 6.02 0.08 20 71 1387 

268 11 2012 28 2 2 4 CT B L NI 0.03 1.85 2.52 1.29 1.31 6.54 0.08 27 106 1557 

269 11 2012 29 3 2 6 NT B H NI 0.01 3.54 6.97 1.29 1.33 6.00 0.12 22 78 1418 

270 11 2012 30 3 2 5 CT B L NI 0.34 2.07 2.10 1.31 1.30 6.57 0.06 24 78 1544 

271 11 2012 31 1 2 6 CT B L NI 0.11 1.39 3.63 1.29 1.24 6.45 0.09 33 92 1598 

272 11 2012 32 1 2 4 NT B L NI 0.14 1.17 4.01 1.31 1.33 6.62 0.07 35 81 1579 

273 11 2012 33 2 2 5 NT B L NI 0.11 1.17 3.77 1.28 1.28 6.77 0.09 29 100 1562 

274 11 2012 34 2 2 5 CT B H NI 0.07 2.14 7.58 1.25 1.32 6.16 0.14 22 82 1451 

275 11 2012 35 3 2 6 NT B L NI 0.02 1.08 2.60 1.25 1.25 6.82 0.04 23 78 1577 

276 11 2012 36 3 2 6 CT B H NI 0.01 3.16 5.40 1.26 1.28 6.08 0.11 23 80 1513 

277 11 2012 37 1 2 4 CT NB H NI 0.13 1.30 3.47 1.23 1.20 5.54 0.19 22 95 1607 

278 11 2012 38 1 2 4 NT NB L NI 0.60 0.39 3.66 1.20 1.20 6.23 0.07 30 104 1611 

279 11 2012 39 2 2 4 NT NB H NI 0.34 2.16 5.32 1.27 1.32 6.34 0.06 18 82 1619 

280 11 2012 40 2 2 5 CT NB H NI 0.06 0.92 4.19 1.24 1.27 6.40 0.10 26 135 1678 

281 11 2012 41 3 2 5 NT NB L NI 0.35 0.65 4.14 1.25 1.35 6.55 0.05 26 99 1667 

282 11 2012 42 3 2 6 CT NB H NI 0.04 1.45 3.60 1.21 1.20 6.51 0.07 24 115 1667 

283 11 2012 43 1 2 4 CT NB L NI 0.03 0.15 3.41 1.23 1.26 6.62 0.06 29 111 1800 

284 11 2012 44 1 2 5 NT NB H NI 0.31 2.58 7.77 1.28 1.31 6.50 0.08 25 79 1774 

285 11 2012 45 2 2 6 NT NB L NI 0.24 0.71 7.64 1.28 1.28 6.78 0.05 30 108 1910 

286 11 2012 46 2 2 5 CT NB L NI 0.11 0.26 2.13 1.25 1.24 6.80 0.06 28 89 1777 
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287 11 2012 47 3 2 6 NT NB H NI 0.26 2.57 3.73 1.30 1.25 6.10 0.21 29 124 1860 

288 11 2012 48 3 2 6 CT NB L NI 0.03 0.40 2.77 1.28 1.28 6.94 0.08 33 116 1872 

289 12 2013 1 1 1 1 CT NB H I 2.55 1.64 10.03 1.31 1.24 7.21 0.06 29 60 1324 

290 12 2013 2 1 1 1 NT NB L I 1.78 1.52 7.47 1.22 1.23 7.13 0.08 38 114 1438 

291 12 2013 3 2 1 1 NT NB H I 1.87 1.82 5.72 1.28 1.24 6.98 0.08 22 67 1294 

292 12 2013 4 2 1 1 CT NB L I 2.21 0.96 7.56 1.25 1.27 7.15 0.08 29 91 1439 

293 12 2013 5 3 1 2 NT NB L I 1.98 1.78 10.33 1.24 1.30 7.08 0.07 22 93 1298 

294 12 2013 6 3 1 2 CT NB H I 2.21 4.28 12.38 1.32 1.24 7.00 0.06 22 76 1541 

295 12 2013 7 1 1 2 CT NB L I 0.30 0.35 4.72 1.26 1.26 7.18 0.07 32 81 1420 

296 12 2013 8 1 1 2 NT NB H I 0.82 2.27 10.35 1.21 1.26 6.90 0.07 20 64 1402 

297 12 2013 9 2 1 3 NT NB L I 1.78 1.10 5.79 1.23 1.27 6.98 0.07 23 81 1240 

298 12 2013 10 2 1 3 CT NB H I 2.10 1.91 9.56 1.30 1.21 7.18 0.07 19 75 1525 

299 12 2013 11 3 1 3 NT NB H I 2.13 3.18 10.30 1.28 1.22 6.84 0.06 27 74 1484 

300 12 2013 12 3 1 3 CT NB L I 3.52 1.44 4.06 1.35 1.31 7.33 0.06 31 108 1659 

301 12 2013 13 1 1 1 CT B L I 2.48 0.22 7.63 1.31 1.34 7.21 0.08 36 119 1560 

302 12 2013 14 1 1 1 NT B L I 1.86 1.21 3.51 1.32 1.33 7.12 0.06 31 139 1471 

303 12 2013 15 2 1 1 NT B H I 2.65 4.15 9.31 1.27 1.36 6.60 0.06 20 79 1543 

304 12 2013 16 2 1 2 CT B L I 2.19 0.63 5.84 1.30 1.21 7.31 0.09 42 140 1885 

305 12 2013 17 3 1 2 NT B H I 1.15 3.81 5.28 1.32 1.38 7.24 0.06 34 95 1847 

306 12 2013 18 3 1 3 CT B L I 2.09 2.76 4.39 1.32 1.29 7.31 0.06 32 115 1773 

307 12 2013 19 1 1 1 CT B H I 1.92 3.61 4.45 1.31 1.27 7.14 0.06 28 83 1563 

308 12 2013 20 1 1 3 NT B H I 1.67 1.80 6.31 1.34 1.30 7.31 0.06 20 92 1579 

309 12 2013 21 2 1 2 NT B L I 2.76 1.10 5.16 1.24 1.25 7.30 0.07 28 149 1653 

310 12 2013 22 2 1 2 CT B H I 1.93 1.76 10.76 1.34 1.20 7.31 0.10 28 93 1747 

311 12 2013 23 3 1 3 NT B L I 2.31 1.07 7.54 1.37 1.22 7.73 0.06 29 102 1727 

312 12 2013 24 3 1 3 CT B H I 1.47 2.92 4.97 1.28 1.28 7.30 0.08 26 77 1794 

313 12 2013 25 1 2 4 CT B H NI 0.47 2.46 4.48 1.32 1.28 5.62 0.08 38 143 1486 

314 12 2013 26 1 2 4 NT B H NI 0.68 4.01 6.68 1.33 1.28 5.55 0.08 28 88 1459 

315 12 2013 27 2 2 5 NT B H NI 1.49 4.36 4.21 1.36 1.34 5.90 0.08 24 140 1568 
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316 12 2013 28 2 2 4 CT B L NI 1.14 2.84 5.29 1.32 1.29 6.30 0.07 35 295 1551 

317 12 2013 29 3 2 6 NT B H NI 0.83 3.89 4.86 1.28 1.29 5.91 0.09 32 109 1663 

318 12 2013 30 3 2 5 CT B L NI 0.76 1.09 3.56 1.30 1.29 6.51 0.06 36 227 1590 

319 12 2013 31 1 2 6 CT B L NI 0.06 2.43 4.31 1.28 1.27 6.15 0.08 38 104 1626 

320 12 2013 32 1 2 4 NT B L NI 0.55 1.70 3.37 1.34 1.19 6.52 0.06 39 158 1735 

321 12 2013 33 2 2 5 NT B L NI 0.28 1.91 3.30 1.27 1.25 6.12 0.07 39 96 1672 

322 12 2013 34 2 2 5 CT B H NI 0.18 1.28 3.51 1.33 1.25 6.07 0.06 38 118 1601 

323 12 2013 35 3 2 6 NT B L NI 0.92 2.03 4.82 1.26 1.33 6.55 0.07 33 99 1690 

324 12 2013 36 3 2 6 CT B H NI 0.39 4.24 5.79 1.33 1.30 6.16 0.08 37 160 1751 

325 12 2013 37 1 2 4 CT NB H NI 0.22 3.78 6.96 1.27 1.31 6.22 0.08 32 110 1712 

326 12 2013 38 1 2 4 NT NB L NI 0.63 3.12 6.21 1.36 1.26 6.65 0.05 39 123 1991 

327 12 2013 39 2 2 4 NT NB H NI 0.72 1.55 5.19 1.33 1.29 6.38 0.06 29 112 1862 

328 12 2013 40 2 2 5 CT NB H NI 0.72 3.63 6.24 1.35 1.23 6.17 0.06 33 107 1786 

329 12 2013 41 3 2 5 NT NB L NI 0.35 1.67 4.90 1.37 1.36 6.60 0.06 40 97 2034 

330 12 2013 42 3 2 6 CT NB H NI 0.50 3.29 6.71 1.27 1.22 6.30 0.06 33 111 1800 

331 12 2013 43 1 2 4 CT NB L NI 0.51 1.78 3.80 1.30 1.27 6.53 0.08 42 118 1963 

332 12 2013 44 1 2 5 NT NB H NI 0.35 4.13 6.00 1.33 1.29 6.26 0.05 36 128 1786 

333 12 2013 45 2 2 6 NT NB L NI 0.04 1.78 4.83 1.31 1.32 6.15 0.05 35 209 1763 

334 12 2013 46 2 2 5 CT NB L NI 0.03 1.55 4.76 1.29 1.31 6.50 0.08 37 149 1866 

335 12 2013 47 3 2 6 NT NB H NI 0.54 2.62 7.29 1.27 1.30 6.26 0.07 37 127 1901 

336 12 2013 48 3 2 6 CT NB L NI 0.34 1.95 4.04 1.35 1.03 6.82 0.05 35 163 2011 

337 13 2014 1 1 1 1 CT NB H I 1.39 0.97 . 1.23 1.07 7.42 0.08 31 53 1476 

338 13 2014 2 1 1 1 NT NB L I 1.36 0.26 . 1.25 1.17 7.20 0.07 26 55 1254 

339 13 2014 3 2 1 1 NT NB H I 0.53 1.38 . 1.28 1.26 7.21 0.05 15 59 1312 

340 13 2014 4 2 1 1 CT NB L I 1.69 0.24 . 1.26 1.19 7.40 0.06 20 77 1469 

341 13 2014 5 3 1 2 NT NB L I 2.12 0.71 . 1.24 1.15 6.97 0.11 22 62 1543 

342 13 2014 6 3 1 2 CT NB H I 1.83 0.39 . 1.33 1.21 7.41 0.08 19 63 1680 

343 13 2014 7 1 1 2 CT NB L I 0.85 0.23 . 1.18 1.24 7.34 0.08 33 60 1446 

344 13 2014 8 1 1 2 NT NB H I 1.28 0.52 . 1.19 1.17 7.03 0.09 23 62 1388 
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345 13 2014 9 2 1 3 NT NB L I 1.49 0.63 . 1.23 1.18 7.20 0.08 19 75 1414 

346 13 2014 10 2 1 3 CT NB H I 1.42 1.89 . 1.23 1.17 7.33 0.07 18 59 1620 

347 13 2014 11 3 1 3 NT NB H I 1.68 0.07 . 1.29 1.13 7.26 0.06 17 46 1445 

348 13 2014 12 3 1 3 CT NB L I 1.11 0.03 . 1.30 . 7.37 0.06 24 61 1623 

349 13 2014 13 1 1 1 CT B L I 2.21 0.83 2.84 1.25 1.09 7.40 0.08 38 93 1635 

350 13 2014 14 1 1 1 NT B L I 1.83 0.64 1.59 1.33 1.27 7.03 0.07 23 96 1549 

351 13 2014 15 2 1 1 NT B H I 1.94 2.58 4.24 1.37 1.14 7.12 0.07 16 62 1758 

352 13 2014 16 2 1 2 CT B L I 2.11 0.43 4.08 1.29 1.28 7.46 0.09 31 73 1904 

353 13 2014 17 3 1 2 NT B H I 1.71 2.29 3.29 1.22 1.15 7.28 0.10 19 59 1786 

354 13 2014 18 3 1 3 CT B L I 2.19 0.16 2.91 1.33 . 7.38 0.10 40 95 2036 

355 13 2014 19 1 1 1 CT B H I 1.80 1.05 6.02 1.27 1.17 7.42 0.07 21 55 1554 

356 13 2014 20 1 1 3 NT B H I 1.80 2.67 5.61 1.28 1.18 7.20 0.08 20 57 1641 

357 13 2014 21 2 1 2 NT B L I 1.21 0.57 2.37 1.28 1.21 7.35 0.10 31 88 1938 

358 13 2014 22 2 1 2 CT B H I 1.98 0.43 5.71 1.25 1.18 7.27 0.07 25 57 1734 

359 13 2014 23 3 1 3 NT B L I 1.76 0.73 3.16 1.27 1.12 7.23 0.08 22 76 1625 

360 13 2014 24 3 1 3 CT B H I 2.14 0.45 5.95 1.23 1.16 7.17 0.10 25 52 1817 

361 13 2014 25 1 2 4 CT B H NI 1.59 3.32 4.87 1.30 1.25 6.70 0.04 21 77 1624 

362 13 2014 26 1 2 4 NT B H NI 2.12 3.61 5.30 1.32 1.06 6.47 0.05 19 92 1486 

363 13 2014 27 2 2 5 NT B H NI 1.73 3.63 4.91 1.32 1.34 6.30 0.05 18 71 1467 

364 13 2014 28 2 2 4 CT B L NI 2.25 1.72 2.98 1.24 1.21 6.30 0.10 30 78 1502 

365 13 2014 29 3 2 6 NT B H NI 1.96 3.47 4.59 1.31 1.26 6.47 0.06 21 78 1490 

366 13 2014 30 3 2 5 CT B L NI 1.90 0.68 2.28 1.30 1.30 6.58 0.06 27 201 1568 

367 13 2014 31 1 2 6 CT B L NI 1.97 1.61 2.53 1.27 1.27 6.82 0.06 31 108 1639 

368 13 2014 32 1 2 4 NT B L NI 2.16 1.18 2.56 1.27 1.35 6.74 0.06 35 98 1575 

369 13 2014 33 2 2 5 NT B L NI 3.69 1.52 2.98 1.31 1.24 6.60 0.06 33 79 1713 

370 13 2014 34 2 2 5 CT B H NI 2.58 2.72 4.10 1.23 1.18 6.56 0.06 29 94 1552 

371 13 2014 35 3 2 6 NT B L NI 2.48 1.01 2.07 1.32 1.34 6.43 0.05 24 72 1557 

372 13 2014 36 3 2 6 CT B H NI 2.15 3.77 4.74 1.28 1.34 6.55 0.06 25 96 1649 

373 13 2014 37 1 2 4 CT NB H NI 1.48 2.49 7.60 1.34 1.21 6.44 0.06 35 98 1822 
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374 13 2014 38 1 2 4 NT NB L NI 1.36 0.81 2.54 1.28 1.23 6.84 0.08 43 141 1906 

375 13 2014 39 2 2 4 NT NB H NI 1.95 1.75 3.31 1.26 1.29 6.44 0.10 29 113 1823 

376 13 2014 40 2 2 5 CT NB H NI 1.66 2.48 5.28 1.27 1.30 6.38 0.09 25 76 1781 

377 13 2014 41 3 2 5 NT NB L NI 1.35 0.60 2.57 1.28 1.21 6.56 0.09 35 110 1961 

378 13 2014 42 3 2 6 CT NB H NI 1.48 3.21 6.68 1.35 1.29 6.82 0.08 25 64 2060 

379 13 2014 43 1 2 4 CT NB L NI 1.71 1.90 4.27 1.23 1.26 6.63 0.09 35 102 1832 

380 13 2014 44 1 2 5 NT NB H NI 1.29 2.79 3.46 1.26 1.23 6.50 0.08 22 142 1744 

381 13 2014 45 2 2 6 NT NB L NI 2.27 0.92 3.43 1.28 1.16 6.76 0.08 31 131 1989 

382 13 2014 46 2 2 5 CT NB L NI 1.98 0.94 3.06 1.28 1.29 6.70 0.11 40 151 1901 

383 13 2014 47 3 2 6 NT NB H NI 2.43 1.39 3.29 1.22 1.11 6.17 0.09 32 100 1688 

384 13 2014 48 3 2 6 CT NB L NI 1.72 1.26 1.77 1.36 1.23 7.06 0.07 33 83 1969 
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Magnesium (Mg; kg ha
-1

), sulfur (S; kg ha
-1

), iron (Fe; kg ha
-1

), manganese (Mn; kg ha
-1

), zinc (Zn; kg ha
-1

), and copper (Cu; kg ha
-1

). 

obs # yr 

actual 

yr plot Tblock Bblock rep till burn Nrate Irr Mg S Na Fe Mn Zn Cu 

1 6 2007 1 1 1 1 CT NB H I 386 9.1 20.0 204.3 184.1 1.5 2.6 

2 6 2007 2 1 1 1 NT NB L I 422 8.7 27.5 200.2 150.3 1.1 2.2 

3 6 2007 3 2 1 1 NT NB H I 445 8.3 27.3 202.9 146.3 1.1 2.4 

4 6 2007 4 2 1 1 CT NB L I 403 8.5 20.1 213.9 176.1 1.5 2.5 

5 6 2007 5 3 1 2 NT NB L I 477 9.5 23.8 214.2 172.1 1.3 2.5 

6 6 2007 6 3 1 2 CT NB H I 467 8.4 20.5 199.2 153.4 1.1 2.4 

7 6 2007 7 1 1 2 CT NB L I 408 10.3 19.1 197.6 154.0 1.7 2.5 

8 6 2007 8 1 1 2 NT NB H I 401 9.8 20.5 193.2 166.6 1.7 2.8 

9 6 2007 9 2 1 3 NT NB L I 434 9.6 25.5 195.0 174.3 1.7 2.6 

10 6 2007 10 2 1 3 CT NB H I 387 9.8 23.2 196.2 140.9 1.7 2.5 

11 6 2007 11 3 1 3 NT NB H I 369 9.2 20.8 177.0 153.2 1.5 2.3 

12 6 2007 12 3 1 3 CT NB L I 412 7.6 19.5 177.9 153.9 1.5 2.4 

13 6 2007 13 1 1 1 CT B L I 336 9.9 19.5 186.0 231.7 2.3 2.3 

14 6 2007 14 1 1 1 NT B L I 343 10.1 22.0 171.0 227.4 1.8 2.4 

15 6 2007 15 2 1 1 NT B H I 414 9.1 23.7 181.5 176.6 1.3 2.2 

16 6 2007 16 2 1 2 CT B L I 287 9.3 16.8 173.0 231.6 2.1 2.3 

17 6 2007 17 3 1 2 NT B H I 312 8.9 18.7 160.6 208.2 1.3 2.1 

18 6 2007 18 3 1 3 CT B L I 430 9.2 25.2 181.6 160.1 1.2 2.3 

19 6 2007 19 1 1 1 CT B H I 418 10.0 17.5 231.3 171.3 1.9 2.9 

20 6 2007 20 1 1 3 NT B H I 417 9.7 15.2 177.0 185.0 2.1 2.6 

21 6 2007 21 2 1 2 NT B L I 418 9.8 21.4 179.5 186.3 2.3 2.7 

22 6 2007 22 2 1 2 CT B H I 416 10.5 22.4 227.2 158.6 2.1 3.1 

23 6 2007 23 3 1 3 NT B L I 371 12.4 17.8 168.8 168.5 2.0 2.7 

24 6 2007 24 3 1 3 CT B H I 357 9.5 23.1 174.9 174.6 2.2 2.6 

25 6 2007 25 1 2 1 CT B H NI 381 8.5 23.3 172.6 151.7 1.5 2.4 

26 6 2007 26 1 2 1 NT B H NI 434 8.3 23.5 174.9 136.1 1.3 2.3 

27 6 2007 27 2 2 2 NT B H NI 485 8.2 27.5 191.8 133.2 1.2 2.4 

28 6 2007 28 2 2 1 CT B L NI 435 9.4 26.8 177.4 177.8 1.4 2.3 
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29 6 2007 29 3 2 3 NT B H NI 437 8.4 23.8 194.7 165.8 1.4 2.4 

30 6 2007 30 3 2 2 CT B L NI 403 7.4 25.4 191.7 137.2 1.1 2.3 

31 6 2007 31 1 2 3 CT B L NI 405 10.0 21.5 190.1 136.9 1.9 2.6 

32 6 2007 32 1 2 1 NT B L NI 373 9.7 15.6 184.3 147.4 2.1 2.6 

33 6 2007 33 2 2 2 NT B L NI 427 10.2 29.9 195.4 165.7 2.1 3.0 

34 6 2007 34 2 2 2 CT B H NI 388 9.2 21.3 187.2 137.2 1.9 2.7 

35 6 2007 35 3 2 3 NT B L NI 387 8.8 19.3 175.7 128.8 1.8 2.4 

36 6 2007 36 3 2 3 CT B H NI 384 7.2 20.2 171.5 136.2 1.5 2.4 

37 6 2007 37 1 2 1 CT NB H NI 349 10.6 22.0 175.5 229.6 2.0 2.3 

38 6 2007 38 1 2 1 NT NB L NI 286 9.5 18.0 153.7 195.2 1.6 2.1 

39 6 2007 39 2 2 1 NT NB H NI 319 8.4 18.5 135.1 161.9 1.2 1.9 

40 6 2007 40 2 2 2 CT NB H NI 282 9.1 19.0 161.4 215.5 2.0 2.2 

41 6 2007 41 3 2 2 NT NB L NI 263 7.8 17.4 158.8 179.0 1.4 1.9 

42 6 2007 42 3 2 3 CT NB H NI 307 7.5 15.7 155.9 149.5 1.1 2.0 

43 6 2007 43 1 2 1 CT NB L NI 405 8.6 16.1 187.3 149.2 2.2 2.7 

44 6 2007 44 1 2 2 NT NB H NI 413 9.7 16.7 186.9 145.1 2.0 2.7 

45 6 2007 45 2 2 3 NT NB L NI 343 7.3 17.0 165.2 134.9 1.8 2.3 

46 6 2007 46 2 2 2 CT NB L NI 381 9.1 19.6 181.1 137.5 2.0 2.8 

47 6 2007 47 3 2 3 NT NB H NI 349 9.1 19.4 161.3 133.0 2.1 2.3 

48 6 2007 48 3 2 3 CT NB L NI 332 8.6 20.6 150.0 138.1 1.9 2.4 

49 7 2008 1 1 1 1 CT NB H I 310 12.4 58.4 173.3 252.1 2.3 1.8 

50 7 2008 2 1 1 1 NT NB L I 301 12.6 40.7 144.0 244.0 2.1 1.6 

51 7 2008 3 2 1 1 NT NB H I 259 10.4 34.2 133.5 200.3 1.8 1.5 

52 7 2008 4 2 1 1 CT NB L I 300 12.1 44.3 130.4 233.7 1.8 1.5 

53 7 2008 5 3 1 2 NT NB L I 310 9.9 41.3 112.9 166.0 1.5 1.5 

54 7 2008 6 3 1 2 CT NB H I 390 9.9 39.6 130.6 174.9 1.4 1.6 

55 7 2008 7 1 1 2 CT NB L I 298 11.5 41.3 164.4 246.6 2.4 1.8 

56 7 2008 8 1 1 2 NT NB H I 283 10.0 41.8 119.9 200.0 1.9 1.5 

57 7 2008 9 2 1 3 NT NB L I 231 9.3 37.7 111.5 169.1 1.5 1.5 
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58 7 2008 10 2 1 3 CT NB H I 311 9.7 38.9 129.1 211.0 1.6 1.7 

59 7 2008 11 3 1 3 NT NB H I 283 10.7 36.7 115.6 168.4 1.4 1.5 

60 7 2008 12 3 1 3 CT NB L I 387 9.9 41.8 130.7 161.5 1.4 1.7 

61 7 2008 13 1 1 1 CT B L I 367 10.1 37.1 160.2 185.9 1.5 1.7 

62 7 2008 14 1 1 1 NT B L I 359 9.7 41.9 121.3 151.4 1.5 1.5 

63 7 2008 15 2 1 1 NT B H I 409 10.9 43.5 124.1 146.3 1.5 1.6 

64 7 2008 16 2 1 2 CT B L I 389 11.2 41.2 148.0 172.9 1.4 1.7 

65 7 2008 17 3 1 2 NT B H I 412 9.6 40.9 140.5 119.8 1.3 1.6 

66 7 2008 18 3 1 3 CT B L I 432 8.7 41.5 158.4 155.5 1.2 1.6 

67 7 2008 19 1 1 1 CT B H I 369 10.9 39.8 158.9 191.9 1.5 1.6 

68 7 2008 20 1 1 3 NT B H I 374 11.7 39.8 136.7 181.7 1.8 1.6 

69 7 2008 21 2 1 2 NT B L I 401 9.4 43.7 147.3 157.0 1.5 1.8 

70 7 2008 22 2 1 2 CT B H I 405 10.8 45.9 150.6 172.2 1.2 1.7 

71 7 2008 23 3 1 3 NT B L I 393 10.2 41.0 130.2 142.5 1.4 1.6 

72 7 2008 24 3 1 3 CT B H I 467 11.3 41.9 167.2 177.9 1.3 1.6 

73 7 2008 25 1 2 4 CT B H NI 379 13.5 41.2 150.9 165.9 1.7 1.8 

74 7 2008 26 1 2 4 NT B H NI 321 12.3 36.5 144.2 146.6 1.9 1.7 

75 7 2008 27 2 2 5 NT B H NI 310 12.3 35.3 136.8 144.7 1.9 1.7 

76 7 2008 28 2 2 4 CT B L NI 362 11.6 33.8 142.5 172.3 1.7 1.7 

77 7 2008 29 3 2 6 NT B H NI 368 13.5 24.6 160.5 203.7 2.1 1.5 

78 7 2008 30 3 2 5 CT B L NI 410 10.6 29.0 170.4 220.2 1.7 1.6 

79 7 2008 31 1 2 6 CT B L NI 350 10.1 25.8 160.2 171.5 1.6 1.6 

80 7 2008 32 1 2 4 NT B L NI 381 10.6 24.2 157.9 165.0 1.9 1.6 

81 7 2008 33 2 2 5 NT B L NI 380 10.5 25.7 155.1 159.5 1.7 1.6 

82 7 2008 34 2 2 5 CT B H NI 385 10.9 26.3 163.1 192.6 1.6 1.6 

83 7 2008 35 3 2 6 NT B L NI 388 10.7 28.1 144.5 164.5 1.7 1.5 

84 7 2008 36 3 2 6 CT B H NI 414 11.5 25.0 162.4 210.5 1.7 1.5 

85 7 2008 37 1 2 4 CT NB H NI 387 10.8 28.5 197.2 223.4 1.9 1.8 

86 7 2008 38 1 2 4 NT NB L NI 412 9.7 26.5 171.8 204.2 2.2 1.8 
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87 7 2008 39 2 2 4 NT NB H NI 393 10.4 27.7 159.6 192.0 1.9 1.6 

88 7 2008 40 2 2 5 CT NB H NI 415 11.3 26.8 158.7 213.1 2.0 1.6 

89 7 2008 41 3 2 5 NT NB L NI 383 9.1 25.0 151.7 185.8 1.9 1.6 

90 7 2008 42 3 2 6 CT NB H NI 375 8.7 25.3 154.4 205.3 1.9 1.6 

91 7 2008 43 1 2 4 CT NB L NI 411 9.7 26.3 206.4 215.7 2.0 1.8 

92 7 2008 44 1 2 5 NT NB H NI 395 8.4 26.7 158.1 196.6 2.0 1.8 

93 7 2008 45 2 2 6 NT NB L NI 399 10.2 21.6 155.3 192.1 2.4 1.9 

94 7 2008 46 2 2 5 CT NB L NI 379 9.0 19.6 159.3 216.9 2.2 1.7 

95 7 2008 47 3 2 6 NT NB H NI 341 8.6 19.3 144.6 185.4 2.1 1.6 

96 7 2008 48 3 2 6 CT NB L NI 392 8.3 22.8 162.4 232.9 2.1 1.7 

97 8 2009 1 1 1 1 CT NB H I 314 29.3 14.3 196.9 308.9 2.6 1.8 

98 8 2009 2 1 1 1 NT NB L I 304 29.7 16.8 189.2 306.0 2.6 1.9 

99 8 2009 3 2 1 1 NT NB H I 233 26.0 18.4 163.6 259.9 1.9 1.8 

100 8 2009 4 2 1 1 CT NB L I 296 26.9 12.9 180.5 314.6 1.8 1.7 

101 8 2009 5 3 1 2 NT NB L I 297 29.1 14.3 155.6 228.9 1.5 1.6 

102 8 2009 6 3 1 2 CT NB H I 364 31.1 18.9 166.4 206.0 1.5 1.8 

103 8 2009 7 1 1 2 CT NB L I 302 29.5 17.2 200.3 307.4 2.4 1.8 

104 8 2009 8 1 1 2 NT NB H I 303 28.5 14.8 172.0 337.4 2.2 1.8 

105 8 2009 9 2 1 3 NT NB L I 351 31.2 16.4 187.0 291.5 2.2 1.8 

106 8 2009 10 2 1 3 CT NB H I 349 28.7 19.5 152.9 185.6 1.7 1.5 

107 8 2009 11 3 1 3 NT NB H I 403 34.1 21.5 169.4 199.8 1.7 1.8 

108 8 2009 12 3 1 3 CT NB L I 414 34.4 19.0 223.9 255.9 2.0 2.2 

109 8 2009 13 1 1 1 CT B L I 297 32.1 16.6 150.3 163.9 1.9 1.6 

110 8 2009 14 1 1 1 NT B L I 364 32.4 19.5 147.9 163.8 1.7 1.6 

111 8 2009 15 2 1 1 NT B H I 426 35.9 21.6 205.1 215.9 1.8 1.8 

112 8 2009 16 2 1 2 CT B L I 377 31.9 21.2 162.4 153.4 1.7 1.6 

113 8 2009 17 3 1 2 NT B H I 446 35.4 21.9 206.5 204.5 1.7 1.8 

114 8 2009 18 3 1 3 CT B L I 370 32.9 17.8 233.1 271.0 2.2 1.9 

115 8 2009 19 1 1 1 CT B H I 365 32.2 16.6 230.2 275.2 2.0 1.8 
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116 8 2009 20 1 1 3 NT B H I 412 35.1 21.7 186.0 229.3 2.0 1.8 

117 8 2009 21 2 1 2 NT B L I 474 37.9 27.0 217.7 237.8 1.9 2.0 

118 8 2009 22 2 1 2 CT B H I 449 36.6 22.8 216.4 238.2 1.7 2.0 

119 8 2009 23 3 1 3 NT B L I 388 36.5 31.0 173.3 180.4 1.7 1.9 

120 8 2009 24 3 1 3 CT B H I 509 37.7 21.6 214.4 218.2 1.8 1.8 

121 8 2009 25 1 2 4 CT B H NI 391 37.5 20.3 211.8 215.9 2.3 2.1 

122 8 2009 26 1 2 4 NT B H NI 326 34.1 19.5 176.3 146.9 2.1 1.9 

123 8 2009 27 2 2 5 NT B H NI 336 34.4 17.3 178.2 179.3 2.4 1.9 

124 8 2009 28 2 2 4 CT B L NI 382 36.2 19.5 193.6 227.9 2.3 1.9 

125 8 2009 29 3 2 6 NT B H NI 342 34.4 19.7 185.8 188.2 2.5 2.0 

126 8 2009 30 3 2 5 CT B L NI 407 38.0 20.4 201.8 256.1 2.2 2.1 

127 8 2009 31 1 2 6 CT B L NI 383 38.9 18.6 213.2 202.5 2.1 2.2 

128 8 2009 32 1 2 4 NT B L NI 349 36.8 19.8 186.3 150.0 2.2 2.2 

129 8 2009 33 2 2 5 NT B L NI 385 39.4 19.5 189.4 183.2 2.3 2.2 

130 8 2009 34 2 2 5 CT B H NI 379 35.7 16.9 187.8 201.9 2.1 2.0 

131 8 2009 35 3 2 6 NT B L NI 428 40.9 19.8 192.2 224.6 2.4 2.2 

132 8 2009 36 3 2 6 CT B H NI 397 38.7 20.9 191.9 205.0 2.3 2.2 

133 8 2009 37 1 2 4 CT NB H NI 380 41.9 16.5 222.3 237.3 2.2 2.2 

134 8 2009 38 1 2 4 NT NB L NI 377 44.7 22.4 219.4 217.3 2.5 2.5 

135 8 2009 39 2 2 4 NT NB H NI 365 42.2 20.4 191.2 211.8 2.3 2.1 

136 8 2009 40 2 2 5 CT NB H NI 416 47.6 21.2 224.1 253.6 2.6 2.1 

137 8 2009 41 3 2 5 NT NB L NI 366 42.9 17.9 182.3 208.8 2.4 2.0 

138 8 2009 42 3 2 6 CT NB H NI 370 44.2 21.5 185.0 209.1 2.4 2.1 

139 8 2009 43 1 2 4 CT NB L NI 390 43.4 15.5 242.5 230.4 2.6 2.3 

140 8 2009 44 1 2 5 NT NB H NI 385 46.9 18.5 199.9 214.0 2.7 2.2 

141 8 2009 45 2 2 6 NT NB L NI 366 45.7 19.6 178.5 176.0 2.7 2.4 

142 8 2009 46 2 2 5 CT NB L NI 412 46.8 16.9 205.5 259.6 2.8 2.3 

143 8 2009 47 3 2 6 NT NB H NI 339 44.6 16.4 172.7 197.1 2.5 2.1 

144 8 2009 48 3 2 6 CT NB L NI 380 42.4 16.8 201.5 246.4 2.6 2.1 
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145 9 
 

1 1 1 1 CT NB H I 307 8.6 17.5 264.1 326.4 2.6 2.4 

146 9 2010 2 1 1 1 NT NB L I 295 7.4 17.9 228.7 342.8 2.5 2.4 

147 9 2010 3 2 1 1 NT NB H I 225 8.1 15.3 212.9 263.1 2.2 2.1 

148 9 2010 4 2 1 1 CT NB L I 337 8.9 19.3 246.4 363.6 2.3 2.6 

149 9 2010 5 3 1 2 NT NB L I 289 7.7 19.5 188.7 232.9 2.1 2.2 

150 9 2010 6 3 1 2 CT NB H I 364 7.8 22.0 206.8 239.6 1.5 2.5 

151 9 2010 7 1 1 2 CT NB L I 295 7.7 18.2 266.6 383.5 2.6 2.6 

152 9 2010 8 1 1 2 NT NB H I 209 9.5 15.1 216.3 291.6 2.1 2.0 

153 9 2010 9 2 1 3 NT NB L I 209 7.7 19.7 204.1 291.3 1.7 2.0 

154 9 2010 10 2 1 3 CT NB H I 337 8.0 19.8 218.7 328.9 1.9 1.9 

155 9 2010 11 3 1 3 NT NB H I 259 8.4 24.8 190.8 219.0 1.3 2.0 

156 9 2010 12 3 1 3 CT NB L I 351 7.3 18.1 183.7 205.4 1.4 2.1 

157 9 2010 13 1 1 1 CT B L I 312 7.9 17.3 234.9 265.8 1.4 2.4 

158 9 2010 14 1 1 1 NT B L I 311 7.3 20.3 194.2 187.5 1.6 2.4 

159 9 2010 15 2 1 1 NT B H I 436 9.0 22.8 219.3 171.0 1.8 2.4 

160 9 2010 16 2 1 2 CT B L I 387 7.3 16.5 272.0 265.4 1.5 2.4 

161 9 2010 17 3 1 2 NT B H I 471 7.8 24.6 227.5 189.0 1.5 2.4 

162 9 2010 18 3 1 3 CT B L I 484 8.6 24.0 309.8 255.7 1.7 2.6 

163 9 2010 19 1 1 1 CT B H I 356 7.3 17.2 252.6 267.8 1.8 2.4 

164 9 2010 20 1 1 3 NT B H I 369 6.3 21.8 227.7 293.1 1.6 2.7 

165 9 2010 21 2 1 2 NT B L I 444 6.6 20.7 269.4 263.8 1.6 2.2 

166 9 2010 22 2 1 2 CT B H I 426 7.9 20.6 352.9 267.6 1.5 2.3 

167 9 2010 23 3 1 3 NT B L I 423 8.2 29.8 246.2 197.7 1.4 1.8 

168 9 2010 24 3 1 3 CT B H I 440 7.0 19.7 252.8 230.4 1.3 1.9 

169 9 2010 25 1 2 4 CT B H NI 350 6.8 20.0 282.8 226.6 1.6 2.2 

170 9 2010 26 1 2 4 NT B H NI 359 7.0 13.0 241.3 169.4 1.9 2.3 

171 9 2010 27 2 2 5 NT B H NI 341 8.3 16.2 251.4 175.9 2.2 2.1 

172 9 2010 28 2 2 4 CT B L NI 370 8.7 19.1 298.6 256.6 2.2 2.3 

173 9 2010 29 3 2 6 NT B H NI 366 9.1 19.7 266.0 226.5 2.2 2.0 



 

 

1
8
0
 

obs # yr 

actual 
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174 9 2010 30 3 2 5 CT B L NI 403 7.4 16.3 270.4 260.4 2.1 2.5 

175 9 2010 31 1 2 6 CT B L NI 350 6.7 16.8 266.0 217.3 1.6 2.3 

176 9 2010 32 1 2 4 NT B L NI 343 8.0 20.6 231.4 159.0 1.9 2.5 

177 9 2010 33 2 2 5 NT B L NI 380 9.4 18.5 238.4 176.3 2.3 2.1 

178 9 2010 34 2 2 5 CT B H NI 329 7.9 18.3 294.6 272.8 1.6 2.1 

179 9 2010 35 3 2 6 NT B L NI 392 8.9 18.6 231.5 203.1 2.1 2.3 

180 9 2010 36 3 2 6 CT B H NI 391 8.5 17.3 268.2 239.6 2.2 2.3 

181 9 2010 37 1 2 4 CT NB H NI 337 8.2 15.4 268.9 233.9 2.0 2.3 

182 9 2010 38 1 2 4 NT NB L NI 373 8.9 18.3 272.9 231.8 2.5 2.4 

183 9 2010 39 2 2 4 NT NB H NI 397 8.4 21.2 271.9 239.1 2.2 2.4 

184 9 2010 40 2 2 5 CT NB H NI 342 7.3 22.4 237.7 231.7 2.3 2.6 

185 9 2010 41 3 2 5 NT NB L NI 357 7.1 21.5 238.5 216.0 1.8 2.3 

186 9 2010 42 3 2 6 CT NB H NI 366 7.4 14.8 288.3 216.1 2.4 2.5 

187 9 2010 43 1 2 4 CT NB L NI 374 7.8 14.8 296.8 221.9 2.4 2.6 

188 9 2010 44 1 2 5 NT NB H NI 373 6.9 15.6 262.8 201.4 2.4 2.3 

189 9 2010 45 2 2 6 NT NB L NI 341 9.4 15.6 211.2 220.1 2.2 2.6 

190 9 2010 46 2 2 5 CT NB L NI 355 9.6 19.0 240.1 242.1 2.3 2.7 

191 9 2010 47 3 2 6 NT NB H NI 357 9.7 20.7 235.7 223.3 2.2 2.7 

192 9 2010 48 3 2 6 CT NB L NI 407 9.5 22.2 277.0 320.3 2.2 2.9 

193 10 2011 1 1 1 1 CT NB H I 260 32.1 20.7 219.9 346.0 2.4 1.2 

194 10 2011 2 1 1 1 NT NB L I 292 23.2 13.0 186.2 334.5 2.1 1.2 

195 10 2011 3 2 1 1 NT NB H I 231 32.9 19.9 180.7 288.3 1.7 1.0 

196 10 2011 4 2 1 1 CT NB L I 285 25.6 16.5 187.9 311.9 1.9 1.2 

197 10 2011 5 3 1 2 NT NB L I 255 24.4 20.3 160.5 228.1 1.3 1.0 

198 10 2011 6 3 1 2 CT NB H I 335 36.7 27.9 189.4 245.3 1.4 1.2 

199 10 2011 7 1 1 2 CT NB L I 261 32.0 20.5 215.4 327.3 2.4 1.2 

200 10 2011 8 1 1 2 NT NB H I 275 27.4 21.0 174.1 297.7 1.8 1.0 

201 10 2011 9 2 1 3 NT NB L I 238 34.4 21.1 167.0 260.5 1.8 0.9 

202 10 2011 10 2 1 3 CT NB H I 298 26.3 19.0 181.8 292.9 1.6 1.1 
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203 10 2011 11 3 1 3 NT NB H I 296 37.6 16.6 172.2 209.2 1.3 0.9 

204 10 2011 12 3 1 3 CT NB L I 341 20.8 23.8 167.3 194.3 1.2 1.2 

205 10 2011 13 1 1 1 CT B L I 355 19.7 19.3 208.9 237.4 1.4 1.3 

206 10 2011 14 1 1 1 NT B L I 296 28.3 16.8 161.0 182.4 1.6 1.1 

207 10 2011 15 2 1 1 NT B H I 337 26.1 21.7 171.2 173.7 1.4 1.0 

208 10 2011 16 2 1 2 CT B L I 372 23.3 13.0 218.6 226.8 1.5 1.2 

209 10 2011 17 3 1 2 NT B H I 354 22.0 28.5 167.9 131.1 1.0 0.9 

210 10 2011 18 3 1 3 CT B L I 423 20.2 26.3 214.8 217.7 1.3 1.3 

211 10 2011 19 1 1 1 CT B H I 363 23.9 25.6 200.2 250.2 1.5 1.3 

212 10 2011 20 1 1 3 NT B H I 320 32.0 26.4 195.7 245.0 1.4 1.2 

213 10 2011 21 2 1 2 NT B L I 407 26.5 24.2 214.9 233.4 1.4 1.3 

214 10 2011 22 2 1 2 CT B H I 404 26.5 28.4 229.1 233.6 1.3 1.3 

215 10 2011 23 3 1 3 NT B L I 414 20.7 16.2 172.4 179.4 1.4 1.1 

216 10 2011 24 3 1 3 CT B H I 413 30.8 26.3 214.4 216.5 1.1 1.2 

217 10 2011 25 1 2 4 CT B H NI 319 23.3 23.7 208.2 191.5 1.3 1.3 

218 10 2011 26 1 2 4 NT B H NI 341 27.2 19.6 190.1 178.9 1.7 1.2 

219 10 2011 27 2 2 5 NT B H NI 311 32.4 22.4 192.1 187.8 1.9 1.3 

220 10 2011 28 2 2 4 CT B L NI 345 28.3 21.8 199.8 229.1 1.7 1.3 

221 10 2011 29 3 2 6 NT B H NI 305 25.8 19.4 192.4 242.5 2.2 1.7 

222 10 2011 30 3 2 5 CT B L NI 298 32.9 25.8 207.7 229.8 1.5 1.2 

223 10 2011 31 1 2 6 CT B L NI 335 30.0 20.5 224.7 206.4 1.6 1.4 

224 10 2011 32 1 2 4 NT B L NI 330 25.8 17.6 185.8 178.5 1.9 1.3 

225 10 2011 33 2 2 5 NT B L NI 339 27.0 17.0 178.0 176.9 2.1 1.2 

226 10 2011 34 2 2 5 CT B H NI 331 34.4 20.0 223.7 246.4 1.6 1.2 

227 10 2011 35 3 2 6 NT B L NI 326 31.6 18.3 177.9 191.3 2.0 1.2 

228 10 2011 36 3 2 6 CT B H NI 309 28.5 19.3 191.4 214.5 1.5 1.2 

229 10 2011 37 1 2 4 CT NB H NI 320 45.0 20.2 235.6 235.2 2.0 1.5 

230 10 2011 38 1 2 4 NT NB L NI 296 21.1 15.1 187.3 195.7 2.0 1.4 

231 10 2011 39 2 2 4 NT NB H NI 299 28.3 24.7 187.2 215.0 1.7 1.4 
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232 10 2011 40 2 2 5 CT NB H NI 304 27.6 14.3 183.1 236.4 2.0 1.3 

233 10 2011 41 3 2 5 NT NB L NI 275 24.6 19.8 206.9 207.3 1.8 1.5 

234 10 2011 42 3 2 6 CT NB H NI 318 27.0 20.1 185.6 211.4 1.5 1.3 

235 10 2011 43 1 2 4 CT NB L NI 328 28.8 18.1 220.9 226.4 2.2 1.6 

236 10 2011 44 1 2 5 NT NB H NI 279 32.4 16.3 189.6 195.2 1.9 1.5 

237 10 2011 45 2 2 6 NT NB L NI 323 25.8 17.4 198.8 218.1 2.4 1.7 

238 10 2011 46 2 2 5 CT NB L NI 303 23.6 14.1 185.8 225.8 1.9 1.4 

239 10 2011 47 3 2 6 NT NB H NI 260 28.6 11.5 170.6 228.9 2.6 1.2 

240 10 2011 48 3 2 6 CT NB L NI 367 30.2 26.0 203.3 265.0 2.2 1.6 

241 11 2012 1 1 1 1 CT NB H I 314 16.7 21.8 200.0 284.4 2.1 1.7 

242 11 2012 2 1 1 1 NT NB L I 292 15.7 19.5 152.9 244.5 2.1 1.2 

243 11 2012 3 2 1 1 NT NB H I 223 13.9 22.5 139.6 194.8 1.5 1.0 

244 11 2012 4 2 1 1 CT NB L I 355 15.8 19.5 157.4 229.4 1.8 1.9 

245 11 2012 5 3 1 2 NT NB L I 301 15.8 22.5 134.0 172.2 1.4 1.4 

246 11 2012 6 3 1 2 CT NB H I 367 14.6 21.3 141.8 156.5 1.3 1.5 

247 11 2012 7 1 1 2 CT NB L I 328 15.0 17.3 159.1 249.6 2.2 1.4 

248 11 2012 8 1 1 2 NT NB H I 266 14.5 18.7 136.7 215.6 1.8 1.3 

249 11 2012 9 2 1 3 NT NB L I 254 12.9 17.2 123.1 171.5 1.4 0.9 

250 11 2012 10 2 1 3 CT NB H I 338 17.3 22.0 164.6 215.8 1.4 1.1 

251 11 2012 11 3 1 3 NT NB H I 282 16.4 18.7 124.3 137.5 1.1 0.8 

252 11 2012 12 3 1 3 CT NB L I 388 13.6 29.7 146.3 171.1 1.3 1.3 

253 11 2012 13 1 1 1 CT B L I 375 9.6 20.8 186.3 216.5 1.8 1.4 

254 11 2012 14 1 1 1 NT B L I 305 7.6 20.1 130.2 139.3 1.2 1.2 

255 11 2012 15 2 1 1 NT B H I 435 6.8 28.6 157.0 168.9 1.4 1.3 

256 11 2012 16 2 1 2 CT B L I 451 15.3 24.1 175.3 188.8 1.3 1.3 

257 11 2012 17 3 1 2 NT B H I 401 11.7 33.3 138.1 102.3 1.0 1.1 

258 11 2012 18 3 1 3 CT B L I 479 15.7 35.0 180.0 165.5 1.3 1.4 

259 11 2012 19 1 1 1 CT B H I 394 17.7 21.0 174.6 221.1 1.6 1.7 

260 11 2012 20 1 1 3 NT B H I 378 6.0 20.6 150.7 180.1 1.4 1.3 
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261 11 2012 21 2 1 2 NT B L I 445 8.9 23.0 178.2 163.3 1.6 1.6 

262 11 2012 22 2 1 2 CT B H I 442 20.9 26.4 202.4 202.0 1.2 1.6 

263 11 2012 23 3 1 3 NT B L I 425 7.6 21.6 133.9 136.4 1.3 1.3 

264 11 2012 24 3 1 3 CT B H I 469 15.3 29.0 171.6 171.1 1.1 1.3 

265 11 2012 25 1 2 4 CT B H NI 345 12.1 14.7 177.9 167.7 2.1 1.7 

266 11 2012 26 1 2 4 NT B H NI 339 8.4 16.0 157.1 130.6 1.9 1.3 

267 11 2012 27 2 2 5 NT B H NI 289 8.0 15.2 142.4 110.1 1.9 2.1 

268 11 2012 28 2 2 4 CT B L NI 356 6.4 29.5 159.2 151.9 1.6 2.1 

269 11 2012 29 3 2 6 NT B H NI 337 6.9 11.6 156.1 142.0 1.8 2.0 

270 11 2012 30 3 2 5 CT B L NI 339 5.1 12.9 155.6 147.7 1.4 2.2 

271 11 2012 31 1 2 6 CT B L NI 354 8.1 11.9 164.2 151.4 1.6 2.3 

272 11 2012 32 1 2 4 NT B L NI 342 7.5 13.0 153.2 130.4 2.1 2.2 

273 11 2012 33 2 2 5 NT B L NI 356 7.0 12.3 132.9 107.7 1.7 2.1 

274 11 2012 34 2 2 5 CT B H NI 360 6.7 7.8 164.7 176.6 1.4 1.8 

275 11 2012 35 3 2 6 NT B L NI 365 5.7 9.8 123.1 109.8 1.5 1.9 

276 11 2012 36 3 2 6 CT B H NI 354 6.3 13.5 139.6 132.4 1.5 2.1 

277 11 2012 37 1 2 4 CT NB H NI 306 7.7 8.3 152.9 135.3 1.8 2.0 

278 11 2012 38 1 2 4 NT NB L NI 308 7.8 7.9 144.2 127.0 1.9 1.9 

279 11 2012 39 2 2 4 NT NB H NI 310 6.4 10.1 138.5 131.5 1.5 2.0 

280 11 2012 40 2 2 5 CT NB H NI 344 8.8 9.8 144.3 158.0 1.8 2.0 

281 11 2012 41 3 2 5 NT NB L NI 303 7.0 8.4 139.1 135.1 2.0 2.0 

282 11 2012 42 3 2 6 CT NB H NI 305 6.7 14.0 131.5 129.7 2.0 2.0 

283 11 2012 43 1 2 4 CT NB L NI 349 6.4 11.4 164.6 137.3 2.0 2.5 

284 11 2012 44 1 2 5 NT NB H NI 318 5.5 9.1 141.4 117.4 1.9 2.4 

285 11 2012 45 2 2 6 NT NB L NI 354 5.7 8.5 131.4 132.9 2.3 2.3 

286 11 2012 46 2 2 5 CT NB L NI 323 5.2 8.6 142.3 156.7 2.1 2.3 

287 11 2012 47 3 2 6 NT NB H NI 321 6.1 7.8 144.7 155.6 2.1 2.1 

288 11 2012 48 3 2 6 CT NB L NI 364 6.8 14.8 155.6 174.0 2.1 2.4 

289 12 2013 1 1 1 1 CT NB H I 317 9.2 21.0 230.6 379.4 2.3 2.9 
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290 12 2013 2 1 1 1 NT NB L I 364 10.6 18.6 207.8 320.8 2.8 2.5 

291 12 2013 3 2 1 1 NT NB H I 298 11.5 27.0 201.1 276.3 2.2 2.6 

292 12 2013 4 2 1 1 CT NB L I 371 11.1 17.7 213.5 328.8 2.1 2.3 

293 12 2013 5 3 1 2 NT NB L I 322 8.8 18.0 185.0 204.7 1.3 2.2 

294 12 2013 6 3 1 2 CT NB H I 389 9.0 20.8 194.8 238.0 1.3 2.5 

295 12 2013 7 1 1 2 CT NB L I 324 9.2 17.7 211.2 355.7 2.5 2.2 

296 12 2013 8 1 1 2 NT NB H I 318 12.5 23.7 184.4 261.3 2.3 2.3 

297 12 2013 9 2 1 3 NT NB L I 302 9.1 17.2 163.6 232.7 1.7 1.9 

298 12 2013 10 2 1 3 CT NB H I 378 11.0 22.1 209.6 317.8 1.7 2.6 

299 12 2013 11 3 1 3 NT NB H I 329 10.1 21.9 186.5 222.6 1.9 2.3 

300 12 2013 12 3 1 3 CT NB L I 418 8.9 20.7 188.5 215.8 1.6 2.5 

301 12 2013 13 1 1 1 CT B L I 408 10.5 22.6 224.8 266.2 1.9 2.5 

302 12 2013 14 1 1 1 NT B L I 361 9.2 15.4 179.8 202.0 1.9 2.5 

303 12 2013 15 2 1 1 NT B H I 370 9.0 20.7 183.1 148.6 1.6 1.9 

304 12 2013 16 2 1 2 CT B L I 490 14.7 26.3 248.7 243.7 2.2 2.7 

305 12 2013 17 3 1 2 NT B H I 475 9.8 20.9 226.9 191.2 1.7 2.0 

306 12 2013 18 3 1 3 CT B L I 481 7.8 15.4 240.7 233.5 1.3 2.4 

307 12 2013 19 1 1 1 CT B H I 420 10.1 17.8 223.5 257.4 1.7 2.4 

308 12 2013 20 1 1 3 NT B H I 419 10.6 19.4 194.5 211.0 1.4 2.8 

309 12 2013 21 2 1 2 NT B L I 440 9.4 16.0 215.5 218.0 1.5 2.3 

310 12 2013 22 2 1 2 CT B H I 470 12.1 27.8 247.0 248.7 1.2 2.9 

311 12 2013 23 3 1 3 NT B L I 437 9.9 31.3 200.5 193.4 1.1 2.2 

312 12 2013 24 3 1 3 CT B H I 506 9.7 26.4 235.9 229.3 1.2 2.6 

313 12 2013 25 1 2 4 CT B H NI 316 11.7 13.0 259.2 199.8 1.8 2.4 

314 12 2013 26 1 2 4 NT B H NI 305 15.7 21.5 199.4 146.2 1.6 2.8 

315 12 2013 27 2 2 5 NT B H NI 303 10.7 24.3 210.6 189.2 1.8 2.3 

316 12 2013 28 2 2 4 CT B L NI 322 8.0 12.1 243.9 239.3 1.9 2.7 

317 12 2013 29 3 2 6 NT B H NI 341 12.9 20.0 214.7 188.2 2.3 2.1 

318 12 2013 30 3 2 5 CT B L NI 343 8.6 16.2 215.3 231.4 1.7 2.3 



 

 

1
8
5
 

obs # yr 

actual 

yr plot Tblock Bblock rep till burn Nrate Irr Mg S Na Fe Mn Zn Cu 

319 12 2013 31 1 2 6 CT B L NI 324 10.4 14.1 222.3 191.6 1.8 2.3 

320 12 2013 32 1 2 4 NT B L NI 327 8.6 18.0 210.0 162.7 2.1 2.6 

321 12 2013 33 2 2 5 NT B L NI 342 12.0 14.5 214.8 176.1 2.4 2.3 

322 12 2013 34 2 2 5 CT B H NI 329 11.4 13.7 229.6 208.7 2.0 2.3 

323 12 2013 35 3 2 6 NT B L NI 371 9.8 15.1 202.5 202.2 2.1 2.3 

324 12 2013 36 3 2 6 CT B H NI 370 12.1 15.0 254.6 195.3 2.3 3.0 

325 12 2013 37 1 2 4 CT NB H NI 322 11.6 14.3 212.1 197.4 2.2 2.3 

326 12 2013 38 1 2 4 NT NB L NI 346 9.8 13.0 211.4 213.9 2.3 3.0 

327 12 2013 39 2 2 4 NT NB H NI 296 10.6 18.3 191.6 152.1 2.2 2.3 

328 12 2013 40 2 2 5 CT NB H NI 321 10.1 13.1 232.1 225.0 1.9 2.7 

329 12 2013 41 3 2 5 NT NB L NI 342 9.3 16.1 224.2 225.3 2.4 2.5 

330 12 2013 42 3 2 6 CT NB H NI 327 10.3 11.7 201.5 218.8 2.2 2.1 

331 12 2013 43 1 2 4 CT NB L NI 339 14.1 17.2 255.4 217.9 3.1 2.8 

332 12 2013 44 1 2 5 NT NB H NI 290 9.4 9.7 210.4 185.7 2.4 2.3 

333 12 2013 45 2 2 6 NT NB L NI 278 11.2 13.2 186.9 168.2 2.7 2.5 

334 12 2013 46 2 2 5 CT NB L NI 308 9.9 11.6 204.5 234.8 2.3 2.4 

335 12 2013 47 3 2 6 NT NB H NI 325 11.3 10.6 221.0 240.2 2.6 2.8 

336 12 2013 48 3 2 6 CT NB L NI 341 6.5 14.5 209.8 231.6 1.8 2.3 

337 13 2014 1 1 1 1 CT NB H I 397 8.9 18.5 214.6 355.5 2.5 1.6 

338 13 2014 2 1 1 1 NT NB L I 331 7.5 13.4 186.2 320.5 2.3 1.4 

339 13 2014 3 2 1 1 NT NB H I 363 6.4 12.1 180.6 277.8 1.6 1.3 

340 13 2014 4 2 1 1 CT NB L I 416 6.9 13.5 184.3 302.0 1.8 1.5 

341 13 2014 5 3 1 2 NT NB L I 401 9.3 15.5 173.7 205.7 1.4 1.1 

342 13 2014 6 3 1 2 CT NB H I 468 7.4 20.4 178.9 227.4 1.2 1.5 

343 13 2014 7 1 1 2 CT NB L I 371 8.3 12.1 179.6 294.2 2.4 1.4 

344 13 2014 8 1 1 2 NT NB H I 347 9.1 14.0 186.0 256.2 2.1 1.1 

345 13 2014 9 2 1 3 NT NB L I 382 8.8 12.8 149.1 219.2 1.8 1.2 

346 13 2014 10 2 1 3 CT NB H I 451 8.2 15.4 185.9 286.3 1.6 1.4 

347 13 2014 11 3 1 3 NT NB H I 390 7.7 17.6 181.2 248.2 1.5 1.3 
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348 13 2014 12 3 1 3 CT NB L I 478 6.5 17.9 176.6 220.6 1.4 1.4 

349 13 2014 13 1 1 1 CT B L I 454 8.2 18.4 223.9 268.5 2.0 1.6 

350 13 2014 14 1 1 1 NT B L I 313 7.1 21.2 170.1 166.9 1.4 1.4 

351 13 2014 15 2 1 1 NT B H I 464 7.6 26.7 178.5 166.5 1.3 1.3 

352 13 2014 16 2 1 2 CT B L I 541 7.5 26.7 237.7 256.5 1.2 1.7 

353 13 2014 17 3 1 2 NT B H I 499 7.8 23.2 179.1 160.9 1.1 1.3 

354 13 2014 18 3 1 3 CT B L I 574 10.1 34.5 248.2 251.5 1.6 1.7 

355 13 2014 19 1 1 1 CT B H I 454 6.8 16.7 204.1 252.4 1.5 1.6 

356 13 2014 20 1 1 3 NT B H I 452 8.0 18.2 180.1 206.1 1.4 1.4 

357 13 2014 21 2 1 2 NT B L I 528 8.8 26.2 214.4 230.3 1.7 1.7 

358 13 2014 22 2 1 2 CT B H I 532 7.5 17.5 235.9 265.2 1.5 1.6 

359 13 2014 23 3 1 3 NT B L I 466 6.2 16.5 200.5 158.5 1.1 1.3 

360 13 2014 24 3 1 3 CT B H I 527 8.0 19.2 213.7 237.4 1.3 1.5 

361 13 2014 25 1 2 4 CT B H NI 375 6.4 12.2 202.5 179.8 1.3 1.5 

362 13 2014 26 1 2 4 NT B H NI 310 7.0 16.6 187.6 151.3 1.6 1.4 

363 13 2014 27 2 2 5 NT B H NI 324 6.8 16.1 183.0 134.9 1.4 1.5 

364 13 2014 28 2 2 4 CT B L NI 344 10.9 18.6 194.3 220.5 1.8 1.5 

365 13 2014 29 3 2 6 NT B H NI 334 7.5 16.1 199.7 223.8 1.9 1.5 

366 13 2014 30 3 2 5 CT B L NI 362 6.5 14.5 200.1 220.5 1.9 1.5 

367 13 2014 31 1 2 6 CT B L NI 405 6.6 12.2 198.4 178.9 1.5 1.6 

368 13 2014 32 1 2 4 NT B L NI 380 6.4 12.3 188.4 146.7 1.9 1.6 

369 13 2014 33 2 2 5 NT B L NI 399 7.7 15.9 187.7 151.2 2.1 1.5 

370 13 2014 34 2 2 5 CT B H NI 402 8.1 12.7 232.2 225.2 1.9 1.5 

371 13 2014 35 3 2 6 NT B L NI 352 7.6 21.1 193.1 159.2 1.8 1.5 

372 13 2014 36 3 2 6 CT B H NI 401 7.4 14.5 193.5 217.3 2.0 1.5 

373 13 2014 37 1 2 4 CT NB H NI 357 9.2 16.1 217.1 195.6 2.2 1.7 

374 13 2014 38 1 2 4 NT NB L NI 366 7.9 12.1 199.3 195.7 2.0 1.6 

375 13 2014 39 2 2 4 NT NB H NI 385 11.2 13.6 190.4 185.1 2.4 1.5 

376 13 2014 40 2 2 5 CT NB H NI 363 9.8 14.3 196.6 221.9 2.1 1.6 
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377 13 2014 41 3 2 5 NT NB L NI 356 9.6 16.2 195.8 212.9 2.3 1.7 

378 13 2014 42 3 2 6 CT NB H NI 374 8.1 21.5 224.2 235.0 2.0 1.8 

379 13 2014 43 1 2 4 CT NB L NI 349 8.5 16.9 225.9 195.5 2.5 1.8 

380 13 2014 44 1 2 5 NT NB H NI 307 8.4 11.7 176.7 173.2 2.3 1.6 

381 13 2014 45 2 2 6 NT NB L NI 348 7.9 11.3 168.8 159.3 1.8 1.6 

382 13 2014 46 2 2 5 CT NB L NI 357 10.0 12.6 205.0 264.6 2.5 1.8 

383 13 2014 47 3 2 6 NT NB H NI 328 9.7 10.4 205.5 192.3 2.7 1.5 

384 13 2014 48 3 2 6 CT NB L NI 417 6.9 16.7 220.5 281.2 2.3 2.0 
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Soil organic matter concentration (OMconc), total soil nitrogen concentration (Nconc), total soil carbon concentration (Cconc), carbon-to-nitrogen 

ratio (C:N), soil organic matter content (OMcontent; kg m
-2

), soil nitrogen content (Ncontent; kg m
-2

), soil carbon content (Ccontent; kg m
-2

), 

carbon fraction of soil organic matter (Cfraction), and nitrogen fraction of soil organic matter (Nfraction). 

obs # yr 

actual 

yr plot 

T 

block 

B 

block rep till burn Nrate Irr 

OM 

conc 

N 

conc 

C 

conc C:N 

OM 

content 

N 

content 

C 

content 

C 

fraction 

N 

fraction 

1 6 2007 1 1 1 1 CT NB H I 2.18 0.11 0.98 8.86 2.60 0.13 1.17 0.45 0.05 

2 6 2007 2 1 1 1 NT NB L I 2.22 0.10 0.90 8.98 2.68 0.12 1.08 0.40 0.04 

3 6 2007 3 2 1 1 NT NB H I 1.91 0.10 0.88 8.77 2.46 0.13 1.13 0.46 0.05 

4 6 2007 4 2 1 1 CT NB L I 1.95 0.10 0.97 9.85 2.39 0.12 1.19 0.50 0.05 

5 6 2007 5 3 1 2 NT NB L I 2.22 0.10 0.99 9.44 2.55 0.12 1.14 0.45 0.05 

6 6 2007 6 3 1 2 CT NB H I 2.36 0.10 0.93 9.69 2.98 0.12 1.18 0.40 0.04 

7 6 2007 7 1 1 2 CT NB L I 2.50 0.12 1.13 9.24 3.05 0.15 1.38 0.45 0.05 

8 6 2007 8 1 1 2 NT NB H I 2.39 0.11 1.02 9.44 2.98 0.13 1.27 0.43 0.05 

9 6 2007 9 2 1 3 NT NB L I 2.34 0.10 0.96 9.24 2.79 0.12 1.15 0.41 0.04 

10 6 2007 10 2 1 3 CT NB H I 2.55 0.10 1.00 9.86 3.13 0.12 1.23 0.39 0.04 

11 6 2007 11 3 1 3 NT NB H I 2.39 0.10 1.02 10.01 2.77 0.12 1.18 0.43 0.04 

12 6 2007 12 3 1 3 CT NB L I 2.22 0.11 1.05 9.45 2.64 0.13 1.24 0.47 0.05 

13 6 2007 13 1 1 1 CT B L I 2.57 0.11 1.16 10.10 3.06 0.14 1.38 0.45 0.04 

14 6 2007 14 1 1 1 NT B L I 2.13 0.11 0.97 8.53 2.43 0.13 1.10 0.45 0.05 

15 6 2007 15 2 1 1 NT B H I 2.34 0.13 1.08 8.46 2.80 0.15 1.30 0.46 0.05 

16 6 2007 16 2 1 2 CT B L I 1.82 0.11 0.90 8.45 2.14 0.13 1.06 0.50 0.06 

17 6 2007 17 3 1 2 NT B H I 1.95 0.11 0.86 8.08 2.28 0.12 1.01 0.44 0.05 

18 6 2007 18 3 1 3 CT B L I 2.35 0.11 0.93 8.21 2.77 0.13 1.09 0.39 0.05 

19 6 2007 19 1 1 1 CT B H I 2.84 0.12 1.21 9.92 3.42 0.15 1.46 0.43 0.04 

20 6 2007 20 1 1 3 NT B H I 2.88 0.13 1.37 10.27 3.51 0.16 1.67 0.48 0.05 

21 6 2007 21 2 1 2 NT B L I 2.67 0.12 1.21 10.25 3.31 0.15 1.50 0.45 0.04 

22 6 2007 22 2 1 2 CT B H I 2.25 0.12 1.15 9.66 2.66 0.14 1.36 0.51 0.05 

23 6 2007 23 3 1 3 NT B L I 2.28 0.11 1.09 9.70 2.78 0.14 1.33 0.48 0.05 

24 6 2007 24 3 1 3 CT B H I 2.45 0.11 1.03 9.35 2.98 0.13 1.25 0.42 0.04 

25 6 2007 25 1 2 1 CT B H NI 1.80 0.10 0.89 8.59 2.20 0.13 1.09 0.50 0.06 

26 6 2007 26 1 2 1 NT B H NI 2.41 0.11 1.01 9.03 2.94 0.14 1.24 0.42 0.05 
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27 6 2007 27 2 2 2 NT B H NI 2.40 0.10 0.96 9.20 3.08 0.13 1.24 0.40 0.04 

28 6 2007 28 2 2 1 CT B L NI 1.95 0.09 0.86 9.61 2.36 0.11 1.04 0.44 0.05 

29 6 2007 29 3 2 3 NT B H NI 2.13 0.10 0.96 9.74 2.56 0.12 1.15 0.45 0.05 

30 6 2007 30 3 2 2 CT B L NI 2.03 0.09 0.84 9.75 2.54 0.11 1.05 0.41 0.04 

31 6 2007 31 1 2 3 CT B L NI 2.60 0.11 1.11 10.20 2.74 0.11 1.17 0.43 0.04 

32 6 2007 32 1 2 1 NT B L NI 2.28 0.11 1.10 9.74 2.62 0.13 1.26 0.48 0.05 

33 6 2007 33 2 2 2 NT B L NI 2.29 0.10 0.98 9.57 2.65 0.12 1.13 0.43 0.04 

34 6 2007 34 2 2 2 CT B H NI 2.51 0.10 0.93 9.24 3.10 0.12 1.15 0.37 0.04 

35 6 2007 35 3 2 3 NT B L NI 2.59 0.11 1.03 9.59 2.92 0.12 1.16 0.40 0.04 

36 6 2007 36 3 2 3 CT B H NI 2.02 0.09 0.87 9.63 2.37 0.11 1.02 0.43 0.04 

37 6 2007 37 1 2 1 CT NB H NI 2.11 0.11 0.93 8.34 2.37 0.12 1.04 0.44 0.05 

38 6 2007 38 1 2 1 NT NB L NI 2.34 0.13 1.15 8.77 2.94 0.16 1.44 0.49 0.06 

39 6 2007 39 2 2 1 NT NB H NI 2.41 0.11 1.04 9.02 2.93 0.14 1.26 0.43 0.05 

40 6 2007 40 2 2 2 CT NB H NI 1.98 0.11 0.91 8.64 2.40 0.13 1.11 0.46 0.05 

41 6 2007 41 3 2 2 NT NB L NI 1.78 0.09 0.77 8.69 2.17 0.11 0.94 0.43 0.05 

42 6 2007 42 3 2 3 CT NB H NI 1.88 0.09 0.77 8.28 2.19 0.11 0.90 0.41 0.05 

43 6 2007 43 1 2 1 CT NB L NI 2.78 0.12 1.16 9.80 3.38 0.14 1.42 0.42 0.04 

44 6 2007 44 1 2 2 NT NB H NI 3.01 0.12 1.22 10.03 3.79 0.15 1.54 0.41 0.04 

45 6 2007 45 2 2 3 NT NB L NI 2.28 0.10 1.02 10.21 2.92 0.13 1.31 0.45 0.04 

46 6 2007 46 2 2 2 CT NB L NI 2.39 0.11 1.09 9.96 2.86 0.13 1.31 0.46 0.05 

47 6 2007 47 3 2 3 NT NB H NI 2.35 0.11 1.13 10.24 2.84 0.13 1.36 0.48 0.05 

48 6 2007 48 3 2 3 CT NB L NI 2.59 0.12 1.10 9.10 3.17 0.15 1.35 0.43 0.05 

49 7 2008 1 1 1 1 CT NB H I 2.44 0.13 1.06 8.28 2.87 0.15 1.25 0.44 0.05 

50 7 2008 2 1 1 1 NT NB L I 2.38 0.12 1.12 9.23 2.83 0.14 1.33 0.47 0.05 

51 7 2008 3 2 1 1 NT NB H I 2.43 0.13 1.11 8.66 3.05 0.16 1.39 0.46 0.05 

52 7 2008 4 2 1 1 CT NB L I 2.14 0.12 1.05 9.11 2.57 0.14 1.26 0.49 0.05 

53 7 2008 5 3 1 2 NT NB L I 2.45 0.12 0.97 8.29 2.88 0.14 1.14 0.40 0.05 

54 7 2008 6 3 1 2 CT NB H I 2.78 0.13 1.11 8.77 3.47 0.16 1.38 0.40 0.05 

55 7 2008 7 1 1 2 CT NB L I 2.19 0.11 1.03 9.28 2.63 0.13 1.23 0.47 0.05 
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56 7 2008 8 1 1 2 NT NB H I 2.13 0.11 0.98 8.58 2.64 0.14 1.21 0.46 0.05 

57 7 2008 9 2 1 3 NT NB L I 2.22 0.11 0.99 8.82 2.68 0.14 1.19 0.45 0.05 

58 7 2008 10 2 1 3 CT NB H I 2.55 0.12 1.05 8.58 3.08 0.15 1.26 0.41 0.05 

59 7 2008 11 3 1 3 NT NB H I 2.62 0.12 1.05 8.48 3.08 0.15 1.24 0.40 0.05 

60 7 2008 12 3 1 3 CT NB L I 2.33 0.13 1.06 8.45 2.81 0.15 1.28 0.45 0.05 

61 7 2008 13 1 1 1 CT B L I 2.58 0.12 1.08 9.12 3.03 0.14 1.27 0.42 0.05 

62 7 2008 14 1 1 1 NT B L I 2.66 0.12 1.04 8.80 3.06 0.14 1.20 0.39 0.04 

63 7 2008 15 2 1 1 NT B H I 2.41 0.13 1.19 8.94 2.87 0.16 1.41 0.49 0.06 

64 7 2008 16 2 1 2 CT B L I 2.85 0.11 1.01 9.37 3.32 0.13 1.17 0.35 0.04 

65 7 2008 17 3 1 2 NT B H I 2.65 0.12 1.24 10.50 3.20 0.14 1.50 0.47 0.04 

66 7 2008 18 3 1 3 CT B L I 2.95 0.11 1.10 9.81 3.54 0.13 1.32 0.37 0.04 

67 7 2008 19 1 1 1 CT B H I 3.18 0.14 1.17 8.40 3.79 0.17 1.40 0.37 0.04 

68 7 2008 20 1 1 3 NT B H I 2.81 0.14 1.33 9.55 3.44 0.17 1.62 0.47 0.05 

69 7 2008 21 2 1 2 NT B L I 2.54 0.12 1.09 9.05 3.12 0.15 1.33 0.43 0.05 

70 7 2008 22 2 1 2 CT B H I 2.46 0.11 1.06 9.26 2.99 0.14 1.29 0.43 0.05 

71 7 2008 23 3 1 3 NT B L I 2.88 0.13 1.12 8.62 3.58 0.16 1.39 0.39 0.04 

72 7 2008 24 3 1 3 CT B H I 2.79 0.14 1.27 9.24 3.40 0.17 1.55 0.46 0.05 

73 7 2008 25 1 2 4 CT B H NI 2.79 0.14 1.18 8.43 3.42 0.17 1.45 0.42 0.05 

74 7 2008 26 1 2 4 NT B H NI 2.80 0.14 1.17 8.50 3.39 0.17 1.41 0.42 0.05 

75 7 2008 27 2 2 5 NT B H NI 2.77 0.12 1.16 9.74 3.43 0.15 1.44 0.42 0.04 

76 7 2008 28 2 2 4 CT B L NI 2.99 0.13 1.16 9.19 3.56 0.15 1.38 0.39 0.04 

77 7 2008 29 3 2 6 NT B H NI 3.07 0.13 1.24 9.32 3.69 0.16 1.48 0.40 0.04 

78 7 2008 30 3 2 5 CT B L NI 2.62 0.12 1.14 9.44 3.25 0.15 1.42 0.44 0.05 

79 7 2008 31 1 2 6 CT B L NI 2.42 0.11 1.19 10.75 2.80 0.13 1.37 0.49 0.05 

80 7 2008 32 1 2 4 NT B L NI 2.62 0.13 1.16 9.00 3.11 0.15 1.37 0.44 0.05 

81 7 2008 33 2 2 5 NT B L NI 2.77 0.12 1.05 8.67 3.31 0.14 1.26 0.38 0.04 

82 7 2008 34 2 2 5 CT B H NI 2.69 0.11 1.02 9.13 3.25 0.14 1.24 0.38 0.04 

83 7 2008 35 3 2 6 NT B L NI 2.72 0.11 1.02 9.55 3.19 0.13 1.20 0.37 0.04 

84 7 2008 36 3 2 6 CT B H NI 2.96 0.12 1.23 10.07 3.51 0.14 1.45 0.41 0.04 
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85 7 2008 37 1 2 4 CT NB H NI 3.24 0.13 1.26 9.60 3.76 0.15 1.47 0.39 0.04 

86 7 2008 38 1 2 4 NT NB L NI 2.82 0.11 1.11 9.95 3.53 0.14 1.39 0.40 0.04 

87 7 2008 39 2 2 4 NT NB H NI 3.04 0.12 1.08 9.24 3.72 0.14 1.32 0.36 0.04 

88 7 2008 40 2 2 5 CT NB H NI 3.27 0.14 1.38 9.88 4.06 0.17 1.71 0.42 0.04 

89 7 2008 41 3 2 5 NT NB L NI 3.03 0.11 1.06 9.26 3.69 0.14 1.29 0.35 0.04 

90 7 2008 42 3 2 6 CT NB H NI 2.81 0.12 1.15 9.75 3.36 0.14 1.38 0.41 0.04 

91 7 2008 43 1 2 4 CT NB L NI 3.09 0.12 1.11 9.20 3.80 0.15 1.36 0.36 0.04 

92 7 2008 44 1 2 5 NT NB H NI 2.59 0.12 1.03 8.72 3.24 0.15 1.29 0.40 0.05 

93 7 2008 45 2 2 6 NT NB L NI 2.89 0.13 1.27 9.51 3.66 0.17 1.60 0.44 0.05 

94 7 2008 46 2 2 5 CT NB L NI 2.71 0.13 1.24 9.55 3.31 0.16 1.51 0.46 0.05 

95 7 2008 47 3 2 6 NT NB H NI 3.12 0.12 1.14 9.23 3.75 0.15 1.37 0.37 0.04 

96 7 2008 48 3 2 6 CT NB L NI 2.93 0.12 1.21 10.22 3.51 0.14 1.45 0.41 0.04 

97 8 2009 1 1 1 1 CT NB H I 2.53 0.13 1.13 8.83 2.93 0.15 1.31 0.45 0.05 

98 8 2009 2 1 1 1 NT NB L I 2.19 0.14 1.09 7.98 2.57 0.16 1.27 0.50 0.06 

99 8 2009 3 2 1 1 NT NB H I 1.79 0.12 0.82 6.89 2.18 0.14 1.00 0.46 0.07 

100 8 2009 4 2 1 1 CT NB L I 2.09 0.14 1.00 7.17 2.47 0.16 1.18 0.48 0.07 

101 8 2009 5 3 1 2 NT NB L I 2.41 0.14 1.01 7.35 2.89 0.17 1.22 0.42 0.06 

102 8 2009 6 3 1 2 CT NB H I 2.54 0.16 1.13 7.26 3.13 0.19 1.39 0.44 0.06 

103 8 2009 7 1 1 2 CT NB L I 2.28 0.14 1.02 7.44 2.70 0.16 1.21 0.45 0.06 

104 8 2009 8 1 1 2 NT NB H I 2.25 0.13 0.91 7.15 2.77 0.16 1.12 0.40 0.06 

105 8 2009 9 2 1 3 NT NB L I 2.45 0.14 1.03 7.48 2.99 0.17 1.25 0.42 0.06 

106 8 2009 10 2 1 3 CT NB H I 2.61 0.15 1.18 8.08 3.11 0.17 1.40 0.45 0.06 

107 8 2009 11 3 1 3 NT NB H I 2.49 0.14 1.10 7.62 2.96 0.17 1.31 0.44 0.06 

108 8 2009 12 3 1 3 CT NB L I 2.36 0.13 0.92 7.06 2.90 0.16 1.13 0.39 0.05 

109 8 2009 13 1 1 1 CT B L I 2.66 0.14 1.12 7.99 3.09 0.16 1.30 0.42 0.05 

110 8 2009 14 1 1 1 NT B L I 2.82 0.15 1.18 8.02 3.27 0.17 1.36 0.42 0.05 

111 8 2009 15 2 1 1 NT B H I 2.57 0.14 1.11 7.99 3.06 0.17 1.32 0.43 0.05 

112 8 2009 16 2 1 2 CT B L I 2.44 0.13 1.04 8.02 2.81 0.15 1.20 0.43 0.05 

113 8 2009 17 3 1 2 NT B H I 2.26 0.11 0.98 9.00 2.81 0.14 1.22 0.43 0.05 
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114 8 2009 18 3 1 3 CT B L I 2.45 0.12 0.99 8.51 2.99 0.14 1.21 0.40 0.05 

115 8 2009 19 1 1 1 CT B H I 2.52 0.13 1.08 8.27 2.97 0.15 1.27 0.43 0.05 

116 8 2009 20 1 1 3 NT B H I 2.31 0.13 1.10 8.57 2.84 0.16 1.36 0.48 0.06 

117 8 2009 21 2 1 2 NT B L I 2.48 0.14 1.30 9.48 3.02 0.17 1.59 0.53 0.06 

118 8 2009 22 2 1 2 CT B H I 2.28 0.12 0.85 7.42 2.85 0.14 1.07 0.38 0.05 

119 8 2009 23 3 1 3 NT B L I 2.13 0.11 0.95 8.80 2.71 0.14 1.21 0.45 0.05 

120 8 2009 24 3 1 3 CT B H I 2.15 0.13 1.05 8.06 2.62 0.16 1.29 0.49 0.06 

121 8 2009 25 1 2 4 CT B H NI 2.43 0.12 1.00 8.17 2.99 0.15 1.23 0.41 0.05 

122 8 2009 26 1 2 4 NT B H NI 2.42 0.12 1.02 8.21 2.90 0.15 1.23 0.42 0.05 

123 8 2009 27 2 2 5 NT B H NI 2.22 0.12 1.05 8.46 2.64 0.15 1.25 0.47 0.06 

124 8 2009 28 2 2 4 CT B L NI 2.42 0.13 1.13 8.55 2.83 0.15 1.32 0.47 0.05 

125 8 2009 29 3 2 6 NT B H NI 2.60 0.14 1.16 8.49 3.13 0.16 1.39 0.44 0.05 

126 8 2009 30 3 2 5 CT B L NI 2.43 0.12 0.98 8.01 2.98 0.15 1.20 0.40 0.05 

127 8 2009 31 1 2 6 CT B L NI 2.39 0.12 0.98 8.34 3.02 0.15 1.24 0.41 0.05 

128 8 2009 32 1 2 4 NT B L NI 2.33 0.12 0.90 7.84 2.87 0.14 1.11 0.39 0.05 

129 8 2009 33 2 2 5 NT B L NI 2.45 0.12 1.02 8.19 3.01 0.15 1.25 0.42 0.05 

130 8 2009 34 2 2 5 CT B H NI 2.42 0.13 1.04 8.25 2.86 0.15 1.23 0.43 0.05 

131 8 2009 35 3 2 6 NT B L NI 2.54 0.13 1.03 8.15 3.10 0.15 1.26 0.41 0.05 

132 8 2009 36 3 2 6 CT B H NI 2.58 0.13 1.12 8.72 3.09 0.15 1.34 0.43 0.05 

133 8 2009 37 1 2 4 CT NB H NI 2.44 0.14 1.14 8.36 2.93 0.16 1.37 0.47 0.06 

134 8 2009 38 1 2 4 NT NB L NI 2.02 0.11 0.82 7.68 2.52 0.13 1.02 0.41 0.05 

135 8 2009 39 2 2 4 NT NB H NI 2.50 0.13 1.08 8.52 3.07 0.16 1.33 0.43 0.05 

136 8 2009 40 2 2 5 CT NB H NI 2.74 0.13 1.06 8.09 3.48 0.17 1.34 0.39 0.05 

137 8 2009 41 3 2 5 NT NB L NI 2.78 0.13 1.10 8.34 3.39 0.16 1.34 0.39 0.05 

138 8 2009 42 3 2 6 CT NB H NI 2.76 0.13 1.04 8.12 3.37 0.16 1.27 0.38 0.05 

139 8 2009 43 1 2 4 CT NB L NI 2.51 0.10 1.00 9.62 3.11 0.13 1.24 0.40 0.04 

140 8 2009 44 1 2 5 NT NB H NI 2.43 0.11 1.10 9.67 3.02 0.14 1.37 0.45 0.05 

141 8 2009 45 2 2 6 NT NB L NI 2.20 0.10 0.92 9.11 2.75 0.13 1.15 0.42 0.05 

142 8 2009 46 2 2 5 CT NB L NI 2.45 0.10 1.02 9.68 3.04 0.13 1.26 0.41 0.04 
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143 8 2009 47 3 2 6 NT NB H NI 2.89 0.12 1.17 9.66 3.47 0.15 1.40 0.40 0.04 

144 8 2009 48 3 2 6 CT NB L NI 2.76 0.12 1.12 9.32 3.23 0.14 1.31 0.40 0.04 

145 9 
 

1 1 1 1 CT NB H I 2.68 0.11 1.16 10.13 3.35 0.14 1.45 0.43 0.04 

146 9 2010 2 1 1 1 NT NB L I 1.93 0.08 0.84 10.14 2.43 0.10 1.06 0.44 0.04 

147 9 2010 3 2 1 1 NT NB H I 1.95 0.09 0.88 9.33 2.42 0.12 1.09 0.45 0.05 

148 9 2010 4 2 1 1 CT NB L I 2.15 0.10 0.92 9.55 2.77 0.12 1.18 0.43 0.04 

149 9 2010 5 3 1 2 NT NB L I 2.02 0.09 0.86 9.87 2.55 0.11 1.08 0.43 0.04 

150 9 2010 6 3 1 2 CT NB H I 2.34 0.11 0.96 9.08 3.07 0.14 1.26 0.41 0.05 

151 9 2010 7 1 1 2 CT NB L I 2.12 0.10 0.92 9.52 2.73 0.12 1.18 0.43 0.05 

152 9 2010 8 1 1 2 NT NB H I 1.97 0.09 0.84 9.54 2.36 0.11 1.01 0.43 0.04 

153 9 2010 9 2 1 3 NT NB L I 1.69 0.07 0.66 9.56 2.15 0.09 0.84 0.39 0.04 

154 9 2010 10 2 1 3 CT NB H I 2.08 0.09 0.86 9.14 2.66 0.12 1.10 0.41 0.05 

155 9 2010 11 3 1 3 NT NB H I 1.96 0.09 0.77 8.92 2.49 0.11 0.98 0.39 0.04 

156 9 2010 12 3 1 3 CT NB L I 2.35 0.11 1.09 10.03 2.75 0.13 1.28 0.46 0.05 

157 9 2010 13 1 1 1 CT B L I 1.70 0.07 0.72 9.72 2.18 0.10 0.92 0.42 0.04 

158 9 2010 14 1 1 1 NT B L I 2.20 0.09 0.87 9.44 2.84 0.12 1.12 0.39 0.04 

159 9 2010 15 2 1 1 NT B H I 2.78 0.13 1.20 9.56 3.53 0.16 1.53 0.43 0.05 

160 9 2010 16 2 1 2 CT B L I 2.22 0.09 0.83 8.78 2.84 0.12 1.06 0.37 0.04 

161 9 2010 17 3 1 2 NT B H I 2.34 0.10 0.92 9.23 3.07 0.13 1.21 0.40 0.04 

162 9 2010 18 3 1 3 CT B L I 2.73 0.12 1.10 9.19 3.49 0.15 1.41 0.40 0.04 

163 9 2010 19 1 1 1 CT B H I 2.18 0.10 0.86 8.45 2.88 0.13 1.13 0.39 0.05 

164 9 2010 20 1 1 3 NT B H I 1.92 0.08 0.74 9.17 2.52 0.11 0.97 0.38 0.04 

165 9 2010 21 2 1 2 NT B L I 2.01 0.09 0.85 9.37 2.59 0.12 1.09 0.42 0.04 

166 9 2010 22 2 1 2 CT B H I 2.34 0.10 0.96 9.17 3.02 0.13 1.23 0.41 0.04 

167 9 2010 23 3 1 3 NT B L I 2.26 0.10 0.92 9.63 3.03 0.13 1.24 0.41 0.04 

168 9 2010 24 3 1 3 CT B H I 2.46 0.10 0.96 9.36 3.03 0.13 1.18 0.39 0.04 

169 9 2010 25 1 2 4 CT B H NI 2.28 0.09 0.80 8.78 3.01 0.12 1.05 0.35 0.04 

170 9 2010 26 1 2 4 NT B H NI 2.55 0.10 1.01 9.88 3.42 0.14 1.35 0.39 0.04 

171 9 2010 27 2 2 5 NT B H NI 2.71 0.11 1.06 10.08 3.52 0.14 1.38 0.39 0.04 
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172 9 2010 28 2 2 4 CT B L NI 2.14 0.10 0.93 9.08 2.89 0.14 1.25 0.43 0.05 

173 9 2010 29 3 2 6 NT B H NI 3.49 0.12 1.22 10.61 4.57 0.15 1.60 0.35 0.03 

174 9 2010 30 3 2 5 CT B L NI 2.53 0.11 1.04 9.49 3.26 0.14 1.34 0.41 0.04 

175 9 2010 31 1 2 6 CT B L NI 2.00 0.09 0.80 9.14 2.64 0.12 1.06 0.40 0.04 

176 9 2010 32 1 2 4 NT B L NI 2.07 0.10 0.82 8.01 2.73 0.14 1.09 0.40 0.05 

177 9 2010 33 2 2 5 NT B L NI 2.66 0.11 1.11 9.78 3.43 0.15 1.43 0.42 0.04 

178 9 2010 34 2 2 5 CT B H NI 2.26 0.10 0.81 8.36 2.87 0.12 1.03 0.36 0.04 

179 9 2010 35 3 2 6 NT B L NI 2.60 0.12 1.08 9.27 3.46 0.16 1.44 0.42 0.04 

180 9 2010 36 3 2 6 CT B H NI 2.64 0.13 1.20 8.99 3.41 0.17 1.55 0.46 0.05 

181 9 2010 37 1 2 4 CT NB H NI 2.51 0.12 1.05 8.92 3.26 0.15 1.37 0.42 0.05 

182 9 2010 38 1 2 4 NT NB L NI 2.33 0.11 0.95 8.30 3.03 0.15 1.23 0.41 0.05 

183 9 2010 39 2 2 4 NT NB H NI 2.47 0.12 1.02 8.81 3.41 0.16 1.41 0.41 0.05 

184 9 2010 40 2 2 5 CT NB H NI 2.95 0.14 1.25 9.01 3.89 0.18 1.65 0.42 0.05 

185 9 2010 41 3 2 5 NT NB L NI 2.16 0.10 0.80 7.84 2.92 0.14 1.08 0.37 0.05 

186 9 2010 42 3 2 6 CT NB H NI 2.17 0.10 0.76 7.36 2.80 0.13 0.98 0.35 0.05 

187 9 2010 43 1 2 4 CT NB L NI 2.66 0.13 1.11 8.57 3.46 0.17 1.44 0.42 0.05 

188 9 2010 44 1 2 5 NT NB H NI 2.74 0.13 1.10 8.54 3.70 0.17 1.49 0.40 0.05 

189 9 2010 45 2 2 6 NT NB L NI 2.24 0.12 0.97 7.93 2.87 0.16 1.25 0.43 0.05 

190 9 2010 46 2 2 5 CT NB L NI 2.28 0.12 0.97 8.05 2.99 0.16 1.27 0.43 0.05 

191 9 2010 47 3 2 6 NT NB H NI 2.25 0.12 0.92 7.45 3.11 0.17 1.27 0.41 0.05 

192 9 2010 48 3 2 6 CT NB L NI 2.24 0.12 0.87 7.57 3.05 0.16 1.18 0.39 0.05 

193 10 2011 1 1 1 1 CT NB H I 2.31 0.11 0.92 8.76 2.98 0.14 1.19 0.40 0.05 

194 10 2011 2 1 1 1 NT NB L I 1.93 0.09 0.78 8.39 2.49 0.12 1.01 0.41 0.05 

195 10 2011 3 2 1 1 NT NB H I 2.35 0.11 1.00 8.82 2.98 0.14 1.27 0.43 0.05 

196 10 2011 4 2 1 1 CT NB L I 2.29 0.10 0.94 9.30 2.88 0.13 1.18 0.41 0.04 

197 10 2011 5 3 1 2 NT NB L I 1.87 0.08 0.67 8.33 2.46 0.11 0.88 0.36 0.04 

198 10 2011 6 3 1 2 CT NB H I 2.64 0.11 0.96 8.60 3.56 0.15 1.29 0.36 0.04 

199 10 2011 7 1 1 2 CT NB L I 2.48 0.12 1.07 9.24 3.17 0.15 1.37 0.43 0.05 

200 10 2011 8 1 1 2 NT NB H I 2.19 0.11 1.00 8.88 2.69 0.14 1.23 0.46 0.05 
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201 10 2011 9 2 1 3 NT NB L I 2.87 0.13 1.11 8.70 3.45 0.15 1.33 0.39 0.04 

202 10 2011 10 2 1 3 CT NB H I 2.35 0.11 0.94 8.66 3.00 0.14 1.21 0.40 0.05 

203 10 2011 11 3 1 3 NT NB H I 3.30 0.13 1.22 9.15 3.99 0.16 1.48 0.37 0.04 

204 10 2011 12 3 1 3 CT NB L I 2.04 0.10 0.76 7.83 2.68 0.13 1.00 0.37 0.05 

205 10 2011 13 1 1 1 CT B L I 2.16 0.10 0.82 8.12 2.82 0.13 1.08 0.38 0.05 

206 10 2011 14 1 1 1 NT B L I 2.35 0.12 0.95 7.96 2.98 0.15 1.21 0.40 0.05 

207 10 2011 15 2 1 1 NT B H I 2.60 0.13 1.00 7.67 3.38 0.17 1.29 0.38 0.05 

208 10 2011 16 2 1 2 CT B L I 2.57 0.13 0.98 7.47 3.17 0.16 1.21 0.38 0.05 

209 10 2011 17 3 1 2 NT B H I 1.82 0.12 0.77 6.41 2.41 0.16 1.01 0.42 0.07 

210 10 2011 18 3 1 3 CT B L I 2.44 0.15 1.03 7.02 3.17 0.19 1.34 0.42 0.06 

211 10 2011 19 1 1 1 CT B H I 2.27 0.14 0.92 6.60 2.98 0.18 1.21 0.41 0.06 

212 10 2011 20 1 1 3 NT B H I 2.15 0.10 0.89 8.94 2.86 0.13 1.18 0.41 0.05 

213 10 2011 21 2 1 2 NT B L I 2.23 0.11 0.91 7.99 2.96 0.15 1.21 0.41 0.05 

214 10 2011 22 2 1 2 CT B H I 2.47 0.10 0.93 9.11 3.21 0.13 1.21 0.38 0.04 

215 10 2011 23 3 1 3 NT B L I 2.79 0.11 1.06 9.44 3.49 0.14 1.32 0.38 0.04 

216 10 2011 24 3 1 3 CT B H I 2.28 0.10 0.87 8.88 3.04 0.13 1.16 0.38 0.04 

217 10 2011 25 1 2 4 CT B H NI 2.14 0.09 0.77 8.73 2.98 0.12 1.08 0.36 0.04 

218 10 2011 26 1 2 4 NT B H NI 2.56 0.12 1.14 9.87 3.31 0.15 1.47 0.45 0.05 

219 10 2011 27 2 2 5 NT B H NI 2.12 0.10 0.89 8.99 2.80 0.13 1.17 0.42 0.05 

220 10 2011 28 2 2 4 CT B L NI 2.47 0.12 1.10 8.80 3.19 0.16 1.42 0.45 0.05 

221 10 2011 29 3 2 6 NT B H NI 2.20 0.10 0.89 8.91 2.90 0.13 1.17 0.40 0.05 

222 10 2011 30 3 2 5 CT B L NI 2.25 0.10 0.88 8.65 2.97 0.13 1.16 0.39 0.05 

223 10 2011 31 1 2 6 CT B L NI 2.43 0.12 1.05 8.91 3.19 0.15 1.37 0.43 0.05 

224 10 2011 32 1 2 4 NT B L NI 2.47 0.10 0.98 9.57 3.19 0.13 1.26 0.40 0.04 

225 10 2011 33 2 2 5 NT B L NI 2.85 0.12 1.14 9.53 3.54 0.15 1.41 0.40 0.04 

226 10 2011 34 2 2 5 CT B H NI 2.32 0.10 0.86 8.63 3.09 0.13 1.15 0.37 0.04 

227 10 2011 35 3 2 6 NT B L NI 2.38 0.11 0.95 8.72 3.00 0.14 1.20 0.40 0.05 

228 10 2011 36 3 2 6 CT B H NI 2.16 0.10 0.85 8.50 2.78 0.13 1.10 0.40 0.05 

229 10 2011 37 1 2 4 CT NB H NI 3.12 0.14 1.28 9.25 3.99 0.18 1.63 0.41 0.04 
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230 10 2011 38 1 2 4 NT NB L NI 2.69 0.11 1.01 9.27 3.49 0.14 1.32 0.38 0.04 

231 10 2011 39 2 2 4 NT NB H NI 2.47 0.10 0.92 8.84 3.29 0.14 1.22 0.37 0.04 

232 10 2011 40 2 2 5 CT NB H NI 2.99 0.13 1.21 9.52 3.74 0.16 1.51 0.40 0.04 

233 10 2011 41 3 2 5 NT NB L NI 2.17 0.08 0.74 9.03 2.89 0.11 0.99 0.34 0.04 

234 10 2011 42 3 2 6 CT NB H NI 2.33 0.10 0.81 8.51 3.12 0.13 1.09 0.35 0.04 

235 10 2011 43 1 2 4 CT NB L NI 2.99 0.13 1.15 9.12 3.85 0.16 1.48 0.38 0.04 

236 10 2011 44 1 2 5 NT NB H NI 2.66 0.11 0.96 8.84 3.43 0.14 1.24 0.36 0.04 

237 10 2011 45 2 2 6 NT NB L NI 2.83 0.12 1.07 9.01 3.81 0.16 1.45 0.38 0.04 

238 10 2011 46 2 2 5 CT NB L NI 2.84 0.11 1.05 9.16 3.67 0.15 1.36 0.37 0.04 

239 10 2011 47 3 2 6 NT NB H NI 3.76 0.15 1.44 9.41 4.48 0.18 1.71 0.38 0.04 

240 10 2011 48 3 2 6 CT NB L NI 3.11 0.12 1.11 8.94 4.07 0.16 1.45 0.36 0.04 

241 11 2012 1 1 1 1 CT NB H I 1.80 0.10 0.89 9.09 2.40 0.13 1.19 0.50 0.05 

242 11 2012 2 1 1 1 NT NB L I 1.89 0.11 0.98 9.24 2.39 0.13 1.23 0.52 0.06 

243 11 2012 3 2 1 1 NT NB H I 1.95 0.10 0.99 9.71 2.46 0.13 1.25 0.51 0.05 

244 11 2012 4 2 1 1 CT NB L I 2.15 0.12 1.11 9.26 2.66 0.15 1.37 0.52 0.06 

245 11 2012 5 3 1 2 NT NB L I 1.72 0.09 0.81 9.22 2.28 0.12 1.07 0.47 0.05 

246 11 2012 6 3 1 2 CT NB H I 2.13 0.12 1.04 8.95 2.64 0.14 1.29 0.49 0.05 

247 11 2012 7 1 1 2 CT NB L I 2.15 0.12 1.23 10.01 2.65 0.15 1.51 0.57 0.06 

248 11 2012 8 1 1 2 NT NB H I 1.74 0.10 0.90 9.39 2.24 0.12 1.17 0.52 0.06 

249 11 2012 9 2 1 3 NT NB L I 2.18 0.11 1.07 9.58 2.73 0.14 1.34 0.49 0.05 

250 11 2012 10 2 1 3 CT NB H I 2.27 0.12 1.12 9.55 2.86 0.15 1.41 0.49 0.05 

251 11 2012 11 3 1 3 NT NB H I 2.10 0.11 0.98 8.62 2.57 0.14 1.19 0.46 0.05 

252 11 2012 12 3 1 3 CT NB L I 2.16 0.10 0.94 9.06 2.96 0.14 1.28 0.43 0.05 

253 11 2012 13 1 1 1 CT B L I 2.72 0.13 1.25 9.68 3.35 0.16 1.53 0.46 0.05 

254 11 2012 14 1 1 1 NT B L I 1.80 0.09 0.80 9.19 2.45 0.12 1.09 0.45 0.05 

255 11 2012 15 2 1 1 NT B H I 2.12 0.10 0.97 9.87 2.93 0.14 1.35 0.46 0.05 

256 11 2012 16 2 1 2 CT B L I 2.13 0.11 1.04 9.52 2.77 0.14 1.35 0.49 0.05 

257 11 2012 17 3 1 2 NT B H I 1.98 0.09 0.89 9.42 2.67 0.13 1.20 0.45 0.05 

258 11 2012 18 3 1 3 CT B L I 2.61 0.12 1.19 9.70 3.34 0.16 1.52 0.46 0.05 
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259 11 2012 19 1 1 1 CT B H I 2.22 0.11 1.03 9.70 2.97 0.14 1.39 0.47 0.05 

260 11 2012 20 1 1 3 NT B H I 2.25 0.11 1.06 9.93 2.86 0.14 1.34 0.47 0.05 

261 11 2012 21 2 1 2 NT B L I 2.20 0.12 1.13 9.67 2.95 0.16 1.51 0.51 0.05 

262 11 2012 22 2 1 2 CT B H I 2.08 0.10 0.90 9.20 2.78 0.13 1.21 0.43 0.05 

263 11 2012 23 3 1 3 NT B L I 2.43 0.12 1.16 10.06 3.06 0.15 1.46 0.48 0.05 

264 11 2012 24 3 1 3 CT B H I 1.98 0.10 0.91 9.49 2.56 0.12 1.18 0.46 0.05 

265 11 2012 25 1 2 4 CT B H NI 2.87 0.15 1.45 9.61 3.59 0.19 1.82 0.51 0.05 

266 11 2012 26 1 2 4 NT B H NI 2.17 0.11 1.09 9.56 2.83 0.15 1.41 0.50 0.05 

267 11 2012 27 2 2 5 NT B H NI 2.28 0.12 1.21 10.14 2.87 0.15 1.52 0.53 0.05 

268 11 2012 28 2 2 4 CT B L NI 2.28 0.11 1.00 9.46 2.94 0.14 1.29 0.44 0.05 

269 11 2012 29 3 2 6 NT B H NI 2.17 0.11 1.01 9.12 2.80 0.14 1.30 0.46 0.05 

270 11 2012 30 3 2 5 CT B L NI 1.85 0.09 0.82 8.96 2.42 0.12 1.07 0.44 0.05 

271 11 2012 31 1 2 6 CT B L NI 2.36 0.11 0.99 9.12 3.04 0.14 1.28 0.42 0.05 

272 11 2012 32 1 2 4 NT B L NI 2.07 0.11 1.02 9.27 2.71 0.14 1.34 0.49 0.05 

273 11 2012 33 2 2 5 NT B L NI 2.18 0.10 0.94 8.97 2.79 0.13 1.20 0.43 0.05 

274 11 2012 34 2 2 5 CT B H NI 2.82 0.13 1.21 9.54 3.52 0.16 1.52 0.43 0.05 

275 11 2012 35 3 2 6 NT B L NI 2.23 0.10 0.93 9.38 2.78 0.12 1.16 0.42 0.04 

276 11 2012 36 3 2 6 CT B H NI 2.47 0.12 1.11 9.13 3.12 0.15 1.40 0.45 0.05 

277 11 2012 37 1 2 4 CT NB H NI 3.04 0.15 1.38 9.28 3.74 0.18 1.69 0.45 0.05 

278 11 2012 38 1 2 4 NT NB L NI 2.89 0.15 1.45 10.01 3.47 0.17 1.74 0.50 0.05 

279 11 2012 39 2 2 4 NT NB H NI 2.50 0.12 1.08 9.14 3.18 0.15 1.37 0.43 0.05 

280 11 2012 40 2 2 5 CT NB H NI 2.77 0.14 1.33 9.69 3.44 0.17 1.65 0.48 0.05 

281 11 2012 41 3 2 5 NT NB L NI 2.33 0.12 1.09 9.20 2.92 0.15 1.36 0.47 0.05 

282 11 2012 42 3 2 6 CT NB H NI 2.67 0.13 1.32 9.95 3.23 0.16 1.60 0.49 0.05 

283 11 2012 43 1 2 4 CT NB L NI 2.91 0.14 1.39 9.93 3.57 0.17 1.71 0.48 0.05 

284 11 2012 44 1 2 5 NT NB H NI 2.64 0.12 1.15 9.74 3.38 0.15 1.47 0.43 0.04 

285 11 2012 45 2 2 6 NT NB L NI 2.52 0.12 1.17 10.09 3.23 0.15 1.50 0.46 0.05 

286 11 2012 46 2 2 5 CT NB L NI 2.39 0.12 1.16 9.75 2.99 0.15 1.44 0.48 0.05 

287 11 2012 47 3 2 6 NT NB H NI 2.56 0.13 1.19 9.31 3.32 0.17 1.55 0.47 0.05 
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288 11 2012 48 3 2 6 CT NB L NI 2.50 0.12 1.15 9.68 3.20 0.15 1.48 0.46 0.05 

289 12 2013 1 1 1 1 CT NB H I 1.73 0.09 0.84 9.32 2.26 0.12 1.10 0.48 0.05 

290 12 2013 2 1 1 1 NT NB L I 2.82 0.15 1.37 9.37 3.44 0.18 1.67 0.49 0.05 

291 12 2013 3 2 1 1 NT NB H I 1.92 0.10 0.84 8.52 2.46 0.13 1.07 0.44 0.05 

292 12 2013 4 2 1 1 CT NB L I 2.28 0.12 1.07 9.18 2.84 0.15 1.34 0.47 0.05 

293 12 2013 5 3 1 2 NT NB L I 1.93 0.11 0.90 8.24 2.39 0.14 1.12 0.47 0.06 

294 12 2013 6 3 1 2 CT NB H I 2.00 0.10 0.87 8.85 2.64 0.13 1.15 0.43 0.05 

295 12 2013 7 1 1 2 CT NB L I 2.14 0.10 0.95 9.11 2.70 0.13 1.19 0.44 0.05 

296 12 2013 8 1 1 2 NT NB H I 2.70 0.15 1.31 8.97 3.27 0.18 1.59 0.49 0.05 

297 12 2013 9 2 1 3 NT NB L I 2.14 0.11 0.99 9.18 2.63 0.13 1.21 0.46 0.05 

298 12 2013 10 2 1 3 CT NB H I 2.20 0.12 1.01 8.62 2.87 0.15 1.32 0.46 0.05 

299 12 2013 11 3 1 3 NT NB H I 2.41 0.11 0.97 8.65 3.08 0.14 1.24 0.40 0.05 

300 12 2013 12 3 1 3 CT NB L I 2.02 0.10 0.87 8.55 2.73 0.14 1.17 0.43 0.05 

301 12 2013 13 1 1 1 CT B L I 2.06 0.10 0.94 9.42 2.70 0.13 1.23 0.46 0.05 

302 12 2013 14 1 1 1 NT B L I 2.00 0.10 0.87 8.89 2.64 0.13 1.15 0.44 0.05 

303 12 2013 15 2 1 1 NT B H I 2.41 0.12 1.08 9.19 3.07 0.15 1.37 0.45 0.05 

304 12 2013 16 2 1 2 CT B L I 2.55 0.13 1.26 9.53 3.30 0.17 1.63 0.49 0.05 

305 12 2013 17 3 1 2 NT B H I 2.50 0.12 1.05 8.98 3.30 0.15 1.38 0.42 0.05 

306 12 2013 18 3 1 3 CT B L I 2.12 0.10 0.90 8.82 2.79 0.13 1.18 0.42 0.05 

307 12 2013 19 1 1 1 CT B H I 2.12 0.11 1.00 8.71 2.78 0.15 1.31 0.47 0.05 

308 12 2013 20 1 1 3 NT B H I 1.92 0.10 0.94 9.44 2.56 0.13 1.25 0.49 0.05 

309 12 2013 21 2 1 2 NT B L I 2.57 0.12 1.17 9.56 3.20 0.15 1.45 0.45 0.05 

310 12 2013 22 2 1 2 CT B H I 2.16 0.10 0.90 8.61 2.90 0.14 1.20 0.41 0.05 

311 12 2013 23 3 1 3 NT B L I 1.71 0.08 0.64 8.16 2.34 0.11 0.88 0.37 0.05 

312 12 2013 24 3 1 3 CT B H I 2.58 0.11 1.00 8.87 3.31 0.14 1.28 0.39 0.04 

313 12 2013 25 1 2 4 CT B H NI 2.25 0.11 0.98 8.58 2.96 0.15 1.29 0.44 0.05 

314 12 2013 26 1 2 4 NT B H NI 1.87 0.10 0.79 8.27 2.48 0.13 1.05 0.42 0.05 

315 12 2013 27 2 2 5 NT B H NI 2.19 0.11 0.92 8.71 2.98 0.14 1.25 0.42 0.05 

316 12 2013 28 2 2 4 CT B L NI 2.15 0.11 0.90 8.41 2.85 0.14 1.19 0.42 0.05 
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317 12 2013 29 3 2 6 NT B H NI 2.63 0.13 1.19 8.84 3.36 0.17 1.52 0.45 0.05 

318 12 2013 30 3 2 5 CT B L NI 2.11 0.10 0.81 8.22 2.74 0.13 1.05 0.38 0.05 

319 12 2013 31 1 2 6 CT B L NI 2.31 0.11 1.03 9.37 2.96 0.14 1.31 0.44 0.05 

320 12 2013 32 1 2 4 NT B L NI 2.23 0.10 0.93 8.91 2.99 0.14 1.25 0.42 0.05 

321 12 2013 33 2 2 5 NT B L NI 2.74 0.13 1.25 9.70 3.49 0.16 1.59 0.46 0.05 

322 12 2013 34 2 2 5 CT B H NI 2.20 0.11 0.90 8.53 2.93 0.14 1.20 0.41 0.05 

323 12 2013 35 3 2 6 NT B L NI 2.56 0.13 1.15 9.06 3.24 0.16 1.45 0.45 0.05 

324 12 2013 36 3 2 6 CT B H NI 2.66 0.13 1.15 9.12 3.53 0.17 1.53 0.43 0.05 

325 12 2013 37 1 2 4 CT NB H NI 2.69 0.13 1.16 8.94 3.40 0.16 1.46 0.43 0.05 

326 12 2013 38 1 2 4 NT NB L NI 2.38 0.10 0.91 8.86 3.24 0.14 1.24 0.38 0.04 

327 12 2013 39 2 2 4 NT NB H NI 2.37 0.10 0.91 8.72 3.14 0.14 1.20 0.38 0.04 

328 12 2013 40 2 2 5 CT NB H NI 2.21 0.11 0.90 8.32 2.98 0.15 1.21 0.41 0.05 

329 12 2013 41 3 2 5 NT NB L NI 2.44 0.11 1.00 8.86 3.33 0.15 1.37 0.41 0.05 

330 12 2013 42 3 2 6 CT NB H NI 2.45 0.12 1.01 8.39 3.12 0.15 1.29 0.41 0.05 

331 12 2013 43 1 2 4 CT NB L NI 2.79 0.13 1.23 9.30 3.64 0.17 1.60 0.44 0.05 

332 12 2013 44 1 2 5 NT NB H NI 2.60 0.12 1.00 8.55 3.45 0.16 1.33 0.39 0.05 

333 12 2013 45 2 2 6 NT NB L NI 2.47 0.12 1.03 8.71 3.24 0.15 1.35 0.42 0.05 

334 12 2013 46 2 2 5 CT NB L NI 2.41 0.11 0.97 8.75 3.10 0.14 1.25 0.40 0.05 

335 12 2013 47 3 2 6 NT NB H NI 3.27 0.15 1.42 9.47 4.17 0.19 1.81 0.43 0.05 

336 12 2013 48 3 2 6 CT NB L NI 1.96 0.09 0.74 8.45 2.64 0.12 0.99 0.37 0.04 

337 13 2014 1 1 1 1 CT NB H I 2.27 0.12 1.16 9.76 2.79 0.15 1.43 0.51 0.05 

338 13 2014 2 1 1 1 NT NB L I 1.94 0.09 0.88 10.15 2.42 0.11 1.10 0.45 0.04 

339 13 2014 3 2 1 1 NT NB H I 1.93 0.10 0.90 9.28 2.47 0.12 1.15 0.47 0.05 

340 13 2014 4 2 1 1 CT NB L I 2.29 0.10 1.10 10.67 2.89 0.13 1.39 0.48 0.05 

341 13 2014 5 3 1 2 NT NB L I 2.51 0.11 1.17 10.41 3.11 0.14 1.44 0.46 0.04 

342 13 2014 6 3 1 2 CT NB H I 2.27 0.09 0.98 10.38 3.02 0.13 1.30 0.43 0.04 

343 13 2014 7 1 1 2 CT NB L I 2.32 0.12 1.44 11.61 2.75 0.15 1.70 0.62 0.05 

344 13 2014 8 1 1 2 NT NB H I 2.94 0.15 1.59 10.35 3.49 0.18 1.89 0.54 0.05 

345 13 2014 9 2 1 3 NT NB L I 2.89 0.14 1.48 10.54 3.55 0.17 1.81 0.51 0.05 
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346 13 2014 10 2 1 3 CT NB H I 2.69 0.13 1.30 10.18 3.32 0.16 1.61 0.48 0.05 

347 13 2014 11 3 1 3 NT NB H I 2.17 0.10 1.09 11.39 2.81 0.12 1.41 0.50 0.04 

348 13 2014 12 3 1 3 CT NB L I 2.23 0.10 1.05 10.26 2.90 0.13 1.36 0.47 0.05 

349 13 2014 13 1 1 1 CT B L I 2.30 0.10 1.15 11.57 2.87 0.12 1.43 0.50 0.04 

350 13 2014 14 1 1 1 NT B L I 1.58 0.06 0.71 11.80 2.09 0.08 0.94 0.45 0.04 

351 13 2014 15 2 1 1 NT B H I 2.03 0.10 0.93 9.67 2.78 0.13 1.27 0.46 0.05 

352 13 2014 16 2 1 2 CT B L I 2.12 0.11 1.12 10.42 2.72 0.14 1.43 0.53 0.05 

353 13 2014 17 3 1 2 NT B H I 2.48 0.13 1.17 8.86 3.03 0.16 1.43 0.47 0.05 

354 13 2014 18 3 1 3 CT B L I 2.39 0.12 1.05 9.10 3.19 0.15 1.40 0.44 0.05 

355 13 2014 19 1 1 1 CT B H I 1.98 0.12 0.93 7.95 2.52 0.15 1.19 0.47 0.06 

356 13 2014 20 1 1 3 NT B H I 2.20 0.11 0.98 8.83 2.82 0.14 1.26 0.45 0.05 

357 13 2014 21 2 1 2 NT B L I 2.26 0.12 1.09 9.34 2.89 0.15 1.40 0.48 0.05 

358 13 2014 22 2 1 2 CT B H I 2.33 0.12 1.14 9.33 2.91 0.15 1.42 0.49 0.05 

359 13 2014 23 3 1 3 NT B L I 1.86 0.10 0.83 8.28 2.36 0.13 1.05 0.44 0.05 

360 13 2014 24 3 1 3 CT B H I 2.35 0.13 1.12 8.95 2.90 0.15 1.38 0.48 0.05 

361 13 2014 25 1 2 4 CT B H NI 2.55 0.10 0.70 7.25 3.31 0.12 0.90 0.27 0.04 

362 13 2014 26 1 2 4 NT B H NI 1.89 0.11 0.83 7.53 2.49 0.15 1.09 0.44 0.06 

363 13 2014 27 2 2 5 NT B H NI 1.77 0.09 0.72 8.29 2.33 0.11 0.95 0.41 0.05 

364 13 2014 28 2 2 4 CT B L NI 2.02 0.11 0.92 8.63 2.50 0.13 1.14 0.45 0.05 

365 13 2014 29 3 2 6 NT B H NI 2.03 0.10 0.89 8.78 2.65 0.13 1.16 0.44 0.05 

366 13 2014 30 3 2 5 CT B L NI 2.09 0.10 0.94 9.46 2.72 0.13 1.21 0.45 0.05 

367 13 2014 31 1 2 6 CT B L NI 1.87 0.09 0.79 9.03 2.38 0.11 1.00 0.42 0.05 

368 13 2014 32 1 2 4 NT B L NI 1.92 0.10 0.86 9.09 2.43 0.12 1.09 0.45 0.05 

369 13 2014 33 2 2 5 NT B L NI 2.42 0.10 1.03 10.61 3.16 0.13 1.34 0.43 0.04 

370 13 2014 34 2 2 5 CT B H NI 2.32 0.10 1.09 10.96 2.85 0.12 1.33 0.47 0.04 

371 13 2014 35 3 2 6 NT B L NI 1.89 0.09 0.77 8.32 2.49 0.12 1.01 0.40 0.05 

372 13 2014 36 3 2 6 CT B H NI 2.50 0.11 1.06 9.57 3.20 0.14 1.36 0.42 0.04 

373 13 2014 37 1 2 4 CT NB H NI 2.57 0.11 1.07 9.42 3.44 0.15 1.43 0.42 0.04 

374 13 2014 38 1 2 4 NT NB L NI 2.14 0.08 0.88 11.36 2.73 0.10 1.12 0.41 0.04 
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375 13 2014 39 2 2 4 NT NB H NI 3.03 0.14 1.39 9.84 3.82 0.18 1.75 0.46 0.05 

376 13 2014 40 2 2 5 CT NB H NI 2.56 0.12 1.16 9.95 3.25 0.15 1.48 0.45 0.05 

377 13 2014 41 3 2 5 NT NB L NI 2.19 0.10 0.94 9.77 2.81 0.12 1.20 0.43 0.04 

378 13 2014 42 3 2 6 CT NB H NI 2.34 0.10 0.95 10.04 3.15 0.13 1.29 0.41 0.04 

379 13 2014 43 1 2 4 CT NB L NI 2.81 0.13 1.28 10.04 3.46 0.16 1.57 0.45 0.05 

380 13 2014 44 1 2 5 NT NB H NI 2.80 0.12 1.15 9.75 3.54 0.15 1.45 0.41 0.04 

381 13 2014 45 2 2 6 NT NB L NI 1.99 0.09 0.75 8.56 2.56 0.11 0.97 0.38 0.04 

382 13 2014 46 2 2 5 CT NB L NI 2.42 0.09 1.05 11.31 3.10 0.12 1.35 0.43 0.04 

383 13 2014 47 3 2 6 NT NB H NI 2.81 0.13 1.27 10.11 3.44 0.15 1.56 0.45 0.04 

384 13 2014 48 3 2 6 CT NB L NI 2.21 0.09 0.91 10.45 3.00 0.12 1.23 0.41 0.04 
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Appendix E 

This appendix contains an example of the SAS program used for the ANCOVA of the 

relationship between soil water potential (-MPa) and water content (g/g) as affected by residue 

level [Nrate; high (H) and low (L)], burning [burn (B) and no-burn (NB)], tillage [conventional 

tillage (CT) and no-tillage (NT)], and irrigation [irrigated (I) and non-irrigated (NI)]. 
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Title 'Ryan, N: Analysis of Co variance with all trt combn';  

Data asa; 

* length trtcode1 trtcode2 trtcode3 trtcode4 $16; 

infile 'water_potential_sas_data_2015.csv' firstobs=2 delimiter= "," 

lrecl=400; 

input obs watercontent plot tblock bblock rep T $ B $  N $ I $ 

      lnwaterpotential ;  

  

label obs='observation #' 

      watercontent='Water Content (g)' 

      plot='plot #' 

      tblock='tillage block' 

      bblock='burning block' 

      rep='replication' 

      T='Tillage' 

      B='Burning' 

      N='NRate level' 

      I='Irrigation' 

      lnwaterpotential='Natural Log of Water Potential (Mpa)'; 

run; 

 

proc sort data=asa; 

by T B N I watercontent ; 

quit; 

  

proc print data=asa ; 

run; 

  

ods rtf file='Water_Potential_complete_final.rtf' style=journal bodytitle; 

title3 'P<.05'; 

proc mixed data=asa method=type3 ; 

class T B N I rep; 

model lnwaterpotential=     

                 N                          

       watercontent                         

                 watercontent*N 

                                          

                / ddfm=kr ; 

  

random rep(T B N I) ; 

id T B N I; 

 

estimate 'Intercept H' intercept 1 n 1 0 ; 

estimate 'Intercept L' intercept 1 n 0 1 ; 

estimate 'Slope H' watercontent 1 watercontent*n 1 0 ; 

estimate 'Slope L' watercontent 1 watercontent*n 0 1 ; 

 

run; 

Quit;  

ods rtf close; 
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Appendix F. 

This appendix contains the raw data used for the ANCOVA of the relationship between soil 

water potential (-MPa) and water content (g/g). 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

1 0.030 1 1 1 1 CT NB H I 2.681 

2 0.020 1 1 1 1 CT NB H I 1.732 

3 0.036 1 1 1 1 CT NB H I 0.673 

4 0.066 1 1 1 1 CT NB H I -0.301 

5 0.058 1 1 1 1 CT NB H I -0.117 

6 0.080 1 1 1 1 CT NB H I -0.713 

7 0.110 1 1 1 1 CT NB H I -1.139 

8 0.014 2 1 1 1 NT NB L I 2.754 

9 0.030 2 1 1 1 NT NB L I 1.037 

10 0.042 2 1 1 1 NT NB L I 0.174 

11 0.072 2 1 1 1 NT NB L I -1.109 

12 0.095 2 1 1 1 NT NB L I -0.916 

13 0.100 2 1 1 1 NT NB L I -1.273 

14 0.118 2 1 1 1 NT NB L I -1.715 

15 0.029 3 2 1 1 NT NB H I 2.991 

16 0.037 3 2 1 1 NT NB H I 2.370 

17 0.049 3 2 1 1 NT NB H I 1.394 

18 0.073 3 2 1 1 NT NB H I 0.140 

19 0.090 3 2 1 1 NT NB H I -0.357 

20 0.104 3 2 1 1 NT NB H I -0.968 

21 0.159 3 2 1 1 NT NB H I -2.659 

22 0.020 4 2 1 1 CT NB L I 3.025 

23 0.036 4 2 1 1 CT NB L I 1.452 

24 0.056 4 2 1 1 CT NB L I 1.105 

25 0.067 4 2 1 1 CT NB L I -0.062 

26 0.075 4 2 1 1 CT NB L I -0.416 

27 0.085 4 2 1 1 CT NB L I -0.261 

28 0.135 4 2 1 1 CT NB L I -1.347 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

29 0.033 5 3 1 2 NT NB L I 2.965 

30 0.043 5 3 1 2 NT NB L I 1.472 

31 0.049 5 3 1 2 NT NB L I 0.863 

32 0.075 5 3 1 2 NT NB L I 0.030 

33 0.091 5 3 1 2 NT NB L I -0.799 

34 0.104 5 3 1 2 NT NB L I -1.273 

35 0.139 5 3 1 2 NT NB L I -1.427 

36 0.018 6 3 1 2 CT NB H I 3.469 

37 0.028 6 3 1 2 CT NB H I 2.148 

38 0.039 6 3 1 2 CT NB H I 1.384 

39 0.071 6 3 1 2 CT NB H I -0.128 

40 0.077 6 3 1 2 CT NB H I -0.010 

41 0.107 6 3 1 2 CT NB H I -0.713 

42 0.130 6 3 1 2 CT NB H I -1.772 

43 0.022 7 1 1 2 CT NB L I 2.701 

44 0.034 7 1 1 2 CT NB L I 1.482 

45 0.043 7 1 1 2 CT NB L I 0.863 

46 0.065 7 1 1 2 CT NB L I -0.400 

47 0.087 7 1 1 2 CT NB L I -0.892 

48 0.116 7 1 1 2 CT NB L I -0.051 

49 0.128 7 1 1 2 CT NB L I -1.386 

50 0.026 8 1 1 2 NT NB H I 2.425 

51 0.043 8 1 1 2 NT NB H I 1.454 

52 0.059 8 1 1 2 NT NB H I -0.211 

53 0.083 8 1 1 2 NT NB H I -1.772 

54 0.102 8 1 1 2 NT NB H I -1.661 

55 0.124 8 1 1 2 NT NB H I -1.715 

56 0.170 8 1 1 2 NT NB H I -2.526 

57 0.031 9 2 1 3 NT NB L I 2.791 

58 0.047 9 2 1 3 NT NB L I 0.554 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

59 0.053 9 2 1 3 NT NB L I 0.122 

60 0.088 9 2 1 3 NT NB L I -1.514 

61 0.106 9 2 1 3 NT NB L I -2.408 

62 0.118 9 2 1 3 NT NB L I -2.526 

63 0.166 9 2 1 3 NT NB L I . 

64 0.026 10 2 1 3 CT NB H I 2.827 

65 0.043 10 2 1 3 CT NB H I 1.552 

66 0.061 10 2 1 3 CT NB H I 0.049 

67 0.098 10 2 1 3 CT NB H I -1.514 

68 0.112 10 2 1 3 CT NB H I -2.207 

69 0.123 10 2 1 3 CT NB H I -2.996 

70 0.164 10 2 1 3 CT NB H I . 

71 0.024 11 3 1 3 NT NB H I 2.845 

72 0.032 11 3 1 3 NT NB H I 1.898 

73 0.045 11 3 1 3 NT NB H I 1.078 

74 0.075 11 3 1 3 NT NB H I -0.186 

75 0.077 11 3 1 3 NT NB H I -0.821 

76 0.100 11 3 1 3 NT NB H I -1.661 

77 0.128 11 3 1 3 NT NB H I -1.514 

78 0.022 12 3 1 3 CT NB L I 3.030 

79 0.036 12 3 1 3 CT NB L I 1.645 

80 0.050 12 3 1 3 CT NB L I 0.182 

81 0.085 12 3 1 3 CT NB L I -1.966 

82 0.101 12 3 1 3 CT NB L I -3.219 

83 0.119 12 3 1 3 CT NB L I . 

84 0.157 12 3 1 3 CT NB L I . 

85 0.026 13 1 1 1 CT B L I 2.557 

86 0.045 13 1 1 1 CT B L I 1.564 

87 0.042 13 1 1 1 CT B L I 0.802 

88 0.072 13 1 1 1 CT B L I -0.528 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

89 0.081 13 1 1 1 CT B L I -0.635 

90 0.101 13 1 1 1 CT B L I -0.968 

91 0.134 13 1 1 1 CT B L I -2.120 

92 0.033 14 1 1 1 NT B L I 2.632 

93 0.043 14 1 1 1 NT B L I 1.406 

94 0.055 14 1 1 1 NT B L I 0.519 

95 0.084 14 1 1 1 NT B L I -0.528 

96 0.096 14 1 1 1 NT B L I -1.386 

97 0.110 14 1 1 1 NT B L I -1.715 

98 0.141 14 1 1 1 NT B L I -1.470 

99 0.027 15 2 1 1 NT B H I 2.773 

100 0.047 15 2 1 1 NT B H I 0.993 

101 0.049 15 2 1 1 NT B H I 0.793 

102 0.078 15 2 1 1 NT B H I -0.511 

103 0.091 15 2 1 1 NT B H I -1.238 

104 0.108 15 2 1 1 NT B H I -1.386 

105 0.135 15 2 1 1 NT B H I -1.833 

106 0.030 16 2 1 2 CT B L I 2.477 

107 0.039 16 2 1 2 CT B L I 1.805 

108 0.049 16 2 1 2 CT B L I 0.837 

109 0.071 16 2 1 2 CT B L I -0.174 

110 0.081 16 2 1 2 CT B L I -0.713 

111 0.092 16 2 1 2 CT B L I -0.777 

112 0.118 16 2 1 2 CT B L I -1.772 

113 0.027 17 3 1 2 NT B H I 2.797 

114 0.038 17 3 1 2 NT B H I 1.839 

115 0.052 17 3 1 2 NT B H I 0.908 

116 0.071 17 3 1 2 NT B H I 0.399 

117 0.088 17 3 1 2 NT B H I -0.105 

118 0.127 17 3 1 2 NT B H I -1.470 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

119 0.175 17 3 1 2 NT B H I -2.040 

120 0.018 18 3 1 3 CT B L I 3.450 

121 0.037 18 3 1 3 CT B L I 1.780 

122 0.053 18 3 1 3 CT B L I 1.082 

123 0.074 18 3 1 3 CT B L I -0.478 

124 0.084 18 3 1 3 CT B L I -0.494 

125 0.107 18 3 1 3 CT B L I -0.868 

126 0.144 18 3 1 3 CT B L I -2.303 

127 0.031 19 1 1 1 CT B H I 2.501 

128 0.045 19 1 1 1 CT B H I 0.944 

129 0.061 19 1 1 1 CT B H I -0.274 

130 0.088 19 1 1 1 CT B H I -2.120 

131 0.098 19 1 1 1 CT B H I -1.609 

132 0.112 19 1 1 1 CT B H I -1.386 

133 0.157 19 1 1 1 CT B H I -3.507 

134 0.022 20 1 1 3 NT B H I 2.815 

135 0.035 20 1 1 3 NT B H I 1.761 

136 0.026 20 1 1 3 NT B H I 0.615 

137 0.067 20 1 1 3 NT B H I -0.713 

138 0.083 20 1 1 3 NT B H I -1.273 

139 0.100 20 1 1 3 NT B H I -1.273 

140 0.143 20 1 1 3 NT B H I -3.912 

141 0.033 21 2 1 2 NT B L I 2.779 

142 0.035 21 2 1 2 NT B L I 1.699 

143 0.049 21 2 1 2 NT B L I 0.824 

144 0.071 21 2 1 2 NT B L I -0.598 

145 0.086 21 2 1 2 NT B L I -1.347 

146 0.100 21 2 1 2 NT B L I -1.386 

147 0.136 21 2 1 2 NT B L I -2.659 

148 0.029 22 2 1 2 CT B H I 3.063 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

149 0.041 22 2 1 2 CT B H I 1.803 

150 0.049 22 2 1 2 CT B H I 1.166 

151 0.073 22 2 1 2 CT B H I -0.051 

152 0.084 22 2 1 2 CT B H I -0.400 

153 0.103 22 2 1 2 CT B H I -0.821 

154 0.130 22 2 1 2 CT B H I -1.171 

155 0.020 23 3 1 3 NT B L I 3.203 

156 0.041 23 3 1 3 NT B L I 1.468 

157 0.049 23 3 1 3 NT B L I 0.815 

158 0.073 23 3 1 3 NT B L I -0.598 

159 0.088 23 3 1 3 NT B L I -1.204 

160 0.097 23 3 1 3 NT B L I -1.079 

161 0.141 23 3 1 3 NT B L I -2.120 

162 0.029 24 3 1 3 CT B H I 2.868 

163 0.043 24 3 1 3 CT B H I 1.879 

164 0.059 24 3 1 3 CT B H I 0.548 

165 0.076 24 3 1 3 CT B H I -0.198 

166 0.098 24 3 1 3 CT B H I -0.799 

167 0.111 24 3 1 3 CT B H I -1.022 

168 0.132 24 3 1 3 CT B H I -1.079 

169 0.026 25 1 2 1 CT B H NI 2.632 

170 0.037 25 1 2 1 CT B H NI 1.777 

171 0.049 25 1 2 1 CT B H NI 0.647 

172 0.069 25 1 2 1 CT B H NI -0.198 

173 0.078 25 1 2 1 CT B H NI -0.844 

174 0.106 25 1 2 1 CT B H NI -1.273 

175 0.169 25 1 2 1 CT B H NI -2.996 

176 0.022 26 1 2 1 NT B H NI 3.001 

177 0.034 26 1 2 1 NT B H NI 1.500 

178 0.051 26 1 2 1 NT B H NI 0.610 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

179 0.073 26 1 2 1 NT B H NI -0.673 

180 0.081 26 1 2 1 NT B H NI -1.309 

181 0.100 26 1 2 1 NT B H NI -1.273 

182 0.134 26 1 2 1 NT B H NI -1.609 

183 0.024 27 2 2 2 NT B H NI 2.734 

184 0.037 27 2 2 2 NT B H NI 1.506 

185 0.053 27 2 2 2 NT B H NI 0.476 

186 0.071 27 2 2 2 NT B H NI -0.616 

187 0.093 27 2 2 2 NT B H NI -0.916 

188 0.113 27 2 2 2 NT B H NI -1.609 

189 0.136 27 2 2 2 NT B H NI -1.561 

190 0.030 28 2 2 1 CT B L NI 2.728 

191 0.039 28 2 2 1 CT B L NI 1.662 

192 0.053 28 2 2 1 CT B L NI 0.626 

193 0.078 28 2 2 1 CT B L NI -0.371 

194 0.094 28 2 2 1 CT B L NI -1.171 

195 0.113 28 2 2 1 CT B L NI -1.050 

196 0.136 28 2 2 1 CT B L NI -2.996 

197 0.026 29 3 2 3 NT B H NI 2.773 

198 0.032 29 3 2 3 NT B H NI 2.010 

199 0.049 29 3 2 3 NT B H NI 0.713 

200 0.073 29 3 2 3 NT B H NI -0.598 

201 0.092 29 3 2 3 NT B H NI -1.273 

202 0.099 29 3 2 3 NT B H NI -1.079 

203 0.138 29 3 2 3 NT B H NI -2.040 

204 0.028 30 3 2 2 CT B L NI 2.760 

205 0.041 30 3 2 2 CT B L NI 1.454 

206 0.057 30 3 2 2 CT B L NI 0.385 

207 0.069 30 3 2 2 CT B L NI -0.274 

208 0.096 30 3 2 2 CT B L NI -1.514 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

209 0.106 30 3 2 2 CT B L NI -1.109 

210 0.134 30 3 2 2 CT B L NI -2.207 

211 0.027 31 1 2 3 CT B L NI 2.918 

212 0.043 31 1 2 3 CT B L NI 1.562 

213 0.055 31 1 2 3 CT B L NI 0.751 

214 0.078 31 1 2 3 CT B L NI -0.734 

215 0.092 31 1 2 3 CT B L NI -0.942 

216 0.108 31 1 2 3 CT B L NI -1.514 

217 0.143 31 1 2 3 CT B L NI -2.813 

218 0.027 32 1 2 1 NT B L NI 2.785 

219 0.035 32 1 2 1 NT B L NI 2.162 

220 0.051 32 1 2 1 NT B L NI 0.761 

221 0.075 32 1 2 1 NT B L NI -0.734 

222 0.115 32 1 2 1 NT B L NI -2.040 

223 0.133 32 1 2 1 NT B L NI -2.207 

224 0.165 32 1 2 1 NT B L NI -3.912 

225 0.035 33 2 2 2 NT B L NI 2.667 

226 0.043 33 2 2 2 NT B L NI 1.775 

227 0.058 33 2 2 2 NT B L NI 0.875 

228 0.079 33 2 2 2 NT B L NI -0.635 

229 0.084 33 2 2 2 NT B L NI -1.109 

230 0.092 33 2 2 2 NT B L NI -1.273 

231 0.121 33 2 2 2 NT B L NI -1.561 

232 0.018 34 2 2 2 CT B H NI 3.440 

233 0.038 34 2 2 2 CT B H NI 0.571 

234 0.054 34 2 2 2 CT B H NI 0.815 

235 0.093 34 2 2 2 CT B H NI -1.050 

236 0.090 34 2 2 2 CT B H NI -1.386 

237 0.117 34 2 2 2 CT B H NI -1.966 

238 0.153 34 2 2 2 CT B H NI -3.912 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

239 0.018 35 3 2 3 NT B L NI 3.487 

240 0.036 35 3 2 3 NT B L NI 1.699 

241 0.050 35 3 2 3 NT B L NI 0.708 

242 0.090 35 3 2 3 NT B L NI -1.833 

243 0.091 35 3 2 3 NT B L NI -1.309 

244 0.115 35 3 2 3 NT B L NI -2.659 

245 0.157 35 3 2 3 NT B L NI . 

246 0.031 36 3 2 3 CT B H NI 3.073 

247 0.047 36 3 2 3 CT B H NI 1.303 

248 0.063 36 3 2 3 CT B H NI -0.083 

249 0.092 36 3 2 3 CT B H NI -0.916 

250 0.112 36 3 2 3 CT B H NI -1.897 

251 0.138 36 3 2 3 CT B H NI -3.219 

252 0.179 36 3 2 3 CT B H NI -3.219 

253 0.031 37 1 2 1 CT NB H NI 2.896 

254 0.047 37 1 2 1 CT NB H NI 1.381 

255 0.059 37 1 2 1 CT NB H NI 0.642 

256 0.090 37 1 2 1 CT NB H NI -0.734 

257 0.110 37 1 2 1 CT NB H NI -1.347 

258 0.127 37 1 2 1 CT NB H NI -1.715 

259 0.166 37 1 2 1 CT NB H NI -1.897 

260 0.033 38 1 2 1 NT NB L NI 2.939 

261 0.047 38 1 2 1 NT NB L NI 1.805 

262 0.057 38 1 2 1 NT NB L NI 0.892 

263 0.084 38 1 2 1 NT NB L NI -0.315 

264 0.105 38 1 2 1 NT NB L NI -0.755 

265 0.112 38 1 2 1 NT NB L NI -0.777 

266 0.138 38 1 2 1 NT NB L NI -1.514 

267 0.031 39 2 2 1 NT NB H NI 2.573 

268 0.045 39 2 2 1 NT NB H NI 1.585 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

269 0.063 39 2 2 1 NT NB H NI 0.501 

270 0.117 39 2 2 1 NT NB H NI -3.912 

271 0.116 39 2 2 1 NT NB H NI -1.966 

272 0.139 39 2 2 1 NT NB H NI -2.526 

273 0.170 39 2 2 1 NT NB H NI -4.605 

274 0.029 40 2 2 2 CT NB H NI 3.182 

275 0.039 40 2 2 2 CT NB H NI 1.800 

276 0.049 40 2 2 2 CT NB H NI 1.169 

277 0.077 40 2 2 2 CT NB H NI -0.654 

278 0.081 40 2 2 2 CT NB H NI -0.511 

279 0.110 40 2 2 2 CT NB H NI -2.120 

280 0.145 40 2 2 2 CT NB H NI -1.772 

281 0.031 41 3 2 2 NT NB L NI 2.510 

282 0.045 41 3 2 2 NT NB L NI 1.147 

283 0.063 41 3 2 2 NT NB L NI -0.288 

284 0.096 41 3 2 2 NT NB L NI -2.659 

285 0.102 41 3 2 2 NT NB L NI -1.561 

286 0.129 41 3 2 2 NT NB L NI -4.605 

287 0.166 41 3 2 2 NT NB L NI . 

288 0.031 42 3 2 3 CT NB H NI 3.068 

289 0.049 42 3 2 3 CT NB H NI 1.303 

290 0.061 42 3 2 3 CT NB H NI 0.358 

291 0.098 42 3 2 3 CT NB H NI -0.916 

292 0.110 42 3 2 3 CT NB H NI -1.273 

293 0.136 42 3 2 3 CT NB H NI -1.833 

294 0.173 42 3 2 3 CT NB H NI -2.408 

295 0.029 43 1 2 1 CT NB L NI 2.510 

296 0.047 43 1 2 1 CT NB L NI 1.197 

297 0.061 43 1 2 1 CT NB L NI 0.000 

298 0.096 43 1 2 1 CT NB L NI -1.171 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

299 0.114 43 1 2 1 CT NB L NI -3.219 

300 0.135 43 1 2 1 CT NB L NI . 

301 0.162 43 1 2 1 CT NB L NI . 

302 0.031 44 1 2 2 NT NB H NI 3.068 

303 0.043 44 1 2 2 NT NB H NI 1.946 

304 0.055 44 1 2 2 NT NB H NI 1.019 

305 0.078 44 1 2 2 NT NB H NI -0.094 

306 0.094 44 1 2 2 NT NB H NI -0.713 

307 0.110 44 1 2 2 NT NB H NI -1.514 

308 0.145 44 1 2 2 NT NB H NI -1.661 

309 0.037 45 2 2 3 NT NB L NI 3.296 

310 0.051 45 2 2 3 NT NB L NI 2.108 

311 0.068 45 2 2 3 NT NB L NI 0.854 

312 0.098 45 2 2 3 NT NB L NI -0.494 

313 0.109 45 2 2 3 NT NB L NI -0.693 

314 0.133 45 2 2 3 NT NB L NI -1.139 

315 0.167 45 2 2 3 NT NB L NI -2.040 

316 0.037 46 2 2 2 CT NB L NI 2.518 

317 0.049 46 2 2 2 CT NB L NI 1.374 

318 0.065 46 2 2 2 CT NB L NI 0.425 

319 0.099 46 2 2 2 CT NB L NI -0.916 

320 0.110 46 2 2 2 CT NB L NI -1.427 

321 0.127 46 2 2 2 CT NB L NI -2.813 

322 0.165 46 2 2 2 CT NB L NI -3.912 

323 0.035 47 3 2 3 NT NB H NI 3.270 

324 0.045 47 3 2 3 NT NB H NI 2.135 

325 0.166 47 3 2 3 NT NB H NI . 

326 0.072 47 3 2 3 NT NB H NI 0.365 

327 0.084 47 3 2 3 NT NB H NI -0.186 

328 0.108 47 3 2 3 NT NB H NI -0.654 
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obsv # watercontent plot tblock bblock rep Tillage Burning N Rate Irrigation lnwaterpotential 

329 0.128 47 3 2 3 NT NB H NI -1.022 

330 0.020 48 3 2 3 CT NB L NI 2.907 

331 0.034 48 3 2 3 CT NB L NI 1.281 

332 0.050 48 3 2 3 CT NB L NI 0.577 

333 0.085 48 3 2 3 CT NB L NI -0.892 

334 0.085 48 3 2 3 CT NB L NI -1.347 

335 0.126 48 3 2 3 CT NB L NI -4.605 

336 0.160 48 3 2 3 CT NB L NI -2.526 
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Appendix G 

This appendix contains a graphical representation of the growing-season climate data presented 

in Table 1 of Chapter 3. 
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