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Abstract 

Broiler breeder hens are subject to the dual expectation to not only maintain a high 

production of eggs for an extended time period, but to produce eggs which can support the life of 

chicks which will be used for either meat production or as parent stock. Egg fertility and 

hatchability are heavily influenced by the thickness of the egg shell, the mineral calcium 

carbonate shell of the egg necessary for protecting the embryo growing inside. Many factors 

affect egg shell quality including age of the hen, diet, environmental conditions, genetic strain, 

stress, disease, and nutrition. Laying hens will mobilize calcium from the medullary bone to 

synthesize the calcium carbonate of the egg shell and use the calcium they absorb from their diet 

to replenish this medullary bone. Phosphorus is necessary for many cellular functions in animals 

and it also affects the availability of calcium making the ratio between the two minerals crucial 

not only egg production but also bone and whole body health. Previous studies have indicated a 

phosphorus retention threshold in breeder hens and broilers, the point when the amount of 

available phosphorus in the diet begins to be released into the excreta instead of being utilized in 

the body. In order to gain further understanding of why this phosphorus retention exists many 

elements involved in the whole body homeostasis of calcium and phosphorus in laying breeders 

have been investigated. The first study involved 6 dietary treatments of diets which consisted of 

6 graded levels of non phytate phosphorus (NPP) ranging from 0.15% to 0.40% NPP with 

increments of 0.05 to determine the amount of phosphorus necessary for optimal egg production 

and to find out FGF23’s involvement in the retention threshold of phosphorus. Results showed 

that between 0.20% and 0.25% NPP that phosphorus retention dropped from 33% to 26% while 

FGF23 levels increased from 0.15% to 0.20% NPP and remained at the same concentration 

regardless of further increases in NPP in the diet.  In the second study the relationship between 



 

 

bone health and egg shell quality was studied through the use of biomarkers for Osteoblast and 

Osteoclast activity: Tartrate acid resistant phosphatase (TRAP), and Bone alkaline phosphatase 

(BAP) respectively in both breeder hens and their progeny. Breeder hens were selected upon egg 

shell quality through Dual Energy X-ray Absorptiometry (DEXA) and split into two groups with 

either good shell quality of specific gravity >1.80 or poor egg shell quality with specific gravity 

<1.80 and their eggs were placed and grown until 2 weeks of age. Egg shell quality was shown to 

correlate negatively with TRAP and positively with BAP. Progeny of the poor egg shell quality 

hens had lower levels of BAP and high levels of TRAP compared with the progeny of the good 

egg shell hens. 

 

Key words: bone homeostasis variables, shell quality, phosphorus metabolism, biomarker 
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Introduction 

 

In egg laying animals calcium and phosphorus are the most important macro minerals 

necessary for egg shell development. Formation of calcium carbonate in the shell gland of laying 

hens requires calcium from both the diet and or medullary bone to meet the amount needed for 

egg shell synthesis. Proper amounts of calcium and phosphorus and the ratio between the two are 

necessary for diets for laying hens due to how important the minerals are for not only egg shell 

synthesis, and bone turnover, but also for maintaining calcium and phosphorus homeostasis 

throughout the body and circulating blood supply. While approximately 99% of calcium is stored 

in the body in the form of Ca10[PO4]6[OH]2  hydroxyapatite in the bones and teeth, for mammals, 

it is also used in the circulatory system, extracellular fluid, muscle, and other soft tissue for 

regulating vascular constriction, vasodilation, nerve transmission, hormonal secretion, muscle 

function, and intracellular signaling (Ross et al., 2011). Only 85% of phosphorus in the body is 

found in the form of hydroxyapatite due to its essential use in the creation of the following 

compounds: nucleic acids for DNA and RNA, ATP, creatine phosphate, cell membrane 

phospholipids, and many different enzymes and hormones. Phosphorus is also used for cell 

growth and maintenance, muscle contractions, kidney function, regulation of heart rate, 

transmission of nerve impulses, maintaining body blood pH, and it is used sometimes as a co-

factor for other minerals and vitamins including vitamin D, iodine, magnesium, and zinc (USDA, 

2005). Proper balance of calcium and phosphorus in the body is essential as circulating levels of 

the two minerals are under tight circulation through many hormones and when one is in excess it 

will be promptly be removed via the kidney, or have its absorption through the S.I. blocked 

lowering digestibility.  
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 Sources of phosphorus and calcium used in poultry diets are quiet costly due to the high 

amounts needed for egg shell production, and bone growth due to the monogastric G.I. system of 

avians with no post-gastric fermentation unlike other livestock. Limestone is the most common 

source of calcium in poultry feed obtained commonly from oyster shells and it is almost 100% 

available depending on the particle size which will change the transit time through the G.I. tract. 

Dicalcium phosphate and monocalcium phosphate are synthetic sources phosphorus and calcium 

created through the reaction of calcium carbonate and phosphoric acid and they are the most 

used source of phosphorus supplementation in poultry diets. Other sources of phosphorus may 

come plant matter in the diet in the form of either phosphate (PO4
3− ) or pyrophosphate (P2O7

4−). 

Both of these forms of phosphorus are consider organic sources of P, which is mostly 

compromised of phytate. The inorganic forms of phosphorus are known as non-phytate 

phosphorus (NPP). The purpose of NPP or phytic acid is to serve as a storage molecule for both 

phosphorus and inositol in plants, however it is mostly unavailable in poultry with up to only 1/3 

of the phosphorus comprised of NPP being digestible. Excess phosphorus in the diet leads to 

phosphorus accumulation in poultry litter which can have detrimental effects for the environment 

(Pote et al., 1997). Phosphorus deficiencies can lead to rickets in growing chicks, and 

osteoporosis, osteomalacia, and thinner egg shells in laying hens (Long et al., 1984; Nieves, 

2005; Roberts, 2004). The proper amount of calcium and phosphorus and ratio between the two 

in the diet is necessary to prevent wastage or deficiency as the amount of either one in the blood 

changes how the body views the other. 

Studies have shown that the current NPP requirements for breeder hens and broilers 

overestimate the amount of phosphorus that is truly needed (Leske and Coon, 1999; Manangi 

and Coon, 2008; Ekmay and Coon, 2012). Work by Coon et al. has shown that current industry 
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requirement of 0.40% NPP may be almost twice that which is necessary for proper maintenance 

in breeder hens and growth in broiler hens. Throughout the studies by Coon et al. there is a 

threshold where phosphorus excretion increases dramatically and plasma inorganic phosphorus 

plateaus, approximately 0.23% NPP. Depending on the amount of calcium in the diet the 

threshold where phosphorus excretion begins to rapidly increase and blood phosphorus plateaus 

changes. This value of 0.23% NPP is much closer to the NRC requirement (1994) of 0.25%NPP 

and 3.25% calcium for laying breeder hens. Currently however there is no physiological 

explanation for why this phosphorus threshold exists although it may be tied into several 

hormones responsible for regulating calcium and phosphorus metabolism including one or more 

of the following: Parathyroid hormone (PTH), Calcitonin, Phosphate regulating endopeptidase 

homolog, x linked (PHEX), Matrix extracellular phosphoprotein (MEPE), Dentin matrix acid 

phosphoprotein (DMP1), Receptor activator of nuclear factor kappa-B ligand (RANKL), and 

Fibroblast growth factor 23 (FGF23). Egg shell synthesis from laying hens doesn’t solely depend 

on the available calcium and phosphorus from the diet but also from the reserves in the bone. 

Bone turnover is a major contributor to the calcium necessary for egg shell synthesis in 

the egg shell gland. Osteoclasts are specialized cells in bone which are responsible for the 

resorption of calcium and phosphorus from the hydroxyapatite mineral complex in the bone. 

Osteoclasts dissolve the protein-mineral complex through the collagenase cathepsin K, and 

tartrate resistant acid phosphatase (TRAP)( Väänänen et al., 2000). Osteoblasts conversely are 

cells in the bone used for building the mineral complex through the enzyme activity of bone 

alkaline phosphatase (BAP) which will create a high concentration of phosphorus through 

cleaving phosphate groups off nearby molecules. Once a high concentration gradient of both 

calcium through active transport and phosphorus through BAP activity are achieved then 
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hydroxyapatite can be synthesized at the site of bone construction through the following 

reaction: 6 HPO42− + 2 H2O + 10 Ca2+ ⇌ Ca10(PO4)6(OH)2 + 8 H+ (Neuman et al., 1958). 

Blood concentration of plasma and calcium isn’t solely dependent upon bone mobilization and 

what the birds eat, however, as calcium and phosphorus absorbed through the S.I. are under 

regulation from the body. 

Calcium enters the blood system through the G.I. tract via calcitonin, the active form of 

vitamin D and cytosolic calcium binding protein (calbindinD(9k)). There are two mechanisms 

under which calcium is absorbed through the S.I.: transcellular active transport of which a 

majority occurs in the duodenum and upper jejunum; and paracellular passive transport that 

occurs through the whole intestine. The transcellular transport consists of three steps: entry 

across the brush border, regulated by the calcium selective ion channel (CaT1), intracellular 

diffusion, controlled by calbindinD(9k), and lately extrusion, mediated by Ca-ATPase. The 

transcellular absorption of calcium will change depending on the bodies need for calcium 

whereas the paracellular absorption is constant (Bronner, 2003). Both CaT1 and calbindinD(9k) 

are regulated by calcitriol and thus will lower in function when the synthesis of the active form 

of Vitamin D is inhibited (Zhuang et al., 2002). Phosphorus is absorbed through the type IIb 

sodium phosphate cotransporter (Na-Pi-IIb cotransporter) which is located in the brush border 

membrane of the epithelium in the duodenum and jejunum (Angel, 2007). The rate of 

phosphorus absorption through the S.I. is controlled through its transporters as shown when 

broilers were challenged with a low phosphorus total the gene expression and total protein of the 

NaPi-IIb increase, and lower in response to high concentrations of phosphate (Fang et al., 2012). 

Controlling the amount of phosphorus and calcium entering the blood supply isn’t the only way 
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the body regulates their levels as excretion of the two macro minerals through the kidneys is the 

fastest way for the body to lower their concentrations (Wideman, 1983). 

Plasma phosphorus is found in one of three different states including ionized, complexed, 

and protein bound (Fuchs, 1980). Only the protein bound form which composes 25% of the 

plasma phosphate is un-filterable by the glomerulus of the kidney while ionized and complexed, 

that is bound to Ca2+, Mg2+, and Na+, can be filtered. The type IIa sodium phosphate 

cotransporter (Na-Pi IIa), the complement to the S.I Na-Pi IIb, is the main transporter for the 

reabsorption of phosphorus in the kidney and is located in the apical membranes of the epithelial 

cells of the renal proximal tubules (Biber et al., 1996). The type I sodium phosphate 

cotransporter has also been located in the cortex of the kidney but it is not phosphorus specific 

and seems to be used for net ion balance (Broer et al., 1998). Roughly 97% of calcium that is 

filtered through the glomerulus is recovered due to how tightly regulated its concentration in the 

blood is. Unlike phosphorus transport, which occurs principally in the proximal tubule, calcium 

reabsorption occurs throughout the kidney including the proximal tubule, thick ascending limb, 

distal convoluted tubule, and the connecting tubule (Arjen et al., 2006). Parathyroid hormone is 

the principal hormone for regulating the excretion of phosphorus through the kidney in response 

to calcium levels, its function however is to increase ratio of calcium to phosphorus either by 

increasing calcium or decreasing phosphorus. Another hormone fibroblast growth factor 23 is 

entirely dedicated to being phosphaturic, a factor which increasing the concentration of 

phosphorus in the urine, which acts principally on the kidney by increasing phosphorus excretion 

by downregulating the Na-Pi type IIb transporter and decreasing the conversion of 

cholecalciferol to calcitrol (Liu et al., 2007). Laying hens face another complication for calcium 
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and phosphorus homeostasis as the shell gland will remove calcium from the blood changing the 

way the S.I., kidney, and bone will behave. 

Regulation of phosphorus and calcium is critical for laying hens as the shell gland will 

remove calcium from the blood to synthesis the calcium carbonate while leaving behind the 

phosphorus to be excreted. Approximately 95% of dry egg shell is calcium carbonate, 0.3% 

phosphorus, and 0.3% magnesium and other trace minerals (Roberston, 2001). Genetics and the 

amount of calcium available to the hen during synthesis will determine egg shell quality. Other 

factors which affect egg shell thickness include: time spent in the shell gland, time of day when 

the shell is being synthesized, age of the hen, health of the bird, environmental conditions, and 

source of calcium in the diet (particle size). It takes roughly 25 hours to lay an egg beginning 

from an egg cell being released from the ovary to the final product coming out of the cloaca with 

20 hours of that being time spent creating the egg shell in the shell gland (Joyner et al., 1987) 

During egg shell formation the ratio of calcium to phosphorus necessary for synthesis of calcium 

carbonate is 20:1, while the ratio of calcium to phosphorus liberated from the bone is 2.5:1 

(Whitehead, 2004). Boorman (2001) reported that excess dietary phosphorus causes less calcium 

deposition in egg shells, perhaps due to less skeletal mobilization due to higher circulating 

plasma P levels which prevents calcium from being liberated through osteoclast bone resorption. 

Medullary bone is used as a calcium reservoir for egg shell synthesis while the structural cortical 

bone isn’t mobilized (Bar, Hurwitz, 1984). 

In summary the first objective of this study is to gain further understanding of the 

complex mechanisms by phosphorus retention threshold in breeder hens and broilers between the 

relationship of the kidney, S.I., and bone with FGF23 as the focus due to its phosphaturic nature. 

The second objective is to find out the relationship between bone turnover and egg shell quality 
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through the biomarkers of bone resorption and: building tartrate resistant acid phosphatase and 

bone alkaline phosphatase for osteoclast and osteoblast activity respectively. 
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Phosphorus & Calcium Modulation 

 Phosphorus is necessary for many cellular activities used to maintain homeostasis in 

animals including the synthesis of nucleic acids, bioactive signaling proteins, phosphorylating 

enzymes, and hydroxyapatite (Berndt et al., 2005). Calcium is used in many essential cellular 

functions as well including mediating nerve transmission, muscle function, intracellular 

signaling, hormone secretion, vascular contraction, and vasodilation. Both minerals are regulated 

through their concentrations in the blood and the surrounding tissue. Parathyroid hormone is the 

chief hormone for maintaining adequate levels of calcium in the blood as it works with the bone, 

kidney, and indirectly the small intestine. The individual concentrations of calcium and 

phosphorus are important but the ratio between the two minerals also affects how available each 

of them is to the body due to them complexing in the blood. When the ratio of calcium to 

phosphate increases more calcium ions are free in the circulation. Free calcium in the blood is 

principally used for bone synthesis in growing broilers, and for egg shell synthesis in mature 

laying breeder. Phosphorus is necessary for hydroxyapatite synthesis; however, it is not as 

important for calcium carbonate synthesis in laying hens and will often be removed to make 

calcium more available. Modern nutritionists used a phosphorus requirement in the diets of 

poultry is that much higher than necessary to be safe due to how important phosphorus is for 

growing broilers and laying hens (Waldroup, 1999). Work by Coon et al. has shown that when 

broilers and breeders are fed diets consisting of NPP levels of 0.23 or lower that phosphorus in 

the excreta, and blood begin to decline signifying that there is a phosphorus retention threshold. 

Understanding this phosphorus threshold is important not only for maximizing the phosphorus 

we use in poultry diets but also to improve bone and egg shell quality. Fibroblast growth factor 

23 (FGF23) is a hormone entirely devoted to being phosphaturic which will act to increase 
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phosphorus in the urine and prevent more phosphorus from entering the blood. Given that 

FGF23 is dedicated to regulating phosphorus independent of calcium it is very likely that it is 

involved in this phosphorus retention threshold  

Hormone & Factor Regulation 

 While phosphorus and calcium are necessary for many cellular functions in the body, the 

accumulation of the two minerals in the tissue can lead to soft tissue calcification, excess buildup 

of calcium salts in soft tissue, which can lead to cellular death and organ failure (Bertazzo, 

2013). The main hormone for the regulation of calcium in the blood is parathyroid hormone 

(PTH), an 84 amino acid long hormone produced by chief cells in the parathyroid gland. The 

main function of PTH is to bring calcium blood levels within a certain range depending on the 

state of the body which can vary depending on age, bone development, production (milk, egg 

shell synthesis), disease, time of day, and many other factors. PTH acts upon many different 

portions of the body including the bone where it will liberate calcium from the hydroxyapatite 

through indirect stimulation of osteoclasts to cause bone resorption. Receptors for PTH in the 

bone are on osteoblasts which then cause RANKL, a promoter of osteoclast formation, to be 

released which inhibits the expression of Osteoprotegerin, a suppressor of osteoclast activity. 

Kidney function is also altered in response to PTH as Na-Pi IIb cotransporter are downregulated 

in response to PTH which will decrease the amount of phosphorus reabsorbed and lead to 

increased excretion. The conversion of the inactive form of vitamin D, cholecalciferol, to the 

active form calcitriol in the kidney is upregulated by PTH. Vitamin D causes more calcium to be 

absorbed through the small intestine through increased expression of the calcium transporting 

protein calbindin.  
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 Calcitonin is the antagonist hormone of PTH as its main function is to reduce blood 

calcium levels. It is a 32 amino acid long hormone produced by the parafollicular cells in the 

thyroid. Calcitonin will inhibit osteoclast function in the bones and increase osteoblast activity, 

bone building and hydroxyapatite synthesis. Net absorption of calcium through the small 

intestine is lowered in response to calcitonin. Reabsorption of calcium in the kidney is lowered 

due to calcitonin increasing the amount of calcium in the urine. The reabsorption of phosphorus 

is also lowered in response to calcitonin, one function that is the same for PTH (Boron, 2004). 

 Receptor activator of nuclear factor kappa-B ligand (RANKL) is a tumor necrosis factor 

that is involved in both the immune system and for regulation of bone turnover and remodeling. 

RANKL is found is many tissues and organs including skeletal muscle, liver, colon, adrenal 

gland, thymus, pancreas, epithelial cells, prostate, mammary gland, and osteoclasts. While 

RANKL isn’t directly involved in the balance of calcium and phosphorus it part of the regulation 

for bone resorption and bone building which are impacted by the hormones PTH and Calcitonin. 

Osteoclasts are the principle cells for bone resorption as they dissolve the hydroxyapatite and 

collagen through the enzymes TRAP and cathepsin K which liberates calcium and phosphorus 

into the blood (Wada et al., 2006). RANKL is synthesized in response to the bodies needed to 

resorb bone and it will bind to its receptor RANK on osteoblasts. Once osteoblasts are stimulated 

by RANKL they will differentiate into osteoclasts. Osteoprotegerin (OPG) is a cytokine receptor 

that acts as a decoy receptor for RANKL. The purpose of OPG is to reduce the amount of 

osteoclasts that are formed, once more in response to the current conditions of the body. The 

female sex hormone estrogen has been found to increase the amount of OPG, effectively 

increasing bone mineral density and preventing osteoporosis (Bateman et al., 2002). Given that 
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RANKL is necessary for the differentiation of osteoclasts it is effectively a middle man between 

mineral concentration and bone mobilization. 

 Phosphate-regulating neutral endopeptidase, X-linked (PHEX) is a newly discovered 

enzyme involved in bone mineralization and renal phosphate reabsorption. PHEX is thought to 

oppose the effects of phosphaturic hormones such as FGF23, and factors which oppose 

mineralization such as Osteopontin. Downregulation of PHEX has been shown to induce 

osteomalacia, hypophosphatemia, and rickets (Barros et al., 2013). PHEX is different from most 

of factors regulating phosphorus homeostasis in that its presence will increase the reabsorption of 

phosphorus from the kidney. 

 Sclerostin is a glycoprotein secreted by osteocytes, mature osteoblasts, and chondrocytes, 

cartilage cells, that down regulate the synthesis of bone formation. The proposed pathway for 

how this occurs is that Sclerostin inhibits the Wnt signaling pathway, a cascade of proteins that 

cause a net signal transduction necessary for cell proliferation, cell migration, and cell fate 

specification. Without the Wnt signaling pathway new bone cannot be formed due to the 

inability for the cells to coordinate and grow together to form new tissue. The Wnt signaling 

pathway has also been shown to regulate calcium inside cells (Nusse et al., 1992). Ultimately the 

differentiation of osteoblasts is inhibited by sclerostin produced by osteocytes and chondrocytes 

as part of an internal regulation of the bone use in bone remodeling and turnover.  

 Osteopontin is protein that regulates the mineralization throughout the whole body and is 

primarily used to prevent soft tissue calcification. Osteopontin has an overall negative charge due 

to containing many negatively charged amino acids including aspartate, glutamic acid, and 

serine. The negative charge allows for Osteopontin to bind to calcium available at crystal 
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surfaces in different bio-minerals including hydroxyapatite. Many different cells throughout the 

body synthesis Osteopontin including fibroblasts, osteoblasts, osteocytes, odontoblasts, 

chondrocytes, dendritic cells, macrophages, smooth muscle, myoblasts, endothelial cells, brain, 

kidney, placenta, and the uterine wall. Strangely Osteopontin is synthesized by all 3 cell types 

involved in bone formation and synthesis, osteoblasts, osteoclasts, and osteocytes. Osteoclasts 

produce Osteopontin in order to begin bone resorption as it is the first anchor for breaking down 

hydroxyapatite. Osteopontin is also found in the urine where its main function is to inhibit 

kidney stone formation (Addison, 2008). Osteopontin is antagonized by the bone mineralization 

stimulating hormone PHEX which will rapidly degrade Osteopontin upon contact in order to 

stop bone resorption. 

 Osteocalcin is a hormone produced by osteoblasts which links tissue development with 

bone growth. The target site of Osteocalcin’s function is the beta cells of the pancreas to produce 

insulin, and adipose cells to create adiponectin, a hormone which increases sensitivity to insulin 

(Lee et al., 2007). Osteocalcin has also been found to increase testosterone production in males 

through acting upon leydig cells in the testis (Karsenty, et al., 2014). While the exact mechanism 

behind Osteocalcin and bone growth is unknown it has been found to be positively correlated 

with bone mineral density and seems to be produced by Osteoblasts during periods of bone 

mineralization.  

Matrix extracellular phosphoglycoprotein (MEPE) is a glycoprotein produced by both 

osteoblasts and osteocytes which upregulates the synthesis of FGF23 and inhibits bone 

mineralization. MEPE has been shown to inhibit PHEX, the principal enzyme involved in 

promoting bone mineralization. Abnormally high levels of MEPE have been associated with 
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osteoporosis and osteomalacia further supporting its suppression of bone mineralization 

(Yamada, et al., 2004). 

Dentin matrix acidic phosphoprotein 1 (DMP1) is a protein produced by osteoblasts that 

promotes bone mineralization and formation. The effects of DMP1 mirror the opposite of what 

MEPE does by both down regulating FGF23 and stimulating the release of the enzyme PHEX. 

Mutations in the genes coding for DMP1 have been shown to cause hypophosphatemia which 

can ultimately lead to rickets and osteomalacia indicating how important DMP1 is for bone 

formation (Hirst, 1997).  

Fibroblast growth factor (FGF23) is a 251 amino acid long hormone that is synthesized 

by osteocytes in the bone in response to excess phosphorus accumulation. Among all of the other 

proteins secreted in the bone FGF23 is unique in that it acts not only locally by indirectly 

suppressing bone mineralization through antagonizing PHEX, but also by acting on serval organs 

including the kidney, parathyroid gland, pituitary gland, and choroid plexus. The receptor for 

FGF23, Klotho, has been found predominately in the kidney and PTH where FGF23 has the 

most profound effects: promoting the net secretion of phosphorus into the urine and increasing 

the synthesis of PTH (Liu et al., 2007). Another impact FGF23 has on the kidney is its inhibition 

of the conversion of cholecalciferol to calcitriol, indirectly reducing the amount of calcium and 

phosphorus absorbed through the small intestine. Factors which affect the expression of FGF23 

include circulating phosphorus, calcitriol, PHEX, DMP1, MEPE, and phosphorus buildup in 

tissue. Overall the purpose of FGF23 is to reduce phosphorus independent of calcium or the 

calcium to phosphorus ratio making it the only hormone that influences the kidney Na-Pi type 

IIb cotransporter that isn’t affected by calcium. 
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Bone building and resorption 

 Growing breeders and broilers undergo two stages of bone development: Endochondral 

ossification which is response for longitudinal growth in long bones, and intramembranous 

ossification necessary for long bone widening. These two processes are how cortical bone is 

remodeled in hens which are moderated through osteoclast activity through the activity of many 

cofactors including PHEX and Osteopontin. Beginning at sexual maturity in female breeders 

increased estrogen production causes the formation of medullary bone, a specialized type of bone 

found only in lizards and birds. Medullary bone acts as a reservoir of calcium to be mobilized 

when needed for egg shell synthesis or for maintain calcium homeostasis throughout the body. A 

majority of medullary bone is located in the long flat bones such as the tibia and femur. 

Throughout a laying period hens can lose a lot of bone due to being at a net calcium deficiency 

while maintaining egg production, however, bone can be rebuilt and brought back to normally 

mineral density once out of production. While hens may also draw heavily upon their mineral 

reserves in their bone they are still able to maintain bone strength due to preserving their 

collagen crosslinks. Hydroxyapatite the mineral portion of the bone isn’t the only part which 

gives it strength however, as the collagen crosslinks which bind the mineral together as shown to 

be just as important for bone strength (Wrath, 2000). 

The two cell types responsible for bone resorption and are Osteoclasts, specified cells 

responsible for bone resorption through enzyme activity of TRAP and cathepsin K, and 

Osteoblasts which are the antagonists of Osteoclasts as their function is to build bone and form 
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hydroxyapatite and collagen. The hormones and cofactors which upregulate the mineralization 

and formation of new bone include: DMP1, PHEX, and Calcitonin. The hormones and cofactors 

which downregulate the mineralization and formation of new bone include: MEPE, Osteopontin, 

Osteocalcin, Sclerostin, PTH, RANKL, Vitamin D, and FGF23. During the laying period the egg 

shell gland in hens will rapidly deplete the calcium from the blood to synthesis calcium 

carbonate. When calcium levels in the blood reach a certain threshold the factors and hormones 

mentioned above will begin to mobilize hydroxyapatite from the bone to liberate more calcium, 

along with reabsorbing more calcium through the kidney and absorbing more calcium from the 

small intestine. Depending on the time of day under which the egg shell synthesis occurs will the 

body of the hen depend more on the calcium in the bone or in the diet. During the normal day-

night sequence egg shell synthesis will occur during the night when the G.I. tract is empty 

causing more bone to be mobilized to meet the requirements of the shell gland. Once calcium 

homeostasis is restored after the egg shell is synthesized the medullary bone can be rebuilt 

utilizing calcium from the diet through osteoblast activity via bone alkaline phosphatase.   

Kidney Regulation 

 The principal hormones which regulate phosphorus and calcium levels, PTH, Calcitonin, 

and FGF23, act not solely on the bone or S.I. but on the kidney to increase or decrease blood 

mineral levels through net secretion or retention. Phosphorus and calcium are both separated 

from the blood when filtered through Bowman’s capsule and the reabsorption of each mineral 

depends upon specific transporters within the kidney. Approximately 97% of calcium is 

absorbed under normal conditions signifying how important retaining calcium is to body 

homeostasis. A majority of calcium reabsorption occurs in the proximal tubule and thick 

ascending limb of Henle’s loop through passive diffusion. The remainder of the reabsorption 
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occurs in the distal convoluted tubule, and connecting tubule via transcellular reabsorption. 

Phosphorus reabsorption in the kidney fluctuates much more than calcium is it is the preferred 

mineral to remove in order to increase the calcium to phosphate ratio. The sodium phosphatase 

type IIa cotransporter is the principal transporter of phosphorus in the kidney and it is present in 

the proximal tubule. The Na-Pi type IIa transporter is pH sensitive and basic conditions will 

greatly increase its rate of transportation. Another transporter is phosphorus in the kidney, the 

type 1 Na-Pi cotransporter is found only in the cortex and is used for net ion balance, minimizing 

its influence on phosphorus balance (Werner et al., 1991). Phosphorus reabsorption is increased 

in response to PHEX, the bone mineralization promoting hormone synthesized by osteoblasts 

and osteocytes during bone growth and remodeling. Phosphorus reabsorption is decreased in 

response to PTH, Calcitonin, and FGF23 in order to either achieve a net high amount of calcium 

in the blood or to prevent bone mineralization.   

Small Intestine absorption and control 

 While adult laying hens have reservoirs of calcium and phosphorus stored in the 

hydroxyapatite of their medullary bone they are still reliant upon mineral intake through their 

diet to replenish this bone. Growing broilers are completely reliant upon the minerals in their diet 

making the uptake of calcium and phosphorus through the G.I. essential for maintaining mineral 

homeostasis. Calcium uptake through the S.I. is regulated through the formation of calcitriol, the 

active form of vitamin D. Hormones and factors which affect the conversion of cholecalciferol to 

calcitriol include PTH, Calcitonin, and FGF23. In the presence of calcitriol calbindin is able to 

bind free calcium in the lumen of the small intestine and transporter it across the brush border 

membrane. The majority of calcium absorption occurs in the duodenum and upper jejunum. 

When there is a higher concentration of calcium in the diet then the body will preferably absorb 
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it through paracellular passive diffusion involving the transportation of calbindin bound calcium 

through the brush border membrane. Under conditions of lower calcium the body will use 

transcellular calcium transport to maximize its absorption (Bronner, 2003). Phosphorus is 

reabsorbed in the duodenum and jejunum via the type IIb sodium phosphate transporter 

expressed in the brush border membrane. The phosphate absorption in the duodenum is less 

sensitive to changes in phosphorus in the lumen while expression of the type IIb cotransporters 

in the jejunum will change depending on the phosphate concentrations (Fang, 2012). 

Phosphorus Retention Threshold 

 Laying broiler breeder hens must not only fulfill the phosphorus and calcium 

requirements in their body for cellular homeostasis but also deposit a portion of that calcium into 

the eggs they synthesis every day. Calcium liberated from hydroxyapatite will lead to 

phosphorus loss and will change the bird’s phosphorus requirement. Total phosphorus 

requirements for laying breeders thus are complex and are effect not only by the amount of 

phosphorus required to synthesis egg, but also what they lose due to bone mobilization and 

digestibility of the diet they consume (Ekmay, 2010). The NRC daily NPP requirement for 

broiler breeders is 250mg/100g of feed per hen, or 0.25% of the total diet. Currently the industry 

requirement is 0.40% NPP in the diet which well exceeds that is needed for breeder production, 

however, due to how essential phosphorus is for bone and cellular health in breeders nutritionists 

use this high value as a safety margin. Studies have shown that increasing NPP in the diet above 

0.4% has no benefit on production while studies which have lowered the available phosphorus 

below this requirement show that there is little change in egg production, weight, fertility, 

hatchability, or hatching weight until below the NRC requirement of 0.25% NPP (Leske and 

Coon, 1999; Manangi and Coon, 2008; Ekmay and Coon, 2012). Chandramoni et al. (1998) 
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found that breeders feed 0.32% available P did not have improvements in egg production, shell 

weight, SWUSA, and egg content when the NPP was increased. Keshavarz (2000) reported that 

there was no difference in egg production when layer hens were fed low levels of NPP, 0.15%-

0.25%. Feeding high levels of NPP (1.0%) has affected the bone ash and strength of progeny 

compared to 0.2% NPP (Triyuwanta and Nys, 1992), however, bone ash and strength for the 

same chicks at week 2 and 7 weren’t different. Plumstead et al., (2007) found decreased fertility 

in breeders fed NPP below 0.37% but a total increase in chicks per hen. Coon (2007) reported 

that increasing NPP above 0.23% in broilers marked a break point where phosphorus in the 

excreta would increase linearly with increasing NPP in the diet.  
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Effects of dietary NPP intake on production performance, phosphorus retention, and 

FGF23 expression in broiler breeders. 
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Introduction 

 Phosphorus is an essential mineral for basic cellular function including the synthesis ATP 

and nucleic acids, and is also necessary for hydroxyapatite bone formation. Breeder broiler hens 

during egg production have high demands for calcium and phosphorus in their diet with the 

current requirement estimated at 0.40% NPP to fulfill their metabolic needs. Breeder hens rely 

upon medullary bone to supply calcium for the shell gland to make calcium carbonate synthesis 

and a lot of phosphorus is wasted during this process due to very little phosphorus being utilized 

in egg shell synthesis. Previous studies have shown that both breeder hens and broiler chicks 

have a phosphorus retention threshold at approximately 0.23% NPP where the amount of 

phosphorus in the urine remains constant and then suddenly increases rapidly with increasing 

NPP in the diet. The mechanism behind this phosphorus threshold is unknown as performance 

parameters such as body weight gain and feed conversion ratio continue to increase along with 

NPP from 0.23% to 0.40% despite the overall decrease in phosphorus retention. New proteins 

and hormones involved in phosphorus and calcium metabolism have been discovered over recent 

years, one of them being fibroblast growth factor 23 (FGF23). FGF23 is secreted by osteocytes 

in the bones in response to high levels of phosphorus in the blood and high concentrations of 

calcitriol and is the only known phosphaturic factor which acts independently of calcium. Recent 

work involving colostomy of breeder hens and broilers has shown that phosphorus excreted 

during the change in retention ends up in the urine signifying that the kidney is responsible for 

the phosphorus removal which points towards FGF23, as a phosphaturic factor, regulating this 

retention threshold. The purpose of this study is to further investigate this phosphorus retention 

threshold in breeder hens at 0.23% NPP to physiologically find out why this occurs and the 

possible connection with FGF23 concentration in the blood. 
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Materials and Methods 

 All procedures regarding the use of live animals in this study were carried out in 

accordance with the Animal Use Protocol 13002, which was approved by the University of 

Arkansas Institutional Animal Care and Use Committee. 

Animals and Handling 

 A flock of 850 Cobb 500 hens was delivered to the production house at the age of 20 

weeks. Each hen was assigned an identification number and individually caged (47 cm high, 30.5 

cm wide, 47cm deep) with separate feeders and water nipples. Hens were offered standard Cobb 

feed daily using the amounts recommended on the Cobb Breeder Management Guide (Cobb-

Vantress, 2005). Daily allotted feed intake was restricted and was increased every 8 percent 

increase in egg production beginning from 5% production to peak. The farm where the birds 

were kept was environmentally controlled with regards to temperature (22 °C) and humidity. 

Lighting schedule began with 12 hours per day at week 21 of age and increased one hour for the 

next two weeks until reaching its apex at 14 hours per day. Light duration was further increased 

to 15 and 16 hours at 20%, and 50% egg production respectively. As soon as the flock reached 

the farm their egg production was recorded daily, and egg weights recorded two days a week. 

Eggs which were soft shelled, cracked, dirty, or double yolk were recorded as such. 

Balance Study 

 Beginning at week 32 a total of 144 breeder hens of average body weight were switched 

from the standard Cobb feed to 6 experimental diets, 24 hens per diet, containing 0.15% NPP 

through .40% NPP increasing at 0.05% increments. All egg weights were recorded daily starting 

at the beginning of the balance study as well to account for phosphorus in the eggs. At week 35 a 
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total collection of excreta was conducted for 5 days during which all excreta was collected. 

Excreta and egg samples were freeze dried and sent to the University of Arkansas Central 

Analytical Laboratory for mineral Ca, and P analysis. At the end of the fourth week of the 

balance study blood from drawn from the hens from the wing vein with regards to oviposition 

and stored in heparinized blood collecting tubes. Hens were then euthanized through CO2 gas 

asphyxiation and right tibias removed from measurement of breaking strength and bone ash 

concentration. Blood samples were immediately centrifuged using the methodology described by 

Tuck (2009) for plasma separation, and then stored at -20 °C until they were analyzed for plasma 

inorganic phosphorus, or fibroblast growth factor 23. 

Plasma chicken specific fibroblast growth factor 23 was analyzed using a quantitative 

competitive immunoassay test kit (Neobiolab, USA). Plasma inorganic phosphorus was 

measured using a colorimetric assay involving the formation of phosphomolybdate complex 

from phosphorus and ammonium molybdate to create a molybdenum blue color complex (Pointe 

Scientific, USA). Tibias were analyzed for bone-breaking force by the sheer force measurement 

method described by Wilson (1991), utilizing an Instron Universal Testing Machine (Model 

1123, Instron Corp., Canton, MA). Following the sheer test, the tibias were defatted in a 

container of 180 alcohol for 24 hours followed by refluxing in petroleum ether in a Soxhlet 

apparatus for 48 h. The defatted tibia samples were oven-dried at 110°C for 24 hours and ashed 

in ceramic crucibles for 24 h at 600°C. Ash content was determined as dry, fat-free tibia and 

expressed as grams of ash/bone and as a percentage of the defatted tibia weight. 

Statistical Analysis 

  A completely randomized design was used to analyze data through the use of the 

ANOVA procedure of SAS (version 9, SAS Institute, Cary, NC).  When necessary trend 
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contrasts were used to determine line shape. Data was also analyzed for linear and quadratic 

regression to determine curvilinear responses to dietary NPP. All statements of significance are 

based on testing at P ≤ 0.05. 

Results 

 No statistical differences were found between egg production and increasing NPP in the 

diet (0.135) (Table 2). Egg production as a percentage of all the hens in the experiment versus 

each individual treatment fed a graded level of NPP was found to not be significantly different 

across treatments (P=0.512). There was no effect of NPP in the diet on mortality (P=0.499). 

Change in body weight of the hens from the beginning of the study and at the end was not 

effected by NPP in the diet (P=0.499), however hens fed 0.40 NPP, the highest level of NPP, had 

the highest body weight average. There were no treatment effects on egg weight, however 

breeders fed 0.40% NPP had highest the egg weight average. Total excretion of phosphorus 

increased with total phosphorus in the diet (P < 0.0001) including an inflection point at 0.25% 

NPP where phosphorus excretion increased much more rapidly (Table 3). Total phosphorus 

retention decreased at 0.25% NPP in the diet and continued to decrease as total NPP in the diet 

increased. Total phosphorus excretion was highest above 0.30% NPP which coincide with the 

different in total phosphorus retention. Total phosphorus retention did not show a significant 

linear response to increase NPP in the diet. Diet had no effect on tibia bone ash percentage (P= 

0.563), however hens fed the diet comprising of the highest level of NPP, 0.40%, had the highest 

percentage of bone ash.  

 There was a significant diet effect plasma inorganic phosphorus as the concentration of 

phosphorus in the blood increased with NPP in the diet (P= 0.06)(Table 4). Plasma inorganic 

phosphorus did not have a significant linear response with NPP in the diet as it showed the 
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greatest increase between 0.15NPP and 0.25NPP; afterwards it plateaued at approximately 

10mg/dl. Plasma FGF23 did not show a significant linear response to increase in NPP in the diet. 

There was a significant relationship between dietary NPP and plasma fibroblast growth factor 23 

(P < 0.001). Plasma FGF23 increased between 0.15NPP and 0.20NPP afterwards it remained 

around the same concentration regardless of increasing NPP.  

Discussion 

Phosphorus and Calcium Homeostasis for Laying Hens 

 The currently accepted phosphorus requirement for broiler breeders doesn’t fully account 

for the phosphorus deposited into the egg. For an average sized egg the concentration of P is 

approximately 116 mg, most of which is concentrated in the yolk and some in the egg shell and 

albumen (Romanoff et al., 1949). Due to lack of information the current requirement for NPP is 

close to 600mg/day or higher despite over half of it not being utilized. The mobilization of 

hydroxyapatite through osteoclast activity not only liberates calcium, but also phosphorus in the 

circulation which will cause a loss of phosphorus into the urine. As bone is mobilized for 

calcium the phosphorus requirement of breeders will increase due to this phosphorus excretion. 

Higher levels of total available phosphorus in the diet have been correlated with thinner egg 

shells (Boorman et al., 2001), perhaps due to the negative feedback of excess phosphorus in the 

plasma on bone resorption. The relationship between calcium and phosphorus is tightly regulated 

through many hormones and controlled through interactions between the kidney for excretion, 

and S.I. for absorption, and bone for replenishment of plasma mineral levels. High levels of 

phosphorus in the blood inhibiting bone resorption to release calcium for calcium carbonate 

synthesis is consistent with the findings of Plumstead et al. (2007) which showed an increase in 

total egg production when phosphorus intake was lowered. Bone health of laying hens may 
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actually dependent upon bone turnover through resorbing bone to mobilize calcium, and then 

rebuilding the medullary bone from calcium absorbed from the S.I. When bone resorption is low 

so to is bone formation (Van de Velde et al., 1984). Bones aren’t comprised solely of the mineral 

complex hydroxyapatite but also water, and collagen protein. The protein crosslinks between the 

mineral portions of the bone contribute to the bones overall strength (Rath et al., 1999). In the 

current study hens were fed diets containing a constant concentration of 3.25% calcium and 

graded levels of NPP to isolate interaction between phosphorus levels in the diet and production 

parameters including egg production, egg weight, excreta phosphorus, and bone tibia ash. By 

maintaining a constant concentration of calcium and changing available phosphorus across diets 

the ratio of Ca:iP in the diet can be seen as well. 

The current study shows that dietary non phytate phosphorus levels ranging from 0.15% 

to 0.40% in the diet had no impact on egg production for hens. This is consistent with that was 

seen in by several other investigators (Triyuwanta et al., 1992; Keshavarz, 2000; Boling et al,, 

2000; Ekmay et al., 2010) that was were no difference in egg production for breeder hens, or 

laying hens fed 0.15% to 0.25% NPP. Ekmay et al. (2010) reported that lowering dietary NPP 

concentrations to 288mg/day would not affect egg production even at peak production when the 

hens have the greatest demand for calcium carbonate synthesis. While there was no difference 

when lowering NPP down to 0.20% of the diet or the equivalent of 288mg/day, when NPP was 

decreased even further to 0.15%, 216mg/day, was egg production significantly affected and 

mortality increased (Ekmay, 2009). Breeders fed diets with very low concentrations of available 

phosphorus (0.09%) with phytase were still able to maintain the same egg production as breeders 

fed diets containing high NPP (Plumstead et al., 2008). Phytase cleaves phosphate off of the 

inositol structure of phytic acid making the phosphate available for the hens to absorb through 
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the S.I. making phytase activity effectively increase the net NPP.  It seems that broiler breeders 

have different phosphorus requirements not only depending on the amount of calcium in the diet, 

but also depending on their age and state of production. Under normal management as hen’s 

approach and peak production they will be given more feed and longer hours of light in order to 

further stimulate egg production. Given what is known about the 25 hour cycle of egg synthesis 

most of the egg shell is made during the night when the G.I. tract and gizzard are empty, causing 

hens to rely upon medullary bone reserves to provide calcium necessary for the shell gland. 

Medullary bone is replenished during the day through osteoblast activity by drawing upon 

calcium absorbed from the S.I. from the diet. During peak production hens have less time to 

restore this medullary bone due to the constant egg production whereas as hens become older 

they will lay eggs in clutches and have a day in-between laying eggs to give the bone time to be 

rebuilt. While egg production was unaffected by dietary NPP in this study another aspect of this 

study to consider is that the birds were only offered these diets of graded NPP for a period of 28 

days. Layer hens and broiler breeders are very resilient and will continue to lay eggs despite 

being at a nutrient deficiency for longer periods of time. Work by Ekmay et al. (2010) has shown 

the effect of feeding hens low NPP diets for long time periods of approximately 40 weeks with 

similar results as to what was seen in this study which may indicate that the hens can adapt for 

lower available phosphorus diets.  

Total egg production from each treatment versus egg production for the entire flock of 

birds involved in the study was not significantly different for any individual treatment. This 

further supports that there was no impact on egg production from available phosphorus in the 

diet ranging from 0.15 to 0.40%. The principal calcium regulating hormone parathyroid hormone 

will act on the bone, kidney, and indirectly through the S.I. to raise calcium blood concentration. 
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While mobilizing hydroxyapatite from the bone will increase calcium and phosphorus, PTH will 

act to lower phosphorus in the blood by decreasing resorption of phosphorus in the kidney from 

the Na-Pi type IIb cotransporter and preventing phosphorus from being absorbed through the S.I. 

via the Na-Pi type IIa cotransporter. Calcium circulating through the blood will complex with 

phosphorus ions making it unavailable unless the concentration of phosphorus is decreased 

which is the reason why the body will excrete phosphorus when calcium is low. Hens fed the 

graded levels of NPP for the current study had the same concentration of calcium, 3.25% of the 

diet. Given that egg production was unaffected by the different levels of NPP means that the 

hens were able to complete the synthesis of calcium carbonate in the shell gland through the 

mobilization of their bones, and that they were able to rebuild their medullary bone at the same 

reason with sufficient calcium from the diet. During the day when osteoblasts rebuild the 

hydroxyapatite the excess phosphorus from the diets containing more than 0.25% NPP, or 

288mg/day was removed via the kidney and excreted into the urine. Abnormally high 

concentrations of phosphorus can be easily removed through the kidney but chronic excess 

phosphorus in the blood can lead to calcium deposition in the soft tissue such as the adipose 

tissue, muscle tissue, and the organs of the body. While calcification occurs due to calcium build 

up, excess phosphorus in the blood can be responsible for this as higher calcium retention is 

caused by complexed calcium build up since it doesn’t behave as free ionized calcium in the 

blood. As the complex of calcium and phosphorus increases eventually calcification will begin to 

occur in the arteries and tissue regardless of proper kidney function.  

Mortality was not significantly affected by the graded levels of NPP in the diets. Ekmay 

et al. (2012) reported a sharp increase in mortality when feeding below 0.20% NPP, 288mg/day 

during a 40 week study. When he reached 0.15 NPP, 216mg/day at at peak production, egg 
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production remained constant but mortality was significantly affected. The limitation of the 

current study as stated earlier is the short length of 28 days. If the study were to continue for 

longer than the effect of low phosphorus on mortality would be made more apparent as breeders 

can make up for mineral deficiencies in the diet through relying upon medullary bone reserves.  

There was no significant change in body weights of the hens from the beginning of the 

study versus their body weight at the end due to NPP in the diet. Historically body weight is 

indicative of the net homeostasis of an animal. If the animal is energy or protein deficient they 

will mobilize body reserves in order to compensate for what they aren’t receiving from their diet. 

Mineral balance isn’t as simple as that however, as changes in body composition due to mineral 

deficiency or excess may that be spotted through body weight alone. In a hypothetical situation 

where the hens were completely deficient or either calcium or phosphorus they would mobilize 

medullary bone to maintain egg production for a limited time before going out of production due 

to not being able to maintain mineral homeostasis. Less severe deficiencies would most likely be 

associated with decreased egg production for the same reason of mineral homeostasis. Calcium 

or phosphorus excess would be characterized by soft tissue calcification which can lead to joint 

problems and cardiovascular disease. If the breeders were under duress their feed consumption 

would decrease which would be attributed by a drop in egg production, or going out of 

production entirely, and a decrease in body weight. While body weight alone may not be 

indicative of the hens meeting the entire requirement for mineral balance from their diet it also 

rules out that nothing drastic has occurred. 

Average egg weight was not significantly affected by the graded levels of NPP in the 

diet. Eggs produced by breeder hens are used to host life to ultimately create offspring to be 

grown to become parent stock themselves or to be used for meat production. Fertility and 
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hatchability of eggs are positively correlated with egg weight and egg shell thickness. Breeders 

while create smaller eggs often before stopping production due to being limited on the resources 

necessary to create them. The three components of an egg: the yolk, albumen, and egg shell are 

all synthesized from the hen and need amino acids, lipids, and calcium to create. The albumen of 

the egg is comprised almost entirely of protein and can be readily synthesized as long as the hen 

has enough protein in the diet with the proper amino acid profile. The yolk being made mostly of 

lipid and some protein is reliant upon the energy homeostasis of the hen to simply have enough 

calories at its disposal to be able to complete lipogenesis. Egg shell on the other hand requires 

the two essential minerals calcium and phosphorus, and ratio between the two in order to create 

the calcium carbonate. Eggs with lower weights tend to have lower specific gravities due to 

thinner egg shells. The more calcium that is available to the shell gland during egg shell 

synthesis the thicker the egg shell will ultimately be. While not a direct measurement of egg shell 

thickness, total egg weight can be used to approximate if the hens were meeting their 

requirements necessary for egg production. Due to egg weights not being significantly different 

due to NPP in the diet we can conclude that the hens were able to receive the nutrients from their 

diet necessary to normal eggs capable of fulfilling the nutritional requirements of the progeny. 

Phosphorus Threshold & Impact of FGF23 as a Phosphaturic Regulator 

Total excreta phosphorus was significantly affected by the NPP in the diet. Hens fed diets 

containing 0.15, and 0.20% NPP were not significantly different in their total phosphorus 

excretion, but were significant compared to the hens fed 0.25, 0.30, 0.35, and 0.40% NPP. Not 

much research has been conducted on hens fed low levels of NPP but previous work by Coon et 

al. has shown that there is an inflection point at approximately 0.23% NPP for both broilers and 

breeders where the amount of phosphorus in the excreta will rapidly increase (Leske and Coon, 
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1999; Manangi and Coon, 2008; Ekmay and Coon, 2012). Phosphorus will normally be excreted 

in response to parathyroid hormones attempt to maintain the proper Ca:P ratio in the blood as the 

excess complexing of calcium can lead to soft tissue calcification. It seems that birds reach the 

threshold where the body will begin to remove phosphorus from the system that it deems too 

much when available phosphorus in the diet reaches 0.23%. Work by Coon et al. has also shown 

that the phosphorus excretion threshold will also change depending on the amount of calcium in 

the diet which is consistent with the mechanism for PTH. Another hormone, Fibroblast growth 

factor 23, is released from the bone in response to high concentrations of phosphorus making it 

an entirely phosphaturic hormone which will reduce the reabsorption of phosphorus in the 

kidney through the Na-Pi type IIa cotransporter. The mechanism behind this phosphorus 

excretion threshold is unknown but it is most likely due the body trying to prevent tissue 

calcification. 

Total phosphorus retention was significantly affected by NPP in the diet. Hens fed the 

diets containing 0.15, and 0.20% NPP had retentions that were not significantly different from 

each other, as seen with the total excreta phosphorus, but were significantly different from the 

hens fed 0.25, 0.30, 0.35, and 0.40% NPP. The phosphorus retention mirrors what was seen with 

the phosphorus excretion as the retention begins to rapidly decline past the 0.20% NPP diet 

declining from 34% retention to 22%. Even though the total available phosphorus in the diets 

offered to the hens was increasing, the rate of excretion was increasing at the same rate causing 

the retention to lower. Non-phytate phosphorus is 100% digestible and can be entirely absorbed 

into the body through the Na-Pi type IIb cotransporters in the brush border membrane of the 

duodenum and jejunum. The phosphate entering the blood must be exceeding the threshold of 

phosphorus that the body can tolerate and is being excreted in response, most likely due to a 
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combination of PTH, and FGF23. Both hormones act on the kidney by reducing the amount of 

phosphorus reabsorbed while PTH will stimulate osteoclast bone resorption and FGF23 will 

inhibit the synthesis of calcitriol to prevent more phosphorus from entering via the S.I., 

effectively lowering the digestibility of phosphorus.  

Tibia bone ash was not significantly different for the hens fed diets containing different 

levels of NPP. While there was no significant difference between treatments the ash percentage 

from the hens fed the 0.40% NPP diet was the greatest. Work by Ekmay et al. (2010) found that 

feeding 0.15% NPP caused significant decrease in bone ash percentage, but no difference at 

0.20% NPP and higher. The limitation of this current study once more is the 4 week duration 

which is not sufficient time to see the chronic effects of feeding below the required mineral 

concentration for laying breeder homeostasis, whereas the work by Ekmay et al. was done over a 

40 week period. Everyday laying breeders will mobilize calcium from the hydroxyapatite of the 

medullary bone through osteoclast activity involving the enzymes TRAP and collagenase 

cathepsin K to break down the mineral and protein portions of the bone respectively. Once the 

egg shell is synthesized and the calcium demand from the egg shell gland is gone can the bones 

begin to rebuild utilizing calcium from the diet through osteoblast activity via bone alkaline 

phosphatase to create new hydroxyapatite and collagen crosslinks. If the body is in a mineral 

deficient then the medullary bone will eventually become depleted and the bone ash percentage 

will decrease as the hydroxyapatite is removed, whereas is there is a mineral surplus then the 

opposite situation will occur with medullary bone increasing and ash percentage going up. The 

body has a limit on the amount of bone synthesis which can occur due to perhaps prevention of 

soft tissue calcification as the body will even remove calcium when it is in excess through 

calcitonin activity to lower calcitriol and calcium reabsorption. 
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Plasma inorganic phosphorus was significantly affected by dietary NPP in the diet. Hens 

fed diets consisting of 0.15, and 0.20% NPP were not significantly different from each other, but 

they were significantly different from the hens fed 0.25, 0.3, 0.35, and 0.4% NPP. Plasma 

inorganic phosphorus has an inflection point at 0.25% where the phosphorus levels plateaued and 

ceased to decline, whereas at a 0.15 and 0.20% NPP the plasma phosphorus was steadily 

increasing until the plateau. The plasma phosphorus plateau inflection point somewhere between 

0.20 and 0.25% seen here mirrors the phosphorus excretion threshold which indicates that once 

the NPP percentage in the diet reaches a certain level that plasma phosphorus will reach its 

maximum and the body will begin to remove phosphorus via the kidney. As mentioned earlier 

the body will remove phosphorus in order to prevent excess complexing of calcium and 

ultimately soft tissue calcification. As seen by the phosphorus plateauing in the plasma the body 

must have reached the point where it cannot allow any more phosphorus in the plasma and starts 

to throw it out of the system and into the urine through the kidney, and by reducing the amount 

of phosphorus absorbed through the S.I. most likely through the activity of PTH and FGF23. 

Plasma fibroblast growth factor 23 was significantly affected by the NPP in the diet. 

Hens offered the diet containing 0.15% NPP had a significantly lower concentration of FGF23 

compared to the hens offered 0.20, 0.25, 0.30, 0.35, and 0.40% NPP. The amount of FGF23 in 

the blood at 0.15% NPP is almost half of what is seen at 0.20% NPP and it plateaus in a similar 

pattern with what is seen with plasma inorganic phosphorus. The inflection point for FGF23 is 

in-between 0.15 and 0.20% NPP where the amount of plasma inorganic phosphorus in the blood 

reaches a point where FGF23 is secreted from the bone in order to reduce the phosphate in the 

body. Once can assume that at lower levels of NPP that FGF23 would decrease in the blood as 

well due to it being synthesized in response to high concentrations of circulating plasma 
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phosphate. What is interesting is that the plateau relationship of FGF23 is very similar to plasma 

inorganic phosphorus, except that it is shifted to over to the left by perhaps 0.05 NPP indicating 

that the phosphate in the blood causes FGF23 secretion to peak, followed by maximal 

phosphorus excretion at the next graded level of NPP. Once more the reason for preventing 

phosphorus build up in the blood is to limit the amount of complexed calcium there is in the 

system to avoid tissue calcification. There may also be a saturation of phosphorus and calcium in 

the cells of the muscle, adipose, and organs throughout the body which is causing a feedback 

loop to signal the removal of phosphorus. While FGF23 has a similar pattern compared to the 

excreta phosphorus retention, and plasma inorganic phosphorus inflection points, it doesn’t 

match up with the 0.23% NPP threshold, as its threshold appears to be between 0.15 and 0.20% 

NPP. When FGF23 reaches maximum production from the bone there may be other hormones 

which are produced as part of the regulation of calcium and phosphorus that may explain the 

disparity in the thresholds.  

In conclusion there was no difference in egg production, egg weight, mortality, tibia bone 

ash, or body weight for hens offered diets comprised of 0.15 through 0.40% at the 6 graded 

levels differing at 0.05% NPP. Total excretion of phosphorus was significantly affected as it 

began to rapidly increase past 0.20% NPP. Plasma inorganic phosphorus was also significantly 

affected by NPP with the same inflection point as the phosphorus excretion between 0.20 and 

0.25% NPP. Plasma inorganic phosphorus was significantly affected by NPP with a plateau 

pattern similar to the plasma inorganic phosphorus and an inflection point between 0.15 and 

0.20% NPP. The optimum level of phosphorus for egg production of breeder hens is somewhere 

above 0.20% NPP in the sweet spot where the body doesn’t throw out NPP but has enough to 

make the eggs and preserve bone integrity and cellular maintenance. 
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Table 1: Composition (%) of experimental diets and nutrient contents     

Treatment1 

Ingredient                           1       2            3     4          5              6    

Corn                                    67.30   67.08         66.86       66.64      66.42        66.20 

Soybean meal                      20.12   20.15         20.19 20.23      20.27        20.31 

Poultry Fat                        2.62   2.69           2.76  2.83          2.91          2.98 

Limestone                        8.26   8.09         7.93  7.76       7.60          7.43 

Dicalcium Phosphate           0.27   0.55         0.82  1.09       1.37          1.64 

Salt                                    0.33   0.33          0.33  0.34        0.34         0.34 

Sodium Bicarbonate            0.20   0.20          0.20  0.20        0.20         0.20 

Methionine                        0.29   0.29          0.29  0.29        0.29         0.29 

L-Lysine HCl                        0.19   0.18          0.18  0.18        0.18         0.18 

Choline                          0.11   0.11          0.11  0.11        0.11         0.11 

Mineral Premix1            0.20   0.20          0.20  0.20        0.20         0.20 

Vitamin Premix2            0.10   0.10            0.10  0.10           0.10         0.10 

Ethoxyquin                        0.02   0.02          0.02  0.02           0.02         0.02 

Nutrient 

CP (%) (calculated)               15.5         15.5           15.5         15.5           15.5         15.5 

Crude fat (%)                        5.1716     5.2371      5.3025     5.3680       5.4335     5.4989 

Ca (%) (calculated)               3.25         3.25           3.25         3.25           3.25         3.25 

Total P (%) (calculated)       0.3803      0.4306      0.4809      0.5313      0.5816      0.6319 

Total P (%) (analyzed)         0.43          0.45          0.48          0.56           0.63         0.66 

NPP (%) (analyzed)             0.15    0.21         0.26          0.32           0.35          0.41 

1Diet 1 = 0.15% NPP; Diet 2 = 0.20% NPP; Diet 3 = 0.25% NPP; Diet 4 = 0.30%; Diet 5 = 

0.35% NPP; Diet 6 = 0.40% NPP 

2Provided per kg of diet: Zn, 150.6mg; Mn. 180mg; Fg 20.16mg; Cu, 2.04mg; Se. 03mg. 

3Provided per kg of diet: Vitamin A, 13200 IU; Vitamin E, 66IU; Vitamin D3, 3950ICU; Niacin. 

74.25 mg; D-Panthothenic acid, 33mg; Riboflavin, 19.8 mg; Pyridoxine, 5000mg; Thiamine, 

3.3mg; Menadione, 3.3mg; Folic acid, 3.3 mg; Bitoin, 0.33mg; Vitamin B12, 0.0297. 
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Table 2: Production performance parameters from hens fed diets containing 6 different levels of 

nonphytate phosphorus from 32 to 36 weeks of age1        

 Egg Production    Hen House Egg Production2       Mortality       Change in      Egg weight 

                                                                                                                   body weight  

               (Egg/hen)       (% of total production)             (% of total)           (%)  (g)  

Diet3 

1                15.4                              0.169                                   0                 107.65              64.3 

2       15.9         0.174                                   0                 108.53              65.2 

3                14.6         0.160                                   0                 109.08              64.7 

4       14.7                              0.161     4.16             103.24              65.0 

5       15.3                              0.167                                    0                106.40               64.8 

6                15.2                              0.167                                    0                109.22               66.2 

SEM          0.43                               0.04                                    2.3                1.6                    0.7 

P Value     0.135                             0.512                                 0.216              0.499               0.13 

1Values are presented as means ± SEM for the 4 week production period. 

2Defined as total eggs per hen, corrected for mortality. 

3Diet 1 = 0.15% NPP; Diet 2 = 0.20% NPP; Diet 3 = 0.25% NPP; Diet 4 = 0.30%; Diet 5 = 

0.35% NPP; Diet 6 = 0.40% NPP 
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Table 3: Phosphorus retention and tibia ash in 33 week old broiler breeder hens fed graded levels 

of dietary NPP from 32-36 weeks of age.        

  Total Feed    Total Excreta     Total P                        Tibia Bone 

  P (mg)      P (mg)                         Retention (%)1     Ash (%)   

Diet2  

1  576.2      380.8A                          34.05       56.04 

2       603       401.0A        33.49       54.22 

3  643.2          475.5AB        26.07                          56.72 

4  750.4      579.3B                   22.80       56.91 

5  844.2      629.3B        25.46                          56.42 

6  884.4      664.3B                           24.88       56.82 

SEM                 NA                      52.2                               6.8                              3.72 

P Value  NA      0.0001                            0.03                           0.563   

1Retention defined as (intake-excretion)/intake x 100.  

2Diet 1 = 0.15% NPP; Diet 2 = 0.20% NPP; Diet 3 = 0.25% NPP; Diet 4 = 0.30%; Diet 5 = 

0.35% NPP; Diet 6 = 0.40% NPP 

A-BMeans within a column not sharing a letter are significantly different (P<0.05) 
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Table 4: Plasma Inorganic Phosphorus and Fibroblast Growth Factor concentrations in 36 week 

old broiler breeder hens fed graded levels of NPP.        

  Plasma Inorganic    Plasma Fibroblast Growth 

  Phosphorus (mg/dl)   Factor 23 (pg/ml)     

Diet1 

1          7.56A     129.8A 

2                              8.82AB                                                      201.2B 

3                             10.32B                                                       205.3B 

4                              9.87 B                                                       205.1B 

5                             10.64B                                                       206.9B 

6                             10.23B                                                       220.2B 

SEM         2.25                                                           87.2 

P Value                  0.06                                                           0.001      

1Diet 1 = 0.15% NPP; Diet 2 = 0.20% NPP; Diet 3 = 0.25% NPP; Diet 4 = 0.30%; Diet 5 = 

0.35% NPP; Diet 6 = 0.40% NPP 

A-BMeans within a column not sharing a letter are significantly different (P<0.05) 
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Mechanisms Regulating Egg Shell Synthesis 

 

Broiler breeder hens unlike layer hens produce eggs which are used to grow chicks which 

will quintessentially be grown for meat production or be used as parent stock for future 

generations of chick production. Many factors can affect egg quality and production including 

age of the hen, disease, genetic strain, diet, environmental conditions, and stress (Solomon, 

1990). Given that breeder hens have been selected over the past decades for egg production they 

now face the metabolic cost of producing an egg once a day for several days in a row during 

clutching. Eggs can be broken down into three components: yolk, albumen and egg shell. The 

yolk is the most available portion for hens to create due to lipogenesis not requiring much 

contribution from the hen’s body reserves other than energy. Albumen is mostly protein which 

will require essential amino acids which can force hens to metabolize muscle in case of a 

deficiency in the diet. Egg shell is approximately 95% calcium carbonate CaCO3 and 5% calcium 

phosphate including magnesium carbonate and select insoluble proteins. Egg shell thickness has 

a huge impact on fertility and hatchability of chicks making thicker shells essential for 

supporting life within (Mcdaniel et al., 1978). Due to how essential both calcium and phosphorus 

are for body homeostasis they are not as available to be used for shell synthesis compared to 

energy for yolk and amino acids for albumen. Breeders rely on two sources to supply the calcium 

and phosphorus necessary for egg shell synthesis: the diet that they consume and their medullary 

bone.  

Bone resorption & building 

Specialized cells with the bone known as osteoblasts and osteoclasts will both build and 

resorb bone respectively in order to maintain bone health and supply calcium to the shell gland. 
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Osteoclasts are formed through the differentiation of osteoblasts under the presence of RANKL, 

and macrophage colony stimulating factor (M-CSF). The formation of osteoclasts is tightly 

regulated as they ultimately determine the rate of bone resorption and thus their differentiation is 

tied to many hormones are factors including MEPE, DMP1, Sclerostin, PHEX, PTH, 

Osteoprotegrin, and RANKL (Schoppet et al., 2002). Factors which are designated to increase 

free calcium and phosphorus in the blood will upregulate the formation of osteoclasts while those 

which oppose resorption will act to inhibit its differentiation. Osteoclasts are multinucleated cells 

which have the sole purpose of breaking down both hydroxyapatite and the collagen crosslinks 

which give bone strength (Vaananen et la., 2000). Structurally they are large cells with an 

abundance of mitochondria, lysosomes, ribosomes, and golgi complexes (Dacke et al., 1993). 

Osteoclasts are located in a group together on the surface of the bone which are referred to as 

resorption bays, or Howships’s lacunae (Basle et al., 1988). The active site where osteoclastic 

activity occurs is characterized by a ruffled border that invades the surface of the bone tissue 

where hydroxyapatite and collagen are being degraded through enzymatic activity. Osteopontin 

is a substrate protein for Osteoclast activity as it will bind to calcium on the surface of bio 

minerals including hydroxyapatite (Teitbelbaum, 2000). Tartrate resistant acid phosphatase 

(TRAP) and Cathepsin K are the enzymes produced by osteoclasts which serve to degrade 

hydroxyapatite and collagen respectively (Schlesinger et al., 1997). Osteoclasts also release 

hydrogen ions through carbonic anhydrase which forms bicarbonate and protons from water and 

carbon dioxide in order to decrease the immediate pH which increases the activity of TRAP and 

Cathepsin K. 

While bone resorption is important for maintaining calcium levels in the blood for the 

shell gland, rebuilding bone is just as important in order to prevent osteoporosis and 
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osteomalacia. Osteoblasts are created through differentiation of mesenchymal stem cells found in 

the bone marrow and on the surface of bones. Mesenchymal also differentiation into 

chondrocytes, cells necessary for the creation of cartilage and collagen in the bone which support 

the mineral complex (Blair et al., 2008). Bone synthesis begins with chondrocytes following 

vascularization and building cartilage within the designated area the body has determined to 

become bone. Osteoblasts form from the mesenchymal stem cells and begin to replace the 

cartilage laid down with hydroxyapatite. Many factors affect the rate of bone growth including 

bone morphogenetic proteins (BMPs) which determine where bone differentiation occurs and 

where to leave spaces for joints in between bones (Lee et al., 2013). Transforming growth factor 

beta, another factor necessary for osteoblast function, mediates the differentiation of cartilage 

prior to osteoblast activity. Fibroblast growth factors control many different aspects of bone cell 

growth and differentiation during embryonic growth and some are used in the adult body for 

mineral regulation such as FGF23. Osteoblasts build bone through the enzymatic activity of bone 

alkaline phosphatase (BAP) which synthesizes hydroxyapatite from free calcium under basic 

conditions. Many factors and hormones regulate osteoblast bone building including Calcitonin, 

PTH, Sclerostin, DMP1, MEPE, Osteopontin, and PHEX. Calcitonin stimulates osteoblast 

mineralization in order to remove calcium from the blood. Parathyroid will upregulate bone 

resorption and osteoclast activity and down regulate osteoblast bone building in order to increase 

plasma calcium. Sclerostin is made by osteoblasts during bone mineralization as part of negative 

feedback on themselves. Phosphate regulating endopeptidase homolog, x linked is an enzyme 

that hasn’t been fully explored but is known to be linked to bone mineralization as its absence 

causes osteomalacia and rickets (Barrow et al., 2013). Dentin matric acidic phosphoprotein 1 

stimulates the release of PHEX which promotes bone mineralization indirectly (Thurner et al., 
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2010). Matrix extracellular phosphoglycoprotein inhibits PHEX by binding to it and making it 

unavailable, preventing bone mineralization. Osteoblasts themselves release Osteocalcin, a 

hormone which promotes muscle, fat, and testosterone production, during bone mineralization. 

Alkaline phosphatases are a group of hydrolase enzymes which remove phosphate from 

other molecules including proteins, nucleotides, and alkaloids. Different isoforms of alkaline 

phosphatase are synthesized in the intestine, liver, bone, kidney, and the placenta of pregnant 

woman. Levels of total alkaline phosphatase have been used extensively in both human and 

animal research to diagnosis many different conditions including billary obstruction, 

osteomalacia, osteoblastic bone tumors, leukemia, lymphoma, Paget’s disease, sarcoidosis, 

hyperthyroidism, hyperparathyroidism, pregnancy, hypophosphatasia, achdonroplasia, aplastic 

anemia, and Wilson’s disease (Kress et al, 1999; Garnero et al., 1999; Raisz et al., 2000). Bone 

alkaline phosphatase in particular is made by osteoblasts in developing bone to promote 

hydroxyapatite synthesis through the removal of pyrophosphate (Harada et al., 1986). Initially 

hydroxyapatite crystals are synthesized on the surface membrane of osteoblasts and 

chondrocytes which are then deposited between collagen fibrils in the order bone (Blair et al., 

2007). Pyrophosphate, P2O7
4−, is a potent inhibitor of hydroxyapatite synthesis while inorganic 

phosphorus, PO4- promotes hydroxyapatite synthesis as it is directly utilized in its synthesis 

along with calcium (Orimo, 2010). Bone alkaline phosphatase concentrations in the blood are 

indicative of bone building and can be used to evaluate the bone homeostasis of animals. 

Tartrate resistant acid phosphatase (TRAP) is a glycosylated metalloprotein enzyme 

which catalyzes phosphate ester hydrolysis and is characterized by having high activity in acidic 

conditions and by being resistant to tartrate inhibition. Many cells synthesize TRAP for different 

cellular functions including macrophages, osteoclasts, and dendritic cells (Luchin et al., 2000). 
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Osteoclasts use TRAP to digest hydroxyapatite during bone resorption by secreting it to work in 

conjunction with Osteopontin. Osteopontin will bind to calcium on the surface of the 

hydroxyapatite crystalline calcium lattice and make it available for enzymatic cleavage by TRAP 

to remove the phosphate bones which hold the mineral complex together (Ek-Rylander et al., 

1994). Migration of osteoclast cells throughout the bone is dependent upon TRAP activity to 

increase the size of resorption sites to facilitate cellular movement. TRAP activity from 

osteoclasts has also been shown to directly inhibit bone sialoprotein, a protein responsible for the 

growth of the initial hydroxyapatite crystals necessary for bone mineralization (Hayman, 2008). 

High concentrations of TRAP are correlated with osteoporosis, ostemalacia, hypophosphaturia, 

Gaucher’s disease, leukemia, and other metabolic bone diseases (Angel et a., 2000).   

During animal growth cortical bone is elongated and widened through the osteoblast and 

chondrocyte function. Vascularization and angiogenesis regulated by growth factors such as 

vascular endothelial growth factor (VEGF) is necessary for supplying the bone cells with 

nutrients for growth which ultimately dictates how much bone can be formed (Tischer et al., 

1991;. Part of bone growth is remodeling, the process through which osteoclasts break down 

existing hydroxyapatite and collagen in order for osteoblasts to build new bone in its place. 

Remodeling is necessary not only for bone turnover to replace old collagen protein and renew it, 

but also for the reshaping of bones during elongation (Raggatt et al, 2010). Rigorous exercise can 

cause micro fractures in the bone which are minute breaks in-between the mineral portions of the 

bone. While these fractures may seem detrimental they are the stimulus for new bone growth 

which leads to stronger bones with a high mineral density (Brighton et al., 1997). Studies have 

shown the profound effects of exercise on bone growth, angiogenesis, and tissue development in 

broiler chicks (Acar et al., 1995;Wideman et al., 1995). Tibial dyschondroplasia seen in growing 
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broiler chicks is characterized by the incomplete ossification of bone cartilage at the epiphysis 

and diaphysis of the tibia.  Given that growing broiler chicks barely move more than necessary 

than for eating and drinking past day 10 of age, the lack exercise and thus stimulus for bone 

growth and vascularization is apparent from the rate of ascites and osteomalacia. Cortical bone 

isn’t the only type of bone in chickens as a specialized known as medullary bone acts as a 

reservoir for calcium exists in laying hens. 

At sexual maturity female birds and reptiles develop medullary bone which is used for 

supplying calcium to the shell gland during egg shell synthesis (Blom et al., 1941). Medullary 

bone is formed primarily in the leg bones including the tibia and the femur. Estrogen stimulates 

the osteoblast cells to create medullary bone while inhibiting osteoclast resorption. During 

clutches which consist of laying eggs for several days in a row hens will draw heavily upon the 

medullary bones which can osteoporosis and a weakening of the bone with an increased chance 

of fracture. In between laying eggs hens will rebuild their medullary bone utilizing calcium from 

the blood which comes from the G.I. tract and the diet.  

Small Intestine & Kidney Regulation 

Calcium levels in the blood are under tight regulation through parathyroid hormone 

interactions between the bone, kidney, and small intestine to make sure that enough calcium 

stays within the system for cellular process, but also to prevent too much from accumulating 

which can lead to soft tissue calcification. Calcium introduced into the body of breeders through 

the diet must pass through the gizzard to be broken down into small particles and then traverse 

the small intestine. Particle size of calcium effects how long the calcium will stay in the G.I. tract 

and ultimately increase its absorption as particle size increases (Zhang et la., 1997). Free calcium 
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is absorbed primarily in the duodenum and jejunum through transportation via the calcium 

binding protein calbindin. When calcium levels in the blood are low PTH will increase the 

conversion of the inactive form of vitamin D, cholecalciferol, to the active form calcitriol. 

Vitamin D increases the absorption of calcium and phosphorus in intestines by upregulating 

calbindin (Deluca et al., 1971). During blood filtration in the kidney through Bowman’s capsule 

free calcium is removed from the blood and must be reabsorbed. Approximately 97% of calcium 

is reabsorbed under normal conditions as the body has two mechanisms for the recovery of 

calcium: passive transportation in the proximal tubule, thick ascending limbs of Henle’s loop, 

and the distal tubules. When the body wants to increase calcium reabsorption in response to PTH 

there are active transporters for calcium which further increase the amount reabsorbed (Luo et 

al., 2003). 

Egg Synthesis & Shell Gland Function 

 The time it takes from when the yolk is released from the ovary to the point where the 

fully developed egg leaves the cloaca is approximately 25 hours. Avian species only retain one 

ovary and fallopian tube due to evolutionary design to be light weight. The fallopian tube serves 

a different purpose in egg laying species as the yolk travels through the tube it will be 

surrounded by albumen and ultimately egg shell to form a complete egg.  Egg yolks begin as 

minute follicles in the ovary which will undergo hypertrophy in response to rising levels of 

estrogen, follicle stimulating hormone (FSH), and luteinizing hormone (LH). Ovules release in 

birds are much larger compared to mammals due to the cells being saturated with lipids and 

cholesterol. Egg yolk composition depends upon which fatty acids are available to the hen during 

the time of lipogenesis which can cause diet and stress to affect yolk synthesis and ultimately egg 

fertility and hatchability. Once released from the ovary they will travel through the infundibulum 
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and down through the magnum which is the site where inner and outer shell membranes are 

added to the yolk, including some water and mineral salts. Next the developing egg will travel to 

the Isthmus where albumen will surround the yolk which gives eggs the protein layer necessary 

for growing embryos. Lastly the incomplete egg will arrive in the shell gland where calcium 

carbonate will enclose the egg and form around the shell membranes on the outside of the 

albumen. Once the egg is complete it will travel to the cloaca and will be laid once the hen feels 

safe enough to do so. 

 The egg shell gland will begin the egg shell calcification process in response to gonadal 

hormones progesterone, estrogen, FSH, LH, and prostaglandin synthesized during the eggs 

develop. The given point of time where the egg is during egg synthesis, known as oviposition, is 

controlled through photostimulation during day and night cycles which influence the fluctuation 

of these gonadal hormones. Release of LH is dependent upon melatonin release from the pineal 

gland, the part of the brain which responds to light and gives animals a sense of time (Sharp, 

1992). Modern poultry production practices utilize hours of day light in the brooding program to 

stimulate hens to begin egg production and it is due to the indirect control of LH from light that 

this is possible. Rate of egg shell synthesis and the amount of time a developing egg spend 

within the egg shell gland is dependent upon these gonadal hormones. Control of calcium which 

is sent to the shell gland has been shown to be independent of these gonadal hormones however, 

as studies have shown that the shell gland itself can change the calcium homeostasis of the hen 

(Nys et al., 1986;Nys et al., 1984; Eastin, 1994). Egg shell synthesis occurs primarily during the 

night for laying hens which coincides when the G.I. tract is empty for birds fed restricted diets 

which is practiced in America for broiler breeders. Laying hens are often fed ad libitum and due 

to their unrestricted access to feed they will have calcium in the G.I. during the time for egg shell 
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synthesis. The egg shell gland has been shown to increase the concentration of calbindin in the 

S.I.  in response to increased calcium demand. Broiler breeder hens rely entirely upon calcium 

from the hydroxyapatite of the medullary bone during the night due to not having G.I. calcium to 

absorb. Blood calcium decreases by approximately 18% during egg shell gland calcium 

carbonate synthesis and this is constant throughout the entire process indicating that the hens are 

able to replenish calcium at the same rate as the shell gland can use it (Winget et al., 1958). The 

method of how the egg shell gland removes calcium from the blood is unknown as only 

organically bound calcium has been shown to be removed from the total blood supply during egg 

shell synthesis while this organic matter is not found in the egg suggesting either direct removal 

of bound calcium, or removal of ionic calcium which is very rapidly disassociated from the 

bound form (Burmester, 1941). If plasma calcium levels were to drop below 80% the normal 

concentration then the shell gland will absorb less calcium leading to thinner egg shells 

(Bradfield, 1951). Calcium carbonate CaCO3 synthesis in the egg shell gland is driven by the 

reaction between carbonate ions and calcium which attach to the forming calcite lattice of the 

egg shell. Carbonic acid in the shell gland is continuously dehydrated to carbon gas due to 

carbonic anhydrase which creates the carbonate ion concentration necessary for shell formation 

(Taylor, 1970).  Overall the factors which effect egg shell thickness include calcium availability, 

photoperiod, health, bone density, and the inherent genetics of the hen. 
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Chapter 2 

 

 

 

 

 

The relationship between production parameters, egg shell quality, bone remodeling, 

TRAP expression, and BAP expression in laying broiler breeder hens and their progeny. 
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Introduction 

 Egg shell thickness of eggs laid by breeder broiler hens can change not only the fertility 

and hatchability of eggs but also the bone quality of the progeny which hatch from them. For 

these reasons selecting for hens which lay thicker egg shells is essential to improving broiler 

development, and for selecting for future generations of chicks which will potentially become 

breeders themselves. Enzymes tartrate resistant acid phosphatase (TRAP) and bone alkaline 

phosphatase (BAP) correlate with the activity of the bone degrading and bone building cells 

osteoclasts and osteoblasts respectively. Previous studies have shown there is a link between 

bone health and mineral concentration and the ability of hens to lay thicker egg shells. Due to 

hens relying mostly upon medullary bone to supply calcium for calcium carbonate synthesis in 

the egg shell the ability of hens to mobilize bone and rebuild it is important for their continued 

performance of laying eggs and making good egg shells. The purpose of this study is to find out 

of the enzymes TRAP and BAP are correlated with good or poor egg shell quality and to see if 

their concentrations with in the progeny of these hens has some relationship. 

Materials and Methods 

 All procedures regarding the use of live animals in this study were carried out in 

accordance with the Animal Use Protocol 13002, which was approved by the University of 

Arkansas Institutional Animal Care and Use Committee. 

Animals and Handling 

 A flock of 850 Cobb 500 hens was delivered to a production house at the age of 20 

weeks. Each hen was assigned an identification number and individually caged (47 cm high, 30.5 

cm wide, 47cm deep) with separate feeders and water nipples. Hens were offered standard Cobb 
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feed daily using the amounts recommended on the Cobb Breeder Management Guide (Cobb-

Vantress, 2005). Daily allotted feed intake was restricted and was increased every 8 percent 

increase in egg production beginning from 5% production to peak. The farm where the birds 

were kept was environmentally controlled with regards to temperature (22 °C) and humidity. 

Lighting schedule began with 12 hours per day at week 21 of age and increased one hour for the 

next two weeks until reaching its apex at 14 hours per day. Light duration was further increased 

to 15 and 16 hours at 20%, and 50% egg production respectively. 

Breeder Selection & Sampling 

 As soon as the flock reached the farm their egg production was recorded daily, and egg 

weights recorded two days a week. Eggs which were soft shelled, cracked, dirty, or double yolk 

were recorded as such. Beginning at 30 weeks of age eggs which were weighed during the two 

days every week were also subjected to being measured through dual energy x-ray 

absorptiometry (DEXA) (GE ®Lunar Prodigy) for 16 weeks to determine egg shell mineral 

concentration and thickness. Regression equations developed for determining egg shell 

parameters from the DEXA scanning (England, 2012) were used to select 20 hens which laid 

worst egg shell quality eggs (Specific gravity <1.80) and 20 hens which produced best egg shell 

eggs (Specific gravity >1.80). Specific gravity of each egg were measured through immersion in 

salt solutions ranging in specific gravities ranging from 1.60 to 1.095 with a concentration 

gradient of 0.005 between solutions. After hens were selected for poor or good egg shell quality 

they were subjected to whole body scanning on the DEXA to select for good or poor bone 

quality. Equations for body composition for the DEXA Salas et al. (2012) were used for 

determining whole body composition of the hens.  
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At the end of the trial blood from drawn from the hens selected for good or poor egg 

shell, or bone quality from the wing vein with regards to oviposition and stored in heparinized 

blood collecting tubes. Hens were then euthanized through CO2 gas asphyxiation and right tibias 

removed from measurement of breaking strength and bone ash concentration. Blood samples 

were immediately centrifuged using the methodology described by Tuck (2009) for plasma 

separation, and then stored at -20 °C until they were analyzed for tartrate resistant acid 

phosphatase (TRAP) and chicken specific bone alkaline phosphatase (BAP). 

Plasma chicken specific bone alkaline phosphatase was analyzed using a quantitative 

competitive immunoassay test kit (Neobiolab, USA). Plasma tartrate resistant acid phosphatase 

was analyzed using a micro-titer plate spectrophotometer absorptiometry technique described by 

(Lau et al., (1987). Tibias were analyzed for bone-breaking force by the sheer force measurement 

method described by Wilson (1991), utilizing an Instron Universal Testing Machine (Model 

1123, Instron Corp., Canton, MA). Following the sheer test, the tibias were defatted in a 

container of 180 alcohol for 24 hours followed by refluxing in petroleum ether in a Soxhlet 

apparatus for 48 h. The defatted tibia samples were oven-dried at 110°C for 24 hours and ashed 

in ceramic crucibles for 24 h at 600°C. Ash content was determined as dry, fat-free tibia and 

expressed as grams of ash/bone and as a percentage of the defatted tibia weight. 

Progeny Generation & Sampling 

Hens which were selected for poor or good egg shell quality were artificially inseminated 

twice a week starting at week 46 through week 50. Semen used was collected from broiler 

breeders on the farm through abdominal massage method (Burrows, 1937). Collected semen was 

pooled and sperm cell concentration was measured using an IM Micro-reader using an optical 
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density of 381 nm (King et al., 2000). Lake solution was used in order to dilute semen to a 

concentration of 2x10^6 cells/50 ul for a consistent concentration of sperm using for 

insemination. Following the A.I. eggs were collected for a 6 day duration from the selected hens 

and stored in an egg cooler until they were placed for incubation and hatching.  Live hatched 

chicks from either the good or poor egg shell quality hens were given individual wing bands and 

raised in separate floor pens.  Chick mortality was measured daily along with water nipple 

adjustments. Chicks were offered standard commercial starter diet for 14 days and then had 

blood drawn from the external jugular vein. Chicks were then euthanized through CO2 

asphyxiation and right tibias removed for breaking strength and bone ash measuring. Chicks 

were scanned prior to tibia removal for whole body composition using the DEXA through the 

equations develop by England (2012). Plasma from the chicks was also subjected to analysis for 

both TRAP and chick specific BAP using the same analysis that was done for the parent stock. 

Statistical Analysis 

  A completely randomized design was used to analyze data through the use of the 

ANOVA procedure of SAS (version 9, SAS Institute, Cary, NC).  When necessary trend 

contrasts were used to determine line shape. Data was also analyzed for linear and quadratic 

regression to determine curvilinear responses to dietary NPP. All statements of significance are 

based on testing at P ≤ 0.05. 

Results 

 No statistical differences were found between egg production and egg shell thickness 

(P=0.15)(Table 1). Total egg production of all the birds involved in the study versus the 

percentage from each selected group for egg shell quality was not significantly different 
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(P=0.35). Mortality was correlated with the egg shell thickness hens lay (P= 0.031) with 

approximately 3 birds dying out of the 20 that were selected for poor egg shell quality and 1 

which died from the good shell group. Egg weight was not significantly different between good 

and poor egg shell groups (P =0.33). The ratio of egg shell weight to total egg weight was 

significantly different between good and poor egg shell groups with good eggs having a high 

ratio than poor (P<0.0001)(Table 2). Shell weight per unit surface area was significantly 

different between good and poor egg shell groups with more dense eggs having a higher 

SWUSA (P<0.0001). Shell calcium percentage of the total egg was significantly different 

between good and poor egg shell groups with good eggs having a higher concentration than poor 

(P=0.022). Specific gravity was significantly different good and poor egg shell groups with good 

eggs having a higher density than poor eggs (P<0.0001). Egg shell thickness was significantly 

different between good and poor egg shell groups with good eggs having a larger thickness than 

poor eggs (P<0.0001). Bone alkaline phosphatase was significantly higher in good egg shell hens 

than poor egg shell hens (P=0.023) (Table 3). Tartrate resistant acid phosphatase activity was 

higher in poor egg shell hens than good egg shell hens (P=0.0022). Tibia ash percentage was not 

significantly different in the bones of good and poor egg shell hens (P=0.46)(Table 4). Breaking 

strength was significantly higher in good egg shell hens compared to poor egg shell hens (P= 

0.04). Bone alkaline phosphatase was significantly higher in the blood of the progeny born from 

good shell hens compared to the progeny of the poor egg shell hens (P= 0.0017)(Table 5). 

Tartrate resistant acid phosphatase activity was significantly higher in the progeny born from 

poor egg shell hens compared to the progeny of the good shell hens (P= 0.0022). Body weight 

gain was not significantly different between the progeny of either good shell hens or poor shell 

hens (P= 0.562). Tibia ash was significantly higher in the progeny of the good egg shell hens 
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compared to the progeny of the poor shell hens (P= 0.025). Breaking strength was significantly 

higher from the progeny of the good egg shell hens compared to the progeny of the poor shell 

hens (P= 0.003). 

Discussion 

 Nutritionists attempt to meet the metabolic requirements of hens through accounting for 

the energy necessary for maintenance, amino acids for protein turnover, and minerals and 

vitamins necessary for bone and cell health. Laying hens have additional requirements unlike 

other production animals as they avian and create eggs instead of undergoing pregnancy. During 

gestation mammals will devote bodily reserves and nutrients from the diet to sustain the growing 

embryo(s), but the process has a definite end with a refractory time period in between the animal 

becoming pregnant again. Lactating animals requires energy, protein, and calcium to synthesize 

which puts strain on animals which are used for dairy production due to unnaturally prolonged 

lactation. Avian species conversely produce eggs on a daily basis for a series of days in a row 

known as a clutch. While clutching occurred naturally prior to human intervention modern 

broiler breeder hens and laying hens produce eggs at a much higher quantity and frequency than 

ever before (Wiemeyer et al., 1993). Selection for high egg production and egg shell quality has 

changed the behavior of the birds to be more aggressive when eating and the regulation of the 

hormones involved in egg synthesis. Breeder hens in particular are hard to select for the best 

characteristics of egg production due to their progeny being utilized for something completely 

different, meat production and growth. Current feeding regiments require that breeder hens have 

their feed restricted in order to prevent too much growth due to their high appetite from also 

having broiler tendencies. Laying hens in most North American practices have ad libitum access 

to feed allowing for a constant supply of nutrients from the G.I. tract to support egg synthesis. 
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The three principal components of an egg, yolk, albumen, and egg shell are partially created 

utilizing reserves from the hens body along with nutrients which come directly from the diet and 

G.I. tract. Compositionally, the average hen is 80% lean tissue, 16% fat mass, and roughly 4% 

mineral mass while the eggs they create are 74% water, 11.8% lipid, 12.8% protein, and 1.4% 

ash which include minerals. Egg yolk is approximately 48% water, 17% protein, 33% fat and 1% 

ash, egg albumen is 88% water, and 11% protein, and egg shell is 98% calcium carbonate and 

2% trace minerals and protein. Egg synthesis requires 25 hours from release of the yolk from the 

ovary until completion, of which approximately 21 hours is spent building the calcium carbonate 

shell of the egg in the shell gland. Egg shell is synthesized through the incorporation of 

carbonate ions, concentrate through the enzymatic activity of carbonic anhydrase, and its 

reaction with free calcium ions absorbed from the blood. Maintaining proper calcium level in the 

blood is important not only egg shell synthesis but for the bone and cellular health of the hen.  

While there are many different methods to evaluate the health of birds during egg 

production the simplest way and most straightforward method is to record their egg reproduction 

in response to experimental conditions to evaluate how it is impacted. Given that egg production 

was not significantly different (P = 0.15) between the good (58.3 eggs/hen) and poor (60.3 

eggs/hen) egg shell quality birds one can state that the rate of formation of eggs and the ability 

for hens to consistently create thicker or thinner eggs shell is independent. Studies have shown 

that by increasing the photoperiod of birds in experimental housing, by having more ours of light 

than darkness, that the egg shells became thicker. Age, health, genetic strain,  and nutritional 

content of the diet are also factors which determine the egg shell quality as older birds are shown 

to have lower calcium retention preventing them from utilizing calcium from their diet and bone 

to create calcium carbonate as efficiently as younger birds. Calcium from the diet is not only 
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used to rebuild medullary bone, the hen’s bodily reserve of calcium of egg synthesis, but also is 

directly incorporated into the shell if present in the G.I. tract. There is variation between hens 

within a flock of the same genetic strain as some birds will be more prone to produce thicker or 

thinner egg shells which may be coupled with their bone health. The total production of eggs 

versus each individual grouping for the good (49.2% of total production) or poor (50.8% of total 

production) egg shell selected hens was not significantly different (P= 0.35) that egg production 

remains consistent between the two groups at age 30 to 46 weeks, but this may not be true as the 

birds become older. Mortality as significantly different (P =0.031) between the two groups with 

3 times as many birds dying from the poor shell group, 7.5% of hens within that group, 

compared to the good shell hens with a mortality of 2.5% of the group. Nothing decreases the 

production of a hen more than death which makes this a very important parameter to measure 

when considering flock management. While some hens are prone to stop eating and subsequently 

falling out of production, some will continue to lay eggs despite being at a metabolic deficiency 

either due to not eating all of their feed or perhaps due to a genetic disposition which causes 

lower retention of nutrients. Laying hens are most vulnerable to sudden changes in the 

concentration of calcium in their blood to the cyclic nature of laying eggs and how much of a 

demand these is for the mineral from the shell gland. Severe calcium deficiency leads to tetany 

which is the inability to uncontract the muscles throughout the body which can quickly lead to 

death without intervention. Retention of calcium is exceedingly important for laying hens as it 

determines efficiently they can make egg shells, build bone, and maintain cellular homeostasis 

and whole body health under conditions which stress their reserves of calcium. Total egg weight 

was not significantly different between the good, 64.8g, and poor, 63.0g,  egg shell groups (P = 

0.33) which is not too surprising considering that the egg shell constitutes approximately 10% of 
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the whole egg by weight which would require a very drastic change in shell quantity in order for 

it to solely impact total egg weight.  

Individual eggs were scanned through dual energy X-ray absorptiometry which allowed 

for in depth analysis, when paired with regression equations for each parameter, of each 

component of the egg without having to take it apart and manually measure everything. The ratio 

of the weight of the egg shell to the weight of the total egg was significantly different between 

the good, 0.093 ratio shell:egg, and poor, 0.076 ratio shell:egg, egg shell groups (P<0.0001) 

which in conjunction with the fact that the total egg weights were not significantly different 

signifies that not only did the eggs from the good shell groups have more shells, but also slightly 

less albumen and yolk. Hens have an internal limit on the size of the average egg due to very 

large eggs being unable to physically exit the cloaca which can cause the egg to become 

indefinitely trapped in the shell gland until the body resorbs it. Gonadal hormones regulate the 

rhythm of how long developing eggs spend in each portion of the reproductive tract of the hen 

through muscular peristalsis, and while this is unlikely to change within the same strain of bird 

there may be some differences in order the total time spent developing which can change the size 

of eggs. Shell Weight per Unit Surface Area was significantly different between good, 80.65 

mg/m2, and poor, 65.25 mg/m2, egg shell selected hens (P<0.0001) with a higher value for the 

good shell hens that is consistent with the other parameters. Having a high shell weight per 

surface area essentially means that the eggs were overall more dense from the good shell hens 

compared with the poor. The egg shell is 98% calcium carbonate which essentially makes it 

entirely mineral based and thus much denser compared to the yolk and albumen which are made 

up of a large percentage of water. Egg shell calcium was significantly higher in the good, 6.08%, 

egg shell hen selected group compared with the poor, 4.83%, shell group (P= 0.022) which is 
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once more consistent with higher concentrations of shell that is made up of calcium carbonate. 

Chick embryonic chorioallantoic membrane (CAM) utilizes the calcium carbonate egg shell to 

supply calcium for bone development in the growing chicken embryo. While not much is needed 

in the chick compared to the total amount present in the shell, it has been shown that the 

presence of more shell calcium has increased the calcium transport of CAM which leads to more 

bone formation. Specific gravity was significantly different between the good, 2.28, and poor, 

1.80,  groups (P<0.0001) selected for egg shell quality with the good having a high specific 

gravity which is once more consistent with all of the other egg shell parameters. Specific gravity 

is essentially another method of equating substance density utilizing water as a reference, but this 

has been used as the standard for measuring egg density since the beginning of poultry science. 

The density value from SWUSA derived from the DEXA is just as accurate as specific gravity 

and faster to utilize (Onyango et al., 2003). Shell thickness was significantly different between 

the good, 1.086 mm, and poor, 1.07 mm, egg shell groups (P<0.0001) with the good shell hens 

having eggs with a higher shell thickness which complements the results from every other 

parameter of egg shell quality. Shell thickness is essential for protecting the growing embryo 

within the egg to prevent physical trauma from the outside, and to prevent microbes from 

entering. A huge cost in the breeder broiler and laying hen industry is attributed to broken eggs 

due to thin shells making it important not only for growing chicks but also from a production 

standpoint to have thicker shells.  

Bone alkaline phosphatase (BAP) was significantly higher (P= 0.023) in the good egg 

shell hens with a concentration of 326.49 pg/ml versus the poor shell concentration of 253.19 

pg/ml. Bone alkaline phosphatase is a correlated with the bone building activity of osteoblast 

cells in the bone as the enzyme is necessary for hydroxyapatite synthesis. The principal function 



 

61 

 

of BAP is to convert the inhibitor of bone mineralization, pyrophosphate, into a necessary 

element used in hydroxyapatite synthesis, inorganic phosphate. High concentrations of BAP in 

the blood correlate with increase bone synthesis which indicates that the hens which produce 

thicker egg shells are also rebuilding their bones at a higher rate than the hens which create 

thinner shells. Given that hens can mobilize up to 10% of their total bone over the span of a day 

signifies how well adapted laying hens are at breaking down their hydroxyapatite to be mobilized 

for the shell glands calcium carbonate synthesis. The ability of hens to breakdown and rebuild 

their bone is shown to diminish with age but it is also highly affected by the genetics as certain 

hens within a flock are pre-disposed to create thicker or thinner shells which relies on their 

ability to turnover their bone very rapidly. One possible explanation for the relationship between 

BAP, bone turnover, and egg shell thickness would be that hens which are well adapted to 

breaking down and rebuilding their medullary bone have a higher calcium retention and are able 

to more efficiently utilize the calcium and phosphorus released from the bone and which enters 

the blood from the G.I. tract. Higher BAP may also signify higher concentrations of osteoclasts 

within the bone which allows them to more rapidly respond to ambient calcium increases from 

the diet to prevent Calcitonin from signaling the excretion of calcium. Phosphorus regulation is 

also affected by osteoblast activity as the resorption of bone causes free phosphorus to enter the 

blood alongside calcium which causes the phosphorus to be excreted through the kidney due to it 

not being utilized in egg shell synthesis. Hens which have higher calcium retention as more 

efficient at keeping their bones strong and perhaps for the same reason are better adapted to 

creating thicker egg shells. 

 Tartrate resistant acid phosphatase (TRAP) activity was significantly higher (P= 0.0022) 

in the poor egg shell hen group, 4985.2 (U), compared to the good egg shell hen group. Tartrate 
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resistant acid phosphatase activity correlates with osteoclast cell formation and bone resorption 

as it is the principal enzyme used in the degradation of hydroxyapatite (Lindunger et al., 1990). 

Laying hens constantly resorb their medullary bone to supply calcium for egg shell synthesis 

making TRAP very important in the daily cycle of egg formation and bone resorption. 

Upregulation of TRAP is associated with many bone metabolic disorders including osteoporosis, 

osteoclastoma, and leukemia indicating that increased osteoclast activity or number and bone 

resorption may be indicative of bone health problems (Ek-Rylander et al., 2002). One possible 

explanation as to why hens which lay thinner egg shells have higher concentrations of TRAP is 

that they have lower calcium retention. Given that the poor egg shell hens cannot utilize calcium 

resorbed from the bone as efficiently in the shell gland compared to the thicker egg shell hens, 

they end up needing more calcium in order to accomplish the calcium carbonate synthesis. In 

order to compensate for the lower efficiency in using calcium the poor egg shells birds resorb 

more bone to compensate which ultimately leads to more bone being resorbed. Another theory is 

that the poor egg shell hens have bones which are more resilient to mobilization which causes 

osteoclast activity to increase in order to bring calcium blood levels back to normal when the 

shell gland pulls calcium out of the blood. While the shell gland can synthesis calcium carbonate 

readily as long as calcium is present the poor shell hens may have trouble replenishing their 

blood calcium which causes this increase TRAP activity.  

 Tibia ash percentage was not significantly different (P= 0.46) between the good, 0.58%, 

and poor, 0.57%, egg shell groups. Mineral concentration in the bone is directly correlated with 

ash percentage as the hydroxyapatite calcium and phosphorus crystalline lattice is inorganic and 

makes up 70% of the total bone. The collagen cross fibers which link the mineral portions of the 

bone together, however, are organic and constitute approximately 20% of the total bone. 
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Collagen not only strengthens bones but it gives them some flexibility so they bend slightly 

instead of breaking when under pressure (Tanck et al., 2006). The breaking strength was 

significantly different (P = 0.04) between the good, 7.26 kg/mm, and poor, 5.34kg/mm, egg shell 

groups. Despite having tibia ash percentages which are almost the same the good shell hens had 

bones which were stronger which signifies that the amount of collagen crosslinks must have been 

higher, or that the hydroxyapatite in the bone of the poor shell hens was incompletely calcified. 

While medullary bone is conventionally utilized for bone resorption and calcium mobilization in 

the breeder hens there is also another type of bone which can be mobilizes and which is 

responsive to high levels of TRAP: cortical bone. High concentrations of TRAP in the poor shell 

hens may have caused them to inadvertently mobilize the hydroxyapatite and calcium from their 

cortical bone as well as their medullary bone which may explain why their breaking strength is 

lower despite having ash percentages that are almost the same. If the poor shell hens mobilize 

cortical bone their bones will become weaker much more quickly due to cortical bone being used 

to support the animals frame and bear load, while medullary bone isn’t structural but simply acts 

as a reservoir for calcium to be utilized in the shell gland. Another factor to consider is that the 

blood taken from these hens was with regard to time of oviposition, within 30 minutes of them 

laying an egg. TRAP levels will increase in the blood during the period of egg shell synthesis 

while BAP will increase during the period of bone rebuilding and mineralization. The levels of 

TRAP and BAP constantly fluctuate throughout the day during the cycle of egg synthesis and 

while their expression may appear abnormal at a given point the hens don’t maintain the same 

enzyme concentration constantly which will cause enzyme concentrations to reflect how many 

osteoblasts or osteoclasts are within the bone. 
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 Concentration of BAP in the blood was significantly different (P= 0.0017) between the 

progeny of the good, 372.3 pg/ml, and poor, 312.4 pg/ml, egg shell hen groups. Two week old 

broiler chicks are rapidly synthesizing both fat and muscle tissue as they’ve been selected to do 

for decades. One major complication associated with rapid weight gain in broiler chicks is that 

their total body mass far exceeds what their organs, bones, respiratory, and circulatory systems 

are capable of supporting causing them to suffer from a myriad of metabolic disorders (Robinson 

et al., 1991). One problem chicks are susceptible to is tibial dyichonplasia, the incomplete 

ossification of the epiphyseal plates of the tibia which causes the growth plates on their tibias to 

be soft and potentially break. Chicks with stronger bones have been correlated with higher 

growth rates and feed conversion due to their bone growth being able to keep pace with their 

muscle and fat. Breeder broiler chicks in particular will become laying hens themselves when 

they reach adulthood and need to have the machinery in order to produce calcium carbonate from 

their bones. Given that the hens which produced thicker egg shells have higher concentrations of 

BAP compared with the hens which produce thinner egg shells, and the progeny of the thicker 

shell hens have higher concentrations of BAP than the progeny of the poor shell hens indicate 

that the higher concentration of the enzyme is heritable and may be passed along. While the 

synthesis of BAP may not necessarily be upregulated in the progeny but the actual osteoblast cell 

count, the cells in the bone which produce BAP during bone mineralization. The chicks from the 

thicker egg shells were also exposed to more calcium during their embryonic development due to 

increase calcium transport from CAM which may also explain why they have more osteoblast 

activity compared to the progeny of the thinner shelled eggs. 

 Activity of TRAP was significantly higher (P = 0.022) in the progeny of the poor, 

23590.73 U, egg shell producing hens compared with the progeny of the good, 18012.86 U, egg 
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shell producing hens.  TRAP isn’t solely used in the resorption of hydroxyapatite from bones but 

also used in bone remodeling, the process through which bone is reshaped and elongated during 

growth (Minkin, 1982). Osteoclast activity has also been associated with bone stress (Darden 

1996). Micro fractures in the bone stimulate osteoclasts to resorb the damage bone and for 

osteoblasts to lay down new bone in its place. The tremendous strain rapidly growing broilers 

place upon their bones may explain why TRAP activity is so high in the progeny compared with 

their parents, at almost a 9 fold difference in activity. TRAP levels in the breeders were also 

most likely lowered due to them being taken during the day at the time of oviposition when the 

body is demineralizing the medullary bone by utilizing calcium from the diet. While TRAP 

activity indicates more bone repair in growing broilers this also tells us that the chicks from the 

thinner shell producing hens were more prone to having bone fractures than the progeny of the 

thicker shell producing hens. 

 Body weight gain was not significantly different (P = 0.562) between the progeny of the 

good egg shell producing hens, 285.6 g, and the progeny of the poor egg shell producing hens, 

285.4g. The overall growth of the chicks was not impacted at two weeks of age due to the 

difference in egg shell density that they were born from which suggests that they were both 

gaining muscle and fat tissue at their genetic potential and that bone strength was not impacting 

their growth up to this point. Tibia ash percentage was significantly different (P = 0.025) 

between the progeny of the good egg shell producing hens, 0.459%, and the poor egg shell 

producing hens, 0.422%. Higher tibia ash percentage in the progeny of the good shell producing 

hens is consistent with the BAP-osteoblast activity being higher in these chicks than the progeny 

of the poor egg shell procuring hens, and vice versa for TRAP-osteoclast activity. Breaking 

strength was significantly (p= 0.03) different between the progeny of the good egg shell 
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producing hens 1.61 kg/mm, and the progeny of the poor egg shell producing hens, 1.47 kg/mm. 

Increased breaking strength of the progeny of the good egg shell hens is consistent with their 

higher concentrations of BAP and lower TRAP which indicate they have strong hydroxyapatite 

and collagen crosslinks within their bones. The progeny of the poor egg shell hens seem to be 

vulnerable to micro fractures and must repair their bone at a higher rate than the progeny of the 

good egg shell hens which is the reason why their TRAP activity is so high and which ultimately 

may be due to lower BAP activity causing less bone to be made in these chicks.   

Hen genetics quintessentially determine how fit the animal will be for egg production as 

the upregulation of specific hormones, enzymes, transporter, and other factors can make the 

animal more or less efficient at utilizing calcium, the principal nutrient for egg shell synthesis. 

Decades of selection for egg production and shell quality have improved these traits, however, 

there is a limitation on how much scientists can select for from simple production parameters and 

more in-depth analysis is needed. Selecting hens for egg shell thickness not only benefits from 

the increased the fertility and hatchability of the eggs but also from increased calcium retention 

in the progeny which will help them with bone growth and egg development once fully grown. 

Progeny from the hens selected for thicker egg shells benefited from having higher 

concentrations of BAP, perhaps due to having more osteoblasts in their bones. The good shell 

quality laying hens had higher concentrations of BAP in their blood relative to the poor egg shell 

producing hens which indicate a relationship between bone turnover and shell gland calcium 

carbonate synthesis. Data in this study suggests that either osteoblast formation or BAP activity, 

and osteoclast formation or TRAP activity can be inherited and that hens which have higher 

calcium retention can pass those traits to their progeny.  
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Table 1: Production performance parameters from hens selected for egg shell quality from 30 to 

46 weeks of age.1            

                       Egg Production    Hen House Egg Production2       Mortality       Egg weight 

                                       (Egg/hen)       (% of total production)           (% of total)           (g)  

Egg Shell Quality3 

Good                                    58.3                              49.2                                 5.0                 64.8   

Poor                                  60.3                              50.8                                 15.0               63.0 

SEM                                      2.0                                NA                                   5.0                2.5 

P Value                                 0.15                              NA                                  0.031            0.33  

1Values are presented as means ± SEM for the 16 week production period. 

2Defined as total eggs per hen, corrected for mortality. 

3Egg Shell Quality: Hens were defined as having good egg shell quality, having an average egg 

specific gravity great than 1.08, or having poor egg shell quality, having an average egg specific 

gravity less than 1.08. 
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Table 2: Egg shell quality parameters from hens selected for egg shell quality from 30 to 46 

weeks of age.1             

                                Shell:Egg     SWUSA2        Shell Calcium    Specific     Shell Thickness 

                                             Weight       (mg/m2)          (%)     Gravity           (mm)  

Egg Shell Quality2 

Good                                      0.093          80.56                  6.08               2.28             1.086 

Poor                                    0.076          65.25                  4.83         1.80             1.07 

SEM                                       0.032           21.4                   1.52               0.54             0.025 

P Value                                 0.0001       0.0001          0.022        0.0001     0.0001  

1Values are presented as means ± SEM for the 16 week production period. 

2Egg Shell Quality: Hens were defined as having good egg shell quality, having an average egg 

specific gravity great than 1.08, or having poor egg shell quality, having an average egg specific 

gravity less than 1.08. 
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Table 3: Blood parameters from hens selected for egg shell quality from 30 to 46 weeks of age.1  

                                Bone Alkaline Phosphatase       Tartrate Resistant Acid Phosphatase 

                                                       (pg/ml)                                                  (U)2    

Egg Shell Quality3 

Good                                                326.49                2203.4 

Poor                                              253.19                 4985.2 

SEM                                                  108.2                                                      2842.1 

P Value                                            0.023                        0.0022   

1Values are presented as means ± SEM for the 16 week production period. 

2Activity of TRAP (U) was defined by the procedure by Lau et al. as the amount of NPP cleaved 

under 1 hour of incubation at 37C. 

3Egg Shell Quality: Hens were defined as having good egg shell quality, having an average egg 

specific gravity great than 1.08, or having poor egg shell quality, having an average egg specific 

gravity less than 1.08. 
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Table 4: Bone parameters from hens selected for egg shell quality from 30 to 46 weeks of age.1  

                                           Tibia Ash                                        Breaking Strength 

                                                           (%)                                                  (Kg/mm)   

Egg Shell Quality2 

Good                                                 58.0                    7.26 

Poor                                               57.2       5.34 

SEM                                                   5.1          2.72 

P Value                                             0.46          0.04   

1Values are presented as means ± SEM for the 16 week production period. 

2Egg Shell Quality: Hens were defined as having good egg shell quality, having an average egg 

specific gravity great than 1.08, or having poor egg shell quality, having an average egg specific 

gravity less than 1.08. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

71 

 

Table 5:  Blood parameters from progeny of hens selected for egg shell quality at 2 weeks of age. 

                                Bone Alkaline Phosphatase       Tartrate Resistant Acid Phosphatase 

                                                       (pg/ml)                                                  (U)1    

Egg Shell Quality2 

Good                                                372.3     18012.86 

Poor                                              312.4                     23590.73 

SEM                        130.4                 6156.6 

P Value                                          0.0017                      0.0022   

1Activity of TRAP (U) was defined by the procedure by Lau et al. as the amount of NPP cleaved 

under 1 hour of incubation at 37C. 

2Egg Shell Quality: Progeny were created from hens which were defined as having good egg 

shell quality, having an average egg specific gravity great than 1.08, or having poor egg shell 

quality, having an average egg specific gravity less than 1.08. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

72 

 

Table 6: Growth & Bone parameters from progeny hens selected for egg shell quality at 2 weeks 

of age.1             

                                     Body Weight             Tibia Ash                  Breaking Strength 

                                                  Change (g)                   (%)                               (Kg/mm)2   

Egg Shell Quality2 

Good                                           285.6                         45.9                 1.61 

Poor                                         285.4     42.2        1.47 

SEM                                             15.2                          6.9                                      0.54   

P Value                                      0.562                 0.025           0.03   

1Values are presented as means ± SEM for the 16 week production period. 

2Egg Shell Quality: Hens were defined as having good egg shell quality, having an average egg 

specific gravity great than 1.08, or having poor egg shell quality, having an average egg specific 

gravity less than 1.08. 
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