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ABSTRACT 

 

 This work applies molecular genetic tools to distinguish the identity and understand the 

biology of termites, particularly Reticulitermes Holmgren and Coptotermes formosanus Shiraki 

(Isoptera: Rhinotermitidae) in the southeastern U.S. Termites are important economic pests 

costing billions of dollars annually to Americans but also are important wood decomposers in 

natural settings. Molecular tools are essential for species identification because of the 

morphological ambiguities among species. The cryptic nest structure of subterranean termites 

which prevents adequate sampling makes molecular genetic tools essential to examine an entire 

colony. 

 A molecular diagnostic technique was created to differentiate Coptotermes formosanus, 

an invasive species in the U.S., from native subterranean termites. Using a multiplex PCR 

protocol, this method can distinguish C. formosanus even from a single specimen or sample 

lacking the diagnostic castes. 

 In southern Mississippi, a new termite species was observed and confirmed genetically. 

Using both morphological and molecular phylogenetic evidence, Reticulitermes mississippiensis 

Janowiecki, Szalanski, and Austin sp. nov. is described here as a new species.  

 The breeding structure of a termite colony refers to the number of male and female 

termites reproducing in the colony that contribute to the genetic diversity of the colony. While 

this is near impossible to determine from a field census, microsatellite DNA analysis has been 

previously applied to investigate this biological aspect in the North Carolina, South Carolina, 

Massachusetts, and Tennessee. Here, we apply these techniques to three species of 

Reticulitermes from three sites in northwest Arkansas. Generally, our results were similar to 



  

 

those previously observed with 22% of the colonies being simple families (one male and one 

female), 72% extended families (the offspring of one male and one female reproducing) and 6% 

being mixed families (where multiple unrelated reproductives are reproducing in the colony). 

This study observed the first mixed family colonies of Reticulitermes hageni Banks. While these 

results show interesting trends of family structure for each species, more sampling is required to 

verify these observations. 
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CHAPTER 1 

 

INTRODUCTION 

 

TERMITE BIOLOGY 

 Termites (Isoptera) are classified as social insects, meaning they share resources, 

cooperate in young rearing, have a division of labor, and overlapping generations (Suiter et al. 

2002). The general caste system consists of workers, soldiers, and reproductives, each with their 

own tasks. The caste is determined during post-embryonic development (Laine and Wright 2003) 

by pheromones present in the colony (Suiter et al. 2002).  

Termites feed on cellulose material, which makes them both important forest 

decomposers and pests of wooden structures. Lower termites (Cratomastotermitidae, 

Mastotermitidae, Termopsidae, Archotermopsidae, Hodotermitidae, Stolotermitidae, 

Kalotermitidae, Archeorhinotermitidae, Stylotermitidae, Rhinotermitidae, and Serritermitidae) 

rely on anaerobic symbiotic protozoa in their hindgut to digest cellulose. Higher termites 

(Termitidae) lack these symbionts and digest cellulose with prokaryotic hindgut symbionts and 

endogenous cellulases (Bignell et al. 2010, Krishna et al. 2013).  

In total, there are 3105 described species of termites grouped into 12 families, with the 

greatest abundance and diversity in tropical rainforests (Krishna et al. 2013). In the United 

States, there are approximately 50 species of native and introduced termites in three families 

(Termopsidae, Kalotermitidae, and Rhinotermitidae) of which only 18 species are structural 

pests (Thorne and Forschler 2001). 
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SUBTERRANEAN TERMITES 

 Subterranean termites, Rhinotermitidae Froggatt, are the most economically destructive 

family of termites and live in colonies in the soil. While these termites can be destructive to 

wooden structures, each individual is soft bodied and prone to desiccation. Subterranean termites 

build shelter tubes to prevent dessication as well as for protection (Suiter et al. 2002). Only 

rhinotermitids are native to Arkansas with the only known species being Reticulitermes flavipes 

(Kollar), R. virginicus (Banks), and R. hageni Banks.  

 

RETICULITERMES IN THE UNITED STATES 

Among U.S. Rhinotermitidae, Reticulitermes Holmgren is the most species-rich genus, 

currently represented by seven species: R. flavipes, R. virginicus, R. hageni, R. malletei (Howard 

and Clément), R. nelsonae Lim and Forschler, R. hesperus Banks, and R. tibialis Banks. 

 The eastern subterranean termite, R. flavipes, is the most widespread species found nearly 

ubiquitous in the U.S. (Banks and Snyder 1920, Krishna et al. 2013). As the primary structural 

pest, this species accounts for a majority of the termite damage in the U.S (Suiter et al. 2002). 

Reticulitermes virginicus, the dark southern subterranean termite, is found from Florida north to 

Ohio and west to Texas (Krishna et al. 2013). Reticulitermes hageni, the light southeastern 

subterranean termite, aptly named for its lighter colored alates as compared to R. flavipes and R. 

virginicus, has a range spanning the southeastern U.S. This species generally has smaller 

colonies and is uncommonly a structural pest, being confined primarily to forest environments 

(Scheffrahn and Su 1994). Reticulitermes malletei occurs along the Atlantic coast, known from 

Delaware, Georgia, Maryland, North Carolina, and South Carolina (Austin et al. 2007). This 

species was originally described from biochemical characters but was recently confirmed 
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genetically by Austin et al. (2007). Reticulitermes nelsonae, the most recently described species 

in the U.S., has only found in North Carolina, Georgia, and Florida. The western subterranean 

termite, R. hesperus, and the arid land subterranean termite, R. tibialis, are dominant in the 

western U.S. Reticulitermes hesperus is common along the Pacific coast, while R. tibialis is more 

common in the inter-mountain region in the western U.S. (Thorne and Forschler 2001). The 

western subterranean termite is the dominant pest species in western states and differs from 

many of the eastern species with a fall mating flight (Thorne and Forschler 2001). 

 

ECONOMIC IMPORTANCE 

 Subterranean termites are economically important structural pests that cost Americans 

approximately $11 billion annually for prevention, treatment, and repair of termite damage (Su 

2002). Although termites can be damaging urban pests, they have a crucial role in recycling 

nutrients by decomposing wood and other nutrients back to the soil (Thorne and Forschler 2001).  

 

FORMOSAN SUBTERRANEAN TERMITE 

 The Formosan subterranean termite (FST), Coptotermes formosanus Shiraki, is an 

invasive subterranean termite that is originally from southern China and Taiwan. In the U.S. it is 

now found in North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Texas, 

Louisiana, and Hawaii after its introduction in the 1950s (Evans et al. 2013). The FST was also 

introduced into California, but was successfully eradicated (Atkinson et al. 1993, Haagsma et al. 

1995).  

Coptotermes formosanus is particularly successful because it produces much larger 

colonies than Reticulitermes species and forages a larger distance. The FST colonies can contain 



 4 

 

several million termites whereas native Reticulitermes termite colonies usually only contain 

several hundred thousand individuals. They also can forage up to approximately 100 m, a larger 

range than native subterranean termites in the U.S. (Scheffrahn and Su 2013). The FST also has 

the ability to attack living trees (Lai et al. 1983) making it a pest of ornamental trees and pecan 

groves (Affeltranger et al. 1987). Economically, this species alone totals more than $2 billion in 

treatment and damage in the U.S. (Lax and Osbrink 2003, Raina 2004). Because of the economic 

importance of this invasive termite and the difficulty in differentiating it from native 

Reticulitermes termites, a molecular diagnostic tool is essential to monitor the spread of this 

species. 

 

MOLECULAR GENETICS APPLIED TO TERMITE BIOLOGY 

Traditional research methods have limitations when applied to termite investigations. 

Termites have a complex biology that is difficult to examine because their cryptic nest is nearly 

impossible to sample entirely (Thorne and Forschler 2001). Also, termite species are difficult to 

distinguish morphologically without the correct caste, which may not always be present in the 

nest. These biological complexities complicate termite research, leading to the need for novel 

techniques to fully study these colonies. 

Molecular genetic techniques are an example of a novel and successful tool that have 

been used to make significant advances in understanding termite biology (Vargo and Husseneder 

2009). The main contributions of molecular genetics include clarifying the systematics and 

taxonomy, understanding the process of caste differentiation, differentiating species, discovering 

relationships among population’s genetics, and unraveling the complicated family structure of 
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termites (Vargo and Husseneder 2009). Since the latter three topics are the focus of this thesis, 

they will be further investigated: 

 TERMITE IDENTIFICATION 

Termite identification is difficult because there are few distinctive characters 

differentiating species. Keys (Scheffrahn and Su 1994) can effectively determine species of the 

soldier or alate caste, but these castes are not always present or abundant. Alates are ideal for 

identification, but are only present for a short time each year before and during the dispersal 

swarm. Analysis of DNA sequence variation is another method of determining species (Foster et 

al. 2004, King et al. 2007, Smith et al. 2010), but this method is time consuming and expensive 

for a large number of samples.  

Molecular diagnostic techniques are a valuable tool for termite species identification. 

Previous methods have differentiated Reticulitermes spp. using polymerase chain reaction - 

restriction fragment length polymorphism (PCR-RFLP) (Szalanski et al. 2003) and the Formosan 

subterranean termite using two separate PCR reactions (Szalanski et al. 2004). Advantages of 

these methods include a lack of ambiguity, ability to determine species of any caste, and 

capability of identifying a single individual sample (Vargo and Husseneder 2009). Disadvantages 

include molecular methods being more expensive and limited by degradation of improperly 

preserved samples. 

 POPULATION GENETICS 

Population genetics studies examine the relatedness, measured in similarity of genetic 

sequences, of an organism over a geographical range (Hoy 2013). For Reticulitermes in the U.S., 

studies have focused on Reticulitermes spp. over the entire country: R. flavipes (Austin 2005); R. 

tibialis (Austin et al. 2008). Studies have also focused on smaller ranges including the American 
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Great Plains (Austin et al. 2006b); Arkansas and Louisiana (Austin et al. 2004c, Szalanski et al. 

2008a); Oklahoma (Austin et al. 2004b); Texas (Austin et al. 2004a); Missouri (Pinzon Florian 

2007); Georgia (Lim 2011); Florida (Szalanski et al. 2008b); North Carolina (Vargo 2003b); 

California (Tripodi et al. 2006); Oregon and Washington (McKern et al. 2007); Wisconsin 

(Arango et al. 2015); and Indiana (Wang et al. 2009). Reticulitermes spp. population dynamics 

were also examined in the eastern Mediterranean and Middle East (Austin et al. 2006a). Thus far, 

population genetics was examined using scattered samples. A more robust, systematic sampling 

design could illustrate significant trends. 

 FAMILY STRUCTURE 

 Termite colonies are founded by a monogamous pair of alates. As a colony grows, 

secondary reproductives, termed neotenics, can either supplement or replace the primary 

reproducing king and queen in the colony (Hu and Forschler 2012). Initially, every colony begins 

as a simple family, with a single male and female reproducing. As the original pair is replaced or 

supplemented, the nest then contains an extended family, with nest mates no longer always being 

direct siblings. Colonies can also contain a mixed family when there are cohabiting individuals 

from unrelated reproductives (Vargo and Husseneder 2009). While the mechanism of mixing is 

still unclear, this may be caused by colony fusion (Matsuura and Nishida 2001, Deheer and 

Vargo 2004, Fisher et al. 2004). 

The family structure of a colony is nearly impossible to determine without molecular 

genetic techniques due to the cryptic nature of a termite nest. However, the number of 

reproducing individuals in the colony can be determined using microsatellite DNA analysis. By 

examining the genotype of multiple individuals from the same colony at numerous microsatellite 
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loci with pedigree analysis, the reproductive relatedness, the degree of inbreeding, and the 

number of reproductives within a colony can be determined. 

Colony structure has been examined in natural Reticulitermes populations in: North 

Carolina for undisturbed forest (N=98) (Vargo 2003b, Vargo and Carlson 2006) and urban sites 

(N=225) (Vargo 2003a, Parman and Vargo 2008); South Carolina (N=49) (Vargo et al. 2006); 

Nebraska (N=8) (Majid et al. 2013); as well as in laboratory colonies (N=13) (Long et al. 2006). 

Family structure has also been analyzed in Coptotermes formosanus in Japan (N=30) (Vargo et 

al. 2003a), Louisiana (N=25) (Vargo et al. 2003b, Husseneder et al. 2005), and Hawaii (N=20) 

(Broughton and Grace 1994, Vargo et al. 2003b).  

From these previous studies, there are ~75% simple families, ~20% extended families, 

and ~2% mixed families (Vargo and Husseneder 2009). Additional research is needed to expand 

this analysis throughout the range of each respective termite species in order to understand this 

complex, cryptic aspect of termite biology. 

 

 

RESEARCH OBJECTIVES 

 The objectives of this research are to: 

1) develop a multiplex PCR protocol that could be used to identify the Formosan 

subterranean termite regardless of life stage in a single PCR reaction. 

2) provide taxonomic description for Reticulitermes mississippiensis sp. nov., a new 

species of subterranean termite from southern Mississippi. 

3) investigate the family structure of Reticulitermes spp. found in Arkansas.  
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CHAPTER 2 

 

MOLECULAR DIAGNOSTIC TECHNIQUE FOR THE DIFFERENTIATION OF THE 

FORMOSAN SUBTERRANEAN TERMITE, COPTOTERMES FORMOSANUS (ISOPTERA: 

RHINOTERMITIDAE) FROM OTHER SUBTERRANEAN TERMITES BY  

MULTIPLEX-PCR
1 

 

ABSTRACT 

 The Formosan subterranean termite Coptotermes formosanus Shiraki; (Isoptera: 

Rhinotermitidae), is a major pest that is spreading throughout the southeastern United States. 

Morphological identification of worker specimens is not possible using available taxonomic keys 

based on morphological traits. A multiplex PCR protocol was developed that can differentiate 

the Formosan subterranean termite from other termite species in a single PCR reaction. This 

multiplex PCR protocol simplifies previous molecular diagnostic techniques. 

 

 

 

 

 

 

 

________________________________ 

1
Janowiecki, M. A. and A. L. Szalanski. Published in Florida Entomologist 98(1): 387-388.  



 14 

 

INTRODUCTION 

 The Formosan subterranean termite (FST), Coptotermes formosanus Shiraki (Isoptera: 

Rhinotermitidae), is an invasive termite that was introduced into the continental United States in 

the 1950s (Evans et al. 2013). Since its introduction, it has spread to the southeastern US 

(including North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana, 

and Tennessee) and Texas (Evans et al. 2013). This termite is particularly damaging since it can 

also feed on the heartwood of living trees, rather than solely dead wood (Lai et al. 1983). 

Annually, Americans spend over $1 billion in preventing and treating this termite (Lax & 

Osbrink 2003). Furthermore, damage from this species cost Americans an additional $1 billion 

each year (Raina 2004).  

Termite identification is difficult and various methods have previously been used to 

identify this pest species (Scheffrahn & Su 1994; Szalanski et al. 2003, 2004; Smith et al. 2010). 

Traditionally, taxonomic keys based on morphological traits are used to identify termite species 

(Scheffrahn & Su 1994), but these keys are developed for soldiers or alates, which are not always 

collected. Thus, small samples or samples lacking these castes are problematic. DNA sequence 

data have been used to identify FST (Smith et al. 2010). This process is time consuming and 

expensive requiring that every sample be sequenced. A molecular diagnostic technique to 

identify FST was developed by Szalanski et al. (2004), but still this method requires 2 

polymerase chain reactions (PCRs), because the oligonucleotide primers annealing temperatures 

are incompatible. This duplication made the process more time consuming and increased the 

chance for mistakes. 
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The objective of this study was to develop a multiplex PCR protocol that could be used to 

identify FST regardless of life stage. The technique, requiring only a single PCR reaction, is 

simpler than previous molecular methods, and will facilitate monitoring of this invasive termite. 

 

MATERIALS AND METHODS 

Termites were collected from locations in North America, South America, Africa, Asia, 

Australia, and the Middle East (Table 1). Identification was conducted using the keys of 

Scheffrahn & Su (1994). Voucher specimens are housed in the Arthropod Museum, Department 

of Entomology, University of Arkansas, Fayetteville, Arkansas, U.S. 

Samples preserved in ethanol were dried on filter paper. DNA was extracted using 

DNeasy® (Qiagen Sciences, Germantown, Maryland), resuspended in 10mM Tris-HCL (pH 

8.0), and stored at -20 °C. Universal termite oligonucleotide primers were designed using 

composite termite sequences in Geneious (v6.1.7, Invitrogen Corp., Grand Island, New York): 

16S 104F (5’-CCTCYCATCRCCCCAACRAA-3’) and 16S 368R (5’-

TTGAAGGGCCGCGGTATYTT-3’). A 16S FST specific primer was also used: FST-F (5’-

TAAAACAAACAAACAACAAACAAAC-3’) (Szalanski et al. 2004). Polymerase chain 

reaction was performed at 94 °C for 2 min; followed by 40 cycles at 94 °C for 45 s, 50 °C for 45 

s, and 72°C for 60 s. The final extension at 72 °C f was for 5 min. 

The new method was validated by screening a broad geographical sampling of FST and 

Reticulitermes species from the US. Samples were visualized on a 2% agarose gel with ethidium 

bromide staining (Fig. 1). The FST samples yielded 2 amplicons of 262 and 221 bp in size. Other 

Nearctic termite species north of Mexico [Coptotermes gestroi Wasmann, Reticulitermes flavipes 

(Kollar), R. virginicus Banks, R. tibialis Banks, R. hageni Banks, Heterotermes aureus (Snyder), 
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R. hesperus Banks, and R. malletei Howard and Clement] were used (Table 1) and generated 

only a single amplicon of 262 bp. Additional Coptotermes spp. [C. michaelseni Silvestri, C. 

lacteus (Froggatt), C. testaceus (L.), C. intermedius Silvestri, C. heimi (Wasmann)] produced 

only the single universal amplicon of 262 bp. The negative control did not produce a detectable 

amplicon, indicating no contamination. A total of 1,373 16S sequences from 9 Coptotermes, 6 

Reticulitermes, and 4 Heterotermes species from GenBank and from our DNA sequence 

database (ALS unpublished) (Table 1) were analyzed using Geneious software to confirm that 

the FST oligonucleotide primers would be specific for the C. formosanus (FST) sequences and 

not the other taxa for PCR amplification. 

 

RESULTS AND DISCUSSION 

The results show that the universal primers produced a 262 bp band in all species tested 

(Table 1) whereas the FST specific primer produces an additional band (221 bp) only in FST 

(Fig. 1), indicating that this primer combination and PCR reaction successfully distinguish FST 

from other termites in this study. 

This new molecular method simplifies previous methods of identification (Szalanski et al. 

2004; Evans et al. 2013), in that it can be completed in a single PCR reaction and allows 

identification of worker specimens that cannot be keyed morphologically to species. Proper 

identification that is simple and economical can be useful for monitoring the spread of this 

invasive to new areas. 
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TABLE 2.1. Coptotermes, Reticulitermes, and Heterotermes samples subjected to DNA 

sequencing and PCR analysis for Formosan subterranean termite specific PCR diagnostic 

analysis. 

Species 

Number 

PCR Screened 

Number 

Sequence Screened 

C. formosanus 9 57 

C. gestroi 2 19 

C. michaelseni 
1 

2 

C. lacteus 
1 

6 

C. testaceus 
1 

29 

C. intermedius 
1 

1 

C. curvignathus 
1 

2 

C. heimi 
1 

2 

R. flavipes 
16 

747 

R. virginicus 15 108 

R. tibialis 
12 

95 

R. hageni 
4 

82 

R. hesperus 
1 

75 

R. malletei 
4 

31 

H. aureus 
1 

1 

H. tenius 0 10 

H. cardini 0 18 

H. convexinotatus 0 21 
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FIGURE 2.1. Ethidium bromide-stained agarose gel (2%) illustrating a common amplicon of 262 

bp from the mtDNA 16S gene for various termite species and unique amplicon of 221 bp specific 

for the Formosan subterranean termite. 
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CHAPTER 3 

 

A NEW SPECIES OF RETICULITERMES (ISOPTERA: RHINOTERMITIDAE) FROM 

SOUTHERN MISSISSIPPI 
1 

 

ABSTRACT 

 Reticulitermes mississippiensis sp. nov. is a new species described from specimens 

collected in southern Mississippi. Descriptive castes (soldiers and alates) are described and 

molecular phylogenetic evidence is provided to establish this as a new species of 

Rhinotermitidae (Isoptera). 

 

 

 

 

 

 

 

 

 

 

 

________________________________ 

1
Janowiecki, M. A. J. W. Austin, and A. L. Szalanski. To be submitted to Florida Entomologist.  
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INTRODUCTION 

 Termites are social insects that feed primarily on cellulose material (Suiter et al. 2002). 

Subterranean termites (Rhinotermitidae) include the most destructive species of termites and nest 

in contact with soil (Thorne and Forschler 2001). Subterranean termites cost approximately $11 

billion annually in the United States for prevention, treatment, and repair of termite damage (Su 

2002). Reticulitermes Holmgren is the most species-rich genus of subterranean termite in the 

U.S. currently represented by seven species: R. flavipes (Kollar 1837), R. virginicus (Banks 

1907), R. hageni Banks 1920, R. hesperus Banks 1920, R. tibialis Banks 1920, R. malletei 

(Howard and Clément 1985), and R. nelsonae (Lim and Forschler 2012). Reticulitermes 

arenincola Goellner was considered to be another U.S. species of Reticulitermes but is currently 

generally accepted as a nomen dubium (“doubtful name”) (Austin et al. 2007, Vargo and 

Husseneder 2009). 

 The history and taxonomy of Reticulitermes has most recently been published by Lim 

(2011). Five of the seven U.S. species were described in the nineteenth or early twentieth century 

using only morphological characters. The remaining species were described recently using a 

combination of novel techniques. 

 Reticulitermes malletei was described in 1985 by Howard and Clément using 

biochemical characters including cuticular hydrocarbons, soldier defensive substance, and sexual 

pheromone; and behavioral characters including worker aggression and swarming period 

(Clément et al. 1986). Although this species was described in 1985, it was not generally accepted 

as a species by termite experts until it was validated by Austin et al. (2007). This later study also 

used cuticular hydrocarbons and combined morphological characters with mtDNA to justify R. 

malletei as a valid species. 
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 Most recently, Reticulitermes nelsonae was described by Lim and Forschler (2012). This 

species, isolated to North Carolina, Georgia, and Florida, was described using morphological and 

behavioral characters as well as mtDNA.  

 J. L. Ethridge, at the Costal Research and Extension Center, Mississippi State University, 

Poplarville, MS, sent several samples of Reticulitermes termites to the Insect Genetics 

Laboratory, University of Arkansas, for species identification. From those samples collected by 

J. L. Ethridge, and additional samples, we provide a formal description for Reticulitermes 

mississippiensis Janowiecki, Szalanski, and Austin sp. nov., a proposed new species collected in 

Mississippi using both morphological and genetic characters. 

 

MATERIALS AND METHODS 

SPECIMENS 

Fourteen samples of R. mississippiensis sp. nov. were collected from three locations in 

Stone and Hancock counties in southern Mississippi and preserved in ethanol (see Table 3.1). 

Morphological data for this study was obtained from 24 soldiers and 20 alates. Remaining castes 

were used for DNA analysis. Voucher specimens are housed in the Arthropod Museum, 

Department of Entomology, University of Arkansas, Fayetteville, Arkansas, U.S. Samples will 

also be deposited in the American Museum of Natural History (AMNH), New York, New York, 

U.S. and the National Museum of Natural History (NMNH), Smithsonian Institution, 

Washington, DC, U.S. 

MORPHOMETRICS 

Specimens were examined morphologically with a binocular dissecting microscope (SM-

1TZ, AmScope, Irvine, CA, U.S.) equipped with a camera (MU1000, 10MP, AmScope, Irvine, 
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CA, U.S.) using ToupView v. 3.2.1476 (AmScope, Irvine, CA, U.S.). Soldier and alate 

measurements were based on Lim (2011) and included: soldier head capsule length (sl), soldier 

head capsule width (sw), alate body length (abl), alate body length including wings (ablw), alate 

forewing length (afw), alate hindwing length (ahw). 

BEHAVIOR 

Reticulitermes mississippiensis sp. nov. alates that had not yet swarmed were collected 

from colonies at the Hancock County Mississippi State University (MSU) Extension Center. 

DICHOTOMOUS KEY 

Because of the overlapping ranges of morphological characters, no dichotomous key is 

provided to differentiate R. mississippiensis sp. nov. from other Reticulitermes spp. Rather, 

genetic identification is ideal for these morphologically ambiguous species. 

MOLECULAR DATA 

Genomic DNA was extracted from a head from an individual specimen using a salting-

out procedure with in-house reagents (Sambrook et al. 2001). Two regions of mtDNA were 

amplified using the primers 16S: LR-J-13007 (5’-TTACGCTGTTATCCCTAA-3’) 

(Kambhampati and Smith 1995) and LR-N-13398 (5’-CGCCTGTTTATCAAAAACAT-3’) 

(Simon et al. 1994); and COII mtDNA: TL2-J-3037 (5’-ATGGCAGATTAGTGCAATGG-3’) 

and TK-N-3785 (5’-GTTTAAGAGACCAGTACTTG-3’) (Lim and Forschler 2012).  Consensus 

sequences were obtained from an alignment of sequences in both directions for each sample 

using Geneious v6.1.8 (Kearse et al. 2012). Sequences were subjected to a BLAST search of 

DNA sequences deposited to GenBank to determine their similarity. 

For the molecular phylogenetic analysis, our sequences and the outgroup taxa 

Coptotermes formosanus (FJ870592) and Heterotermes tenuior (AB050714) were used. 
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Additional Reticulitermes sequences were obtained from GenBank (Table 3.2). Multiple 

alignment of sequences was done using Geneious v6.1.8 (Kearse et al. 2012) with a cost matrix 

of 6% similarity, a gap open penalty of 12, and a gap extension penalty of three. Maximum 

parsimony analysis was conducted using PAUP v4b10 (Swofford 2001). The reliability of trees 

was tested using bootstrap analysis (Felsenstein 1985). Parsimony bootstrap analysis included 

1,000 resamplings using the Branch and Bound algorithm of PAUP. Bayesian phylogenetic 

analysis was conducted with the MrBayes (Ronquist and Huelsenbeck 2003) plug-in within 

Geneious with 100,000 burn-in and 1,000,000-replications using a GTR+G model based on AIC 

results from jModelTest v2.1.3 (Darriba et al. 2012). A neighbor joining tree was also 

constructed with Geneious using 1000 bootstrap replicates. 

 

RESULTS 

MORPHOMETRICS 

Reticulitermes mississippiensis sp. nov. measurements were similar to other species of 

Reticulitermes in the southeastern U.S. (Table 3.3). Both measures of soldier head capsule (sl 

and sw) were most similar to R. malletei, whereas alate characteristics were similar to R. 

flavipes, R. hageni, R. malletei, and R. hageni respectively for abl, ablw, afw, and ahw.  

The soldier (Figure 3.1) head measured 1.30-1.62 mm for sl and 0.82-0.97 mm for sw 

with averages of 1.49 mm and 0.90 mm, respectively. The alate (Figure 3.3) body length 

measured 4.03-6.36 mm without wings (abl) and 7.26-8.61 mm including wings (ablw) with 

averages of 4.59 mm and 7.97 mm, respectively. The alate forewing was longer, measuring 5.81-

6.98 mm (average: 6.47mm), than the hind wing, measuring 5.07-6.48 mm (average: 5.95 mm) 

(Table 3.3). 
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BEHAVIOR 

Sclerotized alates that had not yet swarmed were collected in two colonies in Hancock 

CO, MS, U.S. on 27 April 2004. This implies that these colonies were near swarming, likely 

within 30 days (Lim 2011), estimating the flight window as late April to early May. 

MOLECULAR DATA 

The 14 samples of R. mississippiensis sp. nov. consisted of three unique 16S haplotypes 

with a total of eight polymorphic base pairs. For all trees, R. mississippiensis sp. nov. forms a 

distinct clade from all other southeastern Reticulitermes (Figure 3.3-3.5). The Bayesian 

phylogenetic tree (Figure 3.3) shows R. mississippiensis sp. nov. in a distinct clade with R. 

nelsonae as a sister taxon. One R. nelsonae (JF796236) groups intermediately between the two 

species, and requires future analysis to confirm that this is not a sequencing error. The maximum 

parsimony tree (Figure 3.4) also shows R. nelsonae as a sister taxon, but with R. malletei as the 

sister taxon to both R. mississippiensis sp. nov. and R. nelsonae. This aligns with the soldier 

morphologically characters grouping R. mississippiensis sp. nov. with R. malletei. The neighbor-

joining phylogenetic tree (Figure 3.5) groups things as the maximum parsimony tree does with R. 

nelsonae as a sister taxon and R. malletei as a sister taxon to both species.  

 

SYSTEMATICS 

Reticulitermes mississippiensis Janowiecki, Szalanski, and Austin sp. nov. 

Figures 3.1-3.2 

Soldier (Table 3.3, Figure 3.1): The soldier head capsule length (sl) and width (sw) is 

approximately the same as R. malletei at an average of 1.495 mm 0.899 mm respectively.  
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Alate (Table 3.3, Figure 3.2): R. mississippiensis has a dark brown body with 14 antennal 

segments. Flights occur in late April to May, overlapping with other species of Reticulitermes. 

Alate body length (abl) is typically 0.2 mm less than R. flavipes and 0.6 mm greater than R. 

virginicus, R. hageni, R. malleti, and R. nelsonae. The remaining R. mississippiensis sp. nov. 

alate measurements (ablw, afw, ahw) overlap with the remaining species more closely and 

resemble both R. hageni and R. malletei (Table 3.3). 

 DISTRIBUTION 

 This species has only been found in Stone and Hancock counties in southern Mississippi, 

U.S. despite extensive sampling in the southeastern U.S. (A. L. Szalanski, Professor of 

Entomology, University of Arkansas, U.S., personal communication) and in southern Mississippi 

(Howard et al. 1982, Wang and Powell 2001, Wang et al. 2003).  

 TYPES 

 The holotype will be deposited in the NMNH and paratypes will be deposited in both the 

UARK Arthropod Museum and the AMNH.  

 GENETICS 

 Figures 3.3 and 3.4 show phylogenetic trees for Reticulitermes for 16S and COII mtDNA. 

In both trees, R. mississippiensis sp. nov. forms a distinct clade from all other species, showing 

genetic isolation of this species. 

 

DISCUSSION 

 From the comparison of southeastern species of Reticulitermes, it is clear that these 

species are difficult to differentiate morphologically. When only using morphological characters, 

Lim (2011) found that it required 6-29 specimens (depending on species) to identify with 95% 
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confidence. This necessitates novel techniques for identification of these important pest species, 

this study being an application of genetic methods. Morphologically and genetically, R. 

mississippiensis sp. nov. is a distinct species from all other southeastern Reticulitermes. 

 R. mississippiensis sp. nov. differs from the other southeastern U.S. species of 

Reticulitermes in its restricted range. Despite extensive sampling, this species has only been 

found in two counties in southern Mississippi. Wang et al. (2003) collected 103 samples from the 

two counties R. mississippiensis sp. nov. occurs and an additional 155 samples from two adjacent 

counties and did not report finding any species besides R. flavipes, R. hageni, and R. virginicus. 

Additional studies (Howard et al. 1982, Wang and Powell 2001) examined Reticulitermes in 

southern Mississippi and also found only these three species. The limited range of R. 

mississippiensis sp. nov. is not an artifact of a lack of sampling, but rather likely the entire range 

of the species. This aspect contrasts from all other species, which have multi-state ranges with R. 

nelsonae being the next restricted, only known to occur in three states. While the mechanism 

causing this isolation is unknown, this introduces the notion that more “hidden” species occur 

undetected in under sampled areas. 

 Species identification is a critical component of effective termite control. While R. 

flavipes is the most common home invader, the other Reticulitermes species are also known to 

attack wooden structures (Suiter et al. 2002). Proper description and identification of species is 

an important first step in the control of this economically important pest. 
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TABLE 3.1. Specimen data for collections of Reticulitermes mississippiensis sp. nov. in Mississippi. 

 

Location County 
Sampling 

events 
Alates Soldiers Neotenics Workers Larvae Total 

Stennis Space Center Hancock 8 0 11 14 438 75 538 

MSU County Extension 

Office 
Hancock 5 247 18 107 319 62 753 

Flint Creek Park, 

Wiggins 
Stone 1 0 1 0 16 0 17 

Totals  14 247 30 121 773 137 1308 
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TABLE 3.2. Sequence names, identification, locality, and GenBank accession number for COII mtDNA sequences used for the 

phylogenetic trees in this study. 

 

No Sequence names Species 
GenBank  

acc no.* 

Source** 

1 R. mississippiensis 1356 R. mississippiensis sp. nov. TBD this paper 

2 R. mississippiensis 904 R. mississippiensis sp. nov. TBD this paper 

3 R. mississippiensis 1061 R. mississippiensis sp. nov. TBD this paper 

4 R. mississippiensis 1052 R. mississippiensis sp. nov. TBD this paper 

5 R. mississippiensis 905 R. mississippiensis sp. nov. TBD this paper 

6 R. mississippiensis 1351 R. mississippiensis sp. nov. TBD this paper 

7 R. mississippiensis 1350 R. mississippiensis sp. nov. TBD this paper 

8 R. mississippiensis 1168 R. mississippiensis sp. nov. TBD this paper 

9 R. mississippiensis 1348 R. mississippiensis sp. nov. TBD this paper 

10 R. mississippiensis 1043 R. mississippiensis sp. nov. TBD this paper 

11 R. mississippiensis 910 R. mississippiensis sp. nov. TBD this paper 

12 R. nelsonae JF796236 R. nelsonae JF796236 1 

13 R. nelsonae JF796235 R. nelsonae JF796235 1 

14 R. nelsonae JF796229 R. nelsonae JF796229 1 

15 R. nelsonae JF796233 R. nelsonae JF796233 1 

16 R. nelsonae JF796232 R. nelsonae JF796232 1 

17 R. nelsonae JF796231 R. nelsonae JF796231 1 

18 R. nelsonae JF796230 R. nelsonae JF796230 1 

19 R. malletei JF796228 R. malletei JF796228 1 

20 R. malletei 4899 R. malletei N.A. unpublished 

21 R. malletei 4900 R. malletei N.A. unpublished 

22 R. malletei FJ606690 R. malletei FJ606690 unpublished 

23 R. malletei 1273b R. malletei N.A. unpublished 

24 R. malletei 4901 R. malletei N.A. unpublished 

25 R. malletei JF796227 R. malletei JF796227 1 

26 R. malletei GU550074 R. malletei GU550074 2 
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TABLE 3.2. (Cont.) 

 

No Sequence names Species 
GenBank  

acc no.* 

Source** 

27 R. malletei JF796226 R. malletei JF796226 1 

28 R. hageni EU689026 R. hageni EU689026 2 

29 R. hageni JF796225 R. hageni JF796225 1 

30 R. hageni JF796224 R. hageni JF796224 1 

31 R. virginicus JF796223 R. virginicus JF796223 1 

32 R. virginicus JF796222 R. virginicus JF796222 1 

33 R. flavipes JQ280746 R. flavipes JQ280746 3 

34 R. flavipes JQ280744 R. flavipes JQ280744 3 

35 R. flavipes AF107479 R. flavipes AF107479 4 

36 R. tibialis DQ493741 R. tibialis DQ493741 unpublished 

37 R. tibialis HM208248 R. tibialis HM208248 unpublished 

38 Heterotermes tenuior AB050714 H. tenuior AB050714 unpublished 

39 Coptotermes formosanus FJ870592 C. formosanus FJ870592 5 

 

 

 

 

*TBD indicates will be determined when submitted to GenBank 

   N.A. indicates samples has no GenBank accession number 

 

**1(Lim and Forschler 2012) 

    2(Sillam-Dussès and Forschler 2010) 

    3(Perdereau et al. 2013) 

    4(Jenkins et al. 1999) 

    5(Zhu et al. 2010)  
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TABLE 3.3. Results of measurements of soldiers (n=24) and alates (n=20) comparing R. mississippiensis sp. nov. to other species of 

Reticulitermes from the southeastern U.S. (* = from Lim 2011). Bold indicates most similar.  

Species 
sl (mm) 

(mean ± sd) 

sw (mm)  

(mean ± sd) 

abl (mm)  

(mean ± sd) 

ablw (mm)  

(mean ± sd) 

afw (mm)  

(mean ± sd) 

ahw (mm)  

(mean ± sd) 

R. mississippiensis 

sp. nov. 
1.495 ± 0.076 0.899 ± 0.038 4.594 ± 0.475 7.967 ± 0.345 6.469 ± 0.342 5.953 ± 0.353 

R. flavipes* 1.693 ± 0.119 1.044 ± 0.074 4.783 ± 0.383 8.973 ± 0.402 6.810 ± 0.331 6.550 ± 0.332 

R. virginicus* 1.625 ± 0.068 0.920 ± 0.039 4.021 ± 0.214 7.414 ± 0.213 5.532 ± 0.193 5.418 ± 0.193 

R. hageni* 1.434 ± 0.092 0.862 ± 0.030 4.083 ± 0.323 7.810 ± 0.318 5.965 ± 0.263 5.739 ± 0.257 

R. malletei* 1.490 ± 0.058 0.879 ± 0.029 4.023 ± 0.302 8.238 ± 0.394 6.375 ± 0.328 6.100 ± 0.339 

R. nelsonae* 1.407 ± 0.127 0.784 ± 0.054 3.928 ± 0.236 7.080 ± 0.291 5.430 ± 0.212 5.315 ± 0.297 

 

sl = soldier head capsule length 

sw = soldier head capsule width 

abl = alate body length 

ablw = alate body length including wings 

afw = alate forewing length 

ahw = alate hindwing length 
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FIGURE 3.1. Soldier of R. mississippiensis sp. nov. showing lateral view (A) and head capsule 

(B). Photographs by James Austin, used with permission. 
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FIGURE 3.2. Alate of R. mississippiensis sp. nov. showing dorsal view (A), lateral view (B), 

forewing (C), and hind wing (D). Photographs by James Austin, used with permission. 
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FIGURE 3.3. Bayesian phylogenetic tree of Reticulitermes inferred from COII mtDNA. 

Posterior bootstrap values are provided. 
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FIGURE 3.4. Maximum parsimony phylogenetic tree of Reticulitermes inferred from COII 

mtDNA. Bootstrap values are provided. 
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FIGURE 3.5. Neighbor-joining phylogenetic tree of Reticulitermes inferred from COII mtDNA. 

Bootstrap values are provided. 
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CHAPTER 4 

 

COLONY STRUCTURE OF RETICULITERMES (ISOPTERA: RHINOTERMITIDAE) IN 

NORTHWEST ARKANSAS
1
 

 

ABSTRACT 

Termites, as social insects, have a complicated life cycle that is difficult to study with 

traditional research methods. A termite colony can consist of a simple family (one male and one 

female), an extended family (multiple males and/or multiple females) or a mixed family 

(unrelated reproductives). While this is near impossible to determine from collecting and 

censusing colonies in the field, microsatellite DNA genotyping methods have been previously 

developed and applied to termites along the east coast. In this study, we apply these methods to 

three species of Reticulitermes from three forested sites in northwest Arkansas. In our limited 

sampling, we found 22% of Reticulitermes in northwest Arkansas were simple families, 72% 

were mixed families and 6% were mixed families. This study observed the first R. hageni mixed 

family as well as the first observation of a single termite colony containing multiple mtDNA 

haplotypes. Further sampling is required to strengthen these observations into general trends for 

family structure of Reticulitermes in northwest Arkansas. 

 

 

 

________________________________ 

1
Janowiecki, M. A., A. D. Tripodi, and A. L. Szalanski. To be submitted to the Journal of the 

Kansas Entomological Society.  
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INTRODUCTION 

 Termites, as social insects, have a complicated life cycle that is difficult to study with 

traditional research methods. Initially, a termite colony is founded by a monogamous pair of 

winged alates, forming a simple family (Suiter et al. 2002). This pair can be replaced by 

secondary reproductives, changing the breeding structure of the colony to include an extended 

family (Vargo and Husseneder 2009). Less commonly, colonies can consist of cohabiting 

individuals from unrelated reproductives. These are referred to as mixed families, likely caused 

by colony fusion (Matsuura and Nishida 2001, Deheer and Vargo 2004, Fisher et al. 2004). 

While this structure is nearly impossible to determine from collecting and censusing 

colonies in the field, microsatellite DNA genotyping methods have been developed and applied 

to termites along the east coast (Vargo and Husseneder 2009). Microsatellite loci were initially 

developed for R. flavipes and R. santonensis (Vargo 2000, Dronnet et al. 2004) and have been 

extended to other species of Reticulitermes.  

Family structure has been examined in natural Reticulitermes populations in: North 

Carolina for undisturbed forest (N=98) (Vargo 2003b, Vargo and Carlson 2006) and urban sites 

(N=225) (Vargo 2003a, Parman and Vargo 2008); South Carolina (N=49) (Vargo et al. 2006); 

Nebraska (N=8) (Majid et al. 2013); and in laboratory colonies (N=13) (Long et al. 2006). From 

these previous studies, there are approximately 75% simple families, 20% extended families, and 

2% mixed families (Vargo and Husseneder 2009). Additional research is needed to expand this 

analysis throughout the range of each respective termite species in order to understand the 

complex, cryptic nature of termite biology. 

In this study, we apply these methods to three species of Reticulitermes from three 

forested sites in northwest Arkansas.  
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MATERIALS AND METHODS 

 SAMPLES 

 Termites were collected from three sites in northwest Arkansas (Figure 4.1): Lake 

Wedington unit of the Ozark St. Francis National Forest (OSFNF), Lee Creek area of OSFNF, 

and the Arkansas Agricultural Research and Extension Center, Fayetteville, AR (AAREC 

Fayetteville). Each site was 17.7 to 35.4 km away from each other. 

Lake Wedington unit of the OSFNF was created in the 1930s through the Northwest 

Arkansas Land Use Project that converted misused or idle farm land into recreational areas 

(Schalm 1973). From this location, five samples were collected from decaying logs (Table 4.1). 

Lee Creek area of OSFNF is located south of Devils Den State Park. It is primarily secondary 

growth forest that was also developed in the 1930s through efforts of the Civilian Conservation 

Corps (Smith 1992). Seven samples were collected at this location (Table 4.2). AAREC 

Fayetteville was established in 1888 under the Hatch Act of 1887, which provided research 

stations to land grant universities (Strausberg 1989, Hillison 1996). It contains mainly secondary 

pine forests that separate buildings and experimental plots. Thirteen samples (Table 4.3) were 

collected from both decaying logs and Sentricon® Termite Colony Elimination System bait 

stations (Dow AgroSciences, Indianapolis, IN, U.S.) containing untreated pieces of wood. 

Twenty-five samples representing the three species and three localities were examined in this 

study (Table 4.4). 

 All samples were collected into 95% ethanol and voucher specimens are housed at the 

Arthropod Museum, Department of Entomology, University of Arkansas, Fayetteville, Arkansas, 

U.S. Morphological identification when possible used the keys of Scheffrahn and Su (1994) and 
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was confirmed genetically using PCR-RFLP (Szalanski et al. 2003) and DNA sequencing 

analysis  using a region of the mtDNA 16S gene per Austin et al. (2004) 

 MITOCHONDRIAL DNA SEQUENCING 

 Genomic DNA was extracted from a head from an individual specimen using a salting-

out procedure with in-house reagents (Sambrook et al. 2001). The 16S gene region of mtDNA 

was amplified using the primers 16S: LR-J-13007 (5’-TTACGCTGTTATCCCTAA-3’) 

(Kambhampati and Smith 1995) and LR-N-13398 (5’-CGCCTGTTTATCAAAAACAT-3’) 

(Simon et al. 1994). Consensus sequences were obtained from an alignment of sequences in both 

directions for each sample using Geneious v6.1.8 (Kearse et al. 2012). Haplotypes were 

determined by comparing to an in-house database (ALS unpublished). 

MICROSATELLITE GENOTYPING 

All specimens were confirmed to species using either PCR-RFLP analysis or a GenBank 

BLAST search using DNA sequences. Genomic DNA was extracted individually from the heads 

of 20 worker termites from each sample using a salting-out procedure with in-house reagents 

(Sambrook et al. 2001) and stored at -20°C. Twelve total microsatellite loci (R. flavipes: 8 loci; 

R. hageni: 11 loci; R. virginicus: 7 loci) (Vargo 2000, Dronnet et al. 2004) were amplified in a 

single multiplex of fluorescently-labeled primers (dye set: G5, Applied BioSystems, Life 

Technologies, Grand Island, NY, U.S.). Each species had a unique PCR reaction mix that can be 

found in Tables 4.5-4.7. The thermal cycler settings (modified from: Vargo 2000 and Tripodi 

2014) consisted of a hot start at 95°C followed by a touchdown program of six cycles at 94°C 

(30s), 62°C (30s), and 72°C (30s) decreasing annealing temperature 1°C per cycle; then 30 

cycles of 94°C (30s), 55°C (30s), and 72°C (30s); with a final extension at 72°C for 5min. 

Samples were genotyped at Iowa State University DNA Facility (Ames, IA, U.S.) using an ABI 
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Prism 3730 DNA Analyzer (Applied Biosystems, Life Technologies, Grand Island, NY, U.S.) 

with GeneScan 500 LIZ dye size standard (Applied Biosystems, Life Technologies, Grand 

Island, NY, U.S.).    

 MICROSATELLITE DATA ANALYSIS 

 Alleles were scored with the microsatellite plugin for Geneious v6.1.8 (Kearse et al. 

2012). Samples and loci with more than 50% missing data were removed from analysis. To 

access if all samples represented unique colonies, pairwise FST-values were calculated with 

Arlequin v3.5.1.2 (Excoffier and Lischer 2010). According to Vargo (2003a), samples from 

unique colonies had significant FST p-values (p<0.05), whereas samples of the same colony yield 

non-significant FST p-values. For any repeatedly sampled colony, only the first sample obtained 

was used for further analysis.  

Within each colony established from significant FST
 
p-values, breeding structure was 

determined. Alleles per locus were calculated in Arlequin and were used to distinguish mixed 

family structure. A mixed family, defined by Deheer and Vargo (2004), contain more than four 

alleles at any one locus, a characteristic only possible with a colony containing two or more 

unrelated reproductives of the same sex. Remaining colonies that were not classified as mixed 

families were divided into simple and extended families based on if they significantly differ from 

Mendelian ratios (Vargo 2003a). Extended families were determined if there was a significant 

difference between the observed and expected heterozygosity of each locus, summed together in 

a G-test for goodness of fit in R v3.0.2 (R Core Team 2013). Simple families were determined by 

a non-significant value when comparing observed and expected heterozygosity. 

 

RESULTS 
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 MITOCHONDRIAL DNA 

 For R. flavipes, six of the eight samples had unique haplotypes. For R. hageni and R. 

virginicus, three of the eleven and six, respectively, were unique haplotypes. Within a species, 

haplotypes were not exclusive to geographic location collected. (Tables 4.1-4.3). 

 MICROSATELLITE DNA 

 A majority of pairwise FST values calculated for each species (Tables 4.8-4.10) were 

significant. When comparing R. flavipes samples, 6075 and 6076 sampled the same colonies as 

did sample 6082 and 6091 as indicated by the non-significant p-values in bold (Table 4.8). All R. 

hageni samples represent unique colonies (Table 4.9). For R. virginicus, many of the samples 

were from the same colony, with non-significant p-values (Table 4.10). To avoid the bias of 

oversampling a single colony, samples 6076, 6091, 416, 418, 419, and 691 were removed when 

comparing breeding structures between sites and species. 

 Two R. flavipes colonies were simple families (Table 4.11) with non-significant G-test 

values comparing observed and expected heterozygosity. The remaining six R. flavipes colonies 

were extended families. For R. hageni (Table 4.12), no colonies had more than four alleles, 

indicating no mixed families. Three R. hageni colonies also yielded non-significant G-test results 

for heterozygosity, indicating simple families. The remaining 7 colonies were extended families 

In R. virginicus, three loci were removed, yielding only four usable loci. However with only 

these four loci, two samples (415 and 6034) had more than four alleles per loci, indicating they 

are mixed families (Table 4.13).The remaining colonies were classified as extended families 

from the non-significant G-test. 

 

DISCUSSION 
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 As inferred from the FST tables, most samples represent unique colonies. There are 

several instances, however, where the same colony was sampled multiple times. Samples 6075 

and 6076 were collected from Sentricon® Termite Colony Elimination System bait stations 

within several meters of each other at AAREC Fayetteville and both sampled the same colony. 

Because they are near each other, this is not unexpected; however, it is interesting that only these 

two bait stations were foraged on by this colony, as there were multiple other bait stations in the 

same area that contained termites from different colonies. Samples 6082 and 6091 also represent 

the same colony and were collected within several meters from each other at Lee Creek area of 

OSFNF from fallen logs. Samples 415, 416, 418, 419, and 691 were also collected from closely 

spaced Sentricon® Termite Colony Elimination System bait stations in a different area of 

AAREC Fayetteville. These are also understandably the same colony due to the close proximity 

of sampling. Overall, the basic spatial dynamics shown from these examples highlight an 

interesting aspect of termite biology that could be further investigated in future research. 

 This is the first study to examine both the mitochondrial DNA haplotypes and 

microsatellite DNA genotypes. From this pairing, we observed that within a colony, multiple 

mitochondrial haplotypes may exist. This is a novel occurrence that requires more research into 

the mechanism of this characteristic. 

 In these three species of Reticulitermes in northwest Arkansas, only 22% of the colonies 

sampled were simple families, 72% were extended families, and 6% (1 sample) was a mixed 

family (Table 4.14). While the sample size for each site and species are too small to adequately 

describe the proportions of breeding systems in the area, they do provide some insight. From 

these 18 samples, R. flavipes and R. virginicus colonies contain approximately the same ratio of 

simple to extended family. R. hageni was divided with 1 simple families and 1 mixed families 
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(Table 4.14) but require further samples and loci. Compared to previous studies, the percent of 

extended families in this study is higher (Vargo and Husseneder 2009). This also is the first 

record of mixed families in R. hageni anywhere in the U.S. Overall, the results obtained in 

northwest Arkansas are similar to those found in the eastern U.S. Further sampling could confirm 

that the unique aspects of this study are a result of the location rather than the small sample size. 
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TABLE 4.1. Termite samples from Lake Wedington unit of OSFNF. 

 

Lab ID# Species 16S Haplotype Coordinate Date Collected 

6033 R. hageni H1 36.131554, -94.391383 2 July 2014 

6034 R. virginicus V1 36.131276, -94.394598 2 July 2014 

6035 R. hageni H1 36.132515, -94.395116 2 July 2014 

6037 R. hageni H1 36.131405, -94.394698 2 July 2014 

6038 R. hageni H4 36.131937, -94.394154 2 July 2014 
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TABLE 4.2. Termite samples from Lee Creek area of OSFNF. 

 

Lab ID# Species 16S Haplotype Coordinate Date Collected 

6082 R. flavipes R 35.761857291667, -94.273830208333 12 October 2014 

6091 R. flavipes GG, SS 35.761834375, -94.273817708333 12 October 2014 

6092 R. hageni H1 35.761713666667, -94.273759333333 12 October 2014 

6095 R. flavipes TT 36.022323125, -94.219738333333 12 October 2014 

6096 R. hageni H1 36.039762, -94.220402666667 12 October 2014 

6097 R. flavipes M, QQ, F3 36.039741481481, -94.219918074074 12 October 2014 
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TABLE 4.3. Termite samples from AAREC Fayetteville. 

 

Lab ID# Species 16S Haplotype Coordinate Date Collected 

414 R. hageni H1 N.A. 2003 

415 R. virginicus V1 N.A. 2003 

416 R. virginicus V5 N.A. 2003 

418 R. virginicus V5 N.A. 2003 

419 R. virginicus V1 N.A. 2003 

691 R. virginicus V3 N.A. 2003 

6075 R. flavipes TT 36.099075769231, -94.165908525641 24 September 2014 

6076 R. flavipes TT 36.098942594697, -94.165817746212 24 September 2014 

6077 R. flavipes TT 36.098944713262, -94.165818799283 24 September 2014 

6079 R. hageni H1 36.099043842593, -94.165938935185 24 September 2014 

6080 R. hageni H2 36.099044866667, -94.165906666667 24 September 2014 

6081 R. hageni H1 36.099223333333, -94.165998541667 24 September 2014 

6099 R. flavipes SS, GG N.A. 21 January 2015 
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TABLE 4.4. Number of termite samples by location. 

 

Site R. flavipes R. hageni R. virginicus Total 

Lake Wedington  

unit of OSFNF 
0 4 1 5 

Lee Creek 

area of OSFNF 
4 2 0 6 

AAREC Fayetteville 4 4 5 13 

Totals 8 10 6 24 

 

 

  



 

63 

 

TABLE 4.5. Primer dyes and concentrations for R. flavipes. 

Primer Citation Dye 
Amount per 

sample (µl) 

RS13 Dronnet et al. 2004 FAM 0.42 

RS33 Dronnet et al. 2004 FAM 0.30 

RS62 Dronnet et al. 2004 VIC 0.25 

RF 15-2 Vargo 2000 FAM 0.22 

RS43 Dronnet et al. 2004 NED 0.19 

RS16 Dronnet et al. 2004 NED 0.14 

RF 6-1 Vargo 2000 NED 0.11 

RS10 Dronnet et al. 2004 VIC 0.06 

 

Additional PCR ingredients: 

2.5 µl Buffer 5X Promega 

0.7 µl MgCl2 25mM 

0.75 µl dNTP 

3.07 µl H2O 

0.1 µl Taq Poymerase 

2.0 µl DNA 
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TABLE 4.6. Primer dyes and concentrations for R. hageni. 

Primer Citation Dye 
Amount per 

sample (µl) 

RS13 Dronnet et al. 2004 FAM 0.46 

RS16 Dronnet et al. 2004 NED 0.38 

RS43 Dronnet et al. 2004 NED 0.36 

RS33 Dronnet et al. 2004 FAM 0.27 

RF 15-2 Vargo 2000 FAM 0.25 

RF 1-3 Vargo 2000 VIC 0.25 

RF 11-2 Vargo 2000 VIC 0.24 

RS78 Dronnet et al. 2004 PET 0.15 

RF 6-1 Vargo 2000 NED 0.13 

RS10 Dronnet et al. 2004 VIC 0.11 

RF 24-2 Vargo 2000 FAM 0.01 

 

Additional PCR ingredients: 

2.5 µl Buffer 5X Promega 

0.7 µl MgCl2 25mM 

0.75 µl dNTP 

1.23 µl H2O 

0.1 µl Taq Poymerase 

2.0 µl DNA 
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TABLE 4.7. Primer dyes and concentrations for R. virginicus. 

Primer Citation Dye 
Amount per 

sample (µl) 

RS13 Dronnet et al. 2004 FAM 0.41 

RS16 Dronnet et al. 2004 NED 0.29 

RS33 Dronnet et al. 2004 FAM 0.21 

RS43 Dronnet et al. 2004 NED 0.20 

RF 11-2 Vargo 2000 VIC 0.18 

RF 6-1 Vargo 2000 NED 0.07 

RS10 Dronnet et al. 2004 VIC 0.04 

 

Additional PCR ingredients: 

2.5 µl Buffer 5X Promega 

0.7 µl MgCl2 25mM 

0.75 µl dNTP 

3.65 µl H2O 

0.1 µl Taq Poymerase 

2.0 µl DNA 
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TABLE 4.8. FST table for R. flavipes (p-values). Bold indicates not significant (p>0.05), i.e. same colony. 

 

Sample/Sample 6075 6076 6077 6082 6091 6095 6097 6099 

6075 *        

6076 0.42342 *       

6077 0.00000 0.02703 *      

6082 0.00000 0.00000 0.00000 *     

6091 0.00000 0.00000 0.00000 0.08108 *    

6095 0.00000 0.00000 0.00000 0.00000 0.00000 *   

6097 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 *  

6099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 * 
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TABLE 4.9. FST table for R. hageni (p-values). Bold indicates not significant (p>0.05), i.e. same colony. 

 

Sample/ 

Sample 
414 6033 6035 6037 6038 6079 6080 6081 6092 6094 6096 

414 *           

6033 0.00000 *          

6035 0.00000 0.00000 *         

6037 0.00000 0.00000 0.00000 *        

6038 0.00000 0.00000 0.00000 0.00000 *       

6079 0.00000 0.00000 0.00000 0.00000 0.00000 *      

6080 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 *     

6081 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 *    

6092 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 *   

6094 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 *  

6096 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 * 
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TABLE 4.10. FST table for R. virginicus (p-values). Bold indicates not significant (p>0.05), i.e. same colony. 

 

Sample/Sample 415 416 418 419 691 6034 

415 *      

416 0.16453 *     

418 0.00100 0.00112 *    

419 0.06005 0.07042 0.13472 *   

691 0.28795 0.34843 0.00000 0.08180 *  

6034 0.00000 0.00000 0.00000 0.00000 0.00000 * 
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TABLE 4.11. Microsatellite loci variability for R. flavipes. 

 

Colony 

Family 

Structure 

Alleles per locus  G-test for 

observed and 

RF 15-2 RS33 RS13 RS10 RS62 RS43 RS16 
Mean 

alleles 

expected 

heterozygosity 

6075 extended 1 2 2 3 2 1 1 1.7143 
Gtot=77.65, df=8, 

p<0.001 

6076 simple 2 2 2 2 2 1 3 2.0000 
Gtot=13.66, df=8, 

p=0.091 

6077 extended 1 2 2 2 2 1 1 1.5714 
Gtot=26.51, df=8, 

p<0.001 

6082 extended 1 1 3 3 2 1 2 1.8571 
Gtot=15.71, df=8, 

p=0.047 

6091 extended 2 2 2 2 2 1 1 1.7143 
Gtot=34.38, df=8, 

p<0.001 

6095 simple 1 1 2 2 1 2 1 1.4286 
Gtot=10.84, df=8, 

p=0.211 

6097 extended 1 2 1 3 1 1 1 1.4286 
Gtot=45.25, df=8, 

p<0.001 

6099 extended 1 2 2 2 1 1 1 1.4286 
Gtot=23.99, df=8, 

p=0.007 
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TABLE 4.12. Microsatellite loci variability for R. hageni. 

 

Colony 

 

Family 

Structure 

Alleles per locus Mean 

alleles 

G-test for 

observed and 

RF  

15-2 
RS33 RS13 RS10 

RF  

1-3 

RF  

11-2 
RF 6-1 RS43 RS16 RS78 

 expected 

heterozygosity 

414 extended 3 1 3 1 3 1 4 3 3 4 2.6000 
Gtot=38.20, df=10, 

p<0.001 

6033 extended 4 1 2 2 2 1 3 2 1 3 2.1000 
Gtot=64.97, df=10, 

p<0.001 

6035 extended 4 1 1 3 1 1 4 2 1 3 2.1000 

Gtot=28.88, df=10, 

p=0.001 

6037 extended 2 1 1 2 1 1 4 2 2 2 1.8000 

Gtot=19.40, df=10, 

p=0.035 

6038 simple 2 1 1 3 1 1 3 4 1 3 2.0000 

Gtot=13.55, df=10, 

p=0.195 

6079 extended 3 1 2 4 3 1 2 2 4 2 2.4000 

Gtot=115.77, 

df=10, p<0.001 

6080 simple 2 1 1 2 1 1 3 1 2 3 1.7000 

Gtot=10.14, df=10, 

p=0.428 

6081 extended 2 1 2 4 2 1 3 3 1 3 2.2000 

Gtot=99.58, df=10, 

p<0.001 

6092 extended 2 1 2 3 2 1 2 2 0 1 1.6000 

Gtot=20.74, df=10, 

p=0.014 

6096 simple 2 1 2 1 2 1 3 2 2 2 1.8000 
Gtot=7.58, df=10, 

p=0.670 
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TABLE 4.13. Microsatellite loci variability for R. virginicus. 

 

Colony 

 

Family 

Structure 

Alleles per locus 
Mean 

alleles 
G-test for  

observed and 

RS33 RS13 RS43 RS16 

 expected 

heterozygosity 

415 mixed 2 5 2 5 2.5714 NA 

416 extended 3 3 2 2 2.1429 
Gtot=41.71, df=4, 

p<0.001 

418 extended 2 4 3 4 3.1429 
Gtot=20.85, df=4, 

p<0.001 

419 extended 2 4 1 2 2.1429 
Gtot=17.88, df=4, 

p=0.001 

691 mixed 2 5 3 1 2.4286 
NA 

6034 extended 1 3 1 2 2.5714 
Gtot=57.14, df=4, 

p<0.001 
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TABLE 4.14. Summary of family structure split by species and location. 

 

Site Simple Families Extended Families Mixed Families 

Lake Wedington 20% (1) 80% (4) 0% 

R. flavipes 0% 0% 0% 

R. hageni 25% (1) 75% (3) 0% 

R. virginicus 0% 100% (1) 0% 

Lee Creek 40% (2) 60% (3) 0% 

R. flavipes 33% (1) 67% (2) 0% 

R. hageni 50% (1) 50% (1) 0% 

R. virginicus 0% 0% 0% 

AAREC Fayetteville 13% (1) 75% (6) 13% (1) 

R. flavipes 0% 100% (3) 0% 

R. hageni 25% (1) 75% (3) 0% 

R. virginicus 0% 0% 100% (1) 

Divided by species:    

R. flavipes 17% (1) 83% (5) 0% 

R. hageni 30% (3) 70% (7) 0% 

R. virginicus 0% 50% (1) 50% (1) 

Totals 22% (4) 72% (13) 6% (1) 
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FIGURE 4.1. Sample sites in northwest Arkansas: Lake Wedington unit of OSFNF, AAREC 

Fayetteville, Lee Creek area of OSFNF. Red bar equals 8 km. 
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CHAPTER 5 

 

CONCLUSION 

 

 Subterranean termites are an economically significant pest that damage many houses in 

the U.S. each year. In this research, molecular genetic tools were used to investigate various 

aspects of termite identification and biology. While these projects simply scratch the surface of 

the potential applications of molecular genetics to study termites, they serve as examples and a 

base for future work.  

 The first project, developing a multiplex PCR protocol to distinguish the invasive 

Formosan subterranean termite from other subterranean termites, is important as a monitoring 

tool for the spread of this invasive species. This enables quick screening (approx. 12hrs total) of 

any sample, not relying on the descriptive castes with uncertain morphological identifications. 

This tool is simple, distinguishing one species from all others, but these same tools could be 

applied to identification of other invasive termites, or to aid in the identification of 

morphologically cryptic species. 

 Next, a new, isolated species of Reticulitermes was described from southern Mississippi. 

In this project, the morphological ambiguity required molecular genetic techniques to identify 

this species. This also introduces the possibility that isolated species are unnoticed in the U.S. 

due to inability for morphological identification. 

 Finally, this thesis applied previously developed molecular tools to investigate the 

breeding structure of Reticulitermes colonies in Arkansas. While this was not novel, but rather an 

expansion of the examined geographical range, this had important discoveries including the first 
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observation of a R. hageni mixed family as well as the first observation of a termite colony 

containing multiple mtDNA haplotypes. Further sampling can only expand and strengthen these 

findings. 

 Overall, molecular genetics have nearly endless possibilities for their applications to the 

study of termites. These contributions provide the foundation for future work that is needed to 

better understand this important economic pest. 
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