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Abstract 

Tomato (Solanum lycopersicum) is a crop of immense economic and nutritional importance 

worldwide and also a good model organism for genomic studies of other dicot species. The 

recent completion of the tomato genome sequence is a great milestone towards learning about the 

tomato genome. Elucidation of the function of the different genes using different functional 

genomic tools is therefore important in adding to this resource.  To this end, we have developed 

an Ac-Ds transposon ‘activation tagging’ (ATag) system to be able to transpose transposon 

inserts, bearing a strong 35S-enhancer element, all around the genome. An Ac-Ds ATag 

construct was used to generate transformants in the tomato cultivar M82 that has an erect 

determinate habit, suitable for greenhouse and field screening. The progeny of putative tomato 

transformants were germinated and grown to maturity in the greenhouse. Plants with obvious 

mutant phenotypes were identified, which included dwarfism, altered leaf morphology and 

necrotic spots on leaves. Presence of the ATag transformed construct was confirmed in the plants 

by genomic PCR using primers specific to different parts of the Ac/Ds cassette. Activity of the 

transposon system was also tested by excision PCR using primers flanking the Ds insert in the 

construct. Insertion sites of the Ds ATag were determined using TAIL-PCR for the progeny 

plants, and the tagged genes in two mutants were identified by alignment of the flanking sites to 

the tomato genome. With the availability of the tomato genome sequence, the mutants described 

will be a good resource for the identification of genes for plant development and tomato 

breeding. 
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1.0 Introduction 

1.1 Tomato as a plant genetic system 

Tomato (Solanum lycopersicum) belongs to the family Solanaceae. It is a perennial plant that 

typically grows up to 3 meters and has a weak stem that sometimes sprawls on the ground or 

climbs over other plants. Tomato is grown worldwide because of its fruit that is of great 

nutritional importance and also forms a major part of human diet. Tomato is a rich source of 

antioxidants such as lycopene, beta-carotene, flavonoids and vitamins A, C and K. Consumption 

of this fruit has been linked to reduced cases of cancers as well as heart disease in humans (El-

Gaied et al, 2013). 

In addition to its nutritional and economic importance, tomato serves as a good model plant for 

genomic studies of other dicot species (Carter et al, 2013). It has a moderately sized genome, 

approximately 950Mb (Tomato Genome Consortium, 2012) which is relatively easy to analyse 

and manipulate. The life span of the tomato plant also makes it easy for researchers to follow its 

life cycle. Additionally, the tomato genome is more readily amenable to transformation than 

other dicot species (Matthews et al, 2009), hence its usefulness in genomic and biotechnology 

studies. The recent completion of the genome sequencing of tomato (Tomato Genome 

Consortium, 2012), ensures that its role as a model organism will continue to grow. To add to 

this useful resource however, elucidation of gene function for the different genes is vital. 

Various tools have been applied towards elucidation of gene function in different plants species, 

including use of chemical mutagens (Greene et al, 2003), transposon tagging (Aarts et al, 1993), 

gene trapping (Sundaresan, 1995) and Agrobacterium meditated T-DNA mutagenesis (Alonso et 

al, 2003). The most common method has been insertional mutagenesis leading to gene knock out 



 

2 
 

and then observing the phenotype (Krysan et al, 1999; Bouche and Bouchez, 2001; Thorneycroft 

et al, 2001). In eukaryotic systems however knock out mutagenesis does not always work due to 

functional redundancy of genes. Adoption of gain-of–function strategy such as activation tagging 

(Kakimoto, 1996, Weigel et al, 2000) overcomes the problems associated with establishing 

functions of duplicate genes, which are common in many higher eukaryotes. 

In activation tagging a strong enhancer element, such as a tetrameric repeat of the cauliflower 

mosaic virus (CaMV) 35S gene enhancer, is used to direct the transcription of adjacent genes, 

and in the process create gain-of-function dominant mutations (Weigel et al, 2000). The 

enhancer may be introduced into a host plant using T-DNA mediated transformation or using a 

mobile transposon system, allowing ease in identification of the site of integration via PCR based 

protocols. Transposon insertions have been found to be more ideal than simple T-DNA insertions 

because transposable elements have an endogenous role in gene regulation within the plant. Also 

new insertions can be achieved through crossing and propagation as the transposon keeps 

changing location and therefore allowing different genes to be tagged (Sundaresan and 

Ramachandran, 2001). The activation tagging strategy has previously been employed in genomic 

studies of several plants species such as rice (Wan et al, 2009), Arabidopsis (Martinez et al, 

2002) and tomato (Matthews et al, 2003, Carter et al, 2013). 

The current study was initiated because of the economic and genomic research importance of 

tomato. The objective was to contribute towards the functional annotation of tomato genes 

following the recent publication of the complete tomato genome (Tomato genome Consortium, 

2012). The elucidation of the functions of the different tomato genes will go a long way in 

establishing the tomato as a good model plant for genomic studies and will also aid in tomato 

breeding and understanding tomato plant development. 
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1.2 Mechanisms of gene regulation 

Regulation of gene expression is a very important phenomenon in eukaryotic cells. In living 

cells, genes are transcribed differently and RNA transcripts are variably utilized (Brown, 1981). 

In plant cells regulation of gene expression may be influenced by tissue specificity, for example 

genes needed for photosynthesis have to be expressed in the leaves and are of little necessity in 

the roots. Gene expression also differs at different developmental stages of the plant and in 

response to different environmental stimuli.  

Various mechanisms are employed by plant cells in controlling gene expression. The simplest 

form of regulation is controlling the amount of transcript produced. To achieve this, the cell 

makes use of regulatory sequences in the form of promoters, silencers, and enhancers. A 

promoter is a sequence located upstream of the transcription initiation site and is a site where the 

RNA polymerase binds to initiate transcription of a gene. Enhancers and silencers are cis-acting 

elements that bind to proteins which in turn affect the binding of RNA polymerase to the 

promoter and may either negatively or positively affect gene expression (Griffiths, 2000). An 

enhancer binds to activator proteins and increases expression of a gene, while a silencer binds to 

repressor proteins to reduce transcription of a gene, and in some cases may shut down the 

expression of the gene. By utilizing these regulatory sequences therefore a cell may either 

increase or decrease the amount of transcript produced for a particular gene or even shut down 

expression of a particular gene. 

Gene regulation may also take place post-transcriptionally, that is, after the gene has been 

expressed. Post-transcriptional regulation can be in the form of either degrading the mRNA 

produced or inhibiting translation of the mRNA. In the process of post transcriptional 

modification the cell makes use of small RNAs in a process termed RNA interference (RNAi) 
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(Agrawal et al, 2003). In this process double-stranded RNA molecules are cleaved by proteins 

called dicers transforming them into single stranded RNA. The single stranded RNA then binds 

to another class of proteins called ARGONAUTE proteins. The ARGONAUTE RNA and small 

interference RNA (siRNA) complex then combines with the mRNA, this process then attracts 

nucleases which cleave the ARGONAUTE-bound RNA and in the process degrading the 

mRNA. In some cases the binding may not cause destruction of the mRNA but rather inhibit the 

translation of the mRNA. Gene regulation may also occur after translation (Phillips, 2008). After 

the production of the polypeptide a protein called ubiquitin binds the newly formed polypeptide. 

The binding of ubiquitin to the protein serves as a tag for the destruction of the protein. The 

tagged protein is then taken to a proteasome where it is destroyed (Phillips, 2008). In these ways 

plant cells are able to control which genes are expressed, the amount of transcript produced and 

which proteins are needed or not needed for the cell. 

In addition to regulatory sequences such as enhancers and silencers, post transcriptional and post 

translational strategies for gene regulation, plant cells have other mechanisms of gene regulation 

in the form of additional regulatory sequences termed transposable elements or transposons. 

Since the discovery of transposable elements in the 1940s research on these elements has 

blossomed alongside their use in molecular biology studies. 

1.3 Transposable Elements 

Transposable elements (TEs) or transposons are mobile genetic elements found in all eukaryotic 

organisms. They are also called ‘jumping genes’ owing to their ability to transpose or change 

location in the genome. They were first discovered in 1944 by Barbara McClintock who received 

the Nobel Prize for this in 1983, and was the first woman to receive the Medicine and Physiology 

Nobel Prize alone. McClintock considered transposons as agents of gene regulation, as part of a 
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plants response to change in the environment (McClintock, 1984). She first discovered 

transposons while working on maize kernels and realizing that they were the genetic agents 

responsible for sectors of altered pigmentation on the maize kernels (McClintock, 1951). TEs 

were later documented in the fruit fly (Drosophila melanogaster), yeast and humans. To date 

they are known as the single largest component of the genetic material in most eukaryotes 

(Feschotte et al, 2002). The proportion ranges from 4% in the yeast Saccharomyces cerevisiae to 

44% in humans (Mills et al, 2007) and more than 60% in Zea mays (maize) (Biemont and Vieria, 

2006).  

1.3.1 Classes of Transposable elements 

TEs are classified into two categories; Class I and Class II based on their mechanism of 

transposition. Class I TEs are also called retrotransposons while Class II elements are also 

known as DNA elements. In both classes of transposons there are autonomous and non-

autonomous elements. Autonomous elements are able to transpose on their own while the non-

autonomous elements are not. The autonomous elements have open reading frames that code for 

the proteins required for transposition, mainly the enzyme transposase. By using this enzyme the 

autonomous elements are able to facilitate their own transposition as well as that of the non- 

autonomous elements. The non-autonomous elements do not have the coding capacity but they 

maintain in-cis sequences that are necessary for transposition (such as the binding sites for the 

transposase). Mechanisms of transposition differ between the two classes by way of the 

transposition intermediate; which may either be RNA or DNA. 

Class I elements have what is termed as a ‘copy and paste’ mechanism of transposition and have 

RNA as the transposition intermediate. In this category of TEs, the TE DNA is transcribed to 

RNA and then reverse transcribed to DNA. The copy then inserts itself at another place in the 
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genome. Reverse transcription is catalyzed by an enzyme named reverse transcriptase which is 

often encoded within the TE itself. The Class I retrotransposons are further divided into two 

categories; Long Terminal Repeats (LTR) retrotransposons and Non-Long Terminal Repeat 

retrotransposons. The LTRs are characterized by long terminal repeats in direct orientation 

(Feschotte et al, 2002). The autonomous elements of LTRs have at least two genes in their open 

reading frames that aid in transposition namely the gal and pol genes (Figure 1). The gal genes 

encode a capsid like protein and the pol genes encode proteins responsible for protease, reverse 

transcription and integration at a new location. The non-autonomous LTRs do not possess any of 

the genes responsible for transposition. Non-LTRs are further characterized into Short 

Interspersed Nuclear Elements (SINEs) and Long Interspersed Nuclear Elements (LINEs). 

SINEs are non-autonomous and are characterized by an internal RNA pol III promoter and a 

poly-A tail the 3’ end. The LINEs are autonomous and have coding genes for the reverse 

transcriptase (RT) and an endonuclease (EN) (Figure 1). The ORF1 gene of the LINEs is similar 

to the gag gene of the LTR retrotransposons. 

Class II TEs have what is termed as a ‘cut and paste’ mechanism. In this category, the transposon 

completely excises from one location and inserts into another, leaving behind a footprint or small 

sequence rearrangement at site of excision. Due to the fact that in this category of transposons an 

RNA intermediate is not required for transposition, the transposons in this class are also referred 

to as DNA transposons. In this category of TEs the autonomous elements code for the 

transposase, while the non- autonomous elements are usually derivatives of the autonomous 

elements with some deletions on the transposase coding region (Figure 1).  
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Figure 1: Classes of transposable elements and their structure (adapted from Feschotte et al, 

2002). 

1.3.2 Functions of Transposable Elements 

Movement of transposable elements can result in varying consequences on the genome, 

including expansions to the genome size of the host (Dooner and Weil, 2007). The ‘copy and 

paste’ mechanism of transposition of LTR elements renders them the capability of reaching 

extremely high copy number in plant genomes (Kumar and Bennetzen, 1999). As such LTR 

retrotransposons are the most abundant type of transposon in plants genomes (Kumar and 

Bennetzen, 1999). The composition of LTR in genomes of different plants has been documented 

at 15% in rice (Jiang and Wessler, 2001), as high as 80% in maize (Meyers et al, 2001) and 70% 

in barley (Vicient et al, 1999).  

In addition to contributing to genome sizes TEs are also regulatory elements, that is they have 

the capacity to alter gene expression. A transposon can insert itself within an open reading frame 

of a gene and in the process shut down the expression of the particular gene. TEs can also cause 

deletions and insertions of DNA sequences (Bennetzen, 2005). Integration of almost all TEs 

results in duplication of short genomic sequences at the site of insertion leading to genetic 
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variation among members of the same species as well as members of different species 

(SanMiguel and Bennetzen, 1998). Transposons also provide variation by causing chromosomal 

rearrangements (Biemont and Vieria, 2006).  

1.3.3 Applications of TEs in genomic research 

1.3.3.1 Insertional mutagenesis 

Owing to their ability to induce mutations, transposable elements have been employed in studies 

aimed at elucidation of gene function as well as discovery of novel genes. One of the early 

applications of transposons is through insertional mutagenesis. Insertional mutagenesis with a 

transposon can cause disruption of a gene leading to a mutant phenotype (Aarts et al, 1999). The 

gene can then be isolated using the DNA insert as a molecular probe (Figure 2).  

 

 

 

 

 

 

 

 

 

Figure 2: Insertional mutagenesis using a transposon system and isolation of tagged gene 
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Several types of transposable elements have been used as insertional mutagens. The most 

common are the Activator (Ac) and Ds (Dissociation) elements, the Suppressor-

mutator/Enhancer (Spm/En) and Mutator (Mu) which were originally discovered and 

characterized in maize (Robertson et al, 1978; Fedoroff et al, 1986) but their use has since been 

extended to other plants such as rice and potato (Table 1). The Ac and En/Spm elements are both 

autonomous elements belonging to different families (Aarts et al 2000). The Ac elements are 

capable of activating their own transposition as well as the transposition of members of the Ds 

elements while the En/Spm activate the transposition of the non-autonomous defective Spm 

(dSpm) elements (Aarts et al 2000). 

Table 1: Transposon activity in heterologous plants (Adapted from Sundaresan et al, 2001) 

Plant of Origin Transposon Type Activity in Heterologous Plants 

Maize Ac/Ds Arabidopsis 

Rice 

Tomato 

Petunia 

Flax 

Tobacco 

Carrot 

Lettuce 

Potato 

Maize Spm/En Arabidopsis 

Potato 

Tobacco 
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Although insertional mutagenesis by transposon tagging has been widely utilized, the method 

only works when gene knock-out leads to an obvious phenotype. In plants however, as is the 

case with other eukaryotic systems, disrupting a gene often does not result in obvious phenotypes 

due to gene redundancy (Bouche and Bouchez, 2001). Many genes in plant cells have duplicates 

and as such if one gene is mutated, other redundant genes can still carry out the same function 

and therefore there will be no net phenotypic change. Moreover genes that are required early in 

development cannot be studied as well because their knock-out might lead to embryonic 

lethality. Other set of genes that cannot be studied by insertional mutagenesis are those that take 

part in metabolic pathways that have alternatives. To overcome these problems other strategies 

for studying gene functions using transposons have been devised.  

1.3.3.2 Enhancer Trapping 

In this method a promoter and a reporter gene (usually the glucuronidase gene) are inserted into a 

transposon system and inserted into a host genome. The reporter gene expression will then take 

place only if the transposon inserts next to or within a gene (Figure 3). The expression of the 

reporter gene makes use of the endogenous enhancer sequence next to the gene of interest and 

the expression of the reporter gene reflects the activity of the disrupted gene.  

1.3.3.3 Gene Trapping 

Gene trapping also makes use of the expression of a reporter gene. In gene trapping however the 

promoter region is excluded from the transposon construct. This ensures that the reporter gene 

gets expressed only if the transposon inserts downstream of an active endogenous plant promoter 

(Kumar and Nayaranan, 1998). A splice acceptor is included to the immediate upstream of the 

reporter gene (Figure 3). Addition of the splice acceptor ensures that the reporter gene is 

transcribed and not spliced out if the transposon were to insert into an intron region of the gene. 
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Figure 3:  Transposons for Gene Function analysis in different gene constructs. Wild-type gene 

showing regulatory sequence: E -enhancer elements, P –promoter sequence with TATA box, TS- 

transcription start site, ATG –translation start site, pA –polyadenylation signal, SA -splice 

acceptor site. Knockout insertion, within a gene terminating transcription/translation of 

functional gene product. Enhancer Trap, with transposon bearing a minimal promoter and marker 

gene (e.g. GUS, GFP). Gene trap insertion within a gene, bearing a splice acceptor site and 

making a fusion product between host gene and marker gene (GUS/GFP), displaying expression 

pattern of tagged gene. Activation tag insertion, within close proximity to gene in genome for the 

activity of the enhancer sequence to drive higher expression of tagged gene (Adapted from 

Pereira, 2002; Ramchandran and Sundaresan, 2001) 

1.4 Activation tagging 

Activation tagging is a gain-of-function method in which mutations are created by insertion of 

activation tag (ATag) elements into the plant genome. The inserts are designed to carry strong 

activating enhancer sequences that are able to act on genes adjacent to the insertion site and 
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change their expression (Martinez et al, 2002). In activation tagging an enhancer is usually 

inserted at random into the genome of a host plant. An enhancer is a short stretch of DNA (50-

1500 bp) that aids in the activation of the transcription of genes adjacent to its location. An 

enhancer affects genes both downstream and upstream of its location usually by interacting with 

activator proteins and promoters upstream of genes and in the process enhancing the 

transcription of the genes. 

Activation tagging normally uses a tetrameric repeat of the enhancer element of the cauliflower 

mosaic virus (CaMV) 35S gene to direct the transcription of adjacent genes and in the process 

creating dominant mutations (Robinson et al, 2001). The inserts can be incorporated into the 

genome either through Transfer DNA (T-DNA) or using a transposon system. In activation 

tagging the presence of the enhancer can elevate the endogenous expression of the genes 

adjacent to it, and therefore the phenotypic changes that result from the increased gene 

expression most likely reflect the normal role of the gene (Wang et al, 2009). With the use of 

activation tagging the function of genes that act redundantly can be elucidated, a task that is 

difficult with normal loss-of-function mutagenesis. Activation tagging is also useful for 

identification of genes that take part in metabolic pathways that have redundant genes. In loss-of-

function mutagenesis, if a gene in one metabolic pathway is affected, and the pathway has an 

alternative gene copy, there will be no resultant phenotypic change. Genes that function at 

different stages of the lifecycle of a plant can also be elucidated through activation tagging, for 

example genes that function at the embryo stages of a plant, whose knock-out would result in 

embryonic lethality (Tani et al, 2004). In activation tagging, instead of mutating a gene and 

causing death of the plant, expression of the gene is elevated, resulting in an overexpression 

mutant phenotype and hence the function of the gene can be studied. 
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1.5 The Ac/Ds Transposon System 

The Activator (Ac)/Dissociation (Ds) system is a maize transposon system consisting of the 

autonomous Ac transposable element that encodes the transposase, and a non-autonomous Ds 

element. The Ac element is 4565 bp long and has a 11 bp terminal inverted repeat (TIR) (Muller-

Neumann et al, 1984). The region encoding the transposase in the Ac element is 3.5kb in size 

and produces a protein (the transposase) that is 807 amino acids long (Kunze et al 1987). For 

transposition to occur the transposase binds to a 200 bp region on both ends of the Ac element 

which also encompasses the 11 bp repeat motif. 

The Ds element is dependent upon the transposase encoded by the Ac element for transposition. 

This element also harbors the same 11 bp TIR found in the Ds element (Kumar and Nayaranan, 

1998). In studies aimed at elucidating gene function such as activation tagging, the Ds element is 

usually modified to carry an enhancer that is to be inserted into the genome. Since the Ds 

element can only move in the presence of the Ac element, the Ds element therefore can be 

stabilized by segregation of the Ac transposon thereby creating an activation tag. In studies 

utilizing the Ac/Ds system to create mutations, the Ac portion in the system is usually truncated 

so as to immobilize it thus allowing only the Ds portion to move. This allows the Ds element and 

the gene of interest to be fixed once established itself at a new location on the genome.  

Selectable marker genes such as kanamycin resistance gene and hygromycin resistance genes are 

usually also included in the system to allow for selection of the transformants either through 

tissue culture or by application of the herbicide to the plants once they are grown (Carter et al, 

2013). The selectable marker genes may also be the target for PCR reactions aimed at identifying 

positive transformants. Separate selectable marker genes are usually included for both the Ac and 

Ds portions of the system. This is so as to identify those plants that contain only the Ds element, 
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which would be the stable mutants since in the absence of the Ac element, the Ds element cannot 

transpose. 

 In activation tagging, the Ds element is normally modified to carry the enhancer sequence 

usually the strong and well characterized CaMV 35s enhancer. Use of the Ac/Ds transposon 

system allows many independent mutants to be generated from a single transformed line because 

of the ability of the Ds element to transpose to different parts of the genome. Rapid identification 

of the mutagenized or affected sequences is also possible through the isolation of the Ds 

insertion flanking regions using the polymerase chain reaction (Kuromori et al, 2004). The Ds 

flanking regions can then be purified and sequenced.  The Ac/Ds system has been used to study 

gene function in plant species such as Arabidopsis and rice (Altmann et al, 1995; Chi et al 1999). 

1.6 Activation tagging in tomato  

In this study activation tagging has been used to create mutations in order to elucidate gene 

function in the tomato cultivar M82. Tomato was selected for study because of its economic and 

nutritional importance worldwide. Consumption of tomato has been related to reduced cases of 

coronary heart disease and prostate, breast and colon cancers (Weisburger, 2002). This is 

because tomato is rich source of antioxidants such as lycopene and beta-carotene. Tomato also 

serves as a good model organism for other dicot species as well as for other plants in the 

Solanaceae family (Carter et al, 2013). The cultivar M82 in particular was chosen because it is 

conducive for greenhouse conditions and has prolific seed production (Carter et al, 2013). 

 Several studies have been carried out to identify gene function in tomato using activation 

tagging. A gene responsible for anthocyanin biosynthesis was identified using activation tagging 

in the tomato cultivar Micro-Tom (Mathews et al, 2003). The mutant had an intense purple 
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coloration resulting from overexpression of a gene that encodes a MYB transcription factor. The 

function of the gene was verified by overexpressing it in tobacco and the same intense purple 

coloration was observed (Mathews et al, 2003). A gain-of-function principle was also used to 

identify a gene involved in flower and fruit development in tomato. Ectopic overexpression of a 

MADS-box domain related gene led to the absence of sepals in tomato and a fleshy ripening 

organ was observed instead in place of the sepals (Gimenez et al, 2010). The mutation came 

about as a result of rearrangement of the T- DNA during the integration process, resulting in a 

truncated 35S promoter placed in reverse orientation to the tagged gene. As a result of the 

phenotype observed, the gene was identified as one of the genes responsible for regulation of 

flower and fruit development in tomato. 

Many other genes remain uncharacterized in the tomato genome. The economic and nutritional 

importance of tomato as well as its importance in molecular research makes it an attractive target 

for continued study. With the recent completion of the tomato whole genome sequencing project 

and subsequent publication of the tomato genome (Tomato Genome Consortium, 2012), the 

present study will add to knowledge of the tomato genome by identifying putative functions of 

genes not previously characterized. 
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2.0 Objectives 

Objective 1. 

Characterize putative tomato transformant lines with an Ac-Ds Activation Tag construct by PCR, 

for evidence of transformation, and transpositional activity of the Ds A-Tag. Identify actively 

transposing lines that would be useful to generate a population of Ds A-Tag inserts. 

 

Objective 2. 

Screen the active A-Tag lines for gain-in-function mutant phenotypes and identify the tagged 

genes, overexpressed in the mutant responsible for the phenotype.   
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3.0 Materials and Methods 

                   3.1 Optimization of germination process for tomato seeds 

Seeds of the tomato cultivar M82 were subjected to 5 different treatments with 10 seeds per 

treatment. The treatments used comprised of a) 1/2 strength MS medium with no hormone 

supplement, no sugar and in the light b) Seeds were imbibed in water by keeping on moist filter 

paper and kept in the dark c) water imbibed seeds were kept in the light d) water imbibed seeds 

were kept in the dark and supplemented with 1µM gibberellic acid (GA3) e) water imbibed seeds 

were kept in the light and supplemented with 1µM GA3. The germination percentages in each 

case were recorded and the treatment with the highest germination efficiency was selected for 

germination of tomato seeds for further experiments. 

                  3.2 Plant Growth Conditions 

Seeds of putative tomato cultivar M82 transformants obtained from previous research at Virginia 

Tech were germinated by imbibition with water in the dark for approximately 48 h. Pre- 

germinated seeds were transplanted into small pots and grown for 10 days in the greenhouse with 

day/night temperature of 22/26
0
C, light intensity of 600 µmolm

-2
s

-1
 with light/dark cycles of 

10/14 h. After 10 days the plants were transferred to medium size pots and grown to maturity.
 

The pots were placed in water filled trays, with periodic fertilizations using 24-8-16 Miracle-Gro 

(Scotts Miracle-Gro Product). 

                3.3 Genomic DNA isolation 

Leaf samples were collected from young seedlings (15-20 days) and DNA was isolated from the 

leaves using a modified CTAB protocol (Doyle and Doyle, 1987). Fresh green leaf tissue was 

homogenized in 1ml of 2X CTAB buffer (pre-warmed at 65
0
C) with addition of 2% BME. The 

homogenate was incubated at 65
0
C for 45 min with occasional swirling. An equal amount (1 ml) 
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of chloroform:isoamyl alcohol (24:1) was added, and the tube was inverted several times to mix 

the contents for 10-15 min. Samples were centrifuged at 8000 rpm for 10 min at room 

temperature. The upper aqueous layer was collected and the chloroform isoamyl alcohol 

extraction was repeated. Afterwards, 1/10
th

 volume of sodium acetate and 2.5 vol ice-cold 

absolute ethanol were added. The mixture was incubated at 4
0
C for 1h. The nucleic acid was 

pelleted down by centrifugation at 8000 rpm for 10 min. The pellet was washed with 70 % 

ethanol and air-dried overnight. The pellet was then suspended in 70 µl sterile distilled water. 

The amplified PCR products were run in 1% agarose gel using 1X TBE buffer stained with 0.5X 

gel red stain, visualized and photographed using UVP Gel Doc-it 
TS2

 Imager. 

3.4 Polymerase Chain Reaction (PCR) 

Genomic PCR was carried out using a PCR mixture that consisted of 3µl template DNA (20 ng), 

4 µl 10x PCR buffer, 3 µl (25mM) MgCl2, 0.5 µl of each of the reverse and forward primers (10 

µM), 1 µl dNTPs (10mM), 0.25 µl Taq polymerase and 6.75 µl  water. The reactions were 

carried out using a standard PCR program of initial denaturation at 94
0
C for 60 seconds, 

followed by 30 cycles of 94
0
C for 30 seconds, Tm (melting temperature) at 55

0
C for 60 seconds, 

72
0
C for 90 seconds and final extension of 72

0
C for five min followed by storage at 4

0
C. 

3.5 Excision PCR 

To demonstrate the ability of the Ds element to transpose in the tomato genome, primers from 

sequences flanking the Ds element were designed at the Ac/Ds promoter junction and the Right 

Border (RB) of the T-DNA construct, and used to amplify the empty donor site (EDS) to reveal 

excision of the Ds element. Genomic PCR was carried out using these primers to test if the Ds 

element excised from its original location in the construct. The reaction mixture contained 3 µl 

template DNA, 0.5 µl of each of the forward and reverse primers, 10 µl of PCR buffer and 6 µl 
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sterile distilled water. The PCR cycle was set as follows: initial denaturation at 94
0
C for 1 min, 

followed by 34 cycles of 94
0
C for 2 min, 58

0
C for 1 min, 72

0
C for five min and final extension at 

72
0
C for 10 min followed by storage at 4

0
C. The products of the PCR reaction products were 

then run on a 1.2% agarose gel and the bands cut out and purified. 

3.6 Gel Purification  

The purification process was carried out using the EZNA Gel Extraction Kit from Omega Bio-

Tek Inc. USA following the manufacturer’s protocol with slight modification. Briefly, the 

extracted gel pieces were weighed and an equal volume of binding buffer was added. The 

mixture was incubated at 65
0
C for 10 min with vortexing at 2-3 min intervals. About 700 µl of 

the suspension was then added to a column and spun at 13000 rpm for 1 min. The process was 

repeated until all the sample was transferred to the column. The supernatant was then discarded 

and 300 µl binding buffer was added followed by centrifuging at 13000 rpm for 1 min. The 

supernatant was discarded and 500 µl Wash Buffer was added. Spinning was then carried out at 

13000 rpm for 1 min, the supernatant discarded and the empty tube was spun again at 13000 rpm 

for 2 min. The collection tube was discarded and 20 µl of nuclease free water was added to the 

column. Centrifugation was done at 13000 rpm for one min and the column was discarded. The 

DNA was then stored at -4
0
C prior to cloning. 

3.7 Cloning of Excision PCR products 

3.7.1 Ligation of DNA 

5X Ligase Reaction Buffer 2 µl  

Insert: Vector Molar Ratio 3:1 

Vector: 4 µl 
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Insert: 2 µl 

T4 DNA Ligase: 0.5 µl 

Autoclaved distilled water: 1.5µl  

Total Volume: 10 µl. 

The reaction mix was incubated at room temperature for 2h and then stored at -20
0
C till further 

use. 

3.7.2 Preparation of competent cells 

0.01% of DH5α cells from glycerol stock were inoculated in 5ml LB medium and incubated 

overnight at 37
0
C with shaking. Next day 20ml LB medium was inoculated with saturated 

overnight culture (0.1%) and incubated at 37C for 2
1
/2 h or until the OD reached 0.6. Cells were 

centrifuged at 8,000 rpm 5 min, 4
0
C. Supernatant was discarded and resuspended in 1ml, 100mM 

CaCl2. Centrifuged at 8000 rpm, 5 min 4C. Supernatant was discarded and pellet resuspended in 

200µl CaCl2 and incubated in ice for 30 min. Next 2µl ligation mix was added followed by 

incubation in ice for ten minutes. Heat shock was then carried out at 42
0
C for 90s and 

immediately put in ice. Then 800 µl of LB medium was added followed by incubation at 37
0
C 

for 90 min. The mixture was then spun down at 8000 rpm for 5 min at 4
0
C. The supernatant was 

discarded and 100 µl of LB medium was added and then spread on agar plates with antibiotic 

and incubated overnight at 37
0
C. 

3.7.3 Isolation of Plasmid DNA 

Isolated single colonies were picked up and incubated in 5ml LB medium with antibiotic 

(Ampicillin) and incubated overnight with shaking at 37
0
C. Cells from overnight culture were 

harvested at 8000 rpm for 5 min. The supernatant was discarded and the process repeated. Next 

100 µl of Solution 1 was added followed by vortexing. Then 200 µl Solution II was added 
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followed by incubation for 2 min. Afterwards, 350 µl Solution III was added followed by 

centrifugation at 13000 rpm for 10 min. The supernatant was then added to a column followed 

by spinning at 13000 rpm for 1 min. The flow-through was discarded and 500 µl of HBC buffer 

was added to the column and then spun at 13000 rpm for 1 min. Next 300 µl of DNA Wash 

Buffer was added followed by spinning at 13000 rpm for 1 min. The supernatant was discarded 

and the empty column was spun at 13000 rpm followed by final elution of the DNA in 35µl 

sterile distilled water. The DNA was then stored at -4
0
C prior to sequencing. 

                  3.8 DNA Sequencing 

The reaction mix was prepared as per the combination listed below and the volume was made up 

to 13µl with autoclaved double distilled water. Sequencing was carried out using the ABI 

Sequencer 11300 from ABI, USA at the University core lab. 

Template Amount 
Primer 

(pmol) 

Double Stranded DNA 

(plasmid) 
300-500 ng 3.4 pmol 

PCR Product: 

PCR products  

(<100 bp do not usually 

work) 

  

100-200 bp 1-3 ng 3.4 pmol 

200-500 bp 3-10 ng 3.4 pmol 

500-1000 bp 5-20 ng 3.4 pmol 

1000-2000 bp 10-40 ng 3.4 pmol 

>2000 bp 40-100 ng 3.4 pmol 
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                 3.9 Thermal Asymmetric Interlaced PCR (TAIL-PCR) 

Three rounds of TAIL-PCR (Carter et al, 2013) were performed to identify the tagged genes. The 

Primary TAIL PCR reaction consisted of 2 µl template DNA 0.5 µl forward primer, 3 µl 

degenerate primer, 10 µl PCR buffer and 4.5 µl sterile distilled water.  The Primary Tail PCR 

product was then diluted 1: 60 and the diluted product was used as the template for the secondary 

TAIL PCR reaction. The Secondary Tail Reaction consisted of 2 µl template DNA, 0.5 µl 

forward primer, 3 µl degenerate primer, 10 µl PCR buffer and 4.5 µl sterile distilled water. The 

Secondary TAIL-PCR reaction was then diluted 1:60 and used as the template for the tertiary 

reaction which comprised 2 µl template DNA, 1 µl forward primer, 5 µl degenerate primer, 20 µl 

PCR buffer and 12 µl sterile distilled water. The tertiary TAIL-PCR products were then run on 

1% agarose gel and the bands excised out and purified as described above. Sequencing was then 

carried out as described above and the sequences were aligned to tomato genome using 

Phytozome 9.1 (http://phytozome.jgi.doe.gov/pz/portal.html) for identification. 

3.10 Gene Expression Analysis 

3.10.1 RNA Isolation 

Total RNA was isolated from the leaf or fruit samples using Trizol (Invitrogen). To isolate RNA, 

the tissue was ground in liquid nitrogen and 1 ml of Trizol was added and incubated at room 

temperature for 5 min. Next, 200 µl of chloroform was added and the solution was mixed well 

and then incubated at room temperature for 2 min, and the tubes centrifuged at 12000 rpm for 15 

min at 4
0
C. The supernatant was collected and 500 µl of chilled isopropanol was added. The 

reaction mix was incubated at room temperature for 10 min and the tubes centrifuged at 12000 

rpm for 10 min at 40
0
C. The supernatant was discarded, 500 µl of 75% ethanol added, and tubes 
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centrifuged at 7500 rpm for 5 min at 4
0
C. The pellet was allowed to semi-dry, 35 µl of nuclease 

free water added, and the RNA was stored at -80
0
C.  

3.10.2 cDNA synthesis 

For cDNA synthesis, 2 µg of RNA was taken for each reaction. RNA was made DNA-free by 

incubating with 1 µl (25 units/µl) DNAse 1 at room temperature for 15 min, 1 µl of 25 mM 

EDTA was added to inactivate DNAse 1 and incubated at 65
0
C for 15 min. The reaction mix was 

then kept in ice for 15-20 mins. The RNA was then mixed with 4 µl (25mM) MgCl2, 2 µl (10 

mM) dNTPs, 1 µl (500ng/µl) oligo-dT, 2 µl 10xPCR buffer, 0.5 µl Reverse Transcriptase (25 

units/µl), and 0.5 µl (40 units/µl) RNasin. The Reverse Transcriptase reaction was carried out at 

42
0
C for 1 h, 95

0
C for 5 min and then stored at 4

0
C.  

3.10.3 Quantitative PCR (qPCR) 

To set up the qPCR, 10 µl of reaction mixture was used which comprised 2 µl cDNA, 5 µl qPCR 

buffer (GoTaq® qPCR Master Mix, Promega), 0.5 µl of each of the forward and reverse primers 

and 2 µl H2O. The qRT-PCR experiments were conducted using GoTaq® qPCR Master Mix 

(Promega), gene-specific primers, and Ubiquitin as standard with three biological replicates in a 

CFX-96 Bio-Rad thermocycler (Bio-Rad). Increasing temperature (0.5°C 10 s
-1

) from 55°C to 

95°C was used for melt curve analysis. Un-transcribed RNA was also run as negative control2. 

The relative difference in expression for each sample in individual experiments was determined 

by normalizing the Ct value for each gene against the Ct value of Ubiquitin and was calculated 

relative to the calibrator using the equation 2
-ΔΔCt
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3.11 Stress Phenotyping 

Stress response of the tomato plants was tested by first germinating the seeds for 48 h in the 

dark. The seedlings were then transferred to MS medium containing a) 100 mM mannitol b) 100 

mM NaCl c) MS medium with no supplements. The seedlings were allowed to grow in the 

different treatments for a period of 10 d. After 10 days, the decrease in shoot length was 

measured as well as the increase in root length and the results were presented as percentage 

reduction. 

                     3.12 Biochemical Assays  

3.12.1 Preparation of Methanolic Extract 

100 mg of fruit tissue was ground in liquid nitrogen and 1ml of absolute methanol was added. 

The mixture was centrifuged at 12000 rpm for 15 min at 4
0
C. The supernatant was collected and 

used for subsequent biochemical analyses. 

3.12.2 Estimation of Total Phenolic Content 

To obtain an estimate of the total phenolic content in the fruit tissues, 0.5 ml of methanolic 

extract was mixed with 2.5 ml of 10-fold diluted Folin- Ciocalteu reagent and 2 ml of 7.5% (w/v) 

sodium carbonate. The mixture was allowed to stand for 30 min at room temperature (25
0
C) and 

the absorbance was measured at 760 nm. 

3.12.3 Determination of carotenoid content 

To determine carotenoid content the tissue samples were thawed in the dark in a refrigerator at 

4
0
C to avoid carotenoid oxidation. 16 ml of acetone: hexane (4:6) solvent were added to 1.0 g of 

tomato homogenate and mixed in a test tube. Automatically, two phases separated and an aliquot 

was taken from the upper solution for measurement of absorbance at 663, 645, 505 and 453 nm 
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in a spectrophotometer. Lycopene and beta-carotene contents were calculated according to the 

equations: 

Lycopene (mg/100 ml of extract) = -0.0458 x A663 + 0.204 x A645 + 0.372 x A505- 0.0806 x A453 

β-carotene (mg/100 ml of extract) = 0.216 x A663 – 1.22 x A645 – 0.304 x A505 + 0.452 x A453 

3.12.4 Statistical Analysis 

The Tukey’s Test and One Way ANOVA in Graph Pad Prism 5 (www.graphpad.com/scientific-

software/prism/) were used to estimate significant differences in the level of lycopene, beta-

carotene and total phenolic content between the control and the different mutants. 

3.13 Harvesting of fruits and storage of seeds 

To collect the seeds for storage, the seeds were first separated from the pulp and fruit. An equal 

volume of 3N HCL was then added to the seeds in the beaker and left to stand for 15 min. The 

beaker was then filled with water to dilute the acid. Afterwards the seeds were rinsed in a strainer 

under a sink tap. The seeds were returned to the beaker and an equal volume of 10 % Na3PO4 

was added and the mixture was allowed to stand for 15 min. Water was then added to fill the 

beaker and the seeds were rinsed under a sink tap. The seeds were placed in an oven at 37
0
C 

overnight to dry. The seeds were then collected in envelopes and appropriately labelled and 

stored. 

 

 

http://www.graphpad.com/scientific-software/prism/
http://www.graphpad.com/scientific-software/prism/
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4.0 Results 

4.1 Screening of germination process for tomato seeds 

For selecting the optimum method for tomato seed germination tomato seeds of the cultivar M82 

were subjected to five different treatments; i) the seeds were grown in ½ strength MS medium 

with no hormone supplements, no sugar and in the light, ii. Water imbibed under light and dark 

conditions and iii. Water imbibed in light and dark conditions supplemented with 1µM GA3. In 

the presence of light germination was low while the maximum germination was observed under 

water imbibition in the dark. The results are summarized in Table 2. Imbibition in water by 

keeping the seeds on moist filter paper under dark conditions at room temperature was therefore 

selected as the best method for germination of tomato seeds.  

4.2 Phenotyping progeny of transformants 

Ten different putative transformant lines (named M1-10), obtained from independent 

transformation events (Dragana Avirovik, 2013 MS thesis) were used in this study. The plants 

had been transformed with Agrobacterium tumefaciens T-DNA modified to harbor an Ac/Ds 

construct (Figure 4), and were from independent transformation events selected for Hygromycin 

in media and showed resistance to Basta herbicide in painting assays on adult plants, but no 

molecular experiments had been done. The construct had two components of the in-cis Ac/Ds 

system and harbored four copies of the Cauliflower Mosaic Virus CaMV 35S enhancer in the Ds 

element (Figure 4). The hygromycin resistance and herbicide (Basta) resistance genes served as 

the transformation and plant-selectable marker genes, respectively. Eight seeds from respective 

lines were pre-germinated as described above, and allowed to grow in soil. The different putative 

tomato transformants were allowed to grow to maturity in the greenhouse. From all the different 

transformant lines screened, more than half of the plants grown had mutant phenotypes (Table 
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3). Several different mutant phenotypes were observed. One plant from the M1 line (M1/5) 

showed necrotic spots on the leaf (Figure 5).  The mutant was named necrotic leaf because of the 

spots observed. From the M4 line four out of six plants that reached maturity showed dwarf 

phenotypes (Figure 6). One of the plants in the M5 line (M5/3) showed stunted growth, leaf 

discoloration and elongated leaf shape (Figure 7). This mutant was named brittle mutant because 

the phenotype showed leaves that were very fragile and easily broke when handled. The plants in 

the M6 line also displayed a dwarf phenotype similar to the one observed in line M4 (Figure 8). 

In the M7 line one plant was observed that had severely stunted growth and hardly produced 

leaves (Figure 9). The plant however proliferated vegetatively throughout the life cycle. An 

irregularly shaped leaf was found in one of the lines (M8). The leaf had a palmatipartite shape as 

opposed to the normal lobate structure of the tomato leaf (Figure 10). The lines in which unique 

phenotypes were observed, Necrotic from M1 and Brittle from M5, were selected as the focus of 

the rest of the study. The first step was to verify that the plants in these lines were transformants. 

4.3 Molecular Evidence of Transformants  

Genomic DNA was isolated from 15-20 day old seedlings. PCR was then performed on the 

isolated genomic DNA using primers for the tomato squalene epoxidase (SQE) gene as a positive 

control to check the DNA. The PCR products were run on a 1% agarose gel (Figure 11). The gel 

shows eleven plants on which the genomic PCR was carried out. Lanes 1-6 are plants from the 

M1 line that reached maturity, and lanes 7-11 are the M5 plants that reached maturity. For some 

plants (M1-5 in lane 5 and M5-5 in lane 11) the PCR reaction did not work and had to be 

repeated. After the quality control check screening for transformation of the different plants by 

PCR was initiated. 
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4.4 Identification of putative transformants using PCR for components of construct 

4.4.1 Hygromycin phosphotransferase (HPT): The transformation marker HPT on the construct 

was used to select positively for transformants for resistance to hygromycin in selective media 

during shoot regeneration (Avirovik D., 2013). As no molecular evidence of transformation was 

available, DNA was isolated from progeny of putative transformants and PCR was carried out 

using primers specific to the hygromycin resistance gene (Table 4). The PCR products were run 

on 1% agarose gel and the results are shown in Figure 12. The gel represent 6 plants from the M1 

line and 5 plants from the M5 line. 3 out of 6 plants from the M1 line tested positive for HPT and 

4 out of 5 plants from the M5 line tested positive for HPT (Figure 12). 

4.4.2 BAR gene: The BAR gene conferring resistance to the herbicide Basta/glufosinate was the 

plant selectable marker gene that was included in the construct (Figure 4). The gene was under 

the control of the maize Ubiquitin promoter (Figure 4) that confers resistance to the herbicide 

Basta/glufosinate. The BAR gene is also a very important part of the construct as it is located 

within the Ds element which also included four copies of the CaMV 35S enhancer. It is the 

CaMV 35S enhancer that was expected to affect expression of the genes adjacent to the Ds 

element in the different transformants. The putative transformants were tested with primers 

targeting the Bar gene and the results are shown in Figure 13. All the plants from the two lines 

(M1 and M5) tested positive for the Bar gene (Figure 13).  

4.5 Validation of transformants 

To further confirm the presence of different parts of the construct, and therefore for complete 

functionality of the transformants, an additional PCR reaction was set up targeting anther part of 

the construct: 
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4.5.1 Gos-2 Promoter (Gos): The final set of primers used targeted the maize Gos-2 promoter. 

The Gos -2 promoter is a constitutive promoter and was used to drive the expression of green 

fluorescent protein (GFP) gene (Figure 1). Under the control of this promoter the GFP is 

expected to be expressed giving a green pigmentation in plant tissue, which can be viewed under 

ultra violet radiation. Expression of GFP is also another way of identifying transformants. 

Primers designed specifically for the Gos promoter were used in the PCR reaction and the results 

run on a gel (Figure 14). Four plants from the M1 line tested positive for Gos promoter and four 

plants from the M5 line were positive for the Gos promoter (Figure 14).  

4.6 Molecular Evidence of Excision by PCR 

To demonstrate activity of the transposon construct in the transformant lines, PCR was 

performed to test excision of the Ds element from the construct in the 11 plants from the two 

selected lines. The excision PCR was used to amplify the empty donor site (EDS) between the 

right border and Ac promoter in the construct, to demonstrate the absence of the Ds element in 

its original site and showing evidence of excision. Amplification between the primers would 

occur only of the Ds had excised, as the Ds element in the original position would not reveal 

PCR products under the conditions used. Excision events of the Ac/Ds system were monitored 

by the amplification of the excision product footprint using a primer annealing to the   Right 

Border (RB) of the T-DNA and another one annealing to the Ac promoter (AcPr). The PCR 

products were run on a gel shown in Figure 15. Three plants from the M1 line showed excision 

while all plants from the M5 line showed excision of the Ds element. The bands from the eight 

positive results were then cut out and purified. After purification the PCR products were re-

amplified in preparation for cloning and then purified again.  
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The gel purified excision PCR products were ligated to pGEMT and transformed into E. coli 

(DH5α). After transformation, isolated single colonies were inoculated for plasmid isolation. The 

plasmid DNA isolated from transformants was used for PCR screening using the excision PCR 

primers and the product run on a gel for visualization (Figure 16). The plasmid DNA was then 

sent for sequencing but the quality and read length obtained were not good enough to make a 

substantial conclusion. The sequence flanking the Ds element comes from the waxy-m7 mutant 

of maize bearing the Ac element, which has a GC content of over 70% that had made it difficult 

to obtain (Carter et al., 2013). 

4.7 Isolation of Ds transposon flanking DNA by TAIL-PCR 

TAIL-PCR was used to identify the insertion sites of the transposed element in the eight plants 

that were positive for the excision PCR. TAIL-PCR is a powerful method used for the recovery 

of DNA fragments adjacent to known sequences. The method utilizes three nested primers in 

consecutive reactions alongside an arbitrary degenerate (AD) primer. The degenerate primer has 

a lower melting temperature and binds loosely while the nested primers have increased 

specificity and they bind to the known sequences. TAIL-PCR proceeds in three steps; Primary 

TAIL-PCR, Secondary TAIL PCR and finally Tertiary PCR. The primary reaction uses the 

primer furthest from the tagged gene, the secondary reaction uses the primer in the middle of the 

known sequence and the tertiary reaction uses the primer that anneals towards the end of the 

known sequence and is also the closest to the tagged gene. In this way the specificity of the 

process is increased with each stage. In this study three primers were designed specifically for 

the Ds element (Ds3-1, Ds3-2 and Ds 3-3). These primers were used sequentially in three 

reactions alongside an arbitrary degenerate primer in order to amplify the DNA adjacent to the 

Ds element. The primary reaction utilized Ds 3-1, the secondary reaction utilized Ds 3-2 and 
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finally the tertiary reaction utilized the Ds-3-3 primer. The products of the secondary and tertiary 

TAIL-PCR reactions were run on 1% agarose gels (Figure 17). For the M1 line, all the three 

plants’ insertion sites were successfully amplified at the tertiary TAIL-PCR stage and for the M5 

line insertion sites were amplified for two of the plants.  

The results of all the PCR reactions are summarized in Table 5. One plant from the M1 line (M1-

5) tested positive for all the PCR reactions (Table 4) and also had a mutant phenotype. The 

mutant phenotype was the necrotic leaf observed at the phenotyping stage and hence the mutant 

had been named necrotic. In line M5 two of the plants tested positive for all the PCR reactions 

(M5-3 and M5-4) but only one plant (M5-3) had a mutant phenotype. The M5-3 plant had an 

abnormal shape that was discolored and easily broke. The mutant was named brittle. A decision 

therefore was made to pursue the two plants that had tested positive for all the PCR reactions and 

had mutant phenotypes. The bands for these plants were excised from the Tertiary TAIL-PCR 

gel and purified in preparation for sequencing of the tagged genes. 

4.8 Sequencing of TAIL-PCR products 

The purified TAIL-PCR product was sent for sequencing, that was carried out with the primer  

used for the tertiary TAIL-PCR reaction (Ds3-3) in an automated sequencer. A chromatogram 

was produced with the different sequences and the sequences were identified against the tomato 

genome using Phytozome 9.1. For the brittle mutant the Ds element was found to have inserted 

between two genes with locus IDs Solyc01g079070.2 and Solyc01g079080.2 respectively. The 

sequences are shown in a chromatogram (Figure 18). The genes were identified as those coding 

for a protein involved in vacuolar protein sorting and coiled coil protein respectively. For the 

necrotic leaf mutant the tagged gene was identified as a gene coding for a protein kinase, the 

output from the sequencer for the gene is shown in Figure 19. 
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4.9 Analysis of Expression of Tagged Genes by Quantitative PCR 

To study the expression of the genes following tagging by the Ds element, total RNA was 

isolated from the mutants, cDNA was synthesized and qPCR was carried out. qPCR was done 

using the primers specific to the tagged genes which were designed after obtaining sequences of 

the genes. The results of the qPCR are shown in Figure 18. For the Brittle mutant the two tagged 

genes were highly induced by the presence of the Ds element (Figure 20A). The kinase gene that 

was tagged in the necrotic leaf mutant was also highly induced by the presence of the Ds element 

(Figure 20B). The induction of the tagged genes was expected due to the presence of the CaMV 

35s enhancer embedded in the Ds element. 

4.10 Stress Response Phenotype of Activation Tagged Mutant Lines 

To test the performance of the two mutants under different stresses the plants were subjected to 

three different treatments; MS medium supplemented with a) 100 mM Mannitol b) 100 mM 

NaCl and c) MS medium with no supplement. These stresses were representative of the stresses 

commonly experienced by plants such as drought and salinity. The mannitol served as an 

osmoticum that conferred water deficit to the plant and sodium chloride provided salinity stress. 

The newly germinated seedlings were placed in the different media and allowed to grow for a 

period of ten days. After ten days the percentage increase in root length was noted as well as the 

percentage decrease in shoot length (Figure 21). Under salt stress and the brittle mutant exhibited 

tolerance. This was indicated by a decrease in shoot length  that was below 40% (Figure 21A) 

and an increase in root length  that was below 40% when the plant was subjected to 100 mM 

NaCl treatment (Figure 21B) The necrotic leaf mutant however proved susceptible to the stress. 

The mutant had a decrease in shoot length of more than 40% (Figure 21C) and an increase in 

root length  of more than 40% when subjected to salt stress (Figure 21D). When subjected to 
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100mM mannitol both plants died almost immediately making the analysis of their response to 

the stress very difficult. This observation suggest that these mutants can be sensitive to osmotic 

stress more precisely dehydration. 

4.11 Gene Expression Analysis of Tagged Genes in Response to Stress 

Total RNA was isolated from the seedlings following stress application, cDNA was synthesized 

and qPCR was done to find out the effect of the stress on the expression of the tagged genes. 

Under both stresses all the tagged genes showed high induction after stress treatment. For the 

brittle mutant the coiled coil protein gene showed a 3X fold change increase while the same gene 

showed a 1X fold change increase in the wild-type following salt stress application. (Figure 

22A). The gene involved in vacuolar protein sorting showed a 4X fold change following salt 

stress in the mutant while in the wild-type the gene showed a 1X fold change (Figure 22B). In 

the necrotic leaf mutant the calmodulin protein kinase gene showed a 5X fold increase following 

salt stress (Figure 22C). 

4.12 Phenotypic Screen of Tagged Mutants for Tomato Fruit Quality 

Upon reaching maturity, biochemical analyses were carried out on the fruits of the necrotic plant 

as well as other fruits from different lines that showed mutant phenotypes (with three different 

fruits from each plant serving as biological replicates). This was done so as to establish the 

impact if any, of the insertions on the tomato fruit quality. The brittle mutant did not bear any 

fruit and as such was not included in the biochemical assays.. The assays were carried out 

because tomato is a rich source of antioxidant and is very important nutritionally worldwide. 

Total Phenolic content, carotenoids and lycopene content of the mutants were estimated via 

spectrophotometry. The results of the biochemical assays are shown in Figure 23. For lycopene 

content the highest amount observed in the fruit from mutant line 9 (M9) with approximately 
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0.13 mg/g while the lowest was observed in the fruits from the necrotic leaf with approximately 

0.06 mg/g (Figure 23A). The necrotic mutant had significantly lower lycopene content than the 

control (Figure 23A), as did the fruits from the M7 and M4 Lines. For beta-carotene content the 

highest amount was observed in the fruits from M7 line with an approximate value of 0.055 

mg/g and the lowest was in the necrotic leaf with an approximate value of 0.025 mg/g (Figure 

23B). The fruits from the necrotic mutant had significantly lower beta-carotene as compared to 

the control, while those from other lines did not have any significant difference from the control 

(Figure 23B). The highest total phenolic content was observed in the control with approximately 

0.85 mg/g and the necrotic leaf mutant had about 0.7 mg/g while the lowest amount observed 

was in the fruits from the M6 line with 0.6 mg/g (Figure 23C). The fruits from M7, M6 and M4 

lines had significantly lower total phenolic content than the control. The deviation of nutritional 

content between the mutants and the control suggests that the tagged genes have a role to play in 

nutrient accumulation pathways. The next step will be to isolate the DNA from the plants that 

were not characterized in this study (M4, M6, M7 and M9) and identify the tagged genes. 
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5.0 Discussion 

Regulation of gene expression is very crucial to plants. Genes can be expressed in response to 

various stimuli, at certain stages of development and in different tissues depending on the 

function of the tissue. Plant cells, just like other eukaryotic cells have endogenous means of 

varying expression of genes. This can be achieved by use of regulatory sequences such as 

enhancers and silencers, RNA interference and post-translational modification by way of protein 

modification. One of the most interesting ways by which gene regulation is achieved 

endogenously is through transposable elements. Transposable elements can shut down gene 

expression as well as induce mutations. Owing to the natural ability of transposons to affect gene 

expression they have been used in the study of genomes as insertional mutagens. The most 

common use of transposon has been a reverse genetics approach where a gene is knocked out 

and the resulting phenotype observed. However due to high gene redundancy in eukaryotic 

genomes the knockout mutagenesis has not always been very effective. As such a different 

mechanism for studying gene function would prove to be of more use and one of such ways is 

through activation tagging.  

Activation tagging is a very powerful method for elucidating gene function in plants. In this 

method a gene regulatory sequence usually an enhancer is inserted into a host genome. The 

enhancer then combines with activator proteins to elevate the expression of genes adjacent to it. 

The method overcomes the shortfalls observed in classical knockout mutagenesis where gene 

duplication and alternative metabolic pathways can mask a phenotype resulting from a knockout 

mutation of a specific gene. The method can create dominant mutations by causing 

overexpression of tagged genes, and the resultant phenotype can reflect the normal function of 

the gene. 
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In this study tomato plants of the cultivar M82 that had been transformed with Agrobacterium T-

DNA harboring a strong enhancer element from the Cauliflower Mosaic Virus was studied.  The 

T-DNA had been modified to include the maize Ac/Ds transposon system with the CaMV 35S 

enhancer on the non-autonomous Ds element. A truncated Ac element was also included in the 

construct that would facilitate transposition of the Ds element (Figure 4). Seeds of putative 

transformants from ten different lines (named M1-10) were germinated with germination 

efficiencies ranging from 50 to 100% for the different lines (Table 3). The germination method 

used had first been tested on wild-type tomato seeds and had proven to be the most successful in 

germination of tomato seeds (Table 2). 

The seeds were then grown to maturity in the green house where different mutant phenotypes 

were observed. Numbers of plants showing mutant phenotypes varied in the different 

transformant lines (Table 3) however it was not less than 50% in any of the lines (Table 3). Some 

of the phenotypic mutants observed included dwarf stature and abnormal leaf morphology. The 

dwarfism and abnormal leaf morphology had been observed in an earlier study using the same 

transposon construct and in the same cultivar (Carter et al, 2013). Some unique phenotypes were 

also observed which included Necrotic spots on the leaf (Figure 5). This mutant from the line M1 

had leaf necrosis and was termed Necrotic. The necrosis was observed on one leaf in the entire 

plant. One of the mutants from the line M5 exhibited stunted growth and leaf discoloration 

(Figure 7). The leaf was oblong-like in shape and easily broke when handled. Although small 

and weak-looking the plant proliferated throughout the life cycle of the tomato and reached 

maturity and given the texture of the leaf, this mutant was termed Brittle. Due to their unique 

phenotypes, the lines from which the two mutants (Brittle and Necrotic) were found (M1 and 

M5) respectively were selected as the focus of this study. 
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The two lines had a total of eleven plants that reached maturity (Table 3). When the seedlings 

were young (15-20 days) genomic PCR was carried out to determine which plants carried the 

Ac/Ds cassette. A genomic PCR using the tomato squalene epoxidase gene was first done as a 

quality control check. The SQE gene codes for the enzyme squalene epoxidase which catalyses 

the first step in the biosynthesis of sterols and triterpernoids and is suggested to be ones of the 

rate-limiting enzymes in this pathway (Stevenson et al, 2014). The gene was used as a control 

check both to confirm that the DNA being used was tomato DNA and also to optimize the PCR 

conditions.  

To check for transformation primers specific to different parts of the construct (BAR gene, HPT, 

Gos promoter), were used in separate PCR reactions. Varying number of plants in each of the 

two lines tested positive for the different parts of the construct and the results are summarized in 

Table 4. The plants from the two lines were then subjected to excision PCR. An excision PCR 

demonstrates the activity of the transposon system in the plants. 

An excision PCR amplifies the footprint left behind when a transposon excises from one region 

(or a donor molecule) to integrate at another region in the genome (Liu et al, 2010). Primers 

specific to the right border of the construct and the Ac promoter were used in the reaction in 

order to amplify the footprint. Amplification was to occur only if the Ds element had excised out. 

Eight out of the 11 plants tested showed successful amplification of the footprint left by the Ds 

element (Figure 15). This demonstrated that the transposon was active in the eight plants and that 

the Ds element had moved to a new location in the genome. Ac/Ds transposon activity has 

previously been demonstrated in the model plants Arabidopsis (Altmann et al, 1995, Kuromori et 

al, 2004) and rice (Chi et al, 1999). Transformation by this system was also shown in tomato by 
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Carter et al. 2013. They however did not demonstrate excision of the Ds element in the tomato 

plants.  

After demonstration of Ac/Ds activity in the plants it was necessary to identify the site of 

insertion/integration in order to identify the tagged gene(s). This was achieved through TAIL-

PCR. TAIL-PCR is a method used for the recovery of genes adjacent to inserts in functional 

genomic studies and has been identified as a high-thoroughput method for identifying insertion 

sites for T-DNA tags (Szabados et al, 2002) and Ds-Atags (Chi et al, 1999). In this study three 

primers specific to the Ds element were used alongside an arbitrary degenerate primer in three 

consecutive PCR reactions. The specificity of the reaction increased with each cycle and the final 

product of the tertiary TAIL-PCR was expected to give a more ‘clean’ and specific sequence of 

the tagged gene (Figure 17). The more prominent bands on the tertiary TAIL-PCR indicates that 

the specificity was increased leading to a more homogenous product.  

Tertiary TAIL-PCR was carried out on seven plants that had tested positive for excision PCR. 

After the tertiary PCR the bands of the plants that had tested positive for all the previous 

reactions (M1-5 and M5-3) (Table 4) were cut out purified and sequenced. The M1-5 was the 

plant that had given the necrotic leaf spots and was therefore termed necrotic and M5-3 was the 

mutant with the irregularly shaped leaf that was termed brittle. The tertiary TAIL-PCR of these 

two plants was sequenced and the sequences aligned to tomato genome in Phytozhome 9.1 for 

identification. 

In the brittle mutant the Ds element was found to have inserted between two genes; one coding 

for a protein involved in vacuolar protein sorting and another coding for a coiled coil protein 

(Figure 18). Vacuolar sorting proteins are involved in transport of proteins to the vacuole. The 
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vacuole serves a variety of functions in the plant including storage of nutrients and in physical 

and metabolic processes in the cells (Xiang et al, 2013). The vacuole also confers plant turgor by 

storing water in the cell. From the Phytozhome search the vacuolar protein gene was found to be 

homologous to the Arabidopsis gene with the locus ID AT3G62080.2. This gene has been 

putatively documented to be involved in protein transport but no known function of the gene has 

yet been established (https://www.arabidopsis.org/servlets/TairObject?id=39732&type=locus). 

In the brittle mutant the leaf was brown and easily broke. By tagging a protein that is responsible 

for transport of proteins to the vacuole, the function of the vacuole may have been impaired 

leading to loss of storage for nutrient (hence the brown color indicating nutrient deficiency) and 

loss of turgor (hence the leaf easily broke when handled).  

The other gene that was tagged in the brittle mutant was for a coiled coil protein (Figure 18). The 

coiled coil protein gene was found to be homologous to the Arabidopsis gene that has a locus 

IDAT2G46980.2. The gene codes for a ASY3 protein that is required for the process of meiosis 

especially in cross over and chromosomal axis formation (Ferdous et al, 2012). When studying 

Arabidopsis, it was found that in mutants where the ASY3 protein was lacking the number of 

meiotic cross-overs was reduced and chromosomal axis formation was compromised (Ferdous et 

al, 2012). The tagged coiled coil protein gene in the brittle mutant could also have a function in 

meiosis since the plant never bore any fruit, this implies that reproductive development of the 

plant was affected. Coiled coil proteins are proteins that have 2-5 alpha helical structures wound 

around each other to form a supercoil (Buckhard et al, 2001). The proteins have a variety of 

functions in plant growth and development including regulation of gene expression as 

transcription factors, in molecular recognition and they are also movement proteins (Lupas, 

1996). The mutant observed had brown and irregular shaped leaves, the coiled coil gene in this 
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case might be a transcription factor involved in leaf morphological development or accumulation 

of chlorophyll in the leaf. 

The tagged gene in the necrotic mutant was identified as gene coding for a calmodulin protein 

kinase (Figure 19). Calmodulin proteins are calcium modulated proteins that are abundant in the 

cytoplasm of all eukaryotic cells. Calmodulin protein kinases have been suggested as crucial 

mediators of responses to a variety of endogenous and environmental cues in plants (Zhang et al, 

2003). The proteins bind calcium, which is a signaling molecule and relays the signals to other 

calcium-sensitive enzymes, ion channels or other proteins. The signal could be in response to a 

variety of factors such as light, hormones, mechanical disturbances or abiotic stress. The 

phenotype observed was leaf necrosis, which is often observed under chemical disorder or 

nutrient deficiency. For a plant to sense nutrient deficiency or chemical disorder genes 

responsible for signaling have to be activated and signals have to be sent around the plant. It 

therefore makes sense that activation of a calmodulin protein kinase gene led to symptoms 

related to stress response in the plant.  

The calmodulin protein kinase gene tagged in the necrotic leaf mutant was found to be 

homologous to the Arabidopsis gene with the locus ID AT1G05410.1. The gene codes for a 

protein whose function is not yet known 

(arabidopsis.org/servlets/TairObject?id=137182&type=locus). The gene however was found to 

be homologous to the McCAP1 gene in the ice plant (Mesembryanthemum crystallinum) 

(Pathakar and Cushman, 2006). The McCAP1 gene was found to be involved in cytoskeleton 

formation as an intermediate filament protein (Pathakar and Cushman, 2006). The cytoskeleton 

is a structure that helps maintain the shape and integrity of the cell. It also allows the cell to carry 
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out vital processes like cell division. Without the cytoskeleton cells would likely die leading to 

the necrosis such as was observed in the necrotic mutant.  

Upon analysis of gene expression of the tagged genes it was found out that the genes were highly 

induced (Figure 20). The induction of the tagged genes was to be expected as a result of the 

strong CAMV 35s enhancer within the Ds element. An enhancer combines with activator 

proteins to facilitate binding of the RNA polymerase to the promoter of a gene and in the process 

elevating its expression. These results are consistent with other studies using the same method, 

such as activation tagging in poplar (Busov et al, 2010). The presence of the enhancer will drive 

the transcription of the genes adjacent to its location to levels higher than without the proximal 

enhancer. Transcript activation leads to creation of dominant mutations as opposed to knocking 

out a gene, and this process makes studying of duplicate genes or gene families possible. This 

method allows the functional annotation of many eukaryotic genes, which would otherwise be 

difficult to study using other methods of gene discovery and analysis. 

Alongside being responsible for morphological development of plants, genes also control 

metabolic pathways such as those involved in stress signaling, response and tolerance. Such 

genes are highly induced in response to stress. Stress is a common phenomenon in many parts of 

the world and remains a threat to agricultural production worldwide. Salt stress in particular has 

been projected to cause 50% loss of arable land by the year 2050 (Wang et al, 2003). Due to the 

impact of stress globally stress tolerant crops are highly desirable, however in order to have 

stress tolerant plants, the genes that take part in stress response have to be first identified. To this 

end the two mutants in the study (brittle and necrotic) were subjected to different stresses 

(Mannitol, NaCl) in order to determine how they respond to the stresses and also how the tagged 

genes respond when exposed to the different stresses. 
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When exposed to 100 Mannitol which confers water deficiency to the plants both mutants died. 

This observation implies that both mutants were sensitive to water deficiency or drought. 

Measurements of increase in root length and decrease in shoot length of the brittle mutant after 

exposure to salt stress showed that the mutant was tolerant to both stresses (Figure 21). When 

plants are exposed to stress (water deficiency as conferred by salt stress or nutrient deficiency) 

there is reduction in shoot length and increase in root length. The roots increase in length in so as 

to reach areas where water/nutrients are available. As such a significant increase in root length or 

significant reduction in shoot length implies susceptibility to stress. The tagged genes in the 

brittle mutant (coiled coil protein and vacuolar protein sorting) showed high induction following 

exposure to the stresses (Figure 22). The high induction of the genes in response to the stresses 

implies that both these genes have a role to play in stress response. When a plant goes through 

stress, a cascade of signals is evoked eventually triggering increased expression of genes that 

code for products that help in the survival of the plant under the stressful conditions (Wang et al, 

2003). High induction of these genes under stress therefore demonstrates a putative function of 

these genes in stress response and tolerance in tomato. The Necrotic leaf mutant however proved 

susceptible to salt stress (Figure 21) and the calmodulin protein kinase tagged in the plant was 

highly induced after salt stress. The high induction implies that the gene has a role in salt stress 

response even though the response was negative. 

Biochemical analyses were carried out on fruits that gave mutant phenotypes. The basis for 

carrying out nutrient analysis on the fruits was the nutritional importance of tomato worldwide. 

Tomato is grown worldwide because of its fruit that forms a major part of human diet. Global 

production of tomato was estimated at over 153 million metric tonnes in 2009 (Krylod, 2012).  

Consumption of tomato has been related to reduced risks of cancer especially prostate cancer as 
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well as reduced occurrence of cardiovascular diseases (El-Gaied et al, 2013). This is because 

tomato contains high amounts of antioxidants such as vitamins A, C and E, carotenoids, 

flavonoids and phenolic acids (Sacco et al, 2013).  The nutritional importance of tomato has seen 

it being named the second most important vegetable crop after potato (Liza et al, 2013). To 

increase the benefits derived from tomato, production of high quality tomato fruits can be 

implemented. To achieve this however identification of genes responsible for nutrient 

accumulation in tomato has to be carried out first. 

Through activation tagging, a gene that takes part in a nutrient accumulation pathway may be 

tagged and that will have an impact on the tomato fruit quality and hence the function of the gene 

elucidated. Levels of lycopene, beta-carotene and phenolic content were estimated in fruits from 

one of the mutants (necrotic leaf) and some other fruits from other lines that showed mutant 

phenotypes. The fruit from necrotic leaf mutant had significantly lower lycopene and  beta-

carotene content than the control (Figure 23). Since the gene had shown high induction after 

qPCR analysis and the result was altered nutrient composition it can be inferred that the 

calmodulin protein kinase gene also has a role in pathways that are responsible for nutrient 

accumulation. Other fruits from other plants that were grown but not characterized in this study 

also showed altered nutrient content in comparison with the wildtype. The DNA from these 

plants can be isolated and the tagged genes also identified to obtain genes responsible for 

nutrient accumulation in tomato. 
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6.0 Conclusions and Future Direction 

In this study putative transformants of the tomato cultivar M82 were germinated by water 

imbibition in the dark and then allowed to grow in the greenhouse. The seeds came from plants 

that had been transformed with an A/Ds transposon system harboring a CaMV 35S enhancer on 

the Ds element. Eight plants from each of ten different lines were germinated and with a 

germination percentage exceeding 50% for all lines. Two lines were selected for further 

consideration because of the unique phenotypes observed in them. In line M1 one of the plants 

(M1/5) had necrotic leaf spots and was termed necrotic and in the line M5 one plant (M5/5) had 

brown, deformed leaves and the plant was named brittle. Transformation was confirmed in these 

lines through PCR targeting different parts of the cassette and positive transformants were 

identified. Ac/Ds transposon activity was demonstrated in the form of an excision PCR where 

excision of the Ds element from its original location was shown. Insertion sites of the Ds element 

were also identified through TAIL-PCR. 

In the brittle mutant two tagged genes were identified as genes coding for proteins involved in 

vacuolar protein sorting and coiled coil proteins respectively. In the necrotic mutant one tagged 

gene was identified as a gene coding for a calmodulin protein kinase. The tagged genes were 

found to be highly induced by the presence of the enhancer element. The brittle mutant also 

showed tolerance to salt stress while the necrotic mutant proved susceptible to the stress. In the 

necrotic mutant fruit quality was negatively affected shown by a reduction in the amount of 

lycopene and beta-carotene content when compared to non-transformed wildtype tomato. 

The genes identified in this study represent a preliminary but very useful study on the possible 

functions of the genes. The identification of the different genes opens up possibility for further 

study. The seeds from the plants can be grown and then crossed to wild-type M82 plants to study 
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co-segregation with the mutant phenotypes to verify the involvement of the genes in causing the 

mutant phenotypes. Validation of the tagged gene can be done by selecting excisions of the Ds-

ATag from the position near the gene, and finding a revertant phenotype (to wildtype). 

Alternatively, transformation of the tomato plants with an overexpression phenotype with the 

same gene will prove the causality of the phenotypes due to the gene. Further analysis may then 

be done to study the role of the different genes in causing the observed phenotypes and what 

pathways are involved. 
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Tables 

Table 2: Percentage germination of tomato seeds under different treatments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment  Total Number 

of seeds 

Number of Seeds 

Germinated 

Percentage 

Germination 

½ Strength MS Medium with no 

supplements, no sugar and kept in the 

light 

15 5 33 

Water imbibition and kept in the dark 15 13 87 

Water imbibition and kept in light 15 6 40 

Water imbibition, light + 1µM GA3 15 8 53 

Water imbibition , dark + 1 µM GA3 15 11 73 
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Table 3: Putative transformant lines germinated, number reaching maturity and number showing 

mutant phenotypes 

Mutant 

Line 

Total Number 

of seeds 

Number of seeds that 

germinated 

Number of plants 

at maturity 

Number showing 

mutant phenotype 

M1 8 6 6 3 

M2 8 8 8 4 

M3 8 No germination   

M4 8 6 6 4 

M5 8 5 5 4 

M6 8 3 3 2 

M7 8 5 5 3 

M8 8 7 7 4 

M9 8 5 5 3 

M10 8 4 4 2 

Control 8 7 7 0 
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Table 4: Different primers used and their sequences 

 

Primer Sequence 

SQE F 5’-TGGGGTTCGTTGCAGTTTTC-3’ 

R 5’-CGCGTTGAGCATCAATTTTCTC-3’ 

BAR  F 5’-CTGAAGTCCAGCTGCCAGAAACC-3’ 

R 5’-CTGCACCATCGTCAACCACTACAT-3’ 

HPT F 5’- AAA AGT TCG ACA GCG TCT CCG ACC-3’ 

R 5’- TCT ACA CAG CCA TCG GTC CAG ACG-3 

Ac F 5’-ACCAAGACGATTGCGGTAAG-3’ 

R 5’-CCTTCAGCTCCAAAGACAAAGA-3’ 

Gos F 5’-GTGCGTAAGTACCTTGCATCTA-3’ 

R 5’-TAGTGGCAATCGGGCTAAATAA-3’ 

Ds3-1 ACCCGACCGGATCGTATCGGT 

Ds3-2 ACGATGGACTCCAGTCCGGCCCGATTACCGT 

ATTTATCCCGTTC 

Ds3-3 GTATTTATCCCGTTCGTTTTCGT 

LAD1-1 ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA 

LAD1-3 ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA 

RB  5’-GGAAACGACAATCTGATCTCTAGG-3’ 

Ac Promoter 5’-CTCAGTGGTTATGGATGGGAGTTG-3’ 
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Table 5: Summary of the PCR results for plants in the putative transformant lines M1 and M5. 

M1-5 (necrotic mutant) and M5-3 (brittle mutant) tested positive for all the PCR reactions 

performed and the tagged genes were identified in these two plants. 

 

 

 

 

 

 

 

 

 

 

  

Line M1 M5 

Plant  1 2 3 4 5 6 1 2 3 4 5 

Mutant Phenotype x x  x      x  

HPT x   x  x  x    

Bar            

Gos Promoter  x  x        

Excision PCR x x  x        

Secondary TAIL-PCR x x x x  x x    x 

Tertiary TAIL-PCR x x x x   x    x 
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Figures 

 

Figure 4: The Ac-Ds ATag construct. The elements of the construct are as follows IR= inverted 

repeats, BAR =glufosinate/Basta resistance gene, UbiPr =Ubiquitin Promoter, 35S 4 Enh 

=Cauliflower mosaic virus 35s enhancer, LB = left border. RB =right border, GosPr =Gos 

promoter, AcTPase =transposase, GFP =Green Fluorescent Protein, 35Pr =35S promoter, Hyg 

=Hygromycin resistance gene 

 

  

Figure 5: Phenotype of the necrotic leaf mutant named necrotic. The mutant line contained all 

parts of the Ac/Ds construct by PCR, and the tagged gene was identified by TAIL-PCR. 
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Figure 6: Dwarf mutant (right) shown beside the M4 transformant progeny line without 

phenotype 

 

 

 

Figure 7: brittle mutant of the M5 transformant line. The leaf showed discoloration and easily 

broke when handled.  
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Figure 8: Dwarf mutant from the M6 line (left) alongside a non-mutant from same line. 

 

 

Figure 9: Dwarf mutant (right) from the M7 line. The plant was much smaller compared to the 

wild-type (left), and never flowered 
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Figure 10: Modified leaf shape and discolored leaf from the M8 line (right) compared to wild-

type (left) 

 

 

 

 

Figure 11: A. NEB 1 kb DNA ladder B. Genomic PCR analysis using tomato SQE primers for 

different tomato plants from two lines (M1 and M5).. M= 1 kb DNA ladder, Lanes 1-6 are the 

different plants from the M1 line that reached maturity, lanes 7-11 are the different plants from 

the M5 line that reached maturity.  Lines M1 and M5 were selected based on the unique 

phenotypes observed in these lines.  
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Figure 12: Genomic PCR analysis using HPT primers for different tomato plants from two lines 

(M1 and M5). The lanes show M=1kb DNA ladder, lanes M1 1-6 are the different plants from 

the M1 line that reached maturity, lanes 7-11 are M5 1-5 representing the different plants from 

the M5 line that reached maturity. Three plants (M1-1, M1-2 and M1-4) from the M1 line tested 

negative for the HPT gene and one plant from the M5 line (M5-2) was negative for the HPT gene 

 

 

 

Figure 13: Genomic PCR analysis using BAR gene primers for the tomato plants from two lines 

(M1 and M5). Lanes 1-6 are the different plants from the M1 line and lanes 7-11 are the different 

plants from the M5 line that reached maturity.  
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Figure 14: Genomic PCR analysis using GOS promoter primers for different tomato transgenic 

plants. M= 1kb DNA ladder, lanes 1-6 are the different plants from the M1 line that reached 

maturity, lanes 7-11 are the different plants from the M5 line that reached maturity.  Lines M1 

and M5 were selected based on their unique phenotypes. 

 

 

 

 

 

 

 

Figure 15: PCR analysis to check excision of Ds element in different tomato transgenic lines that 

were tested positive from preliminary screening. PCR reaction was done using the Right Border 

and Ac Promoter primers. Bands were obtained only when there is excision of the Ds element. 

M= 1kb ladder, Lanes 1-6 are the different plants from the M1 line that reached maturity, lanes 

7-11 are the different plants from the M5 line that reached maturity. 
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Figure 16: PCR analysis of Plasmid DNA obtained from cloning the excision PCR products. 

Single lanes representing putative clones were inoculated in medium for plasmid isolation. 

Isolated plasmids were used for PCR verification using RB and Ac Promoter primers. M= 1kb 

DNA ladder 

 

  

M     

PCR product confirming cloning 

(1.1 kb) 500 bp 
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Secondary TAIL-PCR 

 

 

 

Tertiary TAIL-PCR 

 

 

Figure 17: Secondary and Tertiary TAIL-PCR analysis of tomato transformants that were 

positive for excision PCR. Lanes 1-2 are different plants from M1 line that tested positive for 

excision PCR (M1/5 and M1/6) and lane 4 to 7 are the different plants from the M5 line that 

tested positive for excision PCR. The plants that had tested positive for all parts of the construct, 

and excision PCR were selected for identification of tagged genes by excising out the tertiary 

TAIL-PCR bands and sequencing them 

 

Figure 18: brittle chromatogram 

Figure 19: necrotic chromatogram 

                  M1                                 M5 

M        1               2            1          2             3         4       5         

                   M1                                 M5 

M           1          2           1          2              3         4           5  



 

63 
 

 

 

 

 

 

 

Figure 20: qPCR analysis of tagged genes in brittle and necrotic mutants A. Expression analysis 

of coiled coil protein and vacuolar protein sorting genes B. Expression analysis of Calmodulin 

protein kinase gene 
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B. 



 

64 
 

 

 

 

 

 

 

0

10

20

30

40

50

60

WT Brittle

% decrease in SL (NaCl) 

0

10

20

30

40

50

60

70

WT Brittle

% increase in RL ( NaCl) 

A. 

B. 



 

65 
 

 

 

 

Figure 21: Stress response of brittle and necrotic mutants following exposure to 100 mM NaCl 

A. Percentage decrease in shoot length (SL) of brittle mutant B. Increase in root length (RL) of 

brittle mutant C. Percentage decrease in shoot length of necrotic mutant D. Percentage increase 

in root length of necrotic mutant 
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Figure 22: Expression analysis of tagged genes following salt stress A. Expression of coiled coil 

protein gene B. Expression of vacuolar protein sorting gene C. Expression of the calmodulin 

protein kinase gene 
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Figure 23: Lycopene Content (A), Beta- carotene content (B) and Total Phenolic Content (C) of 

the mutant tomato fruits from different lines and control. The data represents the mean of three 

observations (n=3). The vertical bar at the top represents the standard error in each case. The 

asterisk (*) denotes significant difference to the control at P≥ 0.05. 
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