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Abstract

This research addresses an integrated distribution and inventory control problem which is faced

by a large retail chain in the United States. In their current distribution network, a direct shipping

policy is used to keep stores stocked with products. The shipping policy specifies that a dedicated

trailer should be sent from the warehouse to a store when the trailer is full or after five business

days, whichever comes first. Stores can only receive deliveries during a window of time (6 am to

6 pm). The retail chain is seeking more efficient alternatives to this policy, as measured by total

transportation, inventory holding and lost sales costs. More specifically, the goal of this research is

to determine the optimal timing and magnitudes of deliveries to stores across a planning horizon.

While dedicated shipments to stores will be allowed under the optimal policy, options that combine

deliveries for multiple stores into a single route should also be considered. This problem is modeled

as an Inventory Routing Problem with time window constraints. Due to the complexity and size of

this NP-hard combinatorial optimization problem, an adaptive large neighborhood search heuristic

is developed to obtain solutions. Results are provided for a realistic set of test instances.



Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Ashlea Bennett Milburn, for

her excellent guidance, caring, and patience. She provided me with an excellent atmosphere for

doing my research. I have been amazingly fortunate to have an advisor who gave me the freedom

to explore on my own, and at the same time the guidance to recover when my steps faltered. I

would also like to thank my committee members, Dr. John A. White and Dr. Justin R. Chimka for

their time, interest, helpful comments, and insightful questions.



Contents

1 Introduction and Motivation 1

2 Problem Statement and Formulation 8

2.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Literature Review 11

3.1 Finite Time Horizon with Deterministic Demand . . . . . . . . . . . . . . . . . . 12

3.2 Finite Time Horizon with Stochastic Demand . . . . . . . . . . . . . . . . . . . . 15

3.3 Infinite Time Horizon with Deterministic Demand . . . . . . . . . . . . . . . . . . 17

3.4 Infinite Time Horizon with Stochastic Demand . . . . . . . . . . . . . . . . . . . 18

3.5 Contribution to Existing Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Methodology 21

4.1 Adaptive Large Neighborhood Search Algorithm . . . . . . . . . . . . . . . . . . 22

4.1.1 Initial Solution Construction Phase . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 Solution Improvement Phase . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.3 Move Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Heuristic Validation 28

5.1 Test Instance Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Comparison of Solution Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Result 36

6.1 Results From Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Comparison of Current and Proposed Retail Chain Replenishment Policies . . . . . 38

6.2.1 Current Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.2 Description of the Case Study Data . . . . . . . . . . . . . . . . . . . . . 38

6.2.3 Proposed Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



7 Future Research 45

Appendix A Sensitivity Analysis for Lost Sales Multiplier 47

Appendix B Results 50

References 61



List of Figures

1 Logistical Expense Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Vendor Managed Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Total Logistics Costs Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Basic Inventory Cost Trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Results of DS Policy (Cost = $750.77) . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Results of Optimal Solution (Cost = $605.59) . . . . . . . . . . . . . . . . . . . . 6

7 Heuristic Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Example of Uniform Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9 Example of Clustered Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10 Heuristic Convergence as a Function of Iteration Number . . . . . . . . . . . . . . 36

11 Results of Current Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

12 Weekly Visits to Stores Under Current Policy . . . . . . . . . . . . . . . . . . . . 41

13 Clusters of Retail Chain’s stores . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

14 Results of Heuristic for All Stores . . . . . . . . . . . . . . . . . . . . . . . . . . 43

15 Weekly Visits to Stores Under New Policy . . . . . . . . . . . . . . . . . . . . . . 44

16 Lost Sales Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



List of Tables

1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Results for Three Customers Example . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Classification of IRP Literature Based on Basic Features . . . . . . . . . . . . . . 20

5 Classification of Related Literature to Retail Chain’s Problem . . . . . . . . . . . . 21

6 Instance Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Experiment Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Instance Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9 Average Results Across All Instances . . . . . . . . . . . . . . . . . . . . . . . . 34

10 Comparison of Heuristic and CPLEX After 5 Minutes . . . . . . . . . . . . . . . . 36

11 Average Results for All Instance Levels . . . . . . . . . . . . . . . . . . . . . . . 37

12 Total Weekly Costs of Retail Chain’s Stores . . . . . . . . . . . . . . . . . . . . . 39

13 No Stock-outs Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

14 Features of Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

15 Lost Sales Multiplier = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

16 Lost Sales Multiplier = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

17 Lost Sales Multiplier = 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

18 Lost Sales Multiplier = 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

19 Lost Sales Multiplier = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

20 Results for Run 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

21 Results for Run 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

22 Results for Run 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

23 Results for Run 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

24 Results for Run 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



1 Introduction and Motivation

As companies have grown, so have their needs for a more comprehensive and accurate sys-

tem for monitoring, controlling and analyzing the storage and flow of finished products between

warehouses and customers. This is in order to ensure that the right product is available to the right

customer at the right time with the right quality and quantity (Simchi-Levi et al., 1999). Logistics

management is known to be the heart of many economic decisions in industry, creating value for

customers through product availability and customer service (Campbell et al., 1998).

According to the Council of Supply Chain Management Professionals (CSCMP), the U.S. ex-

penditures on logistics were 1.39 trillion USD in 2013, representing 8.2% of gross domestic prod-

uct (GDP) (https://cscmp.org/media-center/facts-global-supply-chain). Moreover, the U.S. Census

Bureau News 2013 reported revenue for transportation and warehousing in the second quarter of

2013 of approximately $204.3 billion, representing a more than 7% increase over the first quarter

of 2013 (http://www.census.gov/newsroom/press-releases/2014/cb14-205.html).

Many companies today are struggling with logistics management, trying to understand the re-

lationship between the stock levels at their customers and the frequency with which customers

should receive orders (http://www.ftpress.com/articles/article.aspx?p=2263501). As depicted in

Figure 1, transportation, warehousing, and inventory carrying comprise the majority of logistical

expenses. It has been recognized that the transportation and inventory management components of

logistics systems are not completely independent. In fact, decisions in one area can affect the per-

formance of the other. Thus, collaboration between the distribution and inventory control functions

is considered a key issue in logistics management (Campbell et al., 1998).
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Figure 1: Logistical Expense Breakdown
Source: adopted from http://www.westpak.com/page/supply-chain

Vendor Managed Inventory (VMI) is an example of a supply chain management strategy that

reduces logistics costs and adds value to the system (Coelho et al., 2012a). It is a replenishment

policy in which suppliers monitor and analyze the inventory level at their customers and determine

the timing and quantities of deliveries to customers. In the traditional retailer managed inventory

(RMI), customers are responsible for monitoring and replenishing their own inventory levels. Upon

receiving orders from customers, the supplier prepares and makes deliveries using a fleet of trailers.

In contrast, using VMI, a distributor is responsible for making integrated distribution and inventory

decisions using customer demand information. Specifically, the distributor keeps track of inventory

levels at the customers and specifies which customers must be replenished at which times and with

how much inventory (see Figure 2). VMI has been referred to as a win-win situation, because

it creates value for both suppliers and customers. It enables suppliers to reduce their distribution

costs by better coordinating deliveries to customers. Also, customers do not have to devote any

resources to inventory management (Campbell et al., 1998). This replenishment policy can be

modeled using a combinatorial inventory control and routing model referred to as the Inventory

Routing Problem (IRP). The complexity of solving this NP-hard problem, especially for large

scale networks, is known as a drawback of this replenishment policy (Coelho et al., 2012b).

2



Figure 2: Vendor Managed Inventory
Source: adopted from http://www.tanktel.com/vmi.html

One of the reasons for the complexity of IRPs is the interaction between distribution and inven-

tory management costs. As shipment frequency increases, transportation costs increase. However,

inventory levels are lowered, reducing inventory holding costs. On the other hand, transportation

costs are reduced by decreasing the frequency of shipments. But, inventory holding costs at stores

are increased through delivering more inventory to stores at each visit. Therefore, a trade-off be-

tween transportation costs and inventory holding costs exists (Figure 3). In addition, lost sales

costs can be reduced by delivering larger quantities at each visit or increasing the frequency of

shipments, but doing so could increase transportation and inventory holding costs (Figure 4). Such

trade-offs add to the complexity of determining the frequency of visits and quantities of deliveries

to stores.
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Figure 3: Total Logistics Costs Trade-off
Source: McKinnon, A. ”The Effects of Transport Investment on Logistical Efficiency”,

Logistics Research Centre, Heriot-Watt University, Edinburgh, UK.

Figure 4: Basic Inventory Cost Trade-offs
Source: United States Department of Transportation - Federal Highway Administration
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One of the companies that is facing a challenge in its logistics operations is a large department

store chain in the United States operating approximately 300 stores in 29 states. With approxi-

mately 30,000 employees and annual sales of more than $6.5 billion, it ranks among the largest

chains in the nation offering a variety of merchandise from cosmetics and high fashion apparel to

home goods.

This retail chain is facing a problem for determining how often each store should be visited

(frequency of visit) and how much inventory (quantity of delivery) should be delivered to each

store during a visit. Currently, trailers (shipments) are sent to stores only when they are full or

after five business days (whichever comes first). This replenishment policy focuses on maximizing

trailer capacity utilization without explicitly considering the impact on inventory carrying costs and

lost sales. Specifically, each trailer is dedicated to a single store. Stores are served independently

and in separate routes starting and ending at the depot. Thus, routes containing more than one store

are not allowed. This policy is referred to as Direct Shipping (DS) policy (Bertazzi and Speranza,

2012). The retail chain is seeking more efficient alternatives to this policy. Specifically, balancing

freight costs, inventory holding costs, and lost sales costs is the primary goal of this research.

The following three customers example explains a situation where a direct shipping policy is

not an optimal strategy for store replenishment. Distances between locations and daily demands of

stores across a three-day planning horizon are given in Tables 1 and 2, respectively. An unlimited

number of trailers each with a capacity of 45 units, fixed cost of $100 and variable cost of $1 per

mile are available to make deliveries. The inventory holding rate is $0.007 per unit of inventory

held per day for each customer. Finally, lost sales are not allowed, for simplicity of exposition.

Two solutions are developed for this instance of IRP. One is developed using a direct shipping

Table 1: Distance
Location DC 1 2 3

DC 0 20 35 15
1 20 0 10 20
2 35 10 0 25
3 15 20 25 0

5



Table 2: Demands
Stores \days 1 2 3

1 15 12 20
2 25 20 28
3 10 18 14

policy, and the other is developed following a policy that allows for combining stores on routes.

The results are depicted in Figures 5 and 6 and summarized in Table 3. Under both policies, all

three stores receive direct shipments from the DC on day one. No stores receive shipments on day

two under either policy. However, differences in the solutions can be observed on day three. Under

the direct shipping strategy, stores one and two both receive direct shipments. Under the alternative

policy, these stores are combined in a route. By using the shared trailer, total costs are reduced by

19.33%.

In summary, this research project seeks alternative replenishment policies for the retail chain

(a) Day 1 (b) Day 3

Figure 5: Results of DS Policy (Cost = $750.77)

(a) Day 1 (b) Day 3

Figure 6: Results of Optimal Solution (Cost = $605.59)
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Table 3: Results for Three Customers Example
Day Direct Shipping Optimal

Transportation Inventory Holding Transportation Inventory

1 440 0.595 440 0.469
2 0 0.175 0 0.119
3 310 0 165 0
Total 750 0.77 605 0.588

in question. While dedicated shipments to stores are permitted under the new policy, options that

combine deliveries for multiple stores into a single route are also considered. The objective of this

research is to determine the best delivery schedule for the retail chain taking into account the need

to balance freight costs, the costs of holding inventory in the store, and the lost sales costs that occur

when there are stock-outs (stock-outs occur when the demand for products exceeds the inventory

in the store available for sale). This problem is modeled as an Inventory Routing Problem (IRP)

variant, where decisions regarding the timing and quantities of deliveries to stores must be made, as

well as vehicle routing (customer delivery sequencing) decisions. This thesis develops models and

solution approaches capable of answering the following questions for a vendor-managed logistics

network:

• How often should each store/customer receive deliveries?

• How much inventory should be delivered to each store/customer in each visit?

• What delivery routes should be used?

This thesis is structured as follows. First, a formal problem statement and mathematical formu-

lation of the problem are provided in Section 2. Then, a review of the IRP literature along with

discussion of the proposed methods and research outcomes for solving IRP in the literature are

presented in Section 3. Section 4 includes a description of the solution methodology introduced in

this thesis. The results of the developed methodology validation are discussed in Section 5. The

results of a computational study are given in Section 6. Finally, Section 7 presents ideas for future

research.

7



2 Problem Statement and Formulation

The notation that is used in the mathematical formulation of the integrated distribution and

inventory problem is defined in the following.

There are a set of N nodes representing the locations of retail stores and a set of T days in a

planning horizon. For each retail store i ∈N , the daily demand magnitude uit is known, measured

in units of sales per day t ∈ T . Parameter Di, the total demand of store i over the planning horizon,

is defined as ∑t∈T uit ,∀i ∈N . Also, associated with each retail store i is a lost sales cost per unit

of stock-out inventory per day pi. A depot located at node 0 represents the distribution center (DC)

where goods are held prior to delivery to the retail store. There is an inventory holding cost, h,

measured in dollars per unit of inventory held per day for all retail stores i ∈N . A homogeneous

fleet of trailers stationed at the DC, each having capacity Q measured in units of inventory and fixed

cost r measured in dollars. An unlimited number of trailers are assumed to be available. Deliveries

to stores must be made during an allowable delivery window [a,b], where a is the earliest time a

trailer can begin unloading at a retail store and b is the latest time the trailer can finish unloading.

The proposed inventory routing problem is defined on a complete network denoted by the graph

G = (N0,A), where N0 represents all retail stores in N and the DC. The set A includes arcs

(i, j) connecting all nodes in N0 with nonnegative travel distances and travel times, ci j and fi j,

respectively. Finally, m represents the cost per mile of traveling arc (i, j) ∈ A .

The problem is to determine a delivery schedule that specifies on which days each store should

receive deliveries and the quantities that should be delivered each time. Additionally, a set of trailer

routes capable of satisfying the established delivery schedule must be designed. In order for a route

to be feasible, it should begin and end at the distribution center and the total demand loaded onto

the trailer should not exceed Q. The objective of this problem is to minimize the total transportation

costs, inventory holding costs and lost sales costs associated with the selected delivery schedule

and set of trailer routes.

The mixed integer programming (MIP) representation of this IRP variant is defined next.

8



2.1 MIP Model

Let Xi jt be a binary variable that is equal to 1 if arc (i, j) is traversed in period t and zero

otherwise. Also, let qi jt denote the delivery quantity on arc (i, j) in period t. Decision variable dit

represents the delivery quantity to retailer i in period t. The continuous variable sit represents the

start time of service at retailer i in period t. Finally, I+it and I−it denote the inventory level of retailer

i at the end of period t, if positive and negative, respectively.

min ∑
i∈N0

∑
j∈N0

∑
t∈T

m× ci j× xi jt + ∑
i∈N

∑
t∈T

r× x0it + ∑
i∈N

∑
t∈T

h× I+it + ∑
i∈N

∑
t∈T

pi× I−it (1)

Subject to

∑
t∈T

dit ≤ Di ∀i ∈N (2)

q0 jt ≤ Q ∀ j ∈N ,∀t ∈ T (3)

∑
j∈FS(i)

qi jt− ∑
j∈RS(i)

q jit =−dit ∀i ∈N ∀t ∈ T (4)

qi jt ≤M× xi jt ∀i, j ∈ N0 ,∀t ∈ T (5)

∑
i∈N0

xi jt = ∑
i∈N0

x jit j ∈N ,∀t ∈ T (6)

∑
j∈N0

xi jt ≤ 1 i ∈N ,∀t ∈ T (7)

I+it − I−it = I+i,t−1 +dit−uit ∀i ∈N ,∀t ∈ T (8)

s0t = 0 ∀t ∈ T (9)

sit + xi jt× fi j− s jt ≤ (1− xi jt)×M ∀i ∈ N0 ,∀ j ∈N ,∀t ∈ T (10)

sit + xi jt× fi j− s jt ≥ (xi jt−1)×M ∀i ∈ N0 ,∀ j ∈N ,∀t ∈ T (11)

e≤ sit ≤ l ∀i ∈N ,∀t ∈ T (12)

xi jt ∈ {0,1} ∀i, j ∈N ,∀t ∈ T (13)

dit ≥ 0 ∀i ∈N , t ∈ T (14)

9



qit ≥ 0 ∀i ∈N , t ∈ T (15)

I+it ≥ 0 ∀i ∈N , t ∈ T (16)

I−it ≥ 0 ∀i ∈N , t ∈ T (17)

sit ≥ 0 ∀i ∈N , t ∈ T (18)

The objective function in Equation (1) minimizes the total transportation, inventory holding

and lost sales costs. Constraint set (2) ensures combined delivery quantities to each retail store

do not exceed the total demand of that store over the entire planning horizon. Constraint set (3)

ensures trailer capacity is never violated for any trailer.

Constraint set (4) describes the mass balance constraints for the retail stores. They ensure that

in each period t, the total delivery quantity emanating from the retailer i minus the total delivery

quantity entering i is equal to the magnitude of delivery to i at t. Constraint set (5) relates the

route-oriented variables, xi jt , to the delivery quantity variables qi jt . More specifically, it ensures

that an inventory flow is carried on arc (i, j) in period t only if the arc (i, j) is traversed by a trailer

in that period. If arc (i, j) is not being traversed by any trailer in period t, its inventory flow in the

same period must be zero.

Constraint set (6) imposes that if an arc enters retailer i in period t, it should leave i in the same

time period. Constraint set (7) ensures each retail store should be visited at most once during each

time period. Constraint set (8) is an inventory balance equation. It determines the inventory level

of retailer i at the end of period t by taking its inventory level at the end of period t−1, adding the

sum of the quantities delivered to that retailer in period t, and subtracting its demand during period

t. Constraint sets (9) - (12) calculate arrival times for each retail store visit and ensure those times

are within the allowable windows. They also serve to eliminate subtours. Finally, constraint sets

(13) - (18) define restrictions on the decision variables.

10



3 Literature Review

The Inventory Routing Problem (IRP) has been extensively studied within the context of supply

chain and logistics. Applications of IRP are found in many industries, for example, the grocery

and gasoline distribution industries (Gaur and Fisher (2004), Li et al. (2014)). Specific problem

features encountered in each application influence the particular variant of IRP that is used to

model the problem. For example, the objective may be to minimize the overall cost of the system

or to minimize the route travel time (Li et al., 2014). The IRP is classified into different categories

in the literature based on various factors including the main characteristics of the problem or the

purpose of the study. For example, Coelho et al. (2013) classifies IRP based on the structural

variants of the problem and the availability of demand information. In this study, the IRP literature

is categorized along two dimensions: whether the time horizon is finite or infinite, and whether

product consumption rate (demand) is deterministic or stochastic.

The combination of inventory management and distribution yields a long-term, possibly infinite

horizon, problem in which decisions regarding the timing and magnitude of replenishments in

different periods are not independent. Also, the actual objective is to minimize the long term

costs of the system. Given this long-term nature, it is difficult, if not impossible, to model and

solve the inventory routing problem. Therefore, many approaches in the literature reduce the

long-term planning horizon to a short-term one and solve a simplified version of the problem by

incorporating a finite time horizon (e.g., one week) in their models. With a finite time horizon, the

specific situation of each problem determines the planning horizon (e.g., Gaur and Fisher (2004));

while with an infinite time horizon, the objective is to determine a long-term distribution plan and

minimize the long-term costs (e.g., Bertazzi and Speranza (2012)).

In addition to time horizon, the usage rate of products (i.e., demand) can be taken into account

as one of the most important components of the inventory routing problem. Deterministic demands

occur when demand rates are stable and known with certainty (Ramtin et al. (2010), Ramtin and

Pazour (2014), Ramtin and Pazour (2015)). However in most real-world cases, the consumption

rate of products or demand at customers is not known with certainty. In this case, referred to as

11



the stochastic inventory routing problem, random demand is described by a probability distribution

representing uncertain factors.

3.1 Finite Time Horizon with Deterministic Demand

IRP variants with finite time horizons and deterministic demand are the focus of a number of

papers in the literature (e.g., Miller (1987), Chien et al. (1989), Carter et al. (1995), Kim et al.

(2000), Bertazzi et al. (2002), Campbell and Savelsbergh (2004), Al-Khayyal and Hwang (2007),

Archetti et al. (2007), Savelsbergh and Song (2007), Savelsbergh and Song (2008), Yu et al. (2008),

and Hemmelmayr et al. (2009)). For instance, Miller (1987) offers a network flow model for the

inventory scheduling problem for a chemical corporation and is among the first to consider an

IRP with a finite time horizon and deterministic demand. The problem presented is to determine

the timing and quantities of deliveries that minimize a total cost function comprised of compo-

nents such as voyage-related ship costs, in-transit inventory costs and terminal inventory costs.

A constructive heuristic approach is used to obtain a feasible initial delivery schedule. Then, an

interactive decision support system having both manual and automatic solution improvement pro-

cedures is applied.

Chien et al. (1989) introduces an integrated inventory allocation and vehicle routing problem

with a short time horizon, known demand rates and a capacitated distribution center. The combina-

torial optimization problem is modeled as a multi-commodity flow-based mixed integer program.

The objective is to maximize total profit, defined as the revenue obtained from delivering inven-

tory minus stock-out costs and fixed and variable transportation costs. Inventory holding cost is

not considered. The multi-period problem is decomposed into a series of single period problems

for simplicity. The periods are linked by modifying revenues of each period based on the penalty

costs of the previous period. Finally, a Lagrangian relaxation for decomposing the problem into

two subproblems and a Lagrangian based heuristic for constructing feasible solutions are proposed.

Additional details regarding the decomposition are available in Geoffrion (1974) and Fisher (1981).

Computational results indicate that good quality solutions are obtained.
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Abdelmaguid and Dessouky (2006) formulates a deterministic IRP as a mixed integer program

with a nonlinear function for transportation costs. Customers are assumed to have limited storage

capacity and back orders on unsatisfied demands may occur. The complete version of the model

is accessible in Abdelmaguid (2004). A genetic algorithm focusing on delivery schedule deci-

sion variables is developed. The routing subcomponent is handled via the Clarke-Wright Savings

algorithm Clarke and Wright (1964). Computational results on test instances with 5, 10 and 15

customers over 5 and 7 day planning horizons indicate the proposed heuristic is capable of gener-

ating solutions that are within 20% of the optimal solution.

Herer and Levy (1997) considers the addition of a new concept to the IRP, resulting in a new

problem termed the Metered IRP (MIRP). The new element in MIRP is that rather than paying for

a delivery when it is made, customers pay for the inventory as they use it. Therefore, the supplier

(not the customer) pays for the inventory that is held at the customer. Moreover, a probability of

stocking out in customers with stochastic demands is considered in this study. A number of sim-

plifying assumptions are made, for example, customers are assumed to have unlimited capacity

and there are no time window limitations regarding the timing of deliveries. A solution procedure

based on a modified Clarke-Wright algorithm is developed.

Savelsbergh and Song (2007) introduces a new version of the IRP named the Inventory Routing

Problem with Continuous Moves (IRP-CM). This new problem is introduced in order to investigate

conditions where availability of products are limited, customers can not be visited using out-and-

back tours and delivery routes span several days. A minimum delivery quantity at customers is

enforced and a greedy randomized adaptive search procedure (GRASP) is proposed (Feo and Re-

sende, 1995). GRASP determines a delivery schedule for the entire planning horizon that specifies

the timing and magnitudes of deliveries to customers as well as vehicle routes. Finally, a deliv-

ery volume optimization model is proposed to maximize the total volume of products delivered to

customers over the planning horizon. In this optimization model, the timing and magnitudes of

deliveries to customers are recalculated after removing the minimum delivery requirement. How-

ever, the vehicle routes are not changed, thus the total transportation costs remain the same. The
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proposed strategy is able to generate optimal or near optimal solutions for test instances including

up to approximately 200 customers in a reasonable amount of time. Computational times for larger

instances are higher.

Archetti et al. (2007) are among the first to implement an exact branch-and-cut algorithm to

obtain an optimal solution for a class of distribution problems that follow a vendor-managed in-

ventory policy. In this problem, a supplier must determine the delivery quantity for each customer

using a policy named deterministic order-up-to level discussed in Bertazzi et al. (2002). In this

policy, the quantity delivered to each customer has to be determined in such a way that the given

maximum inventory level for each customer is not violated.

IRP-CM is further investigated in Savelsbergh and Song (2008) with more focus on developing

optimization algorithms. A multi-period multi-commodity flow formulation is suggested along

with a solution strategy for reducing the size of the problem, developing a set of valid inequalities,

and building a branch and cut algorithm. More specifically, the quality of solutions obtained from

the randomized greedy heuristic, GRASP, is improved by developing an optimization algorithm.

Hemmelmayr et al. (2009) studies the problem of managing blood product delivery for the

American Red Cross. In the first presented solution approach, which is an Integer Programming

approach, fixed delivery routes visiting all customers on each day are obtained using a vehicle

routing algorithm. Then, these routes are passed to an integer program to decide which customers

can be skipped each day without stock-outs occurring. Finally, a variable neighborhood search is

suggested as an alternative and compared with the first method. Computational results reveal that

the two methods have similar performance, but the IP approach requires more CPU time.

Moin et al. (2011) studies a many-to-one distribution network consisting of a warehouse, an

assembly plant, and N suppliers over a finite time horizon with multi-periods and deterministic

demands. There is a fleet of capacitated vehicles transporting products from the suppliers to sat-

isfy the demand of the assembly plant for each period. A linear mathematical representation of

this problem is suggested and is used to obtain lower and upper bounds. Finally, a hybrid genetic

algorithm is used to solve the problem.
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Qin et al. (2014) is one of the most recent studies about the periodic inventory routing problem

over a finite planning horizon with a set of retailers having deterministic demands. The problem is

decomposed into two sections: the inventory problem and the vehicle routing problem for which

a local search method and a tabu search algorithm are proposed, respectively. The performance of

the proposed solution approach is tested on ten data sets given in Zachariadis et al. (2009). Results

demonstrate the proposed algorithm provides solutions that reduce the total costs of the system by

6.79%.

3.2 Finite Time Horizon with Stochastic Demand

Due to the complexity associated with considering uncertainty and obtaining probability dis-

tributions for product usage rates, stochastic demand has attracted less attention in the literature.

This type of demand in the context of a finite time horizon is first introduced in Bell et al. (1983)

where improving the distribution of air products to a set of customers is studied. Before formulat-

ing this problem as a mixed-integer linear program, a set of feasible routes are generated. Then,

the model is solved using Real-Time Optimizer for Vehicle Routing (ROVER) to obtain a schedule

determining the timing and quantities of deliveries at customers for a subset of generated routes.

A feasible solution to the route selection model is obtained by developing a Lagrangian relaxation

algorithm with the branch and bound framework. The Lagrangian algorithm determines routes to

be included in the delivery schedule as an input for the MIP. Then the MIP is solved to determine

the timing and magnitudes of deliveries to customers within the selected routes.

Federgruen and Zipkin (1984) studies the problem of simultaneously allocating and distribut-

ing a scarce resource among a set of customers. Demands are uncertain and are modeled using a

cumulative distribution function. The objective function is comprised of stock-out costs for unsat-

isfied demands, inventory holding costs and transportation costs. A single period planning horizon

is used. A nonlinear mixed integer programming model and an exact algorithm based on Bender’s

decomposition are proposed to solve the problem. This problem is extended in Federgruen et al.

(1986) to allow for multiple types of perishable products. A new component, out of date costs, is
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introduced in the objective function of the extended problem. This component models the cost that

must be paid for discarding unused products that have expired.

Dror and Ball (1987) develops a procedure for reducing the long term stochastic IRP to a short

term problem. The set of customers to be replenished each day is selected based on fixed delivery,

distribution and stock out costs. If a customer is not included in the replenishment plan and con-

sequently experiences a stock-out on a given day, it will be served immediately by an emergency

service with a high cost. The computational results for this problem are given in a companion

paper Dror et al. (1985).

Campbell et al. (1998) studies two IRP variants, one with deterministic and one with stochastic

demands. The possibility of customer stock-outs are only considered in the latter. The problem is

analyzed for just one and two customers in order to develop insights for this version of the IRP.

An integer programming approach based on the concept of clusters and a dynamic programming

approach based on a discrete time Markov decision process (MDP) are proposed as solution meth-

ods for the deterministic and stochastic IRP variants, respectively. The need for a large amount of

parameter tuning and significant computational time are listed as implementation challenges of the

MDP.

Gaur and Fisher (2004) develops a system to solve a periodic inventory routing problem with a

finite time horizon and stochastic demands in a supermarket. The problem is to determine the vehi-

cle route and visiting time for each store with the objective of minimizing the transportation costs.

This problem is similar to the IRP in the case study of this thesis, since it is a real problem (IRP at

a supermarket chain) and time horizon is finite. The fixed partition policy is applied to solve this

complex problem. Under this policy, the set of customers is divided into different clusters and for

each, independent routes are created. Each cluster is visited and replenished separately from other

clusters. It is concluded that annual distribution costs are decreased by 4% by implementing the

proposed solution methodology in the supermarket chain.

In a complex distribution optimization problem which is faced by a Norwegian production

company discussed in Dauzère-Pérès et al. (2007), customers’ demands are time varying. This
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inventory routing problem is formulated as a mixed-integer program with a nonlinear objective

function to determine both shipment quantities and schedules. Efficiency and planning process are

improved by applying a memetic algorithm combining a local search heuristic and genetic algo-

rithm.

Liu and Lee (2011) proposes a two phase heuristic for solving IRP with soft time windows,

where retailers demands are stochastic and lost sales costs are known. An initial solution based

on a construction approach is generated in the first phase. Then, the initial solution is improved

by a combination of variable neighborhood search and tabu search. The developed heuristic is

compared with three algorithms designed for the vehicle routing problem with time windows.

3.3 Infinite Time Horizon with Deterministic Demand

Infinite time horizon with deterministic demand has been considered in various studies in-

cluding Blumenfeld et al. (1985), Anily and Federgruen (1993), Bramel and Simchi-Levi (1995),

Bertazzi et al. (1997), Chan and Simchi-Levi (1998), Jung and Mathur (2007), Raa and Aghezzaf

(2008), and Raa and Aghezzaf (2009). For example, Blumenfeld et al. (1985) is one of the earliest

works studying the optimal shipment policy by evaluating a trade-off between transportation, in-

ventory, and production set-up costs in an infinite time planning horizon. Various topologies such

as consolidation terminals with direct shipping are considered and analyzed by using Economic

Order Quantity (EOQ) models.

According to Andersson et al. (2010), the common objective is not to minimize the total cost

of the system in inventory routing problems with an infinite time horizon. In this case, because the

optimal replenishment strategy is repeated over the planning horizon, minimizing the total cost of

one repetition divided by the length of the repetition is the most appropriate goal. This strategy is

used by Anily and Federgruen (1990) to determine feasible long-term replenishment policies in a

system with a single depot and many customers with deterministic demands.

Also, Aghezzaf et al. (2006) studies an economic order quantity policy for replenishing a set

of customers and allowing multi-tours for a set of vehicles to serve customers. For this purpose, a
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new IRP model is introduced where demands of customers are stable and the objective function is

to minimize the total transportation and inventory holding costs. A fixed vehicle cost component

is not considered in this study, thus the suggested transportation cost is proportional to travel times

between customers. In addition to a mixed integer formulation for the IRP, a solution method is

suggested based on a column generation approach. The proposed model is distinguished from

other IRP models in the literature due to the consideration of a vehicle multi-tour in the model, im-

plying that a vehicle’s travel plan may contain more than one tour. Computational results suggest

an 11% savings in total cost in comparison to a situation where multiple-routes are not allowed for

vehicles.

3.4 Infinite Time Horizon with Stochastic Demand

More complicated IRP models are developed in studies where demands are considered to

be random over the long-term planning horizon. The majority of studies in this area, including

Minkoff (1993), Barnes-Schuster and Bassok (1997), Reiman et al. (1999), Kleywegt et al. (2002),

Kleywegt et al. (2004), and Hvattum et al. (2009) use Markov decision processes and simulation

methods to find an optimal solution to this problem.

Larson (1988), for instance, studies a strategic IRP, where there is a significant lead time be-

tween purchasing or leasing a fleet of vehicles and the actual delivery times to customers. The

primary focus of this version of IRP is to estimate the minimum number of vehicles required to

service a set of customers from a depot. Customers are divided into a set of clusters and within

each, all customers are visited on a single route. Such a method is not always efficient, especially

if the frequencies of required deliveries for all customers in a single cluster differ a lot. This in-

efficiency is addressed and improved in Webb and Larson (1995) through the inclusion of period

and phase of replenishment as additional decision variables. It is concluded that the developed pe-

riod/phase strategy reduces costs by maximizing vehicle utilization leading to minimizing number

of required vehicles.

Barnes-Schuster and Bassok (1997) studies a single depot/multi-trailer system with stochastic
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demands under a specific policy of direct shipments. Inventory level at the depot and lead time

between warehouse and customers are assumed to be zero. The study results in obtaining a lower

bound on the long run average cost per period whose effectiveness is evaluated using simulation.

Reiman et al. (1999) investigates three queuing control problems with a single warehouse and

a single capacitated vehicle. The study focuses on two types of inventory routing problems: fixed

and dynamic. Two variants for the fixed routing IRP are suggested: Traveling Salesman Problem

(TSP) and Direct Shipping (DS). In the IRP with TSP routing, an optimized tour has to be visited

by the vehicle for a subset of retail stores. However, all the contents of the vehicle have to be

delivered to a single store in the IRP with DS. The decision to whether use a DS or TSP tour has

to be made in the dynamic IRP. The study concludes that by making larger and less frequent visits

to customers, DS can lead to smaller transportation costs, while inventory costs can be decreased

by visiting customers more often and delivering fewer inventories in TSP routing.

The IRP with multiple items and uncertain demands is addressed by Huang and Lin (2010).

A modified ant colony optimization (ACO) algorithm is proposed for this problem and compared

with the conventional ACO. The computational results show the superiority of the proposed algo-

rithm over the classic ACO with respect to the total costs.

Table 4 provides the classification of the IRP literature based on type of demand, planning

horizon and whether or not lost sales costs are considered. Also, Table 5 shows the classification

of previous studies with similar features to the problem considered in this thesis, deterministic de-

mand over a finite planning horizon, highlighting their solution strategies. These papers have been

introduced in the previous sections.

3.5 Contribution to Existing Literature

As discussed, one of the main distinguishing factors of IRP variants is the objective function

used. The literature has focused mainly on IRPs with the objective of minimizing transportation

costs, inventory carrying costs, or both. Rather than allowing lost sales and balancing these costs

against other costs of the system, the majority of the literature has focused on preventing stock-outs
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Table 4: Classification of IRP Literature Based on Basic Features

Article Time Horizon Demand Lost sales
Finite Infinite Deterministic Stochastic

Bell et al. (1983) X X No
Federgruen and Zipkin (1984) X X Yes
Federgruen et al. (1986) X X Yes
Chien et al. (1989) X X Yes
Barnes-Schuster and Bassok (1997) X X Yes
Reiman et al. (1999) X X Yes
Anily and Federgruen (1990) X X No
Minkoff (1993) X X Yes
Campbell et al. (1998) X X No
Kleywegt et al. (2002) X X Yes
Kleywegt et al. (2004) X X Yes
Campbell and Savelsbergh (2004) X X No
Abdelmaguid and Dessouky (2006) X X Yes
Dauzère-Pérès et al. (2007) X X No
Raa and Aghezzaf (2008) X X No
Yu et al. (2008) X X No
Hvattum et al. (2009) X X Yes
Raa and Aghezzaf (2009) X X No
Moin et al. (2011) X X No
Li et al. (2014) X X No

at customers. One of the shortcomings of such a method is that it is difficult, if not impossible,

to completely eliminate lost sales in reality. Therefore, the absence of lost sales costs in the IRP

formulations decreases the flexibility of such models in real world applications. In addition, using

a constraint to eliminate lost sales does not allow trade-offs in lost sales, inventory holding costs

and transportation costs to be considered. Including lost sales in the objective function allows for

(and requires) valuing them appropriately. Therefore, to overcome this limitation, balancing freight

costs, inventory holding costs, and lost sales costs is the objective function of the deterministic IRP

studied in this research.

Moreover, the majority of IRP papers with lost sales incorporated in the objective function

considered demands of customers to be stochastic, as discussed in Sections 3.2 and 3.4. Only a

few papers incorporate stock-out costs in IRP problem variants with deterministic demand (e.g.,
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Table 5: Classification of Related Literature to Retail Chain’s Problem

Article Solution Methodology
Miller (1987) Constructive heuristic/decision support system
Chien et al. (1989) MIP/lagrangian based heuristic
Abdelmaguid and Dessouky (2006) Genetic algorithm
Savelsbergh and Song (2007) Enhanced greedy heuristic /GRASP
Archetti et al. (2007) Branch & cut algorithm
Savelsbergh and Song (2008) Branch & cut algorithm
Hemmelmayr et al. (2009) Integer programming/variable neighborhood search
Moin et al. (2011) Hybrid genetic algorithm
Qin et al. (2014) Inventory/routing decomposition local search, tabu search

Chien et al. (1989) and Abdelmaguid and Dessouky (2006)). However, they are different from this

research with respect to both suggested constraints and solution methods. For example, both of the

mentioned studies impose order-up-to policies at customers. This makes the delivery quantity deci-

sions easier, as evidenced in Campbell et al. (2001), which states that allowing changes in delivery

volumes adds to the complexity of the IRP. Also, neither Chien et al. (1989) nor Abdelmaguid and

Dessouky (2006) consider time window constraints for customer deliveries. In summary, there is a

gap in the IRP literature with respect to deterministic problem variants that incorporate inventory

holding costs, lost sales costs and time windows limitations. This research seeks to fill this gap.

4 Methodology

The problem described in Section 2 is first attempted to be solved optimally. The MIP is

implemented in AMPL with CPLEX used as the solver. However, it was not possible to obtain

solutions to instances of the size required in this research (58 stores over a one week horizon).

CPLEX failed due to lack of memory. This result is expected, because according to the literature,

large instances of IRP (e.g., 60 customers over a one week planning horizon) cannot be solved

optimally. As an example, Archetti et al. (2007) claimed their Branch-and-Cut algorithm was able

to obtain optimal solutions for instances with up to 50 customers and a time horizon of 3 days.

However, as the time horizon increased to six days, the largest instances that could be solved
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optimally were limited to 30 customers. Another study in the IRP literature, Li et al. (2014),

reported CPLEX could only solve instances with up to nine customers and two vehicles optimally.

Because the case study in this thesis includes instances with at least 50 retail stores and a one

week planning horizon, a heuristic solution method is developed.

4.1 Adaptive Large Neighborhood Search Algorithm

In this study, an Adaptive Large Neighborhood Search (ALNS) strategy that is an extension of

the Large Neighborhood Search introduced in Shaw (1998) is developed. This specific approach

is chosen because impressive results for the performance of similar methods are reported in the

literature. It is shown in Kilby et al. (2000) that large neighborhood search is well suited for the

vehicle routing problem with some side constraints. Given that distribution decisions comprise

a major part of IRPs, ALNS shows promise for this class of combinatorial optimization problem.

Indeed, large neighborhood search algorithms have demonstrated good results for two IRP variants

in the literature (Coelho et al. (2012a), Zhao et al. (2008)).

The ALNS that is developed in this thesis consists of two phases, described below.

4.1.1 Initial Solution Construction Phase

Algorithm 1 contains details of the initial solution generation method developed in this study.

The algorithm begins by setting a mandatory delivery quantity for each customer i ∈ N at the

beginning of each period t ∈ T equal to dit , the demand of i at time t. Then, subproblems for each

t ∈ T are solved. In a given period, all customers are initially placed in an unvisited customer list, u,

and a route is opened. A customer i is randomly removed from the list u for insertion. Open routes

are examined to find feasible insertion locations for customer i. An insertion location in a route r is

feasible for customer i if inserting i in that location will not violate the time windows of the route,

and if adding delivery quantity dit will not violate the capacity of the trailer. If no feasible insertion

locations exist in open routes, a new route is opened. If multiple feasible insertion locations are

available, the one with cheapest insertion cost is selected. This means customer i is inserted in a
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location that yields the minimum increase in transportation cost. This is repeated until u is empty

(there are no customers left to insert), and then the overall process is repeated for each t ∈ T .

Finally, to improve the sequencing decisions within each route, a sweep ordering of the customers

assigned to each route is created, and the customers are then visited in the order specified by

the sweep sequence (Gillett and Miller, 1974). In sweep ordering, the polar coordinates of each

customer with respect to the depot are calculated and customers are sorted in increasing order of

polar angle.

The aim of Algorithm 1 is to generate an initial solution with high vehicle capacity utilization.

This is because transportation costs, especially fixed trailer costs, comprise a significant portion of

the total costs, according to the parameters of the case study in this thesis. The routing decisions

that result from Algorithm 1 are also expected to be good, as the customer sequences are developed

using the sweep methodology.

In addition, the developed scheme for initial solution generation works well for instances where

transportation costs is not the dominant cost. One example for this situation is when lost sales

multipliers have high values with respect to the transportation costs. Under this condition, it would

be more cost efficient to prevent lost sales occurrence and visit the majority of the stores. This is

taken care of in the developed algorithm, because for each day, mandatory delivery quantities are

set to the store demand. Thus, lost sales do not occur. Also in the proposed method, the vehicle’s

capacities are used as much as possible, because customers are inserted into routes unless doing so

is not feasible.

4.1.2 Solution Improvement Phase

ALNS explores the search space by moving from the current solution to its neighbors using

pre-defined operators including removing, reinserting, swapping and exchanging.

Because lost sales are allowed in the IRP that is studied here, the same concept regarding partial

fulfillment of customers that is explained in Coelho et al. (2012a) is applied. The main idea is that

rather than using a pair of removal and reinsertion operators (that is the case in the majority of local
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Algorithm 1 Initial Solution
1: t = 1
2: while t 6= T do
3: set delivery quantity to customer i at period t be equal to demand of i at t
4: list of unvisited customers = u←{1,2, . . . ,n}
5: set of open routes = o← /0

6: while u 6= /0 do
7: randomly select i ∈ u and remove it from the list u
8: assign customer i to first route having feasible insertion location
9: if such a route does not exist then open a new route for i

10: add the new opened route to the set o
11: end if
12: end while
13: apply sweep on all obtained routes
14: t = t +1
15: end while
16: return initial solution

search algorithms), it is allowed here to only remove a customer from a solution and not reinsert it.

More specifically, in traditional neighborhood search algorithms, each removal operator is followed

by an insertion operator. But in this thesis, the option of using the removal and insertion operators

independently is allowed. This adds more flexibility to the neighborhood search mechanism. The

ALNS variant developed in this thesis is detailed below. First, the proposed operators are described

and then, the flow of the algorithm is discussed in detail.

4.1.3 Move Operators

Recall that route r refers to a sequence of customers assigned to a vehicle for replenishment,

and also denotes the magnitude of delivery to each customer in the route. Also, o refers to the set of

open routes which are updated throughout the algorithm. Whenever it is mentioned that a customer

is inserted in a route, the insertion is carried out only if doing so will not violate the feasibility of

the route with respect to trailer capacity and time windows. A description of operators used in this

implementation of ALNS is given below.

• Remove all days: A customer i is randomly selected and all of its assigned visits across all

days of the planning horizon are removed.
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• Remove worst distance per delivery: A trailer route ris randomly selected. The customer in

the route having the smallest ratio of delivery quantity to transportation cost is removed.

• Remove random: A route r is randomly selected and a customer is randomly selected from

r and removed.

• Remove k: The remove random operator is repeated k times, where k is a user-defined pa-

rameter.

• Remove smallest delivery: A route r is randomly selected and the customer in the route

having smallest delivery quantity is removed.

• Remove worst: A route r is randomly selected and the customer whose removal maximizes

travel distance savings is removed.

• Adjust delivery quantity: A customer i is randomly selected. All delivery quantities to i

across all days of the planning horizon are adjusted to ensure that the total quantity delivered

to i is not more than what is needed (its total demand over the planning horizon).

• Improve capacity utilization: An open route r with available capacity (r ∈ o) is chosen ran-

domly. Next, customer i ∈ r with having minimum delivery quantity is identified. The

delivery quantity to i is augmented in an amount equal to the remaining capacity of the

trailer. Note that the adjust delivery quantity operator that is described earlier accounts for

the situation where customer i does not need this large delivery.

• Insert biggest demand: A day t is selected randomly. Among all customers that are not

visited in t, the one with the biggest demand is selected. A route r from all available routes

on day t is selected randomly. Then, the customer is inserted into the cheapest feasible

insertion location in r. This operator was first introduced in Rosenkrantz et al. (1977). Note

that if there are no open routes on day t or there is not a feasible insertion location for

customer i in r, a new route is opened for inserting i.

• Insert random: An open route r is selected randomly. A customer i that is not visited within

r is selected randomly. Customer i is inserted into the cheapest feasible insertion location in

r. The delivery quantity to i is set equal to the remaining capacity of the trailer. Note that if
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there is no feasible insertion location for customer i in r, another route is selected randomly

and the remaining steps of the process are repeated. Note that the adjust delivery quantity

operator that is described earlier accounts for the situation where customer i does not need

this large delivery.

• Change a route: A route r is randomly selected. The period t in which this route will be

executed is changed. Specifically, the period number is divided by two and rounded up

to the next integer number, if necessary. For example, if the selected route is originally

scheduled for day six of the planning horizon, it will be moved to day 3. Or if the selected

route is in day 3 of the planning horizon, it will be moved to day 2.

• Break a route: A route r is randomly selected and split into two routes, such that the two

resulting routes will contain the same or almost the same number of customers. For example,

a route 0-5-3-7-2-0 will be split into the two routes 0-5-3-0 and 0-7-2-0.

Algorithm 2 summarizes the flow of the ALNS scheme. The improvement phase is initialized by

assigning equal weights for all operators so that they are all equally likely to be selected in each

iteration. For the first n iterations, where n is a user-defined parameter, all operators are applied

to the current solution s to generate a set v of neighbors for s. At the end of each iteration, the

admissible neighbor in v with minimum total cost is selected as the candidate neighbor s′ of s. In

order for a neighbor to be admissible, it must not appear on a list that contains the solutions from

the last w iterations of the algorithm (this is, effectively, the tabu list as in tabu search heuristics).

Moreover, if candidate neighbor s′ has total cost lower than the best solution found so far, sbest ,

then sbest is updated to s′. Also, solutions that are in the tabu list, but have a total cost less than the

best solution found so far are accepted. Finally, s′ is the starting point of the next iteration.

Note that before moving to the next iteration, operator weights are adjusted based on their

performance. Specifically, associated with each operator is a score that is initially set to zero. Then,

one point is added to the score of an operator, each time it is the best admissible neighbor. Also,

two and three points are added to the scores of operators yielding solutions with total costs lower

than s and sbest , respectively. Finally, selection probabilities of operators (weights) are calculated
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Algorithm 2 ALNS
1: Initialize weights of all operators
2: s← initial solution
3: sbest ← s
4: set of neighbor solutions v← /0

5: while stopping criteria not met do
6: select operators based on their past performances
7: apply operators on s to get set of neighbor solutions v
8: choose the best admissible neighbor from v to get a neighbor solution s′
9: if f (s′)< f (sbest) then sbest ← s′

10: end if
11: if A neighbor that is in the tabu list has a total cost less than sbest then accept neighbor
12: end if
13: update weight of operators
14: end while
15: apply sweep on all routes to improve routing aspect of the solution
16: return final solution

using the points associated with each operator divided by the total points across all operators.

After n iterations, these operator weights are used to select a single operator per iteration.

Operators with higher weights are more likely to be selected. This procedure is continued until the

stopping criteria is met. The outline of the algorithm is described in Figure 7.
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Figure 7: Heuristic Outline

5 Heuristic Validation

The performance of the solution methodology presented in Section 4 is investigated across a

number of test instances by comparing results obtained from the heuristic to results obtained from

commercial optimization software. Section 5.1 describes test instance development and Section

5.2 presents the comparison of the two solution methods.

5.1 Test Instance Development

In addition to test instances that resemble actual data from the retail chain, a broader set of

test instances resembling real-world situations are developed. Test instances have several con-

stant parameters including fixed and variable transportation costs and allowable time windows for

deliveries at stores. These parameters along with associated values are described in Table 6.
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Table 6: Instance Parameters
Parameter Description Value
r fixed trailer cost $106.9
m transportation cost per mile $1.883
a the earliest time a trailer can

begin unloading
6 a.m.

b the latest time the trailer can
finish unloading

6 p.m.

There are five parameters that vary across test instances. These are referred to as factors in the

experimental design, and each factor has a number of levels. Additionally, five test instance repli-

cations are generated randomly for each factor combination, yielding a total of 240 test instances.

The factors and levels are summarized in Table 7 and described below.

Table 7: Experiment Development
Factors Level Level Description

Demand 3
1: Low week - N (400, 150)

2: Medium week - N (800,150)
3: High week - N (1200,200)

Location 2
1: Uniformly distributed customers

2: Clustered customers

Lost Sales Cost 2
1: N (0.3025, 0.0247)
2: N (3.025, 0.0247)

Holding Cost 2
1: 13%
2: 18%

Trailer Capacity 2
1: Small truck 1100 units
2: Large truck 2900 units

• Demand: Historical demand of the retail chain can be classified into three levels: low,

medium and high. Data series from low, medium and high volume weeks were used sepa-

rately to fit three corresponding normal distributions.

• Location: Store locations are generated using a uniform and clustered location distribution.

In the first, store locations are distributed uniformly throughout the rectangular area with

length 720 miles and width 570 miles. These limits are calculated using the distances be-

tween maximum and minimum latitudes and longitudes of the locations provided by the

retail chain. In the second, c points are randomly generated as cluster seeds. Then, locations
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are randomly generated within a radius r of those seed locations. For the purposes of this

study, r is 48 miles. This results in c clusters of locations. Figure 8 and Figure 9 depict

examples of uniform and clustered location distributions, respectively.

Figure 8: Example of Uniform Locations

Figure 9: Example of Clustered Locations

• Lost Sales Cost: A goodness of fit test performed on the retail chain lost sales costs indicates

the data follows a normal distribution with mean 0.3025 and standard deviation 0.0247. The
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first level of this factor uses this distribution. Initial experiments revealed that this magni-

tude of lost sales costs leads to frequent stock-outs in resulting solutions. Therefore, a second

level of this factor that infrequently allows lost sales was determined through experimenta-

tion to be ten times larger, with a mean of 3.025 and the same standard deviation. Therefore,

these two levels are believed to represent “extreme” cases to be considered: solutions with

many stock-outs versus few stock-outs. Additional sensitivity analysis on this parameter was

performed for a subset of the experimental design and is described in Section 6 of this thesis.

• Holding Cost: A common range in industry for inventory carrying costs is 5% - 20%

(http://www.lokad.com/definition-inventory-costs). In this research, 13% and 18% are used.

• Trailer Capacity: Small and large trailers with capacities of 1100 and 2900 units are con-

sidered. These two values permit scenarios where there are many opportunities to combine

deliveries to multiple stores in the same route (the larger trailer) and scenarios where there

are fewer such opportunities (the smaller trailer).

This experimental design yields 48 instances types, described in Table 8.

Table 8: Instance Types

Instance Demand Location Lost Sales Costs Holding

Costs

Trailer Capacity

1 Low Cluster 0.3 0.13 Small

2 Low Uniform 0.3 0.13 Small

3 Low Cluster 3 0.13 Small

4 Low Uniform 3 0.13 Small

5 Medium Cluster 0.3 0.13 Small

6 Medium Uniform 0.3 0.13 Small

7 Medium Cluster 3 0.13 Small

8 Medium Uniform 3 0.13 Small

9 High Cluster 0.3 0.13 Small

10 High Uniform 0.3 0.13 Small

11 High Cluster 3 0.13 Small

12 High Uniform 3 0.13 Small
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Instance Demand Location Lost Sales Costs Holding

Costs

Trailer Capacity

13 Low Cluster 0.3 0.18 Large

14 Low Uniform 0.3 0.18 Large

15 Low Cluster 3 0.18 Large

16 Low Uniform 3 0.18 Large

17 Medium Cluster 0.3 0.18 Large

18 Medium Uniform 0.3 0.18 Large

19 Medium Cluster 3 0.18 Large

20 Medium Uniform 3 0.18 Large

21 High Cluster 0.3 0.18 Large

22 High Uniform 0.3 0.18 Large

23 High Cluster 3 0.18 Large

24 High Uniform 3 0.18 Large

25 Low Cluster 0.3 0.13 Large

26 Low Uniform 0.3 0.13 Large

27 Low Cluster 3 0.13 Large

28 Low Uniform 3 0.13 Large

29 Medium Cluster 0.3 0.13 Large

30 Medium Uniform 0.3 0.13 Large

31 Medium Cluster 3 0.13 Large

32 Medium Uniform 3 0.13 Large

33 High Cluster 0.3 0.13 Large

34 High Uniform 0.3 0.13 Large

35 High Cluster 3 0.13 Large

36 High Uniform 3 0.13 Large

37 Low Cluster 0.3 0.18 Small

38 Low Uniform 0.3 0.18 Small

39 Low Cluster 3 0.18 Small

40 Low Uniform 3 0.18 Small

41 Medium Cluster 0.3 0.18 Small

42 Medium Uniform 0.3 0.18 Small
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Instance Demand Location Lost Sales Costs Holding

Costs

Trailer Capacity

43 Medium Cluster 3 0.18 Small

44 Medium Uniform 3 0.18 Small

45 High Cluster 0.3 0.18 Small

46 High Uniform 0.3 0.18 Small

47 High Cluster 3 0.18 Small

48 High Uniform 3 0.18 Small

5.2 Comparison of Solution Approaches

Both the heuristic and a commercial optimization solver were used to obtain solutions to all

test instances described in Section 5.1. The commercial optimization solver that is used is CPLEX.

Specifically, all computations are executed on a CPLEX Version 12.6 on an Intel(R) Core(TM)

i7 CPU @ 2.93GHz 8.00 GB RAM PC. Table 9 provides the results of this comparison for all

instances. The row number gives the instance type. The heuristic was given a stopping criterion

of 1000 iterations. The table provides the total cost of the heuristic solution, the total cost of the

best integer feasible solution obtained by CPLEX in 60 minutes, and the percentage gap between

the heuristic and CPLEX solutions. It should be noted that CPLEX did not find verifiably optimal

solutions for any of the test instances with this time limit. Based on the results, the average gap

between the heuristic and CPLEX solutions for this set of test instances is 3.24%. That is, the

solutions obtained via CPLEX are 3.24% lower, on average. However, one hour was required to

obtain the CPLEX solutions while on average five minutes were required to obtain the heuristic

solutions. Further details of these comparisons with respect to the components of transportation,

inventory holding and lost sales costs are presented in Appendix B.

33



Table 9: Average Results Across All Instances

Instance Type Average Cost -

CPLEX

Average Cost -

Heuristic

Gap(%)

1 48536.38 50107.13 3.14

2 41125.81 41464.43 0.82

3 152123.37 158109.17 3.77

4 141220.4 146908.05 3.84

5 82713.97 82967.12 0.31

6 83706.38 84009.83 0.36

7 330022.28 352473.25 6.3

8 340431.82 352858.78 3.6

9 126166.68 126470.69 0.24

10 106463.47 107273.69 1.02

11 204809.46 206484.96 0.74

12 465428.33 471012.86 1.19

13 33089.27 35140.8 5.81

14 35756.37 37229.27 4

15 52292.76 53968.66 3.22

16 63300.52 67571.39 6.33

17 88746.9 92191.38 3.78

18 75261.08 78606.96 4.25

19 117858.93 126821.19 7.09

20 114132.59 122895.49 7.13

21 130084.36 132017.48 1.45

22 106934.35 111255.89 3.91

23 131274.89 133071.54 1.36

24 158665.79 166532.88 4.74

25 42957.79 44198.28 2.75

26 31993.66 33723.96 5.31

27 65349.9 70015.08 6.64

28 61221.2 62727.38 2.37
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Instance Type Average Cost -

CPLEX

Average Cost -

Heuristic

Gap

29 68976.06 71025.31 2.91

30 72685.89 75537.54 3.77

31 108952.93 114797.32 4.87

32 117490.92 124924.53 5.99

33 157402.51 159847.03 1.52

34 112791.13 114961.65 1.86

35 125588.44 129624.17 3.07

36 161228.23 174432.29 7.57

37 67959.19 72052.59 5.62

38 45620.57 46062.39 0.9

39 135347.62 139295.21 2.83

40 193959.19 203523.87 4.68

41 86044.7 86625.73 0.68

42 85474.69 86009.5 0.61

43 284431.45 299718.55 5.07

44 329291.94 341158.91 3.48

45 124555.26 125085.25 0.42

46 123383.27 124771.6 1.11

47 470950.51 477094.05 1.3

48 476161.26 484799.33 1.78

Another method for comparing the performance of the heuristic with that of CPLEX is to

investigate the solutions discovered by each within the same amount of runtime. Because the

average runtime for the developed heuristic is around five minutes, a five minute runtime limitation

is set for CPLEX. Table 10 reports the results of this comparison for a representative subset of

instances. The negative percentage gaps indicate the heuristic is obtaining better solutions than

CPLEX within this runtime limitation.

Finally, the objective function value obtained by the heuristic as a function of iteration number

is depicted in Figure 10. It demonstrates the heuristic is capable of finding good solutions in the
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Table 10: Comparison of Heuristic and CPLEX After 5 Minutes
Instance
Type

Run Time
(S)

Total Cost-
Heuristic

Total Cost-
CPLEX

Gap

17 175 119532.04 123814.89 -3.58%
18 166 127940.68 132080.12 -3.24%
19 233 101932.11 106153.02 -4.14%
20 284 104008.4 108489.04 -4.31%
29 176 115373.6 118580.2 -2.78%
30 187 114176.7 117634.42 -3.03%
31 220 109598.57 112954.46 -3.06%
32 249 105371.95 108718.61 -3.18%

first 100 iterations.

Figure 10: Heuristic Convergence as a Function of Iteration Number

6 Result

Computational results for the full experimental design are discussed in this section. Addition-

ally, a comparison is made between solutions developed using the current policy of the retail chain

and solutions developed using the IRP policy presented in this thesis. For this comparison, the IRP

results are obtained via the ALNS heuristic.
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6.1 Results From Experimental Design

Table 11 provides the average cost of solutions developed using the ALNS heuristic for all

instance types. For example, the first row provides results from all 16 instances in the experimental

design that have low demand. As can be seen in the Table 11, the instances with the higher value

for the lost sales multiplier have the highest total cost among all instances.

As expected, total costs are also increased by moving from low to high demand. In these

Table 11: Average Results for All Instance Levels
Instance level number of instances Average Cost -

Heuristic
Low Demand 16 79006.10
Medium Demand 16 155788.83
High Demand 16 202796.03
Uniform Locations 24 152510.56
Clustered Locations 24 139216.74
Lost Sales 1 24 84109.86
Lost Sales 2 24 207617.45
Holding Cost 1 24 139914.82
Holding Cost 2 24 151812.49
Small Truck 24 194430.70
Large Truck 24 95926.22

situations, there is more product to be delivered and stored, and more opportunities for stock-

outs as well. Problems with uniformly distributed locations have higher total cost than those with

clustered locations. One potential explanation for this is there are more opportunities to realize

savings in transportation costs for the clustered location distributions because there are subsets of

stores in close proximity to each other that can be served using shared trailers.

Large differences in total costs can be seen when moving between the levels of the lost sales

and trailer size factors. For example, changing the value for the lost sales multiplier from $0.3

to $3 leads to an approximate $120,000 increase in total costs. Also, decreasing the trailer size

from large to small results in doubling the total costs. This demonstrates that transportation costs

are a significant portion of the total costs. This is as expected, given the relatively high fixed and

variable costs associated with each trailer that is used.
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Another interesting fact that can be ascertained from Table 11 is that by increasing the inventory

holding rate from 13% to 18%, the behavior of the system remains relatively unchanged. The

reason is that inventory holding rates are small when compared with the multipliers for the other

two cost components (transportation and lost sales). Therefore, increasing the inventory holding

rate by 5% is not significant enough for system avoidance of this cost. That is, the cost is not high

enough for holding less inventory to be preferred over making fewer shipments.

6.2 Comparison of Current and Proposed Retail Chain Replenishment Policies

The focus of this section is on comparing the solutions obtained using the retail chain’s current

replenishment policy to solutions obtained when direct shipments are no longer required for all

stores. The results from the ALNS are used to make this comparison.

6.2.1 Current Policy

This section provides details of the current policy of the retail chain. The main components of

the case study data are first introduced and discussed. Then, the cost of the current policy for these

case study instances are presented.

6.2.2 Description of the Case Study Data

This study has been focused on a real data set from the retail chain with the following elements:

• Locations of 58 retail stores and the depot

• Distances between retail stores and the depot

• Daily demands of stores, measured in units of sales per day, based on historical data from

one low, one medium and one high volume week for all stores

• Fixed transportation costs associated with the trailer drop fee of $106.9 per trailer

• Variable transportation costs based on a mileage rate of $1.883 per mile traveled

• Inventory holding rate of 13%, multiplied by the quantity of inventory at the end of each day

for each store to calculate inventory holding cost
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• Lost sales rate of $0.3, multiplied by the number of stock-outs at the end of each day for

each store to calculate lost sales cost.

The total costs of the current replenishment policy of the retail chain for five sample stores are

provided in Table 12. Figure 11 depicts the weekly cost for all stores included in the retail chain

network. In both the table and figure, a breakdown of the total cost by its three components is

provided. Transportation costs comprise the major part of total costs which is an expected result.

The reason is that as mentioned earlier, a dedicated trailer is sent to a store after five days or

whenever it becomes full (whichever comes first). Thus, lost sales costs rarely occur.

Table 12: Total Weekly Costs of Retail Chain’s Stores
Store Transportation Cost Inventory Holding Cost Lost Sales Cost Total Cost
1 5884.534 53.697 230.416 6168.647
2 5045.298 63.608 0 5108.905
3 1094.441 125.088 0 1219.529
4 3922.749 47.143 45.752 4015.644
5 4788.327 74.087 0 4862.413
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Figure 11: Results of Current Method

The number of stores receiving two, three, four and five visits per week under the current policy

is provided in Figure 12. Note that approximately half of all stores receive two visits per week. An

additional one-quarter of stores receive three visits per week.
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Figure 12: Weekly Visits to Stores Under Current Policy

As can be seen in Figure 12, the majority of stores have the same frequency of visits per week.

Also based on Figure 13, which depicts the locations of stores in the retail chain network, there are

clusters of stores that are far from the DC. Stores in some of these clusters have the same frequency

of delivery which makes them good candidates for replenishment via a shared route. To illustrate

this point, see the stores identified by blue and red circles in Figure 13. These require two and

three visits per week, respectively. Because these stores are within a cluster and share the same

visit frequency, they can be served together. This implies that the option of allowing combined

deliveries may reduce the total replenishment costs.
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Figure 13: Clusters of Retail Chain’s stores

In addition, according to Gallego and Simchi-Levi (1990), a direct shipping strategy is effective

when the Economic Order Quantity (EOQ) of customers is at least 71% of the trailer capacity. The

EOQ which is first introduced in Harris (1990) determines the order quantity by minimizing total

inventory costs including holding, ordering, and lost sales costs. The quantity representing 71%

of trailer capacity is 1781 units of inventory. However, the average EOQ for stores during low,

medium and high weeks is 681, 805, and 1422 units of inventories, respectively. This provides

further evidence that a direct shipping policy may not be the most effective strategy for the retail

chain (Gallego and Simchi-Levi, 1990).

6.2.3 Proposed Policy

Results obtained by the ALNS heuristic described in Section 4 for the case study instances are

discussed here. Heuristic results with respect to transportation, inventory holding, and lost sales

costs for all stores included in the retail chain’s network are shown in Figure 14.
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Figure 14: Results of Heuristic for All Stores

Solutions produced by the heuristic decrease total costs by 51.39% when compared with the

current policy of the retail chain. As can be seen in Figure 14, the total cost reduction is mainly

achieved by decreasing the frequency of visits to stores. Therefore, transportation costs decrease,

but the frequency of lost sales occurrences greatly increases. The total number of weekly visits

across all stores is shown in Figure 15.
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Figure 15: Weekly Visits to Stores Under New Policy

Because many stores do not receive visits under the new policy, it suggests that some param-

eters, for example the lost sales multiplier or the transportation costs (fixed and/or variable), may

need modification. The magnitude of the lost sales multiplier currently being provided by the

retail chain is very low ($0.3) with respect to variable transportation cost ($1.883 per mile). There-

fore, optimal solutions tend to allow lost sales to occur for the majority of stores to avoid higher

transportation costs for visiting them. This concept is depicted in Figure 16.
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Figure 16: Lost Sales Multiplier

While these parameters may need tuning, it is important to note that even if lost sales are not

allowed, the new policy (by combining stores in share routes) is still capable of generating savings

when compared with a strict direct shipping policy for all stores. Evidence of such is provided in

Table 13, where the cost of the retail chain’s current replenishment policy is compared with the

results of the proposed policy with a no-stock-outs modification.

Table 13: No Stock-outs Results
Strategy Transportation

Cost
Holding
Cost

Lost Sales
Cost

Total Cost

Retail Chain’s Current
Policy

144534.30 4746.91 276.17 149557.38

Developed Heuristic 127208.84 3275.80 0 130536.06

7 Future Research

It is always desirable to develop models and solution approaches that as much as possible cap-

ture elements of the real-world problems. In order for IRP models to be implementable in industry,

they should include challenges that companies are facing in their supply chain and logistics sys-

45



tems. Elements whose addition to the IRP model would benefit companies are discussed in the

following.

• Soft Time Windows: The allowable time duration that is considered in this thesis for making

deliveries to stores is called a hard time windows. It means that violating these constraints

would yield infeasible solutions. However, allowing deliveries to arrive at customers outside

a specified time windows at penalty, which is called soft time windows, will increase the

flexibility of the model.

• Multiple Products: In many real-world situations, several types of products are distributed

among stores using the same fleet of vehicles. In this thesis, products are aggregated at

the store level meaning that only one type of product is available. Thus, the model that

is proposed here does not distinguish between different types of product which makes the

problem more tractable. However in the case of multi-products, in addition to determining

which customers need to be visited at each period and by which vehicle route, decisions

regarding the magnitude of each product that must be delivered to each store during each

visit should be made as well. The significant increase in complexity of resulting models

would likely require heuristic solution approaches.

• Reconsidering Assignment of Customers to Depot: The retail chain that is considered in

this thesis has more than one distribution center (DC) in its network for replenishing stores.

Because DCs are added to their network gradually during years, the current assignment of

stores to DCs may not be efficient. Based on the location of DCs and their assigned stores,

the possibility of reducing total costs by changing the current assignment of stores to DCs

exists. Future studies could focus on determining the optimal assignment of stores to the

available DCs.
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A Sensitivity Analysis for Lost Sales Multiplier

As described, the majority of stores do not receive any visits over the planning horizon when

the lost sales multiplier is $0.3. Also with the value of the lost sales multiplier being equal to $3,

lost sales costs rarely occur. A sensitivity analysis around this parameter is performed to better

illustrate the effect of the lost sales multiplier in the behavior of the system. The two mentioned

situations are extreme, since lost sales are experienced for the majority of stores in the first one and

lost sales rarely occur in the second. Thus, values less than $0.3 and higher than $3 are not tested.

Instead, some intermediate points in the range $0.3 3 including $1, $1.7, and $2.4 are considered

in the sensitivity analysis. The ALNS results obtained for a subset of test instances with these lost

sales multipliers are shown in Tables 15 - 19. Also, features of the selected instances with respect

to the factors in the experimental design are shown in Table 14. Note that all instances involve 20

customers over a five days planning horizon.

According to the results, as the magnitude of the lost sales multiplier is increased, the possi-

bility of lost sales occurrence and/or its value is decreased. Also, instances for which the value

of the lost sales multiplier is not significantly different from the transportation cost multiplier are

harder to solve in comparison with those instances having a huge difference between these two

parameters (based on the obtained lower bound by CPLEX in a 60 minute time limitation).

Table 14: Features of Instances
Demand Location Holding Cost Trailer Capacity
Medium week Clustered customers 13% Small truck
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Table 15: Lost Sales Multiplier = 0.3

Instance Transportation
Costs

Holding Costs Lost Sales Costs Total Costs

1 11778.46 172.45 1136.72 13087.64
2 13030.34 162.73 86.09 13279.16
3 8835.29 151.47 0 8986.76
4 11822.69 78.05 1052.17 12952.9
5 12770.51 133.07 404.87 13308.44
6 9494.31 168.71 45.79 9708.81
7 9354.07 163.52 1479.13 10996.71
8 12789.77 123.77 235.15 13148.7
9 13476 76.88 34.68 13587.56
10 16129.35 171.46 163.13 16463.95

Table 16: Lost Sales Multiplier = 1

Instance Transportation
Costs

Holding Costs Lost Sales Costs Total Costs

1 14788.63 179.08 212.66 15180.38
2 14646.68 81.99 0 14728.67
3 8762.36 161.23 0 8923.58
4 16216.07 76.17 0 16292.24
5 15304.74 92.12 0 15396.86
6 10328.43 107.28 0 10435.71
7 12329.08 108.83 295.64 12733.55
8 15302.34 81.33 0 15383.67
9 14785.65 88.73 0 14874.38
10 17167.52 150 0 17317.52

Table 17: Lost Sales Multiplier = 1.7

Instance Transportation
Costs

Holding Costs Lost Sales Costs Total Costs

1 14025.06 142.11 474.22 14641.39
2 14919.91 67.84 0 14987.75
3 9023.05 75.61 0 9098.67
4 15742.97 94.22 0 15837.1
5 15331.75 98.15 0 15429.9
6 10615.71 117.97 0 10733.68
7 12601.07 118.63 0 12719.7
8 15571.47 101.03 0 15672.49
9 15027.13 3.72 0 15030.86
10 17714.69 114.63 0 17829.32
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Table 18: Lost Sales Multiplier = 2.4

Instance Transportation
Costs

Holding Costs Lost Sales Costs Total Costs

1 14760.17 108.8 0 14868.97
2 14957.05 26.3 0 14983.35
3 9092.84 124.31 0 9217.16
4 16738.53 60.95 0 16799.48
5 15425.17 64.71 0 15489.88
6 10709.42 120.38 0 10829.8
7 12372.73 120.98 25.42 12519.13
8 15441.99 77.5 0 15519.49
9 15027.13 3.24 0 15030.37
10 17375.82 171.27 0 17547.09

Table 19: Lost Sales Multiplier = 3

Instance Transportation
Costs

Holding Costs Lost Sales Costs Total Costs

1 14969.32 141.99 0 15111.31
2 14572.94 104.49 0 14677.43
3 9051.16 151 0 9202.16
4 16179.58 95.01 0 16274.59
5 15432.58 73.26 0 15505.84
6 10399.6 134.83 0 10534.43
7 12950.51 68.73 0 13019.24
8 14745.28 114.72 0 14860.01
9 14934.35 25.4 0 14959.75
10 17114.68 184.04 21.39 17320.11
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B Results

The computational results that are obtained from both the heuristic and CPLEX for all test

instances described in Section 5.1 are shown here. Specifically, Tables 20 - 24 provide the com-

ponents of the total cost (transportation, inventory holding and lost sales costs) of the heuristic

solution, the components of the total cost of the best integer feasible solution obtained by CPLEX

in 60 minutes, and the percentage gap between the heuristic and CPLEX solutions.

Table 20: Results for Run 1

Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

1 5836.47 15.9 44741.9 50594.27 11695.03 20.74 39884.41 51600.17 1.95

2 1221.38 37.84 39492.4 40751.62 567.38 2.38 40834.03 41403.79 1.58

3 129077 765.92 9426.62 139269.54 140806.55 61.47 3604.84 144472.85 3.6

4 138494 964.77 3293.53 142752.3 146654.32 142.31 2907.41 149704.05 4.64

5 3508.17 26.12 77520.8 81055.09 2341.14 14.89 79242.34 81598.36 0.67

6 4564.47 61.53 77824.6 82450.6 679.29 4.34 82641.52 83325.14 1.05

7 302140 837.21 2750.74 305727.95 323426.67 42.29 743.53 324212.49 5.7

8 323482 836.57 13503.6 337822.17 353483.46 40.89 413.52 353937.87 4.55

9 4850.13 10 119541 124401.13 4402.47 6.16 120176.77 124585.4 0.15

10 1938.28 1.75 126221 128161.03 1107.59 0 127251.29 128358.88 0.15

11 296452 107.46 109373 405932.46 306004.76 134.98 101941.67 408081.41 0.13

12 333825 127.95 125555 459507.95 346999.57 154.7 118534.27 465688.54 1.33

13 10416.2 1097.73 27244.2 38758.13 28032.61 622.92 12261.96 40917.49 5.28

14 3403.48 490.72 35685.8 39580 451.92 90.57 40041.21 40583.71 2.47

15 46895 3790.91 2675.46 53361.37 45774.76 2497.73 5357.1 53629.59 0.5

16 66997.4 2697.35 3725.76 73420.51 63553.92 2754.18 11898.57 78206.67 6.12

17 36402.7 622.4 53944.7 90969.8 50733.23 682.36 42893.53 94309.12 3.54
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Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

18 17732.2 985.31 63121.5 81839.01 3825.22 291.47 81355.1 85471.8 4.25

19 112011 3761.01 3716.6 119488.61 128880.45 128 500.79 129509.23 7.74

20 106954 3714.14 6966.49 117634.63 126951.88 224.81 0.02 127176.72 7.5

21 35747.9 531.61 98783.9 135063.41 105692.73 171.47 30022.46 135886.65 0.61

22 33475.7 1212.98 78414.8 113103.48 24074.3 194 92894.03 117162.33 3.46

23 126912 3450.26 767.32 131129.58 132272.13 281.63 0 132553.76 1.07

24 152473 3788.23 658.9 156920.13 164515.08 292.88 0 164807.96 4.79

25 14749.87 159.01 36509.4 51418.28 35603.42 353.65 17197.22 53154.29 3.27

26 8797.58 795.42 27901.8 37494.8 20890.56 394.11 16879.85 38164.52 1.75

27 64111.2 2688.82 8442.29 75242.31 80319.56 358.85 893.41 81571.82 7.76

28 63598.1 2576.62 2520.45 68695.17 61494.54 428.77 9385.97 71309.28 3.67

29 18155.1 371.67 58801 77327.77 37790.46 166.13 40414.46 78371.06 1.33

30 19757.8 852.97 56886.9 77497.67 4774.83 293.1 75928.12 80996.05 4.32

31 101531 2407.35 2214.45 106152.8 66343.69 399.7 45835.7 112579.1 5.71

32 117305 76.78 8955.26 126337.04 125923.42 2669.15 2439.05 131031.62 3.58

33 146065.3 312.48 19902 166279.78 140538.99 62.51 26554.5 167156 0.52

34 30100.3 839.91 85910.1 116850.31 13838.04 337.63 105684.8 119860.47 2.51

35 129482 2317.57 5258.91 137058.48 137672.78 700.06 1500.98 139873.81 2.01

36 159866 2775.85 2527.98 165169.83 178360.87 78.31 0 178439.17 7.44

37 31724.95 0.36 41829.5 73554.81 45806.9 12.07 31599.73 77418.69 4.99

38 0 0 44528.3 44528.3 0 0 44527.21 44527.21 0

39 128444 1144.29 11608.1 141196.39 140990.73 112.83 5925.55 147029.11 3.97

40 193694 1611.76 2178.72 197484.48 185751.75 174.23 23414.43 209340.4 5.66

41 2317.18 51.73 82693.2 85062.11 2206.61 118.19 82958.28 85283.08 0.26

42 0 0 83039.7 83039.7 0 0 83039.7 83039.7 0

43 279511 1199.67 6441.46 287152.13 299837.37 57.92 342.2 300237.48 4.36
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Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

44 329694 1394.12 2174.55 333262.67 341457.35 86.27 913.98 342457.6 2.68

45 0 0 127244 127244 0 0 127244.07 127244.07 0

46 1437.16 4.64 122906 124347.8 1437.16 8 122905.57 124350.74 0

47 330951 195.94 117499 448645.94 352694.27 279.91 104975.45 457949.63 2.03

48 354806 194.04 114706 469706.04 368132.51 117.12 107278.12 475527.76 1.22

Table 21: Results for Run 2

Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

1 8294.37 5.89 42790.1 51090.36 17898.45 9.8 34624.48 52532.73 2.75

2 1498.83 43.92 39268.9 40811.65 450.28 9.04 40700.72 41160.04 0.85

3 135284 828.8 7362.8 143475.6 147514.61 74.04 3154.53 150743.18 4.82

4 144413 1001.54 3531.71 148946.25 152332.76 133.61 1932.11 154398.48 3.53

5 0 0 83574.8 83574.8 0 0 83574.8 83574.8 0

6 967.65 16.15 83836.2 84820 483.82 2.34 84468.9 84955.06 0.16

7 298372 702.03 10943.5 310017.53 329521.67 54.2 757.04 330332.91 6.15

8 316579 848.54 7333.1 324760.64 334318.43 70.25 550.24 334938.91 3.04

9 0 0 128936 128936 0 0 128935.71 128935.71 0

10 3330.81 4.19 122358 125693 2876.03 5.21 122978.26 125859.5 0.13

11 373932 97.53 122182 496211.53 383121.08 162 118116.07 501399.14 1.03

12 377312 135.12 112062 489509.12 392918.53 168.32 100919.92 494006.77 0.91

13 8423.07 141.24 31221.9 39786.21 28223.94 354 13905.28 42483.22 6.35

14 7469.62 977.78 31009 39456.4 2819.75 437.83 37554.24 40811.82 3.32

15 54344.4 3510.75 6200.89 64056.04 64631.98 466.78 177.81 65276.58 1.87
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Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

16 53814.9 2989.65 3999.9 60804.45 60774.49 630.43 5221 66625.92 8.74

17 23623 288.47 76701.3 100612.77 76603.58 409.28 27009.33 104022.2 3.28

18 21481.4 1376.91 57736.1 80594.41 8644.34 508.04 74087.44 83239.81 3.18

19 117183 3668.35 6228.64 127079.99 133898.54 242.15 154.51 134295.2 5.37

20 112409 3618.11 2552.64 118579.75 127312.78 260.88 0 127573.66 7.05

21 34019.1 644.51 103152.4 137816.01 113919.37 229.78 27072.03 141221.18 2.41

22 21231.5 882.08 90767.3 112880.88 6582.56 470.35 109044.26 116097.16 2.77

23 134712 3328.47 1168 139208.47 139594.02 62.76 0 139656.78 0.32

24 158899 3423.61 6511.86 168834.47 174818.95 151.28 0 174970.23 3.51

25 14972 661.87 29833.4 45467.27 29592.04 284.26 15845.41 45721.7 0.56

26 10646.1 772.67 27523.4 38942.17 5172.18 216.65 35964.85 41353.68 5.83

27 55815.5 2688.48 7207.52 65711.5 69047.23 269.52 1003.16 70319.91 6.55

28 56800.4 2511.31 2971.82 62283.53 54566.17 496.21 9299.6 64361.98 3.23

29 24892.5 624.01 46132.2 71648.71 37714.59 482.92 36816.61 75014.12 4.49

30 13816.3 703.16 62649 77168.46 16343.69 399.7 62435.7 79179.1 2.54

31 114403 2312.33 7099.08 123814.41 131744.83 174.87 1212.4 133132.11 7

32 111697 232.79 7488.47 119418.26 124373 2118.96 0 126491.96 5.59

33 126242.3 444.22 19656.6 146343.12 126412.44 185.39 21859.2 148457.03 1.42

34 23403.6 512.1 96481.8 120397.5 9492.03 158.76 113478.14 123128.94 2.22

35 119920 2476.52 2457.21 124853.73 125328.36 164.02 1900.51 127392.89 1.99

36 159983 2696.47 2700.82 165380.29 177372.42 121.21 346.98 177840.62 7.01

37 31694.38 15.67 42176.2 73886.25 52396.5 39.63 27122.21 79558.34 7.13

38 0 0 42474.78 42474.78 0 0 42474.78 42474.78 0

39 132354 1101.14 7588.82 141043.96 142200.51 128.95 1039.96 143369.43 1.62

40 194116 1429.71 4526.33 200072.04 186399.38 276.85 23861.02 210537.25 4.97

41 0 0 87038.1 87038.1 0 0 87038.12 87038.12 0
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Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

42 0 0 84114.2 84114.2 0 0 84114.23 84114.23 0

43 268599 1150.6 4892.83 274642.43 282391.24 53.76 0 282445 2.76

44 329280 1486.77 3961.52 334728.29 345942.54 135.3 960.11 347037.96 3.55

45 11244.3 17.8 112268 123530.1 7656.86 1.54 115997.09 123655.49 0.1

46 3907.19 13.69 120909 124829.88 2623.11 1.07 122341.36 124965.54 0.11

47 376346 224.92 110274 486844.92 391805.25 193.12 97281.05 489279.43 0.5

48 353532 146.46 119064 472742.46 365103.47 248.17 115798.33 481149.97 1.75

Table 22: Results for Run 3

Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

1 6928.54 3.85 43101.5 50033.89 25764.82 7.16 26053.39 51825.37 3.46

2 424.54 13.28 40221.5 40659.31 0 0 40870.18 40870.18 0.52

3 147078 775.4 8958.57 156811.97 154206.65 140.4 3190.83 157537.89 0.46

4 141170 1008.4 8870.2 151048.6 149687.91 135.65 8656.04 158479.61 4.69

5 0 0 83273.4 83273.4 0 0 83273.39 83273.39 0

6 2004.16 7.34 82273.6 84285.1 0 0 84314.11 84314.11 0.03

7 296244 798.72 9761.17 306803.89 322584.54 74.64 584.03 323243.21 5.09

8 318406.42797.87 9358.94 328563.23 348304.98 21.51 4359.39 352685.88 6.84

9 225.45 28.7 115396.34115650.49 776.01 56.24 115403.86 116236.11 0.5

10 3137.3 36.95 122076.34125250.6 4070.9 62.4 122478.38 126611.67 1.08

11 1574.16 68.79 38789.4 40432.35 181.4 9.87 40722.77 40914.04 1.18

12 369808.8482.45 110842.58480733.88 385029.46 64.16 99816.86 484910.48 0.86

13 919.91 88.58 30002.48 31010.97 20334.88 249.84 12802.21 33386.92 7.12
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Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

14 33.54 925.12 29789.58 30748.24 5069.31 333.67 26451.17 31854.16 3.47

15 46841.24 3458.08 4981.47 55280.79 56742.92 362.62 925.25 58030.79 4.74

16 46311.74 2936.98 4780.48 54029.2 52885.43 526.27 4117.93 57529.63 6.08

17 16119.84 235.8 75481.88 91837.53 68714.52 305.12 25906.27 94925.91 3.25

18 13978.24 1324.24 56516.68 71819.16 755.27 403.87 72984.37 74143.52 3.13

19 109679.843615.68 5009.22 118304.74 126009.48 137.98 948.55 127096.02 6.92

20 104905.843565.44 2333.22 110804.5 119423.72 156.72 1103.07 120683.51 8.19

21 26515.94 591.84 101932.98129040.76 106030.31 125.62 25968.96 132124.89 2.33

22 13728.34 829.41 89547.88 104105.63 1306.51 366.19 107941.19 109613.88 5.03

23 127208.843275.8 51.42 130536.06 131704.96 41.4 1103.07 132849.42 1.74

24 151395.843370.94 5292.44 160059.22 166929.89 47.11 1103.07 168080.07 4.77

25 7468.84 609.21 28613.98 36692.03 21702.98 180.09 14842.34 36725.41 0.09

26 3142.94 720 26303.98 30166.92 2716.89 112.49 28861.78 31691.16 4.81

27 48312.34 2635.81 5988.1 56936.25 61158.17 165.36 99.91 61423.44 7.31

28 49297.24 2458.64 1752.4 53508.28 46677.11 392.05 8196.53 55265.68 3.18

29 17389.34 571.34 44912.78 62873.46 29825.53 378.76 35713.54 65917.83 4.62

30 6313.14 650.49 61429.58 68393.22 8454.63 295.54 61332.63 70082.8 2.41

31 106899.842259.66 5879.66 115039.16 123855.77 70.71 109.34 124035.82 7.25

32 104193.84180.12 6269.05 110643.01 116483.94 2014.8 1103.07 119601.8 7.49

33 152520 19.76 8797.66 161337.42 157314.24 67.08 6419.5 163800.82 1.5

34 25024.72 801.21 81765.44 107591.37 8659.56 275.23 100911.89 109846.68 2.05

35 124406.422278.87 1114.25 127799.54 132494.3 637.66 3271.93 136403.89 6.31

36 154790.422737.15 1616.68 159144.25 169182.38 15.91 4772.91 173971.21 8.52

37 26649.37 38.34 37684.84 64372.55 40628.42 50.33 26826.81 67505.56 4.64

38 5075.58 38.4 39963.64 45077.62 5278.48 62.4 39754.3 45095.18 0.04

39 123368.421105.59 7463.44 131937.45 135812.25 50.43 1152.64 137015.32 3.71
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Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

40 188618.421573.06 1965.94 192157.42 180573.26 111.83 18641.52 199326.61 3.6

41 2758.4 13.03 78548.54 81319.97 2971.87 55.79 79185.37 82213.04 1.09

42 5075.58 38.7 78895.04 84009.32 5178.48 62.4 79266.79 84507.66 0.59

43 292482 236.57 13503.6 306222.17 323483.46 40.89 413.52 323937.87 5.47

44 321776.841434.1 2742.1 325953.04 338053.48 31.14 142.95 338227.57 3.63

45 3741.14 34.87 111048.58114824.59 232.2 102.63 114894.02 115228.85 0.35

46 3595.97 38.97 119689.58123324.53 5265.95 103.09 121238.29 126607.34 2.59

47 353532 146.46 119064 472742.46 365103.47 248.17 115798.33 481149.97 1.75

48 345297.84202.67 117725.83463226.34 358399.12 207.95 111818.08 470425.15 1.53

Table 23: Results for Run 4

Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

1 6795.84 4.92 31891.7 38692.46 10846.09 8.53 29191.73 40046.35 3.38

2 0 0.02 42974.1 42974.12 0 0.02 42974.08 42974.1 0

3 159520 819.76 9797.66 170137.42 173314.24 67.08 4419.5 177800.82 4.31

4 127089 1015.33 2718.41 130822.74 129687.91 135.65 4656.04 134479.61 2.72

5 5719.87 66.56 75631.2 81417.63 4462.18 45.51 77374.86 81882.55 0.57

6 1176.7 18.01 82565.8 83760.51 470.68 2.5 83518 83991.18 0.27

7 386014 779.93 4354.56 391148.49 418055.07 87.52 2497.17 420639.77 7.01

8 309075.84795.88 6113.68 315985.4 326429.36 33.91 552.83 327016.1 3.37

9 7503.16 52.67 127716.58135272.41 7889.06 104.16 127832.64 135825.87 0.41

10 4172.35 48.48 121138.58125359.41 5013.04 98.95 121875.19 126987.17 1.28

11 424.54 13.28 40221.5 40659.31 0 0 40870.18 40870.18 0.52
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Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

12 328749.4289.25 121410.34450249.01 341821.09 92.3 113761.36 455674.75 1.19

13 5340.62 1059.03 23099.54 29499.19 22854.13 560.52 7489.05 30903.7 4.54

14 1672.1 452.02 31541.14 33665.26 3726.56 28.18 32268.3 36023.04 6.55

15 41819.42 3752.21 469.2 46040.83 40596.28 2435.34 4584.19 47615.8 3.31

16 61921.82 2658.65 418.9 64999.37 58375.44 2691.79 7125.65 68192.88 4.68

17 31327.12 583.7 49800.04 81710.86 45554.75 619.96 38120.62 84295.33 3.07

18 12656.62 946.61 58976.84 72580.07 1353.26 229.08 76582.19 78164.53 7.14

19 106935.423722.31 428.06 111085.79 118701.97 65.6 272.12 119039.69 6.68

20 101878.423675.44 2821.83 108375.69 113773.4 162.42 4272.89 118208.71 8.32

21 30672.32 492.91 94639.24 125804.47 100514.25 109.07 25249.54 125872.86 0.05

22 28400.12 1174.28 74270.14 103844.54 18895.82 131.61 88121.11 107148.54 3.08

23 121836.423411.56 3377.34 128625.32 127093.65 219.23 4772.91 132085.8 2.62

24 147397.423749.53 3485.76 154632.71 159336.6 230.48 4772.91 164339.99 5.91

25 9674.29 120.31 32364.74 42159.35 30424.94 291.25 12424.31 43140.5 2.27

26 3722 756.72 23757.14 28235.87 17712.08 331.71 12106.94 30150.73 6.35

27 59035.62 2650.12 4297.63 65983.37 65141.08 296.45 3879.5 69317.03 4.81

28 58522.52 2537.92 624.21 61684.65 56316.06 366.38 5613.06 62295.49 0.98

29 13079.52 332.97 54656.34 68068.84 32611.98 103.74 35641.55 68357.27 0.42

30 14682.22 814.27 52742.24 68238.73 403.65 230.71 71155.21 71789.56 4.95

31 96455.42 2368.65 1930.21 100754.28 61165.21 337.3 41062.79 102565.31 1.77

32 112229.4238.08 4810.6 117078.1 120744.94 2606.75 2333.86 125685.56 6.85

33 139394.08467.4 18365.05 158226.53 141627.49 62.51 22756.33 164446.33 3.78

34 15900.44 459.43 95262.38 111622.25 1602.97 48.6 112375.08 114026.64 2.11

35 112416.842423.85 1237.79 116078.48 117439.3 59.86 797.44 118296.6 1.88

36 152479.842643.8 1481.4 156605.04 169483.36 17.05 756.08 170256.49 8.02

37 24191.22 37 40956.78 65185 44507.44 64.53 26019.14 70591.11 7.66
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Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

38 7503.16 52.09 41219.78 48775.04 7889.06 104.16 41371.71 49364.94 1.19

39 124850.841048.47 6369.4 132268.71 134311.45 24.79 63.1 134399.34 1.59

40 186612.841377.04 3306.91 191296.79 178510.32 172.69 22757.96 201440.96 5.04

41 7503.16 52.67 85818.68 93374.51 7889.06 104.16 85935.05 93928.28 0.59

42 7503.16 52.67 82894.78 90450.61 7889.06 104.16 83011.17 91004.39 0.61

43 274435.421160.97 2296.8 277893.19 294658.88 4.48 4430.71 299094.07 7.09

44 324618.421355.42 1970.11 327943.95 336278.87 23.87 3858.94 340161.68 3.59

45 5075.58 38.7 122099.34127213.62 5178.48 62.4 122471.16 127712.03 0.39

46 3438.42 34.06 116761.34120233.82 3941.32 54.39 118132.66 122128.38 1.55

47 354806 194.04 114706 469706.04 368132.51 117.12 107278.12 475527.76 1.22

48 379935.29190.39 116891.55497017.23 394233.99 150 112257.48 506641.47 1.9

Table 24: Results for Run 5

Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

1 2687.94 2.69 49580.3 52270.93 23060.97 5.39 31464.67 54531.03 4.14

2 1574.16 68.79 38789.4 40432.35 181.4 9.87 40722.77 40914.04 1.18

3 141179 815.48 8927.87 150922.35 156430.19 104.09 3456.84 159991.12 5.67

4 128038 1090.3 3403.83 132532.13 133481.04 249.06 3748.38 137478.48 3.6

5 4619.55 38.39 79591 84248.94 921.66 2.24 83582.6 84506.51 0.3

6 1232.01 19.09 81964.6 83215.7 492.8 2.11 82968.75 83463.66 0.3

7 328049 806.54 7558.01 336413.55 363483.46 40.89 413.52 363937.87 7.56

8 288902.7133.43 106091.51395027.65 298542.17 54.49 97118.49 395715.15 0.17

9 3435.81 9.55 123128 126573.36 4082.76 8.61 122678.99 126770.36 0.16
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Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

10 2866.91 1023.7 23962.71 27853.32 20570.02 542.43 7438.78 28551.23 2.44

11 1498.83 43.92 39268.9 40811.65 450.28 9.04 40700.72 41160.04 0.85

12 326362.4147.46 120731.82447141.69 339450.29 80.67 115252.78 454783.74 1.68

13 2953.61 1017.24 22421.02 26391.87 18483.33 548.89 8980.47 28012.69 5.79

14 4059.11 410.23 30862.62 35331.96 7097.36 16.55 29759.72 36873.63 4.18

15 38225.47 2423.7 2075.61 42724.78 39432.41 3710.42 2147.72 45290.55 5.67

16 59534.81 2616.86 1097.42 63249.09 56004.63 2680.16 8617.08 67301.86 6.02

17 28940.11 541.91 49121.52 78603.54 43183.94 608.33 39612.04 83404.32 5.76

18 10269.61 904.82 58298.32 69472.74 3724.07 217.45 68073.61 72015.13 3.53

19 104548.413680.52 5106.58 113335.51 121331.16 53.97 2780.7 124165.83 8.72

20 109491.413633.65 2143.31 115268.37 119402.6 150.78 1281.47 120834.85 4.61

21 28285.31 451.12 93960.72 122697.15 98143.44 97.44 26740.97 124981.84 1.83

22 26013.11 1132.49 73591.62 100737.22 16525.02 119.98 89612.54 106257.53 5.2

23 119449.413369.77 4055.86 126875.04 124722.85 207.6 3281.49 128211.94 1.04

24 145010.413707.74 4164.28 152882.43 156965.79 218.85 3281.49 160466.13 4.73

25 7287.28 78.52 31686.22 39052.02 28054.14 279.62 13915.73 42249.48 7.57

26 1334.99 714.93 23078.62 25128.54 13341.27 320.08 13598.36 27259.71 7.82

27 56648.61 2608.33 3619.11 62876.05 64770.27 284.82 2388.08 67443.17 6.77

28 56135.51 2496.13 1302.73 59934.37 53945.25 354.74 6104.48 60404.48 0.78

29 10692.51 291.18 53977.82 64961.51 30241.17 92.11 37132.97 67466.25 3.71

30 19295.21 772.48 52063.72 72131.4 2774.46 219.07 72646.63 75640.16 4.64

31 94068.41 2326.86 2608.73 99004 58794.41 325.67 42554.21 101674.29 2.63

32 109842.413.71 4132.08 113978.2 118374.14 2595.12 842.44 121811.7 6.43

33 133076.3917.98 21731.32 154825.69 138516.01 238.46 16620.51 155374.98 0.35

34 6375.44 257.14 100861.62107494.21 22551.01 765.88 84628.61 107945.5 0.42

35 118210.18619.57 3322.2 122151.95 121932.71 2243.54 1977.42 126153.67 3.17
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Ins CPLEX Heuristic Gap

(%)

Trans Hold Lost Total Trans Hold Lost Total

36 152316.712701.82 4823.18 159841.71 170898.27 2.18 753.51 171653.96 6.88

37 24175.66 73.67 38548.01 62797.34 38344.3 68.42 26776.55 65189.27 3.67

38 7462.59 80.49 39704.03 47247.12 7549.29 73.73 41226.81 48849.83 3.28

39 120894.711070.26 8326.61 130291.58 133528.14 32.34 1102.37 134662.85 3.25

40 186144.711537.73 1102.77 188785.21 178289.15 93.74 18591.25 196974.14 4.16

41 5255.99 37.7 78135.1 83428.79 5232.11 22.3 79411.71 84666.12 1.46

42 7462.59 80.49 78216.52 85759.6 7549.29 74.03 79758.21 87381.53 1.86

43 271961.711125.64 3159.97 276247.32 292374.77 22.57 480.98 292878.32 5.68

44 322144.711320.09 1106.94 324571.74 333994.76 5.78 3909.2 337909.74 3.95

45 7462.59 80.49 122420.89129963.97 7549.29 74.03 123962.51 131585.83 1.23

46 6025.43 72.49 118082.39124180.31 6112.13 69.39 119624.51 125806.03 1.29

47 373246 129.18 103438 476813.18 383157.5 543.57 97862.4 481563.47 0.99

48 360569.61196.4 117348.24478114.25 380189.25 183.76 109879.3 490252.32 2.48
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