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ABSTRACT

Although many papers have described assumptions and calculations of r from different kinds of data,
none has compared estimates of r for the same real data set under different assumptions. We used the
age distributions of gray foxes collected during six trapping seasons to estimate and compare r and lx
series derived under different assumptions. Because trapped foxes are killed, they are believed bysome
to represent death history data. We found this treatment underestimates mortality so overestimates sur-
vivorship and leads to erroneous conclusions about the population. Use of a projection matrix allowed
prediction of population size and thus allowed us to predict "observed" rate of increase. Use of projec-
tion matrices also resulted in the most conservative estimated of r.

INTRODUCTION

Since the early 1960's mammalogists have become increasingly in-
terested in population dynamics. Caughley and Birch (1971) pointed
out that many ofthe estimates ofrate ofincrease (/•) inpapers resulting
from this interest were inaccurate because "time-specific" data were
used. Construction of time-specific life tables is based on the assump-
tions that 1) the population has a stable age distribution, 2) there is
no bias in the data, and 3)r = 0. Estimation ofrintime-specific analysis
approximates zero because the calculation "retrieves an assumption and
disguises it as a conclusion" (Caughley and Birch, 1971). Tait and
Bunnell (1980) noted that this statement is not true ifage-specific pro-
bability of survival from birth (lx) is estimated from the distribution
ofages at death ofanimals found dead. Still, they concluded that while
rwas possible to estimate in theory, it is virtuallyimpossible toestimate
inpractice. Given these usually untenable assumptions, itmight seem
that there is no point in attempting to estimate rate of increase from
life table data. Michod and Anderson (1980) indicated, however, that
by calculating r and lx jointly questions concerning population
dynamics, the data, or the validity of the model can be addressed.

Several authors have offered logic for the calculation ofpopulation
parameters. Leslie (1945; 1948) used matrices to project future age struc-

ture and population size. Conley (1978), Downing (1980), Michod and
Anderson (1980), Tait and Bunnell (1980), and Lenski and Service (1982)
discussed calculation of population parameters from different kinds
of data. One approach lacking in these treatments is a comparison of
estimates ofrcalculated for the same real data set under various assump-
tions. The purposes of this paper are to estimate and compare lx series
and rcalculated under different assumptions for trapped samples of
gray fox (Urocyon cinereoargenteus).

METHODS AND MATERIALS

Skulls of gray foxes were obtained from furbuyers in Arkansas
during six December- January trapping seasons from 1977-78 through
1982-83. Age estimates were made using dental criteria (Tumlison and
McDaniel, 1984). Accuracy ofage estimates affects the calculated values
of population parameters, but this was not considered to be a major
source of bias because foxes are among the easiest mammals to age
(Matson, 1981). Age structure for each sample is given in Table 1.

Three approaches for the development of anlx series were used with
these data. A large sample, obtained during year 2 (1978-79), was used

Table 1.Age structure ofsamples of gray fox taken during December-
January trapping seasons in Arkansas. Year 1 was 1977-78, year 6 was
1982-83.

Age Class Trapping Season

12 3 4 5 6 Total

0 31 143 86 22 13 40 335

1 23 50 34 8 2 13 130

2 4 23 10 1 3 8 49

3 2 12 13 0 1 0 28

4 164223 18

5 2 10 2 0 0 0 14

6+ 041001 6

63 248 150 33 21 65 580

to develop a time-specific m series in which r is usually assumed to
be zero. The approach of Leslie (1945) and Michod and Anderson (1980)
does not require an assumption of stability, therefore r was estimated
from the single sample using fecundities of the type termed Fx (Leslie,
1945) rather than the usual mx fecundities.

Because most animal populations are not truly stable, variation in
the initial size of the cohorts represented is often reflected in age struc-
ture determined from a single sample. Downing (1980) indicated that
a composite of several years ofcensus data largely avoids the problem
of unequal cohorts. To evaluate the potential difference, another time-
specific analysis was made using a composite sample of the 6 years of
data. Year 2 contributed significantly to the size of the composite
sample, and reduced the differences between /, schedules. Again, r was
estimated as described above.

Finally, a dynamic analysis in which stability is not assumed is possible
using data from years 2 and 3. During the analysis, the sample size of
year 3 was made equal to that ofyear 2 and proportioned among age
classes. By followingage class 0 of year 2 to age class 1 ofyear 3, sur-
vivalrate for that cohort during sample year 2 was estimated. Survival
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rates for each cohort in the sample were used to construct an lx series
that did not assume stability.

Each of the above approaches treats the data as a sample of the liv-
ing. Although trapped foxes were killed, they are usually considered
to represent a sample from the living population (Caughley, 1966).
However, in some exploited furbearer populations trapping may be the
major source of mortality. Hence, itmight be argued that a trapped
sample more accurately reflects a sample of the dying. Each of the 3
lx series described above was recalculated with this assumption for
comparison. Methods for calculation of lx given life or death assump-
tions were described by Downing (1980).

To calculate r, both lx and mx are required. No mx values were ob-
tained with the fox age data, so mx values were estimated. Life tables
traditionally are constructed to represent the female portion of the
population. Pielou (1977:53) stated that populations witha 1:1 sex ratio
and identical age distribution between the sexes donot need to be treated
separately. Our data indicated that these assumptions werenot violated,
therefore the data were pooled and all specimens were treated as females.
As a result, calculated mx values represented the number of female off-
spring. Wood (1958) provided mx data on gray foxes which Michod
and Anderson (1980) later used. Their mx values were based on pla-
cental scars and embryo counts, and the percentage of foxes not
breeding. By using the Leslie matrix, an m x schedule was developed for
our analysis which is proportional to Wood's (1958) data as given by
Michod and Anderson (1980) and which made the age structure for the
dynamic sample stable (i.e., Fx in the Leslie matrix projected the same
future age structure and population size as that obtained in the dynamic
sample). The dynamic sample was chosen for stabilization merely
because itdoes not assume stability. Because this treatment to derive
the schedule caused the dynamic analysis to indicate stability (/"= 0),
the dynamic data may now be used as an heuristic device forcomparison
of other estimates of r. We expect that all estimates of rshould ap-
proximate 0 ifassumptions of the particular model are not violated.

The discrete time version of the demographic equation (i.e., the
characteristic equation of the Leslie matrix) is

V

1 = 2] e r*lxmx Equation (1)
x =i

(Murray and Garding, 1984). Michod and Anderson (1980), using
harvested animals for analysis, gave the equation

x=0 l0
X

Equation (2)

They incorporated into their equation for the solution of X the term
l0,representing average survivorship of newborn to their first harvest
season. The number of age 0 individuals could then be treated in the
first age class after having accounted for the difference between the
number ofage 0 individuals sampled and mortality between birth and
sampling (i.e., they used Fx data). Their approach allowed
simultaneous calculation ofX and lx without any assumption concern-
ing the growth rate. Note: r-ln X.

RESULTS AND DISCUSSION

The lx series calculated under each assumption are provided in Table
2. We tested the hypothesis that trapping was the major source of mor-
tality using the G-statistic and a 7x2 contingency test (Sokal and Rohlf,
1969) to compare lx series developed under both life and death data
assumptions. Iftrapping is the major source ofmortality, the age struc-

ture must reflect such a reality. Conversely, treatment as a sample of
the livingincorporates all forms of mortality intopopulation structure.

Comparison of the one-year and dynamic series were each significantly
different (P< 0.005) while the composite sample was significant only
be-tween the 0.25 and 0.10 levels. Comparisons of lx series may not
be meaningful because an error in the frequency of the first age class
results in distortion of each rbelow it in the series (Caughley, 1966).
However, values ofqx are independent of frequencies in younger age
classes and may serve as more sensitive measures for comparison. In
our analyses, all comparisons between qx series, calculated under life
and death base assumptions, were highly significant (P<0.005).

Table 2. The probability of survival from age 0 to age x (lx series)
calculated for each treatment of age data. Life or death base data
assumptions are indicated.

Time Specific Dynamic

Year 2 (Years 2 & 3)Total Sample

Age class Life Death Life Death Life Death

1.000 1.000 1.000 1.000 1.000 1.0000

388 .388 .350 .473 .392 .4301

146 .182 .161 .222 .133 .2072

084 .104 .084 .129 .119 .1313

054 .060 .042 .081 .070 .0644

042 .032 .070 .057 .035 .0245

018 .010 .028 .016 .007 .004

Some statistical problems appeared using life-based assumptions with
the 1978-79 sample. Unequal cohort size may have been responsible
for the larger size of the 5-year class, but this translates mathematical-
ly into a negative qx value; a biological impossibility. For the con-
tingency test, we set the value of qx for the 5-year class equal to the
corresponding value in the contingency table. This procedure removed
the contribution of the class to independence and decreased the
calculated significance level, but differences were still sufficient for
significance. We conclude from these analyses that the trapped sample
of foxes does not represent death data, because sources other than
harvest mortality affect the population. Harvest data cannot represent

a sample of the dying.
Each of the 3 life-based lx series were tested in all combinations for

independence. Comparison ofthe 6- year composite and 1-year samples
showed significant differences (P<0.05). This observation indicates that
yearly fluctuations in Arkansas gray foxpopulations reduce the predic-
tive usefulness of single samples. The lx series of the composite and
dynamic samples were also different (P<0.05). While the dynamic treat-
ment does not assume stability, it is based on relatively static data (2
years). Acomparison of the 1-year and dynamic series was highly signifi-
cant (P< 0.005). The greater significance level is probably due to varia-
tion from each of these latter series being absorbed in the composite
sample, making comparison with the composite series relatively less
significant. All comparisons of corresponding qx series were highly
significant (P<0.05).

As mentioned earlier, the dynamic lx series was used to develop a
mx series that would stabilize that age structure, thus we expect r=0.
Rate of increase was calculated by Eq. 1 to be 0.002. Our treatment
to develop a lx series necessarily set /0=l, thus rate of increase
estimated by Eq. 2 was 0.005.

The Leslie matrix projects future population characteristics assum-
ing constant survivorship and fecundity schedules. By projecting next
year's population size based on our sample and observing differences
between this estimate and our sample size, an estimate ofr(in this case,
observed rate ofincrease) can be obtained. For our "stabilized dynamic"
sample this value was 0.003. We have shown that, given some roun-
ding error, r=0 for the dynamic data using our derived fecundity
schedule.

Equation 1 cannot be applied to the composite or one-year samples
because the lx series for these samples are based on the assumption of
stability. Equation 2 or Leslie matrices may be used, however. Rate
of increase estimated by Eq. 2 for the composite sample indicated a
decline (r= -0.029), as did the one-year sample (r= -0.020). Observ-
ed restimated by projecting the population for next year via the Leslie
matrix also predicted declines (r= -0.017 and -0.012, respectively).
Estimates ofrby Eq. 2 compared to those derived from Leslie projec-
tions were appreciably different. We used the age structure represented
by the lx series as the column vector multiplicand ofthe Leslie matrix.
Solution ofEq. 2 or calculation of the first position in the projected
age structure estimates the agreement between recruitment and the

b*
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characteristic value of the first age class of the lx series (i.e., 1.000).
For example, ifthere are 1000 individuals in the first age class at time
t, Eq. 2 predicts the number expected to be present at time t+1. If
X=0.971 (r= -0.029), recruitment is 971 individuals, which does not
replace the age class. The value ofr indicates a loss of 29 individuals
from the age class at t+ 1.Notice that this is a change of29 per 1000.
Since observed rate ofincrease is based onchange innumbers between
t and t+1,we sum both the sample and projected lx series to simulate
our "population" sizes. For the above example the sums at t and t +1
were 1732 and 1703, respectively. This still represents a loss of 29 in-
dividuals, but it is now 29 per 1732. Now, X=0.983 and r= -0.017.

The hypothesis that the data represent death history was refuted
earlier. To examine the effect oferroneously accepting that hypothesis,
r was estimated by Eq. 2 and by the change in the projected popula-
tion size. These estimates were, respectively: 0.133, 0.076 (dynamic);
0.030, 0.017 (composite), and 0.213, 0.123 (one-year). Because treat-
ment of the data as death history underestimates mortality, survivor-
ship lx) is overestimated; consequently, r appears more favorable. This
type of treatment would lead to a more positive, but invalid,conclu-
sion about the population.

CONCLUSIONS

The method one uses to estimate r depends on the kinds of data
available for analysis. Although Eqs. 1 and 2 are mathematically iden-
tical, the data required for solution are different. Equation 1 can be
used only ifan lx series can be obtained that does not assume stabili-
ty. Since many data sets are based onsingle samples and Eq. 2 makes
no assumptions concerning the growth rate, ithas greater utility.Fur-
ther, it allows the simultaneous calculation of rand an lx series that
accounts for population changes. However, itrequires extra effort to
obtain l0. As Michod and Anderson (1980) point out, "... it may be
more reasonable to assume some value for ll0 rather than assume
X =1, orr=0, as is often done." Investigators should note, ifthey choose
to use Eq. 2, that rdeals withchanges in recruitment into the first age
class, whereas observed r deals with changes in recruitment into the
population. Because of larger sample size, observed ris the more con-
servative estimate. Ifwe continue to use the lx series to represent the
age structure of the population, "observed" rbased on matrix projec-
tions willalways provide the more conservative estimate of r.
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