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Abstract

The propagation of breakdown waves in a gas,
which is primarily driven by electron gas pressure, is
described by a one-dimensional, steady-state, three-
component (electrons, ions, and neutral particles) fluid
model. We consider the electron gas partial pressure to
be much larger than that of the other species and the
waves to have a shock front. Our set of equations
consists of the equations of conservation of the flux of
mass, momentum, and energy coupled with Poisson’s
equation. This set of equations is referred to as the
electron fluid dynamical equations. In this study we are
considering breakdown waves propagating in the
opposite direction of the electric field force on
electrons (return stroke in lightning) and moving into a
neutral medium.

For Breakdown waves with a significant current
behind the shock front, the set of electron fluid
dynamical equations and also the boundary condition
on electron temperature need to be modified. For a
range of experimentally observed current values and
also some larger current values which few
experimentalists have been able to observe, we have
been able to solve the set of electron fluid dynamical
equations through the dynamical transition region of
the wave. Some experimentalists have reported the
existence of a relationship between return stroke
lightning wave speed and current behind the shock
front; however, some others are skeptical of the
existence of such a relationship. Our solutions to the
set of electron fluid dynamical equations within the
dynamical transition region of the wave confirm the
existence of such a relationship. We will present the
method of solution of the set of electron fluid
dynamical equations through the dynamical transition
region of the wave and also the wave profile for
electric field, electron velocity, electron temperature
and electron number density, within the dynamical
transition region of the wave.

Introduction

Electron shock waves, also known as breakdown
waves, were first observed in the form of lightning
and studied in laboratory discharge tubes. The
phenomenon occurs when the potential difference
between two points is high enough to ionize some of
the neutral particles and later accelerate the resulting
electrons to generate an avalanche-like shock wave.
This process converts an ion-less gas into a neutral
plasma and results in a high temperature electron gas
that expands rapidly to produce an electron shock
wave. The emitted radiation has been found to have
no Doppler shift; therefore, the ions have no
significant mass motion through the wave. When the
net electric field force on electrons, applied plus space
charge field force, acts in the same direction as the
propagation of the wave, the wave is referred to as a
pro-force wave. Waves for which the electric field
force on electrons is in the opposite direction as the
wave propagation are labeled, by definition, as anti-
force waves. In the case of anti-force waves, the
electron gas temperature, and therefore electron gas
partial pressure, is large enough to provide the driving
force for the propagation of the wave.

The breakdown wave can be broken into two
distinct regions: the Debye sheath region and the
quasi-neutral region. The Debye sheath region is a
thin, dynamical region that follows the shock front. In
the sheath region, the net electric field starts at its
maximum value at the shock front and reduces to a
negligible value at the trailing end of the sheath. Also
electrons, starting from an initial speed behind the
shock front, slow down to a speed comparable to that
of heavy particles. Following the sheath region of the
wave, exists a much longer region referred to as the
quasi-neutral region of the wave. In the quasi-neutral
region, the electron gas cools down through further
ionization of the neutral particles, and ion and
electron densities become approximately equal.
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Model

fluid model for breakdown waves which led to a one
dimensional, three component, steady state theory
that described breakdown waves propagating into a
non
field force on electrons. The set of equations included
conservation of mass, momentum, and energy, and
their solutions for the set of equations presented some
success. Prior to 1984, Fowler and his associates
(1968) added Poisson’s equation to the set
equations developed by Paxton (1962), and were able
to solve their set of equations using an approximation
method. The approximate solutions for the more
developed set of equations showed better agreement
with experimental results than those prese
Paxton (1962). In the approximate solutions to the set
of equations, to make solutions possible, many terms
were neglected from the equation of conservation of
energy. Fowler et al. (1984) added the previously
neglected terms into the equation of c
energy, particularly the heat conduction term, which
altered the boundary condition on electron velocity and
proved to be essential in an exact numerical solution of
the set of electron fluid dynamical equations within the
dynamical transiti
(1984) complete set of equations for breakdown waves
propagating into a non
direction of the electric field force on electrons is as
follows

In the above equ
magnitude in the sheath region, M is the neutral
particle mass, K is the elastic collision frequency, V is
the wave velocity, x is the position within the sheath
region,
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Results and Discussion

to obtain solutions for our complete set of electron
fluid dynamical equations through the dynamical
transition (sheath) regi
wave speed, α, and dimensionless current,
values for wave constant
density,
were chosen, and in integration of the set of equations
through the sheath region of the wave, those values
were systematically changed until the integration of the
set of electron fluid dynamical equations through the
sheath region of the wave resulted in a successful
conclusion. Meaning that, at the conclusion
integration of the set of equations,

our set of electron fluid dynamical equations for higher
wave speed values, meaning for small
very challenging; therefore, we intended to find
solutions for lower ra
certain wave speed value,
electron fluid dynamical equations through the sheath
region of the wave for small dimensionless current
values,
as the
thickness increases as well and the integration of the
set of equations through the sheath region becomes
more involved and time consuming. F
wave speed value, we intended to find the largest
current value for which integration of the set of
electron fluid dynamical equations through the sheath
region of the wave became possible. For four wave
speed values shown below and for the largest
dimensionless current values for which integration of
the
the sheath region of the wave, for respective wave
speeds became possible, the following set of initial
boundary values and wave constants had to be
employed.
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and Rust (1989) disagree, claiming a lack of
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Conclusions

Our modified set of electron fluid dynamical
equations for antiforce waves with a large current
behind the wave front, with modified electron
temperature at the shock front, have been utilized in
our integration of the set of electron fluid dynamical
equations through the sheath region of the wave. Our
solutions for several wave speed values, with
maximum currents possible for the selected wave
speeds, all meet the expected physical conditions at the
trailing edge of the dynamical transition region of the
wave. This indicates validity of our modified set of
electron fluid dynamical equations and the extent and
possible range of wave speed values and currents for
lightning return strokes. Our solutions indicate that
lightning return stroke speeds lower than the ranges
reported by the majority of experimentalists are also
possible. Our solutions also indicate, for lightning
return stroke, as the wave speed increases, it can
support larger currents behind the shock front. This
means that in a lightning return stroke, a relationship
between the wave speed values and peak currents
exists.
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