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Abstract

Climate is the major factor affecting crop
production; therefore, various agro-meteorological
indicators have been frequently used to evaluate the
impact of climate on crop production. In this study, we
examined the temporal variations of agro-
meteorological indicators (growing degree days, total
precipitation, dry spells and drought indices) during
1960-2014 and their impact on soybean yields in East
Arkansas. Results show an increasing trend in growing
degree days (GDDs) and dry spells, though the total
precipitation during the soybean growing season
remained nearly unchanged during the study period.
Generally, GDDs and dry spells show a strong
correlation with yields. We also evaluated drought
variability based on different drought indices,
including the Palmer Drought Severity Index (PDSI),
the Standardized Precipitation Index (SPI) and the
Standardized Precipitation-Evapotranspiration Index
(SPEI). The drought indices are all negatively
correlated to soybean yields. Overall, the one month
SPEI showed the strongest impact on yields. After
regression analysis, Dry spells and Total precipitation
were the only significant factors in the General Linear
Model (GLM).

Key words: Climate change, Agro-indicators,
Drought indices

Introduction

Urbanization, salinization, climate change and
water scarcity all pose renewed challenges to
agriculture (Fedoroff et al. 2010). Increases in crop
yields are required to meet both domestic and
commercial demands for food, but climate change and
diminishing returns from technological advancements
will limit potential success (Lobell and Asner 2003).

Temperatures above 30°C tend to diminish yields of
most crops because of the photosynthetic threshold
temperature. These elevated temperatures accelerate
crop reproductive development thereby reducing
accumulation of carbohydrates, fats and proteins that
are major components of grains and fruits (Fedoroff et
al. 2010). In fact, studies project 17% decreases in both
corn and soybean yields for each degree rise in
growing season temperature in the South East United
States (Lobell and Asner 2003).

There is a general trend of early onset of spring
and increasing growing degree days in the United
States (Feng and Hu 2004, Schwartz and Reiter 2000).
Previous satellite and climatological studies agree that
there are shifts in timing and length of the growing
season (Tucker et al. 2001). Increasing growing season
length provides opportunities for earlier planting,
ensuring maturation and possibilities of multiple
cropping. However, higher temperatures could speed
development and reduce time to accumulate dry mater,
which in turn could cause slight decreases in yields
(A.C.I. 2004, Linderholm 2006, Stocker et al. 2013).
Additionally, variation in crop yields is more
influenced by regional weather and climate rather than
large scale climate dynamics. Therefore, it is more
important to develop agro-meteorological indicators at
the regional level to study their relationship with
individual crop yields (Mishra and Cherkauer 2010).

The long term average, frequency and extremes of
several weather variables are the chief determinant of
the general climate of a region (Patel et al. 2007). To
evaluate the impact of climate on agriculture, multiple
agro-meteorological indicators are used. Agro-
meteorological indicators are constructed from climatic
variables that have an impact on plant life. They are
used to assess site suitability for crop growth,
geographical limits of crop land use and to establish
estimates of weather anomalies or trends (Confalonieri
et al. 2010). The study of both temperature and
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precipitation based indicators has never been more
critical because varying climate has and will continue
to alter agricultural environment and affect crop
productions (Feng and Hu 2004).

There is a consensus that climate change will alter
the frequency, timing and intensity of extreme events
such as drought (Greenough et al. 2001). In fact,
climate model simulations indicate that the interiors of
northern continents will become drier during summer
over the next century (Wetherald and Manabe 2002).
Socio-economic and environmental effects of droughts
are costly due to their spatial and temporal extent
(Wilhite 2000). Thus, increased severity and frequency
of droughts is a major concern to many stakeholders,
increasing the need to measure and study drought
impacts on crop yields (Sheffield and Wood 2008,
Wang 2005).

Drought is the least understood yet most complex
of all natural hazards (Patel et al. 2007). Most elements
of drought (onset, duration, intensity and end) are
determined by moisture deficits (Kogan 1997, Vicente-
Serrano et al. 2010). Due to dependence on water
resources and soil moisture for crop growth,
agriculture is often the first sector to be affected by
onset of drought, making reductions in crop yields a
good indicator for the impact of drought on agriculture
(Kogan 1997, Narasimhan and Srinivasan 2005). The
costliest droughts occur during the grain filling period
of most crops. Corn and soybean, for example, are
most severely affected when drought occurs during the
grain filling period (Mishra and Cherkauer 2010).
Nonetheless, lack of a universal drought monitoring
framework makes it impossible to assess drought
impacts across ecosystems and different countries’
economies (Kogan 1997).

Monitoring, early warning and assessment of
consequences of drought are the most common tools
used in drought mitigation. Most countries’ drought
watch systems are based on analysis of weather
anomalies or domestic indices, which are formulated
by integrating temperature, rainfall and
evapotranspiration (Kogan 1997, Patel et al. 2007).
Drought indices must be associated with specific
timescales to be useful for monitoring different types
of drought (Patel et al. 2007, Vicente-Serrano et al.
2010). According to Vicente-Serrano et al (2009),
PDSI was found to explain variability in production
and activity of natural vegetation better than SPI. Patel
et al (2007) also found that 3-month SPI could help
assess in advance the decline in food and grain
production caused by droughts in India (Gujarat State).
In this paper, we considered three drought indices i.e.

Palmer Drought Index (PDSI), Standardized
Precipitation Index (SPI) and Standardized
Precipitation and Evapotranspiration Index (SPEI).

Our study focuses on East Arkansas, where the
majority of agricultural activity in the state occurs.
Arkansas is a major agricultural producer and the
largest producer of rice in the nation, with other major
crops including soybean, corn, wheat and cotton
(Nickerson et al. 2011). Arkansas’s agriculture is
heavily irrigated and is the fourth largest user of
groundwater for irrigation in the nation (Holland 2007,
Schaible and Aillery 2012). The climate of Arkansas is
humid sub-tropical, with average temperatures of about
15.8˚C (Feng et al. 2014). The major rainy seasons in 
Arkansas occurs from March to May and then from
October to December. Climate change may affect
Arkansas’ agriculture both directly through its effect
on crop growth and indirectly through its effect on
irrigation water supply. This study will explore the
relationship between, Agro-meteorological indicators
and crop yields in East Arkansas. We will also
examine the performance of various indices to draw
conclusions for policymakers and stakeholders.

Methods

Study Region
The study sites encompass 3 eight-digit

hydrological unit code watersheds (L’anguille, Big,
and the Lower White), within the farming region of the
Arkansas Delta where the Mississippi alluvial aquifer
is most depleted. The study area consists of 11 counties
located in East Arkansas (Figure 1). It lies within
latitudes 35.99 and 33.95 degrees North and longitudes
90.29 and 91.34 degrees West. The area is
geographically homogenous: a predominantly flat
alluvial plain in the Mississippi River Valley in Eastern
Arkansas. This region is the most agriculturally
productive region in Arkansas, producing rice,
soybean, corn, wheat and cotton.

Data
The daily temperature (minimum, maximum and

mean) and precipitation from the 11 counties in the
study regions from 1960 to 2014 were obtained from
National oceanic and Atmospheric administration
(NOAA) (DeGaetano et al, 2015). Soybean was chosen
for the study due to ease of non-irrigated soybean data
availability. The LOESS regression method was used
to remove trends in soybean crop yield arising from
genetic and management improvements (Mishra and
Cherkauer 2010).
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Precipitation Indicators
Growing season total precipitation was calculated

from daily precipitation data representing cumulative
rainfall totals for the growing season (Kunkel et al.
1999). Dry spells during the growing season were
defined as consecutive dry days without precipitation
or when precipitation is below 1mm (Piani et al.,
2010). Dryness and wetness are relative to historical
average rather than absolute total of precipitation for
given areas (Patel et al. 2007).

Drought indices
Different drought indices were used to evaluate the

impact of the drought on crop yields (Heim Jr 2002).
The three frequently used drought indices are the
Palmer Drought Severity Index (Alley, 1984; Wells et
al. 2004), the Standardized Precipitation Index (McKee
et al. 1993, Patel et al. 2007) and the Standardized
Precipitation-Evapotranspiration Index (Begueria et al.
2014).

The PDSI is the most common meteorological
index used in USA. It is a standardized measure,
ranging from -10(dry) to + 10(wet)(Dai et al. 2004).
Since PDSI has a time span of 9 months or longer, it
does not allow detection of droughts over different
periods at multiple time scales and differentiation
among different drought types (Hayes et al. 1999,
Vicente-Serrano et al. 2010). For these reasons, PDSI
responds slowly to drought and can retain values
reflecting drought even after climatological recovery
from drought has occurred (Hayes et al. 1999).

SPI is produced by standardizing the probability of
observed precipitation for a given duration. Moreover,
SPI is designed to detect drought over different periods
at multiple time scales (1, 3 & 6 months) in this study.
Positive values of SPI indicate greater mean
precipitation while negative values indicate less than
the mean precipitation (Patel et al. 2007). The main
undoing of SPI is that it only uses precipitation in its
formulation. Therefore, It does not consider other
variables that can influence droughts like temperature,
evapotranspiration, wind speed and soil water holding
capacity (Vicente-Serrano et al. 2010).

On the other hand, SPEI (1, 3 & 6 months) is based
on precipitation and potential evapotranspiration
(PET). SPEI combines sensitivity of PDSI to changes
in evaporation demand (caused by temperature
variations and trends) with the simplicity of calculation
and the multi-temporal nature of the SPI. Therefore,
use of drought indices that include temperature data in
the formulation is preferable. SPEI is particularly well
suited for detecting, monitoring and exploring the

consequences of global warming on drought conditions
(Vicente-Serrano et al. 2010). Based on daily
temperature and precipitation, the monthly mean
temperature and monthly precipitation totals in
individual counties were computed and then used to
calculate the PDSI, SPI and SPEI for Soybean growing
season in this study.

Data analysis
The response variable, soybean yield, and all the

other predictor variables i.e. Growing Degree Days
(GDDs), Dry spell and SPEI-1 were screened for
possible outliers to confirm the normality of data
distribution (Royston 1992). Correlation analysis was
done to assess individual agro-climatic indicators
performance against soybean yields for individual
counties and the entire study area. Pearson Correlation
analysis was also done for all three drought indices to
establish their relationship with soybean yield during
the growing season for each county and study area.
Finally, Multiple Linear Regression (MLR) was used
to fit General Linear Models (GLM) for individual
counties and the study area using JMP Pro 12
(Preacher et al. 2006).

Results and Discussion

Agro-climatic indicators and yield anomalies
Soybean yields for the study area (Figure 2a) have

increased steadily from the 1960s to 2014. These
increases in yields have been attributed to scientific
improvement through breeding and improved scientific
management (Feng and Hu 2004, Mishra and
Cherkauer 2010). Figure 2 shows agro-indicator
anomalies for the study area. Results reveal that the
soybean yields are negatively correlated to dry spells
during the 1980s late 1990s and 2000s. GDDs were
highly correlated with dry spells, with longer dry spells
corresponding to longer GDDs (Figure 3). In addition,
total precipitation was positively correlated with yields.
Higher yields were observed when there was a
considerable increase in total precipitation. Similar
studies by Feng and Hu (2004) also revealed that dry
and wet spells had the largest effect on dry-land corn
yield in Nebraska.

The correlation between agro-indicators and
soybean yields is shown in Table 1. Growing season
GDDs and Dry spells are negatively correlated with
yields while total precipitation and SPEI-1 are
positively correlated. These results show that both
precipitation and temperature indicators have
significant effect on soybean yields. Accordingly, the
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Table 1: Correlation between (JJASO) Agro-climatic
indicators and Soybean yields (1960-2014)

County GDD Total
precipi-
tation

Dry
spells

SPEI-1

Arkansas -0.197* 0.119 -0.044 0.588***

Craighead -0.180 0.328** -0.033 0.26**

Cross -0.085 0.126 -0.328*** 0.201*

Desha -0.51*** 0.210* -0.344*** 0.412***
Lee -0.211* 0.154 -0.198* 0.247*

Monroe -0.430*** 0.23 -0.075 0.235*

Phillips -0.550*** 0.314** -0.252* 0.484***

Poinsett -0.200* 0.212* -0.283** 0.313**

Prairie -0.180 0.156 -0.188 0.294**

St Francis -0.470*** 0.094 -0.086 0.121
Woodruff -0.120 0.188 -0.246** 0.203*

Study
area

-0.311** 0.135 -0.282** 0.302**

*** indicates 99% confidence, ** indicates 95% Confidence and *

indicates 90% confidence.

increase in dry spells resulting in accumulation of
GDDs during the growing season is the factor most
responsible for reduction in soybean yields in East
Arkansas. Based on these results, it is very likely that
global climate change will have great impact on
agriculture through changes in precipitation and
temperature.

Drought Indices and yield anomalies
Figure 4 shows PDSI and the 1-, 3- and 6- month

SPEI and SPI for East Arkansas between 1960 and

2014. PDSI reveals major drought episodes in the
1960s, 1980s, mid- 1990s, and late 2005 and 2010.
Although strongly correlated, SPEI and SPI also
indicated drought during these time periods. These
results reveal that, in circumstances where low
variability of temperature occurs, both SPEI and SPI
indices respond mainly to precipitation. These results
are similar to those of Vicente-Serrano et al. (2010).

The JJASO drought indices were correlated with
corresponding yield anomalies for each county (Table
2) of the soybean growing season for 1960-2014. The
results showed significant positive correlation between
these indices and de-trended Soybean anomalies for 8
of the 11 counties in the study area. Craighead county
particularly had very high correlations (r >0.5) for all
the three indices (PDSI, SPEI-1 and SPI-1).
Differences in soybean planting dates during the crop
growing season may explain the difference in
correlations between the counties in the study area
(Narasimhan and Srinivasan 2005). The results also
reveal that drought indices may be a valuable
instrument for forecasting soybean grain yield loss
resulting from meteorological drought.

PDSI performed well in this study; it was
positively correlated with seven instances of departures
in soybean yields—six at the 99% confidence level and
once at the 95% confidence level. SPEI-1, and was
closely correlated to the yields for eight of the counties
studied. Six of the counties were correlated at the 99%
confidence level and while two were correlated at the
95% confidence level. SPEI-3 was also correlated with
eight counties, but at lower confidence levels.

Table 2: Correlation between JJASO Drought indicators and de-trended Soybean yield anomaly (1960-2014)

County PDSI SPEI-1
month

SPEI-3
months

SPEI-6
Months

SPI-1
month

SPI-3
months

SPI-6
months

Arkansas 0.022 0.232* 0.141 0.047 0.160 0.077 0.054
Craighead 0.512*** 0.501*** 0.459*** 0.368*** 0.537*** 0.468*** 0.368***

Cross 0.531*** 0.444*** 0.371*** 0.261** 0.397*** 0.338** 0.237*

Desha 0.078 0.154 0.061 0.097 0.165 0.073 0.085
Lee 0.332*** 0.469*** 0.505*** 0.434*** 0.410*** 0.446*** 0.395***

Monroe 0.320*** 0.508*** 0.426*** 0.303** 0.463*** 0.402** 0.278*

Phillips 0.071 0.282** 0.238* 0.141 0.226* 0.176 0.081
Poinsett 0.317** 0.408*** 0.345*** 0.312** 0.397*** 0.311** 0.270**

Prairie 0.445*** 0.433*** 0.463*** 0.326** 0.392*** 0.424** 0.306**

St Francis 0.061 0.203 0.078 0.068 0.154 0.009 0.023
Woodruff 0.267** 0.282** 0.238* 0.202 0.195 0.030 0.004
Study area 0.367*** 0.393*** 0.345*** 0.261** 0.414*** 0.334*** 0.221*

***indicates 99% confidence, ** indicates 95% Confidence and * indicates 90% confidence
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Performance of the SPEI-6 was only significantly
correlated to yields in 6 counties. These results reveal
that SPEI based indices did better than PDSI save for
SPEI-6. It is also important to note that the explanatory
power of the SPEI diminishes as the time frame
increases. For SPI, SPI-1 performed better with strong
correlation in seven cases, six at the 99% confidence
level. The explanatory power of the SPI indices also
diminished as the time frame increased.In summary,
SPEI indices outperformed PDSI and SPI. PDSI
performed better than SPI, probably due to the
inclusion of temperature in its computation. Short-term
agricultural drought is best correlated to SPEI-1 and
SPI-1. There are cases when drought indices do not
exhibit meaningful correlation, as illustrated by their
failure to indicate significant drought impact on yields
in three of the 11 counties in the study area, where
soybean was likely irrigated to mitigate drought
impact. The absence of significant correlation for these
counties may also result from low data quality of local
weather stations.

Multiple Linear Regression
Multiple linear regression was performed with

three agro-meteorological indicators (GDD, total
precipitation and dry spell) to establish a GLM for each
county and study area. Regression results for the
counties and study area are shown in Table 3. Total
precipitation and dry spell were the only factors
explaining yield departures of soybean at 90% the

confidence level in the final model for study area
(Figure 5). The final model is shown below:-

Where, b0 is the intercept, b1, b2, and b3 are the
parameters of Dry spell, GDD, and Total precipitation
respectively. Figure 5 shows that the total precipitation
is significant at α = 0.056 and total precipitation 
significant at α = 0.027. The parameter estimates 
suggests, b0 = 49.78, b1 = -0.60, b2 = 0.006 and b3 =
-0.125.

Conclusion

This study was carried out to explore the
relationship between, Agro-meteorological indicators,
drought indices and crop yields in East Arkansas.
There was positive correlation between total
precipitation and yields. Furthermore, GDDs and dry
spells were negatively correlated with the yields. Dry
spell and Total precipitation were the only factors
explaining yield departures of soybean from the normal
values in our multi-linear regression model developed
for the study area. The increases in GDDS and dry
spell during the crop growing season will serve to
lower yields and increase the cost of doing agriculture
in the study area. Coupled with global change,
increased costs due to irrigation demands will hurt
farmers by putting pressure on ground water.

Table 3: General Linear Models for individual counties and study area (JJASO)

County Intercept GDD Total Precipitation Dry Spell
Arkansas -10 0.02* 0.022 0.002
Craighead 47.62 -0.018 0.11* 0.042
Cross 30 0.07 0.042 0.28**
Desha -44 0.028*** 0.07** 0.21*
Lee 12.81 0.02 0.044 0.091
Monroe -21.38 0.076* 0.07 0.51
Phillips -5.61 0.04* 0.04 0.022
Poinsett 28.89 0.006 0.038 0.207*
Prairie 30.69 0.008 0.105** 0.044
St Francis -18.51 0.02* 0.07 0.018
Woodruff 19.22 0.002 0.06 0.105*
Study area 49.78 0.006 -0.125* -0.60*

***indicates 99% confidence, ** indicates 95% Confidence and * indicates 90% confidence
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While PDSI’s efficacy was restricted to
explanation of long-run drought impacts, it performed
better than SPI indices. SPEI indices out performed
both SPI and PDSI indices. SPEI and SPI indices,
especially the one and three month indices, were
closely correlated. PDSI was closely correlated to the
SPEI-6 and SPI-6 indices. Importantly, short-term
agricultural drought is best explained by SPEI-1 and
SPI-1.

In cases where temperature trends are not apparent
(relatively uniform), there was little difference in
values obtained by precipitation indices like SPI or
those formulated by potential evapotranspiration like
SPEI. It is fair to conclude that in similar cases,
precipitation data could be used to compute
agricultural drought. SPI and SPEI-6 were strongly
correlated to PDSI suggesting that precipitation was
the most dominant factor in long term drought
conditions. Due to negative effects of drought on
agriculture and environment, agro meteorological
indicators will play a critical role in long term studies
for policy makers.
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