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Abstract 

Increasing populations of glyphosate-resistant weeds, such as Palmer amaranth, have 

prompted growers to pursue alternative means of weed control in cotton.  In many cropping 

systems, this means the utilization of older chemistries and residual herbicides.  The goal of this 

research was to evaluate and understand the agronomic and environmental factors that affect the 

inconsistent injury often associated with these herbicides as well as determine the impact of 

Palmer amaranth emergence date on seed production, biomass, and cotton yield.  Experiments 

were conducted in three counties in Arkansas giving a distinct range of climate and soil texture.  

Injury, biomass, and number of plants per m of row, number of seed per female Palmer amaranth 

plant, and cotton yield were assessed in experiments under various conditions.   

Seed vigor levels, seed size, stressed conditions, and planting depth constituted the 

majority of factors evaluated.  Low seed vigor increased the risk of injury from diuron, 

fomesafen, and fluometuron. Increasing planting depth from 0.64 to 2.5 cm resulted in greater 

cotton injury from fomesafen but proved inconsequential when applying diuron or fluometuron 

preemergence.  Cotton injury from glufosinate was observed on two Widestrike® cultivars and 

to a lesser extent on a Liberty Link® cultivar.  Injury from glufosinate was significantly 

increased when cotton was shaded prior to application.  Palmer amaranth emerging for the 10-

week period after cotton emergence is capable of producing seed, which points to need for 

extended period of weed control in cotton.  
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I. Literature Review 

Cotton Production in Arkansas.  In 2014, U.S. upland cotton covered 4,466,673 ha and was 

valued at over $4.6 billion dollars (NASS 2015).  An additional billion dollars was attributed to 

cottonseed oil production (NASS 2015).  The delta region of the Mississippi River, extending 

from Southern Missouri to Louisiana encompasses a majority of the cotton production in the 

Midsouth.  The state of Arkansas is no exception.  

 Like other cotton-growing states of the Midsouth, Arkansas growers have experienced 

difficulty regarding production as input costs have risen substantially and intensive weed control 

methods have become more critical.  The susceptibility of cotton to yield loss from weed 

competition can be attributed to its relatively noncompetitive foliar canopy and slow inherent 

growth.  In addition, cotton has very few available herbicides compared to corn (Zea mays L.) 

and soybean [Glycine max (L.) Merr.] (Eaton 1955; Pankey et al. 2005).  In 1975, Drs. Parker 

and Fry calculated that weeds eliminated 11.5% of the world’s potential crop production and in 

1965, estimated annual losses due to reduced crop yield and quality and costs of weed control in 

the United States were $5.1 billion (Agric. Res. Serv. 1965; Parker and Fryer 1975).  A 1992 

survey concluded that losses to weeds and cost of control exceeded $15 billion annually (Bridges 

1992). The cost of weed competition is likely higher today and continues to climb, partly as a 

result of glyphosate-resistant weeds. 

Weed Control in Cotton.  Weed control in cotton has always been a crucial step in successful 

production.  Cotton can require up to 8 wk of weed-free maintenance to maximize yields; a great 

deal longer than corn and soybean (Buchanan 1974).  Therefore, successful production demands 

clean fields and weed-free maintenance throughout the growing season (Norsworthy et al. 

2012a).    
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Prior to the 1970s, weeds were controlled mechanically (Appleby 2005), and the physical 

displacement of weed seeds was a strategic management practice in cotton production.  Tillage 

systems that affect the depth, abundance, distribution, and composition of seeds in the soil 

seedbank (Cardina 2002) remained a vital part of weed control until conservation tillage gained 

acceptance mostly because of the wide-spread adoption of glyphosate-resistant crops.  

 The discovery and application of  herbicides have provided sufficient control and have 

become important management tools to avoid reductions in both cotton yield and quality (Snipes 

and Mueller 1992).  Early chemical weed control included residual herbicides such as trifluralin 

and fluometuron, which were applied to over 50 and 25%, respectively, of the cotton hectares 

from 1992 to 1999 (Young 2006).  Early-season chemical-based control programs often involved 

the use of pre-plant incorporated (PPI) herbicides followed by a preemergence (PRE) 

application, while mid-season control was supplemented by directed applications of contact 

herbicides or cultivation.   

Arkansas growers relied heavily on the effectiveness of burndown and PRE herbicides to 

provide early-season weed control. Glyphosate, a herbicide commonly applied for weed control a 

few weeks prior to planting (burndown), was first registered in 1974 (Nichols et al. 2009).  

Because of its relatively low selectivity, it was generally used for non-crop areas until 1997 when 

glyphosate-resistant cotton was introduced (Nichols et al. 2009) 

Glyphosate-resistant (GR) crops have enabled growers to apply multiple over-the-top 

glyphosate applications, controlling weeds without disrupting crop growth.  Essentially, GR 

crops allowed for easier and more economical weed control in the Midsouth.  Glyphosate 

accomplishes control by inhibiting 5-enolpyruvlyshikimate-3-phosphate synthase (EPSPS), 

hindering the synthesis of aromatic amino acids (Duke 1990).  Tolerance in crops was achieved 
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by expressing the EPSPS gene derived from Agrobacterium spp. strain CP4 (Nida et al. 1996).  

Earlier GR cotton cultivars had high vegetative tolerance, but reproductive tolerance was lower 

because of a reduced expression of CP4 EPSPS in male tissues (Nida et al. 1996; Pline et al. 

2002).   

Growers widely accepted GR cotton technology as it resulted in cost savings, improved weed 

management, and simplicity of use (Duke and Powles 2009).  In 2000, after the loss of patent 

rights to glyphosate, the price of glyphosate decreased by 40% in the United States (Duke and 

Powles 2009; USDA 2006).  The low price of glyphosate, its relative high LD50, and ability to 

control a broad spectrum of weed species has resulted in extensive use of glyphosate on annual 

weeds which have high rates of reproduction and therefore increased selection for weed 

populations having resistance (Nichols et al. 2009).  

The evolution of target-site resistance in weeds is attributed to the frequent use of herbicides 

that share the same site of action and for their propensity to select for herbicide-resistant (HR) 

biotypes (Beckie 2006; Beckie et al. 2001; LeBron and McFarland 1990).  Today there are 24 

HR biotypes in Arkansas croplands, including Palmer amaranth (Amaranthus palmeri S. Wats.), 

which plagues Arkansas cotton fields at high densities (Heap 2015; Smith et al. 2000).   

Palmer amaranth is a highly prolific, dioecious summer annual that is capable of producing 

over 600,000 seed per female plant (Keeley et al. 1987).  Because of an extensive rooting system 

and high carbon and water efficiency, Palmer amaranth can reduce soybean yield 68% at 

densities of only 10 plants m-2 (Klingaman and Oliver 1994).  Its high vegetative and 

reproductive potential makes it arguably the most resistance-prone weed in the Midsouth, and 

today it has become resistant to five herbicide mechanisms of action in the United States (Heap 

2015).  Palmer amaranth has rapid erect growth and alleopathic potential that allow it to 
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successfully hinder the ability of cotton to obtain maximum levels of light, water, space, and 

nutrients (Morgan et al. 2001).  Previous research concludes that with an increase of one Palmer 

amaranth per 10 m row-1, yield was reduced 5.9 to 11.5% in Oklahoma cotton fields (Rowland et 

al. 1999).  In a 1996 study, Palmer amaranth competition decreased cotton canopy volume 35 

and 45% by 6 and 10 WAE, respectively (Morgan et al. 2001). Cotton lint yield is sensitive to 

Palmer amaranth competition and cotton yields decrease as Palmer amaranth densities increase 

(Rowland et al. 1999; Norsworthy et al. 2014).  Currently, 87% of Arkansas cotton acreage is 

infested with GR Palmer amaranth biotypes (Norsworthy et al. 2012b).   

Since 2005, GR Palmer amaranth populations have evolved throughout the southern U.S. 

(Webster 2005; Culpepper 2006).  In ways similar to those constructed when rigid ryegrass 

(Lolium rigidum Gaudin) became glyphosate-resistant in Australia, models were created to 

simulate and estimate the future of glyphosate-resistant Palmer amaranth in Arkansas cotton.  

Glyphosate-use patterns and cropping practices were categorized and labeled as those that 

promote resistance selection and those that minimized selection (Diggle et al. 2003; Neve et al. 

2003a,b).  With five annual glyphosate applications in monoculture GR cotton, glyphosate 

resistance in Palmer amaranth was predicted to evolve in 32% of the fields after 4 years and an 

additional 19% after year 5 (Neve et al. 2010).  This illustrates the likelihood of continued 

resistance issues and the need to explore additional management options.  The widespread 

existence of GR Palmer amaranth in the Midsouth has prompted a return to the use of residual 

herbicides as well as integrated management approaches as suggested by recent modeling efforts 

(Neve et al. 2011). 

Use of additional herbicides to control GR and troublesome weeds throughout the United 

States has increased weed management costs.  It is imperative that cotton be maintained weed-
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free until the crop can effectively compete with the weed.  Knowing the impact of Palmer 

amaranth interference as a function of emergence date relative to cotton is needed to properly 

understand the contribution of non-controlled Palmer amaranth plants on the soil seedbank.    

According to the Minnesota Department of Agriculture, integrated weed management (IWM) 

is “the combination of multiple management tools to reduce a weed population to an acceptable 

level while preserving the quality of existing habitat, water, and other natural resources” (MDA 

2011). The presence of GR weeds and recent recommendations have forced many growers to 

explore the potential of additional mechanisms of action, resulting in more intensive (costly in 

time and finances) control measures.  Resistance has made control in Arkansas cotton extremely 

difficult considering the resulting reduction of many research and development efforts due to the 

effectiveness of glyphosate prior to widespread resistance.  Glufosinate, another broad-spectrum 

herbicide option, has gained popularity among producers combating glyphosate-resistant weeds 

since the release of PhytoGen® and LibertyLink® cultivars.   

Glufosinate inhibits glutamine synthetase (Bellinder et al. 1987) and can be applied 

POST in glufosinate-resistant cotton (CDMS 2015).  Although glufosinate-resistant crops have 

not been as successful as glyphosate and similarly provide no residual control, they can serve as 

an effective management tool as few weed biotypes are currently resistant to glufosinate (Duke 

and Powles 2009; Green 2009; Heap 2015).  Many scientists believe the answer to acceptable 

control and prevention of resistance should involve the integration of soil-applied residual 

herbicides with a glyphosate/glufosinate rotation program (Norsworthy et al. 2012a). The use of 

both soil- and foliar-applied herbicides provides increased diversity and can be used as a tool to 

ensure use of multiple effective mechanisms of action within the crop.  The use of multiple 

residual herbicides incorporated into a glyphosate-based weed management cotton program can 
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effectively reduce the number of needed applications, fuel, labor, and equipment costs and 

reduce selection for herbicide resistance (Wilcut et al. 2002; Norsworthy et al. 2012a).  The 

University of Arkansas System Division of Agriculture (UADOA) endorses the practice of 

overlapping residual herbicides for pre-plant, PRE, POST, and at layby applications in cotton as 

well as encourages the rotation of chemistries. The use of residual herbicides such as diuron, 

fluometuron, and fomesafen in coordination with LibertyLink® systems to control high densities 

of GR Palmer amaranth has proven to be a successful tactic (York and Culpepper 2009, UADOA 

2012).   

Herbicide Injury to Cotton.  One of the limitations of residual herbicides and the reason for the 

initial widespread adoption of glyphosate and GR crops is the frequent injury often associated 

with soil- and foliar-applied residual herbicides in cool, wet conditions (Askew et al. 2002; 

Hayes et al. 1981).  Such conditions are a common occurrence during planting and early stages 

of cotton development when herbicides are being applied for Palmer amaranth control.  In spite 

of this, insufficient research has been conducted relating the interaction of microenvironments, 

residual herbicides, and cotton injury in the Midsouth.  There is existing evidence that seed 

vigor, seed size, and cultivar could also influence herbicide injury.   

In peanut (Arachis hypogaea L.), root injury from residual herbicide increases with smaller 

seed sizes (Cargill and Santelmann 1971).  Because cotton seed can be sensitive to mechanical 

handling like peanuts (Cargill and Santelmann 1971), it can be hypothesized that seed size will 

have an impact on whether or not a residual herbicide can cause injury.  Seeds germinate 

successfully when conditions are favorable (Anderson 1962; Gibson and Mullen 1996; Holm and 

Miller 1972) and having low seed vigor can result in lower yield and unfavorable stands because 

the germinating seedling spends more time surrounded by the herbicide in solution (Edje and 
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Burris 1971; Fehr et al. 1973; Grabe 1966; Culpepper 2012).  When emergence is slow, 

increased injury is likely because of reduced metabolism of soil-applied herbicides.  Seed size, 

vigor, planting depth, and herbicide timing have a great impact on seedling success; the ultimate 

success of the plant depends on natural defense adaptations that promote survival during times of 

environmental stress.  

A narrow margin of selectivity in cotton exists between achieving effective weed control and 

preventing injury from commonly used soil-applied residual herbicides (Kendig et al. 2007).  

There is not, however, a great deal of evidence linking cotton injury with microenvironments 

(Norsworthy et al. 2012b); although injury has been shown to increase in low-vigor seed and in 

shallow planting scenarios in Georgia (Culpepper 2012). Microenvironments pertain to the 

environmental conditions within close proximity to the seed or seedling.  Microenvironments 

may differ in pH, soil moisture, light intensity, nutrient levels, and temperature and proper 

evaluations of such interactions between microenvironments and cotton seedling establishment 

should be conducted. 

In response to growing concerns over glyphosate resistance, many growers have begun 

exploring glufosinate-resistant technology in cotton.  Glufosinate can be used to effectively 

manage GR Palmer amaranth when applied at the appropriate timing and is a successful 

alternative to glyphosate where GR weeds are present (Culpepper et al. 2009).  The 

recommendation of glufosinate-resistant systems requires a detailed analysis concerning injury to 

cotton from glufosinate applications.  Developing an understanding between the interaction of 

microenvironments and injury in a Liberty Link/residual management system would provide 

Midsouth producers with the means to devise an efficient integrated weed management system 

for cotton production.   
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In an evaluation of two cotton cultivars, PHY 375 WRF and PHY 485 WRF, glufosinate 

injured cotton 18% more than that of S-metolachlor and glyphosate alone (Steckel et al. 2012).  

The injury observed in cotton from glufosinate in various scenarios must be evaluated for 

management strategies.  Because glufosinate has no residual activity and losses in efficacy occur 

when applied to larger weeds (Corbett et al. 2004; Shaw and Arnold 2002), residual herbicides 

must be included to successfully manage resistant weeds like Palmer amaranth.  Many 

documented cases involving herbicide induced injury explain the physiological and metabolic 

components; however, there exist gaps in the data.  The interactions of seed vigor, 

microenvironments (soil moisture, temperature and light exposure), agronomic practices 

(planting depth and seed size), and herbicides could result in different levels of injury (Muzik 

1976; Richardson 1977; Wanamarlta and Penner 1989).   

Understanding the influence of genetic, agronomic, and environmental factors on cotton 

injury from soil- and foliar-applied herbicides is necessary to construct a successful weed 

management strategy for Midsouth producers.  Environmental conditions can greatly alter 

morphological and physiological processes in plants resulting in altered herbicide absorption, 

translocation, or metabolism (Muzik 1976; Richardson 1977; Wanamarlta and Penner 1989).  

For example, high relative humidity (RH) increased efficacy of fluoxypyr (Lubbers et al. 2007).  

When grown at 90% RH, Palmer amaranth, redroot pigweed (Amaranthus retroflexus L.), and 

common waterhemp (Amaranthus rudis Sauer) control with glufosinate was greater than when 

these plants were grown at 35% RH.  In several studies, green foxtail [Setaria viridis (L.) 

Beauv.] control from fenoxaprop, fluaxifop-P, haloxyfop, and sethoxydim improved with 

increased soil moisture.  Johnsongrass [Sorhum halepense (L.) Pers] control from glyphosate, 

and kochia [Kochia scoparia (L.) Schrad.] control from imazethapyr was also improved in cases 
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of adequate soil moisture (Nalewaja et al. 1990, Boydston 1990, Nalewaja and Woznica 1985, 

McWhorter and Azlin 1978).   

The cuticle of cotton is composed of long-chain aliphatic compounds derived from lengthy 

fatty acids and is the protective layer of aerial plant parts (Kolattukudy 1970; Kunst and Samuels 

2003).  The cuticle is weakest as a seedling, and reducing the length of time in which the seed is 

surrounded by the herbicide reduces cuticle stress and increases the success of germination and 

healthy cotton stands (Culpepper 2012).  Epicuticular wax (ECW), which serves as the first 

barrier to herbicide absorption, is influenced by many environmental factors including 

temperature, light, relative humidity, and soil water content.  These factors greatly impact ECW 

morphology and development and subsequently the efficacy of POST herbicides (Hatterman-

Valenti et al. 2011).  Hence, it is imperative that a proper evaluation be conducted exploring the 

association of environmental, agronomic, and genetic factors with residual herbicides, and 

glufosinate applications with cotton injury. 
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II. Impact of Seed Vigor, Seed Size, Planting Depth, and Soil Conditions on Cotton 

Injury from Soil-Applied Herbicides 

 

Abstract  

Preemergence (PRE) herbicides, once a primary component of weed control in cotton, are 

reestablishing utility as glyphosate-resistant weeds become more prominent in the Midsouth.  

Although considerably effective, cotton injury is often associated with the use of soil-applied 

herbicides.  The purpose of this study was to determine if seed vigor, seed size, planting depth, 

and soil conditions could potentially affect the tolerance of cotton to PRE-applied herbicides.  

Five seed sizes derived from a seed lot were planted and treated with three rates of the PRE-

applied herbicide diuron.  In addition, field studies were conducted evaluating low- and high-

vigor cotton seed planted at a 0.6- and 2.5-cm depth treated with 1 and 2X rates of PRE 

herbicides: diruon, fluometuron, and fomesafen.  A growth chamber experiment was conducted 

evaluating the interaction of low and high seed vigor applied with 1 and 2X rates of diuron and 

fomesafen at both stressed and non-stressed soil conditions.  Smaller seed size often increased 

the risk of injury from diuron applied PRE and a trend for greater cotton biomass occurred with 

larger seed sizes, suggesting greater tolerance to PRE herbicides as seed size increases.  In 

regards to vigor, planting depth, and soil conditions, there were varying results according to year 

and location; however, there was a general increase in injury when PRE herbicides were applied 

to low-vigor cotton under stressed conditions.  This injury was often substantially increased with 

above-labeled herbicide rates. 

Nomenclature:  Diuron; fomesafen; fluometuron; cotton, Gossypium hirsutum L.  

Key words:  Pre-emergence (PRE); seed size; seed vigor; planting depth; soil conditions 
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Introduction 

 Growers widely accepted glyphosate-resistant (GR) cotton technology following its 

commercialization in 1997 because it provided cost savings, improved weed management, and 

simplicity of use (Duke and Powles 2009).  In 2000, after the loss of patent rights to glyphosate, 

the price of glyphosate decreased by 40% in the United States (Duke and Powles 2009; Reddy 

2001).  The low price of glyphosate, its low mammalian toxicity, and ability to control a broad 

spectrum of weed species has resulted in extensive use of glyphosate on annual weeds, in turn 

increasing the risks of glyphosate resistance evolving.  

The evolution of target-site resistance in weeds is attributed to the frequent use of 

herbicides that share the same mechanism of action and for their propensity to select for 

herbicide-resistant (HR) biotypes (Beckie 2006; Beckie et al. 2001; LeBaron and McFarland 

1990).  Today there are 24 HR biotypes in Arkansas crops, including Palmer amaranth 

(Amaranthus palmeri S. Wats.), which plagues Arkansas cotton fields with increased densities 

(Heap 2015; Smith et al. 2000).   

Glyphosate resistance has created an ever-increasing need for diversified approaches to 

weed control.  In reference to chemical control methods, integrated weed management (IWM) 

strategies require the use of multiple, effective, herbicide mechanisms of action to delay the 

onset and spread of resistant weeds (Norsworthy et al. 2012).  Presently, control and IWM can be 

achieved by the incorporation of soil-applied herbicides into previously postemergence (POST)-

herbicide dominated programs (Norsworthy et al. 2012; Neve et al. 2011). 

Herbicide resistance has made weed control in cotton extremely difficult across much of 

the U.S. Cotton Belt because few effective herbicide options are available, especially for the 

control of glyphosate-resistant Palmer amaranth, and cotton inherently grows slower than other 
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row crops in this region.  New herbicide chemistry is limited as industry research and 

development efforts slowed following the release of glyphosate-resistant crops.  The subsequent 

lack of new innovative herbicide options have forced growers to return to the use of herbicides 

that were commonly used prior to commercialization of glyphosate-resistant cotton (Riar et al. 

2013). 

The difficulty with residual herbicides, and reason for their reduced use, aside from the 

effectiveness of glyphosate, is the inconsistent injury often associated with their application 

(Culpepper 2012; Main et al. 2012).  Reducing the length of time in which the seed is surrounded 

by the herbicide increases the success of germination and healthy cotton stands (Culpepper et al. 

2012; Kendig et al. 2007).  Soil moisture has been found to affect the activity of soil-applied 

herbicides by altering the herbicide concentration and mobility in the soil (Zhang et al. 2001).  

Previous research suggests that early-season cotton injury with various soil-applied herbicides 

frequently occurs, especially under cool, moist conditions (Askew et al. 2002; Hayes et al. 1981).  

Excessive rainfall and cold temperatures have been reported to overexpose cotton seedlings to 

herbicides resulting in reduced metabolism and increased injury (Steckel et al. 2012).  In 

contrast, some studies have reported no or slight cotton injury with residual herbicides in other 

environments (Faircloth et al. 2001; Riar et al. 2011).  The variability in research could 

potentially attest to variations in environment or the agronomic factors involved in different 

production systems.  Filling the gaps in research regarding the impact of soil environmental 

factors on emergence problems could potentially improve cotton establishment.  

Seed size may influence the cotton tolerance to PRE-applied herbicides.  It has been 

shown that small-seeded peanut (Arachis hypogaea L.) exhibited greater root injury from PRE 

herbicides compared to large-seeded peanut (Cargill and Santlemann 1971).  Additionally, large-
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seeded strains of soybean (Glycine max) were more tolerant of atrazine than small-seeded strains 

(Andersen 1970); possibly due to the roots of large-seeded plants expanding into nontreated soil 

more quickly.  In reference to cotton, seed size within a seed lot is often characterized as simple 

variation in vigor (Bourland, Personal communication, 2013).  It can be hypothesized that within 

a seed lot, seed sizes exhibiting injurious differences reflect the impact of vigor.  For the soil 

types and production practices common to the Midsouth, little research has been conducted to 

determine the reasons for inconsistent cotton tolerance based on seed size within a germplasm.  

Low seed vigor often results in lower yield and unfavorable stands because the 

germinating seedling spends more time surrounded by the herbicide in solution (Anderson 1962; 

Gibson and Mullen 1996; Holm and Miller 1972; Edje and Burri 1971; Fehr et al. 1973; Grabe 

1966).  Based on one-year experiment conducted in Georgia, it has been suggested that low-

vigor seed and shallow planting may increase injury from PRE-applied herbicides (Culpepper et 

al. 2012).  Improved seed vigor has been documented to improve germination in controlled 

stressful conditions such as deep planting and may be further affected by herbicide applications 

(Burris 1976; Johnson and Wax 1978; TeKrony et al. 1987; Hamman et al. 2002).   

Cotton has exhibited tolerance to fomesafen applied PRE, a diphenylether herbicide that 

inhibits protoporphyrinogen oxidase (PPO) (Baumann et al. 1998; Gardner et al. 2006; Troxler et 

al. 2002).  There is, however, limited research evaluating PPO- and photosystem II (PSII)-

inhibiting herbicides in varying soil types and moisture regimes (Main et al. 2012).  

Sulfentrazone, another PPO herbicide, was reported to cause more injury as soil pH increased 

(Reiling et al. 2006), and Taylor-Lovell et al. (2001) suggested that PPO induced injury on 

cotton increased under wet, low-organic matter soil conditions.  Based on the need to better 

understand the factors contributing to cotton injury from soil-applied herbicides, the objective of 
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this research was to determine the impact of seed vigor, seed size, planting depth, and soil 

conditions on cotton tolerance to PRE herbicides. 

 

Materials and Methods 

Seed Vigor and Seed Size—Within A Genotype.  A field experiment was conducted at the 

Arkansas Agricultural Research and Extension Center (AAREC) in Fayetteville, AR in 2012 and 

2013 as a 5 x 3 factorial in a randomized complete block.  An unreleased red-leaf germplasm 

cotton seed originally developed at Texas A&M University named “Texas Maroon” was 

acquired from Dr. Fred Bourland at the University of Arkansas Northeast Research and 

Extension Center in Keiser, AR.  Five seed size categories (9.3, 10.4, 11.6, 12.1, 13.1 g 100 seed-

1) were established from the seed lot of Texas Maroon using a fabricated forced-air separator in 

2012 and were used both years.  Each seed size was planted at a rate of 15 seed m-1 of row, 2 cm 

deep after the soil was prepared by use of conventional tillage on May 24, 2012 and May 15, 

2013.  Four 92-cm wide row plots were planted in mid-May using a 7100 four-row John Deere 

planter pulled by a John Deere 6403 medium-frame tractor (Deere & Company, Moline, IL) 

resulting in a 3.7 by 7.6 m plot dimension.  The planter was retrofitted with an electric, cone-type 

seeder (ALMACO, Nevada, IA) to enable accurate planting of the various seed sizes. 

Herbicide treatments included a nontreated control and a 1X (1.12 kg ai ha-1) and 2X rate 

of diuron (Direx®4L, MANA Inc., Raleigh, NC).  Applications were made using a CO2-

pressurized backpack sprayer with TTI 110015 nozzles (Teejet Technologies, Springfield, IL) 

spaced 51 cm apart and calibrated to deliver 187 L ha-1 at a pressure of 276 kPa and a speed of 

4.8 kph immediately after planting.  Plots were sprinkler irrigated as needed and a one-time 

application of pyrithiobac sodium (Staple LX, DuPont Crop Protection, Wilmington, DE) at 56 g 
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ai ha-1 was made at 3 weeks after planting (WAP), in conjunction with hand-weeding to help 

ensure weed-free plots.   

Assessments of necrosis, chlorosis, and stunting (rated visually on a scale of 0 to 100% 

compared to the nontreated control) were recorded at 2 and 4 weeks after treatment (WAT).  At 4 

WAT, cotton density was recorded as plants per 2 m of row and biomass (all above-ground 

cotton tissue) was harvested in 2 m of row and reported as g plant-1.  Biomass was oven dried for 

7 d at 60 C before weighing.  After initial analysis, it was determined that the five seed indices 

would be divided into two groups in order to achieve normality. Groups were composed of those 

weighing less and those weighing more than 11 g 100 seed-1.  Using Fit Model programming 

under an effect screening personality, data were analyzed in JMP Pro 11 (SAS Institute Inc., 

Cary, NC), and means were separated using Tukey’s HSD at α = 0.05. 

Seed Vigor and Seed Size—Across Genotypes.  To distinguish potential variability associated 

with the characterization of seed vigor and seed size an additional experiment was conducted at 

the AAREC in Fayetteville and the Lon Mann Cotton Research Center (LMCRC) near Marianna, 

AR in 2013. Planting dates were May 13, 2013 at the AAREC and May 20, 2013 at the LMCRC.  

The soil series at LMCRC was a Convent silt loam (Coarse-silty, mixed, superactive, nonacid, 

thermic Fluvaquentic Endoaquepts) with 9% sand, 80% silt, 11% clay, 1.8% organic matter, soil 

pH of 6.6, and an estimated cation exchange capacity (ECEC) of 11 cmolc kg-1.  At AAREC, the 

soil series was a Leaf silt loam (Fine, mixed, active, thermic Typic Albaquults) with 34% sand, 

53% silt, 13% clay, 1.5% organic matter, and a pH of 6.9 (USDA-NRCS 2015).  Both locations 

exhibited a plot dimension of 1.78 by 20.32 m.  A randomized complete block with a factorial 

experimental setup and four replications utilized 36 commercial cotton cultivars provided by Dr. 

Fred Bourland, each given a specific index based on the average weight of 100 seed (Bourland et 



 

22 
 

al. 2013).  Each seed index was subjected to a 0, 1, and 2X application of diuron applied PRE 

where the 1X rate was 1,120 g ai ha-1.  Plot construction, planting, injury rating, and biomass 

harvesting procedures were conducted similarly to the previous experiment.  A multivariate 

statistical analysis was performed using JMP PRO 11(SAS Institute Inc. 2014). 

Seed Vigor and Planting Depth.  In 2012 and 2013, field experiments were conducted at the 

AAREC in Fayetteville and the Rohwer Research Station (RRS) near Rohwer, AR on Leaf and 

Herbert silt loams, respectively.  Planting dates in Fayetteville were April 13, 2012 and May 8, 

2013.  Planting dates in Rohwer were April 22, 2012 and April 26, 2013.  The Hebert silt loam 

soil (Fine-silty, mixed, active, thermic Aeric Epiaqualfs) consisted of 16% sand, 67% silt, 17% 

clay, 2.2 % organic matter and a pH of 7.1, whereas the Leaf silt loam (Fine, mixed, active, 

thermic Typic Albaquults) was comprised of 34% sand, 53% silt, 13% clay, 1.5% organic 

matter, and a pH of 6.9 (USDA-NRCS 2015).  A randomized complete block with a split-strip 

plot design with four replications was employed where the sub-sub factor consisted of seed vigor 

(high and low), the subfactor was herbicide treatment [PRE application of diuron (1.12 and 2.24 

kg ha-1), fluometuron (1.12 and 2.24 kg ai ha-1), fomesafen (0.28 and 0.56 kg ai ha-1), and a non-

treated control], and the main plot factor was planting depth (0.6 and 2.5 cm).  Fluometuron 

(Cotoran®4L, MANA Inc., Raleigh, NC, USA) and fomesafen (Reflex®, Syngenta Crop 

Protection, Greensboro, NC, USA) are registered for PRE and preplant applications, 

respectively, in Midsouth cotton.  FM 1944 GLB2 (Bayer Crop Science, Research Triangle Park, 

NC, USA) was artificially aged to create a low-vigor seed as described below.   

The reason for using low-vigor seed is to account for the potential reduction in vigor 

associated with damage from harvesting, storage, and weathering that may ultimately increase 

herbicide injury to cotton. Using principles established by Bourland et al. (1988) cotton seed 
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were subjected to a 40 C bath for 20 min.  This artificial aging is exacerbated with increases in 

humidity and temperature as illustrated by Basra et al. (2003).  The subsequent low-vigor seed 

were dried, and subsequently treated with a fungicide and insecticide.  A John Deere 6403 

medium-frame tractor and John Deere 7100 four-row planter (Deere & Company, Moline, IL) 

retrofitted with an electric cone-type seeder (ALMACO, Nevada, IA) served as planting 

equipment. To promote stress, cotton was planted on April 13, 2012 and May 8, 2013 and 

supplemented with overhead irrigation (2.54 cm) immediately after planting and PRE 

application.  Plots consisted of two, 92-cm wide rows 7.6 m long at AAREC and 97-cm wide 

rows 7.6 m long at RRS.     

Applications were made using a CO2-pressurized backpack sprayer with TTI 110015 nozzles that 

were calibrated to deliver 187 L ha-1 at a pressure of 276 kPa and walking speed of 4.8 kph.  

Plots were sprinkler irrigated 2.5 cm, 24 hours after application (HAA).  Injury was assessed at 

1, 2, 3, and 4 WAT as a visual percentage (0 to 100%) as described in the previous experiments.  

Plants per 2 m of row were counted, and the associated biomass (all above-ground tissue) was 

collected, oven-dried for 7 d at 60 C and weighed.  Data were subjected to a mixed model 

analysis in JMP Pro 11.  Utilizing a full factorial arrangement of fixed effects, ANOVA was 

generated and means were separated using Tukey’s HSD (SAS Institute Inc. 2014). 

Seed Vigor and Environmental Conditions.  In 2013, an automated growth chamber experiment 

was conducted twice as a randomized complete block with a two (seed vigor: low and high) by 

three (herbicide treatments:  nontreated and PRE application of diuron and fomesafen) by two 

(planting and herbicide application conditions: stressed vs non-stressed) factorial design with 

four replications.  FM 1944 GLB2 cotton seed were planted 0.6 cm deep into 15-cm-diameter 

plastic pots (Hummert International™, Earth City, MO) filled to 95% capacity with Leaf silt 
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loam soil obtained from the AAREC (Fine, mixed, active, thermic Typic Albaquults) with 34% 

sand, 53% silt, 13% clay, 1.5% organic matter, and a pH of 6.9 (USDA-NRCS 2015).  Low-

vigor seed was established using the same method as field studies previously mentioned.  To 

promote stress pots were held at field capacity (Askew et al. 2002; Zhang et al. 2001).  Using 

established estimations for bulk density and organic matter content as determined by the 24-h 

hydrometer method (Gee and Bauder 1986), Leaf silt loam soil textural values were entered in 

Soil-Plant-Atmosphere-Water (SPAW) program (v6.02.75, USDA- ARS, Washington D.C.; 

Saxton and Rawls 2006) to establish daily watering requirements necessary to maintain field 

capacity.  Herbicide applications (diuron at 1.12 kg ha-1 and fomesafen at 0.28 kg ha-1) were 

made immediately after planting using an automated spray chamber with a boom consisting of 

two flat fan 800067 nozzles (Teejet Technologies, Springfield, IL) calibrated to deliver 187 L ha-

1.  After planting, the high moisture, stressed condition was achieved by setting the PGW36 

Conviron growth chamber (Controlled Environment Limited, Edmonton, AL, CAN) at 13/24 C 

within a 14-h photoperiod for seven days followed by then raising temperatures to normal 

spring-like conditions (18/25 C).  The nonstressed condition was never exposed to the seven day 

stress period.  Visual estimates of chlorosis, necrosis, and stunting were recorded at 2, 3, and 4 

WAT.  At 4 WAT, all above-ground cotton biomass was collected, dried for 7 d at 60 C and 

weighed. Data were subjected to an effect screening personality to provide ANOVA in JMP Pro 

11.  Significant means and separation were achieved using Tukey’s HSD at α = 0.05 (SAS 

Institute Inc. 2014). 
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Results and Discussion 

Seed Size and Seed Vigor—Within a Genotype.  Visual estimates of cotton injury and plant 

biomass varied by year.  With over twice as much precipitation and nearly 4.5 C lower average 

daily temperatures in 2013, experiments conducted in 2012 had less measureable differences 

(Table 1).  In light of initial model parameters and data structure, it was determined that analysis 

would best be achieved by grouping the cotton seed indices into two groups rather than five.  

Small-sized seed (<11 g 100 seed-1) and large-sized seed (>11 g 100 seed-1) formed the two 

classification indices.  At 2 WAT in 2012, injury assessments were significantly higher when the 

2X rate of diuron was applied to plots planted to small-sized seed (<11 g 100 seed-1) (Table 2).  

The increased injury from the higher rate of diuron was not surprising since similar results have 

been noted elsewhere (Kendig et al. 2007).  At 2 WAT in 2012, small-seeded cotton seedlot 

exhibited greater injury than large-seeded cotton seedlot at the 1 and 2X rates.  In 2013 at 2 

WAT, a similar injury response to seed size occurred at the 2X rate of diruon (Table 2).   

The interaction of application rate and seed size was not significant at 4 WAT in 2012 

and 2013 (Table 1).  However, the main effect of seed size was significant for injury estimates 

and biomass at 4 WAT both years (Table 3).  Additionally, diuron rate influenced the degree of 

injury observed on cotton and biomass production in 2012, but not 2013.  At 4 WAT in 2012, 

small-sized seed (averaged over diuron rates) and the highest diuron rate (averaged over seed 

sizes) resulted in greater injury to cotton and less cotton biomass (Table 3).  Application rate 

failed to influence the injury observed on cotton at 4 WAT in 2013 as well as the production of 

biomass.  The small-sized seed had greater injury and less biomass than plants from the larger 

seed size (Table 3).   
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According to Wanjura et al. (1969), the primary indicator of the potential for a seed to 

survive early-season stresses is the time required for germination and emergence.  Seed quickly 

emerging from the soil (or the activated herbicide zone) have the most favorable chance of 

survival. Seed weight, which chould influence vigor, did impact the ability of cotton to tolerate a 

herbicide that routinely causes early-season injury (Table 1).  Even if large seed fail to possess a 

germination advantage, the larger cotyledons, endosperm, and seed coat could enable larger seed 

to withstand adverse environmental conditions in the soil. Pettigrew and Meridith (2009) 

concluded that seed heavier than 11 g 100 seed-1, similar to the “large-sized seed” in this 

experiment, produced greater plant height, leaf area index, leaf weight, and total dry weight than 

seed lighter than 11 g 100 seed-1.  One can hypothesize that the larger seed index, expressing 

higher vigor within a seedlot, would possess greater potential tolerance to herbicide residues in 

the soil as Pettigrew and Meridith (2009) suggested.  

Seed Size and Seed Vigor—Across Genotypes.  The supplemental experiment conducted at 

AAREC and LMCRC in 2013 provided an additional assessment of seed index on cotton 

tolerance to various rates of diuron applied PRE over vastly different cultivars.  The 

geographical separation of study locations promoted a difference in both climatic and soil texture 

conditions (Figure 1).  Unique interactions between diuron applications and the selected cultivars 

are could potentially be related to differences in climactic and soil conditions.  Similar to 

observations made by Nieuwenhuizen and Nel (1980) in South Africa, greater phytotoxicity was 

observed on the finer-textured (lighter) soil at AAREC (Table 4).  The Convent silt loam soil at 

LMCRC generally contains up to 16 percentage points lower clay composition than the silt loam 

at the AAREC location (USDA NRCS 2014).  Increasing diuron application rates resulted in 

increased injury, irrespective of location.  At the AAREC location, seed size failed to influence 
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injury levels yet did impact plant biomass production (Figure 2).  Larger-seeded cotton 

significantly resulted in greater biomass production, suggesting a possible increase in yield 

potential.  At the LMCRC location, seed size proved to significantly influence biomass as well as 

visual injury assessments.  At both the 1 and 2X rates of diuron, there was over 5 g more 

biomass per 2 m of row with every gram increase of seed weight (Figure 2).  Locations saw 

significantly different result, influencing the impact that seed size had on cotton tolerance to 

diuron applied PRE at above-labeled rates, yet larger seed often resulted in larger biomass, 

irrespective of location.  Seed index and vigor have been suggested to be related when within the 

same seed lot.  Growers should consider seed size when selecting cultivars, especially if cotton 

tolerance to PRE-applied herbicides has been less than acceptable in past years.  

Seed Vigor and Planting Depth.  Variability of cotton tolerance to soil-applied herbicides 

remains under-documented regarding the soil types and agronomic practices common to the 

Midsouth. 

Convent Silt Loam Soil. In 2012 and 2013 at the AAREC on a silt loam soil, planting depth 

significantly affected cotton tolerance to PRE-applied herbicides (Table 5).  At 2 WAT, 

tolerance to the herbicides on shallow planted cotton was greater than the deeper depth (Table 6).  

The increase in injury to cotton planted 2.5 cm deep persisted through 4 WAT but failed to 

impact cotton biomass.   

The main effect of herbicide likewise influenced injury to cotton at 2 and 4 WAT in 2012 

and 2013 at AAREC (Table 6).  Increasing application rates to 2X that of the label 

recommendation of diuron significantly increased the injury to cotton in 2012 and diruon was 

generally more injurious to cotton than fluometuron in both years.  As a result of the injury risk 

associated with PRE-applied fomesafen applications on silt loam soils in the Midsouth, the 
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herbicide is currently labeled preplant rather than PRE in cotton (Anonymous 2015).  Even 

though herbicide injury differences were noted among herbicides, these injury symptoms did not 

result in differences in cotton biomass at 4 WAT in 2012 or 2013. 

Additionally, the main effect of seed vigor was significant for cotton injury on the silt 

loam soil at AAREC in 2013 at 2 and 4 WAT, but not in 2012 for similar assessment timings 

(Table 5).  Plants emerging from low vigor seed had greater injury at 2 and 4 WAT and less 

biomass at 4 WAT than plants from high vigor seed (Table 6). 

Hebert Silt Loam Soil.  At RRS in 2012, the main effect of vigor and the interaction of seeding 

depth and choice of herbicide impacted injury to cotton (Table 7).  Even though the increased 

clay content of the Herbert silt-loam soil likely resulted in greater herbicide adsorption, plants in 

plots having low-vigor seed had greater injury than those in plots having high vigor seed at 2 and 

4 WAT as well as lower biomass production (Table 8).   

The two-way interaction of planting depth x herbicide was significant for cotton injury 

and biomass production in 2012 (Table 7).  More than 50% injury to cotton at 2 WAT resulted 

from the highest rate of diuron, regardless of planting depth (Table 9).  Cotton treated with 

labeled rates of fluometuron, diuron, and fomesafen generally resulted in greater biomass 

production than the nontreated control, regardless of planting depth.  The lower biomass of the 

nontreated control is likely a result of early-season weed competition prior to initiating hand 

removal and an over-the-top application of glufosinate.     

In 2013 at RRS, there was a three-way interaction among planting depth, herbicide, and 

vigor at 2 WAT (Table 7).  The same interaction was non-significant at 4 WAT (p = 0.0512).  

Diuron and fomesafen were often most injurious to cotton in shallow planted, low-vigor plots 

whereas fluometuron caused more injury when the low-vigor cotton was seeded at the 2.5-cm 
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depth. Even though the interaction of factors makes it difficult to understand each factor 

individually, the need for high vigor seed for reducing injury to cotton is obvious.  

Only the main effects of herbicide and planting depth significantly influenced cotton 

biomass production at 4 WAT at RRS in 2013 (Table 7). Planting cotton at a 2.5-cm depth rather 

than a 0.6-cm depth resulted in 27% less biomass (data not shown).  Deeper planting translated 

to an extended period of the hypocotyl within the activated herbicide zone.  In regards to the 

herbicides evaluated, the PPO-inhibiting herbicide fomesafen resulted in the least amount of 

cotton biomass among the three herbicides, which partially confirms the reason for the current 

fomesafen label requiring that the product be applied preplant rather than preemergence on silt 

loam soils (Anonymous 2014). The 1X rate of fomesafen resulted in an average of 0.72 g plant-1 

biomass compared to 0.98 g plant-1 in the nontreated control.  Due to the high density of weeds 

in this location and its general distance from Fayetteville, weed-free maintenance efforts suffered 

the first two weeks after planting.  It is likely that competition with weeds resulted in some 

reduction in biomass in the nontreated plots, which likely diminished the differences between 

herbicide-treated and non-treated treatments.  

Seed Vigor and Environmental Conditions.  The variability encountered with field trials is often 

attributed to the inability of researchers to control climactic or environmental conditions, 

especially those at or near the time of a herbicide application.  Under controlled conditions of a 

growth chamber, the main effect of herbicide choice as well as the interaction of vigor by 

environment were significant for cotton injury at 2 and 4 WAT (Table 11).  Applications of 

fomesafen resulted in greater injury than diuron at 2 and 4 WAT.  The cooler conditions 

associated with the stressed environment resulted in greater injury to cotton, which was further 
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accentuated by the low vigor seed (Figure 3).  By 4 WAT, only when a herbicide application was 

followed by stressed conditions did seed vigor play a role in increased injury to cotton.   

In regards to cotton biomass present at 4 WAT, the interaction of herbicide by 

environment was significant (Table 11).  The cause of the interaction is likely a result of reduced 

biomass of the nontreated control relative to the herbicide-treated cotton in the non-stressed 

environment.  The reason for the reduced biomass is not known.  Averaged over low- and high-

vigor seed, cotton that began in a stressed environment had less biomass than cotton beginning in 

a nonstressed environment (Figure 4).   Additionally, no differences were found in biomass 

production among herbicide treatments in the stressed environment; albeit, the nontreated control 

was numerically greater than the herbicide-treated cotton.  It is known that soil temperature 

greatly influences cotton seedling emergence and in turn the uptake of water and herbicides 

(Wanjura et al. 1969).  In times of stress during emergence, such as those evaluated in this 

experiment, seed quality is of utmost importance (Ferguson and Turner 1971).  Since large-scale 

producers have a very narrow planting window and no control of the potential for cool, wet 

conditions that may arise after planting, utilizing high-vigor seed could reduce the risk of injury 

to cotton from soil-applied residual herbicides.    

 

Summary 

These experiments were established to provide Midsouth cotton producers with accurate 

information pertaining to the integration of soil-applied residual herbicides into current cotton 

production systems while minimizing the risk for cotton injury.  Variability was observed 

between years and locations, and interactions existed with many of the factors evaluated.   

Although planting depth did affect cotton injury from preemergence herbicides, the fact that 
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cotton responded differently to planting depths across herbicides and locations makes it difficult 

to fully recommend one planting depth over another.  During periods of stress, seed planted at 

greater depths are likely to experience a greater period of herbicide uptake by the hypocotyl; 

hence, a shallower planting depth may be preferred if it is imperative that cotton be planted and 

cool, wet conditions are forecast.  Overall, fluometuron was often less injurious to cotton than 

was diuron or fomesafen and the excessive injury from fomesafen further substantiates the lack 

of a preemergence recommendation for this product in Arkansas (Scott et al. 2014).  As seed size 

increased, there was a tendency for cotton to better tolerate soil-applied herbicides; albeit, some 

smaller seeded cultivars did appear to have high vigor and increased tolerance to diuron.  In 

regards to seed vigor, which may be partially linked to seed size, low-vigor seed had a higher 

risk for elevated injury over high-vigor seed.   The use of high-vigor seed will improve cotton 

tolerance and often biomass production following the application of PRE herbicides.  Proper 

harvesting, processing, and storage can help ensure that seed has high vigor at the time of 

planting; notwithstanding there is likely a genetic component involved with seed vigor.  In 

regards to locations, the lower clay content of the Convent silt loam soil likely contributed to 

greater injury over the Hebert silt loam.  Growers need to be cognizant of the soil texture and use 

past experiences to slightly lower rates if excessive injury has been observed in the past. During 

cool, wet conditions common to early-season cotton planting, large, high vigor seed can improve 

crop tolerance and ensure rapid germination.  
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Table 1.  Analysis of variance effect tests for injury to cotton at 2 and 4 weeks after treatment 

(WAT) and cotton biomass at 4 WAT as influenced by herbicide rate and seed index in 2012 and 

2013 at the Arkansas Agricultural Research and Extension Center in Fayetteville, AR.a,b 

Source Dfa 2 WAT 4 WAT Biomassb 
 -------------------------------- Prob > Fc -------------------------------- 
2012 
    Rep 3 0.6659 0.3040 0.9095 
    Seed index 1 <0.0001 <0.0001 0.0011 
    Rate 1 <0.0001 <0.0002 0.0005 
    Seed index*Rate 1 0.0007 0.0867 0.9470 
2013 
    Rep 3 0.7507 0.0247 0.8728 
    Seed index 1 0.0602 0.0131 0.0057 
    Rate 1 <0.0001 0.0803 0.9009 
    Seed index*Rate 1 0.0797 0.4375 0.8394 
a Abbreviation: Df, degrees of freedom. 
b Biomass includes all above ground plant tissue harvested at 4 WAT. 
c Source values less than the alpha level of 0.05 are significant. 
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Table 2.  Cotton injury as influenced by the interaction of seed indice and diuron rate at 2 weeks 

after treatment in 2012 and 2013 at the Arkansas Agricultural Research and Extension Center in 

Fayetteville, AR.a,b 

 Injury 
 2012  2013 
Diuron rate Largea Small Large Small 
kg ai ha-1 ------------------------------------------------- % ---------------------------------------------------- 
1.12 (1X) 4 B 15 A 6 7 
2.24 (2X) 14 B 38 A 11 B 27A 
a Cotton seed weighed >11 g 100 seed-1 and <11 g 100 seed-1 for the large and small seed indices, 
respectively.  
b Letters indicates significant difference between seed indices within a year and diuron rate based 
on Tukey’s HSD. 
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Table 3.  Cotton injury and biomass as influenced by the interaction of seed indice and diuron 

rate at 4 weeks after treatment in 2012 and 2013 at the Arkansas Agricultural Research and 

Extension Center in Fayetteville, AR.a,b,c 

 Injury  Biomass 
Main effect 2012  2013 2012  2013 
 ------------------- % -------------------- -------------- g m-1 of row -------------- 
Seed indicea     
 Large 8 B 

28 A 
 

--- 
10 B 
27 A 

8 B 16 A 18 A 
 Small 28 A 10 B 14 B 
Diuron rateb    
 0X 

1X 
--- 

20 A 
17 A 
13 B 

17 A 
19 A 

 2X 22 A 7 C 16 A 
a Cotton seed weighed >11 g 100 seed-1 and <11 g 100 seed-1 for the large and small seed indices, 
respectively.  
b The 1X and 2X rates of diuron were 1.12 and 2.24 kg ai ha-1, respectively.  
c Letters indicates significantly higher values between seed indices or diuron rates within a year 
based on Tukey’s HSD. 
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Table 4.  Correlation of injury on 34 commercial cotton cultivars at 2 and 4 weeks after treatment (WAT) with seed index, and 

biomass with seed index at 4 WAT.a,b,c 

                                                                                                                                                     Confidence interval  
      
Location Rating  Ratea Variable by Variable  Correlation Lower 95% Upper 95% Prob > Fb 

 
AARECc 2 WAT 1X Injury   Seed index      0.0269   -0.1415    0.1937  0.7553 

2X Injury  Seed index      0.1276   -0.0398    0.2880  0.1345 
 

4 WAT 1X Injury  Seed index      0.0095   -0.1585    0.1769  0.9124 
2X  Injury  Seed index      0.1052   -0.0636    0.2682  0.2210 
0X  Biomass Seed index      0.3319   -0.1780    0.4699  <.0001 
1X  Biomass Seed index      0.2767    0.1173    0.4222  0.0009 
2X  Biomass Seed index      0.1806    0.0146    0.3370  0.0333 

 
LMCRCc 2 WAT 1X  Injury  Seed index    -0.3272   -0.4641   -0.1751  <.0001 
    2X  Injury  Seed index    -0.3490   -0.4831   -0.1988  <.0001 
  
  4 WAT 1X  Injury  Seed index    -0.0845   -0.2426    0.0779  0.3071 

2X  Injury  Seed index    -0.3082   -0.4473   -0.1546  0.0001 
0X  Biomass Seed index     0.4344    0.2927    0.5575  <.0001 
1X  Biomass Seed index     0.3698    0.2172    0.5048  <.0001 
2X  Biomass Seed index     0.3444    0.1887    0.4832  <.0001 

 

 
a 1X and 2X represent the 1.12 and 2.24 kg ai ha-1 application rates of diuron, respectively. 
b Values lower than the alpha level of 0.05 are statistically significant. 
c Arkansas Agricultural Research and Extension Center (AAREC) in Fayetteville, AR; Lon Mann Cotton Research Center (LMCRC) 
near Marianna, AR.
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Table 5.  Analysis of variance for low- and high-vigor cotton, planted at various depths and treated with various rates of different 
herbicides on a silt loam soil at the Arkansas Agricultural Research and Extension Center in Fayetteville, AR.a,b,c 

        
                 2012                             2013 
 

Source                               2 WATa           4 WAT           Biomassb      2 WAT           4 WAT           Biomass 

                                      Prob > Fc 

Depth                   0.0221           0.0005  0.0950        0.0181           0.0001  0.8832 
 
Herbicide         0.0015           0.0006  0.0685        0.0417           0.0001  0.2626 
 
Vigor          0.3082           0.2294  0.0802        0.0001                 0.0006  0.0216 
 
Depth*Herbicide                   0.4374           0.2894  0.3116                0.3762                 0.3656  0.1257 
 
Depth*Vigor                    0.6582           0.5311  0.7031        0.1058                 0.3476  0.6811 
 
Herbicide*Vigor        0.6033           0.5001  0.4616        0.7946                 0.9706  0.4957 
 
Depth*Herbicide*Vigor               0.9468           0.9006  0.4309        0.3296                 0.9177  0.8721 

 
a 2 and 4 WAT refer to early-season cotton injury observed 2 and 4 weeks after treatment. 
b Biomass includes all above-ground plant tissue harvested, dried and weighed 4 WAT. 
c Source values lower than the alpha level of 0.05 are statistically significant. 
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Table 6.  Cotton injury and biomass affected by planting depth, herbicide, and seed vigor 2 and 4 weeks after treatment on a silt loam 
soil at the Arkansas Agricultural Research and Extension Center in Fayetteville, AR.a,b,c,d,e 
 2012  2013 

  Injury   Injury  
Source Rate 2 WATa 4 WAT Biomassb  2 WAT 4 WAT Biomass 
  ---------------- %  ---------------- g plant-1  ------------------ % ------------------ g plant-1 
Planting depthc         
      Shallow  57 Be 52 B 1.14  15 B 14 B 0.66 
      Deep  74 A 67 A 0.90  35 A 36 A 0.66 
         
Herbicided         
      Nontreated 0X --- --- 1.29 A --- --- 0.66 
          
      Diuron 1X 51 B 46 B 1.01 AB    21 AB 16  B 0.60 

 2X 84 A 76 A 0.73 B  36 A 35 A 0.66 
          

      Fluometuron 1X 58 B 51 B 1.19 AB       12 B 10 B 0.64 
 2X 63 B 58 AB 0.93 AB   19 AB 25 AB 0.67 

               
      Fomesafen 1X 57 B 51 B 1.03 AB 35 A 35 A 0.76 
 2X 80 A 73 A 0.97 AB 28 A 31 A 0.64 
                
Vigor          
      Low  68 61 0.95   31 A 31 A 0.63 B 
      High  63 57 1.09  20 B 19 B 0.70 A 

a 2 and 4 WAT refer to early-season cotton injury observed 2 and 4 weeks after treatment. 
b Biomass includes all above-ground plant tissue harvested, dried, and weighed 4 WAT. 
c Planting depth refers to the mechanical placement of seed 0.6 and 2.5 cm within the soil for both shallow and deep scenarios, 
respectively. 
d Herbicides included treatments of diruon, fluometuron, and fomesafen at 0, 1, and 2X labeled rates (diuron, 1.12 kg ai ha-1; 
fluometuron, 1.12 kg ai ha-1; fomesafen, 0.28 kg ai ha-1).  
e Letters represent significant differences between means within each main source effect, year, and WAT according to Tukey’s HSD. 
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Table 7.  Analysis of variance effects tests for low- and high-vigor cotton planted at various depths and treated with various rates of 
different herbicides on a silt loam soil at the Rohwer Research Station near Rohwer, AR.a,b,c 

        
                 2012                             2013 
 

Source                               2 WATa           4 WAT          Biomassb            2 WAT           4 WAT           Biomass 

                                      Prob > Fc 

Depth                0.9927           0.6716           0.8145        0.0014           0.0022 0.0248 
  
Herbicide         0.0001           0.0001           0.0001        0.0001           0.0001  0.0004 
 
Vigor          0.0001           0.0001           0.0230              0.0001           0.0001  0.6734 
 
Depth*Herbicide                   0.0492           0.0192           0.0060        0.0005              0.0017  0.0614 
 
Depth*Vigor                    0.5295           0.8875           0.4605                   0.0003           0.0012  0.0863 
 
Herbicide*Vigor        0.0973           0.7445           0.4093                   0.0001           0.0001  0.2487 
 
Depth*Herbicide*Vigor               0.3977           0.8279           0.1785                   0.0357           0.0512  0.4808 

 
a 2 and 4 WAT refer to early-season cotton injury observed 2 and 4 weeks after treatment. 
b Biomass includes all above ground plant tissue harvested, dried, and weighed 4 WAT. 
c Source values lower than the alpha level of 0.05 are statistically significant. 
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Table 8.  Cotton injury at 2 and 4 weeks after treatment (WAT) and biomass production at 4 
WAT as influenced by cotton seed vigor averaged over herbicides and planting depths on a silt 
loam soil at Rohwer Research Station near Rohwer, AR in 2012.a,b,c 

 
 

 
 

  
Injury 

   

 
Vigor 

 
2 WATa 

 
4 WAT 

 
Biomassb 

     ------------------------------- % ------------------------------------ g plant-1 
Low 38 A 31 A 0.60 B 
High 24 B 20 B 0.67 A 
a 2 and 4 WAT refer to early-season cotton injury observed 2 and 4 weeks after treatment. 
b Biomass includes all above ground plant tissue harvested, dried, and weighed 4 WAT. 
c Letters represent significant differences within respective ratings made weeks after treatment 
(WAT) according to Tukey’s HSD. 
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Table 9.  Cotton injury at 2 and 4 weeks after treatment (WAT) and biomass production at 4 WAT as affected by planting depth and 
herbicide, averaged over seed vigor on a silt loam soil at the Rohwer Research Station in Rohwer, AR in 2012.a,b,c,d 

   Injury   

   2 WATa  4 WAT  Biomassb 

Herbicide Rate Shallowc Deep Shallow Deep Shallow Deep 
 kg ai ha-1 ------------------------------------------- % ----------------------------------------- ----------- g plant-1 ---------- 
Nontreated --- --- --- --- --- 0.49 B 0.47 B 
Diuron 1.12 19 B 13 B 12 B 4 B 0.69 AB 0.85 A 
 2.24 67 A 51 A 54 A 41 A 0.44 B 0.55 AB 
Fluometuron 1.12 17 B   8 B  11 B 8 B 0.87 A 0.79 A 
 2.24 22 B 26 B 18 B 23 B 0.59 AB 0.75 A 
Fomesafen 0.28 31 B 39 A 34 A 33 A 0.77 A 0.63 AB 
 0.56 31 B 49 A 29 B 45 A 0.69 AB 0.40 B 
a 2 and 4 WAT refer to early-season cotton injury observed 2 and 4 weeks after treatment. 
b Biomass includes all above ground plant tissue harvested, dried, and weighed 4 WAT. 
c Shallow and deep planting depths consisted of 0.6 and 2.5 cm, respectively. 
d Letters represent significant differences according to Tukey’s HSD. 
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Table 10.  Influence of the interactions of herbicide, planting depth, and seed vigor on cotton injury at 2 and 4 WAT on a silt loam soil 
at the Rohwer Research Station near Rohwer, AR in 2013.a,b,c 

                                                                        Injury 
  2 WATa  4 WAT 
  Shallowb  Deep  Shallow  Deep 
Herbicide Rate Low  High  Low  High  Low  High  Low  High 
 kg ai ha-1 ----------------------------------------------------------------------- % --------------------------------------------------------------------------------------- 
Diuron 1.12 5 B  10 B  10 B  2 B  8 B  6 B  4 B  3 B 
 2.24 38 A  13 B  47 A  13 B  29 A  13 B  40 A  10 B 
Fluometuron 1.12 6 B  2 B  9 B  4 B  9 B  4 B  8 B  1 B 
 2.24 9 B  5 B    38 A  11 B  6 B  13 B  34 A  5 B 
Fomesafen 0.28 6 B  4 B  10 B  13 B  11 B  5 B  11 B  11 B 
 0.56 23A  4 B  44 A  12 B  14 B  5 B  36 A  13 B 
a 2 and 4 WAT refer to early-season cotton injury observed 2 and 4 weeks after treatment. 
b Shallow and deep plots were mechanically planted 0.6 and 2.5 cm deep, respectively. 
c Letters represent significant differences within a WAT according to Tukey’s HSD. 
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Table 11.  Analysis of variance effect tests for low- and high-vigor cotton treated with 
preemergence herbicides in stressed and non-stressed environments.a,b,c 

Source                                            2 WATa       4 WAT       Biomassb 

                  Prob > Fc 

Vigor           0.0482       0.0009        0.8676 

Herbicide                                                  0.0323       0.0045        0.3880 

Environment        <0.0001       0.0131      <0.0001 

Vigor*Herbicide                                       0.0774       0.0927        0.8400 

Vigor*Environment                                  0.0041       0.0351        0.7440 

Herbicide*Environment                           0.4704       0.3710        0.0112 

Vigor*Herbicide*Environment                0.1927       0.5699        0.5196 

a 2 WAT refers to early-season cotton injury observed 2 weeks after treatment. 
b Biomass includes all above-ground plant tissue harvested, dried and weighed 4 WAT. 
c Source values lower than the alpha level of 0.05 are statistically significant. 
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Figure 1.  Location of Arkansas counties [1 – Washington (Fayetteville); 2 – Lee (Marianna); 3 – 
Desha (Rohwer)] where experiments were conducted in 2012 and 2013. 
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Figure 2.  Cotton biomass production at the Arkansas Agricultural Research and Extension 
Center in Fayetteville and the Lon Mann Cotton Research Center near Marianna, AR in response 
to various seed indices and diuron application rates (0, 1, and 2X the labeled field rate of 1.12 kg 
ai ha-1).  Dark shading represents 95% of the data set. 
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Figure 3.  Injury observed on low- and high-vigor cotton 2 and 4 weeks after treatment (WAT) 
following stressed and non-stressed environmental conditions.  Within a WAT, letters represent 
significant difference at the alpha level 0.05 using Tukey’s HSD. 
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Figure 4.  Cotton biomass (all above-ground plant tissue) collected, dried, and weighed at 4 

WAT.  Letters represent significant differences at the alpha level of 0.05 using Tukey’s HSD.
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III. Effect of Shading, Cultivar, and Application Timing on Cotton Tolerance to 

Glufosinate 

Abstract 

With the increasing presence of glyphosate-resistant (GR) weeds in the Midsouth, cotton 

producers are having to implement new control strategies and technologies to achieve maximum 

cotton yields.  Early-season residual herbicides are again common; however, inconsistent crop 

injury and dependence on moisture for activation causes the need for effective postemergence 

(POST) options.  Glufosinate-resistant technology in cotton can be effective in controlling GR 

weeds like Palmer amaranth when applied at appropriate times and rates.  The objective of this 

study was to determine if differences exist among PhytoGen® and Liberty Link® cultivars to 

recover from injury with glufosinate applied at different growth stages and in the presence of 

low-light conditions.  In 2012 and 2013, field studies were conducted at the Arkansas 

Agricultural Research and Extension Center in Fayetteville, AR where three cultivars were 

treated with various rates of glufosinate at three growth stages in the presence and absence of a 

preceding low-light condition.  At 2 weeks after emergence (WAE), cotton tolerance to 

glufosinate differed by cultivar, although some injury was observed on Liberty Link cotton.  

Injury was often greatest when applied at the 1-leaf stage to PhytoGen® cultivars, but by 4 to 5 

weeks after treatment, all cultivars showed similar potential to recover.  In general, cotton plants 

that were shaded 3 d prior to applying glufosinate were injured to a greater extent than 

nonshaded plants.  Yields were reduced 72 g m-1 of row when cotton was shaded 3 d prior to 

applying 2X rates of glufosinate in 2012 and similarly, shaded plots produced 76 g m-1 of row 

less seedcotton in 2013.  There was little difference among cultivar yields; however, shade did 

significantly reduce yield when present 3 d prior to application, illustrating the importance of 

avoiding glufosinate application during prolonged periods of cloudy conditions. 
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Nomenclature:  Glufosinate; PhytoGen®; Liberty Link®; cotton, Gossypium hirsutum L. 

Key words:  Postemergence (POST); shading; application timing, crop tolerance 
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Introduction  

Since the 1950s, synthetic herbicides have become an increasingly critical tool in the 

improvement of cotton yields through the control of problematic weed species that compete for 

light, nutrients, and moisture (Duke and Powles 2008; McWhorter and Bryson 1992).  Cotton 

yield and quality throughout the southern United States has increased while reducing labor costs 

and time requirements associated with weed control.  Arguably, the most influential achievement 

in weed control over the past 50 years was the increased availability of postemergence (POST) 

herbicides. 

Glyphosate, a non-selective, systemic herbicide, was first registered in 1974 for 

burndown purposes and the control of perennial weeds in non-crop areas.  The absence of 

analogs or alternative chemical classes that inhibit EPSPS (5-enolypyruvylshikimate-3-phospate 

synthase) made this single compound an ideal herbicide for non-selective weed control.   

Increased utility of glyphosate was recognized in 1996 with the release of glyphosate-resistant 

(GR) soybean [Glycine max (L.) Merr.], which was subsequently followed by the release of GR 

cotton, corn (Zea mays L.), and canola (Brassica napus L.).  The discovery of the CP4 gene of 

Agrobacterium sp. provided a method of encoding a GR form of EPSPS (Padgette et al. 1996).  

Accompanied by a promoter, high levels of glyphosate-resistance were expressed when the gene 

was placed into certain crop genomes.  The earliest GR cotton cultivars had high vegetative 

tolerance, but reproductive tolerance was lower because of reduced expression of CP4 EPSPS in 

male tissues (Nida et al. 1996; Pline et al. 2002).   

 Midsouth cotton producers widely accepted GR technology as it resulted in cost-savings, 

improved weed management, and simplicity of use (Duke and Powles 2009).  In 2000, after the 

loss of patent rights to glyphosate, the price of glyphosate decreased by 40% in the United States 
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(Duke and Powles 2009; USDA 2006).  The low price of glyphosate, its low toxicity, and ability 

to control a broad spectrum of weed species resulted in extensive use of glyphosate on annual 

weeds.  The reduction in diversity among modes of action increased the selection on weed 

populations for potential resistance.  The eventual occurrence of GR weeds was contradictory to 

the earlier predictions by Bradshaw et al. (1997).  The main risk factors associated with the 

evolution of HR weeds are a simple cropping system that favors recurrent application of highly 

efficacious herbicides with the same site of action to genetically diverse, annual weed species 

with high fecundity that occur at high densities over vast geographies and have efficient gene 

(seed or pollen) dissemination (Beckie 2006).  Many of the cropping scenarios and problematic 

weed species involved with Midsouth cotton production attest to this statement as 23 herbicide-

resistant (HR) weed biotypes infest Arkansas croplands (Heap 2015). 

 The adoption and justification for continued use of HR crops is due to the adopted 

simplistic approach to improved weed control and higher returns embraced by many growers 

(Burnside 1992; Devine and Buth 2001).  The future of cost-effective weed control depends 

heavily on the protection of HR technology from the evolution of HR weeds; therefore, reducing 

selection for resistance evolution while maintaining sufficient weed control is essential (Beckie 

2006).  The presence of GR weeds has forced many growers to adopt additional herbicide 

mechanisms of action, resulting in more intensive (costly in time and finances) control measures.  

Resistance has made weed control in cotton increasingly difficult as crop seedlings are slow 

growing and there are fewer herbicide options relative to other crops like corn and soybean 

(Eaton 1955; Pankey et al. 2005).  New herbicide chemistry is limited as industry research and 

development efforts were greatly slowed following the release of glyphosate-resistant crops 

(Reddy 2001).   
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The presence of GR weeds has encouraged many to evaluate the efficacy of the 

glutamine synthetase inhibitor glufosinate (Bellinder et al. 1987).  Glufosinate can be applied 

POST over the top to glufosinate-resistant cotton cultivars,  namely Liberty Link® (Anonymous 

2014).  Although glufosinate provides no residual control, it can serve as an effective 

management tool as no weed biotypes in cotton are currently resistant to glufosinate (Duke and 

Powles 2009; Green 2009).  Many scientists believe the answer to acceptable control and 

prevention of resistance should involve the integration of soil-applied residual herbicides with a 

glyphosate/glufosinate rotation program (Norsworthy et al. 2012). Exploring the efficacy of 

glufosinate in various environmental and cultural conditions could potentially reduce the number 

of applications, fuel, labor, and equipment costs and reduce selection for herbicide resistance 

(Wilcut et al. 2002; Norsworthy et al. 2012; UADOA 2012).   

In croplands with high populations of GR weeds like Palmer amaranth, glufosinate can 

provide adequate control when applied at appropriate times and rates (Culpepper et al 2009; 

Steckel et al.1997; Everman et al. 2007).  Because glufosinate is a contact herbicide, efficacy is 

greatly dependent on several factors including coverage, relative humidity (RH), and weed size 

(Coetzer et al. 2001; Hoss et al. 2003; Riar et al. 2011).  Properly evaluating the environmental 

and agronomic factors that influence the efficacy of glufosinate could potentially improve the 

utility of this herbicide as a tool for the management of GR weeds. 

Seeds germinate, develop, and reproduce most effectively under favorable conditions 

(Anderson 1962; Gibson and Mullen 1996; Holm and Miller 1972) because plant physiological 

processes benefit from adequate sunlight, water, and nutrients.  Similarly, the efficacy of POST 

herbicides is influenced by environmental conditions before, during, or after the time of 

application as plant foliar and root uptake is impacted (Cole 1983).   
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Plant growth stage, rate of growth, leaf wax surface development, and degree of turgor 

can influence the susceptibility of plants to herbicides (Hammerton 1967); therefore, herbicide 

efficacy is dependent upon a lethal amount of herbicide penetrating the cuticle and reaching the 

active site.  Many POST herbicides are considered effective by associated retention and 

penetration of the leaf surface which has been documented to be affected by light quantity.  The 

protective layer on aerial plant parts is known as the cuticle and it serves as the primary barrier to 

POST herbicide penetration (Kolattukudy 1970).  The outer layer of the cuticle, known as the 

epicuticular wax (ECW) layer, is composed of long-chain aliphatic compounds derived from 

very long chain fatty acids and can be highly altered, physiologically, from environmental 

factors (Kunst and Samuels 2003).  Factors such as temperature, sunlight, RH, and soil water 

content have been documented to affect the foliar absorption of POST herbicides such as 

glufosinate (Garcia et al. 2002; Stevens and Baker 1987).  Field experiments emphasized that 

plants subjected to 80% shading were injured more by carfentrazone-ethyl, a selective POST 

herbicide registered for use in corn, than nonshaded corn plants.  Similarly, shading 5 d prior to 

application resulted in a 4 to 8% increase in injury on wheat (Triticum aestivum L.) from 

carfentrazone-ethyl.  Soybean exhibited the greatest response to shading as plants were injured 

24 to 41% more by carfentrazone-ethyl than those grown in complete sunlight (Thompson and 

Nissen 2002).   

Little research has been conducted evaluating the impact of glufosinate on vegetative 

cotton injury under low-light conditions.  Based on soybean, crop injury from herbicides as a 

result of shading could be associated with reduced herbicide metabolism, herbicide 

sequestration, chlorophyll biosynthesis, protogen degradation, or free radical detoxification 

(Dayan and Duke 1997).  The existence of lowered BAR gene activity in WideStrike (Phytogen) 
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cultivars translates into incomplete glufosinate tolerance compared to LibertyLink® (Steckel et 

al. 2012).  This reduced tolerance has been documented to result in 11 to 25% crop injury with 

single applications of glufosinate (Culpepper et al. 2009; Whitaker et al. 2011; Sweeney and 

Jones 2014).  There has been, however, weak evidence suggesting this injury could result in 

reduced yield and lint quality (Culpepper et al. 2009; Dodds et al. 2011) and in many cases 

injury symptoms were not observed (Wallace et al. 2011).  Plants with low soil moisture status 

achieved by fully exposing them to sunlight could experience dehydrated cuticles and less foliar 

absorption of herbicides (Peregoy et al. 1990) and this reaction could vary among different 

biotypes or cultivars as well as growth stage during application.  Additionally, injury to 

LibertyLink® cotton in the form of necrosis of the upper most leaves can result at times 

following a labeled application of glufosinate; albeit, the extent of injury is often quite variable 

and transient (Norsworthy, personal communication).  Therefore, the objective of this research 

was to assess the response of PhytoGen® and LibertyLink® cotton to glufosinate applied at 

different growth stages when low-light conditions precede the application. 

 

Materials and Methods 

In 2012 and 2013, a split-split-strip plot field experiment with four replications was 

conducted at the Arkansas Agricultural Research and Extension Center in Fayetteville, AR on a 

Leaf silt loam soil (Fine, mixed, active, thermic Typic Albaquults; with 34% sand, 53% silt, 13% 

clay, 1.5% organic matter, and a pH of 6.9) (USDA-NRCS 2015).  The main plot consisted of 

three cotton cultivars (PHY 375 WRF, PHY 499 WRF, and ST 4145LLB2).  PhytoGen® seed 

was obtained from Dow AgroSciences in Indianapolis, IN, USA, and Stoneville® seed was 

acquired from Bayer Crop Science in Research Triangle Park, NC, USA.  A John Deere 6403 



  

59 
    

medium-frame tractor and John Deere 7100 four-row planter (Deere & Company, Moline, IL, 

USA) retrofitted with an electric cone-type seeder (ALMACO, Nevada, IA, USA) were utilized 

to plant 125,000 seed ha-1 at a 2-cm depth in mid-May.  The strip-plot dimensions included 2 

bedded rows spaced 91 cm apart, 3.8 m long.  The subplot consisted of three cotton growth 

stages (1-, 4-, and 6-leaf stage) at application and the subsubplot consisted of three herbicide 

treatments (glufosinate at 0.88 and 1.76 kg ai ha-1 and a non-treated control).  Glufosinate was 

applied as Liberty 280 SL.  The strip of this experiment consisted of light intensity (shade and 

non-shaded) organized horizontally across replications.  The shaded plots (front 3 m of 

subsubplot) were covered with shade cloth allowing for 50% light penetration without spectrum 

limitation 3 d prior to herbicide treatment.  Shade cloth covers (Gempler’s, Madison, WI, USA) 

were supported by a polyvinyl chloride pipe frame 40 cm above the plant canopy.  Weed control 

was supplemented by a preemergence (PRE) application of fluometuron (Cotoran®4L, MANA 

Inc., Raleigh, NC, USA) and S-metolachlor (Dual Magnum, Syngenta, Greensboro, NC, USA) at 

1.12 and 1.07 kg ai ha-1, respectively, along with hand weeding.  

Applications were made using a CO2-pressurized backpack sprayer calibrated to deliver 

187 L ha-1 at 276 kPa and 4.8 kph.  Cotton injury was assessed at 2 and 4 to 5 WAT on a 0 to 100 

scale, with 0 being no injury and 100 being complete death.   The test site was routinely scouted 

for insects and diseases.  In early-July of 2012 and 2013, a one-time application of 0.27 kg ha-1 

of dimethoate (Dimethoate 4E, Cheminova, Research Triangle Park, NC, USA) was applied to 

control tarnished plant bug [Lygus lineolaris (Palisot de Beauvois)].   

In 2013, cotton leaves were sampled to determine cuticle quantity on the day of herbicide 

application by means of bagging three of the youngest mature leaves from both the shade portion 

and exposed portion of each plot. Three 3-cm2 sections from each sampled leaf were submersed 
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in chloroform and shaken for 10 min.  After removing the cuticle, the chloroform was permitted 

to evaporate and the vials were weighed to determine the amount of epicuticular wax (ECW).  In 

both years, aboveground cotton biomass was harvested from 2 m of row and the number of 

harvested plants counted at 12 WAE.  The harvested biomass was oven-dried for 7 d at 60 C and 

weighed.  Upon maturity, seedcotton was hand harvested from 2 m of row from all plots and 

weighed.   

Data were subjected to a fixed effects test in JMP Pro 11 (SAS Institute Inc., Cary, NC, 

USA) with the randomization of replication.  The variability of irrigation and precipitation events 

led to years being analyzed separately as a by-variable using GLM Mixed under an effect 

leverage personality.  Under this mixed model and residual maximum likelihood (REML), p-

values were generated and means associated with significant interactions were separated using 

Tukey’s HSD at the alpha level of 0.05 (SAS Institute Inc. 2014) 

 

Results and Discussion 

In 2012, the malfunction of irrigation equipment accompanied by extended periods of 

hot, dry weather contributed to an overall reduction in cotton growth compared to 2013.  The 

irrigation and environmental differences between years in Fayetteville, AR prompted the 

separation of trial years as a by-variable during statistical analyses (Figure 1).  

2012.  At 2 WAT, statistical significance was observed on the main effects of leaf stage at 

application, herbicide rate, and shading (Table 1); however by 4 to 5 WAT, these main effects 

were no longer significant, likely as a result of the ability of cotton to recover from the initial 

stresses from the herbicide and shading.  Late-season assessment of cotton aboveground biomass 

was impacted by the main effects of shading and herbicide, but not cultivar.     
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Initial Injury (2 WAT). Cotton that had been shaded prior to treatment at the 1-leaf stage 

exhibited more damage at 2 WAT when compared to other growth stages at application, 

averaged over cultivar and glufosinate rate (Figure 2).  No difference was observed between 

cultivars or shading when cotton was treated with glufosinate at 0.88 kg ai ha-1 although trends 

for injury to increase were present when all cultivars were subjected to simulated cloud cover 3 d 

prior to application (Figure 3).  

Recovery from Injury (4 to 5 WAT). At 4 to 5 WAT, all cotton cultivars had shown measurable 

potential to recover (Table 1).  Tukey’s HSD as well as a Student’s t-test failed to produce 

statistical separation of means, prompting a more detailed contrast for two-way components 

within the two-way interaction of shading and cultivar (personal communication, K. Thompson).  

Data were then run through SAS 9.3 in which the interaction of cultivar and shade on cotton 

injury 4 to 5 WAT in 2012 were shown to be nonsignificant (data not shown).  Having shown 

greater susceptibility to injury at high rates, LibertyLink® cultivars display potentially weaker 

tolerance to glufosinate when application follows periods of reduced photosynthetic activity.  

According to Zhao and Oosterhuis (1998a), shading negatively impacts photosynthetically active 

radiation (PAR) absorbed by the plant and decreases the net photosynthetic rate.  Cotton 

possesses a mechanism to compensate by increasing chlorophyll biosynthesis which could hinder 

the plant’s ability to combat leaf damage by increasing the partitioning of N into leaves and 

subsequently increasing absorption of glufosinate. 

Late-Season Biomass (12 WAP).  The biomass collected 12 weeks after planting (WAP) proved 

to display a shade by growth stage and shade by herbicide interaction following analysis in 2012 

(Table 1).  Cotton treated at the 4-leaf stage in absence of shade was found to produce 

significantly more biomass.  When cotton was treated with an above-labeled rate of glufosinate 
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(1.76 kg ha-1), shaded plants produced less biomass in 2012, averaged over cultivar (Figure 5). In 

addition, nonshaded cotton not treated with glufosinate produced 67 g m-1 of row more biomass 

compared to nontreated plants.   

Seedcotton Yield.  Significant influences of leaf stage, herbicide, shade presence, and a herbicide 

by shade interaction were observed regarding seedcotton yield (Table 2).  Though statistical 

separation is lacking, numeric trends suggest reduced yield when cotton was shaded 3 d prior to 

application of 1 and 2X rates of glufosinate (Figure 6).  With proper fertilization, weed-free 

maintenance, and irrigation, leaf stages 1 and 4, averaged over shading and herbicide 

applications, exhibited greater yields than 6-leaf cotton (Figure 7).  It seems unlikely that the 

18% injury to cotton that occurred following the 6-leaf application resulted in yield loss 

compared to the 1-leaf application which was injured 28 to 36% by glufosinate (Figures 2 and 7).  

2013.  Initial Injury (2 WAT).  In 2013, there was a shade by cultivar by leaf stage interaction for 

injury at 2 WAT (Figure 8).  Numerically more injury was observed to cotton that had been 

shaded prior to glufosinate application than plants that were not shaded, and differences for 1-

leaf cotton treated with glufosinate were significant between shaded and nonshaded treatments. 

The low leaf photosynthesis of shaded cotton may be associated with decreased electron 

transport capacity (Zhao and Oosterhuis 1998b) severely hindering the detoxification of 

ammonia.  Glufosinate could then potentially lead to the uncoupling of photophosphorylation 

resulting in both membrane disruption and lipid peroxidation.  Just as Culpepper et al. (2009) 

and Steckel et al. (2012) concluded, the lowered tolerance presented by PhytoGen® cultivars 

often resulted in greater injury.  This injury was often proliferated during periods of simulated 

cloud cover at both the 1- and 4-leaf stage. 
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Recovery from Injury (4 to 5 WAT).  The variability among cultivars in initial injury from 

glufosinate and ability to recover from injury resulted in an interaction of cultivar, leaf stage, and 

glufosinate rate for assessments taken at 4 to 5 WAT in 2013 (Table 1).  This experiment 

supplied variations in injury symptoms, biomass, and seedcotton yield often due to cultivar 

differences.  There exists an inability for some cultivars to respond similarly to all cloud events 

(Goodman 1955).  ANOVA indicated the interaction to be significant though the conservative 

nature of Tukey’s HSD failed to produce significant separation of treatments.  Greater injury was 

observed when glufosinate was applied at 1.76 kg ai ha-1 to PhytoGen® cultivars compared to 

the Liberty Link® variety.  Additionally, injury was escalated when applications took place 

during the 1-leaf stage (Figure 9). 

Late-Season Biomass (12 WAP).  Shading cotton 3 d prior to application at the 4-leaf stage 

resulted in 27% less biomass than nonshaded plots (Figure 10).  Numeric trends show that 

simulated cloud cover consistently reduced biomass which is consistent with the findings of 

Dusserre et al. (2002).   

Epicuticular Wax Quantity.  As the leaf cuticle plays a crucial role in defending leaves from 

chemical penetration, thicker cuticles can be expected to reduce the penetration of foliar-applied 

herbicides (Oosterhuis et al.1991).  Cotton leaves sampled just prior to the 1-leaf application 

stage contained 0.6 to 0.15 g greater ECW per 3.14 cm2 sample than 4- and 6-leaf samples 

(Figure 11).  It is possible that cotton possesses physiological properties that include equipping 

younger leaves with thicker cuticles in effort to protect itself during initial root establishment and 

vegetative development.  In a study conducted in Fayetteville, AR in 1991, water-stressed cotton 

increased ECW by 44% (Oosterhuis et al. 1991).  According to Fick’s second law, the flux of a 

herbicide should increase as cuticle thickness decreases, which likely means that there other 
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factors at play regarding differences in tolerances across growth stages, some of which may 

involve wax composition or may be physiological in nature (Nobel 1970, Price 1982).   

Seedcotton Yield.  Similar to 2012, the main effect of shade in 2013 impacted seedcotton yield 

(Table 2). By mid-August, all treatments had visually recovered from injury sustained by the 

application of glufosinate (data not shown).  These visual assessments of phytotoxicity did not, 

however, illustrate the potential metabolic disruptions that took place resulting in shaded plots 

producing 820 kg ha-1 less seedcotton than nonshaded plots (data not shown).  Dunlap (1943) 

reported that interruptions for two or three days in high sunlight intensities often causes shedding 

of fruiting forms and documented a significant yield reduction.  Cotton is extremely sensitive to 

low photosynthetic photon flux density (PPFD) stress and numerous studies have documented 

yield reductions reaching 67% (Eaton and Ergle 1954; Knight 1935; Zhao and Oosterhuis 2000).  

Most research, including the before mentioned, explored simulated cloud cover during the 

fruiting period rather than early vegetative growth.  This research would suggest that shading 

cotton at younger growth stages (prior to 7-leaf) can have lasting effects, and in certain years like 

2013, can negatively impact yield.  Granted, it is unusual that young cotton would be 

detrimentally affected by a mere three days of simulated cloud cover, but cotton is very sensitive 

to early season interference or stress of any kind and any evidence suggesting a potential lag in 

vegetative and ultimately reproductive growth cannot be overlooked (Wells, personal 

communication).  Zhao and Oosterhuis (2000) hypothesized that “the effects of low PPFD at 

different developmental stages on cotton growth and yield may be quite different because cotton 

is perennial with an indeterminate growth habit, and it is very responsive to changes in 

environments, especially PPFD.”  This research compliments that hypothesis. 
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Summary 

The impact of cloud cover, which was simulated by means of shade cloth in this research, has 

been documented as a challenge to global cotton production regarding variability in injury, 

biomass, ECW, and yield by various cultivars treated with glufosinate.  The decrease in 

photosynthetic irradiance by shading can increase otherwise irrelevant injury and yield losses.  It 

has become evident that the application of glufosinate, namely to control GR weed species such 

as Palmer amaranth, should be reserved for times of high photosynthetic activity by cotton (Zhao 

and Oosterhuis 1998).  It is suggested that cotton producers refrain from applying high rates of 

glufosinate on cotton that has been subject to cloudy conditions for 3 d.  Although no significant 

yield differences were observed, special caution is advised when the use of glufosinate is 

employed to control GR weeds in typically less tolerant PhytoGen® cotton systems compared to 

Liberty Link®. 
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Table 1.  Fixed effects test for three cotton cultivars treated with various rates of glufosinate at three leaf stages in the presence and 
absence of preceding shade at the Arkansas Agricultural Research and Extension Center in Fayetteville, AR.a,b,c 

      2012         2013 

Source  2 WAT  4 to 5 WAT     Biomassb 2 WAE     4 to 5 WAT  Biomass 

 Prob > Fc 

Cultivar  0.0700  0.2373  0.5673 0.0008  0.0893  0.9597 

Stage  0.0001  0.7544  0.0188 0.0001  0.0613  0.6139 

Herbicide  0.0008  0.1198  0.0005 0.0001  0.7346  0.6588 

Shade  0.0247  0.2702  0.0533 0.0031  0.0582  0.1063 

Cultivar*Stage  0.0190  0.6366  0.3044 0.0006  0.7346  0.5490 

Cultivar*Herbicide  0.8487  0.3525  0.6473 0.0780  0.0531  0.6368 

Cultivar*Shade  0.2349  0.0240  0.9181 0.0131  0.0966  0.2143 

Stage*Herbicide  0.0688  0.1052  0.4099 0.0068  0.7094  0.6366 

Stage*Shade  0.0146  0.1863  0.0385 0.0066  0.0832  0.7982 

Herbicide*Shade  0.3045  0.9696  0.0068 0.2861  0.7160  0.7014 

Cultivar*Stage*Herbicide  0.3504  0.3372  0.0689 0.1517  0.0393  0.2845 

Cultivar*Stage*Shade  0.6772  0.7815  0.3884 0.0360  0.0817  0.7748 

Cultivar*Herbicide*Shade  0.0413  0.1666  0.7116 0.3747  0.5445  0.8540 
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Stage*Herbicide*Shade  0.1399  0.5397  0.2997 0.5985  0.7439  0.1847 

Cultivar*Stage*Herbicide*Shade  0.2175  0.1103  0.0957 0.6164  0.5310  0.5045 

a 2 WAT refers to early-season cotton injury observed 2 weeks after treatment with glufosinate. 
b Biomass includes all above ground plant tissue harvested, dried, and weighed 12 WAP. 
c Source values lower than the alpha level of 0.05 are statistically significant. 
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Table 2.  Fixed effects tests for the seedcotton yield of three cotton cultivars applied with various 
rates of glufosinate at three leaf stages in the presence and absence of shade at the Arkansas 
Agricultural Research and Extension Center in Fayetteville, AR.a,b,c,d,e,f 

                                                    Seedcotton yielda  
    

Source                                                                            2012                                   2013       

                                                          Prob > Fb 

Cultivarc       0.1772          0.9559         
  
Staged                   0.0081          0.4295 
 
Herbicidee                                   0.0001          0.5711 
 
Shadef                0.0003          0.0001 
 
Cultivar*Stage                 0.6314          0.2324 
 
Cultivar*Herbicide               0.9830          0.5214 
         
Cultivar*Shade                0.6795          0.3314 
 
Stage*Herbicide                 0.7648          0.5399 
 
Stage*Shade                  0.1117          0.8849 
 
Herbicide*Shade                 0.0123          0.9065 
 
Cultivar*Stage*Herbicide               0.0762          0.1603 
 
Cultivar*Stage*Shade            0.5412          0.8949 
 
Cultivar*Herbicide*Shade                0.9756          0.9507 
 
Stage*Herbicide*Shade               0.6964          0.5177 
 
Cultivar*Stage*Herbicide*Shade          0.4503          0.8974 

 
a Seedcotton was collected upon reproductive maturity in the form of g m row-1. 
b Source values lower than the alpha level of 0.05 are statistically significant. 
c Cotton cultivars tested include PHY 375 WRF, PHY 499 WRF, and 4145 LLB2. 
d Glufosinate was applied at the 1-, 4-, and 6-leaf stage. 
e Herbicide treatments included glufosinate at 0.88 and 1.76 kg ai ha-1 and a nontreated control. 
f Treatments included the presence and absence of simulated cloud cover (shade cloth) 3 days 
prior to treatment with glufosinate. 
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Figure 1.  Rainfall and irrigation distribution at the Arkansas Agricultural Research and 
Extension Center in Fayetteville, AR in 2012 (a) and 2013 (b) displaying planting dates (PD) and 
application timings (A,B,C). 
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Figure 2.  Cotton injury observed 2 weeks after treatment in 2012 on cotton of three growth 

stages applied with glufosinate in the presence and absence of shade 3 days prior to 
application.  Letters represent significant differences according to Tukey’s HSD. 
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Figure 3.  Cotton injury at 2 weeks after treatment in 2012 on three cotton cultivars following 

applications of glufosinate that had been shaded or not shaded for 3 days prior to 
application.  Means were averaged over growth stage at application.  Letters represent 
significant differences according to Tukey’s HSD. 
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Figure 4.  Cotton biomass at 12 weeks after planting from plots of various growth stages treated 

with various rates of glufosinate in the presence and absence of shade 3 days prior to the 

glufosinate application in 2012.  Means are averaged over application rate and cultivar.  Letters 

represent significant differences according to Tukey’s HSD test. 
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Figure 5.  Cotton biomass at 12 weeks after planting from plots treated with various rates of 

glufosinate in the presence and absence of shade 3 days prior to the glufosinate 
application in 2012.  Means are averaged over cotton stage at application and cultivar.  
Letters represent significant differences according to Tukey’s HSD test. 
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Figure 6.  Seedcotton yield after early-season glufosinate applications made in the presence and 

absence of shade 3 days prior to application in 2012, averaged over cotton stage at 
application and cotton cultivar.  Letters represent significant differences according to 
Tukey’s HSD test. 
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Figure 7.  Seedcotton yield as influenced by cotton growth stage when treated with glufosinate in 

2012, averaged over glufosinate rate, cotton cultivar, and presence or absence of shade 
prior to treatment with glufosinate.  Letters represent significant differences according to 
Tukey’s HSD. 
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Figure 8.  Cotton injury at 2 weeks after treatment in 2013 on three cotton cultivars following 

glufosinate applications at three different growth stages in the presence and absence of 
shade at 3 days prior to the glufosinate application.  Means are averaged over glufosinate 
rates.  Letters represent significant differences according Tukey’s HSD test. 
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Figure 9.  Cotton injury at 4 to 5 weeks after treatment of three cotton cultivars treated with 

glufosinate at 0.88 kg ai ha-1 (1X) and 1.76 kg ai ha-1 (2X) at three growth stages in 2013, 
averaged over the presence and absence of shade.  Analysis of variance indicated the 
interaction to be significant; however, the conservative nature of Tukey’s HSD failed to 
provide mean separation. 
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Figure 10.  Cotton biomass 12 weeks after planting in 2013 from cotton treated at different leaf 
stages in the presence and absence of cotton.  Letters represent significant differences 
according to Tukey’s HSD test. 
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Figure 11.  Epicuticular wax extracted from leaf samples collected from three cotton cultivars at 

time of the glufosinate application at three cotton growth stages.  Letters represent 
significant differences according to Tukey’s HSD test. 
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IV. Palmer Amaranth Seed Production and Height as Influenced by Emergence Date in 

Cotton 

Abstract 

With the confirmation of glyphosate-resistant Palmer amaranth in Arkansas, cotton growers have 

reached a new level of difficulty regarding the effective control of this weed.  Rapid carbon 

sequestration and efficient water use make Palmer amaranth a strong competitor for nutrients in 

crops as it decreases water and space availability in turn reducing growth of cotton.  Research 

was conducted in 2012 and 2013 at the Arkansas Agricultural Research and Extension Center in 

Fayetteville, Arkansas to evaluate the impact of Palmer amaranth emergence date on its biomass, 

height, and seed production as well as the corresponding influence on cotton biomass and yield.  

For each emergence date, Palmer amaranth was evaluated in the presence and absence of cotton.  

As Palmer amaranth emergence was delayed in cotton, the resulting seed production per female 

plant was reduced to a greater extent than delayed emergence in the absence of cotton.  Palmer 

amaranth plants emerging as late as 10 weeks after cotton emergence were able to produce on 

average 880 seed per female plant, an amount sufficient to replenish a soil seedbank.  The late 

emerging plants competing with cotton were smaller in size than earlier emerging plants and 

Palmer amaranth biomass production was correlated (r2 = 0.63) with seed production in the 

presence of cotton.  The later emerging cohorts responded to the presence of cotton by producing 

less biomass more so than a reduction in plant height with delayed emergence.  This research 

shows that Palmer amaranth cohorts emerging as late as 10 weeks after cotton emergence must 

be removed if the goal of a weed management program is to prevent weed seed production. 

Nomenclature:  Palmer amaranth, Amaranthus palmeri S. Wats; cotton, Gossypium hirsutum L. 

Key words: Cotton production; weed seed production; crop yield loss; weed interference 
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Introduction 

The susceptibility of cotton to yield loss from weeds can be attributed to its relatively 

noncompetitive foliar canopy and slow inherent growth.  Furthermore, cotton has few available 

herbicides compared to corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] (Pankey 2005).  

It has been estimated that weeds reduced the yield potential of cotton worldwide by 11.5% in 

1975, whereas cotton yield and quality losses and cost of weed control in the United States in 

1965 was estimated to be $5.1 billion (Agric. Res. Serv. 1965; Parker and Fryer 1975).  More 

recently, it was concluded in a survey published in 1992 that losses from weeds and cost of 

control in U.S. cotton exceeded $15 billion annually (Bridges 1992). The cost of weed 

interference in U.S. cotton is likely higher today and continues to increase as a result of  

herbicide resistance, particularly with the ineffectiveness of glyphosate and acetolactate synthase 

(ALS)-inhibiting herbicides on Palmer amaranth.  

 Weed control has always been a crucial step in successful cotton production as 

problematic weed species, if not controlled, can effectively out-compete cotton for light, 

nutrients, space, and water.  Cotton can require up to 8 weeks of weed-free maintenance to 

maximize yields; a great deal longer than corn and soybean (Buchanan and Burns 1970).  The 

release of glyphosate-resistant (GR) cotton in 1997 enabled growers to make multiple over-the-

top glyphosate applications, controlling a broad spectrum of weeds without disrupting the growth 

of the crop (Funke et al. 2006).  Ultimately, the availability of the GR cotton prompted growers 

to widely adopt the technology because of cost savings, improved weed management, and 

simplicity of the system (Duke and Powles 2009).  In 2000, after the loss of patent rights to 

glyphosate, the price of glyphosate decreased by 40% in the United States (Duke and Powles 

2009; USDA 2006).  The low price of glyphosate and ability to control a broad spectrum of weed 
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species with over-the-top applications resulted in extensive use of the herbicide.  Annual weeds 

having high rates of reproduction were the main target for control, and sole use of the herbicide, 

especially early in the cropping season resulted in immense selection for herbicide resistance 

(Nichols et al. 2009; Neve et al. 2011).  Today, there are 32 glyphosate-resistant weed biotypes 

worldwide and seven of these occur in Arkansas, of which Palmer amaranth is most problematic 

in cotton (Heap 2015; Riar et al. 2013).   

 Palmer amaranth is a dioecious, summer annual capable of producing over 600,000 seed 

per female plant (Keeley et al. 1987).  It is highly competitive with crops, having been found to 

reduce soybean yield 68% at densities of 10 plants m-2 (Klingaman and Oliver 1994).  In cotton, 

for every one Palmer amaranth per 10 m of row, yield was reduced 5.9 to 11.5% at two sites in 

Oklahoma (Rowland et al. 1999). Additionally, its rapid erect growth and alleopathic potential 

directly hinder the yield potential of cotton (Morgan et al. 2001). Palmer amaranth densities of 1 

to 10 plants/9.1 m of row in cotton decreased crop canopy volume 35 and 45% by 6 and 10 

weeks after cotton emergence (WAE), respectively (Morgan et al. 2001). The high level of 

Palmer amaranth interference with cotton results in the need for effective control, even to the 

point of complete elimination of escape plants in cotton (Norsworthy et al. 2014). 

Light is considered to have the greatest impact on cotton canopy volume, biomass, and yield 

when soil moisture and nutrients are not limiting (Donald 1958; Morgan et al. 2001).  The rapid 

erect growth of Palmer amaranth can result in individuals reaching over 2 m in height, leaving 

little doubt that cotton in close proximity could experience decreased cotton yield via shading 

(Rowland et al. 1999; Keeley et al. 1987). 

 New herbicide chemistry is limited as industry research and development efforts slowed 

following the release of GR crops.  While great attention has been focused on redeveloping 
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existing technologies, the use of integrated weed management (IWM) strategies has also gained 

momentum.  In 2012, best management practices (BMPs) were put forth for addressing the ever 

increasing occurrence of herbicide-resistant weeds (Norsworthy et al. 2012). Diversity in weed 

management strategies was highlighted as a means to reduce the risk of herbicide resistance.  

Understanding the biology of the targeted weed is of utmost importance in best designing 

resistance management strategies and essential for modeling the evolution of herbicide 

resistance.  The best management strategies to mitigate herbicide resistance encourages attention 

to weed biology and ecology; namely, seed production, growth potential, and overall 

competitiveness in a given crop (Bagavathiannan et al. 2012).  Weed seed production and 

biomass are highly dependent upon time of emergence with a crop and weed and crop density or 

configuration of the spacing among crop plants (i.e., impacted by seeding rate and rows spacing) 

(Murphy et al. 1996; Knezevic and Horak 1998; Clay et al. 2005).  Previous research shows that 

as emergence date becomes later in the growing season, plant fecundity decreases (Knezevik and 

Horak 1998; Clay et al. 2005).  Continued exploration of weed biology and ecology benefits 

cotton producers striving to quantify the competitive interactions of cotton and Palmer amaranth 

with varying environments and agronomic scenarios (Clay et al. 2005; Van Acker 2009; Gressel 

2011; Uscanga-Mortera et al. 2007).  Hence, the objective of this research was to determine to 

what extent emergence date of Palmer amaranth in cotton affects its height, biomass, seed 

production and its resulting effect on cotton biomass and seedcotton yield. 

 

Materials and Methods 

In 2012 and 2013, a field experiment was conducted at the Arkansas Agricultural 

Research and Extension Center in Fayetteville, Arkansas as a randomized complete block with a 
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factorial treatment structure.  Cotton cultivar PHY 375 WRF (Dow AgroSciences, Indianapolis, 

IN, USA) was planted at a 2-cm depth into a Leaf silt loam soil (Fine, mixed, active, thermic 

Typic Albaquults with 34% sand, 53% silt, 13% clay, 1.5% organic matter, and a pH of 6.9) 

(USDA-NRCS 2015) at 125,000 seed ha-1 and supplemented with over-head sprinkler irrigation 

to maintain optimal growing conditions.  Planting occurred on June 1, 2012 and May 15, 2013 

using a John Deere 6403 medium-frame tractor and John Deere 7100 four-row planter (Deere & 

Company, Moline, IL, USA).  Twelve treatments included various planting dates of glyphosate-

resistant Palmer amaranth seed both in and out of competition with cotton on a 92 cm row 

spacing.  Approximately 20 Palmer amaranth seeds were hand planted in close proximity to the 

inner two rows (<13 cm from row center) of four row plots approximately 4 d after seeding 

cotton in order for Palmer amaranth emergence to coincide with cotton emergence.  Cotton 

emerged on June 5, 2012 and May 23, 2013 and was shortly thereafter removed in one treatment 

of each of the six Palmer amaranth emergence dates (0, 2, 4, 6, 8, and 10 weeks after cotton 

emergence).  Removal of cotton in one-half of the plots allowed for the effect of cotton on 

Palmer amaranth to be assessed, accounting for the delayed emergence of cohorts after typical 

planting of cotton.  Palmer amaranth seedlings were manually thinned to 1 plant per m-1 of row 

within 2 weeks after emergence, resulting in a final density of 1.1 plants m-2 competing with the 

two innermost rows of cotton in each plot.   

A known glyphosate- and trifloxysulfuron-resistant Palmer amaranth biotype was used in 

the plots, which allowed for use of glyphosate (Roundup PowerMax®, Monsanto, St. Louis, MO, 

USA) and trifloxysulfuron for control of unwanted weeds.  Additionally, clethodim was used 

later in the growing season to remove grasses and some unwanted Palmer amaranth plants were 

hand removed throughout the season to promote as close of a weed-free environment as possible.  
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Only slight injury to Palmer amaranth was observed following any of the herbicide applications 

and the plants had often fully recovered by 2 to 3 weeks after treatment.  All applications were 

made using a CO2-pressurized backpack sprayer equipped with four TTI 110015 nozzles (Teejet 

Technologies, Springfield, IL, USA) calibrated to deliver 187 L ha-1 at a pressure of 276 kPa and 

a walking speed of 4.8 kph.  

Prior to cotton defoliation each fall, the height of three Palmer amaranth and three cotton 

plants in each plot were measured and aboveground biomass of all existing Palmer amaranth 

plants were harvested for biomass determination.  Palmer amaranth biomass was placed in 

individual bags and oven dried at 66 C and then weighed.  The inflorescence of the female plants 

was then removed and threshed to determine seed production per plant.  Seed production was 

determined by counting the number of seed in four 100 g samples of threshed seed and then 

extrapolating for the mass of the entire sample.  Following cotton defoliation, seedcotton was 

harvested from 4 m row-1 of the two center rows of each treatment and weighed.   

All data were subjected to ANOVA using JMP PRO 11 (SAS Institute Inc., Cary, NC, 

USA) (Table 1).  Data were square-root transformed to meet normality assumptions for Palmer 

amaranth height, seed production, and biomass, and in all cases, replications were nested within 

years and ran as a random effect.  Nonlinear models were established based on the best pseudo-

R2 value (Pseudo-R2 = 1-SS(Residual)/SS(TotalCorrected) (Chism et al. 1992).  Based on this 

process, a two parameter exponential decay model was utilized (Y = a*exp(-b*x)) to describe 

end-of-season Palmer amaranth biomass over the evaluated cohorts.  The interacting effect of 

cotton competition and year proved to significantly impact Palmer amaranth height and a mixed 

model with an effect leverage personality under a residual maximum likelihood (REML) was 

utilized.  This analysis is comparable to ProcMixed GLM in SAS (Statistician, Dr. Weisz, NC 
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State University, personal communication).  Means were separated using Tukey’s HSD at the 

alpha level of 0.05.  Transformation of data achieved homoscedasticity for linear regression 

methods and fitted equations with associated pseudo-R2 values were presented.  Years were not 

pooled in regards to the interaction of Palmer amaranth biomass and seed production.  For 

Palmer amaranth biomass and seed production, a bivariate fit was constructed blocking for 

replication and applying year as a by-variable for the associated linear equation, Y = ax + b, and 

pseudo-R2 values.  All figures were constructed in SigmaPlot (Systat Software, Inc., San Jose, 

CA, USA). 

 

Results and Discussion 

The establishment of successful IWM requires an understanding of the biology of major 

weed species.  In current Midsouth cotton production, this directly relates to Palmer amaranth as 

a major competitor for light, space, water, and nutrients.  Averaged over 2012 and 2013, Palmer 

amaranth end-of-season height and biomass production were significantly impacted by the 

interaction of Palmer amaranth emergence date in the presence and absence of cotton (Table 1). 

Of the three Palmer amaranth parameters measured, only end-of-season height was influenced by 

the effect of year.   

Cotton Height and Seedcotton Yield.  Cotton height was significantly greater in 2013 than in 

2012 (Table 1).  In 2012, there was a 4- to 5-week period when the overhead irrigation system 

was not functioning (Figure 1), which likely contributed to reducing cotton heights in addition to 

the interference imposed by Palmer amaranth. The greater rate of seedcotton yield loss as a 

function of Palmer amaranth emergence date in 2012 than in 2013 may partially be a result of the 

drier conditions in 2012.  However, Palmer amaranth emergence date did not interact with year 
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nor did the main effect of Palmer emergence date relative to cotton impact cotton height.  

Conversely, the interaction of Palmer amaranth emergence date and year did interact in regards 

to seedcotton yield.   

For both years, seedcotton yield declined as Palmer amaranth emergence date occurred 

earlier in the year relative to that of cotton (Figure 2), illustrating the impact of early-season 

emergence on Palmer amaranth competitiveness with cotton and in turn reduction in seedcotton 

yield.  This relationship of competition is well documented (Rowland et al. 1999; Dowler 1995; 

Ehleringer 1983; Jha et al. 2008; Menges 1987, 1988; Morgan et al. 2001). At a density of 1.1 

Palmer amaranth plants m-2, seedcotton yields increased by 487 kg ha-1 for every week delay in 

Palmer amaranth emergence through 10 weeks after cotton emergence in 2012.  At the same 

density in 2013, seedcotton yields were less impacted by Palmer amaranth emerging in cotton; 

hence, seedcotton yields were improved only 278 kg ha-1 for each week delay in weed 

emergence relative to the crop.  Webster and Grey (2015) conducted a closely related experiment 

in Georgia on Coastal Plain soils in 2011 and 2012.  They concluded that there was a log-logistic 

relationship between seedcotton yield loss and relative timing of Palmer amaranth 

establishment—beginning with a 67% seedcotton reduction when Palmer amaranth was 

established at cotton planting at a density of 0.42 plants m-2.  It was evident in both studies that 

delayed emergence resulted in higher seedcotton yields.   

Palmer Amaranth Height and Biomass. The presence of cotton had a greater impact on Palmer 

amaranth end-of-season height averaged over emergence dates in 2012 than in 2013 (Figure 3).  

Palmer amaranth heights averaged over emergence dates were similar in 2012 and 2013 in the 

absence of cotton ranging from 119 to 123 cm.  The lack of irrigation for a short period in 2012 

may have enhanced the level of interference between cotton and Palmer amaranth, but in the 
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absence of cotton, the drier conditions did not influence Palmer amaranth height.  Furthermore, 

the spring of 2012 was uncharacteristically warmer than normal, which may have added early-

season growth of cotton, resulting in greater suppression of Palmer amaranth.  The fact that these 

plots were oversprayed with glyphosate and trifloxysulfron during the growing season and 

transient injury was sometimes observed may have contributed to the heights being lower than 

that reported in other research.  For instance in Kansas, Palmer amaranth heights ranged from 

174 to 231 cm when grown without crop competition at a density of one plant per 0.76 m-1 of 

row (Horak and Loughlin 2000).  Furthermore, the cool growing conditions at Fayetteville, AR 

are likely to have a greater impact on growth of Palmer amaranth, a C4 plant that normally 

thrives under hot, dry conditions.  Trends for Palmer amaranth height in Fayetteville experiments 

complimented those conducted by others.  Hartzler et al. (2004) determined that a linear decline 

in plant height existed as common waterhemp (Amaranthus rudis Sauer) emergence date became 

later in soybean. 

Biomass of Palmer amaranth was significantly reduced when grown in the presence of 

competition with cotton (Table 1).  Just as competition for light could have been the deciding 

factor in regards to significant differences in Palmer amaranth height so too was the case of 

biomass.  Year did not significantly impact Palmer amaranth growth and competition became 

more intense as emergence date of Palmer amaranth became later in the year (Figure 4).  Those 

plots not burdened with cotton presence maintained similar heights throughout the year.  Similar 

to the findings of Uscanga-Mortera et al. (2007), there was a significant exponential decay 

associated with weed biomass as emergence date became later in the year (Figure 5).  In Georgia, 

it was found that early emerging Palmer amaranth (comparable to 2 to 4 WAE) growing in 

competition with cotton produced 29 and 40% less biomass compared to the absence of cotton 
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(Webster and Grey 2015).  Palmer amaranth plants did not display appreciable phototropism as 

heights decreased linearly as weed emergence was delayed relative to the crop, and biomass per 

plant was likewise reduced with delayed emergence, even in the absence of cotton competition. 

Palmer Amaranth Seed Production.  Palmer amaranth emerging as late as 10 WAE was still able 

to produce 880 seed female plant-1 (Figure 6).  This displays the weed species’ ability to reach 

reproductive maturity and disperse viable seed rather quickly even under the reduced light 

quantity imposed by the existing cotton crop.  The decreasing day lengths of late-emerging 

weeds could result in the hastening of flowering similar to the findings of Bagavathiannan et al. 

(2015) and Keeley et al. (1987).  Palmer amaranth seed production was found to be highly 

correlated with plant biomass (Figure 7).  Biomass and associated seed production were 

significantly reduced when in competition with cotton in both 2012 and 2013 field studies 

complimenting existing research (Keeley et al. 1987; Webster and Grey 2015).  The correlation 

between biomass and seed production, irrespective of cotton presence, allows late-emerging 

Palmer amaranth to produce viable seed. This is similar to the findings of Uscanga-Mortera et al. 

(2007) regarding common waterhemp (Amaranthus tuberculatus) fecundity in corn.  Seed 

production per Palmer amaranth female averaged considerably less in all treatments compared to 

Keeley et al. (1997), Webster and Grey (2015), and MacRae et al. (2013).  This is most likely 

attributed to the cooler, finer textured soils in Northwest Arkansas compared to other cotton 

producing regions of the United States.  Additionally, the glyphosate and trifloxysulfuron 

applications and the transient injury following these applications may have contributed to the 

lower seed production in this research.  The similarities in response to delayed Palmer amaranth 

emergence found between this research and those of Webster and Grey (2015) suggest that 
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herbicide-resistance in Palmer amaranth has initiated a need for IWM tactics (Norsworthy et al. 

2012).   

Practical Implications and Conclusions.  Palmer amaranth seed production decreases as 

emergence occurs later relative to cotton.  Late-emerging Palmer amaranth, though lesser in 

biomass and less prolific, can still produce viable offspring that can result in failure to maintain a 

static seedbank.  A 50% annual recruitment (Keeley et al. 1987) supplemented by an estimated 

33 to 55% female birth rate (Smith and Norsworthy, unpublished observation; Keeley et al. 

1987), suggests that even minimal escapes can become detrimental to fields where cotton is 

grown.  The delayed emergence of Palmer amaranth can also simulate the premature loss of 

herbicide efficacy as concluded by Culpepper et al. (2013) and even in the absence of significant 

seedcotton yield reduction; it is the recommendation of current BMPs and findings from this 

research that producers make every effort to control or remove Palmer amaranth throughout the 

season in Midsouth cotton production. 
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Table 1.  Effects tests for the impact of Year, Palmer amaranth emergence date relative to cotton (WAE), and presence and absence of 
cotton (Cotton) on Palmer amaranth end-of-season height, aboveground biomass, seed production per female plant, and cotton end-of-
season height and seedcotton yield. 
  Palmer amaranth  Cotton 
Source  Heighta  Biomassb  Seed productionc  Heightd  Seedcotton yield 

  ───────────────────── Prob > Fe   ───────────────────── 
Year 
WAEg 

Year*WAE 

  0.0351 
<.0001 
0.7906 

 0.2092 
<.0001 
0.4794 

 0.5872 
<.0001 
0.8649 

 0.0007 
0.1936 
0.0702 

 0.0022 
<.0001 
0.0022 

Cotton 

Year*Cotton 
WAE*Cotton 
Year*WAE*Cotton 

 
 

 
 

<.0001  
 

0.9560 
0.3444 
0.0038 
0.6119 

 0.0022 
0.4356 
0.3839 
0.5678 

 -  
 

- 
0.0203 - - 
<.0001 - - 
0.2634 - - 

a Palmer amaranth height was measured at 17 weeks after cotton emergence 
b Aboveground Palmer amaranth biomass collected 17 weeks after cotton emergence, oven-dried, and weighed 
c Seed production per female Palmer amaranth plant collected immediately prior to defoliating cotton 
d Height of cotton at 17 weeks after emergence  

e Source values less than 0.05 are statistically significant 
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Figure 1.  Rainfall and irrigation distribution at the Arkansas Agricultural Research and 
Extension Center in Fayetteville, Arkansas in 2012 (a) and 2013 (b) with respective planting 
dates (PD). 
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Figure 2.  Seedcotton yield in 2012 and 2013 at the Arkansas Agricultural Research and 
Extension Center.  Significance interaction of WAE and year was achieved using a mixed model 
in JMP Pro 11.  Under a standard least squares personality, the REML method conceived linear 
regression emphasizing effect leverage. 
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Figure 3.  Palmer amaranth heights at 17 weeks after cotton emergence at the Arkansas 
Agricultural Research and Extension Center in Fayetteville, Arkansas in 2012 and 2013 in the 
presence and absence of cotton, averaged over emergence cohorts (weeks after cotton 
emergence).  A mixed model emphasizing effect leverage, REML method, and standard least 
squares personality presented significance with means separated by Tukey’s HSD at the alpha 
level of 0.05. 
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Figure 4.  Palmer amaranth heights at 17 weeks after cotton emergence at the Arkansas 
Agricultural Research and Extension Center in Fayetteville, Arkansas in the presence and 
absence of cotton competition as a function of Palmer amaranth emergence date relative to 
cotton (x-axis; WAE).  Data was pooled over years and analysis conducted as a mixed model in 
JMP Pro 11.  Effect leverage emphasis under the REML method provided linear regression. 
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Figure 5.  Amount of biomass collected from female Palmer amaranth plants within cotton and 
noncrop plots that were planted at different timings following the emergence date of cotton at the 
Arkansas Agricultural Research and Extension Center in Fayetteville, Arkansas.  Mixed model 
analysis in JMP Pro 11 fitted for an exponential decay function; data were pooled over 2012 and 
2013. 
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Figure 6.  Number of Palmer amaranth seeds produced per female plant as a function of Palmer 
amaranth emergence dates at the Arkansas Agricultural Research and Extension Center in 
Fayetteville, Arkansas in 2012 and 2013.  A mixed model was utilized in JMP Pro 11.  Under a 
standard least square personality the REML method conceived linear regression emphasizing 
effect leverage. 
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Figure 7. Relationship between Palmer amaranth biomass and seed production at the Arkansas 
Agricultural Research and Extension Center in Fayetteville, Arkansas in 2012 and 2013.  
Analysis achieved with a bivariate fit conceived in JMP Pro 11; blocking for replication and 
utilizing a by-variable (year). 
 
 
 

 

 

 

 

 

 

 

-- Under cotton canopy (2012) 
─ Absence of crop (2012) 
-- Under cotton canopy (2013) 
─ Absence of crop (2013) 



  

108 
     

V.  Conclusions 

Successful production of cotton in the Midsouth now involves utilizing integrated weed 

management (IWM) to control increasing populations of glyphosate-resistant (GR) Palmer 

amaranth.  Resistant biotypes can hinder production by competing for light, water, nutrients, and 

space.  The ineffectiveness of certain postemergence (POST) herbicide options prompted the 

exploration of soil-applied herbicides and research evaluating how they interact as a function of 

environmental, agronomic, and genetic factors. 

There was little conclusive evidence involving planting depth as variability existed 

between years and locations albeit planting at shallow depths might limit negative effects 

presented by cool, wet conditions.  There was a tendency for cotton to better tolerate soil-applied 

herbicides when seed size increased (>11 g/100 seed).  Increased seed size and associated seed 

vigor was shown to improve cotton tolerance and cotton biomass production following the 

application of preemergence (PRE) herbicides.   

Additionally, glufosinate has been shown to successfully control GR weeds as a POST 

option when applied at appropriate times and rates.  Glufosinate applied during times of high 

photosynthetic activity, such as absence of cloudy conditions, can reduce potential injury issues 

and optimize yield.  Having secondary POST options can assist cotton growers with controlling 

escapes that would otherwise compete with cotton and produce viable seed. 

This research finds that in the era of weed resistance to glyphosate and other mechanisms 

of action, season-long control is essential.  Even minimal escapes, which might not hinder cotton 

production, can produce viable offspring leading to failures in maintaining a static seedbank.  

The prolific nature of Palmer amaranth and its ability to produce seed under full cotton canopy 

late in the growing season can mean increased difficulty in future years of production. 
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It is the recommendation of best management practices and findings from this research 

that IWM be implemented in Midsouth cropping systems.  Understanding how various soil-

applied herbicides interact with specific climatic conditions and soil textures can add control 

options to herbicide programs.  Using high-vigor seed can likewise prevent potential injury from 

soil-applied herbicides.  Glufosinate, when applied appropriately, can assist in the control of GR 

Palmer amaranth and fields should remain free of this weed throughout the growing season. 
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