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Abstract 

 

 Many studies have used the U.S. Department of Agriculture’s (USDA) Agricultural 

Resource Management Survey (ARMS) to research various aspects involving the agricultural 

sector in the United States. Since nonresponse and inaccurate reporting may cause significant bias 

in statistical analysis, research was conducted to determine the magnitude of response error on the 

farm debt section of the ARMS Phase III. A multinomial logit model identified demographic, 

structural, and financial characteristics of FSA Farm Loan Program (FLP) borrowers who refused 

to indicate if they had end of year farm debt, or who accurately or inaccurately classified their 

farm operations as having end of year farm debt on the ARMS for 2001, 2004, 2006, and 2007. 

Additionally, estimates of the magnitude of response errors in ARMS for both FSA direct and 

guaranteed FLPs were estimated. The current study found that 12.9 percent of the direct FLP 

respondents and 9.9% of the guaranteed FLP respondents indicated “no” on the “Owe Money” 

question when they should have indicated “yes”. Also, those responding “no” were found to have 

their ARMS total debt outstanding less than their FSA total debt outstanding. Direct FLP 

operators were more likely to report “no” and, therefore, under-report end of year debt in the 

ARMS if they had a lower total FSA debt outstanding balance, had a greater value of crop 

production relative to total production, or had a lower gross cash farm income. Guaranteed FLP 

operators were more likely to under-report their debt in the ARMS if they had an operating line of 

credit loan, had a greater share of production from crops, had a lower gross cash farm income, 

were in survey year 2004, or were in survey year 2007. They were less likely to under-report their 

debt if they either had some college education, were socially disadvantaged eligible, or were 

beginning farmer eligible. These results allow future researchers using ARMS data to appraise 

operator debt status to be better informed about potential data limitations. 
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Chapter 1: Introduction  

1.1 Introduction 

Many studies use the United States Department of Agriculture (USDA)’s Agricultural 

Resource Management Survey (ARMS) to research various aspects, such as policy impact, 

financial performance, and economic impact, involving the production agricultural sector in the 

United States. The ARMS is a comprehensive survey which gathers data on crops, input usage, 

farmer demographics, and finances, and is a very useful tool for researchers. The ARMS can also 

be used by those in government to determine the effectiveness of policy and regulation, and to 

assess effectiveness and funding levels of farm programs.  One of the farm programs that uses 

information provided by ARMS is the USDA’s Farm Service Agency’s (FSA) Farm Loan 

Program. ARMS data may be used to determine the impact of FSA in meeting future farmer loan 

demand and funding levels needed to meet program demand.  

1.2 Purpose of Study 

Because the ARMS plays a critical role in research and policy, the accuracy of the ARMS 

data is also of fundamental importance. Many studies have stated the importance of the ARMS to 

researchers in academia and government who analyze U.S. farm and conservation policy as well 

as the effects of macroeconomic and other factors on the U.S. farm sector (Blank and Klinefelter, 

2012; Featherstone, Park, and Weber, 2012; Weber and Clay, 2013). One of the ways that the 

ARMS data accuracy may be compromised is due to the respondents themselves. Farm operators 

may not want to truthfully answer debt questions or operators may not take the time to accurately 

respond to the debt questions. Nonresponse and inaccurate reporting in the ARMS can cause 

biased estimates that do not accurately reflect farm financial health or the effectiveness and 

demand of USDA credit programs. Since nonresponse and inaccurate reporting can cause 
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significant bias in statistical analysis, research needs to be conducted to determine the magnitude 

of response error on the ARMS. 

The analysis in this study is undertaken using matched FSA and ARMS data. ARMS and 

FSA loan data were matched using the primary operator identifier (POID).  The POID is the 

identifier used by USDA’s National Agricultural Statistics Service (NASS) for the ARMS and is 

unique for farms within each State. USDA constructed a dataset of outstanding direct and 

guaranteed loans which included the POID. ARMS data were then matched to the FSA loan data 

by using the POID. 

Focus is on the identification of respondent errors when answering farm debt questions in 

the ARMS and on the magnitude of the errors. A multinomial logit model is estimated to identify 

demographic, structural, and financial characteristics of FSA borrowers who accurately and 

inaccurately classify their farm operations as having end of year debt on the ARMS. 

Additionally, the magnitude of response errors in ARMS for both FSA direct and guaranteed 

loan programs are estimated.  Future researchers using ARMS data to appraise borrower debt 

status will be better informed about potential data limitations.  

1.3 ARMS Overview 

ARMS is an annual survey administered annually by the NASS, and is broken into three 

phases (USDA, ERS, 2015a). Phase I determines which operations are still in business. Phase II 

gathers information on production practices and input usage. Phase III assesses the finances of 

farm businesses and farm households. Of the three phases of the ARMS, the current study is 

interested in the Phase III survey which collects data on income, expenses, assets, liabilities, and 

operator demographics. Phase III tends to be long and complex in order to capture all the 
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information needed to fully evaluate farm financial health and policy effects (Millar and 

O’Connor, 2012).   

1.4 FSA Overview  

The USDA’s FSA provides loans to farm operators who are unable to obtain credit from 

conventional sources at equitable rates and terms. The FSA loan program benefits beginning 

farmers, socially disadvantaged (SDA) farmers, and established farmers facing temporary 

financial setbacks. The FSA sets aside some funds specifically for beginning and SDA farmers. 

A beginning farmer is an operator who has operated a farm ten or less years, does not have a 

farm thirty percent or larger than the average farm in their county, meets all FSA loan eligibility 

criteria, and contributes significantly in the operation of the farm. SDA borrowers have to meet 

all the FSA loan program eligibility criteria, and belong to a group that has historically been 

underserved because of ethnicity, race, and/or gender. According to the FSA, these SDA groups 

are: “American Indians or Alaskan Natives, Asians, Blacks or African-Americans, Native 

Hawaiians or other Pacific Islanders, Hispanics and women” (USDA, FSA, 2012). 

FSA provides two main loan programs to eligible borrowers: direct and guaranteed 

(USDA, FSA, 2015a). Under the direct loan program, FSA provides loans directly to the 

borrower. The direct loan program has a number of loan types, of which four are considered: 

farm ownership (FO), operating loan (OL), emergency loan (EM), and economic emergency 

(EE). FO loans may be used to make land purchases and farm improvements. OL loans may be 

used to purchase livestock and equipment, pay for operating and family living expenses, and 

refinance debt under certain circumstances. EM loans are to help producers who have had 

production and physical losses as the result of drought, flooding, other natural disasters or 

quarantine. Although EE loans have not been originated since the early 1980s, they were for 40 
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year terms with some still having unpaid balances at the time of analysis. Farmers who were 

unable to receive credit from their usual lender due to national or area-wide economic stresses, 

such as general tightening of agricultural credit or an unfavorable relationship between 

production costs and prices received for agricultural commodities were eligible to receive EE 

loans (USDA, FSA, 2011).  

The FSA guaranteed loan program guarantees loans made and serviced by commercial 

banks, the cooperative Farm Credit System, and other credit providers to eligible borrowers. This 

guarantee protects lenders against losses if the borrower does not meet their loan obligations by 

providing a guarantee of up to 95 percent of the loss of loan principal and interest. The 

guaranteed loan program consists of FO and OL loan types. In addition to direct FO loan 

purposes, guaranteed FO loans may be used to refinance debt.   

1.5 Organization 

 Chapter 2 of this thesis contains a literature review of studies related to this study. 

Chapter 3 covers the data and methods. Summary statistics are discussed in Chapter 4. Chapter 5 

discusses the model estimation results. Chapter 6 summarizes and interprets the econometric 

analysis, presents the conclusions, and includes future research recommendations.  
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Chapter 2: Literature Review  

2.1 Literature Review 

 Many studies have been conducted in the recent past that use ARMS data and/or FSA 

data. While none of these studies have used FSA data to identify the frequency of respondent 

error in ARMS, they have looked into issues that surround the ARMS and the effectiveness of 

FSA loan programs. The following review of these studies covers four main topics: credit usage 

and debt, ARMS usability, nonresponse in ARMS, and FSA’s farm loan programs. Lastly, a 

study that influences the current study’s model specification is reviewed.  

2.2 Credit Usage and Debt  

Katchova (2005) examined the borrower’s decision to use credit.  Katchova’s study 

identified the characteristics of individuals and farm operations that determine what influenced 

farm credit usage, the amount of credit, and number of loans. Katchova’s research on credit 

usage provides insights into factors which are more likely to impact non-response or inaccurate 

reporting on questions regarding debt. Katchova’s study sought to examine from the demand-

side of agricultural credit by using 2001 ARMS data from borrowers and non-borrowers by farm 

typology: rural residence farms, intermediate farms, and commercial farms (Hoppe and 

MacDonald, 2013). One stipulation of the demand-side of agricultural credit is that the credit 

decision is jointly made between the lender and borrower. Therefore, the lender can affect the 

availability of funds to the farmer by restricting, rejecting, or modifying the funds. Katchova 

used a Probit model to identify the characteristics of farmers who are more likely to have debt. 

For those farmers that do use credit, Katchova used a truncated regression model to estimate the 

level of indebtedness. Lastly, she used a truncated Poisson model to determine the number of 

loans. Katchova’s results show farms most likely to have debt are rural residence, intermediate 
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farms, and commercial farms that have higher gross farm income. Older farmers of rural 

residences and intermediate size farms were less likely to have debt.  Operator’s age and income 

were the biggest influences on the degree in indebtedness. Lastly, farms with higher gross 

income and crop insurance tend to use more loans to finance their farming operation.  

Briggeman, Koenig, and Moss (2012) discussed the importance of accurate and reliable 

farm debt data so that such data may be used to identify and lessen the effect of economic 

downswings in the agricultural sector. As an example, they discussed the buildup to and the 

occurrence of the farm debt crisis in the early 1980s. Up until the late 1990s and early 2000s, the 

USDA had more information to estimate U.S. farm debt.  

 USDA suspended state level accounts of farm debt because of the complication of using 

commercial bank data to estimate farm debt at the state level. With the reduction of these data 

sources, the ARMS became more important in estimating farm debt levels but the farm debt 

estimate also became less consistent (Briggeman, Koenig, and Moss, 2012).  

Briggeman, Koenig, and Moss compare USDA’s estimate of farm sector real estate debt 

to the sum of Farm Credit System and commercial bank real estate debt for 1985-2010. They 

argue there was a break in the estimate of farm sector real estate debt in 2000. While before 

2000, the positive difference between the two series did not drastically change from year to year. 

However, the difference went to about zero in 2003 and remained near zero. In fact, the farm 

sector real estate debt reported by USDA was less than the debt reported by the Farm Credit 

System and commercial banks for several years. If real estate debt from other lenders was added, 

the difference would be even greater. This suggested there may be a sizable under-estimation of 

real estate debt by the ARMS.  
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Briggeman, Koenig, and Moss suggested the ARMS’s respondents and the questionnaire 

structure may limit the ability to compute accurate, total farm debt amount. One category of 

respondents the ARMS does not cover is landowners who do not farm, which is also known as 

non-operator landlords. Farmland has influenced the amount of assets and collateral for debt 

reported on the agricultural sector balance sheet. While ARMS used debt numbers reported by 

the Farm Credit System and commercial banks, ARMS also subtracted out any non-farm debt. 

Subsequently, ARMS may underestimate farmland value and the debt on the farmland. ARMS 

does ask about loans from non-traditional sources; however, some questions and the structure of 

the farm debt section of the survey may be difficult for respondents to comprehend. The study 

suggested altering some questions and reordering other questions. 

2.3 ARMS Usability 

 Ellinger, Ahrendsen, and Moss (2012) analyzed the possible implications of the 

economic measures listed on the farm firm’s financial statements. By examining accounting 

principles and the ARMS questionnaire, certain items were found that limit ARMS data from 

fully gauging economic and financial conditions. These limitations impacted asset valuation, 

income and expense recognition, and extraordinary income reporting. In particular, data 

limitations could cause understatement of leverage, overstatement of liquidity, and under 

reporting of year-to-year farm income variability measures. Improved farm financial condition 

measures could be made by lessening the data limitations according to Ellinger, Ahrendsen, and 

Moss.  

Featherstone, Park, and Weber (2012) examined how to obtain more information from 

the ARMS. They considered issues revolving around survey nonresponse, pseudo panels, and 

frequent updating of cost-of-production data on an enterprise basis. Featherstone, Park, and 
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Weber found three issues were in need of further research: nonresponse, refining methods to 

develop pseudo panel data, and developing methods to compile commodity specific financial 

data between the different commodity surveys.   

Ahrendsen and Katchova (2012) discussed the financial performance calculated and 

reported from ARMS by the USDA Economic Research Service (ERS). They compared the 

financial measures to the recommended financial measures of the Farm Financial Standards 

Council (FFSC, 2015). The financial measures reported by ERS were duplicated and compared 

and contrasted to four other methods to calculate financial performance measures. Ahrendsen 

and Katchova recommended that ERS: 1) use the FFSC financial measure recommendations, 2) 

assess the policy for flagging estimates as statistically unreliable, 3) report medians, and 4) add 

the percentage of farm businesses that have financial values within critical zones.  

Blank and Klinefelter (2012) posited that the usefulness and relevance of the ARMS data 

can be improved by refining the sample frame. Originally, the ARMS was created to meet 

Congress’s requirement that data be collected on the production costs of wheat, feed grains, 

cotton, and dairy; therefore, not all states were sampled. This meant the farmers sampled 

provided a sufficient cross section of production cost data for those commodities listed, but did 

not provide sufficient information on other commodities or regions. Additionally, the people 

included in the survey may not be sufficiently representative because economic performance 

varies across both farm size and commodity specialization. The handful of targeted commodities 

did not provide a representative sample across all commodities since states not sampled may be 

more livestock extensive (Mountain region) while small grain operations in the Midwest region 

are over-represented. Therefore, ARMS needs to sample people by farm size and commodity 

strata. Furthermore, the survey’s respondent burden tended to be heavier for large farms since 
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they are fewer in number, and are surveyed more often than smaller operations. Blank and 

Klinefelter suggested respondent burden could be reduced for large farms by designing the 

survey for farm size, base questions on relevance, and make questions easier to understand by 

rewording them.  

2.4 Nonresponse in ARMS  

Miller, Robbins, and Habiger (2010) examined the challenges of missing data in the 

ARMS Phase III. According to their study, unit non-response (whole survey refused) and item 

non-response (certain items refused) lead to missing data that requires special handling during 

statistical analysis. To help alleviate this issue, NASS imputed information into missing items for 

any variables used in the published summary statistics. The NASS procedure eliminated outliers 

in the data then they use conditional averages equivalent to a regression on categorical variables. 

Millar, Robbins, and Habiger (2010) selected around 100 variables from the ARMS 

Phase III to analyze. They conducted a detailed study of data plots and various aspects of the 

variables (continuous, categorical, or censored). One effect of mean imputation is that it reduces 

the variation in the data set. While imputation was usually done at a small rate, higher rates of 

imputation can cause a large downward bias in the variance in the data set. Millar, Robbins, and 

Habiger examined the distributions before and after machine imputation, and confirmed 

imputation altered the distribution. Lastly, the mean becomes biased if non-respondents are not 

like the respondents in regards to the item’s value.  

Earp et al. (2008) examined the effect calibration has on non-response bias in the ARMS 

Phase III. Non-response bias was potentially higher for the ARMS Phase III due to lower 

response rates, and NASS weighted the respondent sample so the estimated/calibrated variable 

totals for a large subset of items match target values from other sources (Earp et al., 2008). They 
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compared the 2002 Census of Agriculture values of ARMS respondents to the values in the full 

sample of the 2005 ARMS respondents. Additionally, they used respondent data from the 2005 

ARMS and non-respondent data from the 2002 Census of Agriculture.  

Earp et al. found calibration weighting reduced bias in 90 percent of the study variables 

so that they were no longer significantly different from zero via a t-test. Of these variables, 50 

percent had a significant reduction in bias levels via a paired t-test. One variable, fertilizer 

expenses, still had a significant bias via t-test after calibration. According to Earp et al., 

calibration appears to be an effective tool for reducing non-response bias.   

The study by Gerling, Tran, and Earp (2008) examined the most common reasons for 

nonresponse in the 2006 ARMS III for Washington State. The ARMS Phase III generally has 

response rates lower than 80%, and has a potential to have a higher nonresponse bias than the 

other ARMS phases (Gerling, Tran, and Earp, 2008). While administering the ARMS Phase III, 

field enumerators asked operators who had declined to cooperate on the ARMS to explain why 

they refused to complete the survey. Gerling, Tran, and Earp found the top three reasons for 

refusal were: would not take time, will not do financial surveys, and information too personal. 

However, further research needs to be conducted to determine if results are survey, regional, or 

national specific. In summary, they recommended adding a cell to the survey for recording the 

reason for nonresponse.   

Next, Weber and Clay (2013) analyzed non-response in the ARMS. According to Weber 

and Clay, approximately a third of sampled farming operators ignore the entire ARMS. Weber 

and Clay use the Census of Agriculture data in their study because the data provides information 

on ARMS respondents and non-respondents, and the data comes from the same questionnaire 

collected for both respondents and non-respondents. Initially, Weber and Clay began exploring 
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the motivations and characteristics associated with non-response, and the differences in point 

estimates of two econometric models when estimated on two subsamples. One subsample 

consists of respondents, and the other subsample consists of a random drawing from a group of 

respondents and non-respondents. Weber and Clay found response rates decrease monotonically 

with increasing farm size. Also, non-responding farm operators have greater sales than 

respondent farm operators. Weber and Clay found minimal nonresponse bias in the two 

econometric models they estimated.  

Reasons for non-response are many, but the most common reason for nonresponse is that 

the respondents will not take the time or are too busy to take the survey (Weber and Clay 2013). 

Some other reasons are the respondents will not fill out financial surveys, and the survey is too 

personal. The reasons imply that farm operators may be unwilling to provide personal 

information or farm operators may believe the information will be used against them. According 

to Weber and Clay, larger farms take more time to fill out the survey, and incur greater disutility 

from the task. Additionally, production has moved to larger operations that may have a greater 

legal and contractual complexity.  

Every five years, NASS administers both the ARMS and the Census of Agriculture 

survey. Weber and Clay obtained the principal operator identifier (POID) of all the surveyed 

farming operators of the ARMS Phase III for the years 2003-2006 and 2008-2010. The POIDs 

were used to match the surveyed farming operators in 2003-2006 with their 2002 Census of 

Agriculture, and the surveyed farming operators in 2008-2010 with their 2007 Census of 

Agriculture. Across all of the years, Weber and Clay had 189,474 matched observations of which 

67% were ARMS respondents, 28% were refusals, and 5% were inaccessible. Weber and Clay 
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grouped variables into three categories: household characteristics, farm characteristics, and farm 

specialization.  

Weber and Clay estimated a Probit model to explore nonresponse patterns. Their Probit 

model outcome was whether or not the farm operator responded to the survey. They found that 

the multivariate analysis supported most of the findings from the descriptive comparisons. As 

farm size increases, the probability of response decreases. Grain specialty farms had the lowest 

probability of responding while dairy farms were most likely to respond. Weber and Clay found 

that with every hour decrease in time necessary to fill out the ARMS, the probability of response 

increases by seven percent.  

Weber and Clay used two econometric models to examine nonresponse bias. One was a 

model of labor market participation of the principal farm operator. The other model examined 

farm diversification discount. The model on labor market participation of the principal farm 

operator was a Probit model, and used variables such as operator age, operator experience, 

household size, commodity specialization, and region. The second model was constructed to 

examine whether diversified farms are discounted by the market similar to what has been found 

for corporate firms. The main explanatory variable was an indicator of farm diversification. The 

farm was either diversified across livestock and crops or they were specialized in either crops or 

livestock. The labor participation model coefficient estimates found age increased the likelihood 

of working off-farm, but at a decreasing rate. The probability of working off-farm decreased with 

farm size as well. Next, Weber and Clay found nonresponse bias in coefficient estimates was 

small in degree and low in frequency across both models. Lastly, they found nonresponse bias 

was unlikely to weaken conclusions based on econometric models using ARMS data. While 

Weber and Clay did not include loan debt in their analysis, their findings may give context to 
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why respondents may refuse or inaccurately report their debt. For example, Weber and Clay 

found grain farms had the lowest response probability, and the current study utilizes a crop 

variable as an explanatory variable.   

2.5 FSA’s Farm Loan Programs 

Ahrendsen et al. (2011) estimated a triple hurdle model of U.S. commercial bank usage 

of the FSA’s guaranteed OL and interest assistance programs in order to identify the farm and 

banking variables that affect the bank’s decision to use loan guarantee and interest assistance. 

They examined annual data on U.S. commercial banks from 1995-2003 in their model. 

Ahrendsen et al. found the farm debt servicing ratio, individual bank loan-to-asset ratio, bank 

size, and general guaranteed loan and interest assistance environment variables to all be 

statistically significant in all three hurdles. Another study by Dixon, Ahrendsen, and McCollum 

(1999) examined characteristics of banks and/or economic forces that influence the level of FSA 

loan guarantee programs commercial banks had within Arkansas, and they examined factors 

affecting the volume of loss claims. They used a six-equation model that is comprised of three 

double hurdle sub-models, and estimated as Probit equations. Dixon, Ahrendsen, and McCollum 

found more OL loans than FO loans in Arkansas, and commercial banks used guaranteed loans 

to add to the security of riskier loans. Commercial banks with certified or approved lender status 

were more likely to use guaranteed loans. Commercial banks with more guaranteed loans tend to 

have loss claims, and commercial banks who filed loss claims in the past were associated with 

filing loss claims in the present. Despite the consolidation of commercial banks, research did not 

find a reduction in the amount of FSA guaranteed loans made by commercial banks.  

Lastly, Nwoha et al. (2007) focused on whether FSA direct loan targeting for beginning 

farmers and SDA farmers was financially necessary and utilized ARMS data from 2000-2003. 
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Nwoha et al. utilized the delete-a-group jackknife procedure to determine whether differences in 

means for certain variables were statistically significant between: 1) FSA direct loan eligible 

recipient and non-FSA direct loan eligible recipient, 2) SDA race and SDA gender, 3) SDA race 

and non-SDA, 4) SDA gender and non-SDA, and 5) beginning farmer and non-beginning farmer. 

Nwoha et al. used the financial characteristics solvency, liquidity, profitability, repayment 

capacity, and financial efficiency to compare the two groups. Nwoha et al. found weaker 

financial characteristics for FSA direct loan eligible farm operations relative non-FSA direct loan 

eligible operations. The financial ratios of SDA race and SDA gender were found to not be 

statistically different from one another. However, Nwoha et al. found SDA gender farms have 

significantly less farm assets, liabilities, equity, and gross and net cash farm incomes and smaller 

debt-to-asset ratio than non-SDA farms. Nwoha et al. found beginning farmers had a much 

smaller financial size (income statement and balance sheet measures) than non-beginning 

farmers. This indicated that the beginning farmer program was targeted to a set of farmers that 

were vastly different than regular FSA borrowers.  

2.6 Model Specification  

 Dixon et al. (2007) researched FSA direct farm loan program (FLP) graduation rates, and 

the reasons behind borrowers exiting the program. Direct loans can be considered a transitory 

step for borrowers so that they graduate from FSA direct FLP assistance and obtain guaranteed 

FLP assistance as soon as they become financially able. Dixon et al. used a survey of borrower 

applications originating in fiscal years 1994-1996. The 2004 survey asked farm loan managers at 

the FSA field office level to specify why borrowers with no active direct loans exited the direct 

FLP. Additionally, financial information and demographic information on borrowers were 

provided by the farm loan managers.  
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 Dixon et al. estimated a multinomial logit model in order to identify the relevant 

variables in predicting outcome type. The model identified indicators used to predict if a 

borrower: 1) remained a longer term client, 2) exited and continued farming, 3) voluntarily left 

for another occupation or retirement, or 4) involuntarily left farming. The multinomial logit 

model broke the outcomes (STATUS) into four categories. STATUS=1 were borrowers who had 

active loans on November 30, 2004. STATUS=2 were borrowers who exited the FLP, and were 

still farming with conventional credit, guaranteed credit, or no need for credit. STATUS=3 were 

borrowers who left farming voluntarily or retired. STATUS=4 were borrowers who left farming 

involuntarily excluding those who had died. These four outcomes stratified the independence of 

irrelevant alternatives (IIA).1 Dixon et al. grouped the independent variables into four categories: 

borrower demographics, characteristics of the current loan, prior financial distress and 

involvement with FSA direct loans, and borrower financial characteristics. Demographic 

variables included borrower age, race, and gender. Current loan characteristics included: FO, 

OL, beginning farmer, and/or SDA, and were all binary variables equaling 1 if the loan had that 

characteristic. For prior distress, Dixon et al. used a variable (FINDIS) that indicated prior 

financial distress prior to loan application. Other variables included a count of the number of 

each loan type to indicate reliance and experience with the FSA. They hypothesized a higher 

FSA reliance would be inversely related to exiting direct FLPs. The financial characteristics 

included debt-to-asset ratio, net worth, ratio of non-farm income to total cash farm income 

sources, ratio of balance available for debt service to total debt service due that year, and total 

annual household net cash income. Dixon et al. posited that borrowers with higher net worth, 

                                                 
1 Greene, W.H. Econometric Analysis, Seventh edition. Upper Saddle River: Prentice Hall, Inc. 

2011: pages 767-768. 
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income diversification, repayment capacity, and income should have graduated from the direct 

FLP sooner.  

 Dixon et al. found borrowers were less likely to exit when they had higher numbers of 

active FSA direct loans at loan origination. Borrowers were more likely to exit and continue 

farming or voluntarily leave farming when they had less FSA direct loan involvement. 

Borrowers were more likely to leave farming voluntarily, and less likely to graduate from the 

direct FLP when they had higher debt-to-asset ratios; however, the opposite was found for those 

borrowers with higher net worth at origination. Borrowers were more likely to exit involuntarily 

when they had prior financial difficulties.  Non-white borrowers were less likely to voluntarily 

leave farming. Beginning farmer loan borrowers were less likely to continue in the FLP and 

more likely to voluntarily leave farming. The results in general indicated FSA borrowers were 

not becoming permanent FSA clients, and FSA’s goals were being met. Dixon et al. suggested 

strengthening financial requirements to loan origination in order to minimize farmers who come 

across financial hardship and left farming. However, strengthened financial requirements could 

exclude some of the farmers who were the intended recipients of the FSA direct FLP.  
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Chapter 3: Data and Methods 

3.1 Data Sources 

 FSA provided data on active direct and guaranteed loans as of December 31 for calendar 

years 2001, 2004, 2006, and 2007 for borrowers who were ARMS respondents in the 

corresponding year. The FSA direct FLP data included the following information: state ID, 

POID, principal outstanding, interest outstanding, delinquent loan amount, adverse action loan 

amount (foreclosure, bankruptcy, or acceleration loan amounts), number of loans 90 days past 

due, average days past due, FSA score (like a credit rating), average interest rate, total direct FLP 

principal and interest outstanding, total FO principal and interest outstanding, total OL principal 

and interest outstanding, total emergency loan (EM) principal and interest outstanding, total 

economic emergency loan (EE) principal and interest outstanding, Black borrower identifier, 

Hispanic borrower identifier, Asian/Pacific Islander identifier, American Indian identifier, 

woman identifier, and beginning farmer (BF) identifier. The FSA guaranteed FLP data included 

the following borrower loan level information: state ID, POID, outstanding balance, initial loan 

amount, closing date, fiscal year, loan obligation date, maturity date, loan obligation number, 

assistance type, program type, fund code, interest assistance percentage, line of credit (LOC) 

indicator, LOC amount, originating lender, lender branch number, lender type code, fixed or 

variable rate indicator, borrower interest rate, lender interest rate, loan purpose code, and 

delinquency code. The direct FLP data were aggregated to the POID for the 2006 and 2007. In 

other words, all loan data per borrower was summed or averaged to a single line of information 

for that borrower; whereas, direct 2001 and 2004 and guaranteed data had each borrower’s 

loan(s) listed. Since the guaranteed FLP data and direct FLP data for 2001 and 2004 were at the 

loan level, aggregation to the borrower level was done so the data were similar to the 2006 and 
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2007 direct FLP data. This aggregation made it impossible to use variables on specific loan dates 

or originating lender.  

 The project also used data from the USDA’s Phase III of ARMS. Using the POID, the 

FSA and ARMS data were merged for each year. In particular, the ARMS includes production, 

financial, and demographic information for the farm operator and household.  ARMS data also 

includes summary variables calculated by ERS and NASS as well as data added to correct for 

inconsistencies and missing data. Specific variables include information such as: acres operated, 

rent received/paid, livestock production, income data, operating and capital expenditures, use of 

time, farm assets, farm debt, operator and spouse information, and operator and household 

information. The enumerator includes information on operator records use and operator records 

type.  

The project is concerned with farm debt. The ARMS farm debt section includes 

information on: whether the operation has a positive debt balance at the end of the year, and if it 

does, there is a table with questions on what is the lender type, loan balance outstanding, loan 

interest rate, and other items for each loan up to a maximum of five loans in years 2001, 2004, 

and 2006, and four loans in year 2007. The farm debt section also includes how many additional 

loans and additional aggregated loan amount the operator has that are not in the maximum of 

four or five loans reported in detail in the debt-by-lender table. ERS computes the following 

variables: rate of return on assets (ROA), rate of return on equity (ROE), debt-to-asset ratio 

(DAR), and operating profit margin (OPM). By using the FSA data and the ARMS Phase III 

data, comparison of debt information provided by the FSA to the debt information reported in 

ARMS was able to be conducted.  
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3.2 Dependent Variable 

The current study seeks to identify factors related to whether the respondent accurately or 

inaccurately reports having positive debt levels on the ARMS. In particular, a multinomial logit 

model2 is estimated to identify those variables that indicate how a respondent answers the ARMS 

III farm debt question:  “Did this operation owe any money to any banks, co-ops, individuals, 

merchants, or Federal agencies at the end of” the survey’s respective calendar year.3 This will be 

referred to as the “Owe Money” question and is the dependent variable of the multinomial logit 

model. The question has three possible responses: yes, no, and refusal. If the respondent answers 

“yes”, they continue in the Farm Debt section to the designated debt-by-lender table of loan-

specific questions. As previously discussed, the debt-by-lender table has questions on a per loan 

basis about lender type, loan balance outstanding, loan interest rate, etc. For example, the 2007 

ARMS also asks questions on loan type, when loan will be repaid, loan origination date, loan 

term, loan purpose, interest rate type, frequency of repricing, and loan payments.4 If the 

respondent answers “no” to the “Owe Money” question, they are directed to the next section of 

the ARMS, and zeros are recorded in the debt-by-lender table. When the respondent refuses to 

answer, a negative one is recorded for the response to the “Owe Money” question and for the 

responses in the debt-by-lender table.  

                                                 
2  Greene (2011) equation 18.5, page 763. 
3 Phase III of ARMS for 2006 and 2007 added after the question “include money owed against 

your line of credit. Exclude CCC loans.” 
4 The 2006 ARMS also asks questions on frequency of loan principal repayment and periodic 

repayments. The 2004 ARMS also asks questions on farm purpose percentage and loan 

guarantee. More information can be found at  

http://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-

practices/questionnaires-and-manuals.aspx#27921 
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When a question’s response is recorded by the USDA, a number is associated with the 

variable corresponding to the question. The “Owe Money” question does not have a variable 

number associated with it for 2001 and 2004, but it does have a variable number (1058) 

associated with it for 2006 and 2007. Since recorded information is only available for the “Owe 

Money” question for 2006 and 2007, a proxy for the “Owe Money” question needs to be used so 

the 2001 and 2004 observations can be used. The ERS imputed a proxy variable (P999) for the 

“Owe Money” question, and a detailed description of the variable is given in Banker et al. 

(2010). When the entire debt-by-lender table was refused by the respondent, P999 equals one 

(and corresponds to refusing to answer the Owe Money question). When the respondent 

indicated no debt was outstanding, P999 equals three (and corresponds to answering “no” to the 

“Owe Money” question). Lastly, P999 equals zero when the respondent provided outstanding 

loan information in the debt-by-lender table (and corresponds to answering “yes” to the “Owe 

Money” question). 

Since all respondents in the current study have outstanding FSA FLP debt at the end of 

the calendar year, all non-refusal respondents should answer “yes” to the “Owe Money” 

question, and all should have a P999 value of zero. By using the constructed P999 variable 

(DEBT_PROX) for all of the four years in the sample, respondents accurately reporting whether 

they have debt at the end of the year can be determined.  

3.3 Independent Variable Considerations for the Models 

 When hypothesizing relevant independent variables for the models, the variables 

available in the combined data from the FSA FLP loan database and ARMS are examined. The 

independent variables are sorted into five categories: FSA Direct FLP loan characteristics, FSA 
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Guaranteed FLP loan characteristics, operator demographics, farm operation characteristics, and 

farm operation financial characteristics. Variable definitions are in Table 3.1. 
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Table 3.1 Variable Definitions for Direct and Guaranteed FLP and ARMS Data  

Dependent Variable Definition 

DEBT_PROX Equals 0 if operator responded "yes", equals 3 if operator 

responded "no", and equals 1 if operator refused to respond to 

the “Owe Money” question 

Independent Variables   

FSA FLP variables 

FSADEBTTOTK Total FSA direct and guaranteed FLP debt per borrower in 

thousands of dollars 

INTRATE Average interest rate of borrower’s direct loans  

BORR_GUAR_INT_RATE Average interest rate of borrower’s guaranteed loans 

PASTDUE_IND Equals 1 if any direct loans of borrower has days past due > 

0, 0 otherwise 

FO_DIR Equals 1 if borrower has direct FO loan(s) only, 0 otherwise 

FO_GTE Equals 1 if borrower has guaranteed FO loan(s) only, 0 

otherwise 

OL_DIR Equals 1 if borrower has direct OL loan(s) only, 0 otherwise 

OL_GTE Equals 1 if borrower has guaranteed OL loan(s) only, 0 

otherwise 

EMEE_DIR Equals 1 if borrower has direct emergency loan(s) only, 0 

otherwise 

OL_LOC_GTE Equals 1 if borrower has guaranteed OL line of credit loan(s) 

only, 0 otherwise 

MULT_LN_DIR Equals 1 if borrower has multiple direct loan types, 0 

otherwise 

MULT_LN_GTE Equals 1 if borrower has multiple guaranteed loan types, 0 

otherwise 

MULT_PROG Equals 1 if borrower has both direct and guaranteed loan 

types, 0 otherwise 

Operator demographic variables 

OP_AGE Age of primary operator in years 

MARRIED Equals 1 if operator is married, 0 otherwise 

HS_EDUC Equals 1 if operator has high school or less education, 0 

otherwise 

SC_EDUC Equals 1 if operator has some college education, 0 otherwise 

CGB_EDUC Equals 1 if operator has college and/or beyond education, 0 

otherwise 

BF_ELIG Equals 1 if primary operator is beginning farmer eligible (10 

or fewer years since operating any operation), 0 otherwise 

OP_SDA_P Equals 1 if primary operator is SDA eligible, 0 otherwise 
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Table 3.1 Variable Definitions for Direct and Guaranteed FLP and ARMS Data Cont. 

Independent Variables    

Operation characteristics Cont. 

HH_SIZE Number of household members 

CROP_RATIO Value of crop production divided by total value of production 

RECORD_USE_YES Equals 1 if operator referred to records, 0 otherwise 

RECORD_USE_SOME Equals 1 if operator referred to loose receipts, 0 otherwise 

RECORD_USE_NONE Equals 1 if operator never referred to any records or receipts, 0 

otherwise 

RECORD_USE_MOT Equals 1 if operator referred to records most of the time, 0 

otherwise 

RECORD_USE_SOT Equals 1 if operator referred to records some of the time, 0 

otherwise 

RECORD_USE_NEV Equals 1 if operator never refers to records, 0 otherwise 

Y2001 Survey year 2001 

Y2004 Survey year 2004 

Y2006 Survey year 2006 

Y2007 Survey year 2007 

Operation financial characteristics 

IGCFIK Gross cash farm income in thousands of dollars 

ETOTK Total expenses in thousands of dollars 

INCFIK Net cash farm income in thousands of dollars 

EARNEDK Household earned income in thousands of dollars 

CAPEXP_TOTK Total capital expenses in thousands of dollars 

EFINTK Interest expense in thousands of dollars 

INTFEE_NREK Non-real estate interest expense in thousands of dollars 

INTFEE_REK Real estate interest expense in thousands of dollars 

NETWK Net worth in thousands of dollars 

ATOTK Total assets in thousands of dollars  

ACTOTK Current assets in thousands of dollars 

DTOTK Total liabilities in thousands of dollars 

LCTOTK Current liabilities in thousands of dollars 

Financial ratios 

NWC_EXPENSE_RATIO Net working capital to total expense ratio measured in percent 

CR Current ratio (current assets / current liabilities) 

DAR Debt-to-asset ratio measured in percent 

ROA Rate of return on assets ((net farm income + interest expenses – 

estimated charges for operator labor and management) / total 

assets) measured in percent 

OPM Operating profit margin (net farm income / value of farm 

production) measured in percent 



24 

 

Table 3.1 Variable Definitions for Direct and Guaranteed FLP and ARMS data Cont. 

Independent Variable 

Financial ratio variables cont. 

DRCU Debt repayment capacity utilization (debt / debt 

repayment capacity) measured in percent 

OER Operating expense ratio (cash operating expenses / 

gross cash farm income) measured in percent 

DEPER Depreciation expense ratio  

Source: Merged ARMS-FSA dataset (2001, 2004, 2006, 2007) 

 

For the FSA Direct FLP loan characteristics variables, the following variables are used: 

FSADEBTTOTK, PASTDUE_IND, INTRATE, FO_DIR, OL_DIR, EMEE_DIR, and 

MULT_LN_DIR. FSADEBTTOTK is the total outstanding FSA loan balance of direct and 

guaranteed loans measured in thousands of dollars at the end of the calendar year per borrower. 

The amount of outstanding debt (FSADEBTTOTK) should be a highly relevant factor related to 

whether the borrower accurately reports their debt or not. If a respondent’s FSA debt is small, the 

respondent may not report the operation owes money, especially if the operation does not have 

other debt. PASTDUE_IND is a delinquency indicator equaling one when any of the aggregated 

loans has a days past due of one or more days for that year; otherwise, zero.  INTRATE is the 

average interest rate for the direct loans for a particular borrower. Katchova 2005 found that 

interest rate impacted borrower demand for credit. Interest rate could impact respondent 

accuracy since the respondent may not remember their loan(s) interest rate.  

FO_DIR, OL_DIR, EMEE_DIR, and MULT_LN_DIR indicate whether the borrower 

only has FO Direct FLP loans, only has OL Direct FLP loans only has emergency type Direct 

FLP loans, or has multiple Direct FLP loan types (FO_DIR, OL_DIR, and/or EMEE_DIR). EM 

and EE loans are combined into a single binary variable (EMEE_DIR) since there are relatively 

few EE loans with a remaining balance (Table 3.2). 
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Table 3.2 Total FSA EM and EE Observations 

Total EM Loan Observations 

TOTEM Sample 

N 

Percent Cumulative Cumulative 

Frequency Percent 

No 1,978 68.37 1,978 68.37 

Yes 915 31.63 2,893 100 

Total EE Loan Observations 

TOTEE Sample 

N 

Percent Cumulative Cumulative 

Frequency Percent 

No 2,814 97.27 2,814 97.27 

Yes 79 2.73 2,893 100 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007) 

Note: TOTEM = Yes, if the operation has one or more EM loans; No otherwise. 

Note: TOTEE = Yes, if the operation has one or more EE loans; No otherwise. 

 

Selection of loan type usually depends on the intended use of the borrowed funds; 

therefore, it was important to capture any effects that loan type may have on accuracy of debt 

reporting. Since operating loans are short to intermediate term loans that are typically paid off 

early in the year, borrowers may not report them because they are paid off by the time the ARMS 

Phase III survey is administered in March and April; whereas, FO loans are long term loans and 

will likely have an outstanding balance for many years. A borrower with more than one type of 

loan should have an easier time remembering to report their FSA debt.  

 FSA Guaranteed FLP variables are: FSADEBTTOTK, BORR_GUAR_INT_RATE, 

FO_GTE, OL_GTE, OL_LOC_GTE, and MULT_LN_GTE. FSADEBTTOTK is the same as 

defined previously. BORR_GUAR_INT_RATE is the average interest rate of the borrower’s 

guaranteed loans. FO_GTE, OL_GTE, OL_LOC_GTE, and MULT_LN_GTE indicate whether 

the borrower has only FO loans, only OL loans, only OL LOC loans, or has multiple loans types 

(FO, OL, and/or OL LOC). OL line of credit loans are unique to the guaranteed FLP dataset 

because FSA does not make direct FLP OL line of credit loans. The reasoning behind choosing 

these variables is the same as for direct loans.  
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 Operator demographic variables give insight into the differences in characteristics among 

those operators who accurately report their debt, those operators who do not, and those who 

refuse to report. Operator demographic variables include: OP_AGE, HS_EDUC, SC_EDUC, 

CGB_EDUC, OP_SDA_P, and BF_ELIG. OP_AGE is a continuous age (in years) variable to 

reflect any effects age has on reporting accuracy. Previous studies indicated operator age has an 

impact on response outcome on the ARMS (Weber and Clay, 2013). Katchova (2005) also found 

older farmers of rural residences and intermediate farms were less likely to have debt. 

HS_EDUC, SC_EDUC, and CGB_EDUC are binary education variables. These are included 

because previous studies have indicated education impacts credit usage (Katchova, 2005). The 

level of education an operator has obtained may have an effect on the level of debt reporting 

accuracy. HS_EDUC is a binary variable that equals one when an operator has a high school or 

less education; otherwise, zero. SC_EDUC is a binary variable equaling one when an operator 

has some college education; otherwise, zero. CGB_EDUC is a binary variable equaling one 

when an operator is a college graduate and beyond; otherwise, zero. OP_SDA_P is a binary 

variable created using ARMS and FSA data. Reporting race or ethnicity on the FSA farm loan 

application is voluntary unless borrowers are applying for a SDA loan (USDA, FSA, 2015b). To 

circumvent this limitation, both FSA data and ARMS data were used to construct a SDA eligible 

variable equaling one when the borrower is SDA eligible; otherwise, zero. This is similar to the 

process used by Nwoha et al. (2007). A borrower is considered as an SDA when identified as 

such by either the FSA or ARMS data.  This includes: 1) identified as a racial-ethnic minority or 

female in the FSA guaranteed FLP or direct FLP data or 2) when they indicated to be a racial-

ethnic minority or female in the ARMS survey. BF_ELIG is a binary variable indicating whether 

an operator is beginning farmer eligible. The BF_ELIG variable is constructed by subtracting the 
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year the operator began operating any operation from the ARMS survey year. Any operator with 

ten years or less of farming experience is considered to be a beginning farmer. Previous studies 

have indicated that socially disadvantaged farmers and beginning farmers have different 

characteristics and/or exhibit different behaviors compared to other FSA borrowers (Dixon et al., 

2007; Nwoha et al., 2007).   

 The variables included in operation characteristics are: crop ratio (CROP_RATIO) and 

gross cash farm income measured in thousands of dollars (IGCFIK). A crop ratio (intensity) 

variable was computed by dividing the value of crop production by total production. Previous 

studies have determined agricultural type by proportion revenues from crops because crop 

operations have greater variation in revenues due to weather events (Settlage et al., 2001; Dixon 

et al. 2004). Weber and Clay (2013) found farm production specialization to impact the 

probability of responding to ARMS. Additionally, crop operations tend to have more borrowed 

capital for operating expenses (Settlage et al., 2001). IGCFIK is a good indicator of operation 

size. As stated in the literature review, larger operations have a higher ARMS non-response rate 

(Weber and Clay 2013). Katchova (2005) found farms with higher gross farm income are more 

likely to report debt and tend to report a greater number of loans. IGCFIK was included to 

capture any effects operation size has on reporting accuracy.   

In order to capture any effects from a particular survey year, a binary variable was 

computed for each year. Y2001 indicates ARMS survey year 2001. Y2004 indicates 2004, 

Y2006 indicates 2006, and Y2007 indicates 2007. 

3.4 Other Independent Variables Considered  

 Other variables were also considered in preliminary models, but were not included in the 

final model. In both the Direct FLP (DIR) model and the Guaranteed FLP (GTE) model, a 
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multiple loan program variable (MULT_PROG) was substituted for the loan type variables. 

Although most borrowers had only direct loans or only guaranteed loans, there are some 

borrowers with both direct and guaranteed loans.5 MULT_PROG was tried to determine if 

multiple loan program borrowers reported their debt differently from those with just one loan 

program type. When MULT_PROG was included, the significance of the gross cash farm 

income coefficient in the refusal vector of the direct model became insignificant and the multi-

program coefficients were insignificant, and there were no other changes. Guaranteed borrowers 

operate larger farms than direct borrowers; therefore, in the direct model MULT_PROG is a 

proxy for farm size. Having more than one FLP type was concluded to not have a major impact 

on the outcome; therefore, the multiple loan program variable was omitted from the models. For 

the guaranteed FLP model, lender guaranteed interest rate (LEND_GUAR_INT_RATE) and 

interest assistance indicator (IA_IND) were originally included. Having these two variables 

instead of the borrower guaranteed interest rate (BORR_GUAR_INT_RATE) did not change the 

parameter estimates notably and significance levels. BORR_GUAR_INT_RATE was used due 

to its similarity with the Direct FLP interest rate (INTRATE) variable. Initially, MARRIED was 

included in the direct FLP and guaranteed FLP models; however, MARRIED showed no 

significance and made no substantive changes to either model when it was excluded. Also, two 

percent of MARRIED had missing values (55 of 2,696 observations for the direct FLP model 

and 51 of 2,714 for the guaranteed FLP model), which contributed to the decision to exclude it 

from the final models.  

                                                 
5 Eighty-five percent of Direct FLP multinomial model observations are direct loans only, and 63 

percent of Guaranteed FLP multinomial model observations are guaranteed loans only. 
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Number of household members (HH_SIZE) was also included in the direct FLP and 

guaranteed FLP models but it was found to be statistically insignificant. Some studies have used 

number of household members when determining who does not respond to the ARMS (Weber 

and Clay, 2013). However, the number of household members did not make any substantial 

changes to the estimated model coefficients when it was included; therefore, the variable was 

excluded from the final models. Farm organizational type (LEGAL_STAT) was also initially 

included since more complex organizations may be more likely to refuse to answer questions 

since their finances may be more difficult to incorporate in the debt-by-lender table. However, 

the “other” organizational type had very few observations. This is consistent with FSA’s charge 

to lend to family-sized operations, which are primarily sole proprietorships. Weber and Clay 

(2013) found farm organizational type had an effect on response to the ARMS. However, when 

they re-estimated their model without farm size, the sign on the organizational type coefficient 

changed suggesting a relationship between farm size and organizational complexity.   

As previously mentioned, some responses were provided by the NASS enumerator after 

the completion of the interview. One of these questions asked how often the respondent refers to 

records: all of the time, most of the time, some of the time, almost never, or never (USDA, 

NASS, p. 32, 2001). In order to reduce the five responses to three responses, all of the time and 

most of the time were combined into one response: most of the time. Some of the time and 

almost never was combined into one response: some of the time. The three responses to the 

question were: most of the time, some of the time, and never. Hypothetically, respondents who 

refer to records most of the time should be more accurate when reporting their debt on the 

survey. The record usage question (RECORD_USE) showed up as highly significant, supporting 

the hypothesis. However, many previously significant variables became insignificant in the 



30 

 

direct and guaranteed models. Since RECORD_USE had 22.5 percent missing observations for 

the direct FLP model and 27.9 percent missing observations for the guaranteed FLP when 

estimated without RECORD_USE, the impact of RECORD_USE was pursued in more detail. 

The sample was restricted to observations with non-missing RECORD_USE values. Then 

RECORD_USE was omitted from the models to see if the change in coefficient significance 

resulted from RECORD_USE being included in the model or as a result of the large decrease in 

non-missing observations from the original sample. The significant variables in the original 

model lost significance because of the large change in sample size in the direct FLP and 

guaranteed FLP models; therefore, RECORD_USE was omitted from the models to allow use of 

the larger sample.  

 Another variable initially included in the models was household earned income 

(EARNED). Inclusion of this variable did not change other model parameter estimates nor was it 

significant. Total capital expenses (CAPEXP_TOTK) was considered, but CAPEXP_TOTK has 

a large number of missing observations so it was not included in the models. Some other 

variables considered were: depreciation expense ratio (DEPER), ROA, and total assets (ATOT). 

Adding DEPER to the models caused the significant coefficient on IGCFIK to lose significance 

in both the direct and guaranteed FLP multinomial models. Also, the significance on the “no” 

intercept in the Direct FLP multinomial model and the significance on the “refusal” intercept in 

the guaranteed FLP multinomial model lost significance. Adding ROA to the models caused the 

significant IGCFIK coefficient for the “refusal” outcome to lose significance. Otherwise, ROA 

did not change other model parameter estimates nor was it significant. Lastly, the addition of 

ATOT to the models caused the significant IGCFIK coefficient to lose significance in both direct 

and guaranteed models. The significant coefficient on OL LOC for the “no” outcome also lost 
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significance. Otherwise, ATOT did not change other model parameter estimates nor was it 

significant.  

Other variables considered were found to be either computed or imputed from the ARMS 

farm debt portion of the survey, i.e., these variables are not independent of the “Owe Money” 

responses so they are at least partially endogenous. For example in the debt-by-lender table in the 

ARMS, respondents give their total principal and interest outstanding per loan listed, and this 

information is used to compute total debt (DTOT). However, principal and interest outstanding is 

only in the debt-by-lender table if the respondent answered yes to the “Owe Money” question, 

which is the dependent variable for the models. Therefore, DTOT is dependent on “Owe 

Money”. In another example, interest expense (EFINT) is imputed in some situations using debt 

information from the debt-by-lender table. If a respondent indicated having zero interest expense 

in the expense section of ARMS, but indicated having loan debt in the debt section, then NASS 

estimates interest expense from the reported loan debt (USDA, NASS, 2009a). Likewise, if loan 

debt is indicated to be zero, but the respondent reported interest expense in the expense section, 

then the loan debt amount is estimated from the reported interest expense. Hence, EFINT is 

computed from the debt-by-lender table in some cases. Other variables initially considered, but 

were found to be dependent on the farm debt portion of the survey are: DAR, operating profit 

margin (OPM), and net working capital to expense ratio (NWC_EXPENSE_RATIO).  

3.5 Model Type and Specification 

 As was briefly discussed earlier, a multinomial logit model (Greene, 2011) is estimated to 

identify those variables that indicate how a respondent answers the “Owe Money” question. The 

dependent variable is the ARMS question asking respondents if the operation owes money to any 

banks, co-ops, individuals, merchants, or Federal agencies at the end of that survey’s respective 



32 

 

calendar year. This question may be used to determine the proportion of respondents responding 

erroneously since all respondents should answer “yes” if they have not refused to answer the 

question. The dependent variable, DEBT_PROX, has three nominal outcomes (yes, no, refusal), 

making the multinomial logit regression model an appropriate empirical model. 

Since the direct FLP and guaranteed FLP are different loan programs and have borrowers 

with different circumstances influencing the selection of one program over the other, a separate 

model is estimated for each program. The Direct FLP multinomial model has DEBT_PROX as 

the dependent variable and the independent variable groups: Direct FLP, operator demographics, 

operation, and operation financial characteristics. The Guaranteed FLP multinomial model has 

DEBT_PROX as the dependent variable and the independent variable groups: guaranteed FLP, 

operator demographics, operation, and operation financial characteristics. The multinomial logit 

models expected coefficient signs of no and refusal vectors when yes is base, and their data 

sources are displayed in Table 3.3. 
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Table 3.3 Multinomial Logit Model Expected Coefficient Signs of No and Refusal Vectors when 

Yes is Base and Data Sources 

Variable Name Outcome: No 

Expected 

Coefficient Sign 

Outcome: Refusal 

Expected 

Coefficient Sign 

Data Source 

Dependent Variable 

DEBT_PROX Na Na ARMS 

      

FSA Direct FLP Variables 

FSADEBTTOTK - + FSA 

PASTDUE_IND + + FSA 

INTRATE -/+ -/+ FSA 

OL_DIR + -/+ FSA 

EMEE_DIR -/+ -/+ FSA 

MULT_LN_DIR - -/+ FSA 

      

FSA Guaranteed FLP Variables 

FSADEBTTOTK - + FSA 

BORR_GUAR_INT_RATE -/+ -/+ FSA 

OL_GTE + -/+ FSA 

OL_LOC_GTE + -/+ FSA 

MULT_LN_GTE - -/+ FSA 

        

Operator Demographics 

SC_EDUC - - ARMS 

CGB_EDUC - - ARMS 

OP_AGE + + ARMS 

OP_SDA_P -/+ -/+ ARMS and FSA 

 

BF_ELIG - -/+ ARMS 

Operation Characteristics 

CROP_RATIO -/+ -/+ ARMS 

Y2004 -/+ -/+ ARMS 

Y2006 -/+ -/+ ARMS 

Y2007 -/+ -/+ ARMS 

Operation Financial Characteristics 

IGCFIK - + ARMS 
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One assumption underlying the multinomial logistic regression model is the 

independence of irrelevant alternatives (IIA). This assumption requires that if one outcome is 

dropped from the choice set, then the parameter estimates corresponding to the remaining 

alternatives will not change significantly when the omitted outcome is truly irrelevant (Greene, 

2011). Normally the IIA is tested by computing appropriate Wald statistics via a Hausman-

McFadden test.  In order to do this, bootstrap estimates of the appropriate covariance matrices 

would have to be used. Given the complex ARMS sampling strategy, utilizing bootstrap 

covariance matrix estimates in constructing Wald statistics was deemed unadvisable since it is 

not clear what the appropriate distribution would be of the Wald statistic. Instead, the two 

binomial logit sub-models that would logically flow from the conventional IIA testing were 

estimated. In the first sub-model for a given program (direct FLP or guaranteed FLP), a binary 

logit model was estimated by deleting the refusal observations. In the second sub-model, the no 

responses were eliminated while the refusal responses were included. The yes responses were not 

eliminated since they make up 82.8 percent of the Direct FLP multinomial model observations 

and 85.5 percent of the Guaranteed FLP multinomial model observations.  

  The practical approach to addressing IIA concerns was to compare the resulting 

parameter estimates from the two sub-models with the corresponding vector of coefficients from 

the full model. The percentage changes in the coefficients were computed from the full model 

and the sub models. The resulting differences in percentage terms generally ranged from -10 

percent to 10 percent. However, the guaranteed FLP program had a larger percentage change for 

most coefficients with a range of -20 percent to 20 percent and one coefficient in the direct FLP, 

(PASTDUE_IND), had a change of 90 percent. Therefore, an approximate z-test on coefficient 

equality was computed, and the null of equal coefficient values on three of the significant 
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variables that varied by more than plus or minus 10 percent could not be rejected. This implies 

rejection of the IIA would not be likely if the test was able to be done formally, and the 

coefficients resulting from the combined sample are reliable with reference to the IIA. 

Furthermore, the validity of the IIA tests have been questioned in research. In particular, 

simulation research has shown that the Hausman-McFadden test and the Small-Hsiao test for IIA 

have performed poorly; hence, the IIA assumption tests are unsatisfactory and not recommended 

(Allison, 2012; Cheng and Long, 2007). 

 In the event that the IIA assumption could be rejected, two binomial models were 

estimated: direct FLP and guaranteed FLP. The “yes” and “refusal” outcomes were combined 

together since the “yes” and “refusal” outcomes had similar summary statistics on their 

independent variables when compared to those of the “no” outcome. The estimates for the Direct 

FLP binomial model can be found in Table 5.2 and the Guaranteed FLP binomial model in Table 

5.4. The summary statistics for the Direct FLP and Guaranteed FLP binomial models can be 

found in Appendix A and Appendix B. The implications of these binomial models relative to the 

multinomial models are discussed below. 
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Chapter 4: Summary and Debt Statistics 

4.1 Direct FLP Summary Statistics  

Table 4.1 displays the summary statistics for the dependent and independent variables in 

the Direct FLP multinomial model and other variables of interest. The summary statistics show 

the mean and bootstrap standard errors for each of the dependent variable (DEBT_PROX) 

outcomes (yes, no, refusal). Of the 156,693 weighted observations for the dependent variable 

(DEBT_PROX) outcomes (yes, no, refusal), 129,682 (82.8 percent) are in DEBT_PROX’s “yes” 

outcome and 6,806 (4.3 percent) are in DEBT_PROX’s “refusal” outcome. Interestingly, 20,204 

(12.9 percent) of the weighted observations are in DEBT_PROX’s “no” outcome. This shows 

inaccuracy of reporting since an estimated 12.9 percent (13.6 percent of the sample) of the 

respondents answered “no” when they should have answered yes because they have outstanding 

FSA debt. This result indicates that respondents are not always reporting their information on the 

ARMS correctly, and other sections of the ARMS may experience inaccurately reporting as well.  
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Table 4.1 Direct FLP Mean and Bootstrap Standard Error Summary Statistics 

Variables  Outcomes     

DEBT_PROX Yes Refusal No All 

  

Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N 2,162 (80.2%) 166 (6.2%) 368 (13.6%) 2,696 (100%) 

Weighted N 129,682 (82.8%) 6,806 (4.3%) 20,204 (12.9%) 156,693 (100%) 

Direct FLP Variables 

FSADEBTTOTK ($1000) 133.002 4.615 136.105   27.493 80.256 di 8.550 126.336 4.149 

INTRATE 0.047 0.001 0.049  0.002 0.046  0.002 0.047 0.001 

PASTDUE_IND 0.049 0.010 0.041  0.019 0.095  0.051 0.055 0.011 

FO_DIR 0.380 0.023 0.544  0.107 0.341 i 0.059 0.382 0.021 

OL_DIR 0.218 0.018 0.112 a 0.036 0.276 h 0.057 0.221 0.018 

EMEE_DIR 0.266 0.018 0.262  0.079 0.324  0.060 0.273 0.017 

MULT_LN_DIR 0.136 0.015 0.082  0.041 0.059 d 0.018 0.123 0.013 

MULT_PROG 0.165 0.015 0.148   0.047 0.078 d 0.020 0.153 0.012 

Borrower Demographics 

OP_AGE 51.018 0.528 55.070 b 1.944 54.931 d 1.328 51.699 0.462 

HS_EDUC 0.472 0.022 0.684 a 0.077 0.578  0.062 0.495 0.021 

SC_EDUC 0.331 0.022 0.185 a 0.047 0.283  0.061 0.318 0.020 

CGB_EDUC 0.197 0.017 0.132  0.054 0.139 f 0.031 0.187 0.014 

OP_SDA_P 0.208 0.018 0.071 a 0.027 0.203 h 0.047 0.202 0.017 

BF_ELIG 0.161 0.018 0.022 a 0.012 0.136 h 0.044 0.152 0.016 

MARRIED 0.893 0.012 0.902   0.040 0.860   0.047 0.889 0.011 
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Table 4.1 Direct FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables  Outcomes     

DEBT_PROX Yes Refusal No All 

  

Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N 2,162 (80.2%) 166 (6.2%) 368 (13.6%) 2,696 (100%) 

Weighted N 129,682 (82.8%) 6,806 (4.3%) 20,204 (12.9%) 156,693 (100%) 

Operation Characteristics  

HH_SIZE 3.070 0.073 2.738 b 0.131 2.631 d 0.126 2.998 0.062 

RECORD_USE_MOT 0.683 0.025 0.297 a 0.116 0.378 d 0.080 0.633 0.025 

RECORD_USE_SOT 0.148 0.019 0.487 b 0.164 0.199 i 0.060 0.166 0.019 

RECORD_USE_NEV 0.169 0.020 0.217  0.090 0.423 di 0.084 0.200 0.020 

RECORD_TP_YES 0.661 0.025 0.673  0.115 0.348 dh 0.073 0.625 0.025 

RECORD_TP_SOME 0.215 0.021 0.126  0.071 0.354 h 0.084 0.228 0.021 

RECORD_TP_NONE 0.109 0.016 0.176  0.079 0.275 e 0.079 0.131 0.016 

CROP_RATIO 0.464 0.020 0.450  0.090 0.542  0.054 0.473 0.018 

Y2001 0.261 0.021 0.338  0.131 0.322  0.073 0.272 0.021 

Y2004 0.320 0.022 0.391  0.087 0.291  0.055 0.320 0.020 

Y2006 0.204 0.017 0.178  0.060 0.164  0.036 0.198 0.015 

Y2007 0.215 0.017 0.093 a 0.036 0.223 h 0.044 0.210 0.016 

Operation Financial Characteristics 

IGCFIK ($1000) 208.862 8.666 268.239   46.095 127.068 dg 17.033 200.894 7.690 

ETOTK ($1000) 162.548 6.490 178.921  36.831 98.822 dh 12.707 155.042 5.812 

INCFIK ($1000) 46.314 3.191 89.319 a 14.655 28.246 dg 6.084 45.852 2.772 

EARNEDK ($1000) 34.718 2.074 37.286  5.067 31.424  6.775 34.402 2.004 

EFINTK ($1000) 16.248 0.673 11.981 c 2.450 5.215 dh 1.155 14.640 0.592 

INTFEE_REK ($1000) 10.597 0.525 8.945  1.855 4.105 dh 1.105 9.688 0.470 

INTFEE_NREK ($1000) 5.651 0.427 3.036 a 0.784 1.110 dh 0.207 4.952 0.364 

CAPEXP_TOTK ($1000) 5.093 0.681 5.766  3.853 2.802 e 0.779 4.851 0.604 



 

 

 

3
9 

Table 4.1 Direct FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables  Outcomes     

DEBT_PROX Yes Refusal No All 

  

Mean Btsp Std 

Err 

Mean  Btsp 

Std Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N 2,162 (80.2%) 166 (6.2%) 368 (13.6%) 2,696 (100%) 

Weighted N 129,682 (82.8%) 6,806 (4.3%) 20,204 (12.9%) 156,693 (100%) 

Operation Financial Characteristics Cont. 

NETWK ($1000) 694.148 27.741 969.147  181.818 702.269  63.133 707.140 25.816 

ATOTK ($1000) 916.511 31.137 1,117.085  208.297 705.585 di 63.488 898.026 28.771 

ACTOTK ($1000) 111.100 6.566 126.103   37.312 52.720 di 9.778 104.224 5.819 

DTOTK ($1000) 222.363 8.315 147.938 b 36.502 3.316 dg 0.524 190.886 7.284 

LCTOTK ($1000) 67.064 3.295 57.773  14.576 3.316 dg 0.524 58.441 2.853 

Financial Ratio Variables 

Liquidity                     

NWC_EXPENSE_RATIO (%) 35.227 0.098 41.469 a 0.136 63.624 dg 0.112 39.160 0.083 

CR 5.012 1.189 16.785 b 5.154 38.032 dh 8.854 9.745 1.546 

Solvency                     

DAR (%) 29.940 1.173 12.302 a 3.053 0.709 dg 0.150 25.405 1.078 

Profitability                     

ROA (%) -0.891 0.586 1.784  4.804 -2.853  1.787 -1.028 0.590 

OPM (%) -34.333 5.806 -44.714  30.128 -67.763  19.751 -39.094 6.001 
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Table 4.1 Direct FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables  Outcomes   

DEBT_PROX Yes Refusal No All 

  Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N 2,162 (80.2%) 166 (6.2%) 368 (13.6%) 2,696 (100%) 

Weighted N 129,682 (82.8%) 6,806 (4.3%) 20,204 (12.9%) 156,693 (100%) 

Financial Ratio Variables Cont. 

Debt Repayment                     

DRCU (%) 4.588 1.586 1.477 c 0.580 0.050 dh 0.285 3.868 1.307 

Efficiency                    

DEPER 0.201 0.028 0.115 b 0.019 0.131  0.034 0.188 0.023 

OER (%) 125.942 11.218 77.415 b 15.558 111.663 h 7.676 121.993 9.454 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007)  

For most variables sample n=2,696 and weighted n=156,693. Record type variables, record use variables, and 

CAPEXP_TOTK have sample n=1,775 and weighted n=121,302. MARRIED has sample n=2,641 and weighted n=154,414. 

HH_SIZE and EARNEDK have sample n=2,612 and weighted n=153,689. CR has sample n=2,689 and weighted n=156,317. 

OPM, DEPER, and OER have sample n=2,695 and weighted n=156,692. 

Footnotes signifying significance levels for the difference in means.  Yes-Refusal: a (p < 0.01); b (p < 0.05); c (p < 0.10). Yes-

No: d (p < 0.01); e (p < 0.05); f (p < 0.10). Refusal-No: g (p < 0.01); h (p < 0.05); i (p < 0.10). 
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When examining the summary statistics for the independent variables, a discrepancy 

between the mean amount of FSADEBTTOTK from the FSA data compared to the mean amount 

of DTOTK (total debt in thousands) from the ARMS data was discovered. DTOTK accounts for 

current and long-term liabilities and is the summation of farm liabilities from all lender types. 

For the “yes” and “refusal” outcomes, DTOTK of $222 thousand and $148 thousand are more 

than FSADEBTTOTK of $133 thousand and $136 thousand which is expected. Since the data 

are from only one lender (FSA), DTOTK should be far greater than FSADEBTTOTK. And the 

difference is significant (p < 0.01) for the “yes” outcome, although the difference is insignificant 

for the refusal respondents. The “no” outcome has a mean DTOTK of $3 thousand and 

FSADEBTTOTK has a mean of $80 thousand and the difference is statistically significant (p < 

0.01). Since “no” respondents indicate they have zero debt in the Farm Debt section of the 

ARMS, the amount of debt reported on the ARMS is greatly under-estimated. For the estimated 

20,204 operators responding “no” over the four years 2001, 2004, 2006, and 2007, an estimate of 

the amount of debt under reported is $1.554 billion or a simple average of $389 million per year. 

This is 6.5 percent of the $5.980 billion average reported by the Economic Research Service for 

FSA direct loans for those same four years (USDA, ERS, 2015b). However, an estimated 7.8 

percent of the 20,204 operators had guaranteed loans in addition to direct loans so that the $389 

million includes mostly direct FLP loans but also some guaranteed loans originated by other 

lenders.  As stated in the literature review, the study by Briggeman, Koenig, and Moss (2012) 

found the amount of debt reported by lenders when added together was more than the amount of 

debt reported on the ARMS. The current study shows that one problem area for under-reporting 

of debt lies with those respondents indicating they have no outstanding debt at the end of the 

year when they should be indicating yes. Additionally, the summary statistics show DTOTK and 
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LCTOTK are the same amount which indicates DTOTK is only reflecting current liabilities for 

the respondents answering “no” on the ARMS. Operations responding “no” to the “Owe Money” 

question have significantly less FSA debt than those responding “yes” (p < 0.01) or refusing to 

answer (p < 0.10). 

For the other independent variables in the Direct FLP multinomial model, the average age 

for respondents range between 51-55 years of age with 51.7 years of age being the overall mean. 

The “yes” respondents are about four years younger than the “refusal” (p < 0.10) and “no” (p < 

0.01) respondents on average. Overall, 49.5 percent of the respondents have a high school or less 

education. A lower share of respondents refusing to answer the “Owe Money” question (0.185) 

have some college education than respondents answering “yes” (0.331) or “no” (0.283), although 

the difference is only significant (p < 0.01) for the “yes’ respondents. A smaller share of 

respondents refusing to answer the “Owe Money” question (0.07) are SDA eligible operators 

compared to those answering “yes” (0.21, p < 0.01) or “no” (0.20, p < 0.05). Additionally, 

respondents refusing to answer the “Owe Money” question have a lower mean ratio (0.02) of 

beginning farmer eligible operators compared to those answering “yes” (0.16, p < 0.01) or “no” 

(0.14, p < 0.05).  

The summary statistics for RECORD_USE support our hypothesis since respondents 

answering “yes” to the “Owe Money” question have a mean ratio of 0.68 for 

RECORD_USE_MOT compared to a mean ratio of 0.38 for RECORD_USE_MOT for those 

answering “no.” Also, respondents answering “no” have a higher mean ratio (0.42) of 

RECORD_USE_NEV compared to the mean ratio (0.38) for using RECORDS_USE_MOT. We 

also observe operators answering “no” have a slightly higher mean ratio for CROP_RATIO 

(0.54) than those answering “yes” (0.46) or refusing to answer (0.45), although the difference is 
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statistically insignificant. The summary statistics show respondents refusing to answer and those 

responding “yes” have a statistically higher mean IGCFI ($268 thousand and $209 thousand) 

than those responding “no” ($127 thousand). The summary statistics partially reflect what was 

stated in the literature review. Weber and Clay (2013) found that the probability of response 

decreases as farm size increases. However, the summary statistics presented here show that the 

“refusal” and “yes” respondent operations are larger than the “no” operations when size is 

measured by IGCFI, total expenses (ETOT), net cash farm income (INCFI), and total assets 

(ATOT).  

4.2 Guaranteed FLP Summary Statistics 

Table 4.2 displays the summary statistics for the dependent and independent variables in 

the guaranteed FLP multinomial model and other variables of interest. The summary statistics 

show the mean and bootstrap standard errors for each of the dependent variable (DEBT_PROX) 

outcomes (yes, no, refusal). Of the 91,771 weighted observations for the dependent variable 

(DEBT_PROX) outcomes (yes, no, refusal), 78,486 (85.5 percent) are in DEBT_PROX’s “yes” 

outcome and 4,197 (4.6 percent) are in DEBT_PROX’s “refusal” outcome and 9,087 (9.9 

percent) are in DEBT_PROX’s “no” outcome. This shows inaccuracy of reporting since an 

estimated 9.9 percent (9.5 percent of the sample) of the respondents answered “no” when they 

should have answered yes because they have outstanding debt guaranteed by FSA.
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Table 4.2 Guaranteed FLP Mean and Bootstrap Standard Error Summary Statistics 

Variables Outcomes     

DEBT_PROX Yes Refusal No All 

  Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N 2,299 (84.7%) 158 (5.8%) 257 (9.5%) 2,714 (100%) 

Weighted N 78,486 (85.5%) 4,197 (4.6%) 9,087 (9.9%) 91,771 (100%) 

Guaranteed FLP Variables 

FSADEBTTOTK ($1000) 269.717 8.492 311.603   30.789 272.926   36.102 271.950 8.035 

BORR_GUAR_INT_RATE (%) 7.288 0.116 7.156  0.225 7.680  0.277 7.321 0.101 

FO_GTE 0.425 0.023 0.344  0.063 0.395  0.075 0.419 0.021 

OL_GTE 0.123 0.015 0.120  0.041 0.07 f 0.024 0.117 0.014 

OL_LOC_GTE 0.088 0.009 0.075  0.025 0.188 eh 0.042 0.097 0.009 

MULT_LN_GTE 0.364 0.021 0.461  0.065 0.348  0.081 0.367 0.019 

MULT_PROG 0.280 0.021 0.240   0.053 0.170 e 0.047 0.267 0.019 

Borrower Demographics 

OP_AGE 49.498 0.513 50.632   1.262 48.739   1.006 49.475 0.451 

HS_EDUC 0.453 0.021 0.473  0.071 0.607 f 0.083 0.470 0.020 

SC_EDUC 0.316 0.021 0.390  0.068 0.257  0.089 0.314 0.020 

CGB_EDUC 0.230 0.018 0.137 c 0.045 0.136 e 0.038 0.217 0.017 

OP_SDA_P 0.107 0.014 0.080  0.027 0.050 d 0.014 0.10\\0 0.012 

BF_ELIG 0.150 0.015 0.030 a 0.011 0.141 h 0.048 0.144 0.014 

MARRIED 0.896 0.014 0.901   0.054 0.923   0.028 0.899 0.012 
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Table 4.2 Guaranteed FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables Outcomes    

DEBT_PROX Yes Refusal No All 

  Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N 2,299 (84.7%) 158 (5.8%) 257 (9.5%) 2,714 (100%) 

Weighted N 78,486 (85.5%) 4,197 (4.6%) 9,087 (9.9%) 91,770 (100%) 

Operation Characteristics  

HH_SIZE 3.165 0.066 3.348   0.256 3.089   0.149 3.166 0.059 

RECORD_USE_MOT 0.717 0.025 0.313 a 0.099 0.403 d 0.106 0.676 0.025 

RECORD_USE_SOT 0.139 0.020 0.144  0.059 0.280  0.126 0.152 0.022 

RECORD_USE_NEV 0.143 0.018 0.543 a 0.110 0.317  0.105 0.172 0.018 

RECORD_TP_YES 0.722 0.023 0.442 b 0.109 0.687 i 0.098 0.709 0.022 

RECORD_TP_SOME 0.170 0.018 0.044 a 0.020 0.101  0.047 0.160 0.017 

RECORD_TP_NONE 0.093 0.015 0.439 a 0.109 0.173 h 0.075 0.112 0.015 

CROP_RATIO 0.518 0.017 0.542  0.056 0.716 dh 0.054 0.539 0.017 

Y2001 0.216 0.021 0.042 a 0.037 0.090 e 0.045 0.195 0.019 

Y2004 0.290 0.019 0.397  0.067 0.349  0.083 0.301 0.020 

Y2006 0.257 0.018 0.252  0.068 0.281  0.064 0.259 0.017 

Y2007 0.237 0.016 0.309  0.062 0.281  0.056 0.246 0.015 

Operation Financial Characteristics 

IGCFIK ($1000) 363.806 15.247 400.367   52.220 242.727 dg 28.996 353.488 14.038 

ETOTK ($1000) 282.774 10.805 298.569  32.999 176.871 dg 20.701 273.009 9.922 

INCFIK ($1000) 81.031 6.520 101.800  31.180 65.856  13.194 80.479 5.979 

EARNEDK ($1000) 33.121 2.279 28.658  4.097 38.306  6.724 33.438 2.067 

EFINTK ($1000) 28.646 1.205 18.885 a 3.080 8.018 dg 1.355 26.156 1.098 

INTFEE_REK ($1000) 19.082 0.787 13.276 b 2.662 5.030 dg 1.009 17.425 0.738 

INTFEE_NREK 

($1000) 

9.563 0.774 5.609 b 1.659 2.988 dg 0.618 8.731 0.670 
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Table 4.2 Guaranteed FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables Outcomes    

DEBT_PROX Yes Refusal No All 

  Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N 2,299 (84.7%) 158 (5.8%) 257 (9.5%) 2,714 (100%) 

Weighted N 78,486 (85.5%) 4,197 (4.6%) 9,087 (9.9%) 91,770 (100%) 

Operation Financial Characteristics Cont. 

CAPEXP_TOTK ($1000) 10.148 1.360 1.793 a 0.754 2.341 d 0.869 9.178 1.200 

NETWK ($1000) 854.954 37.561 1,209.685 a 97.265 825.610 g 104.783 868.272 33.786 

ATOTK ($1000) 1,234.556 43.796 1,484.507 a 102.618 831.993 dg 105.134 1,206.123 39.231 

ACTOTK ($1000) 182.214 9.325 143.989  25.219 99.836 d 19.439 172.309 8.380 

DTOTK ($1000) 379.601 13.822 274.822 b 43.771 6.382 dg 0.992 337.851 12.858 

LCTOTK ($1000) 121.866 6.295 106.356  17.423 6.382 dg 0.992 109.721 5.494 

Financial Ratio Variables 

Liquidity                     

NWC_EXPENSE_RATIO (%) 15.941 0.058 15.354 a 0.074 95.014 dg 0.165 23.745 0.052 

CR 2.907 0.281 14.291 c 6.437 83.850 dg 24.988 11.300 2.305 

Solvency                     

DAR (%) 36.206 1.015 20.672 a 2.891 1.925 dg 0.549 32.101 1.023 

Profitability                     

ROA (%) 2.062 0.739 0.878  1.494 -6.549  7.452 1.155 0.951 

OPM (%) -14.006 3.865 -22.137  14.550 -4.070  6.986 -13.394 3.384 
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Table 4.2 Guaranteed FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables Outcomes   

DEBT_PROX Yes Refusal No All 

  Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N 2,299 (84.7%) 158 (5.8%) 257 (9.5%) 2,714 (100%) 

Weighted N 78,486 (85.5%) 4,197 (4.6%) 9,087 (9.9%) 91,770 (100%) 

Financial Ratio Variables Cont. 

Debt Repayment                     

DRCU (%) 8.821 2.650 1.642 a 0.835 -0.543 dh 0.607 7.566 2.282 

Efficiency                     

DEPER 0.136 0.012 0.159  0.036 0.070 dh 0.016 0.131 0.011 

OER (%) 92.235 3.455 87.405   9.427 108.121   19.028 93.587 3.538 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007)  

For most variables sample n=2714 and weighted n=91,770. Record type variables, record use variables, and 

CAPEXP_TOTK have sample n=1,758 and weighted n=66,204. MARRIED has sample n=2,663 and weighted 

n=89,695. HH_SIZE has sample n=2,646 and weighted n=89,384. CR has sample n=2,709 and weighted n=91,589. 

Footnote signifying significance levels for the difference in means. Yes-Refusal: a (p < 0.01); b (p < 0.05); c (p < 0.10). 

Yes-No: d (p < 0.01); e (p < 0.05); f (p < 0.10). Refusal-No: g (p < 0.01); h (p < 0.05); i (p < 0.10). 
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As observed from the direct FLP summary statistics, a discrepancy between the mean 

amounts of FSADEBTTOTK from the FSA data compared to the mean amount of DTOTK (total 

debt in thousands) from the ARMS survey was discovered. The “no” outcome in the guaranteed 

FLP has a mean DTOTK of $6.4 thousand and FSADEBTTOTK has a mean of $272.9 thousand. 

The difference in the means was found to be significantly different from zero (p < 0.010. The 

weighted total of under-reported debt for the estimated 9,087 operators answering “no” over the 

four years of 2001, 2004, 2006 and 2007 is $2.422 billion or a simple average of $606 million 

per year. Almost $868 million dollars or $217 million per year more than what is under-reported 

in the direct FLP. However, the under-reported estimates of $1.554 billion from the direct FLP 

summary statistics and $2.442 billion from the guaranteed FLP summary statistics are not 

additive since 7.8 percent of the observations in the direct FLP summary statistics are also in the 

guaranteed FLP summary statistics. This is because the FSA debt variable includes both direct 

and guarantee indebtedness for those borrowers with loans from both programs. Again, the 

summary statistics show DTOTK and LCTOTK are the same amount which indicates DTOTK is 

only reflecting current liabilities for the respondents answering “no” on the ARMS survey. For 

those refusing to answer, it is surprising their FSADEBTTOTK mean is greater than the DTOTK 

mean by $37 thousand indicating an under-reporting of debt for an estimated total of $154 

million, or a simple average of about $39 million per year. Although the difference is statistically 

insignificant, the under-reporting would only become greater as debts from other lenders are 

added. There is no statistical difference in the means of FSADEBTTOTK for those responding 

“yes”, “no”, and refusing to answer the owe money question of the ARMS survey.  

For the other independent variables in the Guaranteed FLP multinomial model, more than 

twice the share of borrowers responding “no” (0.19) have only OL LOC loans than those 
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responding “yes” (0.09) or those refusing to respond (0.08). The average age for respondents 

ranges between 49-51 years of age with 49.5 years of age being the overall mean. The mean age 

for guaranteed FLP operators is 2.2 years lower than the mean age reported in the direct FLP 

summary statistics (p < 0.01). Overall, nearly half (47.5 percent) of the respondents have a high 

school or less education, which is just 2.5 percentage points lower than the percent of 

respondents in the direct FLP summary statistics. A greater share of respondents answering “yes” 

(0.23) has a college education than those answering “no” (0.14, p < 0.05) or refusing to answer 

the “Owe Money” question (0.0.14, p < 0.10). Overall, 10 percent of the respondents are SDA 

eligible which is half the percentage of respondents in the direct FLP model. Respondents 

answering “no” to the “Owe Money” question (0.05) have a smaller mean ratio of SDA eligible 

operators compared to those answering “yes” (0.11, p < 0.01) or refusing to answer (0.08), 

although the latter is insignificant. Additionally, respondents refusing to answer the “Owe 

Money” question have a lower mean ratio (0.03) of beginning farmer eligible operators 

compared to those answering “yes” (0.15, p < 0.01) or “no” (0.14, p < 0.05) and is similar to 

what was found in the direct FLP summary statistics.  

The summary statistics for RECORD_USE support the hypothesis since respondents 

answering “yes” to the “Owe Money” question have a mean ratio of 0.72 for 

RECORD_USE_MOT compared to a mean ratio of 0.40 and 0.31 for RECORD_USE_MOT for 

those answering “no” and for those refusing to answer. Operators answering “no” have a higher 

mean ratio for CROP_RATIO (0.72) than those answering “yes” (0.52) or refusing to answer 

(0.54). The summary statistics show respondents refusing to answer and those answering “yes” 

have a higher mean IGCFIK ($400 thousand and $364 thousand) than those responding “no” 
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($243 thousand). Additionally, respondents refusing to answer and those answering “yes” have a 

higher total expenses (ETOTK) and total assets (ATOTK) compared to those responding “no.”  

4.3 DTOTK Under-reporting: Direct and Guaranteed FLPs 

Since under-reporting of mean debt on the ARMS compared to the amount of total FSA 

mean debt was observed, a variable was constructed that equals one when DTOTK is less than 

FSADEBTTOTK, zero otherwise for the total number of observations available. For the Direct 

FLP, 66,998 out of 172,789 (38.8 percent) weighted operators have a DTOTK less than 

FSADEBTTOTK (Table 4.3). Also, those responding “no” have 21,970 out of 22,194 (99.0 

percent) of weighted operators with DTOTK less than FSADEBTTOTK. Those responding 

“yes” have 39,523 out of 142,596 (27.7 percent) of weighted operators with DTOTK less than 

FSADEBTTOTK. Refusal respondents have 5,504 out of 7,993 (68.8 percent) of weighted 

operators with a DTOTK less than FSADEBTTOTK. 
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Table 4.3 Number of Observations with ARMS Total Debt less than FSA Total Direct and 

Guaranteed Debt for Direct FLP Operations 

    Debt Proxy Outcomes   

  DEBT_UNDR Yes Refusal No Total 

  Number 

Do not 

under 

report 

Weighted N 103,073 2,494 223 105,791 

Sample N 1,685 89 12 1,786 

Respondent Percentage 

Yes, Refusal or No 

Percentage 

59.65 

72.28 

1.44 

31.18 

0.13 

1.01 

61.23 

Do under 

report 

Weighted N 39,523 5,504 21,970 66,998 

Sample N 626 97 385 1,108 

Respondent Percentage 

Yes, Refusal or No 

Percentage 

22.87 

27.72 

3.19 

68.82 

12.72 

98.99 

38.77 

Total 
Weighted N 142,596 7,993 22,194 172,789 

Sample N 2,311 186 397 2,894 

  Percent (%) 82.53 4.63 12.84 100 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007) 

 

For the guaranteed FLP, 40,746 out of 99,176 (41.1 percent) weighted operators have a 

DTOTK lower than FSADEBTTOTK (Table 4.4). Also, those responding “no” have 8,958 out 

of 9,298 (96.4 percent) of weighted operators with DTOTK lower than FSADEBTTOTK. Those 

responding “yes” have 28,625 out of 84,579 (33.9 percent) of weighted operators with DTOTK 

lower than FSADEBTTOTK. Refusal respondents have 3,134 out of 5,298 (59.2 percent) of 

weighted operators with a DTOTK lower than FSADEBTTOTK. Both the Direct FLP and 

Guaranteed FLP show that operators responding “no” have a higher percentage that have 

DTOTK lower than FSADEBTTOTK followed by respondents refusing to answer. Operators 

responding “yes” have the smallest percentage with DTOTK less than FSADEBTTOTK. Those 

borrowers responding “no” are a definite problem area for ARMS estimation and accuracy. This 

result indicates that imputation for those respondents in the “no” outcome is difficult and needs 
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improvement, although the difficulty of estimating total debt for many “yes” and “refusal” 

respondents is also apparent.  

Table 4.4 Number of Observations with ARMS Total Debt less than FSA Total Direct and 

Guaranteed Debt for Guaranteed FLP Operations 

    Debt Proxy Outcomes   

 DEBT_UNDR Yes Refusal No Total 

  Number 

Do not under 

report 

Weighted N 55,927 2,163 339 58,430 

Sample N 1,647 70 11 1,728 

Respondent Percentage 

Yes, Refusal or No 

Percentage 

56.39 

 

66.12 

2.18 

 

40.83 

0.34 

 

3.65 

58.92 

Do under report 

Weighted N 28,652 3,135 8,958. 40,746 

Sample N 749 110 256 1,115 

Respondent Percentage 

Yes, Refusal or No 

Percentage 

28.89 

33.88 

 

3.16 

59.17 

9.03 

96.35 

41.08 

Total 
Weighted N 84,579 5,298 9,298 99,176 

Sample N 2,396 180 267 2,843 

   Percent (%) 85.28 5.34 9.38 100 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007) 
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Chapter 5: Model Estimation Results 

This chapter identifies those respondent characteristics that inaccurately report “no” to 

having current end of year debt in the Farm Debt section of the ARMS. The first section presents 

the estimated Direct FLP multinomial logistic model and discusses the variables with significant 

coefficients. Within that section, implications of the Direct FLP binomial logistic model in 

relation to the Direct FLP multinomial logistic model are discussed. The second section of this 

chapter presents the Guaranteed FLP multinomial logistic model and discusses the variables with 

significant coefficients. The implications of the Guaranteed FLP binomial logistic model in 

relation to the Guaranteed FLP multinomial logistic model are also discussed. 

5.1 Direct FLP Multinomial Logistic Model Estimation Results 

The estimated coefficients for the 16 independent variables (32 coefficients) in the Direct 

FLP multinomial model are presented in Table 5.1. The “no” intercept coefficient is highly 

significant (p < 0.01) and negative reflecting that “no” responses are generally less likely than 

“yes” responses. FSADEBTTOTK is highly significant (p < 0.01) and negative for the “no” 

outcome indicating that as total FSA debt decreases, the more likely a respondent will indicate 

“no” on the Farm Debt section of the ARMS. This outcome is plausible because a respondent 

with a small amount of FSA debt may not remember or bother to report their debt (Table 3.3). 

This result is consistent with the summary statistics, where the “no” mean is significantly less 

than the “yes” mean (p < 0.01).  
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Table 5.1 Direct FLP Multinomial Logistic Model Results and Odds Ratios 

Analysis of Maximum Likelihood Estimates 

Parameter Outcome Estimate Wald ChiSq Pr>ChiSq Odds Ratio Est 

INTERCEPT No -2.388 7.637 p<0.01 na 

INTERCEPT Refusal -2.529 1.458 ns na 

FSADEBTTOTK No -0.004 7.044 p<0.01 0.996 

FSADEBTTOTK Refusal 0.001 0.644 ns 1.001 

INTRATE No 0.719 0.649 ns 2.052 

INTRATE Refusal -0.184 0.076 ns 0.832 

PASTDUE_IND No -3.691 0.275 ns 0.025 

PASTDUE_IND Refusal 1.813 0.051 ns 6.131 

OL_DIR  No 0.366 0.998 ns 1.443 

OL_DIR  Refusal -0.796 2.212 ns 0.451 

EMEE_DIR No 0.310 0.679 ns 1.363 

EMEE_DIR Refusal -0.622 1.588 ns 0.537 

MULT_LN_DIR  No -0.473 1.148 ns 0.623 

MULT_LN_DIR  Refusal -0.682 1.036 ns 0.506 

OP_AGE No 0.018 2.570 ns 1.018 

OP_AGE Refusal 0.011 0.325 ns 1.011 

SC_EDUC  No -0.264 0.577 ns 0.768 

SC_EDUC  Refusal -0.893 5.710 p<0.05 0.409 

CGB_EDUC No -0.498 2.327 ns 0.608 

CGB_EDUC Refusal -0.634 1.649 ns 0.530 

OP_SDA_P  No 0.191 0.272 ns 1.210 

OP_SDA_P  Refusal -0.850 3.971 p<0.05 0.428 

BF_ELIG No 0.235 0.286 ns 1.265 

BF_ELIG Refusal -1.616 5.102 p<0.05 0.199 

CROP_RATIO No 0.700 4.697 p<0.05 2.013 

CROP_RATIO Refusal -0.264 0.284 ns 0.768 

IGCFIK No -0.001 3.327 p<0.10 0.999 

IGCFIK Refusal 0.0004 4.378 p<0.05 1.000 

Y2004 No -0.208 0.243 ns 0.812 

Y2004 Refusal 0.011 0.000 ns 1.011 

Y2006 No -0.152 0.142 ns 0.859 

Y2006 Refusal -0.352 0.197 ns 0.704 

Y2007 No 0.094 0.053 ns 1.098 

Y2007 Refusal -1.028 1.912 ns 0.358 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007) 

Notes: Sample N= 2,696; Weighted N= 156,693     
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SC_EDUC is significant (p < 0.05) and negative for the “refusal” outcome, and indicates 

operators with some college education are less likely to refuse to answer compared to operators 

with high school or less education. In the summary statistics, the “refusal” mean is statistically 

different from the “yes” mean (p < 0.01). Since SC_EDUC is a binary variable, this indicates 

that proportions of respondents with some college education are different for those refusing to 

answer the “Owe Money” question and for those responding “yes.” One plausible reason the 

some college coefficient is significant, but the CGB_EDUC is not, may be due to the fact that 

more education is synonymous with a more complex farming operation structure. More 

complexity in operation structure and finances may make reporting more difficult for 

respondents. The negative signs (p < 0.05) on both the OP_SDA_P and BF_ELIG “refusal” 

coefficients indicate SDA and beginning farmer eligible operators are less likely to refuse to 

answer the “Owe Money” question on the Farm Debt portion of the ARMS than operators not in 

these classes. It is likely women SDA comprise more of the OP_SDA_P observations than the 

race/ethnic SDA. According to the 2002 Census of Agriculture, women principal operators 

comprised 11.2 percent of the total farm operations while race/ethnic principal operators 

comprised 5.2 percent of the total farm operations (USDA, NASS, 2009b). In the 2007 Census of 

Agriculture, women principal operators comprised 13.9 percent of the total farm operations 

while race/ethnic principal operators comprised 6.6 percent of the total farm operations (USDA, 

NASS, 2009b). While sample size restrictions will not allow a breakdown by gender and 

race/ethnicity, it is likely that there are disparities in reporting debt by group. The 2002 Census 

of Agriculture indicated women principal operators were more likely to use computers for 

business and have internet access than male principal operators (USDA, NASS, 2005). Women 

operators may be better record keepers and may report more accurately than their male 
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counterparts, and the current study’s results support this assertion. The result for beginning 

farmer is expected because beginning farmers are required to participate in borrower training 

which may make them better at handling and understanding their finances and have financial 

records (USDA, FSA, 2015c). In the summary statistics, OP_SDA_P and BF_ELIG have 

“refusal” means significantly different from the “yes” means (p < 0.01). Since OP_SDA_P and 

BF_ELIG are binary variables, this indicates that the proportions of respondents that are either 

SDA or beginning farmers are different for those refusing to answer the “Owe Money” question 

and for those responding “yes.” 

CROP_RATIO is significant and positive for the “no” outcome (p < 0.05) and indicates 

respondents with more crop intense farms are more likely to respond “no” on the ARMS. Crop 

operations may have short term operating loans and may pay them off at the beginning of the 

year before the ARMS survey is administered in March and April. Both the “no” and “refusal” 

outcome coefficients are significant for IGCFIK. The negative sign on the “no” coefficient (p < 

0.10) on IGCFIK means respondents with a lower gross cash farm income are more likely to say 

“no.” This is expected because the summary statistics showed respondent’s answering “no” had 

smaller IGCFIK, ATOT, and ETOT. The positive sign on the “refusal” coefficient (p < 0.05) on 

IGCFIK implies respondents with a higher gross cash farm income are more likely to refuse to 

answer the “Owe Money” question on the Farm Debt section of the ARMS. As noted in the 

literature review, Weber and Clay (2013) found that the probability of entire survey nonresponse 

increases as farm size increases. Since IGCFIK is an indicator of farm size, these results are 

consistent with Weber and Clay’s (2013) results.  

In regards to the Direct FLP binomial logistic model, the significant coefficients on the 

variables for “refusal” in the Direct FLP multinomial logistic model are not in the Direct FLP 
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binomial model because the refusal and yes categories are combined into a yes/refusal category. 

All variables with significant coefficients for the “no” outcome in the Direct FLP multinomial 

model have significant coefficients at similar significance levels, with the same signs, and 

similar magnitudes in the Direct FLP binomial model (Table 5.2). Moreover, all of the 

coefficients for the “no” outcomes have the same sign and similar magnitude for the two Direct 

FLP models. Considering the similarities between the Direct FLP multinomial model and Direct 

FLP binomial model, confidence in the “no” coefficient estimates in the Direct FLP multinomial 

model is boosted. 
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Table 5.2 Direct FLP Binomial Logistic Model Results and Odds Ratios 

Analysis of Maximum Likelihood Estimates 

Parameter Estimate Wald 

ChiSq 

Pr>ChiSq Odds Ratio 

Estimate 

INTERCEPT -2.464 8.238 p<0.01 na 

FSADEBTTOTK -0.004 7.131 p<0.01 0.996 

PASTDUE_IND 0.729 0.667 ns 2.074 

INTRATE -3.749 0.287 ns 0.024 

OL_DIR 0.406 1.243 ns 1.501 

EMEE_DIR 0.347 0.863 ns 1.415 

MULT_LN_DIR -0.442 1.006 ns 0.643 

OP_AGE 0.017 2.423 ns 1.017 

SC_EDUC -0.225 0.425 ns 0.799 

CGB_EDUC -0.470 2.099 ns 0.625 

OP_SDA_P 0.218 0.356 ns 1.244 

BF_ELIG 0.263 0.355 ns 1.301 

CROP_RATIO 0.713 4.890 p<0.05 2.04 

IGCFIK -0.001 3.444 p<0.10 0.999 

Y2004 -0.205 0.237 ns 0.815 

Y2006 -0.130 0.105 ns 0.879 

Y2007 0.136 0.111 ns 1.146 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007) 

Notes: Sample N= 2,696; Weighted N: 156,693; The “yes” and 

“refusal” outcomes are combined into one category and the “no” 

outcome is the other category. 

 

5.2 Guaranteed FLP Multinomial Logistic Model Estimation Results 

The estimated coefficients for the 30 independent variables in the Guaranteed FLP 

multinomial model are presented in Table 5.3. The “no” intercept coefficient is highly significant 

and negative (p < 0.01). The same result was found in the Direct FLP multinomial model. In the 

Direct FLP multinomial model, FSADEBTTOTK is highly significant (p < 0.01) and negative 

for the “no” outcome; however, FSADEBTTOTK is not significant for the “no” or “refusal” 

Guaranteed FLP multinomial model outcomes. Those answering “no” in the Direct FLP 
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multinomial model have a smaller mean FSADEBTTOTK than those answering “yes” or 

refusing to answer. Whereas the Guaranteed FLP multinomial model FSADEBTTOTK means 

between “yes”, “refusal”, or “no” do not vary much. OL_LOC_GTE is marginally significant (p 

< 0.10), positive on the “no” outcome, and indicates respondents with only OL LOC loans are 

more likely to respond “no” on the “Owe Money” question on the Farm Debt section of the 

ARMS compared to respondents with only FO loans. This is expected because OL LOC loans 

are short term loans, and the respondent may not report the loan because they paid it off at the 

beginning of the year before the ARMS is administered in March and April. Moreover, OL LOC 

are short term loans and they may have a relatively small balance at the end of the year. The 

respondent may not remember or bother to report an OL LOC balance at the end the year 

because the operator does not consider the loan important enough to report.  In the summary 

statistics, the “no” mean is significantly different from the “yes” mean (p < 0.05).  Since 

OL_LOC_GTE is a binary variable, this indicates that proportions of respondents with OL line 

of credit loans are different for those refusing to answer the “Owe Money” question and for those 

responding “yes.” 

  



 

 

60 

 

 

Table 5.3 Guaranteed FLP Multinomial Logistic Model Results and Odds Ratios 

Analysis of Maximum Likelihood Estimates 

Parameter Outcome Estimate Wald 

ChiSq 

Pr>ChiSq Odds Ratio 

Estimate 

Intercept No -3.831 7.784 p<0.01 na 

Intercept Refusal -4.939 2.163 ns na 

FSADEBTTOTK No 0.001 1.649 ns 1.001 

FSADEBTTOTK Refusal 0.000 0.221 ns 1.000 

BORR_GUAR_INT_RATE No 0.153 2.629 ns 1.166 

BORR_GUAR_INT_RATE Refusal 0.051 0.498 ns 1.052 

OL_GTE  No -0.170 0.157 ns 0.843 

OL_GTE Refusal 0.244 0.253 ns 1.277 

OL_LOC_GTE No 0.711 3.148 p<0.10 2.036 

OL_LOC_GTE Refusal 0.116 0.059 ns 1.123 

MULT_LN_GTE  No -0.084 0.042 ns 0.919 

MULT_LN_GTE Refusal 0.463 1.463 ns 1.589 

OP_AGE No -0.613 1.865 ns 0.542 

OP_AGE Refusal 0.142 0.165 ns 1.153 

SC_EDUC  No -0.923 6.704 p<0.01 0.397 

SC_EDUC  Refusal -0.542 1.321 ns 0.582 

CGB_EDUC  No -0.016 1.567 ns 0.984 

CGB_EDUC Refusal -0.004 0.067 ns 0.996 

OP_SDA_P No -0.810 4.073 p<0.05 0.445 

OP_SDA_P Refusal 0.056 0.015 ns 1.058 

BF_ELIG No -0.095 0.038 ns 0.909 

BF_ELIG Refusal -1.853 16.728 p<0.01 0.157 

CROP_RATIO No 1.352 9.144 p<0.01 3.866 

CROP_RATIO Refusal -0.061 0.028 ns 0.941 

IGCFIK No -0.002 6.592 p<0.05 0.998 

IGCFIK Refusal 0.000 0.162 ns 1.000 

Y2004 No 1.453 3.444 p<0.10 4.275 

Y2004 Refusal 2.083 0.440 ns 8.030 

Y2006 No 1.184 2.541 ns 3.267 

Y2006 Refusal 1.760 0.311 ns 5.813 

Y2007 No 1.215 2.835 p<0.10 3.372 

Y2007 Refusal 2.008 0.408 ns 7.446 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007) 

Note: Sample N= 2,714; Weighted N= 91,771 
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SC_EDUC is highly significant (p < 0.01), negative for the “no” outcome, and indicates 

operators with some college education are less likely to respond “no” compared to operators with 

high school or less education. The Guaranteed FLP multinomial model result is different from 

the Direct FLP multinomial model result because the significant Direct FLP multinomial model 

result is on the refusal outcome. OP_SDA_P is significant and negative for the “no” outcome (p 

< 0.05) which indicates SDA respondents are less likely to respond “no” to the “Owe Money” 

question. In the summary statistics, the “no” mean is significantly different from the “yes” mean 

(p < 0.01). Since OP_SDA_P is a binary variable, this indicates that proportions of SDA 

respondents are different for those refusing to answer the “Owe Money” question and for those 

responding “yes.” In the Direct FLP multinomial model, OP_SDA_P is significant for the refusal 

outcome. BF_ELIG is highly significant, negative for the “refusal” outcome (p < 0.01), and 

indicates beginning farmer respondents are less likely to refuse responding to the “Owe Money” 

question relative to answering “yes”. The summary statistics show BF_ELIG’s “refusal” mean is 

significantly different from the “yes” mean (p < 0.05). Since BF_ELIG is a binary variable, this 

indicates that proportions of beginning farmer respondents are different for those refusing to 

answer the “Owe Money” question and for those responding “yes.” The Direct FLP multinomial 

model had the same result except at a different significance level (p < 0.05).  

CROP_RATIO is highly significant and positive for the “no” outcome (p < 0.01) and 

indicates respondents with more crop intense farms are more likely to respond “no” on the 

ARMS. In the summary statistics, the “no” mean is statistically different from the “yes” mean (p 

< 0.01). Since CROP_RATIO is the share of the total value of production from crops, this 

indicates that the respondents that answer “no” to the “Owe Money” question have a 

significantly greater share of total value of production from crops on average than do those 
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respondents that answer “yes.” The Direct FLP multinomial model has the same outcome except 

the significance level (p < 0.05). The negative sign on the “no” coefficient (p < 0.05) on IGCFIK 

means respondents with a lower gross cash farm income are more likely to say “no.”  The 

summary statistics show IGCFIK’s “no” mean is statistically different from the “yes” mean (p < 

0.01). As stated in the previous section, the summary statistics showed respondents answering 

“no” had smaller IGCFIK, ATOTK, and ETOTK which is expected. The Direct FLP 

multinomial model has the same result except the significance level (p < 0.10). The “no” Y2004 

and Y2007 variables are slightly significant and positive (p < 0.10) which indicates that survey 

years 2004 and 2007 respondents are more likely to respond “no” to the “Owe Money” question 

compared to survey year 2001 respondents. Between 2003 and 2012, a shorter version of the 

core survey was mailed out to operators, and the larger sampling size increased usable responses 

to 20,000 or more compared to 10,000 originally (USDA, ERS, 2015a). The Guaranteed FLP 

multinomial model results for survey years 2004 and 2007 could be influenced by the increased 

number of usable responses. Also, survey year 2007 was a census year and the ARMS is longer 

and appears different compared to non-census years. For instance, ARMS survey year 2007 only 

has four columns (five normally) for information in the Farm Debt section debt-by-lender table. 

The Farm Debt section debt-by-lender table is transposed and looks slightly different compared 

to 2001, 2004, and 2006. However, the Direct FLP multinomial model did not have any year 

coefficients significant.  

In regards to the Guaranteed FLP binomial logistic model, the significant coefficient on 

BF_ELIG for “refusal” in the Guaranteed FLP multinomial logistic model is not in the 

Guaranteed FLP binomial model because the refusal and yes categories were combined into a 

yes/refusal category. Otherwise, all variables (except Y2007) with significant coefficients for the 



 

 

63 

 

 

“no” outcome in the Guaranteed FLP multinomial model had significant coefficients, same signs, 

and similar magnitudes as in the Guaranteed FLP binomial model (Table 5.4).   

Table 5.4 Guaranteed FLP Binomial Logistic Model Results and Odds Ratios 

Analysis of Maximum Likelihood Estimates 

Parameter Estimate Wald ChiSq Pr>ChiSq Odds Ratio 

Est 

INTERCEPT -3.824 7.845 p<0.01 na 

FSADEBTTOTK 0.001 1.592 ns 1.001 

BORR_GUAR_INT_RATE 0.151 2.577 p<0.01 1.163 

OL_GTE  -0.183 0.184 ns 0.833 

OL_LOC_GTE 0.704 3.157 p<0.01 2.022 

MULT_LN_GTE  -0.112 0.076 ns 0.894 

OP_AGE -0.622 1.914 p<0.10 0.537 

SC_EDUC -0.897 6.274 p<0.01 0.408 

CGB_EDUC -0.016 1.547 ns 0.984 

OP_SDA_P -0.814 4.198 p<0.01 0.443 

BF_ELIG -0.034 0.005 ns 0.966 

CROP_RATIO 1.353 9.182 p<0.01 3.869 

IGCFIK -0.002 6.545 p<0.01 0.998 

Y2004 1.383 3.140 p<0.01 3.985 

Y2006 1.134 2.350 p<0.05 3.108 

Y2007 1.150 2.553 p<0.05 3.158 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007) 

Note: Sample N= 2,714; Weighted N= 91,771    

 

The direct FLP offers emergency and economic emergency loans which allows farmers to 

obtain loans to help with drought, natural disaster, and economic stress. The guaranteed FLP 

offers operating line of credit loans, and the guaranteed FLP has much higher loan limits than the 

direct FLP. The guaranteed FLP may also have farm borrowers with slightly better financial 

characteristics than direct FLP borrowers since guaranteed loans originate with a commercial 

lender instead of with FSA, although the lender has required a guarantee. The Direct FLP and 

Guaranteed FLP multinomial models have only a few differences between them. Although both 
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have about the same number of significant coefficients (eight for the Direct FLP and nine for the 

Guaranteed FLP), the Direct FLP multinomial model had more significant coefficients on the 

“refusal” outcome and the Guaranteed FLP multinomial model had more on the “no” outcome.  
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Chapter 6: Conclusion 

This chapter summarizes the conclusions to the current study, and offers suggestions for 

future research.  

6.1 Conclusion 

The study used FSA and ARMS data to determine the magnitude of respondent errors 

when answering farm debt questions in the ARMS. Multinomial logistic models were used to 

identify demographic, structural, and financial characteristics of FSA borrowers who accurately 

or inaccurately classify their farm operations as having end of year debt as well as those who 

refuse to indicate if they have end of year debt.  

Estimates of 12.9 percent of direct FLP operators and 9.9 percent of guaranteed FLP 

operators responded “no” to the “Owe Money” question on the Farm Debt section of the ARMS. 

Inaccurate reporting in the Farm Debt section of the ARMS could also mean that other sections 

are subject to inaccurate reporting as well. DTOT was also observed as being under-reported for 

an estimated 38.8 percent of direct FLP operators and 41.1 percent of guaranteed FLP operators. 

These percentages only consider FSA direct and guaranteed loan indebtedness and are likely 

much higher if non-FSA related loans are added. Furthermore, DTOT was under-reported the 

most when operators respond “no” to the “Owe Money” question in both the direct FLP (98.9 

percent) and the guaranteed FLP (96.4 percent). Both the direct and guaranteed FLPs show 

DTOTK is under-reported for those answering “no” to the “Owe Money” question. From the 

direct FLP statistics, the weighted under-reporting estimate is nearly $1.554 billion for the “no” 

outcome. From the guaranteed FLP statistics, the weighted under-reporting estimate is $2.442 

billion for the “no” outcome. The under-reporting estimates are for the entire four years of the 

study: 2001, 2004, 2006, and 2007. Those respondents answering “no” are a problematic source 
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of under-reporting of debt in the debt section of the ARMS Phase III. The current study only 

looks at FSA debt, and the observed under-reporting could be far greater when other lenders, 

such as commercial banks and Farm Credit System, are added.  

The Direct and Guaranteed multinomial logistic models had the intercept, SC_EDUC, 

OL_SDA, BF_ELIG, CROP_RATIO, and IGCFI as significant coefficients in common. The 

Direct and Guaranteed multinomial logistic model results showed education, SDA and beginning 

farmer, and operation type and size as significant characteristics for determining when an 

operator responds “no” or refuses to respond. Operators with some college education were less 

likely to refuse in the Direct FLP multinomial logistic model relative to respondents with a high 

school or less education, and were less likely to respond “no” in the Guaranteed FLP 

multinomial logistic model. SDA operators were less likely to refuse in the Direct FLP and less 

likely to respond “no” in Guaranteed FLP multinomial logistic models. This means SDA 

operators and operators with some college education are more likely to have correctly reported 

debt. Beginning farmers were less likely to refuse in both the Direct and the Guaranteed FLP 

multinomial logistic models. As CROP_RATIO increased in both the Direct and Guaranteed 

FLP multinomial logistic models, the likelihood of responding “no” increased. As the intensity 

of value of crop production increases, the more likely farm debt is under-reported. As IGCFIK 

decreased, the likelihood of responding “no” increased in both the Direct and Guaranteed FLP 

multinomial logistic models, and this indicates the likelihood of under-reporting debt increases 

as gross cash farm income decreases. OL LOC loan operators were more likely to respond “no” 

in the Guaranteed FLP multinomial logistic model. Operators with an OL LOC loan are more 

likely to under-report their debt relative to operators with only guaranteed FO loans. Lastly, size 

as measured by gross cash farm income is important. Operators were less likely to respond “no” 
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as IGCFIK increased in both the Direct and Guaranteed FLP models and more likely to refuse as 

IGCFIK increased in the Direct FLP model.  

Overall for the “no” outcome, Direct FLP multinomial model operators are more likely to 

under-report their debt in the ARMS Phase III if they either have a lower total FSA debt 

outstanding balance, have a greater value of crop production relative to total production, or have 

a lower gross cash farm income. Guaranteed FLP multinomial model operators are more likely to 

under-report their debt in the ARMS Phase III if they have only an OL LOC loan, have a greater 

share of production from crops, have a lower gross cash farm income, are in survey year 2004, or 

are in survey year 2007. They are less likely to under-report their debt if they either have some 

college education, are SDA eligible, or are beginning farmer eligible.  

6.2 Future Research 

Future research could build upon this study by constructing a triple hurdle model to 

determine if those who respond “yes” accurately indicate their lender and loan amount. The first 

hurdle would be constructed the same as the current study. The second hurdle would look at 

those who responded “yes” to the “Owe Money” question to see if they accurately listed their 

lender. FSA is the correct lender to list for the direct FLP loans. However the lender with an FSA 

guarantee is the correct lender to list for the guaranteed FLP loans since the loans are originated 

and serviced by the lender with the guarantee, such as a commercial bank. The third hurdle 

would look at those respondents accurately reporting their FSA loan to see if they accurately 

reported their outstanding loan balance. The first hurdle and the current study partially addressed 

measurement errors for the “no” respondents and non-response errors for the refusals. The last 

hurdle would consider measurement errors for the “yes” respondents in greater detail. Those 
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respondents who inaccurately list FSA as a lender is another type of measurement error that 

could be studied.  

The results presented here are only for operations with FSA direct and/or guaranteed 

loans. However, the analysis could be expanded to credit providers such as the Farm Credit 

System or commercial banks to get a better understanding of the full magnitude of debt under-

reporting. Additionally, research could be conducted in other sections of the ARMS survey to 

determine whether they are prone to inaccurate reporting as well. Also, future research could 

determine if current NASS imputation techniques have improved the estimation of DTOT from 

the ARMS Phase III, especially for those respondents indicating “no” on the “Owe Money” 

question in the Farm Debt section of the ARMS. Lastly, research could further look into 

reducing non-response by conducting experimental trials using different types of survey 

instruments to examine whether ARMS response can be improved.  
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Appendix A: Direct Binomial FLP Mean and Bootstrap Standard Error Summary Statistics 

Variables   Outcomes   

DEBT_PROX   Yes/Ref No All 

  Sample 

N 

Weighted 

N 

Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N   2,328 (86.3%) 368 (13.6%) 2,696 (100%) 

Weighted N   136,488 (87.1%) 20,204 (12.9%) 156,693 (100%) 

Direct FLP Variables 

FSADEBTTOTK ($1000) 2,696 156,693 133.157 4.659 80.256 d 8.550 126.336 4.149 

INTRATE 2,696 156,693 0.047 0.001 0.046  0.002 0.047 0.001 

PASTDUE_IND 2,696 156,693 0.049 0.009 0.095  0.051 0.055 0.011 

FO_DIR 2,696 156,693 0.388 0.023 0.341  0.059 0.382 0.021 

OL_DIR 2,696 156,693 0.213 0.018 0.276  0.057 0.221 0.018 

EMEE_DIR 2,696 156,693 0.266 0.018 0.324  0.060 0.273 0.017 

MULT_LN_DIR 2,696 156,693 0.133 0.015 0.059 d 0.018 0.123 0.013 

MULT_PROG 2,696 156,693 0.164 0.014 0.078 d 0.020 0.153 0.012 

Borrower Demographics 

OP_AGE 2,696 156,693 51.220 0.507 54.931 d 1.328 51.699 0.462 

HS_EDUC 2,696 156,693 0.483 0.021 0.578  0.062 0.495 0.021 

SC_EDUC 2,696 156,693 0.323 0.022 0.283  0.061 0.318 0.020 

CGB_EDUC 2,696 156,693 0.194 0.016 0.139  0.031 0.187 0.014 

OP_SDA_P 2,696 156,693 0.201 0.018 0.203  0.047 0.202 0.017 

BF_ELIG 2,696 156,693 0.154 0.017 0.136  0.044 0.152 0.016 

MARRIED 2,641 154,414 0.893 0.011 0.860   0.047 0.889 0.011 
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Appendix A: Direct Binomial FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables   Outcomes   

DEBT_PROX   Yes/Ref No All 

  Sample 

N 

Weighted 

N 

Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N   2,328 (86.3%) 368 (13.6%) 2,696 (100%) 

Weighted N   136,488 (87.1%) 20,204 (12.9%) 156,693 (100%) 

Operation Characteristics  

HH_SIZE 2,612 153,689 3.053 0.069 2.631 d 0.126 2.998 0.062 

RECORD_USE_MOT 1,775 121,302 0.667 0.025 0.378 d 0.080 0.633 0.025 

RECORD_USE_SOT 1,775 121,302 0.162 0.020 0.199  0.060 0.166 0.019 

RECORD_USE_NEV 1,775 121,302 0.171 0.019 0.423 d 0.084 0.200 0.020 

RECORD_TP_YES 1,775 121,302 0.661 0.025 0.348 d 0.073 0.625 0.025 

RECORD_TP_SOME 1,775 121,302 0.211 0.020 0.354 f 0.084 0.228 0.021 

RECORD_TP_NONE 1,775 121,302 0.112 0.016 0.275 e 0.079 0.131 0.016 

CROP_RATIO 2,696 156,693 0.463 0.020 0.542  0.054 0.473 0.018 

Y2001 2,696 156,693 0.265 0.021 0.322  0.073 0.272 0.021 

Y2004 2,696 156,693 0.324 0.021 0.291  0.055 0.320 0.020 

Y2006 2,696 156,693 0.203 0.016 0.164  0.036 0.198 0.015 

Y2007 2,696 156,693 0.209 0.017 0.223   0.044 0.210 0.016 

Operation Financial Characteristics 

IGCFIK ($1000) 2,696 156,693 211.823 8.526 127.068 d 17.033 200.894 7.690 

ETOTK ($1000) 2,696 156,693 163.365 6.440 98.822 d 12.707 155.042 5.812 

INCFIK ($1000) 2,696 156,693 48.458 3.126 28.246 d 6.084 45.852 2.772 

EARNEDK ($1000) 2,612 153,689 34.849 2.007 31.424  6.775 34.402 2.004 

EFINTK ($1000) 2,696 156,693 16.035 0.656 5.215 d 1.155 14.640 0.592 

INTFEE_REK ($1000) 2,696 156,693 10.515 0.511 4.105 d 1.105 9.688 0.470 

INTFEE_NREK ($1000) 2,696 156,693 5.520 0.413 1.110 d 0.207 4.952 0.364 
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Appendix A: Direct Binomial FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables   Outcomes   

DEBT_PROX   Yes/Ref No All 

  Sample 

N 

Weighted 

N 

Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N   2,328 (86.3%) 368 (13.6%) 2,696 (100%) 

Weighted N   136,488 (87.1%) 20,204 (12.9%) 156,693 (100%) 

Operation Financial Characteristics Cont. 

CAPEXP_TOTK ($1000) 1,775 121,302 5.121 0.675 2.802 e 0.779 4.851 0.604 

NETWK ($1000) 2,696 156,693 707.861 27.505 702.269  63.133 707.140 25.816 

ATOTK ($1000) 2,696 156,693 926.513 30.928 705.585 d 63.488 898.026 28.771 

ACTOTK ($1000) 2,696 156,693 111.848 6.542 52.720 d 9.778 104.224 5.819 

DTOTK ($1000) 2,696 156,693 218.651 8.218 3.316 d 0.524 190.886 7.284 

LCTOTK ($1000) 2,696 156,693 66.601 3.253 3.316 d 0.524 58.441 2.853 

Financial Ratio Variables 

Liquidity                   

NWC_EXPENSE_RATIO (%) 2,696 156,693 35.538 0.093 63.624 d 0.112 39.160 0.083 

CR 2,687 156,317 5.597 1.201 38.032 d 8.854 9.745 1.546 

Solvency                   

DAR (%) 2,696 156,693 29.060 1.176 0.709 d 0.150 25.405 1.078 

Profitability                   

ROA (%) 2,696 156,693 -0.758 0.609 -2.853  1.787 -1.028 0.590 

OPM (%) 2,695 156,692 -34.851 5.809 -67.763  19.751 -39.094 6.001 
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Appendix A: Direct Binomial FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables   Outcomes   

DEBT_PROX   Yes/Ref No All 

  Sample 

N 

Weighted N Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N     2,328 (86.3%) 368 (13.6%) 2,696 (100%) 

Weighted N     136,488 (87.1%) 20,204 (12.9%) 156,693 (100%) 

Financial Ratio Variables Cont. 

Debt Repayment                   

DRCU (%) 2,696 156,693 4.433 1.505 0.050 d 0.285 3.868 1.307 

Efficiency                   

DEPER 2,695 156,692 0.197 0.027 0.131  0.034 0.188 0.023 

OER (%) 2,695 156,692 123.522 10.788 111.663   7.676 121.993 9.454 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007)  

Footnote signifying significance levels for the difference in means. Yes/Refusal-No: d (p < 0.01); e (p < 0.05); f 

(p < 0.10) 
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Appendix B: Guaranteed Binomial FLP Mean and Bootstrap Standard Error Summary Statistics 

Variables   Outcomes    

DEBT_PROX   Yes/Ref No All 

  Sample 

N 

Weighted 

N 

Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N   2,457 (90.5%) 257 (9.5%) 2,714 (100%) 

Weighted N   82,683 (90.1%) 9,087 (9.9%) 91,771 (100%) 

Guaranteed FLP Variables 

FSADEBTTOTK ($1000) 2,714 91,770 271.843 8.100 272.925   36.102 271.950 8.035 

BORR_GUAR_INT_RATE (%) 2,714 91,770 7.281 0.111 7.679  0.277 7.320 0.101 

FO_GTE 2,714 91,770 0.421 0.022 0.394  0.075 0.418 0.021 

OL_GTE 2,714 91,770 0.122 0.015 0.069 f 0.024 0.117 0.014 

OL_LOC_GTE 2,714 91,770 0.087 0.009 0.187 e 0.042 0.097 0.009 

MULT_LN_GTE 2,714 91,770 0.369 0.020 0.347  0.081 0.367 0.019 

MULT_PROG 2,714 91,770 0.277 0.020 0.173 e 0.047 0.267 0.019 

Borrower Demographics 

OP_AGE 2,714 91,770 49.555 0.485 48.739   1.006 49.475 0.451 

HS_EDUC 2,714 91,770 0.454 0.021 0.607 f 0.083 0.469 0.020 

SC_EDUC 2,714 91,770 0.319 0.020 0.256  0.089 0.313 0.020 

CGB_EDUC 2,714 91,770 0.225 0.018 0.136 e 0.038 0.216 0.017 

OP_SDA_P 2,714 91,770 0.105 0.013 0.049 d 0.014 0.099 0.012 

BF_ELIG 2,714 91,770 0.144 0.014 0.141  0.048 0.143 0.014 

MARRIED 2,663 89,695 0.896 0.013 0.922   0.028 0.899 0.012 
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Appendix B: Guaranteed Binomial FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables   Outcomes    

DEBT_PROX   Yes/Ref No All 

  Sample 

N 

Weighted 

N 

Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N   2,457 (90.5%) 257 (9.5%) 2,714 (100%) 

Weighted N   82,683 (90.1%) 9,087 (9.9%) 91,771 (100%) 

Operation Characteristics  

HH_SIZE 2,646 89,384 3.174 0.064 3.089   0.149 3.166 0.059 

RECORD_USE_MOT 1,758 66,204 0.701 0.024 0.403 d 0.106 0.675 0.025 

RECORD_USE_SOT 1,758 66,204 0.139 0.019 0.280  0.126 0.151 0.022 

RECORD_USE_NEV 1,758 66,204 0.158 0.018 0.316  0.105 0.172 0.018 

RECORD_TP_YES 1,758 66,204 0.711 0.023 0.687  0.098 0.709 0.022 

RECORD_TP_SOME 1,758 66,204 0.165 0.017 0.100  0.047 0.159 0.017 

RECORD_TP_NONE 1,758 66,204 0.106 0.015 0.173  0.075 0.112 0.015 

CROP_RATIO 2,714 91,770 0.519 0.017 0.715 d 0.054 0.538 0.017 

Y2001 2,714 91,770 0.206 0.020 0.090 e 0.045 0.195 0.019 

Y2004 2,714 91,770 0.295 0.018 0.348  0.083 0.300 0.020 

Y2006 2,714 91,770 0.256 0.018 0.280  0.064 0.258 0.017 

Y2007 2,714 91,770 0.241 0.016 0.280   0.056 0.244 0.015 

Operation Financial Characteristics 

IGCFIK ($1000) 2,714 91,770 365.661 14.612 242.727 d 28.996 353.487 14.038 

ETOTK ($1000) 2,714 91,770 283.575 10.273 176.871 d 20.701 273.009 9.922 

INCFIK ($1000) 2,714 91,770 82.085 6.338 65.855  13.194 80.478 5.979 

EARNEDK ($1000) 2,646 89,384 32.889 2.173 38.305  6.724 33.437 2.067 

EFINTK ($1000) 2,714 91,770 28.150 1.143 8.017  1.355 26.156 1.098 

INTFEE_REK ($1000) 2,714 91,770 18.787 0.762 5.030 d 1.009 17.425 0.738 

INTFEE_NREK ($1000) 2,714 91,770 9.362 0.731 2.987 d 0.618 8.731 0.670 
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Appendix B: Guaranteed Binomial FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables   Outcomes    

DEBT_PROX   Yes/Ref No All 

  Sample 

N 

Weighted 

N 

Mean Btsp Std 

Err 

Mean  Btsp Std 

Err 

Mean Btsp Std 

Err 

Sample N   2,457 (90.5%) 257 (9.5%) 2,714 (100%) 

Weighted N   82,683 (90.1%) 9,087 (9.9%) 91,771 (100%) 

Operation Financial Characteristics Cont. 

CAPEXP_TOTK ($1000) 1,758 66,204 9.824 1.306 2.340 d 0.869 9.178 1.200 

NETWK ($1000) 2,714 91,770 872.961 35.696 825.610  104.783 868.272 33.786 

ATOTK ($1000) 2,714 91,770 1247.24 41.524 831.992 d 105.134 1206.12 39.231 

ACTOTK ($1000) 2,714 91,770 180.274 8.884 99.835 d 19.439 172.308 8.380 

DTOTK ($1000) 2,714 91,770 374.282 13.221 6.382 d 0.992 337.851 12.858 

LCTOTK ($1000) 2,714 91,770 121.078 5.973 6.382 d 0.992 109.720 5.494 

Financial Ratio Variables 

Liquidity                   

NWC_EXPENSE_RATIO (%) 2,714 91,770 15.911 0.055 95.013 d 0.165 23.744 0.052 

CR 2,709 91,589 3.485 0.421 83.850 d 24.988 11.300 2.305 

Solvency                   

DAR (%) 2,714 91,770 35.417 0.986 1.925 d 0.549 32.100 1.023 

Profitability                   

ROA (%) 2,714 91,770 2.001 0.706 -6.549   7.452 1.154 0.951 

OPM (%) 2,714 91,770 -14.418 3.733 -4.069   6.986 -13.393 3.384 
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Appendix B: Guaranteed Binomial FLP Mean and Bootstrap Standard Error Summary Statistics Cont. 

Variables   Outcomes   

DEBT_PROX   Yes/Ref No All 

  Sample 

N 

Weighted 

N 

Mean Btsp Std Err Mean  Btsp Std Err Mean Btsp Std Err 

Sample N   2,457 (90.5%) 257 (9.5%) 2,714 (100%) 

Weighted N   82,683 (90.1%) 9,087 (9.9%) 91,771 (100%) 

Financial Ratio Variables Cont. 

Debt Repayment                   

DRCU (%) 2,714 91,770 8.456 2.514 -0.542 d 0.607 7.565 2.282 

Efficiency                   

DEPER 2,714 91,770 0.137 0.012 0.070 d 0.016 0.130 0.011 

OER (%) 2,714 91,770 91.989 3.323 108.120   19.028 93.586 3.538 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007) 

Footnote signifying significance levels for the difference in means. Yes/Refusal-No: d (p < 0.01); e (p < 0.05); f (p < 

0.10) 
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Appendix C: Average Weighted FSA Direct FLP Debt per 

Borrower 

FSA Debt Variables Level  All Borrowers 

Weighted N     172,789 

Sample N     2,894 

Total FSA DIR FO Debt Borrower Mean       $75,873  

Total FSA DIR OL Debt Borrower Mean       $71,469  

Total FSA DIR EM  Debt Borrower Mean       $51,117  

Total DIR EE Debt Borrower Mean       $22,257  

Total FSA DIR Debt Operation Mean       $92,480  

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007) 

 

 

Appendix D: Average Weighted  FSA Guaranteed FLP Debt per 

Borrower 

FSA Debt Variables Level  All Borrowers 

N     99,177 

Sample N     2,843 

Total FSA GTE FO Debt Borrower Mean $209,529 

Total FSA GTE OL Debt Borrower Mean $133,954 

Total FSA GTE OL LOC Debt Borrower Mean $140,346 

Total FSA GTE Debt Operation Mean $241,515 

Source: Merged FSA-ARMS data set (2001, 2004, 2006, and 2007) 
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