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ABSTRACT 

 Weedy rice (Oryza sativa L.) competes aggressively with rice, reducing yields and grain 

quality. Clearfield
TM

 rice, is nontransgenic herbicide-resistant (HR) rice introduced in 2002 to 

control weedy rice, has resulted in ALS-resistant weedy rice due to gene flow. Volunteers of 

Clearfield
TM

 rice (F2) accelerate the HR weedy rice evolution by acting as agents of gene flow. 

Weedy rice (89) collected from 11 counties in Arkansas were screened for resistance in a field 

experiment in Stuttgart (2011). Seventy-nine percent of accessions were resistant to imazethapyr 

and harbored S653N mutation. These HR weedy accessions were outcrosses of Clearfield
TM

 rice 

and weedy rice. Out of 727 characterized plants, nearly 70% of the HR weedy rice flowered at 

the same time as that of Clearfield
TM

 rice with greatly reduced seed shattering in progenies of 

some accessions (15 to 87%). Kernels of 20% of the parent accessions had segregating white and 

red bran color. Two of these parent accessions (goldhull) were homozygous for white bran, with 

100% white-bran progenies. Winter-flood reduced the germination of rice seed by 40-50% after 

130-160 d of burial. Hybrid rice seed had higher capability to survive the winter (13-53% 

viability) than inbred rice seed (8-27%). Therefore, hybrid rice is expected to leave more 

volunteer rice in the field than inbred rice. Fields with cropping history of hybrid rice had higher 

volunteer rice infestation (20%) than fields planted only with inbred rice (5.6%). The total grain 

yield of rice was reduced by 0.4% for every 1% increase in volunteer rice density, averaged over 

cultivars. The 1000-kernel weight, kernel length-width ratio, %protein, %amylose, and head rice 

yield were affected by volunteer rice density.  Various herbicides were tested for efficacy on 

volunteer rice at SEREC, Rohwer and RREC, Stuttgart, Arkansas. Application of pyroxasulfone 

(0.12 kg ha
-1

) in the fall fb 2,4-D (1.12 kg ha
-1

)  35 d pre-plant caused minimal (6%) crop injury 

and did not reduce yield. This treatment resulted in better control of volunteer rice (73%) than 



 
 

pyroxasulfone alone at 0.12 kg ha
-1

 applied in fall (64%). Pyroxasulfone is not currently labeled 

for fall application prior to rice planting in the spring. 
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Introduction 

 Weedy rice is a troublesome weed in many parts of the world. Weedy rice includes a 

wide range of ecotypes belonging to numerous species. The wild species Oryza barthii and O. 

longistaminata or weedy ecotypes from cultivated O. glaberrima are among the worst weeds in 

West Africa whereas O. granulata, O. officinalis, O. rufipogon and O. nivara are weedy or wild 

species in South-East Asian countries (Olofsdotter et al. 2000). Red rice is one of the most 

common weedy relative of cultivated rice (Oryza sativa L.) that competes aggressively with rice 

in southern US (Diarra et al. 1985; Ferrero 2001; Shivrain et al. 2009). Weedy rice in the 

southern US generally has red pericarp (Gealy et al. 2003; Gross et al. 2010; Smith 1981) and 

almost all are of the indica subgroup (Londo and Schaal 2007; Reagon et al. 2010). In the 

southern US, weedy red rice reduces yields from <5% to 100% (Burgos et al. 2014; Diarra et al. 

1985; Shivrain et al. 2009) which results into large economic losses (Gealy et al. 2002; Lee et al. 

2011), contaminates rice grains (Ottis et al. 2005) and is classified as a noxious weed in the 

United States (APHIS 2015; Burgos et al. 2008). Weedy rice shows a wide variability of 

anatomical, biological and physiological features (Shivrain et al. 2010; Tang et al. 1997; 

Vaughan et al.  2001). Weedy rice has many weedy traits which make it difficult to control. The 

primary weedy traits of weedy rice are seed shattering, seed dormancy, vigorous vegetative 

growth, high competitive ability, seed longevity (Goss and Brown 1939; Noldin 1995) and  

ability to emerge from greater soil depths (Gealy et al. 2000), which contribute to its persistence. 

The shattering of weedy rice seeds before crop harvest allows the weedy rice to disperse and 

dormancy (Tseng et al. 2013) allows it to persist for a long time. Weedy rice seed could remain 

dormant in the soil for up to ten years in the United States (Goss and Brown 1939, 1940) and 

three years in Brazil (Leitao et al. 1972). 

http://0-www.sciencedirect.com.library.uark.edu/science/article/pii/S0261219407001470#bib76
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Among 10 prevalent weeds in rice production in the southern US, including 

barnyardgrass (Echinochloa crus-galli L.), weedy rice caused the highest yield reduction in rice 

(about 80%) after season-long competition (Smith 1988).Weedy rice competes for production 

inputs; increases weed control costs, reduces yield and grain quality, and reduces economic 

returns (Burgos et al. 2006). In the past, before the introduction of herbicide-resistant (HR) rice 

technology, most of the weedy rice has been controlled by broad-spectrum herbicides (stale seed 

bed technique) and cultural practices in crop rotations with soybean, maize and grain sorghum 

(Burgos et al. 2008). It has been reported that, 40% of the rice fields in Arkansas were planted 

continuously with rice for at least 5 years (Shivrain et al. 2010). The monoculture perpetuates 

weedy red rice, and infestation increases every year. Since 2002, weedy rice could be selectively 

controlled in the southern US in an imazethapyr-resistant Clearfield
TM

 (CL) rice production 

system (Gealy et al. 2003; Burgos et al. 2008). These cultivars were obtained through induced 

mutations of the ALS (acetolactate synthase) gene (Tan et al. 2005). Imazethapyr herbicide 

inhibits the ALS enzyme that catalyses the first step in the biosynthesis of branched chain amino 

acids - valine, leucine and isoleucine (Mazur et al. 1987). The mutant als gene in Clearfield
TM

 

rice makes it resistant to imazethapyr and other imidazolinone (IMI) herbicides. The first two 

Clearfield
TM

 rice cultivars commercialized in 2002 were ‘CL121’ and ‘CL141’ which harbor 

G654E (glycine to glutamic acid) mutation (Tan et al. 2005). Due to low yield potential and lower 

resistance of these cultivars to imazethapyr herbicide these were soon replaced by ‘CL161’ in 

2003 (McClain 2003). This new cultivar has S653N (serine to asparagine) mutation (Tan et al. 

2005) which makes it 32% more resistant to imazethapyr compared with CL121 and CL141 

(Avila et al. 2005).   
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Recently, Clearfield
TM

 rice hybrids have also been commercialized in the southern US 

(Shivrain et al. 2009; Salassi and Deliberto 2010). CL hybrids yield higher than CL inbred 

varieties (Walker et al. 2008) and fetch more economic returns while also allowing control of 

weedy rice (Salassi and Deliberto 2010). Imidazolinone-resistant rice, offers an opportunity to 

effectively control weedy rice with little effect on crop safety (Steele et al. 2002). Pollen-

mediated gene flow resulted in evolution of weedy rice populations. (Gealy et al. 2003; Shivrain 

et al. 2007). In rare case, HR weedy rice has evolved from hybridization with Clearfield
TM

 rice 

(Rajguru et al., 2005). Growing herbicide-resistant rice varieties in proximity with sexually 

compatible Oryza relatives provides an opportunity for gene flow to the weedy populations 

(Langevin et al. 1990; Olofsdotter et al. 2000; Gealy et al. 2003) and ultimately, leads to the 

evolution of HR weedy populations. The transfer of HR rice genes via pollen flow to diverse 

weedy red rice populations complicates long term weedy red rice management strategies (Gealy 

2005; Zhang et al. 2006; Shivrain et al. 2008).  

The frequent occurrence of weed populations resistant to ALS inhibitors is due to the 

widespread usage of these herbicides that exerts strong selection pressure. Resistance to 

imidazolinone herbicides and has been attributed to many factors including differential 

metabolism (Little and Shaner 1991; Masson and Webster 2001; Tranel and Wright 2002; Yu et 

al. 2009; Yu and Powles 2013), foliar absorption and translocation (Shaner and Robson 1985; 

Little and Shaner 1991; Ballard et al. 1995; Yu et al. 2009) and target site point mutations (Heap 

2015; Yu et al. 2010; Yu and powles 2013). In most reported cases, evolved resistance to ALS 

inhibitor herbicides is due to reduced sensitivity of acetolactate synthase enzyme (Devine and 

Eberlein 1997; Saari et al. 1994; Tranel and Wright 2002; Yu et al. 2009; Yu and Powles 2013) 

caused by point mutations (Yu and Powles 2013) within discrete conserved domains of the ALS 
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gene. Point mutations could occur due to deletion-insertion or substitution of one (Single 

Nucleotide Polymorphism) or multiple nucleotides that changes the amino acid sequence (Tranel 

and Wright 2002; Wright et al. 1998). Several such substitutions conferring resistance to ALS-

inhibiting herbicides have been identified in various plant species (Tranel et al. 2015).  

Synchronization in flowering between rice cultivars and weedy rice increases the 

probability of pollen-mediated gene flow and introgression of herbicide-resistant trait into weedy 

rice resulting in reduced efficacy of Clearfield
TM

 rice technology for controlling the weed 

(Shivrain et al. 2007; Gealy et al. 2003). The majority of weedy rice plants shatter seeds easily 

(Delouche et al. 2007; Constantin 1960).  Seed shattering helps weedy riceproliferate and spread; 

dormancy prolongs its existence in the cropping system. Unlike weedy rice, the rice varieties are 

selected for minimal seed shattering but if any cultivar lodges and shatters seeds in the field due 

to unfavorable weather conditions, some of these seeds can survive the winter and become 

volunteer rice in the following season.  

Volunteer rice (Oryza sativa), which germinates from shattered seeds of the previous 

crop, is a common problem in the rice paddy (Gealy 2005; Warwick and Stewart 2005; Sudianto 

et al. 2013). Volunteer rice is considered as weedy rice when it is morphologically and 

phenologically different from cultivated rice. Volunteer plants from Clearfield
TM

 rice are a 

concern as these act as an agent of gene flow from Clearfield
TM

 rice to weedy rice (Sudianto et 

al. 2013). Volunteers from Clearfield
TM

 inbred rice, are not weedy but volunteers from 

Clearfield
TM

 hybrid rice are problematic because these are segregating in emergence trait and 

will increase the window for gene flow to weedy rice populations (Scott 2009). The volunteers 

from hybrid rice also segregate into several weedy type plants of variable productivity, 

competing with cultivated rice, resulting in yield loss. When Clearfield
TM

 rice and weedy rice 
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outcross, the F1 progenies are large, vigorous, late-maturing, and eventually develop into more 

diverse weedy plants (Gealy et al. 2006; Shivrain et al. 2007).These outcrosses cannot be 

controlled selectively with imazethapyr because of the introgression of herbicide-resistance trait 

in these populations.  

Therefore, HR weedy rice and volunteer rice can become a serious problem in rice 

production. In order to continue using the HR technology, it is important to understand the 

evolutionary changes in morphological and physiological characteristics of the HR weedy 

populations. Testing of escaped weedy red rice populations for resistance to ALS herbicides and 

characterizing these plants would be helpful in effective management of HR weedy rice. 

Understanding the effect of cropping scenarios on rice grain quality, volunteer rice infestation 

and weedy red rice evolution, would provide an insight into the consequences of recent shift 

from non-hybrid rice to hybrid rice system on weedy rice management strategies. 

Experiments were designed with the following objectives:  

1. Evaluate the effect of volunteer rice density on rice grain yield and quality 

2. Evaluate the herbicide and winter flood treatments for off-season control of  volunteer 

rice  

3. Evaluate the overwintering potential of hybrid and non-hybrid seed 

4. Characterize the weedy traits in ALS-resistant weedy red rice populations 

5. Evaluate the introgression of resistance-conferring ALS mutations and hybridization 

between HR rice and weedy red rice populations 
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Review of literature 

 Rice (Oryza sativa L.) is the world’s single most important food crop and a primary food 

source for more than a third of the world’s population. There are two major cultivated rice 

groups - O. sativa indica and O. sativa japonica. Japonicas are further divided into javanica 

(tropical) and japonica (temperate) (Khush, 1997). O. sativa japonica is the prominent and 

widely cultivated rice in the US (Mackill and McKenzie, 2003) which is distinct from indica and 

aus cultivars (Caicedo et al., 2007; Garris et al., 2005; Reagon et al., 2010). Indica and aus 

cultivars have never been cultivated in the US (Mackill and McKenzie, 2003; Moldenhauer et 

al., 2004; Lu et al., 2005).  Rice cultivation in the U.S. began in South Carolina and Georgia 

about 300 years ago and then moved to the southern U.S. (Stubbs et al., 1904; Craigmiles, 1978).  

Rice production plays a vital role in agri-industry of the southern U.S. and is produced mainly in 

Arkansas, California, Louisiana, Mississippi, Missouri, and Texas. Arkansas produces nearly 

43% of the total U.S. rice production (Hardke, 2014).  Apart from high yielding cultivars, 

effective weed control is a major factor that contributes to high rice yields. Poor weed 

management and high weed pressure can lead to 85% of rice yield losses (Smith, 1983). 

Worldwide loss in yield of rice due to weeds has been estimated around 10 percent of total 

production (Moody, 1991). Particularly, in the U.S., annual rice yield and quality losses are 

estimated up to 15% (Smith, 1979). The major rice weeds in the southern U.S. are Echinochloa 

crus-galli, E. colona, Cyperus difformis, C. rotundus, C. esculentus, C. iria, Urochloa 

platyphylla, Leptochloa filiformis, Digitaria sanguinalis, Oryza sativa, Eleusine indica, 

Fimbristylis littoralis, Ischaemum rugosum.  Echinochloa crus-galli is the most troublesome 

weed of rice in Arkansas (Norsworthy et al., 2007; 2012). The major rice production area in the 

southern U.S. is under direct-seeded rice; therefore, such rice production systems face serious 

problems of weeds which are closely related in biology and morphology to rice, like weedy rice.  
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Weedy rice includes a wide range of ecotypes belonging to numerous species. The wild 

species Oryza barthii and O. longistaminata or weedy ecotypes from cultivated O. glaberrima 

are among the worst weeds in West Africa whereas O. granulata, O. officinalis, O. rufipogon 

and O. nivara are weedy or wild species in South-East Asian countries (Olofsdotter et al., 2000). 

O. glumaepatula, is a subtype of O. rufipogon from America; it is closer to O. barthii than the 

Asian species. O. glumaepatula may have evolved independently, or from African ancestors, 

over a long period (Aggarwal et al., 1999). Oryza sativa, O. rufipogon, O. nivara and O. 

longistaminata share AA genome along with O. nivara and O. longistaminata (Olofsdotter et al., 

1999).   

 

Weedy rice in the southern US 

 Weedy rice in southern US belongs to the indica subgroup (Londo and Schaal, 2007; 

Reagon et al., 2010). However, all of the cultivated rice belongs to the japonica subgroup 

(Moldenhauer et al., 2004; Reagon et al., 2010). Weedy rice might have originated from 

hybridization of Asian rice, O. sativa, and the wild ancestor O. rufipogon (Ellstrand, 2003) or 

reversion of the domestication process (Londo and Schaal, 2007). Londo and Schaal (2007) 

selected twenty-one microsatellite loci to cover the rice genome; one locus per chromosome. 

Structure analysis indicated that cultivated O. sativa varieties (indica, aus and japonica 

subgroups) are the result of the domestication process from wild rice whereas strawhull (SH) 

weedy rice and blackhull (BHA) weedy rice (pre-dominantly present in the US) have arisen 

through de-domestication from indica and aus, respectively. It was also indicated that strawhull 

and blackhull weedy rice in the US might not share weedy traits due to high genetic distance 

between them (Fst = 0.7872) (Londo and Schaal, 2007). These findings were corroborated by 

other studies (Caicedo et al. 2007; Gross et al., 2010; Reagon et al., 2010). Reagon et al. (2010) 

http://0-www.sciencedirect.com.library.uark.edu/science/article/pii/S0261219407001470#bib76
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sequenced a total of 48 fragments from 111 randomly chosen sequenced tagged sites (STS), 4 

loci for each chromosome. InStruct analyses grouped SH weedy rice individuals with indica. All 

SH accessions had the same cytotype, which was also the most frequent in indica (60%) and O. 

rufipogon (53%) and was found in all of the O. rufipogon and O. nivara accessions that shared 

greater than 50% membership with indica. Similarly, BHA cytotype was most common in 

tropical japonica (63%), and rare in indica (20%) and O. rufipogon (7%).  

 Weedy rice with white kernels have been observed in Southern America and Asia, but all 

weedy rice in North America have red bran (Delouche et al., 2007). Thus, weedy rice in the US 

is collectively called 'red rice' (O. sativa) (Gealy et al., 2003; Gross et al., 2010; Smith, 1981). 

Red bran is a dominant trait of weedy red rice (Gealy et al., 2003), which is inherited from the 

wild ancestor. Sweeney et al. (2006) reported that white bran (rc allele) is the mutant 

(nonfunctional) version of the ancestral O. rufipogon (Rc) red allele. Weedy red rice in the US 

carries (Rc) red allele. Recently, a red-bran variant of the long-grain cultivar 'Wells' in Arkansas 

was discovered, which raised concerns over the genetic purity of this cultivar (Brooks et al., 

2008). Microsatellite DNA fingerprinting indicated that red pericarp in 'Wells' was due to (Rc-g) 

red allele (Brooks et al., 2008), which is another dominant wild type allele evolved through 

natural mutation within rc allele. This could be an example of a reversion process from  a 

domesticated trait to the wild trait. However, the process of reversion was proved wrong by 

Gross et al. (2010) who showed that reversion of domestication alleles does not account for the 

red pigmentation of weedy red rice kernels and haplotypes characterizing the weedy red rice are 

either absent or very rare in cultivated rice. These findings strengthen the hypothesis of origin of 

weedy red rice through hybridization between Asian rice (O. sativa) and wild rice (O. 

rufipogon), rather than just sole de-domestication from cultivars 
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 Weedy red rice was introduced as contaminant in rice seed in the US from Asia 

(Craigmiles, 1978). Weedy red rice infestation in the US was first reported in 1846 (Allston, 

1846). It was declared a problem in the early 20
th

 century (Vincenheller, 1906) and has become 

the second most troublesome weed after barnyardgrass (Burgos et al., 2008; Norsworthy et al., 

2007). In 2006 more than 60% of rice production area in Arkansas was infested with weedy rice 

(Burgos et al., 2008). The annual economic loss from weedy rice infestation was estimated at 

$275 ha
-1

 in Arkansas (Burgos et al., 2008). Up to 100% yield losses have been reported due to 

weedy rice competition and seed contamination resulted in reduced grain quality (Burgos et al., 

2014; Diarra et al., 1985; Kwon et al., 1991; Ottis et al., 2005).  

 Physiologically, weedy rice is similar to cultivated rice which grows taller and generally, 

has more tillers and panicles per plant (Noldin et al., 1999). Shivrain et al. (2006) reported that 

weedy rice plants ranged from 40 cm to 180 cm in plant height and generally, 15-65% taller 

than cultivated rice (Do Lago, 1982; Shivrain et al., 2006). Ninety percent of the weedy rice 

populations were reported to flower 98 days after planting (DAP) with flowering range of 70 to 

130 DAP (Shivrain et al., 2006). Strawhull and blackhull weedy rice are two prominent hull 

types in in the US (Gealy et al., 2002; Reagon et al., 2010). More recently, Tseng (2013) also 

reported that the majority of weedy rice ecotypes in Arkansas are strawhull and blackhull. 

However, many intermediate hull types (brownhull, goldhull, grayhull) were also observed 

(Burgos et al., 2014; Shivrain et al., 2008; 2010; Vaughan et al., 2009). Blackhull ecotypes in 

general, are taller (139 cm) than strawhull (133 cm) ecotypes (Shivrain et al., 2010). Blackhull 

and brownhull weedy rice ecotypes flower later (101 DAP) than strawhull ecotype (96 DAP) 

whereas cultivated rice flower 90-93 DAP (Do Lago, 1982; Shivrain et al., 2004). Blackhull 

ecotypes  also have more tillers (102/plant), and higher yield potential (949 g/plant) than 
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strawhull ecotypes (tillers = 85/plant; yield = 608 g/plant). Thus the blackhull ecotypes are more 

competitive while the strawhull ecotypes have the ability to mature earlier than cultivated rice 

(Shivrain et al., 2009, 2010).  

 In general, weedy rice seeds mature asynchronously and shatter before rice harvest which 

is very common and thus, add to soil seed bank (Cao et al., 2006; deWet, 1975; Ladizinsky, 

1985). Once deposited in soil seed bank, it can remain dormant for several years (Goss and 

Brown, 1939; Vidotto and Ferrero, 2000; Tseng et al., 2013) and can emerge from greater depths 

(Gealy et al., 2000). Due to irregular germination patterns, weedy rice would be difficult to 

control  by cultural means in a rice crop. The increase in weedy rice infestation in the fields led 

to the development of Clearfield
TM

 rice production technology which allows growers to use the 

imidazolinone herbicide to control 95 to 100% of the weedy rice (Steele et al., 2002; Ottis et al., 

2004; Levy et al., 2006). 

 

Clearfield
TM

 (CL) rice technology 

Clearfield
TM

 (CL) rice is non-transgenic herbicide-resistant rice technology (Tan et al., 

2005), introduced in 2002 (Williams et al., 2002). Clearfield
TM

 rice varieties have resistance to 

imidazolinone herbicides such as imazethapyr. Imazethapyr herbicide inhibits the ALS 

(Acetolactate synthase) enzyme that catalyzes the first step in the biosynthesis of branched chain 

amino acids - valine, leucine and isoleucine (Mazur et al., 1987). The mutant als gene in 

Clearfield
TM

 rice makes it resistant to imazethapyr and other imidazolinone (IMI) herbicides. 

Clearfield
TM

 rice cultivars were developed from US cultivar 'AS3510' by treating it with mutagen 

'EMS' (ethyl methanesulfonate) and screening with imazethapyr to obtain a mutant line 

(Croughan, 2001). The mutant line was hybridized with Cocodrie and Maybelle, which produced 
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'CL121' and 'CL141' as the first Clearfield
TM

 rice cultivars (Tan et al., 2005). These two 

Clearfield
TM

 rice cultivars commercialized in 2002 harbored G654E (glycine to glutamic acid) 

mutation (Tan et al. 2005). Due to lower resistance of these cultivars to imazethapyr and low 

yield potential, these were soon replaced with ‘CL161’ in 2003 (McClain, 2003) and other 

recently released Clearfield
TM

 rice cultivars. These new cultivars have S653N (serine to 

asparagine) mutation (Tan et al., 2005) which makes them more resistant to imazethapyr 

compared with CL121 and CL141 by about 30% points (Avila et al., 2005).  Therefore, with the 

introduction of superior Clearfield
TM

 rice cultivars with higher resistance and higher grain yield, 

this technology rapidly gained acceptance among farmers (Shivrain et al., 2006).  

 

Gene flow from Clearfield
TM

 rice to weedy rice 

 Late-season weedy rice escapes are a serious concern in Clearfield
TM

 rice (Meins et al., 

2003; Shivrain et al., 2009; Zhang et al., 2006) because of the potential of Clearfield
TM

 rice to 

outcross with escaped weedy rice plants (Gealy et al., 2003). Natural hybridization between 

cultivated rice and weedy rice plants contributes to the diversity of weedy rice and hybridization 

between weedy rice ecotypes (strawhull and blackhull), which is causing further diversification 

of weedy rice (Londo and Schaal, 2007). Weedy rice is an autogamous species with an extremely 

low outcrossing rate and restricted pollen-mediated gene flow (Gealy et al., 2003; Chen et al., 

2004). The main factor affecting outcrossing between cultivated rice and weedy red rice could be 

the potential overlap of flowering period. In general, outcrossing rates between rice and red rice 

are lower than 1% (Gealy et al., 2003; Shivrain et al., 2007). Such a low frequency of 

hybridization and introgression plays an important role in the long-term evolution of weedy rice 

populations (Cao et al., 2006). The rate of outcrossing between CL cultivars and weedy rice 
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depends on both the geographic and environmental conditions. The outcrossing rate of weedy 

rice with CL161 was significantly higher (0.0028%) than with CL121 (0.0012%) (Shivrain et al., 

2007). Shivrain et al. (2007) detected outcrossing between Clearfield
TM

 rice (CL161) and weedy 

rice in Arkansas up to 6 m which was the farthest limit of the experiment, but hypothesised that 

beyond 6 m outcrossing rate will diminish drastically. However, Song et al. (2003) reported 

outcrossing between 'Minghui-63' and O. rufipogon up to 43.2 m under field conditions in China. 

Zhang et al. (2006) reported outcrossing rates of 0.1% to 3.2% between Clearfield
TM

 rice 

cultivars and weedy rice. The higher outcrossing rates allow more opportunities for natural 

hybridization and introgression among weedy rice individuals and with cultivated rice (Cao et 

al., 2006). Once the Clearfield
TM

 cultivars outcross with weedy rice, crop genes may introgress 

into weedy populations within a few generations (Gealy et al., 2003) with selection pressure 

from imidazolinone herbicides favoring the proliferation of weedy outcrosses. Therefore, 

hybridization may contribute to adaptive evolution, and specifically weedy plant evolution 

(Ellstrand and Schierenbeck, 2000).  

 

Resistance-conferring point mutations in ALS gene 

Five different families of herbicides belong to the ALS group- (1) pyrimidinyl 

thiobenzoate (PTBs), (2) sulfonylureas (SUs), (3) imidazolinones (IMIs), (4) triazolopyrimidine 

(TPs) and (5) sulfonyl aminocarbonyl triazolinones (SCTs) (Shimizu et al., 2002; Tranel and 

Wright, 2002; Kawai et al., 2007). Inhibition of ALS leads to plant starvation of essential amino 

acids valine, leucine and isoleucine resulting in plant death. The resistance mechanism of ALS 

inhibitor herbicides is mainly due to altered target site and in some cases, rapid or enhanced 

metabolism of herbicide (Christopher et al., 1992; Hidayat and Preston, 2001; Tranel and 
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Wright, 2002). In altered target-site mechanism, the binding ability of ALS herbicides is reduced 

due to point mutation in ALS gene which changes amino acid in a target enzyme (Yu et al., 

2013). There are six resistance-conferring target-site mutations in the ALS gene: Ala122, Pro197, 

Ala205, Asp376, Trp574, and Ser653 (Tranel and Wright, 2002; Whaley et al., 2004). The mutations 

at amino acid positions Ala122, Ala205, Ser653 result in resistance to imidazolinone herbicides; 

Pro197 confers resistance to sulfonylureas but not to imidazolinones; Trp574 confers resistance to 

both SUs and IMIs. Also, S653N, G654E and A122T mutations have been used in developing the 

herbicide-resistant rice through genetic transformation techniques (Croughan et al., 1997; 

Sebastian et al., 1989; Tan et al., 2005).  

The first two Clearfield
TM

 rice cultivars commercialized (CL121 and CL141) harbored 

G654E (glycine to glutamic acid) mutation (Tan et al., 2005). Another resistant line was 

developed (PWC16) which harbored S653N (serine with asparagine), mutation at position 653;   

was used to develop 'CL161' and 'CLXL8' which were commercialized in 2003 (Webster and 

Masson, 2001; Gealy et al., 2003; Tan et al., 2005). In the Clearfield
TM

 rice production system, 

hard to control weedy rice can be managed easily. But due to continuous use of Clearfield
TM

 rice 

technology, the more use of imidazolinone herbicides has introduced the selection pressure for 

these herbicide, and weedy rice being the weedy relative of rice, has evolved resistance to IMIs. 

Rajguru et al. (2005) found four mutations (Ser653Asn, Ser186Pro, Lys416Glu, and Leu662Pro) in 

ALS gene of HR weedy rice relative to the susceptible rice cultivars which made those weedy 

strawhull rice resistant to IMI herbicides. It is expected that over a long period of time ALS gene 

in weedy rice evolve some mutations which would create diversity among their populations. 

Apart from selection pressure from herbicide, another reason for resistance development in 

weedy rice could be gene flow from Clearfield
TM

 rice to weedy relatives that would result in HR 
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weedy populations (Sales et al., 2008). Sales et al., (2008) identified six base polymorphisms in 

the ALS gene of susceptible and resistant weedy rice, three of which resulted in amino acid 

substitutions (Glu630Asp, Gly654Glu, Val669Met). The most common mutations reported in HR 

weedy rice populations in the US are Ser653Asn (S653N) and Gly654Glu (G654E). These mutations 

are present in commonly grown Clearfield
TM

 rice varieties. The area planted with Clearfield
TM

 

rice varieties harboring the G654E mutation (CL121 and CL141) is reduced in US in the last 

decade. In 2004, CL121, CL141 and CL161 were planted in approximately 19% of rice acres, 

but  CL121 and CL141 are no longer planted in Arkansas recently. The HR weedy rice reported 

in recent studies in Arkansas (Shivran et al., 2007; Sales et al., 2008), all harbored the S653N 

mutation, not G654E. In Greece, HR weedy rice populations carry the S653N mutation that is the 

same mutation in the Clearfield
TM

 cultivar grown in the country (Kaloumenos et al., 2013). 

Another mutation, A122T, is frequently reported from Argentina, Bolivia, Brazil, Paraguay, 

Uruguay and other countries in south and Central America (Roso et al., 2010).  The A122T 

mutation is present in the imidazolinone HR rice cultivar 'PUITÁ INTA CL', which is 

commercialized in these regions. Apart from the mutation in CL cultivars novel ALS mutations 

were also reported.  A novel mutation Val669Met was found in weedy rice populations from 

Arkansas, USA which indicates that prolonged use of IMI herbicides can result in ALS- resistant 

red rice (Sales et al., 2008).  

 Herbicide resistance-conferring mutations in the ALS gene of weedy rice can be verified 

with molecular markers (Roso et al., 2010; Rajguru et al., 2005; Sales et al., 2008; Kadaru et al., 

2008). The rapid development of molecular markers provides an effective tool for studying 

genetic diversity and population differentiation of plant species (Parker et al., 1998; O'Hanlon et 

al. 2000). Molecular techniques can identify the mechanism of resistance caused by known 



22 
 

mutation (Corbett and Tardif 2006). Molecular markers like simple sequence repeats (SSRs), 

also referred to as microsatellites, are frequently used to study genetic diversity and evolutionary 

relationships. These markers are robust, exhibit high allelic variation, and are distributed 

throughout the Oryza genome (McCouch et al. 1997). SSR markers can be used to detect 

outcrossing between weedy rice and rice cultivars due to their co-dominant nature (Gealy et al., 

2002). Eighteen microsatellite markers were tested by Gealy et al. (2002) to detect weedy rice 

and rice outcrosses; four (RM215, RM234, RM251, and RM253) produced one or more alleles 

that were present only in weedy rice or cultivated rice. SSR markers can differentiate medium-

grain and long-grain temperate japonica cultivars also. RM180 marker allowed detection of 

outcrosses of weedy red rice with CL161 Clearfield
TM

 rice (Shivrain et al., 2007). Zhang et al. 

(2006) also used RM180, together with RM234 and RM253 markers, to detect 81 and 327 weedy 

rice hybrids in 2003 and 2004, respectively. Microsatellite markers can be used to identify the 

cultivated rice parents of outcrossed weedy rice (Gealy et al., 2002). Along with that, SNP 

(Single Nucleotide Polymorphism) markers can be used to identify polymorphism in ALS gene 

of weedy rice responsible for resistance to imidazolinone herbicides (Kadaru et al., 2008). 

Resistance conferring SNPs can be detected by use of SNAP markers (single nucleotide-

amplified polymorphism) (Roso et al., 2010). The SNAP marker is the modified SNP marker and 

consists of an additional mismatched nucleotide within the third base from the 3’ end of the SNP 

primer such that only one allele will amplify in PCR (Drenkard et al., 2000) and this modified 

allele-specific PCR procedure for assaying SNPs can easily discriminate between the specific 

and nonspecific alleles.  
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Seed dormancy in weedy rice                                                                                                   

 Seed dormancy is one of the principal weedy characteristics of weedy rice that enables its 

long persistence in soil. Dormant seed is viable seed that does not germinate under favorable 

conditions (Bewely, 1997; Finch-Savage and Leubner-Metzgre, 2006). Seed dormancy is a 

favorable and adaptive trait for weedy species because it allows weeds to escape control 

measures and persist in the soil seedbank. Factors like temperature, after-ripening period and 

ecotypes of red rice play a major role in seed dormancy (Diarra et al., 1985; Noldin et al., 1999; 

Vidotto and Ferrero, 2000).  Weedy rice is highly variable in its dormancy and ranged from 26- 

100% when after-ripened for 12 d at room temperature (Do Lago, 1982) and can stay dormant 

and viable for up to 10 years in the soil (Goss and Brown, 1939). The seed maturity at harvest 

and temperature during after ripening affect the rate of seed dormancy (Roberts, 1961, 1965; 

Cohn and Hughes, 1981). The after-ripening facilitates the release of seed dormancy in all plants 

in general including weedy rice (Oliveira, 1992). Franco et al. (1997) observed that after-

ripening at room temperature, release dormancy in both weedy rice (60-120 d and cultivated rice 

(90-120 d). The after-ripening process in rice with 11% moisture content occurred rapidly at 20-

30 C (Coghn and Huges, 1981). In weedy rice, after-ripening at 25 C was faster between  6-14% 

moisture content and severe inhibition of after-ripening occurred at >18% and < 5% moisture 

content (Leopold et al., 1988). In another study, when the weedy rice seeds were incubated at 30° 

C in Petri-plates wrapped in aluminum foil in dim green light, the dormancy gradually decreased 

and was completely released at 25 days (Gianinetti and Cohn, 2008; Moreno, 1990). In most of 

the weedy rice populations (9 SH, 7 BHA) collected from Southern-Arkansas, dormancy was 

released at 90 days after-ripening (Tseng et al., 2013). Moreno, (1990) conducted a study on two 

rice cultivars (Labelle and Nato) and two weedy rice (strawhull and blackhull) ecotypes at 5 days 
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after-ripening and found that the germination of both cultivars was 8 and 4 % respectively, 

whereas for weedy rice was 7 and 5 % respectively. A variation in germination of the two 

cultivars and two weedy rice ecotypes was observed at 5 d and 25 d after-ripening. The 

germination of 'Labelle' and 'Nato' at 5 days was 94 and 9% whereas at 25 d, germination of 

Nato increased to 99%. In weedy rice, the germination increased from 92% to 99% from 5 days 

to 25 d after-ripening. In another study, in weedy rice ecotypes 84-100% germination was 

observed after-ripened for 60 d when incubated at 35° C (Tseng et al., 2013). Temperature also, 

plays an important role in variability in seed dormancy. The high variation in germination was 

observed (44-97%) at 15° C among weedy rice populations whereas no germination was 

observed at 1° C. Variation in dormancy between the major ecotypes of weedy rice - strawhull 

and blackhull ecotypes were observed irrespective of the temperature conditions. Blackhull 

populations had lower germination capacity than strawhull weedy rice populations (Tseng et al., 

2013) and blackhull weedy rice required longer after-ripening time to release dormancy.  

 Seed dormancy in rice and weedy rice has been studied extensively by using different 

molecular techniques (Gu et al., 2004, 2011; Lin et al., 1998). Many QTLs (Quantitative trait 

loci) have been identified associated with seed dormancy. Five QTLs associated with seed 

dormancy in cultivated rice have been identified which were located on chromosome 3, 5, 7 and 

8 and accounted for 48% of phenotypic variation (Lin et al., 1998). BILs (backcross inbred lines) 

of a cross between 'Nipponbare' and 'Kasalath' were developed and seeds from 98 BC1F5 were 

collected on the 40th day after heading and a germination was set up at 30°C under 100% humid 

conditions for seven days (Lin et al., 1998). Phenotypic variations explained by each QTL 

ranged from 6.7% to 22.5% and the five putative QTLs explained about 48% of the total 

phenotypic variation in the BC1F5 lines.  
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 Many studies have indicated that the presence of red pericarp (bran), which is governed 

by Rc alelle is associated with high levels of dormancy, and high levels of seed shattering in 

weedy rice (Vaughan et al., 2001; Gealy et al., 2003; Delouche et al., 2007). Genetic mapping of 

weedy rice from Thailand, localized a QTL to Rc locus which govern pericarp pigmentation in 

weedy rice (Gu et al., 2004). Due to continuous natural hybridization between cultivated rice and 

red rice, loss of pericarp pigmentation as a result of outcrossing can be disadvantageous to weedy 

rice populations in terms of reduced dormancy.  

  

Seed shattering in weedy rice 

 Seed shattering is one of the important weedy traits. Seed dispersal through shattering 

helps weedy rice to enhance their presence in the seed bank and spread to new areas (Harlan and 

DeWet, 1965). Abscission layer cells (a barrier of thin-walled parenchyma cells) play a major 

role in shattering of weedy rice seeds. As seeds mature, cells at the abscission layer degrade, 

allowing the grain to detach from the mother plant (Jin and Inouye, 1982). In general, indica 

cultivars shatter more than japonica rice (Konishi et al., 2006). Numerous genes and QTLs 

appear to be involved in the differentiation of abscission layer cells. The major QTLs reported 

for seed shattering in rice were sh4 and qSH1 (Li et al., 2006; Konishi et al., 2006) and one 

recessive shattering gene OsCPL1 (Ji et al., 2009).  In general, mutation in Sh4 protein inhibits 

the normal development of an abscission layer, which results in reduced seed shattering (Li et al., 

2006), whereas inactivation of OsCPL1 gene enhances the development of the abscission layer 

and seed shattering in rice (Ji et al., 2009). A single nucleotide polymorphism (SNP) in 

shattering QTL, qSH1, regulates the expression of homeobox protein. The reduction in 

expression by this SNP at the provisional abscission layer prevents shattering in rice (Konishi et 

al., 2006). SNP in qSH1 is also responsible for reduced seed shattering in japonica cultivars. In 
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the absence of this SNP in qSH1 QTL of indica cultivars, plants exhibit relatively strong seed 

shattering, whereas some japonica cultivars do not shatter at all.  Reagon et al., (2010) found one 

non-shattering weedy rice accession among a group of weedy rice studied for morpho-

physiological characteristics. The non-shattering weedy rice accession in their study could have 

mixed ancestry. Non-shattering weedy rice accessions might have acquired additional non-

shattering alleles through hybridization with cultivated rice. Sh4 and qSH1 were reported to have 

played role in the domestication of cultivated rice from wild rice (O. rufipogon) and regulate 

69% of the seed shattering in japonica and indica subspecies (Konishi et al., 2006; Li et al., 

2006). However, Zhu et al. (2012) indicated that sh4 played a minor role in the domestication of 

Asian rice and unidentified loci are responsible for domestication of cultivated rice. Recently, 

Nunes et al. (2013) presented evidence that qSH1 and sh4 genes are not associated with seed 

shattering in weedy rice. They evaluated the expression of 6 genes related to cell wall 

development (Os09g0530200, Os11g0462100, Os04g04480900, Os02g0170900,OsXTH8 and 

OsCel9D), 3 known genes or QTLs related to seed shattering (qSH1, sh4 and OsCPL1) and 6 

putative seed shattering gene reported by Huang et al., (2010)  in two weedy rice accessions and 

two rice cultivars ('Lacassine' and 'Batatais'). Evaluation of gene expression revealed that the 

genes OsCPL1 and OsXTH8 are related with the occurrence of high seed shattering in weedy rice 

and the expression of the OsCel9D gene is associated with reduction of seed shattering. Despite 

high diversity between cultivated rice and weedy rice ecotypes, all sampled rice and weedy rice 

accessions possessed similar or identical alleles at sh4 locus, suggesting that the domestication-

associated non-synonymous substitution (G/T) in the second exon of sh4 (Li et al., 2006)  is not 

sufficient for loss of shattering (Nunes et al., 2013). Seed shattering and dormancy were also 

reported to be affected by the genes which govern red bran in weedy red rice. The presence of 
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red pericarp (bran) is associated with high levels of dormancy, and high levels of seed shattering 

(Vaughan et al., 2001; Gealy et al., 2003; Delouche et al., 2007). This implies that loss of red 

pericarp color in weedy red rice can reduce seed shattering which is also the basis of 

domestication theory of rice. Hybridization between cultivated rice, wild and weedy rice 

populations can impact the population dynamics of weedy rice (Gressel and Valverde, 2009; 

Gealy et al., 2003; Zhu et al., 2012). The continuous exchange of pollen between cultivated rice 

and weedy rice could transfer the shattering genes among these populations. Transfer of non-

shattering gene from cultivated rice to weedy rice would reduce seed shattering in weedy rice 

and therefore, reduce the soil  seed bank.   On the other hand, the introgression of shattering 

genes to cultivated rice would increase the grain shattering of rice cultivars, reduce harvested 

rice, and increase the volunteer rice problem.  

 

What is volunteer rice? 

Volunteer rice is a crop stand which emerges from shattered seeds of the previous crop 

(Gealy, 2005; Warwick and Stewart, 2005; Sudianto et al., 2013). Volunteer rice is the most 

common problem in paddy where crop rotation is not practiced. Normally, volunteer rice 

germinates either before winter (Oct.-Nov.) or in spring (Apr-May) (Kumar et al., 2008; 

Sudianto et al., 2013). It contaminates the rice seed and increases economic losses in succeeding 

crops. Volunteer rice is a weed when it is morphologically and phenologically different from rice 

cultivar and has lower grain yield and quality. Volunteers from hybrid rice are segregating 

plants, which compete with the crop, but could have low yield and low grain quality, which may 

reduce the overall productivity of a given field and quality of harvested grain. HR volunteer rice 

could be a similar problem as that of HR weedy rice. Volunteers from a HR rice crop (e.g. 
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Clearfield rice
TM

) could serve as agents for gene flow from rice cultivars to the natural weedy 

rice populations (Gealy et al., 2003; Gressel and Valverde, 2009; Shivrain et al., 2007; Sudianto 

et al., 2013). These outcrosses give rise to diverse weedy populations which compete with rice, 

contaminate the rice seed during harvest and increase economic losses.  

 

Impact of winter-flood on volunteer rice seed viability 

In rice growing areas of the U.S., winter flooding is a widespread practice 

wherein rice fields are flooded from the start of autumn following rice harvest until the spring 

before tillage operations (Fogliatto et al., 2010). Winter-flood improves rice straw decomposition 

which acts as an alternative strategy to the burning of rice residue (van Groenigen et al., 2003). 

Winter-flood also decreases the number of tillage passes needed to prepare the field for planting 

(Bird et al., 2002). Water management is especially important for weed control in rice production 

(Caton et al., 2002) because water-saturated soil limits the germination and growth of many 

weeds. Flooding at 7-14 DAS reduced C. difformis plant heights by at least half compared to no-

flood conditions. Most weedy rice seedlings are killed with winter-flood and low winter 

temperatures, and thus, do not need to be sprayed with broad spectrum herbicides, such as 

glyphosate (Valverde, 2005), as commonly required with the conventional stale seed bed. The 

germination of weeds is inhibited under anaerobic soil conditions (Bird et al., 2002; Caton et al., 

2002). The viability of cultivated rice seed was reduced by 10 times under flooded conditions 

compared with no-flood overwintering (Baek and Chung, 2012). In a field study of seed over-

wintering at soil surface in South Korea, weedy rice was compared with cultivated rice (Baek 

and Chung, 2012). Weedy rice had higher viability (92.7%) compared with cultivated rice 

(4.3%) without any flood treatment. In the second year, weedy rice and cultivated rice were 
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subjected to winter-flood and dry conditions, where weedy rice showed higher viability with 

(90%) and without winter-flood (61%) compared with cultivated rice. Cultivated rice had 5% 

viability in no flood and 0.5% viability in winter-flood condition. Similarly, Fogliatto et al., 

(2010) conducted a field experiment in Southern US with weedy rice over 2 years with 3 

treatments - winter-flood in a field without any flooding history, winter-flood in a field which 

was flooded in previous year and no-flood treatment. In the first year, the treatment with no-

flood history had higher weedy rice germination compared with field which was flooded over 

winter in previous year. However, no difference was observed in these treatments in the second 

year owing to similar flooding history in the first year. Overall, winter-flood reduced the weedy 

rice density up to 95% compared with conventional no-flood system (27%). Collectively, these 

studies demonstrate that in rice-growing areas of temperate climate, winter-flooding alone is an 

effective strategy for reducing the viability of shattered seeds in the field to minimize volunteer 

rice and weedy rice infestation.  

 

Potential herbicides for volunteer rice control 

  Grass herbicides with good residual activity would be the potential alternate option for 

volunteer rice control apart from winter-flood if the herbicides do not cause injury to the rice 

crop. Herbicides like 2,4-D, sulfentrazone, pyroxasulfone, fluometuron, and flumioxazin are 

potential alternatives where residual activity of 2,4-D lasts for a few weeks and sulfentrazone 

remain in the soil up to one year. 2,4-D  is a postemergence (POST) broadleaf weed control 

herbicide but has some residual activity on grass weeds. It is used as pre-plant herbicide in corn, 

sweet corn and rice (4 weeks before planting) and preemergence PRE in corn because it also has 

some activity when applied to the soil. It belongs to the synthetic auxin group of herbicides 



30 
 

available in both ester and amine forms. Its soil half-life values for both amine and ester forms 

have been estimated at 10 d (Vogue et al., 1994). In general, 2,4-D ester has low water solubility 

and thus, leaches less in flooded conditions than does the more water soluble amine form 

(Walters, 1999). Water temperature, soil pH and organic matter impact the degradation of 2,4-D. 

Dissipation (95%) of the initial concentration (DT95) of 2,4-D in paddy rice soil, rain-fed 

lowland rice, and bareground soil was estimated at 15, 26, and 20 d, respectively (Johnson  et 

al.,1995). The amine salt form of 2,4-D rapidly hydrolyzes in soil and water to form 2,4-D acid 

(Tomlin, 2006). Microbial decomposition breaks down 2,4-D acid into CO2,  2,4-DCP and other 

non-toxic forms (Ghassemi et al., 1981; Walters, 1999). 

 Flumioxazin belongs to the N-phenylphthalimide group and is registered as PRE, and 

POST, treatment for the control of broadleaf weeds and some grasses in soybean, sweet potato, 

cotton, dry beans, field corn, and sugarcane (Askew et al., 1999; Scott et al., 2001). It is tank- 

mixed with gylphosate in preplant burndown applications to provide residual activity and 

enhance desiccation of glyphosate-tolerant species. In general, flumioxazin quickly dissipates in 

soil and has a half-life of 10 to 25 days. The residual activity of flumioxazin is greatly affected 

by water content in soil. Higher water content decreases the binding of herbicide molecules to 

the soil (Clay and Koskinen, 1990; Ferrell et al., 2005). Only 24% of flumiozaxin was detected 

90 days after application in clayey soil (sand =14.4%, silt =35.3%, clay = 50.3%) (Alister et al., 

2008). In a carryover study in Brazil on clayey textured soil, it was observed that the herbicide 

had no adverse effect on grain sorghum 6 months after application in a soybean field (Dan et al., 

2010). The persistence of flumioxazin in southern US soils depends upon percentage of clay and 

soil organic matter content with higher adsorption in clay soils (Ferrell et al. 2005). Low organic 

matter and clay content results in rapid dissipation of flumioxazin.  
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 Sulfentrazone belongs to the triazolinone group of herbicides with activity on broadleaf 

and grassy weeds in soybean, surgarcane, sunflower and many vegetables. It controls giant 

foxtail 97 to 100%, yellow nutsedge 96 to 98%, common waterhemp 97 to 98%, common 

cocklebur 91 to 94%, and ivyleaf morningglory 100% (Krausz and Young 2009). In potato 

(Solanum tuberosum), sulfentrazone (0.14 to 0.28 kg/ha) and flumioxazin (0.035 to 0.07 kg/ha) 

provided excellent broadleaf weed control at all the rates tested, whereas grass control increased 

as rate increased (Wilson et al. 2002). Higher rates of sulfentrazone (0.28 kg/ha) also control 

goosegrass and large crabgrass, but weak on common ragweed (58%) (Bailey et al., 2009). Its 

bioactivity is more intense in clayey soils and in soils containing high levels of organic matter 

(Reddy and Locke, 1998; Ohmes and Mueller, 2007). In soybean, when applied at 1.2 kg ai ha
-1

, 

it can persist in soil for more than 539 days (Blanco et al. 2012). In beetroot crop, a longer crop 

rotation interval is required as injuries were observed at 302 days after application (Szmigielski 

et al., 2009). Vivian et al. (2006) reported that sulfentrazone persisted up to 467 days at 0-10 cm 

soil depth at the dosage of 0.9 kg ha
-1

. Sulfentrazone (0.28 kg ha
-1

) has very good grass control in 

potato but its residual activity may have negative effect on succeeding crop. Sulfentrazone 

applied in the fall reduced the stand of rice planted the following spring, but did not affect rice 

yield because of the ability of rice to compensate for low population density by producing more 

tillers when provided with optimum fertilizer and other crop production inputs (Zeng and 

Shannon, 2000). Sulfentrazone degradation in soil is enhanced in no-till systems where microbial 

activity is high, which results in reduced efficacy under such conditions (Locke and Bryson, 

1997; Geier et al., 2006; Mahoney et al., 2014).  

 Pyroxasulfone belongs to the pyrazole group of herbicides, (Tanetani et al., 2009) and is 

labeled for corn, cotton and soybean. The high variation in half-life of pyroxasulfone was 
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attributed to soil moisture and clay content.  The half-life (DT50) of pyroxasulfone in soil was 

estimated to be at 71 days in loam soil, TN (Mueller and Steckel, 2011) and 104-134 days in 

Nunn fine clay loam soil, CO (Westra et al., 2014). In fine clay loam soil with 452 mm rainfall, 

the half-life (DT50) of pyroxasulfone was estimated at 134 d; with higher rainfall (731mm) DT50 

was 104 d (Westra et al. 2014). This indicates that pyroxasulfone would persist in soil longer if 

there is less soil water such as in non-flooded soil over the winter.  

 

Volunteer rice impact on rice grain yield and quality 

 Grain quality is an important consideration in rice production and there is an increasing 

demand for improvements in grain quality characteristics. As rice (Oryza sativa L.) is one of the 

staple food crops therefore, the volume and grain quality are primary concerns in rice production. 

Grain quality is estimated by many parameters including milling ratio; head rice recovery; 

uniformity of grain shape, size, and color; and cooking quality (Septiningsih et al., 2003; Aluko 

et al., 2004).  Contamination of the rice grain with other grains of various sizes and 

characteristics makes it inferior in quality and loses market value. Volunteer rice plants are the 

shattered seeds of the previous rice cultivars, are major contaminant in the field. Volunteer rice 

plants, when harvested with rice crop reduce rice milling quality if found in milling samples 

above threshold levels. After harvest, rough rice is cleaned, and de-hulled before actual milling 

when the bran is removed from rice seed. Head rice are the kernels which are at least three-fourth 

of the original length and plays a major role in determining the yield of brown and milled rice 

which together are assessed for rice market value and the milling quality (Webb, 1980; Juliano 

and Bechtel, 1985; Unnevehr et al., 1992; Aluko et al., 2004). Several other characteristics such 

as chalkiness, percentage of broken kernels, and undesirable grain color also reduce the 
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commercial value of the cultivated rice. (Bautista et al, 2009). Chalkiness in the rice grain 

deteriorates the strength of the kernel and tends to break easily during milling (Nagato, 1962; 

Rani et al., 2006). Basutkar et al. (2014) reported that milled rice yield, head rice yield, and head 

rice chalkiness of commingled samples vary according to the weighted average of the head rice 

yield of each cultivar and head rice chalkiness values, respectively. Apart from chalkiness, 

physical dimensions (Chen et al., 1999; Webb, 1980) and moisture content (Andrews et al., 

1992; Reid et al., 1998) have been shown to affect rice milling performance.  
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Herbicide and Winter Flood Treatments for Controlling Volunteer Rice Off-Season  
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Abstract 

 Field experiments were conducted to study the efficacy of 12 herbicide treatments for 

volunteer rice control with, or without, winter-flooding in Stuttgart and Rohwer, Arkansas, USA 

over two years (2012-13 and 2013-14). Herbicides were applied either in the fall or at 35 d prior 

to planting rice in the spring. Commercially harvested Clearfield
TM

 long-grain inbred rice 

'CL152' was used as volunteer rice seed, broadcasted and lightly incorporated in October, 2012 

and 2013. 'Jupiter' (medium-grain inbred, conventional rice) was planted in May as the rice crop. 

Winter-flood was initiated soon after the fall herbicide treatments were applied and terminated in 

February.  Winter-flood reduced volunteer rice germination by 34% in 2013 and by 40% in 

2014. Some fall herbicide treatments, without winter flood, generally caused more injury to the 

rice crop planted in the spring than the winter-flooded treatments. Fall application of 

pyroxasulfone (0.12 kg ha
-1

), flumioxazin (0.14 kg ha
-1

), and sulfentrazone (0.34 kg ha
-1

) as well 

as pre-plant application of pyroxasulfone (0.12 kg ha
-1

) and 2,4-D (2.24 kg ha
-1

), had lower 

volunteer rice infestation, averaged over flood treatments. However, 2,4-D applied pre-plant 

(2.24 kg ha
-1

), sulfentrazone in the fall (0.34 kg ha
-1

) and pyroxasulfone pre-plant (0.12 kg ha
-1

) 

injured the rice crop by 20%, 23%, and 47%, respectively. Fall application of pyroxasulfone 

(0.12 kg ha
-1

) followed by a lower rate of 2,4-D (1.12 kg ha
-1

)  35 d pre-plant caused minimal 

(6%) crop injury and did not reduce yield. This treatment provided better volunteer rice control 

(73%) than pyroxasulfone alone at 0.12 kg ha
-1

 applied in the fall (64%). To evaluate the 

overwintering potential of hybrid and non-hybrid volunteer seeds, these seed types were planted 

at three depths (0, 7.5, 15 cm) in flooded and non-flooded conditions in an outdoor, buried-pot 

experiment at Stuttgart and Rohwer over 2 years. Winter-flood reduced rice germination by 50% 

in 2013-14 and 40% in 2014-15 (averaged over seed type and depth), after 160 d and 130 d of 
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burial, respectively. After the winter, the viability (germinable + dormant) of hybrid seed was 

higher (13 and 53%) than that of non-hybrid seed (8 and 27%). 
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1. Introduction 

 Volunteer rice (Oryza sativa L.) is a common problem in the rice paddy, which emerges 

from shattered seeds of the previous crop (Gealy, 2005; Warwick and Stewart, 2005; Sudianto et 

al., 2013). In temperate regions volunteer rice germinates either before winter (October-

November) or in the spring (April-May) (Kumar et al., 2008; Sudianto et al., 2013). Volunteer 

rice is a weed when it is morphologically and phenologically different from, and has low grain 

yield and quality compared with cultivated rice. Volunteers from hybrid rice are segregating 

plants, which compete with the crop, but could also have low yields and low grain quality per se, 

thereby reducing the overall productivity of a given field and the overall quality of harvested 

grain. Therefore, it is expected that the volunteer rice problem would be less with conventional 

cultivars compared with hybrid rice or weedy rice. Volunteers from a herbicide-resistant rice 

crop (e.g. Clearfield rice
TM

) could serve as agents for gene flow from rice cultivars to the natural 

weedy rice populations through outcrossing, especially in the case of the Clearfield
TM

 hybrids 

(Gealy et al., 2003; Gealy, 2005; Gressel and Valverde, 2009; Shivrain et al., 2007; Sudianto et 

al., 2013). Rice is primarily self-pollinating, and typically, <1% cross pollination occurs between 

rice cultivars and weedy populations (Gealy et al., 2003; Cao et al., 2006; Shivrain et al., 2007). 

Once introgressed, crop genes can persist in the weedy populations indefinitely (Ellstrand et al., 

1999; Gealy et al., 2003). These outcrosses give rise to populations of weedy type plants which 

compete with rice, contaminate the rice seed during harvest and increase economic losses. The 

amount of crop seed left in the field depends primarily on the harvesting efficiency. Furthermore, 

rice cultivars differ in seed shattering trait, which also impacts the amount of seed dropped in the 

field.   Shattering is one of the most important seed dispersal mechanisms in plants. Early and 

high level of seed shattering is a common trait among the diverse types of weedy rices (Delouche 

et al. 2007). The proportion of shattered seed that will become volunteers in the following 
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cropping season is impacted by many factors. Shattered rice seeds can be consumed by 

predators, killed by adverse climatic conditions, germinate, or remain dormant to enrich the seed 

bank (Vidotto et al., 2001). The environmental conditions experienced by seed after dispersal or 

shattering and storage (Cohn and Hughes, 1981; Ferrero, 2003) can affect seed dormancy or 

germination (Fogliatto et al., 2011). The longevity of weedy rice seed increases with depth of 

burial (Goss and Brown 1939, 1940; Delouche et al., 2007) and buried seeds in flooded soil last 

longer than those buried in non-flooded soil (Noldin et al., 2006). Cultivated rice seed has a short 

life span in soil (less than 2 years) (Goss and Brown, 1939, 1940) compared with weedy rice 

(Noldin et al., 2006; Fogliatto et al., 2011), but the crop seeds stay viable long enough to be a 

problem in the succeeding season. 

To minimize volunteer rice, Arkansas farmers have been practicing: (1) winter-flood or 

fallow without flood, (2) stale seed bed technique using glyphosate and tillage, (3) planting the 

same cultivars over several years to avoid contamination by dissimilar crop seeds, and (4) 

burning of residue after rice harvest (R.C Scott, Extension Weed Scientist, 2013 pers. 

Communication). Volunteer rice from conventional cultivars can be controlled with acetolactate 

synthase (ALS) inhibitor herbicides in Clearfield
TM

 rice, but there is no chemical option during 

the rice growing season for controlling ALS-resistant volunteer rice from Clearfield
TM

 rice. Soil-

applied herbicides with good residual activity for grass control would be a potential alternative 

but, the efficacy of such herbicides for controlling volunteer rice (or weedy rice) and its residual 

effect on the succeeding rice crop are not known. This research was conducted to (1) assess the 

effects of fall- and pre-plant-applied herbicides on volunteer rice population in the succeeding 

rice crop and how this is impacted by winter-flooding; (2) determine the effect of fall- and pre-
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plant-applied herbicides on the rice crop; and (3) compare the overwintering potential of hybrid 

and non-hybrid rice seeds.  

 

2. Materials and Methods 

2.1. Experiment 1. Off-season control of volunteer rice  

 To evaluate the effect of off-season  herbicide treatments and winter flooding on 

volunteer rice germination, experiments were conducted at the Rice Research and Extension 

Center (RREC), Stuttgart  (34°27’54.8”N, 91°23’58.4” W) and the Southeast Research and 

Extension Center (SEREC), Rohwer, (34°48’07.8”N, 91°17’11.6” W), Arkansas, USA between 

2012 and 2014. The soil at RREC was a DeWitt silt loam (fine smectitic, thermic, Typic 

Albaqualfs) with 1.2% organic matter and a pH of 5.8. The soil at SEREC was Sharkey clay with 

<1% organic matter and a pH of 7.2. The experimental units were in a split-plot arrangement 

within a randomized complete block design with three replications at each location. The main 

factor was winter-flood (two levels: winter-flood and no flood) and the sub-factor was herbicide 

and dose combinations (12 levels: fall and spring pre-plant applications). In both years, the field 

was prepared by mid-October. Clearfield
TM

 rice ‘CL152’ was broadcasted over the field (175 kg 

ha
-1

) and lightly incorporated (Fig 1, Table 1). Levees were formed to separate the flooded and 

non-flooded treatments, prior to herbicide application.  For fall and pre-plant application, the 

herbicides were applied using a CO2 backpack sprayer fitted with 4 flat fan nozzles (Tee Jet 

11002) spaced 48 cm apart, delivering 187 L ha
-1

 of spray volume at 276 kPa boom pressure. 

Each bay was covered with a fine mesh netting to prevent seed loss by predation. Winter-flood 

treatment was initiated two weeks after the fall herbicide application and was continued until 

February in the following year (Fig 1). The pre-plant herbicide treatments were applied in 
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March, 35 d prior to planting of rice (Table 1). Rice 'Jupiter' was drill-seeded at 100 kg ha
-1

 in 

April in zero-till conditions. Permanent flood was established at the four- to five-leaf stage of 

rice. Phosphorous (P2O5) and potassium (K2O) were applied pre-flood at 110 kg ha
-1 

and 30 kg 

ha
-1

,
 
respectively.

 
Nitrogen (N) fertilizer was applied twice to provide 100 and 50 kg ha

-1
 N 

immediately before permanent flooding and at panicle initiation, respectively. For general weed 

control in rice, clomazone + quinclorac (0.67 kg ai ha
-1

 + 0.56 kg ai ha
-1

), preemergence (PRE) 

and propanil + thiobencarb (4.5 kg ai ha
-1

 +3.4 kg ai ha
-1

), postemergence (POST) were applied 

to the whole field at both locations. Bensulfuron-methyl POST (0.12 kg ha
-1

) was applied to 

control aquatic weeds (Heteranthera limosa and Sagittaria montevidensis) at RREC. Standard 

agronomic and pest management practices were implemented during the growing season and the 

crop was harvested with a combine in October in both years.  The herbicide treatments which 

resulted in severe injury on rice in the first year were replaced with sequential application of 

promising herbicide treatments in the second year (Table 2). The total volunteer rice reduction 

was estimated with reference to the respective average of non-treated plots in winter-flood and 

no-flood treatments. 

 

2.2. Data recorded 

Volunteer rice germination was recorded from a 1-m
2
 quadrat, randomly located in each 

plot
 
at 18 WAS (weeks after sowing), 20 WAS, 28 WAS and 30 WAS (Fig. 1). Neither volunteer 

rice nor weed emergence occurred before 28 WAS due to unfavorable weather conditions 

(Fig.2). Crop injury and rice stand count was recorded 3 weeks after rice 'Jupiter' planting (29 

WAS). Yield and grain moisture (%) was recorded at harvest.  
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2.3. Data analysis 

Data were subjected to analysis of variance (ANOVA) using SAS (v.9.3) (Table 3, 4). 

Locations were considered as random effect and blocks were nested within location. Flooding 

and herbicide treatments were considered as fixed effects. The data were pooled over two 

locations and analyzed separately by year. Means were separated using Fisher's protected LSD at 

P<0.05. The mean and variance models are described as follows:  

Mean = µ + f + h + (f x h) 

Var = var (l) + var [b (l)] + var [f x b (l)] + var (RE) 

Where: f is the flood treatment, h is herbicide, b is block, l is the location and RE is the residual 

error.  

 

2.4. Experiment 2. Overwintering potential of hybrid and non-hybrid rice seeds 

This experiment was conducted during the 2013-14 and 2014-15 winter season at the 

same sites as the volunteer rice control experiment. At each location within a year, the 

experiment was arranged in a three factor-factorial randomized complete block design (RCBD) 

with three replications. Two hundred seeds of 'Jupiter' (inbred rice) and 'CLXL745' (Clearfield
TM

 

hybrid rice) were placed at the surface, or at depths of 7.6 cm and 15 cm in pots (d = 20 cm) 

filled with field soil. Each depth treatment was set-up in separate pots that were either flooded or 

not flooded during the winter. In total, there were 12 combinations of flood, seed placement 

depth, and seed type. The pots were buried up to the top 10 cm from the lid to facilitate flooding 

of designated treatments and at the same time allowing the seed environment to equilibrate with 

that of the soil profile. The flood treatment was initiated on November 29 and removed on 

February 28 in both years (2014 and 2015).  
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 Holes were bored into the non-flooded pots, before burial, to allow drainage of rain water 

and equilibration of soil moisture and gases inside the pot and the soil environment. All pots 

were covered with a metal mesh to prevent seed loss by predation. Seeds buried at various depths 

were placed between two sheets of fine nylon mesh to facilitate extraction of seeds at termination 

of the study. The mesh was covered with thin layer of soil before placement of seeds. After 

placement of seeds in the pots, all pots were then buried in the spot from where soil was 

extracted to fill the pots. Water was maintained in the flooded pots at 6-8 cm up to February 28, 

in both years (2014 and 2015). The seeds were extracted on May 10, 2014 in year 1 and April 8, 

2015 in year 2 after recording seed germination in the field.  The excavated seeds were washed 

with tap water and placed in 9 cm-diameter Petri-dishes containing moistened filter paper and 

incubated for 12 days at 30° C in the dark. The germinated seeds were then counted and 

discarded. The viability of remaining seeds was determined using the tetrazolium (2,3,5 

triphenyltetrazolium chloride) test (Overaa, 1984; Noldin et al., 2006). Seed embryos were cut 

longitudinally, immersed in a staining solution (1% tetrazolium) in Petri dishes, and incubated at 

30° C for three hours. Seeds that were firm with pink or red embryos were considered alive and 

dormant. The fraction of dormant seed was calculated based on 200 seeds.  

 

2.5. Data analysis 

 The data were subjected to analysis of variance using JMP Pro (v.11) (Table 7). The 

location and its interaction effect with treatments was not significant so data were pooled over 

two locations within a year; therefore, the data were analyzed separately by year. The location 

effect was considered as random. Means were separated using Fisher's protected LSD at P<0.05. 
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3.  Results 

3.1. Experiment 1. Off-season control of volunteer rice  

 There was no germination of volunteer rice after the fall herbicides were applied until 28 

WAS due to freezing conditions in February-March. The temperature remained cool until May in 

both years (Fig 2). The volunteer rice population density was higher in 2014 than in 2013 as 

remnant seed of the rice crop from 2013 augmented the soil seed bank. The herbicide and winter-

flood interaction effect was significant on the total volunteer rice germination recorded at 28 

WAS and 30 WAS (Table 3). Contrast analysis of the non-herbicide, weed-free checks over 

flood treatments showed that winter-flood by itself reduced volunteer rice germination by 34% in 

2013 and by 40% in 2014 (Fig. 3).  

 In 2012-13, the total volunteer rice germination was higher in winter-flood treatment with 

2,4-D (2.24 kg ha
-1

; fall), flumioxazin (0.14 kg ha
-1

; fall), S-metolachlor (1.68 kg ha
-1

; fall), and 

sulfentrazone (0.34 kg ha
-1

;
 
fall). The highest volunteer rice reduction of 81-85% was observed 

with pyroxasulfone at 0.12 kg ha
-1

 applied in the fall or 35 d pre-plant (Table 5). This was 

followed by 2,4-D at 2.24 kg ha
-1

 pre-plant. Fall herbicide treatments with winter-flood had no 

effect on the rice crop in terms of crop stand and yield. Pyroxasulfone pre-plant (0.12 kg ha
-1

) 

was effective in reducing volunteer rice infestation, but caused the highest crop stand reduction. 

Significant stand reduction was also observed with  2,4-D (2.24 kg ha
-1

; pre-plant) and S-

metolachlor (1.68 kg ha
-1

; fall). However, pyroxasulfone applied in the fall (0.12 kg ha
-1

) and the 

lower rate of 2,4-D (1.12 kg ha
-1

) applied pre-plant did not reduce crop stand. Fall-applied 

herbicides caused higher crop injuries in no-flood treatments compared with winter-flood 

treatments. Among the herbicides, pyroxasulfone pre-plant (0.12 kg ha
-1

) caused the highest 

injury (47%) followed by sulfentrazone in the fall (0.34 kg ha
-1

) (29%) and 2, 4-D pre-plant 
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(2.24 kg ha
-1

) (16%) in 2012-13 averaged over winter-flood treatments (Table 5). Similarly, 

pyroxasulfone pre-plant reduced rice yield by 32% and sulfentrazone applied in the fall reduced 

yield by 25%. The pre-plant application of 2,4-D also resulted in less rice yield relative to the 

nontreated, weed-free check. Rice planted into plots sprayed with 2,4-D (2.24 kg ha
-1

) 35 d prior 

to planting in the spring yielded less (6.9 t ha
-1 

) than rice in plots sprayed with 2,4-D at the same 

rate in the fall (8.2 t ha
-1

 ). The lower rate of 2,4-D  (1.12 kg ha
-1

) applied either in the fall or 35 

d pre-plant, did not reduce rice yield. Rice planted in plots sprayed with sulfentrazone in the fall 

(0.12 kg ha
-1

) yielded similar to that of non-treated, weed-free rice. The lower rate of 2,4-D (1.12 

kg ha
-1

) applied in the fall or 35 d pre-plant in 2012-13, were not effective on volunteer rice and 

so were excluded in 2013-2014 . 

 In 2013-14, the highest volunteer rice reduction of 69 – 73% was recorded in plots 

sprayed with 2,4-D preplant (2.24 kg ha
-1

) and pyroxasulfone fb 2,4-D (0.12 fall fb 1.12 kg ha
-1

 

pre-plant) (Table 6). However, 2,4-D pre-plant at 2.24 kg ha
-1

 caused 23% crop injury.  The 

sequential application of pyroxasulfone (0.12 kg ha
-1

; fall) and 2,4-D (1.12 kg ha
-1

; pre-plant) did 

not cause any additional crop injury and provided 14% higher volunteer rice control compared to 

pyroxasulfone (0.12 kg ha
-1

) alone. Fall application of sulfentrazone (0.34 kg ha
-1

) and 

fluometuron (1.12 kg ha
-1

) in non-flooded plots caused higher injury to the rice crop than 

application in flooded plots (Table 6). The lowest yields (5.8 t ha
-1

 and 6.0 t ha
-1

) were recorded 

in 2,4-D pre-plant (2.24 kg ha
-1

 ) and sulfentrazone in the fall (0.34 kg ha
-1

)
 
. Rice in plots treated 

with all other herbicides, yielded similar to rice in the non-treated weed-free plots (7.1 t ha
-1

).  

 

3.2. Experiment 2. Overwintering potential of hybrid and non-hybrid rice seeds                       

 The effects of winter-flood, seed type, burial depth, and seed type x depth interaction on 
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germination capacity (GC) were significant in both years (Table 7). The germination of rice seed 

buried in winter-flooded soil was reduced by 50% in 2014 and 40% in 2015 (averaged over seed 

type and burial depth) after 160 d and 130 d of burial, respectively (Fig. 4). The overwintering 

capacity of rice was also influenced by seed type x depth interaction at both locations. The GC of 

hybrid seed 'CLXL745' placed at the soil surface was 4 times higher (27%) than that of non-

hybrid seed 'Jupiter' (7%) in 2013-14 and 2 times higher (8%) in 2014-15 compared with non-

hybrid (4%) (Table 9). The GC of non-hybrid seed placed on the soil surface and at 7.5 cm depth 

did not differ. The germination of hybrid seed decreased to 8% and 2% at 15 cm in 2013-14 and 

2014-15, respectively, relative to germination of seeds placed on the soil surface. The non-hybrid 

seed germination was 1% at 15 cm depth in both years.  

 The dormancy of rice seed was influenced by all three factors (flood, seed type and 

depth), flood x depth and seed type x depth interaction in both years. No interaction effect of 

flooding x seed type was observed in either year (Table 7). Dormancy was higher in no-flood 

treatment (30 and 9%) than in winter-flood (22 and 6%) in 2013-14 and 2014-15, respectively 

(averaged over seed type and burial depth) (Fig. 4). Dormancy increased with depth in both years 

(Table 8). In both years (2013-14 and 2014-15), there was no difference in dormancy of seed 

placed at the surface and at 7.5 cm depth under winter-flood conditions. Dormancy increased to 

29% and 8% at 15 cm depth compared with surface (16% and 4%, respectively) (Table 8). Under 

no-flood treatment, irrespective of seed type, the dormancy increased to 37% and 12% at 15 cm 

in 2013-14 and 2014-15 from 21% and 5% at the surface, respectively. Seed type x depth 

interaction showed a similar trend of increased dormancy with depth in case of both hybrid and 

non-hybrid seed, where hybrid seed dormancy was higher at each depth compared to non-hybrid 

seed in both years (Table 9).  



56 
 

 

4. Discussion 

4.1. Influence of winter-flood on volunteer rice seed viability 

 In rice growing areas of the United States, winter flooding is a widespread practice 

consisting of flooding rice fields from the start of autumn following rice harvest until the spring 

before tillage operations (Fogliatto et al., 2010) where anaerobic soil conditions limit the 

germination and growth of many weeds including weedy rice (Bird et al., 2002; Caton et al., 

2002). Winter-flood improves rice straw decomposition and an alternative to the commonly 

practiced burning of rice residue to clean the field, postharvest (van Groenigen et al., 2003). Our 

research showed that winter-flood alone can reduce the volunteer rice germination significantly 

compared with no-flood conditions. According to Baek and Chung, (2012), winter-flood reduced 

the viability of cultivated rice seed by 10 times, compared with no-flood overwintering. Similar 

findings on weedy rice were reported by Fogliatto et al. (2010), where winter-flood reduces the 

weedy rice seed density up to 95% compared with conventional no-flood system (27%). 

Collectively, these studies demonstrate that in rice-growing areas of temperate climate, winter-

flood alone is an effective strategy for reducing the viability of shattered seeds in the field to 

minimize volunteer rice infestation. Where possible, winter-flooding should be a part of an 

integrated management system for weedy or volunteer rice.    

 

4.2. Herbicide efficacy on volunteer rice 

  Herbicide adsorption and transport in the soil are important factors which determine the 

herbicide efficacy and its residual activity. Adsorption of herbicide molecules to soil depends 

upon the chemical structure of herbicide, soil texture, moisture and organic matter (Ferrell et al., 
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2005). Likewise, the type of herbicide, application rate, herbicide persistence and mobility, 

rainfall, topography and climate are some of the factors affecting movement of herbicide in the 

soil (Wauchope, 1994; Westra et al., 2014). 

 2,4-D belongs to the synthetic auxin group of herbicides and  is recommended as POST 

treatment for broadleaf weed control in turf and major grass crops. It is also used as pre-plant in 

corn, sweet corn and rice (4 weeks before planting) and PRE in corn because it also has some 

activity when applied to the soil. Its soil half-life values have been estimated at 10 d for the acid, 

diethylamine salt, and ester forms (Vogue et al., 1994). In general, 2,4-D ester is less likely to 

leach in flooded conditions due to low water solubility but the amine form may leach more due 

to its higher water solubility and polarity (Walters, 1999). The aerobic and anaerobic half-life of 

2,4-D was estimated at 66 d and 312 d, respectively (Concha and Shepler, 1994). In water, the 

biodegradation of 2,4-D is affected by nutrient status of the soil, temperature, soil pH and 

presence of organic matter. At 25 C and pH7, the half-life of 2,4-D in water was reported as 39 

d. Dissipation of 95% of the initial concentration (DT95) of 2,4-D in paddy rice soil, rain-fed 

lowland rice, and bareground soil was estimated as 15, 26, and 20 days, respectively (Johnson et 

al.,1995). The amine salt of 2,4-D was used in our study, which rapidly hydrolyzes in soil and 

water to form 2,4-D acid (Tomlin, 2006). Microbes further decompose 2,4-D acid to yield CO2, 

2,4-DCP and other non-toxic forms (Ghassemi et al., 1981; Walters, 1999). Therefore, the lower 

crop injuries caused by fall-applied 2,4-D amine (2.24 kg ha
-1

) in winter-flood treatments, 

compared with no flood, could be due to leaching and rapid degradation of this herbicide in 

water. 

 Flumioxazin belongs to the N-phenylphthalimide group and is registered as PRE, and 

POST, treatment for the control of broadleaf weeds and some grasses in cotton, dry beans, field 
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corn, sweet potato, sugarcane and soybean (Askew et al., 1999; Scott et al., 2001).  It is also used 

as a partner for a nonselective herbicide such as glyphosate, in preplant desiccation of vegetation, 

to improve the overall efficacy and provide residual activity. In general, flumioxazin is adsorbed 

by soil colloids but has quick dissipation rate in soil (half-life of 10 to 25 d).  Flumioxazin moves 

down the soil profile with water and is absorbed by plant roots (Ferrell and Vencill, 2003).  It has 

been reported that just by increasing soil water content, flumioxazin can be removed from soil 

adsorption sites as more water reduces the binding capability of the herbicide molecule to soil 

(Clay and Koskinen, 1990; Ferrell et al., 2005). This leads to reduced residual effect or short 

persistence. Therefore, flumioxazin was more effective in controlling volunteer rice when 

applied to soil without flood and less effective in winter-flooded soil. In dissipation studies, only 

24% of flumiozaxin was detected 90 d after application in clayey soil (sand =14.4%, silt =35.3%, 

clay = 50.3%) (Alister et al., 2008). The persistence of flumioxazin in southern US soils depends 

upon percentage of clay and soil organic matter content with higher adsorption in clay soils 

(Ferrell et al., 2005). Low organic matter and clay content results in rapid dissipation of 

flumioxazin. The soils of SEREC (sand =4.35%, silt = 52.6%, clay = 43%) and RREC (sand = 

2%, silt = 62%, clay = 36%) have high clay content,  which  increases adsorption of flumioxazin 

to soil in no-flood conditions resulting in higher volunteer rice control compared with winter-

flooded conditions.  

 Sulfentrazone belongs to the triazolinone group of herbicides and effectively controls 

broadleaf and grassy weeds in soybean, sugarcane, sunflower and many vegetables. Its 

bioactivity is more intense in clayey soils and in soils containing high levels of organic matter 

(Reddy and Locke, 1998; Ohmes and Mueller, 2007). It can persist in soil for more than 539 d at 

1.2 kg ai ha
-1 

when applied in soybean
 
(Blanco et al., 2012). Szmigielski et al., (2009) observed 
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negative effects of this herbicide on beetroot plants at 302 days from application, demonstrating 

the necessity of a longer rotation interval for succeeding crops. Vivian et al., (2006) reported that 

sulfentrazone persisted up to 467 d at 0-10 cm soil depth at the dosage of 0.9 kg ha
-1

. 

Sulfentrazone (0.28 kg ha
-1

) has very good activity on grasses (Bailey et al., 2009) but its 

persistence may have negative effect on succeeding crops. In our study, sulfentrazone caused 

higher injury on the rice crop compared with other herbicides (S-metolachlor, flumeturon, 

thiobencarb, flumioxazin) at 29 WAS. However, lower crop injuries were observed in winter-

flooded treatments compared to no-flooded treatments probably due to rapid dissipation in 

flooded soil.  

 Pyroxasulfone is a relatively new herbicide which belongs to the pyrazole group of 

herbicides (Tanetani et al., 2009) and is labeled for corn, cotton and soybean. The half-life 

(DT50) of pyroxasulfone in soil was estimated to be at 71 d in loam soil, TN (Mueller and 

Steckel, 2011) and 104-134 d in Nunn fine clay loam soil, CO (Westra et al., 2014). The high 

variation in half-life of pyroxasulfone was attributed to soil moisture and clay content. In fine 

clay loam soil with 452 mm rainfall, the half-life (DT50) of pyroxasulfone was estimated at 134 

d; with higher rainfall (731mm) DT50 was 104 d (Westra et al. 2014). This indicates that 

pyroxasulfone would persist in soil longer if there is less soil water such as in non-flooded soil 

over the winter. Sulfentrazone degradation in soil is enhanced in no-till systems where microbial 

activity is high, which results in reduced efficacy under such conditions (Locke and Bryson, 

1997; Geier et al., 2006; Mahoney et al., 2014). The rice in our test was planted in no-till 

conditions, which is expected to enhance microbial activity and, therefore, reduce residual 

activity on rice.  Our data showed that where pyroxasulfone (0.12 kg ha
-1

) was applied into fall, 

it controlled volunteer rice in spring, and reduced rice crop stand at 29 WAS. However, it did not 
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affect rice yield because rice recovered from that injury. Rice compensates for low population 

density by producing more tillers when provided with optimum fertilizer and other crop 

production inputs (Yoshida, 1981; Zeng and Shannon, 2000).   

 

4.3. Overwintering potential of hybrid and non-hybrid rice seed at different depths 

  The seed burial experiment showed that winter-flood reduced the number of seed that 

can survive the winter, averaged over depth of seed placement and rice seed type (Table 9). Baek 

and Chung, (2012) reported that the viability of a cultivated rice placed on the soil surface 

without flood over the winter was 5% and was 0.5% when flooded over the winter. It supports 

the hypothesis that winter-flood reduces germination and viability of rice seed. Overwintering 

with winter-flood favors the decay of weed seeds including weedy rice (Nelms and Twedt, 

1996). In comparison to conventional rice, the viability (germinable + dormant) of hybrid seed 

was higher (13-53%) than that of non-hybrid rice seed (8-27%). The hybrid rice seed had 2-4 

times higher germination than non-hybrid rice seed. Similarly, the proportion of dormant seed 

was also higher (2 times) in hybrid seed than that of non-hybrid seed. This means that more 

hybrid rice seeds survived the winter (across flooding treatments) compared with non-hybrid 

seed. Baek and Chung, (2012) also compared cultivated rice with weedy rice and found higher 

viability in latter case (90% and 61%) in no-flood and winter-flood respectively. Several other 

studies have indicated high viability in weedy rice in over-winter studies (Seong et al., 2004; 

Noldin et al., 2006; Fogliatto et al., 2011). This may have occured because weedy rice has 

primary seed dormancy (Cohn and Hughes, 1981) and generally exhibits deeper (secondary) 

dormancy than cultivated rice (Gu et al., 2003). Our study also showed an interaction effect 

between seed type and seed-depth on germination capacity and dormancy of hybrid and non-
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hybrid rice seeds.  Dormant seeds buried in soil under natural conditions would persist longer 

than non-dormant seeds (Justice and Bass, 1978). The deterioration of seeds is associated with 

damage to lipid, nucleic acid, and protein owing to oxidation reactions (Yan et al., 1996; Hsua et 

al., 2003; Baek and Chung, 2012). In plants with freezing tolerance, anti-freeze proteins block 

the growth of ice crystals in outside spaces of cells in the tissue, preventing cell damage from 

freezing and thawing (DeVries, 1986; Jeong, 2009). Anti-freeze protein accumulation in the 

embryo and aleuronic layer of the seed is one of the freeze tolerance mechanisms in weedy rice 

(Baek and Chung, 2012). The same mechanism could be functioning in hybrid rice. In addition, 

hybrid seed vigor could contribute to freezing tolerance.  

 

5. Conclusion 

Winter-flood alone (without herbicide) can reduce volunteer rice germination by 34% to 

40%. The application of  2,4-D pre-plant (1.12 kg ha
-1

) following pyroxasulfone applied in the 

fall (0.12 kg ha
-1

) provided better volunteer rice control (73%) than the other treatments and did 

not injure the rice crop nor cause yield loss. Therefore, the sequential application of 

pyroxasulfone and 2,4-D at these rates is a potential herbicide program for controlling volunteer 

rice. Winter-flood can reduce volunteer rice infestation up to 50% (averaged over depth and seed 

type). This practice can be integrated with postharvest/pre-plant herbicide use to minimize 

volunteer rice infestation. Hybrid rice seed has higher capability to survive the winter than non-

hybrid rice seed. Therefore, the volunteer rice problem is expected to be higher following a 

hybrid rice crop than following an inbred cultivar. The volunteer rice population can be reduced 

significantly simply by keeping the soil saturated over the winter or in conjunction with a 
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herbicide program such as pyroxasulfone (0.12 kg ha
-1

) applied in the fall followed by a pre-

plant application of 2,4-D (1.12 kg ha
-1

).   
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Fig. 1. Schematic diagram of general sequence of field activities for Experiment 1 (2012-13 and 2013-14), at the Rice Research and 

Extension Center (RREC), Stuttgart and Southeast Research and Extension Center (SEREC), Rohwer, Arkansas, USA. WAS  = weeks 

after volunteer rice seeding (broadcasted); WAP =  weeks after rice crop planting (drill seeded); 3 WAP = 29 WAS. 
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Fig. 2. Weather data during the course of the experiments (Source: United States Department of 

Agriculture, weather station data archives and Southeast Research and Extension Center weather 

station data)  
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Fig. 3. Influence of winter-flood on volunteer rice germination (averaged over 6 replications 

across 2 locations) during 2012-13 and 2013-14 (Experiment 1) at the Rice Research and 

Extension Center (RREC), Stuttgart and Southeast Research and Extension Center (SEREC), 

Rohwer, Arkansas, USA. For each year, treatments with different letters are significantly 

different. Uppercase letters are for comparing flood treatments in 2013-14 and lower case letters 

are for comparing flood treatments in 2012-13. 
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Fig. 4. Influence of winter-flood on germination capacity (GC) and dormancy of rice seed, 

averaged over seed type and burial depth during 2013-14 and 2014-15 (Experiment 2) at the Rice 

Research and Extension Center (RREC), Stuttgart, and Southeast Research and Extension Center 

(SEREC), Rohwer, Arkansas, USA. F = winter-flood, NF = no-winter flood. For each variable 

within a year, treatments with different letters are significantly different. Uppercase letters are 

for comparing dormancy means; lower case letters are for comparing germination capacity 

means. 
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Table 1. Timing of field operations for off-season control of volunteer rice (Experiment 1) in 

2012-13 and 2013-14 at the Rice Research and Extension Center (RREC), Stuttgart and 

Southeast Research and Extension Center (SEREC), Rohwer, Arkansas, USA. 

Field operations 2012-13
a
 2013-14 

Volunteer Rice 'CL152' Seeding (Fall) Oct 30 Oct 30 

Winter flood duration Nov 25 - Feb 28 Nov 15 - Mar 5 

Herbicide application (Fall) Nov 10 Oct 30 

Herbicide application; pre-plant (Spring) Apr 2 Mar 27 

Rice planting (Jupiter) May 9 May 2 

a
Maximum of three

 
days difference ( + 3 d) between two locations within a year 
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Table 2. Herbicide treatments across two years (2012-13 and 2013-14) at the Rice Research and 

Extension Center (RREC), Stuttgart and Southeast Research and Extension Center (SEREC), 

Rohwer, Arkansas, USA. 

Herbicide treatments 
Dose 

(kg ai ha
-1

) 
Time of application 2012-13

a
 2013-14 

no herbicide NA NA    

2,4-D 1.12 fall   _ 

2,4-D 2.24 fall    

2,4-D 1.12 35 d pre-plant   _ 

2,4-D 2.24 35 d pre-plant    

flumioxazin 0.014 fall    

flumioxazin 0.014 35 d pre-plant    

flumioxazin fb 2,4-D 0.014 fb 1.12 fall fb 35 d pre-plant _  

S-metolachlor 1.68 fall    

sulfentrazone 0.336 fall    

fluometuron 1.121 fall    

pyroxasulfone 0.123 35 d pre-plant   _ 

pyroxasulfone fb 2, 4-D 0.123 fb 1.12 fall fb 35 d pre-plant _  

pyroxasulfone 0.123 fall    

thiobencarb 4.48 35 d pre-plant  _  
a 

''treatment was implemented, otherwise '_' for treatments that were implemented only in 

year 1 or only in year 2.
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Table 3. Analysis of variance (P-values) for the volunteer rice density, rice crop injury and yield, 

experiment 1 (2012-13), Arkansas, USA. 

Source of variation
a
 df

b
 

Total
c 

V.Rice 

V.Rice
d
 

reduction 

Crop
e 

injury 

(3 WAP) 

Crop stand 

(3WAP) 

Yield 

 

  
-------------------------P-values----------------------- 

Flood (F) 1 0.0655 0.0798 0.0007 0.7302 0.0902 

Herbicide (H) 11 (10) <.0001 <.0001 <.0001 <.0001 <.0001 

Flood  x Herbicide 

(F x H) 
11 (10) 0.0004 0.0629 0.0386 0.7275 0.7361 

a
Data were pooled over two locations; RREC, Stuttgart and SEREC, Rohwer, AR (2012-13) 

b
Parentheses indicate degrees of freedom (df) for volunteer  rice (VRice) reduction and crop 

injury; non-treated weed-free was excluded from analysis 
c
Sum of volunteer rice (V. rice) recorded at 28 WAS and 30 WAS 

d
Volunteer rice reduction was estimated relative to the average plant density in respective non-

treated plots with or without winter flood, within a year 
e
Crop injury was estimated relative to non-treated weed-free treatment at 21 DAT on a scale of 0 

to 100; includes stunting and chlorosis  
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Table  4. Analysis of variance (P- values) for the volunteer rice density, rice crop injury and 

yield, experiment 1 (2013-14), Arkansas, USA.  

Source of 

variation
a
 

df
b
 Total

c
 

V.Rice 

V.Rice
d
 

reduction 

Crop
e 

injury 

(3 WAP) 

Crop 

stand 

(3WAP) 

Yield 

 

  
--------------------------------P-values------------------------- 

Flood (F) 1 0.0136 <.0001 0.522 0.028 0.3955 

Herbicide (H) 11 (10) <.0001 <.0001 <.0001 0.0085 <.0001 

Flood x Herbicide 

(F x H) 
11 (10) 0.0200 0.1055 0.0245 0.4037 0.449 

a
Data pooled over two locations; RREC, Stuttgart and SEREC, Rohwer, AR 

b
Parentheses indicate degree of freedom (df) for volunteer rice (V. rice) reduction and crop 

injury 
c
Sum of volunteer rice (V. rice) recorded at 28 WAS and 30 WAS  

d
Volunteer rice reduction was estimated with reference to the average plant density in  respective 

non-treated plots with or without winter flood, within a year 
e
Crop visual injury was estimated with  reference to non-treated weed-free treatment at 21 DAT 

on a scale of 0 to 100; includes stunting and chlorosis  
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Table 5. Herbicide efficacy and rice crop 'Jupiter' performance during 2012-2013 (Experiment 1) at the Rice Research and Extension 

Center (RREC), Stuttgart and Southeast Research and Extension Center (SEREC), Rohwer, Arkansas, USA
a
. 

Herbicides  Rate  

kg ai ha
-1

 

Timing Total V. rice 

('000/ha) 

V. rice 

reduction 

(%) 

Rice stand,  

3 WAP 

('000 ha
-1

) 

Crop injury, 

3 WAP  

(%) 

Yield  

(t ha
-1

) 

    F NF   F NF  

no herbicide NA NA 41 62 _ 1768 _ _ 7.6 

2,4-D 1.12 fall 38 53 11 1645 2 4 7.7 

2,4-D 2.24 fall 45 19 40 1636 4 8 6.9 

2,4-D 1.12 35 d preplant 32 25 44 1703 9 8 7.2 

2,4-D 2.24 35 d preplant 20 14 67 1456 15 17 6.4 

flumioxazin 0.14 fall 36 15 42 1697 7 12 7.7 

flumioxazin 0.14 35 d preplant 29 16 56 1681 12 14 6.8 

S-metolachlor 1.68 fall 35 12 56 1583 9 15 6.8 

sulfentrazone 0.34 fall 32 8 52 1748 23 35 5.7 

fluometuron 1.12 fall 29 12 62 1708 12 18 6.9 

pyroxasulfone 0.12 35 d preplant 9 7 85 1181 42 51 5.2 

pyroxasulfone 0.12 fall 15 4 81 1708 10 16 7.4 

Winter-flood   30 47 1637 13 7.3 

No-flood     21 73 1648 18 6.8 

LSD (0.05)
b
          

Flood 
  

NS NS NS *** NS 

Herbicide 
  

*** 15 167 *** 0.7 

Flood x 

Herbicide 
Within flood 8 NS NS 5 NS 

 
Across flood 20 NS NS 7 NS 

a
Data pooled over two locations; RREC, Stuttgart and SEREC, Rohwer (2012-13) 

b
Fisher’s protected LSD to compare treatment means 

*Indicates significance at ***P < 0.001; only interaction LSD is shown if interaction effect is significan 
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Table 6. Herbicide efficacy and rice crop 'Jupiter' performance during 2013-2014 (Experiment 1) at the Rice Research and Extension 

Center (RREC), Stuttgart and Southeast Research and Extension Center (SEREC), Rohwer, Arkansas, USA
a
.  

Herbicides  Rate  

kg ai 

ha
-1

 

Timing Total 

V. rice  

('000/ha) 

V. Rice 

reduction 

(%) 

Rice stand, 

3 WAP 

('000/ha)  

Crop injury,  

3 WAP 

(%) 

Yield 

(t ha
-1

) 

    F NF   F NF  

no herbicide NA NA 310 518 _ 1250 _ _ 7.1 

2,4-D 2.24 fall 330 366 7 1236 0 0 6.9 

2,4-D 2.24 35 d preplant 100 116 69 970 20 25 5.8 

flumioxazin 0.14 fall 281 233 33 1098 3 4 7.3 

flumioxazin FB 

2,4-D 

0.14 FB 

1.12 

fall FB 35 d 

preplant 

252 180 53 1153 8 5 7.2 

flumioxazin 0.14 35 d preplant 250 234 54 1051 10 10 6.8 

S-metolachlor 1.68 fall 360 259 25 1163 3 5 6.9 

sulfentrazone 0.34 fall 287 201 44 1190 12 30 6.0 

fluometuron 1.12 fall 430 338 12 1039 8 15 6.7 

pyroxasulfone 0.12 fall 168 114 64 1090 4 8 6.8 

pyroxasulfone 

FB 2,4-D 

0.12 FB 

1.12 

fall FB 35 d 

preplant 

138 93 73 1121 5 11 6.9 

thiobencarb 4.48 35 d preplant 178 198 56 1220 6 4 7.0 

Winter-flood    257 38 1027 7 6.6 

No-flood   236 52 1242 10 7.0 

LSD (0.05)
b
          

Flood 
  

* 12 150 NS NS 

Herbicide 
  

*** 9 110 *** 0.5 

Flood x 

Herbicide 
Within flood 40 NS NS 4 NS 

 
Across flood 64 NS NS 5 NS 

a
Data pooled over two locations; RREC, Stuttgart and SEREC, Rohwer (2013-14) 

b
Fisher’s protected LSD to compare treatment means 

*Indicates significance at *P < 0.05, ***P< 0.001; only interaction LSD is shown if interaction effect is significant 
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Table 7. Analysis of Variance (P-values) for germination capacity (GC) and seed dormancy, for 

the seed overwintering experiment in 2013-14 and 2014-15 (Experiment 2), at the Rice Research 

and Extension Center (RREC), Stuttgart and Southeast Research and Extension Center (SEREC), 

Rohwer, Arkansas, USA. 

  
2013-14  2014-15 

Source of Variation df GC  Dormancy  GC Dormancy 

  
-------------------------------P-values------------------------ 

Flood (F) 1 <.0001  <.0001  <.0001 0.0048 

Seed type (S) 1 <.0001  <.0001  <.0001 0.0041 

Depth of burial (D) 2 <.0001  <.0001  <.0001 <.0001 

F × S 1 0.6282  0.4329  0.2186 0.0977 

F × D 2 0.4312  0.3612  0.0252 0.0126 

S × D 2 0.0286  0.0128  <.0001 0.0244 

F × S × D 2 0.5348  0.7657  0.4574 0.4046 
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Table 8. Interaction effect of winter-flood and seed placement depth on seed dormancy during 

2013-14 and 2014-15 (Experiment 2) at the Rice Research and Extension Center (RREC), 

Stuttgart and Southeast Research and Extension Center (SEREC), Rohwer, Arkansas, USA.  

    Dormancy (%)
a
 

  2013-14  2014-15 

Depth (cm)  F
b
 NF

b
 Mean  F NF Mean 

0   16 21 19  4 5 5 

7.5  21 31 26  6 9 8 

15.0  29 37 33  8 12 10 

Mean   22 30 29  6 9 8 

LSD (0.05)
c
; F x D 6   3  

a
Data pooled over two locations within a year (RREC, Stuttgart and SEREC, Rohwer) 

b
F = Flooded; NF = Nonflooded over the winter 

c
Fisher’s protected LSD to compare treatment means 
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Table  9. Germination capacity and dormancy of volunteer rice seeds as influenced by seed type and seeding depth in 2013-14 and 

2014-15 (Experiment 2), at the Rice Research and Extension Center (RREC), Stuttgart and Southeast Research and Extension Center 

(SEREC), Rohwer, Arkansas, USA.  

  2013-14
a
 

 
2014-15

a
 

  Germination 

Capacity (%)  
Dormancy (%)

b
 

 

Germination 

Capacity (%)  
Dormancy (%) 

Depth H
c
 NH

c
 Mean 

 
H NH Mean 

 
H NH Mean 

 
H NH Mean 

0 27 7 17 
 

27 10 19 
 

8 4 6 
 

6 3 5 

7.5 21 6 14 
 

34 19 27 
 

4 3 4 
 

7 5 6 

15.0 8 1 5 
 

40 26 33 
 

2 1 2 
 

10 7 9 

Mean 19 5 12 
 

34 22 26 
 

5 3 4 
 

8 5 7 

LSD(0.05)
d
  

             

Seed type (S) 6 
   

7 
   

1 
   

2 
 

Depth (D) 3 
   

4 
   

1 
   

2 
 

S x D 4 
   

6 
   

2 
   

3 
 

a
Data pooled over two location within a year (RREC, Stuttgart and SEREC, Rohwer) 

b
Non-germinated, viable seeds were considered as dormant. The viability of intact, non-germinated seeds was tested using 

Tetrazolium 
c
Seed type; H = hybrid seed, NH = non-hybrid 

d
Fisher’s protected LSD to compare treatment means 
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Abstract 

 Volunteer rice (Oryza sativa L.) plants arise from shattered seeds of the previous crop, 

which could reduce the yield of cultivated rice and the commercial value of harvested grain. 

Volunteer rice plants from a cultivar other than the current crop produce grains that may differ in 

physico-chemical traits from the planted cultivar, which reduce the uniformity and milling 

quality of harvested rice grain. To evaluate the effect of volunteer rice infestation on rice yield 

and grain quality, 20 commercial fields were surveyed, across six rice growing counties of 

Arkansas in the fall of 2012. Panicles were collected from 1-m
2
 areas (4-8 sites per field) 

representing different levels of infestations across the field. Cropping history that included 

hybrid cultivars over the past two years (2010 and 2011), indicated higher volunteer rice 

infestation (20%) in 2012 compared with fields planted previously with inbred rice (5.6%). The 

total grain yield of rice was reduced by 0.4% for every 1% increase in volunteer rice density 

across all fields, averaged over cultivars. The 1000-kernel weight, kernel length-width ratio, 

%protein, %amylose, and head rice yield (HRY) were affected by volunteer rice infestation and 

cultivars grown in the previous two years. The protein content, amylose content, chalk and 

physical dimensions of harvested grain did not change with repetition of the same cultivar for 3 

years. Volunteer rice can potentially have a significant negative impact on rice yield and grain 

quality and should be managed effectively. 

 

Keywords: amylose, chalkiness, Clearfield
TM

 rice, hybrid rice, milling yield, non-hybrid 
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1. Introduction 

 Rice (Oryza sativa L.) is a major staple food crop for more than half of the world’s 

population. The volume of production and grain quality are primary considerations in rice 

production. Grain quality is evaluated by many parameters including milling ratio; head rice 

recovery; uniformity of grain shape, size, and color; and cooking quality (Septiningsih et al., 

2003; Aluko et al., 2004).  Rice grain contamination with other grains of various sizes and 

characteristics results in inferior quality and reduced market value. Volunteer rice plants are the 

progenies of the previous rice cultivars, arising from shattered seeds or harvestlosses. Prior to 

milling, rough rice is cleaned and dehulled.  Milling removes bran layers from the caryopsis, 

producing the white rice that we consume. The milled rice consists of head rice (the kernels 

which are at least three-fourth of the original length) and broken kernels. Head rice yield (HRY), 

is the proportion of head rice to rough rice. Head rice is a major factor that determines rice 

market value as it is directly related to brown rice yield and milled rice yield, which together 

constitute the “milling quality” (Webb, 1980; Juliano and Bechtel, 1985; Unnevehr et al., 1992; 

Aluko et al., 2004). Chalkiness (seen as an opaque portion of the endosperm,), percentage of 

broken kernels, and undesirable grain color can reduce the commercial value of rice. (Bautista et 

al, 2009). Chalky grains are not as hard as translucent ones and are prone to breakage during 

milling (Nagato, 1962; Rani et al., 2006). Volunteer rice grains from a different cultivar, or from 

plant types that mature earlier or later than the planted cultivar, can reduce the overall milling 

quality if present above threshold levels.  

Grain appearance is mostly judged by grain shape and translucence of the endosperm 

(Tan et al., 2000).  However, grain color has a stronger influence on consumer preference or 

acceptance for end-products (Juliano, 1985; Collado et al., 1997; Bhattacharya et al., 1999). 
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Protein content can influence the physical and chemical properties of cooked rice (Hamaker and 

Griffin, 1990; Marshall et al., 1990; Hamaker, 1994). The bran (outer layer of brown rice) 

contains high amount of protein, most of which is removed during milling. Protein content in 

general is influenced largely by environmental conditions, the level of available nitrogen (Nanda 

and Coffman, 1979; Perez et al., 1996), and genotype (Jing et al., 2010).  Amylose is one of the 

major components of starch (Brown and Poon, 2005). Amylose content is responsible for the 

stickiness and tenderness of cooked rice. Rice starch contains nearly 20% amylose and 75-80% 

amylopectin (Jane et al., 1999). The amylose content of rice is one of the most important 

determinants of cooking and eating quality (Bao et al., 2002) and could give rice high or low 

mark for grain quality.   

Besides the potential impact on harvested grain, volunteer rice also has an ecological 

impact that eventually translates to economic losses. Volunteers from hybrid rice emerge at 

different times due to variability in germination behavior and difference in depth of seed 

placement in the soil. In addition, volunteer plants from hybrid rice vary in maturity period as 

these will be segregating F2 plants or of a later generation. This non-uniform germination and 

phenology increase the window for out-crossing and gene flow to weedy rice or the planted 

cultivar, which is a problem if the hybrid rice is herbicide-resistant. Further, the segregating 

volunteer plants compete with the crop, but have variable yield potential and grain quality per se. 

The overall crop productivity is therefore reduced by having less productive volunteers in the 

mix and the grain quality is compromised by contamination of different grain types and grains of 

different moisture contents due to non-uniform maturity of volunteer plants. The potential 

economic impact of volunteer rice on the rice industry due to crop yield losses from competition 

and reduction in grain quality is not known. The objectives of this research were: (1) to evaluate 
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the effect of hybrid and non-hybrid cropping history on volunteer rice infestation, and (2) to 

evaluate the effect of volunteer rice on the yield and grain quality of different rice genotypes.  

 

2. Materials and Methods 

2.1. Plant Material 

  In the fall of 2012, rice grain samples were collected from 20 farmers’ fields infested 

with volunteer rice across six rice growing counties of Arkansas, USA (Fig. 1).  Pertinent 

information regarding the field history was obtained from the grower (Table 1) and weedy rice 

infestation at the time of sampling was recorded. Paddy rice samples were harvested from a 1-m
2
 

area in each field, representing different levels of infestation, with two samples collected from 

non-infested sites per field. The total number of infested samples differed across fields, 

depending on the levels and patches of weedy/volunteer rice infestation within the field.  In the 

Southern US, the rice crop is generally seeded in rows using a grain drill, on a dry seedbed.  All 

the sampled fields were planted in this manner. The volunteer rice plants were distinguished 

from cultivated rice based on their location (between the drill rows) and random or patchy 

distribution. Further, volunteer rice could also be distinguished from the rice crop based on some 

morphological characteristics (i.e. taller or shorter than the rice crop, different growth habit) and 

phenology (early or late maturity). The samples were threshed within 30 days of harvest with a 

mechanical thresher at 18% grain moisture content. The threshed grains were kept at room 

temperature for further drying to 12% moisture content. The dry grains were then cleaned and 

200g composite samples of both volunteer rice and cultivated rice were de-hulled and milled at 

the Riceland Mill, Stuttgart, Arkansas, USA.  

Composite sample= (200g * % rice yield in sample) + (200g * %Volunteer rice yield in sample)  
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2.2. Morphological and physical characterization of grains  

  The following data  were recorded:  number of tillers, number of panicles, grain yield at 

12% moisture, chalk% using WinSeedle
TM

Pro, Epson Perfection V700 (Epson America Inc., 

Long Beach, CA, USA), and physical characteristics of grain (color, 1000-grain weight, length-

width ratio, and others) using 2312 Graincheck
TM

 Analyzer (FOSS TECATOR, Eden Prairie, 

MN, USA). All morphological and physical characteristics were recorded for the mixture of 

seeds (rice + volunteer rice) based on the proportion of volunteer rice seed in respective samples.  

2.3. Chemical analysis of grains 

 The threshed rice kernels were dehulled using benchtop de-hulling equipment (Satake 

Rice Machine, Tokyo, Japan). Dehulled kernels were milled using a benchtop miller 

(PEARLEST, Kett Electric laboratory, Tokyo, Japan) for 45s to remove the bran. A subsample 

of the milled kernels (10g) was ground to pass a 0.5-mm screen in a Cyclotech grinder (Foss 

North American, Eden Prairie, MN, USA). Ground milled rice samples were analyzed for 

apparent amylose content according to AACC method 61-03.01 (AACC, 2010) using Auto 

Analyzer 3 (AA3; Seal Analytical, Mequon, WI, USA). Briefly, ground flour (50 mg) was 

placed in a Fisherbrand 50 ml centrifuge tube and wetted with ethanol (95%, 0.5 ml), followed 

by the addition of NaOH solution (1M, 4.5 ml) containing Triton X-100 (wetting agent) down 

the sides of the tube to wash any adhering sample down with the sodium hydroxide. After 

allowing the samples to sit overnight at 22
o
C without shaking, the samples were vortexed and 45 

ml of deionized water was added to each tube, re-vortexed and allowed to sit overnight at 22
o
C.  

Duplicate aliquots were pipetted from each sample and placed on the AA3. Citric acid (0.1N), 

iodine solution [0.5 ml containing I2 (3.2 mM) and KI (48.2 mM)], and deionized water were 
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added by the AA3 to each sample which then measured the absorbance at 620 nm. Amylose 

content was calculated from a standard curve generated by the AA3.  

 Crude protein levels were determined using 0.2 g ground brown rice (before milling) 

using the AACC method 46-30.01 (AACC, 2010) (LECO FP-2000; LECO Corp., St. Joseph, MI, 

USA). Briefly, rice flour was placed in ceramic weigh boats and then placed in the LECO FP-

2000. Nitrogen gas was removed for other volatile combustion products and then measured by 

the thermal conductivity detector. A conversion factor of 5.95 (Juliano, 1985) was used to 

convert nitrogen value to crude protein content. Analysis was conducted in duplicates. Weighted 

averages of protein and amylose content were calculated based on the proportions of rice and 

volunteer rice seeds to represent protein and amylose content of the volunteer rice-infested 

sample. This weighted average was used for analysis purposes.  

Weighted average = (PC/AC of rice * % of rice yield in sample) + (PC/AC of V. rice * % of V. 

rice yield in sample); where PC= protein content, AC=amylose content, V. rice = volunteer rice 

2.4. Cropping systems categorization for data analysis 

 For objective 1, cultivars grown in previous years were grouped into 5 cropping 

histories/scenarios according to seed type (Table 1). If Clearfield
TM 

rice was grown repeatedly in 

all 3 years
 
(2010-2012), it was grouped in cropping history ‘A’ for hybrid Clearfield

TM 
rice or 

‘B’ for non-hybrid Clearfield
TM 

rice. Imazethapyr (ALS herbicide) could reduce the volunteer 

rice density in Clearfield
TM

 rice following a conventional rice cultivar. Therefore, if Clearfield
TM

 

rice was grown in at least one year after non-Clearfield
TM 

 rice  in 2010, this field was grouped 

into either cropping history  'C' for hybrid or 'D' for non-hybrid seed type during 2011 and 2012. 

However, if Clearfield
TM

 rice in 2010 was followed by conventional rice in 2011 and 2012, the 

field was grouped in cropping history A for hybrid Clearfield
TM 

rice or B for non-hybrid 



 

87 
 

Clearfield
TM 

rice because HR volunteer rice cannot be controlled in conventional rice. 

  One field that was planted with soybean in 2010 and fallowed in 2011, but had hybrid 

rice in 2009 was grouped into cropping history ‘E’. Cropping history E, was excluded from data 

analysis for objective 1. For objective 2, the field with 'CL261' had a small number of samples 

because the volunteer rice density was similar across the field, hence CL261 was excluded from 

data analysis for objective 2.  

 

2.5. Statistical analysis 

2.5.1. To evaluate the effect of cropping history on volunteer rice infestation, analysis of variance 

(ANOVA) was conducted and Fisher's protected LSD (α = 0.05) was used to compare the 

treatment means among different cropping histories. Contrast analysis was conducted to 

differentiate hybrid and inbred rice cropping histories.  

2.5.2. To evaluate the effect of volunteer rice on the yield and grain quality, a two-factor linear 

regression model was used and analysis of covariance was conducted. Volunteer rice density and 

cultivars were treated as fixed factors and field was treated as random variable. The data were 

analyzed using Proc Mix in SAS 9.3 and JMP Pro v.11 software. Fisher’s protected LSD (α = 

0.05) was used to compare the slopes of fitted lines when found significant. 

 

3. Results 

 Volunteer rice infestation in surveyed rice fields differed widely depending upon the 

cultivar planted during the sampling year, type of cultivars grown in previous years, and farmers’ 

management practices. In general, rice harvested from volunteer rice-infested fields includes a 

mixture of rice + volunteer rice. The problem becomes severe when volunteer rice matures at 
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different times. Cropping history that included hybrid cultivars over the past two years (A) had 

higher volunteer rice infestation (22%) in 2012 compared with all other cropping histories, 

except C where hybrid rice cultivars in 2010 were followed by Clearfield
TM

 hybrid rice cultivars 

in 2011 (Fig. 2a). However, cropping history C had similar volunteer rice infestation as  cropping 

history B (inbred cultivars in previous years) and B was similar to D (soybean followed by 

fallow) in terms of volunteer rice infestation. Contrast analysis of cropping histories A + C 

versus B, which compares the incidence of volunteer rice in fields planted with hybrid versus 

inbred cultivars  in previous years, revealed that fields that had been planted with hybrid rice are 

more likely to have higher volunteer rice infestation (20%) than those planted only with inbred 

rice  (5.6%) (Fig. 2b).  

 

3.1. Chemical attributes 

3.1.1. Protein content 

 Volunteer rice density alone could not explain the variation in protein content. Linear 

regression model with interaction of volunteer rice density and cultivar explained 64% of the 

variation in the data. The remaining 36% of the variation could be attributed to field and 

management practices. Protein content ranged from 7.0% in 'Roy J' to 8.8% in 'CL261' not 

contaminated with volunteer rice seed (Table 2). 'CLXP756' showed 0.26% increase in protein 

content with every 1% increase in volunteer rice density. The increase in protein content with 

volunteer rice density was observed only in CLXP756. The protein content of other cultivars 

declined with increasing density of volunteer rice.  

3.1.2. Amylose content                                                                                                           

 Amylose content was highest in Roy J (22%) and lowest in Jupiter (14%), without 
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volunteer rice infestation. In general, amylose content differed between cultivars and varied with 

volunteer rice density. ‘Cocodrie' showed 4.4% reduction in amylose content with every 1% 

increase in volunteer rice density.  Cocodrie was planted after hybrid cultivars in fields ‘F01’ and 

‘F16’ (scenario A) (Table 1). Volunteer plants of these hybrids had lower amylose content than 

Cocodrie, which in turn lowered the amylose content of the contaminated samples. In the same 

cropping scenario (A),  CLXP756 was preceded by hybrid cultivar  CLXL729 in fields F04 and 

F07, which had similar amylose content as that of CLXP756; in such cases, no change was 

observed in amylose content even after volunteer rice (CLXL729) contamination. As many 

cultivars were distributed across scenarios during the sampling year, the averaged effect of 

cropping scenarios resulted in no change in amylose content with increase in volunteer rice. 

Similarly, with other cultivars, the change in amylose content was not significant due to averaged 

effect of diverse volunteer rice with high and low amylose content. During the sampling year, 

CLXL745 was included in three out of five cropping scenarios. In cropping scenario A, the 

amylose content of CLXL745 decreased with increase in volunteer rice density and in cropping 

scenario B, the amylose content of CLXL745 increased with volunteer rice density. These 

changes were dependent on volunteer rice genotype and led to overall non-significant decline in 

amylose content of CLXL745 with increase volunteer rice density, (averaged over cropping 

scenarios).  

3.1.3. Chalkiness  

Without volunteer rice contamination, the lowest chalk (%) was observed in CL261 

(2.1%) and Roy J (2.3%) followed by CLXP756 (3%). Chalk (%) was influenced only by 

cultivar. Volunteer rice density had no effect on variation in chalkiness of rice kernel. Cocodrie 
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had the highest chalk (4.8%) and 'Jupiter' had the lowest chalk (4.0%), at 17.7% volunteer rice 

density (averaged across all fields) (Fig. 5).  

 

3.2. Physical attributes 

3.2.1 Head rice yield 

 Volunteer rice had no effect on head rice yield of CLXL745 and CLXP756 but 

significantly reduced the head rice yields of Cocodrie, Jupiter and Roy J (Fig 3-D). Cocodrie was 

contaminated with the volunteer rice seed of 'XL723' and 'XL753' which in general, have lower 

head rice yield than Cocodrie. 

3.2.2. 1000-Kernel Weight 

  Without volunteer rice contamination, the 1000-kernel weight of CL261 was the lowest 

(17.0 g) and that of Cocodrie was the highest (21.9 g) followed by that of 'Jupiter' (21.5 g). 

Kernel weights of Cocodrie and Jupiter sharply declined with increase in volunteer rice density 

compared with those of other cultivars (Table 4). The 1000-kernel weights of CLXL745 and Roy 

J were not impacted by increase in volunteer rice density.  

3.2.3. Yield reduction 

The total yield reduction was independent of cultivars. With every 1% increase in 

volunteer rice density, the total yield (rice + volunteer rice) was reduced by 0.4% (averaged over 

all cultivars) (Fig 3-F). Volunteer rice plants, several of which were immature at harvest, 

generally had less number of panicles and unfilled spikelets compared with cultivated rice. 

Lesser number of panicles on volunteer rice plants resulted in lower yields. Fields F13 and F14 

(Table 1) had the least number of panicles (effective tillers) of volunteer rice (Fig. 4). These 

fields were planted with a longer-duration cultivar (Taggart) in the previous two years (potential 
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volunteer rice plants) and planted with shorter-season cultivars CL261 and CLXL745 during the 

sampling year. This led to many immature volunteer plants with fewer panicles at the time of 

sampling. A similar trend was observed in other fields planted with a short-season cultivar in the 

sampling year, but had  volunteer rice plants that were offsprings of long- or medium-duration 

cultivars planted in previous years.  

 

4. Discussion 

4.1. Effect of cropping history on volunteer rice infestation 

 Our study demonstrated how rice cropping history could impact the severity of volunteer 

rice infestation. A related study demonstrated that 2-4 times more volunteer rice infestation can 

be expected from hybrid rice than from conventional rice (Singh et al., 2015, unpublished) due to 

high deterioration of conventional rice seed. Noldin et al., (2006) conducted experiment to study 

the influence of irrigation, burial depth on seed longevity of red rice and commercial rice (non-

hybrid) cultivars. Rice cultivar seeds were not viable after 5 months, regardless of their position 

in the soil. The decrease in viability of buried non-hybrid rice cultivar seeds was the result of 

seed decay. Also, the viability of non-hybrid rice placed at soil surface was just 5% in no-flood 

conditions during winter and decreased to 0.5% in flood conditions (Baek and Chung, 2012). 

This leads to few volunteer plants from non-hybrid seeds. Our study showed a higher level of 

volunteer rice infestation in fields planted with hybrid rice in previous years than those planted 

previously with non-hybrid rice. Also, in a related experiment, we observed that the hybrid rice 

seed had higher dormancy than the non-hybrid rice (Singh et al., 2015, unpublished). It has been 

reported that dormancy increases with depth of seed placement (Omami et al., 1999) and the 

lifespan of dormant seeds buried in the soil under natural conditions may be longer than the 
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lifespan of non-dormant seeds (Justice and Bass, 1978). Shattered seeds which are buried in soil 

during field operations are brought back to the soil surface, or fully exposed, with soil 

disturbance during tillage. These seeds germinate at favourable conditions and increases 

volunteer rice density. Moreover, if the shattered seeds are of hybrid cultivars then these can 

germinate even from deeper depths (Singh et. al., 2015, unpublished).  

 

4.2. Effect of volunteer rice on the yield and grain quality of different rice genotypes  

 Volunteer rice contamination in rice seed has affected many morpho-physiological 

characteristics of rice grain, except seed color.  It has been reported by Basutkar et al., (2014) 

that milled rice yield, head rice yield, and head rice chalkiness of commingled samples vary 

according to the weighted average of the head rice yield of each cultivar and head rice chalkiness 

values, respectively.  Chalk in rice kernels has strong negative correlation with head rice yield 

(Bautista et al., 2009) as higher chalk reduces kernel strength (Nagato, 1962; Rani et al., 2006; 

Webb, 1991). Physical dimensions (Chen et al., 1999; Chen and Siebenmorgen, 1997; Pomeranz 

and Webb, 1985; Webb, 1980) and moisture content (Andrews et al., 1992; Reid et al., 1998) 

have been shown to affect rice milling performance.  

 

4.2.1. Protein content 

 Protein content, in general, varies by genotype and is further modified by N-fertilizer rate 

and application timing (Nangju and De Datta, 1970; Tamaki et al., 1989; Ghosh et al., 2004). 

Cameron and Wang, (2005) reported that two hybrids, ‘XL7’ and ‘XL8’, had a slightly higher 

amylose content, but significantly lower crude protein content than conventional inbred cultivars 

under the same milling conditions. A similar trend was observed when kernels of different 
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cultivars were analyzed without volunteer rice contamination (Table 2). Our data shows that 

inbred cultivars Cocodrie, Jupiter and CL261, except Roy J, had higher protein content than 

Clearfield
TM

 rice hybrids CLXL745 and CLXP756. Gealy and Bryant (2009) reported that 

protein content is inversely related with amylose content (P<0.0001). Similarly, our study 

showed that the cultivars CL261 and Jupiter had higher protein content but lower amylose 

content than other cultivars. The linear regression model in the current study explained 64% of 

the variation in protein content. The remaining variation could be attributed to differences 

between fields and management practices including N-fertilizer application, which can affect the 

total crude protein content of rice seed. It has been reported that the protein content of rice is 

influenced by quantity of N-fertilizer application (Perez et al., 1996; Champagne et al. 2009). 

Nitrogen is a constituent of proteins; higher dose of N-fertilizer results in higher protein content. 

Moreover, timing of N-fertilizer application also influences the protein content of rice grain.  For 

example, top dressing N-fertilizer at heading increases HRY and protein content of the rice grain 

(Seetanum and De Datta, 1983). In Arkansas, farmers apply N-fertilizer pre-flood and second 

split at beginning of internode elongation (BIE). One single optimum pre-flood N application is 

recommended in fields that can be flooded timely with option of midseason application and split 

application is recommended in fields (Norman et al., 2013). N application is recommended 

between late boot and beginning of heading only for hybrids to minimize lodging and to increase 

milling quality (Norman et. al., 2013). During grain filling stage, grains derive N compounds 

accumulated in leaves and stem up to flowering stage (Osaki et al., 1991; Zhao et al., 2015). 

Accumulation of protein in the lateral region of the endosperm provides resilience and protects 

grain from breakage during milling (Leesawatwong et al., 2005). Therefore, protein content in 
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grain varied (36%) based on soil type, soil fertility, application and timing of fertilizer and 

irrigation conditions.   

4.2. 2.Amylose content 

 The relation of amylose content with the grain type has been discussed in many studies. It 

has been shown that long-grain cultivars have higher amylose content than short-grain cultivars 

(Williams et al., 1958; Webb, 1985). Long-grain and medium-grain cultivars in the southern US 

were bred to contain 21-23% and 12-18% amylose, respectively (Moldenhauer et al., 2004). In 

the current study, Jupiter and CL261, both medium-grains from the University of Arkansas 

breeding program, had less amylose content (14.0% and 15.9%, respectively) than the long grain 

varieties (Table 2). Amylose content is governed by waxy (Wx) alleles (Shure et al., 1983; Sano, 

1984; MacDonald and Preiss, 1985; Ayres et al., 1997) and strong correlation was observed with 

G-T polymorphism at the Wx locus (putative 5'-leader intron splice site) and apparent amylose 

content. This single nucleotide polymorphism ('T' in short-grain US varieties and 'G' in long 

grain US varieties) could explain 80.1% of the variation in the apparent amylose content (Ayres 

et al., 1997).   In the current study, apparent amylose was affected by the interaction of volunteer 

rice density with cultivars planted (Fig. 3-B). This interaction model explained 93% of the 

variation in apparent amylose content. The remaining variation in amylose content in rice can be 

attributed to environmental factors, and management practices. The amylose content decreases 

with high N-fertilization in rice (Alcantara et al.,1996) and also negatively correlated with mean 

temperature during grain filling (Counce et al., 2005; Jin et al., 2005).N-fertilizer prolongs rice 

growing period which influences temperature of seed setting that leads to low amylose content 

(Hao et al., 2007). Sato, (1979) reported that activity of starch-synthesizing enzymes decreases 

under temperature stress and also reduces starch transport to developing kernels. The amylose 
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content of the harvested grain is expected to decline if contaminated with volunteer rice grains 

containing low amylose. The increase in volunteer rice density would also increase the grain 

contamination level; however, the overall impact of volunteer rice grain contamination on the 

amylose content of harvested grain depends upon both the level of contamination and the 

amylose content of the planted cultivar.   

 

4.2.3. Chalkiness 

  Chalk is one of the major issues with rice quality which reduces its market value.  

Chalky endosperm decreases the kernel strength and results in lower head rice yield (Webb, 

1991; Siebenmorgen and Qin, 2005; Ambardekar et al., 2011). Chalk increases when night air 

temperature is high at the time of grain filling (Counce et al., 2005; Ambardekar et al., 2011). 

The response of cultivars to high night air temperature is variable (Mackill et al., 1996; 

Yamakawa et al., 2007; Cooper et al., 2008; Lanning et al., 2011). The differential response of 

cultivars to night time air temperatures results in varying levels of chalkiness (Linscombe et al., 

1991; Cooper et al., 2008). The current study indicated that chalkiness differs between cultivar, 

but is independent of volunteer rice density. However, increase in volunteer rice density can 

contaminate the harvested grain with seeds from different cultivars or plant types with lower or 

higher chalkiness. As the difference in chalkiness between crop seed and volunteer rice seed 

increases, the impact of seed contamination is also expected to increase. The exclusion of 

volunteer rice density from significant effects on chalkiness only indicates that not all volunteer 

seeds have different chalkiness than the planted cultivar and that chalkiness among volunteer rice 

seed is highly variable.  
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4.2.4. Milling quality 

  Whole grain milling yields are impacted by both genotype and environmental factors 

(Jodari and Linscombe, 1996). Calderwood et al., (1980) delayed rice harvest to reduce drying 

costs and found that head rice yield peaked shortly after maturity and declined sharply thereafter. 

The delay in rice harvest correlated with increased broken kernels, which reduced rice milling 

quality. On the other hand, harvesting the grains too early also reduces milling quality because 

immature kernels have high moisture content and soft endosperm (Reid et al., 1998; 

Siebenmorgen et al., 2006). Late-germinated volunteer rice plants were not mature at the time of 

sampling in all cropping scenarios. Fields F14, F13 and  F12 in cropping history D and field F20 

in cropping history B where long- or mid-season cultivar Taggart and Jupiter was grown in 2010 

and 2011 (Table 1), had many immature volunteer rice plants . The seeds with high MC% 

generally break during milling thereby reducing head rice recovery. Head rice recovery is also 

low when grains are dry (< 14% MC) and undergo alternate drying and wetting. Volunteer rice 

seed from a short-season rice cultivar would mature earlier and, therefore, would have less 

moisture content than the long-season rice crop at the time of harvest. Early-maturing volunteer 

rice usually leads to higher chalkiness and fissuring in mature rice seed, as these seeds remain in 

the field until harvest of the planted cultivar. In cropping scenario B, Jupiter and CLXL745 had 

lower HRY, where these were preceded by Francis (F06) and CL151, CL131 (F02), respectively 

in previous years. Similarly, CLXL745 in cropping scenario C and Cocodrie in cropping 

scenario A had lower HRY where these were preceded by XL723 due to more breakage of the 

over-dried, contaminating shorter-season volunteer rice seed. Because genotype affects head rice 

yield, the genotype of volunteer rice affects the milling quality of contaminated, harvested rice 

grain. In general, CLXL745 and CLXP756 have lower HRY than other cultivars (Wilson et al., 
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2013), which can reduce the head rice recovery of a rice crop contaminated by volunteer plants 

from such hybrid lines. As observed by Basutkar et al., (2014), head rice recovery decreased 

from 66.7% to 62.5% as the share of CLXL745 increased from 0% to100% in original CL151 

sample. They further observed that Clearfield
TM

 hybrids require less time for milling because the 

kernels have thinner bran layer than those of conventional rice. Some of the kernels therefore 

will be overmilled, and break, when commingled with conventional rice.  

 

4.2.5. Yield attributes 

  Genotype is the main source of variation in kernel weight, density, number of panicles 

and overall yield (Rao, 2005). Delayed maturation, immature panicles and contamination of seed 

with other types of different sizes and weights were some of the consequences of volunteer rice 

infestation. In the fields with volunteer rice, the panicles were fewer on volunteer rice plants 

compared with the planted cultivar. Many volunteer rice plants in each field germinated late, and 

showed reduced growth.  Rice kernels that are set at later stages have poor grain quality and 

reduced dry matter (Mohapatra et al., 1993). Fields in cropping scenario D (Table 1) had many 

immature volunteer rice plants without  panicles (Fig. 4) where CLXL745 was preceded by 

Taggart, Roy J or Jupiter in 2010 and 2011 (F14, F13). This was also the case with fields in 

cropping scenario B where Jupiter was preceded by Taggart (2010-2011) (F20). These volunteer 

plants competed with planted rice for resources, but did not contribute to the total yield. Similar 

cases were observed with other cultivars, where volunteer rice that germinated late, or had later 

maturity period, produced less panicles per unit area, resulting in reduced harvested grain per 

unit area. Thus, yield loss increased with increasing volunteer rice infestation. Moreover, the 

1000-kernel weight of CLXL729, XL723, and XL753 (grown in 2010 and 2011) were lower than 
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that of Cocodrie, CLXP756 and CLXL745 (grown in the sampling year) (Wilson et. al. 2013). 

Thus, when planted rice is infested with volunteer rice from cultivars with lesser kernel weight, 

the overall productivity of the field will be reduced.   

 Planting the same cultivar across several years would not affect protein content, amylose 

content, 1000-grain weight and head rice yield (at 15% volunteer rice density of the same 

genotype). However, yield reduction may be observed due to lesser panicles on volunteer rice 

plants and immature plants without panicles at harvest (Table 5). It is expected that if permanent-

flood delays or rice planted in dry direct-seeded conditions, volunteer rice plants may germinate 

late which will mature later than crop plants. The delay in harvest or difference in maturity of 

grains at harvest can lead to differences in chalk, crude protein content and apparent amylose 

content and HRY of the rice even for plants of the same genotype, depending upon the volunteer 

rice density.  

 

5. Conclusion 

 The volunteer rice infestation was four times higher in fields with the cropping history of 

hybrid rice cultivars over the past two years (2010 and 2011), compared with fields planted 

previously with inbred rice. Volunteer rice affected the total yield (rice + volunteer rice) and 

head rice yield of the rice crop. The total grain yield of rice was reduced by 0.4% for every 1% 

increase in volunteer rice density across all fields, averaged over cultivars. The 1000-kernel 

weight, kernel length-width ratio, %protein, %amylose, and head rice yield (HRY) were affected 

by volunteer rice density and genotypes grown in the previous two years. The impact of 

volunteer rice on the overall productivity of the rice field stems from the reduced productivity of 
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volunteer plants while these plants also compete with the planted cultivar. Volunteer rice seed 

can potentially have a significant negative impact on rice grain quality.  
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Table 1. 

Summary of cropping scenarios with cultivars grown in 20 farmers’ fields from 2010-2012 across six counties in Arkansas, USA.  

 -----------Cropping scenarios------------     

Coding Sampling year 

Cropping history 

(Previous years) 

Sampling 

year Previous years Fields County 

 

(2012) (2011-2010) 2012 2011 2010 (ID)  

A Inbred /Hybrid Hybrid-Hybrid Cocodrie XL723 XL753 F01 Ashley 

 

  CLXP756 CLXL729 CLXL729 F07 Greene 

 

  Cocodrie XL723 XL723 F16 Greene 

 

  CLXP756 CLXL729 CLXL729 F04 Jackson 

 

  CL261 CLXL745 CLXL729 F05 Jackson 

   CLXL745 CLXL745 CLXL745 F17 Mississippi 

   CLXL745 CLXL745 CLXL745 F18 Mississippi 

B Inbred /Hybrid Inbred- Inbred Jupiter Jupiter CL152 F15 Mississippi 

 

  CLXL745 CL151 CL131 F02 Arkansas 

 

  Jupiter Jupiter Francis F06 Jackson 

 

  Roy J Jupiter Jupiter F11 Jackson 

   Jupiter Jupiter Jupiter F19 Jackson 

   Jupiter Taggart Taggart F20 Jackson 

C Hybrid CL Hybrid- Hybrid CLXL745 CLXL745 XL723 F09 Mississippi 

 

  CLXL745 CLXL745 XL753 F10 Mississippi 

 

  CLXL745 CLXL729 XL723 F08 Greene 

D CL Inbred/CL Hybrid Inbred- Inbred CL261 Taggart Taggart F12 Jackson 

 

  CLXL745 Roy J Jupiter F13 Jackson 

 

  CLXL745 Taggart Taggart F14 Mississippi 

E Inbred Fallow- Soybean Roy J Fallow Soybean F03 Craighead 
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Table 2.  
Summary of chemical and physical attributes of rice grain harvested (without volunteer rice 

contamination) across six counties (2012), Arkansas, USA. 

Cultivar Protein
a
  Amylose

a
  Chalk

b
 

Length / 

Width
b
 

Head 

rice
b
 

1000- 

Kernel 

Weight
b
 Yield 

 

(%) (%) (%) Ratio (%) (g) (t/ha) 

CL261 8.8 15.9 2.1 2.4 66 17.0 7.8 

CLXL745 7.6 19.6 4.2 3.3 64 21.7 9.3 

CLXP756 7.5 20.6 3.0 3.3 64 21.7 9.5 

Cocodrie 8.1 20.5 5.5 3.4 68 21.3 8.5 

Jupiter 8.4 14.0 3.8 2.2 67 21.3 8.4 

Roy J 7.9 22.0 2.3 3.4 67 20.0 8.5 

LSD(0.05)
c
 0.3 0.6 1.1 0.2 1.9 0.5 0.7 

a
Protein and amylose were measured in duplicates; brown rice was used for protein content 

analysis and milled rice was used for amylose content analysis 
b
Chalk, length-width ratio, head rice and 1000-kernel weight were measured using brown rice

 

c
Fisher’s protected LSD(0.05) was used to compare the treatment means 
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Table 3.  

Analysis of variance (ANOVA) P-values for chemical and physical attributes of milled and brown rice from cultivars produced in 

fields infested with volunteer rice (2012), Arkansas, USA. 

Source of variation df Protein
a
 Amylose

a
 Chalk

b
 

Length/

Width
b
 

Head 

rice
b
 

1000-

Kernel 

weight
b
 

Total 

yield 

reduction 

V. rice 

panicle 

reduction
c
  

  

-----------------------------------------------P-value------------------------------------------------ 

Volunteer rice (V) 1 0.9744 0.0249 0.9162 0.0761 <.0001 <.0001 <.0001 0.0670 

Cultivar (C) 4 0.004 <.0001 0.0124 <.0001 0.0606 0.0009 0.7079 0.5006 

V x C 4 <.0001 <.0001 0.0624 <.0001 <.0001 <.0001  0.2411  0.7074 
a
Protein and amylose content were analysed in duplicates, milled rice was used for amylose and brown rice was used for protein 

content analysis 
b
Chalk, Length/width, head rice, kernel weight were analyzed using brown rice 

c
V. rice panicle reduction= Volunteer rice tiller without panicles 
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Table 4.  

Rate of change (slopes) in variables affected by cultivar and volunteer rice interaction (2012), 

Arkansas, USA. 

Cultivar Protein
a
 Amylose

a
 

Length / 

Width
b
 Head rice

b
 

1000- 

kernel 

weight
b
 

Total 

yield 

reduction
c
 

CLXL745 -0.006 b -0.017 c -0.002 b -0.058 c -0.019  b 

0.42 

CLXP756  0.003 a  -0.006 bc -0.003 b -0.128 bc -0.026 ab 

Cocodrie -0.009 b -0.044 d -0.005 b -0.396 a -0.029 ab 

Jupiter -0.018 c  0.030 a 0.012 a -0.175 b -0.037 a 

Roy J -0.012 c  0.006 b -0.005 b  -0.258 ab -0.006 c 
a
Protein and amylose content were analysed in duplicates separately for rice crop and volunteer 

rice; weighted average were used for analysis; milled rice was used for amylose and brown rice 

was used for protein content analysis 
b
Chalk, Length/width, head rice, kernel weight were analyzed using brown rice 

c
Total yield (TY)= rice yield + volunteer rice; TYR was affected by interaction of volunteer rice 

infestation and cultivar 
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Table 5. 

Analysis of variance (ANOVA) P-values for chemical and physical attributes of milled and brown rice from cultivars produced in 

fields infested with volunteer rice of the same variety (2012), Arkansas,
 
USA

a
. 

Cultivar
b
 

Source of 

Variation df Protein Amylose Chalk 

Length/

Width 

Head 

rice 

1000-

Kernel 

weight 

V. rice 

panicle 

reduction
d
 

Total 

yield 

reduction 

   

-------------------------------------------P-value--------------------------------------- 

CLXL745
c
 Volunteer 

rice density 

 

2 0.1901 0.0526 0.0193 0.7222 0.581 0.6314 <0.0001 0.0108 

Jupiter
c
 1 0.1166 0.0683 0.8121 0.8916 0.2394 0.0276 0.0014 0.0183 

 

a
Each cultivar was compared at 15% volunteer rice density (same genotype) and without volunteer rice infestation  

b
Cultivars grown consecutively for three years (2010-2012) 

c
CLXL745 averaged over eighteen volunteer infested samples and four control samples of two fields, field was treated as random 

variable; Jupiter rice cultivar averaged over three volunteer infested samples and two control samples of same field 
d 

V. rice panicle reduction = Tillers without panicle
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Fig. 1. Distribution of fields surveyed (2012) across six counties in Arkansas, USA.
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Fig. 2. Effect of cropping history (2a) and cultivar type (2b) on volunteer rice infestation; A= 

Hybrid-Hybrid, B= Inbred-Inbred, C= Clearfield
TM

 Hybrid-Hybrid, D= Inbred-Inbred with 

Clearfield
TM

 rice variety in sampling year 2012.

2a 2b 
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R
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= 0.8444 

R
2
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Fig. 3. Linear regression representation for A= Protein%, B= Amylose%, C= Length-Width 

(ratio), D= Head rice%, E= 1000-Kernel Weight, F= Total yield reduction%.
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Fig. 4. Field to field variations on volunteer rice maturity and panicle development, volunteer 

rice infested fields surveyed across six counties in 2012, Arkansas, USA. 
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Fig. 5. Chalk percentage affected by genotypes at 17.7% volunteer rice density (averaged across 

all fields), volunteer rice infested fields surveyed across six counties in 2012, Arkansas, USA. 

 

  



 

110 
 

Literature cited 

AACC International. 2010. Method 46-30.01, Method 61-03.01, In: Approved Methods of 

Analysis (11th ed.). St Paul, MN: Amer. Assoc. of Cer. Chem. 

Alcantara, J.M., Cassman, K.G., Consuelo, M.P., Bienvenido, O.J., Samuel, P.L. 1996. Effects of 

late nitrogen fertilizer application on head rice yield, protein content, and grain quality of 

rice. Cer. Chem. 73(5), 556-560. 

Aluko, G., Martinez, C., Tohme, J., Castano, C., Bergman, C., Oard, J., 2004. QTL mapping of 

grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor. 

Appl. Genet. 109(3), 630-639. 

Ambardekar, A.A., Siebenmorgen, T.J., Counce, P.A., Lanning, S.B., Mauromoustakos, A., 

2011. Impact of field-scale night time air temparatures during kernel development on rice 

milling quality. Field Crops Res. 122(3), 179-185. 

Andrews, S.B., Siebenmorgen, T.J., Mauromoustakos, A., 1992. Evaluation of the McGill No. 2 

rice miller. Cer. Chem. 69(1), 35-43. 

Ayres, N.M., McClung, A.M., Larkin, P.D., Bligh, H.F.J., Jones, C.A., & Park, W.D., 1997. 

Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose 

classes in an extended pedigree of US rice germplasm. Theor. Appl. Genet. 94(6-7), 773-

781. 

Baek, J.S., Chung, N.J., 2012. Seed wintering and deterioration characteristics between weedy 

and cultivated rice. Rice 5, 21. 

Bao, J., Sun, M.,Corke, H., 2002. Analysis of the genetic behavior of some starch properties in 

indica rice (Oryza sativa L.): thermal properties, gel texture, swelling volume. Theor. 

Appl. Genet. 104(2-3), 408-413. 

Basutkar, N.N., Siebenmorgen, T.J., Mauromoustakos, A., 2014. Milling properties of 

commingled rice-cultivars. Amer. Soc. of Agr.  Biol. Eng. 57(6), 1717-1728. 

Bautista, R.C., Siebenmorgen, T.J., Counce, P.A., 2009. Rice kernel chalkiness and milling 

quality relationship of selected cultivars. AAES Res. Ser.  581, 220-229. 

Bautista, R.C., Siebenmorgen, T.J., Mauromoustakos, A., 2009. The role of rice individual 

kernel moisture content distributions at harvest on milling quality. Trans. of the ASABE 

52(5), 1611-1620. 

Bhattacharya, M., Zee, S., Corke, H., 1999. Physicochemical properties related to quality of rice 

noodles. Cer. Chem. 76(6), 861-867. 



 

111 
 

Brown, W. H., Poon, T. 2005. Introduction to organic chemistry (3th ed.). Willard Grant Press, 

Boston, Mass. 

Calderwood, D.L., Bollich, C.N., Scott, J.E., 1980. Field drying of rough rice: effect on grain 

yield, milling quality, and energy saved. Agron. J. 72(4), 649-653. 

Cameron, D.K., Wang, Y.J., 2005. A better understanding of factors that affect the hardness and 

stickiness of long-grain rice. Cer. Chem. 82(2), 113-119. 

Champagne, C.P., Green-Johnson, J., Raymond, Y., Barrette, J., Buckley, N., 2009. Selection of 

probiotic bacteria for the fermentation of a soy beverage in combination with 

Streptococcus thermophilus. Food Res. Int. 42(5), 612-621. 

Chen, H., Siebenmorgen, T.J., 1997. Effect of rice kernel thickness on degree of milling and 

associated optical measurements. Cer. Chem. 74(6), 821-825.  

Chen, H., Siebenmorgen, T.J., Du, L., 1999. Quality characteristics of medium-grain rice milled 

in a three-break commercial milling system. Cer. Chem. 76(4), 473-475. 

Collado, L.S., Mabesa, L.B., Corke, H., 1997. Genetic variation in color of sweetpotato flour 

related to its use in wheat-based composite flour products. Cer. Chem. 74(5), 681-686. 

Cooper, N.T.W., Siebenmorgen, T.J., Counce, P.A., 2008. Effects of nighttime temperature 

during kernel development on rice physicochemical properties. Cer. Chem. 85(3), 276-

282. 

Counce, P. A., Bryant, R.J., Bergman, C. J., Bautista, R.C., Wang, Y. J., Siebenmorgen, T.J., and  

Meullenet, J. F. 2005. Rice milling quality, grain dimensions, and starch branching as 

affected by high night temperatures. Cer. Chem. 82(6), 645-648. 

Gealy, D.R., Bryant, R.J., 2009. Seed physicochemical characteristics of field-grown US weedy 

red rice (Oryza sativa) biotypes: Contrasts with commercial cultivars. J. of Cer. 

Sci. 49(2), 239-245. 

Ghosh, M., Mandal, B.K., Mandal, B.B., Lodh, S.B., Dash, A.K., 2004. The effect of planting 

date and nitrogen management on yield and quality of aromatic rice (Oryza sativa). J. 

Agric. Sci. 142(2), 183–191. 

Hamaker, B.R., 1994. The influence of rice protein on rice quality: Rice Sci. and Tech. 177-194. 

Hamaker, B.R., Griffin, V.K., 1990. Changing the viscoelastic properties of cooked rice through 

protein disruption. Cer. Chem. 67(3), 261-264.  

Hao, H. L., Wei, Y. Z., Yang, X. E., Ying, F. E. N. G., Wu, C. Y., 2007. Effects of different 

nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality 

in rice (Oryza sativa). Rice Sci. 14(4), 289-294. 



 

112 
 

Jane, J., Chen, Y. Y., Lee,  L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M., 

Kasemsuwan, T. 1999. Effects of amylopectin branch chain length and amylose content 

on the gelatinization and pasting properties of starch, Cer. Chem. 76(5), 629–637.  

Jin, Z. X., Qian, C. R., Yang, J., Liu, H. Y., Jin, X. Y., 2005. Effect of temperature at grain 

filling stage on activities of key enzymes related to starch synthesis and grain quality of 

rice. Rice Sci. 12(4), 261-266. 

Jing, Q., Spiertz, J. H. J., Hengsdijk, H., van Keulen, H., Cao, W., Dai, T. 2010. Adaptation and 

performance of rice genotypes in tropical and subtropical environments. NJAS-

Wagen.ing J. of Life Sci. 57(2), 149-157. 

Jodari, R., Linscombe, S.D., 1996. Grain fissuring and milling yields of rice cultivars as 

influenced by environmental conditions. Crop. Sci. 36(6), 1496–1502. 

Juliano, B. O.,1985. Polysaccharides, proteins and lipids of rice. In: Juliano, B.O., ed., Rice 

Chem. and Tech., AACC International. St. Paul, MN, pp. 59-174 

Juliano, B.O., Bechtel, D.B., 1985. The rice grain and its gross components. In:  Juliano, B.O. 

ed., Rice Chem. and Tech., (2nd Ed). Amer. Assoc. of Cer. Chem.. St. Paul, MN, pp. 774. 

Justice, O.L., Bass, L.N., 1978. Principles and practices of seed storage(No. 506). US 

Department of Agriculture. 

Lanning, S.B., Siebenmorgen, T.J., 2011. Comparison of milling characteristics of hybrid and 

pureline rice cultivars. Appl. Eng. Agric. 27(5), 787–795. 

Leesawatwong, M., Jamjod, S., Kuo, J., Dell, B., Rerkasem, B., 2005. Nitrogen fertilizer 

increases seed protein and milling quality of rice. Cer. Chem. 82(5), 588-593. 

Linscombe, S.D., Groth, D.E., Dunand, R.T., Jodari, F., McKenzie, K.S., Bollich, P., White, 

L.M., 1991. Two new rice varieties: Bengal and Cypress. Louisiana Agric. 35(2), 6-7. 

MacDonald, F.D., Preiss J., 1985. Partial purification and characterization of granule-bound 

starch synthases from normal and waxy maize. Plant Physiol. 78(4), 849–852 

Mackill, D.J., Coffman, W.R., Garitty, D.P., 1996. Grain quality. In: Rainfed lowland rice 

improvement. IRRI, Manila, Philippines. pp. 161. 

Marshall, W., Normand, F., Goynes, W., 1990. Effects of lipid and protein removal on starch 

gelatinization in whole grain milled rice. Cer. Chem. 67(5), 458-463. 

Mohapatra, P.K., Patel, R., Sahu, S.K., 1993. Time of flowering affects grain quality and spikelet 

partitioning within the rice panicle. Aust. J. Plant Physiol. 20(2), 231-41. 



 

113 
 

Moldenhauer, K., Gibbons, J., McKenzie, K., 2004. Rice varieties. In: Champagn, E.T. (ed.), 

Rice: Chem. and Tech., (3rd ed.). The Amer. Assoc. of Cer. Chem., St. Paul, MN, pp. 

49–75. 

Nagato, K., 1962. On the hardness of rice endosperm. Proc. Crop Sci. Soc. Jpn. 33-82. 

Nanda, J.S., Coffman, W.R., 1979. IRRI’s efforts to improve the protein content of rice. In: Proc 

Workshop chemical aspects of rice grain quality. Int. Rice Res. Inst., Manila, The 

Philippines, pp. 33–47. 

Nangju, D., De, Datta, S.K., 1970. Effect of time of harvest and nitrogen level on yield and grain 

breakage in transplanted rice. Agron. J. 62(4), 468–474. 

Noldin, J. A., Chandler, J. M., McCauley, G. N. 2006. Seed longevity of red rice ecotypes buried 

in soil. Planta Dan.  24(4), 611-620. 

Norman, R., Slaton, N., Trenton, R., 2013.Soil Fertility. In: Rice production handbook. Univ. of 

Ark. Coop. Ext. Ser. MP 192-2M-11-13RV, pp. 21-30. 

Omami, E.N., Haigh, A.M., Medd, R.W., Nicol, H.I., 1999. Changes in germinability, dormancy 

and viability of Amaranthus retroflexus as affected by depth and duration of burial. Weed 

Res. 39, 345-354. 

Osaki, M., Shinano, T., Tadano, T., 1991. Redistribution of carbon and nitrogen compounds 

from the shoot to the harvesting organs during maturation in field crops. Soil Sci. Plant 

Nutr. 37(1), 117-128. 

Perez, C.M., Juliano, B.O., Liboon, S.P., Alcantara, J.M., Cassman, K.G., 1996. Effects of late 

nitrogen fertilization application on head rice yield, protein content, and grain quality of 

rice. Cer. Chem. 73(5), 556–560. 

Pomeranz, Y., Webb, B.D., 1985. Rice hardness and functional properties. Cer. Foods World, 

30(11), 784-788. 

Rani, S.N., Pandey, M.K., Prasad, G.S.V., Sudharshan, I., 2006. Historical significance, grain 

quality features and precision breeding for improvement of export quality basmati 

varieties. Ind. J. Crop Sci. 1(1/2), 29‒41. 

Reid, J.D., Siebenmorgen, T.J., Mauromoustakos, A., 1998. Factors affecting the slope of head 

rice yield vs. degree of milling. Cer. Chem. 75(5) 738-741. 

Sano, Y., 1984. Differential regulation of waxy gene expression in rice endosperm. Theor. Appl 

Genet. 68(5), 467 – 473. 

Sato, K., 1979. High temperature damage to ripening in rice plant. Jpn. Agric. Res. Q. 13(2), 90-

95. 



 

114 
 

Seetanum, W., De, Datta, S.K., 1973. Grain yield, milling quality, and seed viability of rice as 

influenced by time of nitrogen application and time of harvest. Agron. J. 65(3), 390-394. 

Septiningsih, E.M., Prasetiyono, J., Lubis, E., Tai, T.H., Tjubaryat, T., Moeljopawiro, S., 

McCouch, S.R., 2003. Identification of quantitative trait loci for yield and yield 

components in an advanced backcross population derived from the Oryza sativa variety 

IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 107(8), 1419-1432 

Shure, M., Wessler, S., Federoff, N., 1983. Molecular identification and isolation of the waxy 

locus in maize. Cell. 35(1), 225-233 

Siebenmorgen, T.J., Matsler, A.L., Earp, C.F., 2006. Milling characteristics of rice cultivars and 

hybrids. Cer. Chem. 83(2), 169-172. 

Siebenmorgen, T.J., Qin, G., 2005. Relating rice kernel breaking force distributions to milling 

quality. Trans. of the ASAE. 48(4), 223-228. 

Tamaki, M., Ebata, M., Tashiro, T., Ishikawa, M., 1989. Physico-ecological studies on quality 

formation of rice kernel. Japan. J. Crop. Sci. 58(4), 653-58. 

Tan, Y.F., Xing, Y.Z., Li, J.X., Yu, S.B., Xu, C.G., Zhang, Q., 2000. Genetic bases of 

appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor. Appl. Genet. 

101(5), 823-829.  

Unnevehr, L.J., Duff, B., Juliano, B.O., (ed.)., 1992. Consumer Demand for Rice Grain Quality: 

Terminal Report of IDRC Projects, National Grain Quality (Asia), and International 

Grain Quality Economics (Asia). Int. Rice Res. Inst. 

Webb, B.D., 1980. Rice quality and grades. In: Rice: Production and utilization. In Bor S. Luh, 

ed. AVI Publishing Company, Inc., Westport, Conn. pp. 543-565. 

Webb, B.D., 1991. Rice quality and grades. In: B.S. Luh (ed.). Rice Utilization. Van Nostrand 

Reinhold: New York. pp. 89-119. 

Williams, V.R., Wu, W.T., Tsai, H.Y., Bates, H.G., 1958. Rice starch, varietal differences in 

amylose content of rice starch. J. of Agri. and Food Chem. 6(1), 47-48. 

Wilson, C.E.Jr., Moldenhauer, K., Cartwright, R., Hardke, J., 2013. Rice cultivars and seed 

production. In: Rice production handbook. Univ. of Ark. Coop. Ext. Ser. MP 192-2M-11-

13RV, pp. 21-30. 

Yamakawa, H., Hirose, T., Kuroda, M, Yamaguchi, T., 2007. Comprehensive expression 

profiling of rice grain filling-related genes under high temperature using DNA 

microarray. Plant Physiol. 144(1), 258–77. 



 

115 
 

Zhao, Y., Xi, M., Zhang, X., Lin, Z., Ding, C., Tang, S., Liu, Z., Wang, S., Ding, Y., 2015. 

Nitrogen effect on amino acid composition in leaf and grain of japonica rice during grain 

filling stage. J. of Cer. Sci. 64, 29-33. 

  



 

116 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER V 

Introgression of Clearfield
TM

 Rice Crop Alleles into Weedy Rice Populations in Arkansas, 

USA 
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Abstract 

 Studies were conducted to determine the impact of introgression of crop alleles into 

weedy rice populations. Eighty nine weedy rice accessions collected from fields in 11 counties 

with cropping history of  Clearfield
TM

 rice cultivars, were treated with imazethapyr (0.071 kg ai 

ha
-1

)  in  2011, Stuttgart, AR, USA. Survivor weedy rice plants were genotyped using the allele-

specific PCR assay to detect resistance-endowing als mutations, S653N and G654E. Hybridization 

between Clearfield
TM

 rice and weedy rice was verified using SSR markers (RM 215, RM 220, 

RM 234 and RID12). Two-to five herbicide-resistant (HR) plants per accession per replication 

(727 plants) representing different plant types were characterized for 14 morphological and 

biological traits. Seed dormancy was evaluated 75 and 270 days after harvest. Seventy-nine 

percent of accessions were resistant to imazethapyr. However, only S653N mutation was detected 

in HR weedy red rice, which is also present in popularly grown Clearfield
TM

 rice cultivars. These 

weedy rice accessions were outcrosses of Clearfield
TM

 rice cultivars and weedy red rice as 

confirmed by SSR markers. Ten weedy rice accessions hybridized with more than one cultivar or 

hybrid weedy rice previously as these carry multiple alleles same as that of many cultivars. 

Nearly 70% of the HR weedy rice flowered at the same time as that of Clearfield
TM

 rice. Weedy 

rice grouped into 3 distinct clusters based on germination but showed no variation in dormancy 

over time. Kernels of 20% of the parent accessions had both white and red bran color, 

irrespective of hull color. Two of the parent weedy rice accessions (goldhull) were homozygous 

for white bran and passed this trait to their offsprings. Overall, 31% of the characterized 

offsprings had white bran color. Plant height, stem angle, flag leaf length; width, bran color, seed 

shattering and dormancy of majority of weedy rice accessions were similar to cultivated rice. 

Proliferation of HR weedy populations with crop-like traits, in rice fields could result in 



 

118 
 

evolution of new hybrid weedy rice genotypes. On the other hand, reduced seed shattering and 

dormancy would make it easy to control weedy rice in integrated systems involving crop rotation 

and alternative HR technology. 
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1. Introduction 

 

 Hybridization is a common and important component of plant evolution (Rieseberg and 

Ellstrand, 1993). More than 70% of the plant species might have descended from hybrids (Grant, 

1981). Gene flow from crop species to wild or weedy species leads to introgression of alleles of 

one plant population into the gene pool of another (Anderson, 1949; Futuyma, 1998). 

Hybridization between crop species and weedy relatives results into evolutionary genotypes with 

intermediate characteristics (Burgos et al., 2014; Futuyma, 1998; Suh et al., 1997) and in some 

cases more weedy in nature (Langevin et al., 1990; Shivrain et al., 2006). Segregating hybrids 

exhibit diverse phenotypes and may enhance fitness of weedy hybrid lineages (Arnold and 

Hodges, 1995; Lexer et al., 2003). Introgression of crop alleles becomes common due to fitness 

advantage (Barton, 1993; Haygood et al., 2004). The introgression of single-gene transgenic 

traits, such as herbicide-resistance may lead to even greater fitness advantages in out-crossed 

populations compared with conventional crop traits (Davis et al., 1999; Snow et al., 2003).  

 Over the last decade many researchers have worked on gene flow from rice crop to 

weedy rice populations (Gealy et al., 2003, Shivrain et al., 2006, 2009, 2010; Zhang et al., 2006). 

Owing to genetic and morphological similarities between weedy rice and rice, weedy rice could 

not be controlled selectively in rice fields (Burgos et al., 2006; Smith et al., 1997). Non-

transgenic, herbicide-resistant (HR) Clearfield
TM 

rice
  
(Croughan et al. 1996; Tan et al., 2005) 

was introduced in 2002 which provided 95 to 100% weedy rice control selectively in rice fields 

with application of  imazethapyr, IMI (Imidazolinone) herbicide (Avila et al., 2005; Shivrain et 

al., 2007; Steele et al., 2002). Despite Clearfield rice technology, it is hard to achieve 100% 

weedy rice control. Red rice escapes are often observed due to issues in herbicide-application, 

environmental and biological factors (Burgos et al., 2008). These escaped weedy rice plants 

http://0-onlinelibrary.wiley.com.library.uark.edu/doi/10.1111/j.1461-0248.2006.00974.x/full#b4
http://0-onlinelibrary.wiley.com.library.uark.edu/doi/10.1111/j.1461-0248.2006.00974.x/full#b21
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hybridize with Clearfield
TM

 rice cultivars due to flowering synchronization (Shivrain et al., 

2007). The resulting HR red rice or F1 outcross is difficult to control as it segregates into several 

weedy types which competes with rice and has questionable grain yield and quality.  

 To avoid pollen-mediated gene flow from adjacent fields in commercial rice seed 

production, an isolation distance is generally maintained (Khush, 1993) but in weedy rice 

infested-field, hybridization can easily happen (Shivrain et al., 2007). Several studies have 

reported hybridization between weedy rice and rice cultivars ranged from 0.1% to 3.2%, 

(Langevin et al., 1990; Shivran et al., 2007; Zhang et al., 2006). However, most of studies have 

reported < 1% outcrossing between weedy rice and rice cultivars (Cao et al., 2006; Gealy et al., 

2003; Shivrain et al. 2007). Once outcrossed, the crop alleles introgress in weedy populations 

indefinitely within a few generations (Gealy et al., 2003). The low outcrossing rate and 

introgression plays an important role in long-term evolution of weedy rice populations (Cao et 

al., 2006; Chen et al., 2004; Gealy et al., 2003; Slatkin, 1987). It has been reported that hybrids 

between red rice and cultivated rice were taller, had more flag leaf area, and more tillers than 

their parents (Langevin et al., 1990; Shivrain et al., 2006). The introgression of varietal traits in 

weedy populations has the potential to change population dynamics, morphological 

characteristics and genetic structure of weedy populations (Burgos et al., 2014). There is vast 

diversity among inter-and intra-weedy rice populations and between weedy rice and cultivated 

rice (Dodson, 1898; Knapp, 1899; Londo and Schaal, 2007; Shivrain et al., 2009; Tseng et al., 

2013). Insight into the consequences of hybridization between weedy rice and Clearfield
TM

 rice 

cultivars on evolution of HR weedy populations would be important for the management of this 

troublesome weed. Sustainable weedy rice management necessitates a thorough understanding of 

red rice diversity and evolutionary changes in morphological characteristics and genetic structure 
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of the HR weedy populations. Therefore, the objective of this study was to evaluate the impact of 

introgression of crop alleles into weedy populations.   

 

2. Materials and Methods 

2.1. Screening for herbicide-resistance  

 Weedy rice collected from 11 counties in Arkansas (Fig.1) were tested for resistance to 

IMI herbicide in a field experiment at Rice Research and Extension Center (RREC) Stuttgart, 

AR (2011).The soil was a DeWitt silt loam (fine, smectitic, thermic Typic Albaqualfs) with 0.9% 

organic matter and pH 6.2. The red rice (89) accessions and 3 Clearfield
TM

 rice cultivars were 

planted in 6.1 m row per accession; 50 seeds/ row on 20th May, 2011. Imazethapyr at 1x rate (70 

g ha
-1

) and 0.5x rate (35 g ha
-1

) was applied at two-to three- leaf stage and second application 7 d 

later.  Injury and mortality were recorded at 21 days after treatment (DAT). Mortality (%) was 

calculated based on the number of plants alive out of total plant sprayed. 

 

2.2. Molecular marker analysis  

2.2.1 DNA extraction 

 Green leaf tissues were harvested from 89 HR plants representing the various accessions. 

Total genomic DNA was extracted using a modified hexadecyltrimethylammonium bromide 

(CTAB) protocol (Doyle & Doyle, 1990). Briefly, 0.05 g of leaf tissue was placed in 2 ml 

microtubes (Qiagen, Germantown, MD, USA) containing two stainless steel beads (Qiagen, 

Germantown, MD, USA). To each microtube, 500 µl of CTAB extraction buffer (containing 100 

mM Tris-HCl, 20 mM EDTA, 2 M NaCl, 2% CTAB, 2% polyvinylpyrrolidone-40, 1 mM 

phenanthroline, and 0.3% β- mercaptoethanol) was added. The sample was then homogenized 
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using a Retsch Mixer Mill MM400 (Verder Scientific Inc., Newtown, PA, USA) at 30 Hz for 2 

min. After adding an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) to each tube, 

the mixture was incubated at 55 °C for 60 min, followed by centrifugation at 12,000 rpm for 10 

min. The supernatant was transferred to a new 1.5 ml centrifuge tube (Eppendorf North America, 

Hauppauge, NY, USA) containing an equal volume of absolute isopropanol, mixed by inverting, 

and incubated overnight at -80 °C. DNA was then pelleted by centrifugation at 12,000 rpm for 10 

min. The DNA pellet was washed with absolute ethanol, air dried, and re-suspended in 30 µl of 

1x TE (containing 10 mM Tris-HCl, and 1 mM EDTA). The genomic DNA was quantified using 

a NanoDrop 2000c V. 1.0 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), 

diluted to 100 ng/µl with deionized water.  

2.2.2 Allele-Specific PCR (AS-PCR) 

 Polymerase chain reaction (PCR) reactions were carried out for ALS gene SNPs 

(Ser653Asn; S653N and Gly654Glu; G654E) using a set of allele specific forward primer and a 

common reverse primer as described by Kadaru et al., (2008) (Table 1).  For each sample, a 

20 μl PCR mix consisting of 3 μl of genomic DNA (20ng μl
−1

) mixed with 10 μl of 2x Taq 

Mastermix; EmeraldAMP
® 

MAX HS PCR Master Mix (Takara Bio, Madison, WI, USA), 1 μl 

each of 10 μM forward and reverse primers and 5 μl deionized water. DNA amplification 

reactions were carried out using thermo cycle conditions of 95°C—2 min; 95°C—20 s, 60°C—

20 s, 72°C—20 s for 28 cycles and 72°C—5 min. After amplification, 7 μl of each PCR product 

was loaded onto a 2% OmniPur
®
 agarose gel (EMD Chemicals Inc., Gibbstown, NJ, USA), ran 

for 60 min in 1x TBE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8.0) and images were taken 

after staining with GelRed
TM

 Nucleic Acid Stain (Biotium, Hayward, CA, USA).  
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2.2.3. Microsatellite DNA amplification (Hybridization test) 

                        

 Verification of hybridization between red rice and Clearfield
TM

 rice cultivars was done 

with 10 cultivars (8 Clearfield
TM

 rice cultivars including hybrids and one conventional inbred 

'Jupiter') and 4 micro-satellite (RID12, RM 215, RM 220, and RM 234) markers. For  PCR 

amplification, 2 µl of Zymo purified template DNA (80 ng/µl) were used in a reaction containing 

HotStarTaq DNA Polymerase, Qiagen Multiplex PCR Buffer with 6 mM MgCl2, ultrapure 

quality dNTP Mix, and 0.25 µM of each primer (Table 1).  The PCR was performed using 

Qiagen Multiplex PCR Kit, (Qiagen, Valencia, CA, USA) using the cycling protocol of a 15 

minute hot start at 95 °C followed by 35 cycles of traditional 3-step thermal cycling starting with 

denaturation at 94 °C for 30 seconds, primer annealing at 55 °C for 90 seconds, and elongation at 

72 °C for 60 seconds.  The reactions were then brought to 60 °C and incubated for 30 minutes 

before storing the completed reactions at 8 °C.  Two microliters of each diluted PCR product 

were added to the Genescan 400HD [ROX] Size Standard (Applied Biosystems, Foster City, CA, 

USA). The PCR products were resolved on an Applied Biosystems 3730 DNA Analyzer using 

POP-7 polymer on a 36 cm 48-capillary array.  The fluorescent signal of the resolved amplicons 

was analyzed using GeneMapper v4.0 genetic analysis software. 

 

2.3. Morphological characterization 

  Two-to five- plants per row; representing different phenotypes of each segregating 

accession were characterized for sixteen morpho-physiological traits in field according to 

guidelines of International Board for Plant Genetic Resources (IBPGR-IRRI, 1980). The traits 

evaluated were  stem angle, stem color, leaf color;  texture, flag leaf length; width; angle, leaf 

exertion, days to flower, panicle length, hull color, awn color, awn length, grain yield per plant, 
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seed shattering and seed dormancy (75 DAH and 270 DAH). Culm angle was determined 

relative to the horizontal plane (small value = open canopy), flag leaf angle was determined with 

reference to the culm (low value = erect flag leaf). Length and width of flag leaves were 

measured from five tillers per plant; leaf width was measured at the widest point of the leaf. Leaf 

texture was evaluated by rubbing the finger along the leaf blade. Plant height was measured from 

the base of the plant to tip of the flag leaf on the main culm. Panicle exertion was determined 

based on the portion of panicle still enclosed by the flag leaf. Flower initiation of characterized 

plants was recorded weekly. A plant was considered flowering when four panicles had been 

exerted. The length of 5 panicles was measured for each plant. Awn length was measured for 5 

seeds of the same panicle.  Awn color and hull color were evaluated visually. After 

characterization; plants were enclosed in Delnet
®

 bags (Delstar Technologies, Middletown, DE, 

USA) to catch shattered seeds. Plants were harvested 75 days after flowering, which spanned a 

period of 10 weeks because of the diversity of flowering dates of the weedy red rice. Each plant 

was cut at maturity at 10 cm height from the ground and air-dried in shade for 2 weeks.  

 

2.4. Seed shattering  

 All of the characterized plants in a field were enclosed in Delnet
®
 bags (Delstar 

Technologies, Middletown, DE, USA). All plants were subjected to the same force (50 kgf) to 

determine the level of seed shattering. Different sets of weights were attached to each bundle of 

harvested plants to obtain the same weight of 2.5 kg. The bundle was then dropped from a height 

of 1meter into a metal container so that each plant was subjected to same force of 50 kgf. The 

shattered seeds were then recorded. The panicles with remaining seeds were separated from the 
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rest of the shoot biomass, threshed and total yield of plants were recorded (shattered seeds + non-

shattered seeds). Seed shattering (%) was calculated as:  

Shattering (%) = [shattered seed weight (g) / total yield (g)] * 100 

 

2.5. Dormancy  

 Seed dormancy was evaluated twice, at 75 days after harvest (DAH) and at 9 months 

(270 DAH) after harvest. Seeds of harvested plants were germinated in batches according to 

harvest dates of plants. Thirty seeds from each accession with 3 replications, in a Petri-dish (9 

cm diameter), were moistened with 6 ml of deionized water and were dark-incubated in a growth 

chamber at 30° C. Petri-dishes were placed in trays and arranged in randomized complete block 

design. Trays were covered with plastic sheet and Petri-plates were re-watered every 4
th

 day after 

each germination evaluation. Germinated seeds were removed every 4
th

 day, up-to 12 days. 

Seeds were considered germinated when the radical protrudes from the caryopsis. The Petri-

plates were re-randomized after each evaluation period. Firm, non-germinated seeds were 

counted as viable, dormant seeds.  

 

2.6. Kernel characteristics 

 Size and pericarp color of seeds harvested from growers’ fields and seeds of offsprings 

characterized at the RREC were evaluated using Graincheck (2312 FOSS TECATOR). Samples 

were de-hulled and bran color was recorded in accordance with guidelines of International Board 

for Plant Genetic Resources (IBPGR-IRRI, 1980). There were seven categories for bran color in this 

system – white, light brown, speckled brown, brown, red, variable purple, and purple. Length 

(L), width (W), L/W ratio and 1000-kernel weight were recorded.  
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3. Statistical analyses                                                                                                                   

 All statistical analyses were performed using JMP Pro (version 11.0; SAS Institute, Cary, 

NC, USA). Analysis of variance (ANOVA) was conducted for all the quantitative plant traits 

using a completely randomized design. Differences among and within ecotypes in plant traits 

were determined using one-way ANOVA and means were separated by Fisher’s Protected LSD at 

the 5% probability level. Principal component analyses (PCA) for morphological traits was carried 

out based on 6 prominent weedy traits selected in three steps; removed non-significant variables 

in each step based on their contribution and 'Eigen' values. K-means clustering (JMP Pro v. 11) 

was performed to group the weedy rice accessions based on the 6 selected traits and separate 

cluster analysis based on germination and seed shattering. K-means cluster analysis was carried 

out with dataset where columns were scaled individually (all distances were scaled by an overall 

estimate of the standard deviation of each variable) by default in JMP Pro (v.11). Numbers of 

clusters in each analysis were selected based on fit statistic, with largest CCC (Cubic Clustering 

Criterion). PCA and K-means cluster analysis were carried out based on all kernel characteristics 

separately to distinguish weedy population based on their kernel characteristics  

 

4. Results and Discussion 

4.1. Frequency of herbicide-resistant red rice 

 Red rice infested up to 60% of the total rice area in Arkansas (Burgos et al., 2008). In 

recent years weedy red rice infestation has been reduced to roughly 20% due to stewardship 

program to minimize weedy rice seed production (R.C Scott, 2015, personal communication). 

However, weedy rice seed can remain dormant in the soil for up to 10 years (Goss and Brown, 

1939) which increases the risk of out-crossing between weedy rice and HR rice cultivars if not 
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eradicated. Occurrence of resistant offsprings from parent accessions sampled across all 26 

counties (Fig. 2) indicates that HR weedy rice is a common problem in rice fields in Arkansas. 

Clearfield
TM

 rice has been planted in these counties in the last decade.  Seventy-nine percent of 

the accessions were resistant (0-79% injury) to imazethapyr; of these, 98% were highly resistant 

(0-20% injury) (Fig. 3). Only S653N (Serine to Asparagine) mutation was detected in tested red 

rice accessions responsible for herbicide-resistance (Fig. 4). In 2004, 19% of the area in 

Arkansas was planted with Clearfield
TM

 inbred rice ('CL121', 'CL141' and 'CL161') and 

Clearfield
TM

 hybrid rice ('CLXL8') (Shivrain et al. 2007; Wilson and Branson, 2004).Cultivars 

harboring G654E (CL121 and CL141) were less resistant to imazethapyr (Avila et al. 2005; 

Wenefrida et al., 2007) compared with cultivars harboring S653N mutation released in 2003 

(McClain, 2003) and thereafter. With the introduction of Clearfield
TM

 inbred rice cultivars (eg. 

'CL161') and hybrid cultivars (eg. 'CLXL8', 'CLXL745' and 'CLXL729') harboring S653N 

mutation, adoption of this technology increased many folds owing to their higher yield potential 

and resistance to IMI herbicides. The trend resulted in 45% acreage under Clearfield
TM

 rice in 

2009 in Arkansas, USA with majority of the area under Clearfield
TM

 hybrid rice (Wilson et al., 

2010) where all cultivars carried S653N mutation. The rice acreage under Clearfield
TM

 rice in 

Arkansas increased to 54% in 2013 (Hardke, 2014) with 36% under Clearfield
TM

 hybrid 

cultivars. Hybrid rice cultivars owing to longer duration of flowering (2 to 3 d), and high 

competitive ability showed higher out-crossing  with weedy red rice (Shivrain et al., 2007; 2008; 

2009b). The out-crossing rate of 'CLXL8' (Clearfield
TM

 hybrid) with weedy rice was higher 

(0.23%) compared with that of 'CL161' (0.07%) (Clearfield
TM

 inbred) (Shivrain et al., 2009a). 

This indicates that the frequency of HR weedy rice in rice fields would increase with the 

increasing trend of Clearfield
TM

 hybrid rice in Arkansas.   

http://0-www.sciencedirect.com.library.uark.edu/science/article/pii/S0261219413000495?np=y#bib93
http://0-www.sciencedirect.com.library.uark.edu/science/article/pii/S0261219413000495?np=y#bib55
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  Weedy rice plants can be distinguished and classified by hull colors (prominently, 

strawhull and blackhull) as these are phenotypically and genetically different (Gealy et al., 2002; 

Noldin et al., 1999; Reagon et al., 2010; Vaughan et al., 2001). Generally, strawhull weedy rice 

has longer flowering overlap with rice cultivars compared with blackhull ecotype but flowering 

overlap could not be directly related to outcrossing rates (Shivrain et al., 2008). Similarly, the 

frequency of resistant offsprings was independent of hull color of mother plants in our study 

(Fig. 5). In general, gene flow from cultivated rice to weedy rice depends upon several factors 

like flowering synchronization, floral morphology, pollen load, genetic compatibility and 

environmental conditions (Shivrain et al., 2009b). Another reason for same frequency of resistant 

offsprings among hull types in current study is the possibility of multiple outcrossing events over 

the years within weedy rice populations and between weedy rice and cultivated rice.  

Molecular markers (Fig. 6); detected 42 accessions which carried alleles same as that of 

cultivars. Twenty five percent of these 42 accessions carried multiple alleles same to more than 

one cultivar. This happens if weedy rice either outcross with different cultivars or with hybrid 

weedy rice over a period of time. Remaining 28 HR weedy rice accessions might have 

hybridized with other Clearfield
TM

 rice cultivars that were not included in the test. Forty eight 

percent of weedy rice accessions were homozygous resistant and 31% were heterozygotes 

carrying both mutant and wild allele (Fig. 4). Homozygous alleles in weedy rice indicate 

outcrosses that have taken place few years back and now introgressed in weedy populations.  

4.2. Differentiation of morpho-physiological traits  

 Seventy six percent of the plants were taller than cultivated rice (130 cm) (Fig. 7-A). 

Shivrain et al., (2006) reported that outcrosses of weedy rice and cultivated rice were taller than 

parents and ranged from 40 cm to 180 cm in plant height. Weedy rice was reported to be 15-
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65% taller than cultivated rice (Do Lago, 1982; Shivrain et al., 2006). However, differences in 

plant height were observed among two prominent hull types - strawhull and blackhull ecotypes. 

Strawhull weedy rice ecotypes were shorter than blackhull weedy rice which was also reported 

by Shivrain et al., (2010). Cluster analysis based on 6 morpho-physiological characteristics (selected 

based on PCA) (Table 2) indicated that the two clusters (1 and 2) representing 55% of the characterized 

plants were with mean height similar to that of cultivated rice. This suggests that only 45% of the weedy 

rice plant types were more competitive in terms of shading and access to sunlight and nutrient 

consumption. Plant height was expected to contribute in gene flow. Studies have indicated that 

weedy  rice plants with the same height as that of cultivated rice tends to be the pollen receiver 

from cultivated rice whereas taller plants facilitates the transfer of pollen (donor) to cultivated 

rice (Shivrain et al., 2007; Zhang et al., 2003). However, recent studies have reported that 

differences in plant height did not influence the gene flow rate from cultivated rice to red rice or 

vice versa (Shivrain et al., 2009; 2010).  

The range of flowering initiation in weedy rice was 70 to 135 d after planting (DAP) 

and 71% of them flowered 96-99 DAP (Table 2). Similarly, 90% of the weedy rice reported to 

flower 98 DAP with flowering range of 70 to 130 DAP (Shivrain et al., 2006). Blackhull and 

brownhull weedy rice ecotypes flowered later (101 DAP) than strawhull ecotype (96 DAP) 

which was also reported in previous studies (Do Lago, 1982; Shivrain et al., 2004). 

Clearfield
TM

 rice cultivars flowered at 97 DAP (Table 2) which indicated the potential overlap 

of flowering between strawhull weedy rice outcrosses and rice cultivars. Hybrid cultivars like 

'CLXL8' even has longer flowering overlap (+ 2 to 3 d) with weedy rice versus conventional 

cultivars (eg.‘CL161’) (Shivrain et al., 2009b). Longer flowering overlap results in higher 

chances of hybridization between weedy rice and rice cultivars. The area planted with hybrid 
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rice and Clearfield
TM

 hybrid rice is increasing in Arkansas owing to their higher yield potential 

(Hardke, 2014). The increasing area under Clearfield
TM

 hybrid rice would alleviate the HR 

weedy rice issues and the frequency of diverse weedy populations as hybrid rice cultivars has 

higher outcrossing rate.  

Based on PCA, 6 significant variables were identified for cluster analysis (plant height, 

flowering, panicle length, hull color, seed shattering and grain yield) (Fig. 8).  K-means cluster 

analysis grouped 698 weedy rice offsprings into 3 clusters (Table 2). The biggest cluster '3' 

consists of 314 very tall individuals (166 cm) which flowered 99 DAP with longer awns, 

intermediate seed shattering (56%) and lower yield potential compared with other clusters. 

Seventy eight percent of the weedy rice plants in cluster 3 had dark hull color (45% blackhull 

and 33% brownhull). Cluster 1 individuals (26%) were similar to cultivated rice in morpho-

physiological characteristics. Cluster 2 consisted of individuals (29%) with same height as that 

of Clearfield
TM

 rice cultivars, upright leaves and closed canopy but  delayed flowering (+7 

DAP), higher seed shattering (+35%), shorter panicles (-2.3 cm) and lower yield potential (-

20.1 g) compared with Clearfield
TM

 rice cultivars. Majority of weedy rice offsprings (71%) in 

this study flowered at same time (96-99 DAP) as that of cultivated rice cultivars (97 DAP). 

Cluster 1 and 2 with crop-like characteristics both had 57 and 20% strawhull ecotypes. Similar 

characterization study in 2010 (Shivrain et al., 2010) with 215 weedy rice plants grouped them 

into 5 clusters. Weedy rice accessions of largest clusters (64%) flowered at 90-92 DAP and had 

medium height (128-134 cm). The flowering time was same as that of rice cultivars in 

Arkansas. Majority of these accessions in clusters 1 and 2 (80-92%) were strawhull types. The 

numbers of blackhull and brownhull ecotypes in 2010 study were low (47 and 15, respectively) 

(Shivrain et al, 2010) whereas in our current study characterized population consisted of 260 
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blackhull, 210 brownhull and 30 goldhull ecotypes apart from 200 strawhull ecotypes. Our 

study has given more extensive analysis of morho-physiological and phenological traits across 

all hulltypes. Crop-like characteristics were observed in all ecotypes irrespective of hull color.  

The majority of weedy rice accessions were with upright leaves similar to cultivated 

rice and all clusters were similar in terms of stem angle. Similarly, one of the cluster in 2010 

study (Shivrain et al., 2010) with accessions (9%) of medium height (122 cm), had almost 

upright leaves (flag leaf angle 31°, relative to perpendicular axis) but flowered very early (57 

DAP). Several offsprings of outcrosses between weedy rice and rice had upright leaves (Do 

Lago, 1982; Shivrain et al., 2007; 2010). However, historical weedy rice populations in general 

have droopy leaves and wide canopy (Burgos et al., 2006). The variation in flag leaf angle or 

culm angle between weedy rice accessions may be the consequence of hybridization with 

cultivated rice (Shivrain et al., 2010).  

The strawhull and blackhull weedy rice types are two major hull types reported for historical 

weedy rice populations (Gealy et al., 2002; Reagon et al., 2010) but rare types may also exist (Shivrain 

et al., 2010). In this current study, several intermediate hull colors were observed (yellowish 

straw, gray, and different shades of brown), potentially due to weedy rice evolution over the 

years under natural environmental conditions. Strawhull and blackhull ecotypes are genetically 

different (Gealy et al., 2002; Vaughan et al, 2001) but sometimes represent similar traits (Gealy 

et al., 2003; Shivrain et al, 2010).  Many of the morpho-physiological characteristics of weedy 

rice like stem angle, flag leaf length; width (Table 3), and dormancy (Table 4) were similar to 

cultivated rice irrespective of the hull color of weedy populations. Cultivated rice plants were 

of intermediate height (123 cm), upright with mean stem angle of 73°, 31 cm flag leaf length 

and GC of 90-91% at 75 and 270 DAH.   
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K-means cluster analysis of germination capacity at 75 and 270 DAH for offsprings 

(698) produced 3 distinct clusters (Table 4). Cluster 1, comprised of 69% of individuals had 

GC (94 and 97%) similar to cultivated rice (90 and 91%). Only 31% of the individuals had 

lower GC than cultivated rice which were represented by cluster 2 and 3. It was reported that 

blackhull weedy rice had three times lower germination than strawhull weedy rice (Do Lago, 

1982). Higher intra-population variation was also observed among blackhull populations in 

terms of dormancy when compared with strawhull weedy rice populations (Do Lago, 1982; 

Tseng et al., 2013). However, no variation was observed in GC among strawhull and blackhull 

populations in current study. The potential gene flow from similar genotype parent (cultivated 

rice) to both prominent ecotypes (strawhull and blackhull) of weedy rice could be one of the 

factors that can result in homogeniety or similar characteristics.  

Apart from dormancy, seed shattering is one of the major characteristics of historical 

weedy rice which enables rice plants to dehisce the seeds in the field that helps in seed 

distribution for its survival (Cao et al., 2006; Delouche et al., 2007; Thurber et al., 2010). The 

shattered seed remain in the soil and germinates intermittently over many years. Blackhull  

weedy rice plants had highest mean seed shattering (60%) and goldhull weedy rice were with 

lowest seed shattering (39%) (Table 3). Forty two percent of weedy rice offsprings in our study 

showed similar or less seed shattering compared with cultivars (Table 5), Therefore, many of 

these weedy rice outcrosses have shown minimal dormancy, (Table 4) and low seed shattering 

(Table 5) compared to historical weedy populations, which would help in decreasing soil seed 

bank and efficient control of this weed through use of broad-spectrum herbicide or tillage to 

kill the already germinated seeds (stale seed bed technique).  
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4.3. Differentiation of kernel characteristics   

 In general, weedy red rice has been identified based on its red bran/pericarp 

(Smith, 1981; Gross et al., 2010). Red bran is a dominant trait of weedy red rice (Gealy et al., 

2003). No study has investigated the evolutionary changes in bran (pericarp) color of weedy 

red rice owing to natural hybridization of weedy red rice with Clearfield
TM

 rice in commercial 

rice fields. Weedy rice with white kernel have been studied in Southern America and Asian 

countries but all of the weedy rice in North American region were characterized with red bran 

(Delouche et al., 2007). However, white-kernel weedy rice was once reported in Mississippi, 

USA (Do Lago, 1982). Weedy rice plants with white kernels were similar to cultivated rice in 

characteristics (Delouche et al., 2007; Do Lago, 1982). PCA analysis based on kernel 

characteristics revealed that grain width, length, and 1000-kernel weight were major 

contributors to component 1 and bran color was the main contributor to the variation in 

component 2 (Fig. 9). Together they explained 81% of the variation in grain characteristics of 

the offsprings. K-means cluster analysis on the basis of bran color, kernel length, width and 

1000-kernel weight grouped weedy rice offsprings into 3 distinct clusters (Table 7). Clusters 1, 

2 and 3 had 40, 26 and 13% of kernels with white bran color. Kernels in cluster 2 and 3 were 

longer with higher 1000-grain weight. As the percentage of red bran increased, data showed 

increase in length, width and 1000-kernel weight. This indicates that HR weedy rice kernels 

with red bran are bigger and characteristics associated with red bran positively affect yield 

parameters. However, grains with light brown bran were the largest (Table 8). The proportion 

of kernels with light brown bran was low (<1%) and did not influence the average kernel size 

and weight. 
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  Of the parents with mixed-color kernels (19), 66% of the offsprings were with red bran 

and 33% of the offsprings were with white bran (Fig. 10). Offsprings (477) of 60 parent 

accessions with red bran segregated into both red bran (69%) and white bran (30%). Thirty five 

percent of these segregating offsprings with white bran were blackhull ecotypes and 28% 

strawhull ecotypes.  Two of the parent weedy rice accessions (goldhull types) with white bran 

passed this trait to all of their offsprings (Fig. 10). Kernels with white bran were observed in 

31% of the offsprings, overall (Fig. 10; Table 6). Only 6 parent weedy rice accessions with red 

bran were homozygous for red bran trait as no segregation was recorded among their offsprings. 

White bran was observed in weedy populations irrespective of hull color.  Molecular analysis of 

89 individuals (offsprings), each representing one parent accession, showed that 51% and 20% of 

individuals were homozygous for red and white bran, respectively. Twelve percent were 

heterozygous, containing alleles for both red and white bran color. White bran (rc allele) is the 

mutant (nonfunctional) version of the ancestral O. rufipogon (Rc) red allele (dominant allele) and 

RID12 micro-satellite marker can detect the presence of red allele (Sweeney et al., 2006). 

Whereas Rc-g is another dominant wild type allele which resulted into red pericarp of 'Wells' 

through natural mutation within rc allele but that could not be detected through RID12 micro-

satellite marker (Brooks et al., 2008). In our study, detection of red (Rc) and white bran alleles 

(rc) with RID12 marker and allele similarity with other SSR markers confirmed that white bran 

is not the result of natural mutation in weedy rice, rather it is related to gene flow from cultivated 

rice. Appearance of white-bran in weedy rice populations (Fig. 10, Table 6) suggests that these 

populations resulted from out-crossing of cultivated rice to weedy rice that segregated over few 

generations and produced both red and white pericarp. Gealy et al., (2003) have demonstrated 

the effect of single outcross and further segregation of pericarp color along with HR trait over the 
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subsequent years (Fig. 11).Assuming that red seed coat (RR) and herbicide resistance (NN) are 

dominant traits, the population resulting from a single hybrid (single hybridization between HR 

cultivated white rice; rrNN and herbicide-susceptible weedy red rice; RRnn) becomes more than 

95% resistant (half with white seed coats and the other half with red seed coats) to the herbicide 

within six generations. This indicates that the present HR weedy rice populations that segregated 

into both red and white kernels were F3 or later generations based on proportion of red and white 

kernels in their offsprings. All the weedy rice accessions carrying only white bran/pericarp allele 

are homozygous for that allele (rc being a recessive trait) which suggests that some of the genes 

have already introgressed in these populations. However, some of the outcrosses were recent 

which were heterozygous for red bran allele; red allele being the dominant, and segregated into 

several weedy type plants with diverse characteristics. The presence of only S653N polymorphism 

in resistant weedy  rice populations indicate that these populations could not be beyond F7 as 

Clearfield
TM

 cultivars harboring S653N were commercialized in 2003. Crop genes have the 

potential to introgress in weedy populations within few generations (Gealy et al., 2003) and these 

weedy rice outcrosses in our study have become similar to cultivated rice in terms of many 

morpho-physiological characteristics, especially the strawhull types.  Four accessions with more 

than 60% of their progenies with white bran; were selected (Table 9). Two of these parent 

accesssions had white bran and passed this trait to their progenies. Characteristics were averaged 

over all progenies with white bran for respective accession. Progenies of white bran parents were 

upright with erect leaves and had similar stem angle as that of reference cultivars. White kernel 

progenies of red kernel parents were more diverse and had wider range in terms of stem angle, 

1000-kernel weight and GC. These type of outcrosses showed 100% flowering overlap with 

reference cultivars.  High similarity in characteristics of weedy rice and cultivated rice would 
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increase the chance of contamination in rice seed and continued infestation in rice fields. These 

crop-like HR weedy populations could not be controlled through Clearfield
TM

 rice technology 

due to their herbicide resistance trait. This emphasizes the need for alternative HR technology 

with different mode of action. 'Provisia® rice' is a non-transgenic HR technology (developed by 

BASF) based on ACCase group. This technology would provide a potential solution to this 

problem (Webster et al., 2015) by selectively controlling IMI resistant weedy rice with the 

application of quizalofop-p-ethyl herbicide. Rotating rice with soybean and use of alternate HR 

technologies would provide near-full control of HR weedy rice owing to their reduced weedy 

characteristics.  

 

5. Conclusion 

 The majority of weedy rice remaining in rice fields, after some years with herbicide-

resistant rice, carry the resistant allele of ALS with the S653N mutation. This was introgressed into 

the weedy population via gene flow. The HR weedy rice populations exhibit more crop-like traits 

and reduced weediness such as reduced seed shattering and reduced seed dormancy.  This is 

favorable for weedy rice management in general and weedy red rice in particular in Arkansas 

However, some of these plants have white kernels and will no longer be detectable as 

contaminant of the harvested rice grain; thus, it is important to prevent seed production of HR 

weedy rice. Also, weedy rice plants with crop-like characteristics would be difficult to detect in 

field. An alternative HR technology based on a different mode of action would help curtail the 

evolution of HR weedy rice if integrated with cultural practices stipulated in the best 

management practices for resistance management.  
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Fig. 1. Geographic distribution of red rice accessions collected from eleven counties in 2012, 

Arkansas, USA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

139 
 

 

Fig. 2.  

Proportion of HR offsprings of weedy rice (Oryza sativa L.) accessions (89) collected from 26 

fields across Arkansas, USA.  

 

Adapted from: Burgos, N.R., Singh, V., Tseng, T.M., Black, H., Young, N.D., Huang, Z., Hyma, 

K.E., Gealy, D.R., Caicedo, A., 2014. The Impact of Herbicide-Resistant Rice (Oryza sativa L.) 

Technology on Phenotypic Diversity and Population Structure of US Weedy Rice. Plant Physiol. 

166 (3), 1208-1220. DOI:10.1104/pp.114.242719 
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Fig. 3.  

Resistance profile of offspring of weedy rice (Oryza sativa L.) plants collected from Arkansas, 

USA rice fields with history of Clearfield rice.  Three- to four-leaf seedlings were treated with 

imazethapyr (two applications @ 70 g ha
-1

). Sensitive plants= 80 to 100% injury, moderately 

resistant plants= 21 to 79% injury, highly resistant plants= 0 to 20% injury. 

 

  

Sensitive  

Moderately resistant 

Highly resistant  

N: 70 (79%) 

N: 18 (20%) 
N: 1 (1%) 

Total accessions (N): 89 
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Fig.4.  

Representative electrophoresis gel image of S653N and G654E ALS mutation assays of 89 weedy 

rice accessions. Allele-Specific PCR products (1=wild allele, 2= mutant allele; 134 bp band size) 

for the S653N mutation are shown on the top panel; products for the G654E mutation assay 

(1=wild allele, 2 = mutant allele; 131 bp band size) are on the bottom panel. Position of S653N 

mutation in ALS gene is at 1880 bp and G654E at 1883 bp. Cultivar JUP='Jupiter' (susceptible 

standard); CL=Clearfield
TM

 cultivars and CLXL=Clearfield
TM 

hybrids (resistant standards).  
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Fig. 5.  

Frequency of resistant weedy red rice (Oryza sativa L.) offspring with respect to hull color of 

mother plants.
 
Bars followed by the same letters are not different. 

 

Adapted from: Burgos, N.R., Singh, V., Tseng, T.M., Black, H., Young, N.D., Huang, Z., Hyma, 

K.E., Gealy, D.R., Caicedo, A., 2014. The Impact of Herbicide-Resistant Rice (Oryza sativa L.) 

Technology on Phenotypic Diversity and Population Structure of US Weedy Rice. Plant Physiol. 

166 (3), 1208-1220. DOI:10.1104/pp.114.242719 
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Fig. 6.  

Hybridization test: Array view of (ABI 3730) SSR and InDel DNA markers. ROX (red) peaks 

are the 21 fragments of GENESCAN 400HD [ROX] Size Standard; RM215 (FAM; 136-162 nt 

size), RM220 (FAM; 100-130 nt size), RID12 (HEX; 151 and 165 nt size), and RM234 (Hex; 

128-157 nt size).  Same color in table on the right indicates same allele based on size (separate 

for different markers). Uncolored space in red rice accessions indicates that these accessions do 

not carry similar allele as that of cultivars used in test. Blue color in table represents alleles 

belongs to more than one cultivar. 
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Fig. 7.   

Frequency distribution of weedy rice (698), resistant to imazethapyr (70 g ha
-1

, two applications), 

Arkansas Rice Research and Extension Center, USA. (Cont.). 
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Fig. 7.   

Frequency distribution of weedy rice offsprings (698), resistant to imazethapyr (70 g ha
-1

, two 

applications), Arkansas Rice Research and Extension Center, USA. Panicle exertion 'J': WE = 

well exerted, ME = moderately exerted, JE = just exerted, NE = not exerted. 
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Fig. 8. 

Graphical representation of principal component analysis based on plant height, flowering, panicle 

length, hull color, seed shattering and yield/plant. Traits are represented by vectors extending from 

the plot origin; vectors of traits that point to the same direction are positively correlated. 

Components 1, 2, and 3 are indicated with their respective contribution to the total variation in 

the dataset.  
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Fig. 9.  

Graphical representation of principal component analysis based on bran color, kernel length, width 

and 1000-kernel weight. Traits are represented by vectors extending from the plot origin; and traits 

that point to the same direction are positively correlated. Components 1 and 2 indicated with 

their respective contribution to the total variation in the dataset.  

 

  



 

148 
 

 

Fig.10. Graphical representation of bran color segregation in HR weedy red rice (2010-2011), 

Arkansas, USA. Parenthesis represents number of parent accessions. Rb = red bran, Wb = white 

bran, Brb = brown bran. Group 4, with a mixture of white and red kernels were not considered in 

segregation analysis. Parental data were not available for 3 accessions. 
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Fig. 11. 

Idealized population distribution of HR red rice types expected after several generations of 

herbicide application (assuming 100% control) following a single hybridization between HR 

cultivated white rice (rrNN) and herbicide-susceptible red rice (RRnn). Assuming that red seed 

coat (RR) and herbicide resistance (NN) are dominant traits, the population resulting from a 

single hybrid becomes more than 95% resistant (half with white seed coats and the other half 

with red seed coats) to the herbicide within six generations. 

 

Used with permission from 'allen press', publishing servicesSource file:  Gealy D.R., Mitten 

D.H., Rutger J.N., 2003. Gene flow between red rice (Oryza sativa) and herbicide-resistant rice 

(O. sativa): Implications for weed management. Weed Technol. 17 (3), 627-645. doi: 

http://dx.doi.org/10.1614/WT02-100

http://dx.doi.org/10.1614/WT02-100
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Table 1.  

Primers and micro-satellite markers used for DNA fingerprinting of HR weedy red rice accessions from Arkansas, USA. 

 Mutation  Primers Size (bp) References 

G654E 

(Susceptible) 

Forward 

Reverse             

5’-CTGCCTATGATCCCAAGGGG -3’ 

5’-TGGGTCATTCAGGTCAAACA-3’ 131 

Kadaru et al., (2008) 

   

 G654E 

(Resistant) 

Forward 

Reverse 

5’-CTGCCTATGATCCCAAGGGA-3’ 

5’-TGGGTCATTCAGGTCAAACA-3’ 131 

   

 S653N 

(Susceptible) 

Forward 

Reverse 

5´-GTGCTGCCTATGATCCTAAG-3´ 

5´-TGGGTCATTCAGGTCAAACA-3´ 134 

   

 S653N 

(Resistant) 

Forward 

Reverse 

5´-GTGCTGCCTATGATCCTAAA-3´ 

5´-TGGGTCATTCAGGTCAAACA-3´ 134 

 

 

   Micro-satellite markers 
 

Size (nt) 
 

RM215 
Forward 

Reverse 

5'-AAAATGGAGCAGCAAGAGC-3' 

5'-TGAGCACCTCCTTCTCTGTA-3' 
143-154 Gealy et al., (2002) 

 
 

   

RM220 
Forward 

Reverse 

5'-GGAAGGTAACTGTTTCCAAC-3' 

5'-GAAATGCTTCCCACATGTCT-3' 
102-121 Akagi et al., (1996) 

 
 

   

RM234 
Forward 

Reverse 

5'-ACAGTATCCAAGGCCCTGG-3' 

5'-CACGTGAGACAAAGACGGAG-3' 
135-153 Zhang et al., (2006) 

 
 

   

RID12 
Forward 

Reverse 

5'-GCCTTGTCACTCTTGGCATT-3' 

5'-GGTTGGCACTGAAATCACCT-3' 
151, 165 Sweeney et al., (2006) 



 

 
 

1
5
1 

Table 2.  

K-means cluster analysis of herbicide-resistant weedy rice (Oryza sativa L.) based on 6 morpho-phyiological characteristics.  

    

Plant 

height 

Stem 

angle 

Leaf 

texture
b
 

Flag 

leaf 

length 

Flower

ing 

Panicle 

length -------Hull color
c
----- 

Awn 

length 

Shatt

ering 

Yield/ 

plant 

Clust

ers
a
 N (cm) ( ° ) S  R (cm) (DAP) (cm) S G Br B (cm) (%) (g) 

1 182 131  73  144 38 34  96  23.5  103 11 33 35 1.7  40  95.7  

2 202 127  74  137 65 32  104  20.8  40 7 74 81 1.8  67  32.7  

3 314 166  76  188 125 34  99  24.5  57 11 102 144 2.3  56  40.3  
a
Clusters based on 6 morpho-physiological characteristics: plant height, flowering, panicle length, hull color, seed shattering, and 

yield/plant 
b
Leaf texture: S= smooth, R = rough 

 c
Hull color; S=strawhull, G=goldhull, Br=Brownhull, B=Blackhull
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Table 3.  

Morpho-physiological characteristics based on hull color of weedy red rice collected from Arkansas, USA. 

  

Plant 

height 

Stem 

angle 

Flag leaf 

color
b
 

Flag 

leaf 

length Flowering 

Panicle 

length 

Awn 

length 

Shatter

ing 

Yield/

plant 

Hull 

Color
a
 N (cm) ( ° ) G PM P (cm) (DAP) (cm) (cm) (%) (g) 

straw 200 137 b 74.6 a 144 27 29 33.1a    96 c 23.2 a 1.6 b 52.7 b 64.1 a 

gold 30 147 a 74.8 a 19 6 5 32.8 a     97 bc 23.8 a 1.7 b 39.3 c 65.7 a 

brown 210 148 a 74.6 a 151 33 26 33.7 a  102 a 23.1 a 2.2 a 53.6 b 47.5 b 

black 260 149 a 75.2 a 179 36 45 33.4 a    101 ab 23.0 a 2.1 a 60.0 a 46.1 b 
a
Means followed by different letters are significantly different  

b
Flag leaf color; G=green, PM=Purple margin, P=purple  
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Table 4.  

Cluster analysis (K-means) of germination capacity of weedy rice based on two stages; 75 and 270 days after harvest (DAH). 

    Germination capacity (%); 75 DAH 

 

Germination capacity (%); 270 DAH 

 

  S
a
 G

a
 Br

a
 B

a
   

 

S G Br B   

Clusters
b
 N 

Mean  

(Std 

dev)
c
 

Mean 

(Std 

dev) 

Mean 

(Std 

dev) 

Mean 

(Std 

dev) 

Cluster
d
 

mean 

 

Mean 

(Std 

dev) 

Mean 

(Std 

dev) 

Mean 

(Std 

dev) 

Mean 

(Std 

dev) 

Cluster
d
 

mean 

1 478 95 (5) 94 (6) 94 (5) 93 (5) 94  

 

96 (5) 99 (3) 97 (4) 97 (5) 97  

2 101 67 (12) 64 (11) 63 (13) 66 (14) 66  

 

84 (10) 88 (7) 86 (10) 86 (10) 85  

3 65 70 (22) 56 (39) 76 (13) 82 (13) 77  

 

54 (12) 49 (13) 50 (14) 52 (14) 52  
a
Hull colors: S=Strawhull; G=Goldhull; Br=Brownhull; B=Blackhull 

b
Average germination of three reference cultivars (CL 151, CLXL 729, CLXL 745) at 75 DAH = 90%; and 270 DAH = 91% 

c
Parentheses ( ) denotes standard deviation 
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Table 5.  

Cluster analysis of HR weedy red rice (Oryza sativa L.) based on seed-shattering. 

Cluster
a 
 N 

Proportion 

(%) 
Hull colors Mean 

Std 

Dev 
Range 

   
Straw Gold Brown  Black 

   

1 175 25 46 4 46 79 87  6 77-100 

2 221 31 55 3 69 94 65  7 53-76 

3 174 24 49 13 54 48 40  7 28-52 

4 130 18 40 10 41 39 15  8 0- 27 
a
Average seed shattering of three Clearfield

TM
 Rice reference cultivars was 31%
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Table 6.  

Frequency of bran color from prominent hull color seeds of herbicide-resistant weedy rice offprings (Oryza sativa L.). 

   Bran color  

 

 White Light Brown Brown Red  

 Hull 

color 

 

 

  
 

 

 

 

 

 
(%) (%) (%) (%) 

Total 

offsprings
a
 

Straw 
 

43 1 0 56 215 

Gold 
 

47 0 0 53 31 

Brown 
 

22 1 1 77 213 

Black 

 

26 0 1 74 263 

a
Number of plants based on hull color 
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Table 7.  

K-means cluster analysis for kernel characteristics based on bran color, kernel length; width and 1000-kernel weight. 

 

Bran color distribution 

 

Length (mm)  Width (mm)  TKW
a
 (g) 

Clusters White 

Light 

brown 

Brown Red 

Total 

N 

M
b
 R

b
  M R  M R 

1 113 0 0 167 280 6.2  5.0 - 6.9  2.4 1.8 - 2.9  17.8  12.5 - 24.7 

2 81 4 3 218 306 6.9  6.2 - 8.5  2.3 2.0 - 2.7  20.0  15.4 - 25.4 

3 9 0 0 71 80 7.2  6.4 - 8.1  2.8 2.5 - 3.3  26.6  22.7 - 35.4 

a
TKW = 1000-kernel weight in grams;

  

b
M=Means; R=Range  
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Table 8.  

Kernel characteristics of herbicide-resistant weedy red rice (Oryza sativa L.) offsprings by bran 

color category. 

Bran color
a
 Length (mm) Width (mm) Length-Width ratio TKW

a
(g) 

P-values 0.1969 <0.0001 <0.0001 0.0021 

     White 6.6 a 2.34 b  2.83 bc 19.2 c 

Light brown 7.2 a 2.32 b 3.08 a  21.7 a 

Brown 6.7 a 2.30 b 2.90 b 18.6 d 

Red 6.8 a 2.45 a 2.78 c 20.3 b 

c
Means followed by different letters are significantly different 

a
TKW = 1000-kernel weight in grams 
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Table 9.  

Morpho-physiological and kernel characteristics of weedy rice (Oryza sativa L.) offsprings with white bran.  

Accession 

ID
a
 N

b
 

Parent 

bran 

color 

Hull color
c
 

Plant height 

(cm) Stem angle (°)
f
 

Flag leaf 

length (cm) 

Flag leaf 

width (cm) 

  

 

S G Br Bl M
d
 R

e
 M R M R M R 

AR10-03 5 white 3 1 0 1 141 119-170 79 75-90 30 26-33 1.4 1.2-1.7 

AR10-100 5 Red 3 1 0 1 136 126-141 68 45-80 35 30-47 1.6 1.5-1.9 

AR10-102 4 Red 2 0 2 0 147 112-169 68 45-75 35 28-41 1.5 1.2-1.7 

AR10-32 8 white 3 3 1 1 136 105-157 74 70-75 36 28-59 1.4 1.2-1.5 

CL151 3 white 

S 

119   97-130 75 75 30 22-35 1.4 1.1-1.4 

CLXL729 3 white 126 116-131 82 75-90 30 28-34 1.2 1.1-1.3 

CLXL745 3 white 126 113-134 77 75-80 33 32-34 1.3 1.2-1.3 

               

  

Flowering 

(DAP) 

Kernel length 

(mm) 

Kernel width 

(mm) 

1000-kernel 

weight 

Shattering 

(%) 

Germination 

capacity (%) 

 

M R M R M R M R M R M R 

AR10-03 91 85-98 6.4 6.0-7.3 2.2 2.0-2.4 16.6 14.9-18.9 55 30-86 84 52-99 

AR10-100 97 88-105 6.1 5.9-6.4 2.4 2.1-2.5 17.4 15.6-18.4 64 53-80 61 31-94 

AR10-102 102 90-109 6.6 6.0-7.4 2.5 2.4-2.6 20.2 15.6-23.4 56 24-75 98 97-99 

AR10-32 90 78-108 6.6 6.0-7.5 2.3 2.1-2.3 17.7 15.3-21.3 50 20-92 97 95-99 

CL151 96 93-97 7.0 6.5-7.5 2.4 2.0-2.6 19.1 18.6-22.9 9 10-44 95 89-97 

CLXL729 96 93-97 6.9 6.6-7.2 2.2 2.1-2.4 18.6 17.3-20.9 31 10-34 96 94-98 

CLXL745 91 87-96 6.9 6.7-7.5 2.3 2.1-2.5 20.5 19.7-21.7 33 22-45 91 82-97 
a
CL151=Clearfield

TM 
inbred rice; CLXL729 and CLXL745= Clearfield

TM
 hybrid rice; AR10-03, 100, 102, 32 = Weedy rice 

b
N= averaged over number of offsprings  

c
Hull color: S=Strawhull; G=Goldhull; Br=Brownhull; Bl=Blackhull 

d
M=Mean; 

e
R=Range 

f
Stem angle relative to ground (horizontal axis); 75-90° = upright, erect
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Conclusions 

 Volunteer rice can potentially have a significant negative impact on rice yield and grain 

quality. Hybrid rice seed that has higher capability to survive the winter than non-hybrid rice 

seed leads to a higher problem of volunteer rice in field with the cropping history of hybrid rice 

compared with that of non-hybrid rice. Volunteers from hybrid rice amplify the problem as these 

segregate into several weedy type plants of variable productivity, competing with cultivated rice, 

resulting in yield loss. The studies on volunteer rice provided insight into severity of the 

volunteer rice problem and indicated potential herbicide options for effective control. The 

application of 2,4-D pre-plant (1.12 kg ha
-1

) following pyroxasulfone applied in the fall (0.12 kg 

ha
-1

) provided better volunteer rice control (73%) than the other treatments and neither injured 

the rice crop nor caused yield loss.  Winter-flood alone can reduce 34-40% of volunteer rice in 

field and should be part of an integrated management system for weedy or volunteer rice.    

 The transfer of HR rice genes via pollen flow to diverse weedy red rice populations has 

the potential to change population dynamics, and morpho-physiological characteristics of weedy 

rice. The hybridization of weedy red rice and Clearfield
TM 

cultivars has resulted into many crop-

like plants due to introgression of crop gene into these weedy populations. Seed shattering, seed 

dormancy, plant height, stem angle, flag leaf length; width and bran color of majority of hybrid 

red rice accessions were similar to that of cultivated rice. These crop-like characteristics would 

make it hard to detect weedy rice in field and cannot be controlled by Clearfield
TM

 rice 

technology due to their resistance to IMI herbicides. Proliferation of these kinds of HR weedy 

populations in crop fields could result in evolution of new hybrid weedy red rice genotypes. 

However, reduced weediness in terms of seed shattering and dormancy would make it easy to 

control weedy red rice if coupled with soybean in rotation and use of alternate HR technology 

based on different modes of action. 
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