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Abstract 

Proteins are of major interest for nutritional value, functionality and sensory 

characteristics in foods, and biological activity as health-promoting ingredients. A large number 

of potential biological activities are encrypted within the primary structures of animal and plant 

proteins. This research has been based on utilizing a legume by-product, soybean meal, to obtain 

value-added protein products. Forty four Arkansas grown soybean lines were subjected to 

analysis for protein and amino acid (profile) content to select lines that have high protein 

attributes. Three soybean lines, R95-1705 (high yielding, non-transgenic and high protein), N98-

445A and S03-543CR (bred for high oleic acid - monounsaturated fatty acid) were selected for 

further study. Seeds from the three soybean lines were ground and defatted to prepare the meals. 

The protein isolates (SPI) with highest (90-93%) purity prepared from the three meals were 

hydrolyzed using a food grade enzyme, Alcalase 2.4L, under optimal hydrolysis conditions to 

prepare protein hydrolysates (pools of peptides). The protein hydrolysates were tested using 

simulated gastric and intestinal juices to determine the gastro-intestinal (GI) resistance of the 

peptides. The GI resistant hydrolysates were fractionated to collect distinct molecular size cut-

offs of <5, 5-10, 10-50 and >50kDa using ultra-filtration technique. These peptide fractions were 

tested for biological activities including inhibition of ACE-I activity and cancer cell proliferation 

inhibition using specific assays. Research highlights include demonstration of ACE-I activity 

inhibition and cancer cell anti-proliferation activity by the GI-resistant peptides from the soybean 

lines in comparison to positive controls, Captopril (anti-hypertensive drug) and Genistein (anti-

cancer agent). A comprehensive screening provided definitive selection criteria for choosing the 

10-50kDa fraction from N98-4445A for further purification to separate a single pure peptide 

with enhanced biological activity. A purified peptide with a sequence of 158 amino acids and 



 

 

molecular weight of 18kDa from the 10-50kDa fraction showed nearly 75 and 80% inhibition of 

blood and colon cancer cells respectively. Hence, the importance of this investigation is in the 

potential ability of a peptides obtained from soybean meal protein to sustain a progressive impact 

on human health condition.  
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CHAPTER 1 

Introduction 

Soybean (Glycine max) is a leguminous plant grown as a pulse crop in various parts of 

the world. The pods contain seeds which are the edible parts of the plant and known for the rich 

lipid and protein content. United States is the largest producer and exporter of soy in the world. 

According to United States Department of Agriculture (USDA), soybeans account for about 90 

percent of U.S. oilseed production. In 2014, the American Soybean Association puts the farm 

production value of soybean at $40.4 billion (ASA, 

2015), and U.S exports stand at 42% of total world 

trade in soybeans. The increase in soy production in 

the US is due to the high yield potential of the crop 

and the increase in demand for various soy products in 

the globally. Genetic engineering techniques are 

developed to obtain seeds with high protein, and oil 

content with increased economic output.  

Soybeans seeds are small, round and green in color at maturity but turn yellow when they 

are dried for storage. The seed parts are illustrated in Figure 1.1: a hilum (small brown spot), 

seed coat (a thin layer outside that protects the seed), cotyledons (the part that stores food for the 

embryo), and the embryo (that develops into a new plant). The endosperm contains various 

components including carbohydrates, proteins, lipids, vitamins and minerals that are essential for 

germination of the embryo. Hence, the endosperm has commercial value as soybeans are chiefly 

grown for their oil which is used in various industries. 

Soybean oil is widely used in the food industry and is made of five major fatty acids: 

palmitic, stearic, oleic, linoleic, and linolenic. Higher percent of linolenic acid causes spoilage, 

Hilum 

Cotyledon 

Endosperm 

Embryo 

Seed coat 

Figure 1.1. Illustration of soybean 

seed parts. 
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and rancidity in foods, which is due to hydrogenation of linolenic acid, a common practice in the 

food industry employed to enhance the stability of the product. Hence, soybean breeders are 

developing cultivars that consistently produce oil with lesser amount of polyunsaturated linolenic 

acid, while increasing the percent of monounsaturated oleic acid. 

Genotypic variations have been found to be the cause for differences, not only in the oil 

content, but also in the concentration of  crude protein, possibly even in the amino acid make-up. 

There is an increasing demand for high oleic acid soybeans in the vegetable oil industry and the 

soy meal, which is the byproduct after processing of seeds, is a source of high quality protein. 

Methionine is an essential amino acid which is deficient in soybean. Hence, there is a possibility 

that high oleic acid soybean meal may be containing higher amounts of amino acids, methionine 

and cystine. Hence, we propose to look at the difference in the make-up of peptides between the 

high protein (Hutcheson, S97-1688, R95-1705), and the high oleic acid soybean (N98-4445A) 

varieties. 

We know that proteins are made of amino acids and can be hydrolyzed at specific sites 

with controlled digestion to yield different sized peptides. Bioactive peptides are food derived 

that, in addition to the nutritional value exert a physiological effect in the body. Soybean protein 

has been identified as a valuable source of bioactive peptides which can be incorporated into 

foods. Preparation of peptides and their fractionation for testing their activity against disease 

cells has been successfully studied by several researchers. Studies have shown that exposure to 

the digestive enzymes in the stomach has an influence on the bioavailability of the peptides in 

controlling the diseases (Park et al 2007, Miguel et al 2006). Since different sized fragments of 

peptides would be generated by the enzymatic hydrolysis, fractionation of the GI resistant 

peptides hydrolysates with definite molecular weight cut-off membranes needs investigation. 
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The delivery of these peptides to the target organs is important for maximum availability 

of the compound to exert its bioactivity, and controlling the spread of the disease. In vivo studies 

have been conducted to test micro-encapsulation of the peptides and their bioavailability 

depending on prolonged duration. There was a significant protective effect of encapsulation 

against the gastric and intestinal juices and has shown a correlation between the peptide 

availability and the control of the disease (Chen et al 2003). To assess the delivery system, 

micro-encapsulation of these bioactive peptides using nanotechnology for food product 

development and applications have been investigated (Alessa et al., 2014). The shelf-life and 

sensory quality of the peptides in the food products have been tested by researchers for 

developing food products (Khairallah, 2011, Alessa et al., 2014). There is increasing interest 

over incorporation of bioactive peptides into foods in the Unites States. Individuals are 

supplementing traditional health care products by switching to nutraceuticals and functional 

foods.  

Bioactive substances of food origin can be defined as components (genuine or generated) 

of consumption ready food which may exert regulative activities in the human organism beyond 

basic nutrition. A great diversity of food-derived bioactive substances having a non-nutrient 

character can be considered as an aid in maintaining good health. Biologically active proteins 

and peptides are becoming prevalent candidates for customized and unconventional treatment 

strategies in disease conditions where conventional therapeutics have been proven to be 

burdensome or expensive. Additionally, food products incorporated with bioactive peptides are 

limited and still evolving in the United States, where there is an ever increasing need for these 

products to reduce the risk of chronic diseases. Legumes like soybeans have gained much 

prominence in the past few decades for their high protein value, increasing production, and 
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sustained use in comparison to other food products. Research on bioactive peptides from various 

sources, their generation and functional aspects have intensified over the past two decades. Pilot-

scale production of peptides is limited by the lack of suitable cost-effective technologies. Several 

of the biological properties of legumes are attributed to physiologically active peptides in these 

proteins (Korhonen and Pihlanto, 2003; Chiang et al., 2006; De Mejia and Ben, 2006). The 

amino acid sequences of these peptides dictate their activities in vivo affecting cardiovascular or 

endocrine or immune or nervous systems. Some of the bioactive proteins and peptides have 

shown immunomodulating, antihypertensive, osteoprotective, antilipemic, opiate, antioxidative 

and antimicrobial properties (Moller et al., 2008).  

Heart disease and cancer are the leading causes of death in the United States. Hence, 

research project designed to prepare and identify soy peptides for bioactive properties against 

hypertension, a chief risk factor for cardiovascular disease (CVD), as well as various kinds of 

cancers are essential. Sources like milk, other legumes and cereal grains have the potential to 

provide biologically active peptides. However, factors like abundant availability, protein yield 

and cost may promote soybean meal for consideration as a good source of peptides in 

comparison to others. Soybean meal, a co-/by-product of soybean oil industry, is a good source 

of protein (approximately 45-50%) and can be a good starting material for creating new bioactive 

peptides and posing no difficulties during extraction.  

The primary objective of this research was to prepare protein hydrolysates and peptides 

from soy protein isolate which was extracted from soybean meal by protease digestion at 

optimum degree of hydrolysis. In order for the peptides to impart their bioactivities, they need to 

be resistant to the enzymatic gastro intestinal (GI) environment (Park et al 2007). Although 

several broad studies confirmed bioactive peptides, assessment of gastrointestinal resistance due 
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to enzymes have not been prominently assessed. Hence, gastrointestinal environment resistant 

peptides were produced and tested for bioactivity. Consequently, the hydrolysates were 

fractionated based on molecular size cut-offs before testing the activities against ACE-I and 

cancer cell proliferation. This project provides basis for developing GI juice resistant bioactive 

peptides against different ACE-I activity (potential anti-hypertension) and cancers. This was 

followed by enhanced bioactivity through purification of the peptide pool to isolate single pure 

peptide. Full characterization of single pure peptide(s) with highest activity was conducted using 

liquid chromatography coupled with mass spectrometry (LC-MS) and matrix assisted laser 

desorption ionization – time of flight (MALDI-TOF). The individual pure peptides with superior 

anticancer activity was subjected to characterization and amino acid sequencing. The anticancer 

and anti-ACE-I soy peptides obtained would have a wider application in supplements, food 

products, and medicinal categories. 

The specific objectives of this research proposal are 

1. Evaluation of protein and amino acid profile of selected Arkansas grown soybean lines. 

2. Extraction of protein isolate (SPI) and production of gastro-intestinal resistant protein 

fractions with specific molecular sizes: 10-50Kda, 5-10Kda, and <5Kda. 

3. Determination of ACE-I inhibitory properties of the GI resistant protein fractions. 

4. Investigation of anticancer activities of protein fractions on human blood, breast, colon, lung, 

liver and prostate cancer cell lines. 

5. Separation, purification and characterization of single pure peptides for enhanced 

bioactivities. 

6. Mass spectrometry analysis for amino acid sequencing of single pure peptide.  
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CHAPTER 2 

Literature Review 

Soybean production 

Soybeans are one of the major oilseed crops in the United States accounting for about 90 

percent of U.S. oilseed production. Large-scale production of soybeans started in the last century 

in the United States as the area planted expanded rapidly. Soybeans are the second-most-planted 

field crop in the country with 83.7 million acres planted in 2014 which is the highest so far 

(Good, 2015). It is estimated that 30 to 40% of U.S. grown soybeans are exported (Ross, 2015). 

Increased planting flexibility, steadily rising yield improvements and low production costs 

favored growth of soybean acreage in the U.S. Greater than 80 percent of soybean acreage is 

concentrated in the upper Midwest states in the U.S., although significant amounts are still 

planted in the historically important areas of the Delta and Southeast. Stocks of soybeans are 

expected to be at an eight year high this current season owing to improved management 

practices, and enhanced product utility for commercialization.  

The state of Arkansas ranks 10th in soybean production annually, where they are 

cultivated in more than 41 of the state’s 75 counties (Arkansas Soybean Promotion Board, 2014, 

Ross, 2015). Soybean production, since 1980s, has been one of the largest agricultural 

enterprises in Arkansas with annual acreage of approximately 3.2 million (Ross, 2015). The crop 

generates an annual revenue of $1.7 billion with an average of 48 bushels per acre (Ross, 2015). 

Soybean meal is a by-product obtained after oil extraction from the seed and is a good source of 

protein (Stein et al., 2008). Annually production in the U.S. is 40 Million Metric tons and 

approximately 90% of it is used as a high protein component in livestock feed (Soya tech, 2015). 

However, in recent years its high value protein content has gained popularity in human diets as it 
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provides the basis for soy milk and vegetable protein. It is also used as a protein rich ingredient 

in lieu of its functionality in food products. 

Soybean seed components 

Soybean is high in protein content, and 70% of the crop value is attributed to this 

component. The protein content ranges between 37-42% in dry weight depending on the genetic 

make-up and the crop location, while certain pure lines have up to 50% protein (Krishnan et al., 

2007). Soybean seed is composed of 8% hull, 90% cotyledons, and the 2% hypocotyls as shown 

in figure 1. The cotyledons contain about 40% protein, 20% oil, 35% carbohydrate, and 5% 

minerals in the form of ash. 

In the seed the protein is held in discrete sites for storage, and this is estimated to be at 

least 60–70% of the total seed protein. Proteins in legumes belong to the globulin family called 

leguminins (11S) and vicilins (7S), or glycinin and beta-conglycinin, which account for 65%–

80% of total soy proteins (Yaklich, 2001). Several products are made from soy and its protein, 

especially in the Asian cuisine and it is regarded as a healthy food ingredient. Apart from 

proteins, soy contains valuable constituents like isoflavones, oligosaccharides, and germ plant 

sterols, which have been studied for their health benefits.  

 

Benefits of soy consumption 

Soy product consumption has increased due to their large beneficial properties such as 

being free of cholesterol, gluten, and lactose, making them suitable for allergen-intolerant 

consumers and vegetarians. Soy has certain health benefits in conditions like cancers, 

cardiovascular diseases, hypertension, and hormonal imbalances (Nair et al., 2002). The seeds 

are the economic part of the soy plant. Key health benefits of soybeans are due to the high 
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quality protein, essential fatty acids, vitamins, minerals, isoflavones, saponins, and dietary fiber 

in the seeds (Perkins 1998, Ukwuru 2003, Leblanc et al 2004). Soy contains certain 

phytochemicals called Isoflavones, which have potential medicinal benefits like decreasing the 

symptoms of menopause, reducing the risk of certain cancers, improving bone strength, lowering 

of cholesterol, and preventing kidney disorders (Leblanc et al., 2004). Soy seeds are ground to 

make soy flour, which is used to prepare various food products. The use of soy in human 

nutrition has increased significantly. There are numerous products on the market which are based 

on soy or contain soy ingredients. Protein products for food uses include defatted flakes, grits 

and flour, protein concentrate, protein isolate, and textured protein products. Soybeans can also 

be used to produce whole bean products.  

Soybeans are known for their high protein content and are popular among vegetarians 

and the poor. They have the advantage of being a cheaper source of high quality protein and 

nutritionally equivalent to animal protein. By the turn of the millennium, the popularity of soy-

foods has increased among health-conscious individuals. Soy products were consumed at least 

once a week in 31% of U.S. population (United Soybean Board, 2014) with retail soy-based food 

industry worth $4.5 billion according to Soyfoods Association of North America (2014). Interest 

in soy and soybean constituents is due to the potential health benefits in a variety of areas 

including cancer, osteoporosis, and coronary heart disease (CHD) (Badger, T. M., et al., 2005, 

and Wang, W. and de Mejia, E. G., 2005). Soybeans are a source of dietary peptides known for 

the anti-hypertensive, anti-cholesterol, and antioxidant activities. The soy peptides also have a 

major role in preventing cancers like colon, breast, prostate, and lung (Su et al., 2007, 

Hernandez-Ledesma, 2009).  

 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Su%20Y%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus
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Significance of soybean cultivars  

Breeding newer varieties of soy is essential to produce cultivars which are resistant to 

pests, tolerant to diseases, produce higher yields in terms of protein and oil, and sustain in 

harsher environment. Genetic engineering techniques are extensively employed in the soybean 

breeding programs in the United States ever since the introduction of the crop into the country. 

There has been extensive research in the academic and industrial fields in order to produce better 

quality soybean especially with high protein content, since soy protein has been a source of 

amino acids which are required for human growth and development. Hutcheson line of soy, 

commercially cultivated in the United States is resistant to certain viral diseases of soybean viz., 

Soybean Mosaic Virus (Wang et al., 2005). The protein content is around 38 to 40 %. R95-1705 

is a breeding line with parentage that includes Hutcheson and a high protein line (~ 45 %) from 

USDA. It is being grown on a trial basis for the tofu and soy sauce market (Medders, 2004). 

Soybean germplasm line ‘S97-1688’ (Reg. no GP-300, PI 633736) has value as a parent because 

of its competitive yield potential, higher protein content of 45- 46 %, and broad resistance to 

populations of soybean cyst nematode, Heterodera glycines Ichinohe (Anand et al., 2004). 

USDA and Agriculture research station at Raleigh, North Carolina developed N98-4445A, a new 

soybean germplasm developed through traditional breeding methods by scientists. The oil 

extracted from N98-4445A contains high levels of monounsaturated oleic acid, which is stable at 

room temperatures and does not require the hydrogenation for hardening, a property useful to 

prepare salad dressings, margarines, breakfast bars and baked food products (NC state soybean 

producers association, 2004, available at: http://www.ncsoy.org/html/may_2004.htm). Generally, 

the seeds are dried after harvesting from the field, and stored at cooler temperatures before 

further processing. The oil extracted from the soybean is used for cooking food products in the 
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form of vegetable oil, while the meal that remains is utilized to isolate the protein from the 

carbohydrates, and other constituents. This would make the soybean meal an excellent source of 

protein and carbohydrates, especially as an ingredient in cattle, equine, or poultry feed 

formulations. 

 

High oleic acid soybeans 

Soybean oil consists of palmitic, stearic, oleic, linoleic, and linolenic fatty acids. Out of 

these, linolenic acid (LA) is categorized under the polyunsaturated fatty acid (PUFA). It is a 

major PUFA present in soybean oil, which is crucial for LDL-cholesterol lowering effect 

(McKevith, 2005). Oleic acid is the monounsaturated fatty acid found abundantly in olive oil, 

and is less prone to rancidity. It has a longer shelf life than linolenic acid. Around 25% of oleic 

acid is present in conventional soybean oil, while linolenic acid is 7%. Although PUFAs have a 

beneficial effect on the tissue nutrition, they have detrimental effect when they get rancid or 

spoiled. Partial hydrogenation is used to increase stability and shelf life making soybean oil more 

edible; however, this process will ultimately produce trans-fats, which act as pro-oxidants and 

become carcinogenic when consumed by the human beings.  Oleic acid does not show these 

effects and hence, studies of producing higher amount of oleic acid have been undertaken.   

Genetic modification of soybeans to produce high oleic acid in the seeds is done by 

incorporating the gene into a bacterial cell and its transformation into the plant cells by 

recombination and DNA cloning techniques (Australia New Zealand food authority, 2001). 

Desaturase enzyme is required for the synthesis of linolenic acid in soy. Insertion of a second 

copy of the desaturase gene causes gene silencing, where both copies of the fatty acid desaturase 

gene are switched-off, and prevent the synthesis of linolenic acid. Due to lowered linolenic acid 
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production, the oleic acid accumulates in the developing soybean seed. Soybean bred to have low 

levels of linolenic acid would be replaced by higher quantities of oleic acid. Hence, soybean oil 

that is extracted from these seeds is less likely to deteriorate or go rancid, and therefore does not 

need to be hydrogenated. Researchers in the academic institutions, public and private soybean 

breeders in the United States released soybean varieties with as low as 1% linolenic acid 

(Australia New Zealand food authority, 2001). Soybean breeders are working on mid-to high-

oleic acid soybean varieties with genetic modifications to develop cultivars that consistently 

produce an oil with greater than 50% oleic acid, called mid-oleic, and hope to combine the 

elevated oleic acid trait into their varieties with 1% linolenic acid that are grown commercially in 

the Midwest. 

 

Proximate composition of Soybean flour and meal 

Soybeans contain about 40% protein and are used in foods, livestock feed, and oil 

production, and are a source of other healthcare products, such as sterols and vitamin E. Since, 

soy protein contains almost all the amino acids that are essential to human nutrition; it is a great 

substitute for animal protein. Removal of the lipid content is the first step in preparing for 

extraction of proteins from the flour. Defatted soy flour contains 17% soluble and 20% insoluble 

carbohydrates and is an abundant and relatively inexpensive source of proteins (Perkins, 1998). 

The oil is removed from the soy seeds by extrusion method, or by solvent extraction. The 

soybean meal is collected to extract the protein. Solvent extraction is the most common 

procedure in the U.S. for separation of lipid from soybean flour. It is 100% extraction-efficient, 

and is suitable for handling large volumes of soybeans (Bargale et al., 1999). 
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The composition of a typical solvent-extracted soybean-meal is given in Table 2.1. Soybeans 

from the northern and western soybean growing states contained 1.5-2% less protein and 0.2-

0.5% more oil than soybeans from southern states due to the environmental impact on the yield 

(Grieshop et al., 2003). 

Tables 2.1. Composition and nutrient content of 100 g soy flour (USDA, 1986). 

Type Moisture 

(g) 

Protein 

(Nx5.71) 
Fat (g) 

Carbohydrate 

(g) 

CrudeFiber 

(g) 

Calcium 

(mg) 

Iron 

(mg) 

Defatted   7.3 47.0 1.2 38.4 4.3 241 9.24 

Full fat  5.2 34.5 20.6 35.2 4.7 206 6.37 

Type Zinc 

(mg) 

Thiamin 

(mg) 

Riboflavin 

(mg) 
Niacin (mg) 

Vitamin B6 

(mg) 

Folacin 

(mcg) 

Sodium 

(mg) 

Defatted   2.46 0.70 0.25 2.61 0.57 305.4 20 

Full fat  3.92 0.58 1.16 4.32 0.46 345.0 13 

 

Mechanical oil expression is another method with an extraction efficiency of around 70% 

and supplies to a specific niche market (Bargale et al., 1999). Improvement in the economics of 

mechanical oil extraction rate can make it viable on a large scale in the soybean industry in the 

United States. The defatting techniques of soy protein isolates can modify their functionality. N-

hexane has been used extensively in soy processing to remove fat from the soy flour. Other 

alternative techniques such as non-alcoholic aqueous extractions have also more recently studied 

(L’hocine et al., 2006). Improvement in processing and functional characteristics has resulted in 

an ever-increasing demand for soy protein ingredients from soybean meal.  

Soy meal is a byproduct of soy oil industry and is the raw material for extracting soy 

protein. Research in alternate fuels and the advent of bio-diesel, a product that needs soy oil for 

preparation, leads to increased production of soybean meal. Since, being a byproduct, it is a less 

expensive source for producing proteins rich in essential amino acids. Soybeans from the 

northern and western soybean growing states contained 1.5-2% less protein and 0.2-0.5% more 

oil than soybeans from southern states (Grieshop et al., 2003). The study also showed that crude 
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protein concentrations of soybean meals samples collected from the southern U.S. maturity zones 

were higher than those collected from the northern maturity zones. The results from a study on 

the variations in protein and oil content in soy also prompted environmental growth conditions to 

influence the protein concentrations (Hurburgh et al., 1990), where, U.S. grown soybeans 

showed consistent state and regional differences. 

Soy protein concentrates are available in different forms; granules, flour and spray dried. 

Because they are very digestible, they are well-suited for children, pregnant and lactating women 

and the elderly. Most fiber of the original soybean is retained in the soy protein concentrate and 

is widely used as functional or nutritional ingredient in a wide variety of food products. Soy 

protein concentrate (SPC) is about 70% soy protein and is basically soybean without the water 

soluble carbohydrates, which are removed from de-hulled and defatted soybeans. SPC is used in 

meat and poultry products to increase water and fat retention.  Due to the presence of high 

protein content, it is used in infant foods to improve nutritional values with more protein, and 

less fat. They are also used in pet foods, milk-replacers for calves, pigs, and even used for some 

non-food applications.  

Soy protein is also present as an isolate where it is separated from the low molecular 

weight polysaccharides present in the flour. Soy protein isolate (SPI) is prepared by chemical or 

enzymatic hydrolysis of the soy protein (Morita and Kiriyama, 1993, Shih and Daigle 2000, 

Paraman et al., 2006). The alkaline hydrolysis involves solubulizing the protein in water by 

increasing the pH to a range of 8 to10. The insoluble starch is separated by centrifugation and the 

protein is precipitated by bringing the suspension to iso-electric pH of 4.5. Alpha-amylase is 

used to digest the starch and separate the protein from the soy flour in suspension in the 

enzymatic hydrolysis method. 
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Soy protein has been studied for the significant health benefiting activity in human beings 

in controlling diseases like hypertension, and heart disease. More than performing different 

metabolic and regulatory functions, proteins from food sources have been identified to be 

antagonists for many disease states like cancer, hypertension, oxidative stress, inflammation, and 

diabetes (Meyers et al., 2003, Kim et al., 2004, Nam et al., 2005). The protein is broken down 

into peptides by enzymatic methods. In general, naturally occurring peptides are classified based 

on the function they perform. Some are classified as signal transduction components, others gene 

regulators, while some others serve as components mediating metabolism, translation, folding 

and degradation (Monowar et al 2004).  

 

Amino acid analysis of proteins 

The composition of amino acids in proteins can be determined by complete hydrolysis of 

the protein into its amino acid residues. The most common method is by acid hydrolysis 

followed by performic acid oxidation for cysteic acid and methionine sulphone. Alkaline 

hydrolysis can be sued to determine the amount of tryptophan, an essential amino acid, in the 

protein. However, significant destruction of amino acids occurs during acid hydrolysis of protein 

from in food material which is more evident with the essential amino acids: methionine, cystine, 

lysine, threonine, and tryptophan. Specific hydrolytic techniques would need to be carried out for 

different foodstuffs as their proteins differ widely in amino acid compositions. Amino acids are 

released and destroyed at different rates that depend upon the amino acid composition and 

characteristics of the proteins in the sample. 

Chromatographic techniques including High Pressure Liquid Chromatography (HPLC) 

and Gas-liquid chromatography are used for detection of amino acids and their quantification. 
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Pre-column derivatization with Dansyl chloride (5-dimethylamino-1-naphthalene sulphonyl 

chloride) is required which produces fluorescent dansyl derivatives that can be separated by a 

reversed phase column chromatography. Ion exchange chromatographic separation of peptides 

has been demonstrated to be more effective when followed with HPLC that uses various non-

polar stationary phases, for separation of non-polar amino acid derivatives (Molnar and Horvath, 

1977). 

 

Preparation and bioactivity of peptides from various food sources 

Soy protein contains all the essential amino acids, and hence is a good source of bioactive 

peptides when exposed to hydrolysis by the gastro-intestinal enzymes. A thorough understanding 

of the soy protein and its derivatives is possible when we digest them with the endoproteases, to 

produce the short chain peptide fragments, and evaluate them for the functionality. It is also 

important to discover new peptides with health benefits in soy-hydrolysates. The identification of 

novel bioactive compounds will contribute towards the development of functional foods that can 

be used to enhance health and quality of life.   

Proteins are made of amino acids, while peptides are chains of amino acids cleaved-out 

from the main protein molecule. They may have amino acids ranging from 3 or 4 to over 50 

amino acids. Enzymatic hydrolysis, digestion in the gut, and food fermentation are the three 

methods in which protein fragments or short amino acid chains are produced. Peptides might 

occur naturally in foods, can be the products of human digestion, or can be obtained in the lab 

through enzymatic hydrolysis. Controlled hydrolysis of the soy protein has the advantage of 

producing peptides with certain number of amino acids that will enhance their functionality.  
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Figure 2.1. Breakdown of proteins into peptides and amino acids by enzyme 

hydrolysis (Sugano, 2006). 

 

Proteins like whey, casein, soy, and those obtained from certain fruits and vegetables are 

known to lower disease progression due to their bioactivity. Many of these are subjected to 

proteolysis to yield peptides in various size ranges. These are called dietary peptides which also 

exhibit functional properties like the proteins (Figure 2.1). Foods like cereals, milk, vegetables 

and fruits also contain many bioactive proteins/peptides present in their tissues and have 

different functions (Korhonen et al., 2003, Antonio, 2003). Food-derived bioactive peptides from 

dietary proteins commonly contain 2–9 amino acids, which may be extended to 20 or more 

amino acid units (Kitts D. D, and Weiler K., 2003). The food industry has shifted towards using 

biologically active proteins and peptides, while food researchers are considering different 

bioactive substances of food origin as health enhancing ingredients for use in foods commonly 

referred to as functional foods or nutraceuticals (Mine Y, and Shahidi F., 2006, and Shimizu and 

Dong Ok Son, 2007). Food producers can make health claims about their products if they can 

produce sufficient scientific evidence.  
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The research on bioactive proteins and peptides has some common objectives like, 

providing evidence, and giving human-study basis for the reduction of disease risk claims on the 

labels, scientific design for proving the persistent effect of the food or pharmaceutical 

preparation, and evaluating the risks of consumption, including allergic potential. Regarding the 

discovery of novel peptide drugs, the chemical properties of food-derived peptides and proteins 

can be readily modified in systematic ways for drug design and development. Small changes in 

the structure can lead to dramatic changes in bioactive potency and function, and these peptides 

are generally less toxic than other organic 'natural molecules'. Future research should focus on 

establishing novel production technologies and understanding the interaction of different 

bioactive proteins and peptides with multiple components during production and within a 

complex food of an overall diet. There are many unknown factors regarding to physicochemical 

and biological interactions of bioactive ingredients, which may result in inactivation or in 

synergisms and antagonisms. Understanding the mechanisms of possible interactions is 

important to develop an adequate packaging system, like micro-encapsulation, to enable the 

improved delivery and protection of bioactive ingredients. Research continues to discover novel 

bioactive proteins /peptides, functions and health benefits - all of which reveal the striking 

potential for natural selection through evolution to produce food molecules that act beyond 

simply providing nutrients. Discovering these benefits and potential applications remains a great 

challenge for both nutrition research and pharmaceutical design.  

The processing of protein into peptides in the GI tract greatly increases their healthful 

effects by exposing active groups within the amino acid chain. Soy peptides in recent studies 

have shown in to be most promising anticancer agents. Found in major readily-available foods in 

the market, these peptides are an accessible component to healthy living. In 1999, the Food and 
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Drug Administration approved a health claim for the cholesterol-lowering properties of soy 

protein (Pena-Ramos E. A., and Xiong Y. L., 2002) and soybeans are known to contain several 

bioactive components (Kim S. E. et al., 2000). Proteins in soybean have hypo-cholesterolemic, 

anti-atherogenic, and body fat reducing properties, while the soy peptides also reduce body fat, 

and are readily absorbed into the blood (Michihiro Sugano, 2006). As more results are reported 

on the biological activities of such proteins, little is known about the mechanism by which 

proteins exert these functions, or the basis for each protein to function so uniquely. To 

understand better a study is required on peptides that these proteins breakdown into when 

digested with proteases. Such a study would help in determining what portions of the protein 

constitute the functional aspect. Soy peptides are known for their bioactivity in the organ tissues 

and protect the body from diseases like cancers, tumors, mutations, and high blood pressure. 

Recent advances in science have brought various techniques of analyzing the beneficial effects 

of the soy peptides, and to determine their amino acid sequence. These peptides would be 

synthetically produced and incorporated into foods to deliver the health benefits.  

The bioactive peptides produced by soybeans possess diverse and unique health benefits. 

These can be effective in the prevention of age-related chronic disorders, such as cardiovascular 

disease, cancer, obesity, and decreased immune function. Bioactive peptides are released from 

dietary proteins by either gastrointestinal digestion or by the processing of foods. It is known that 

during gastrointestinal digestion or food processing, these peptides are released from the parent 

protein and act as regulatory compounds with hormone-like activities (Korhonen H, and 

Pihlanto, 2003). Microbial fermentation is an efficient way to produce bioactive peptides which 

can be released by the action of enzymes derived from microorganisms (Korhonen H, and 

Pihlanto A., 2003). Interest in bioactivity of fermented soy protein rich products including milk, 



19 

 

natto, tempeh, soy sauce, soy paste has grown in recent years (Wagar et al., 2009, Rho et al., 

2009, Kwon et al., 2010). Tryptic hydrolysates of soy protein produce immuno-modulatory 

peptides. Kitts and Weiler (2003) showed that these peptides stimulate super-oxide anions, which 

trigger nonspecific immune defense systems. Evidence suggests that these peptides are absorbed 

by the gastrointestinal system, and exert their action on specific target organs in humans. 

Research and clinical trials have demonstrated the biological activities of peptides, but the 

specific mechanism of action requires further investigation.   

Research in bioactive compounds from foods that provide nutrition and health benefits 

since the late eighties have opened new frontiers in the field of food and nutrition (Mine Y, and 

Shahidi F., 2006). These substances, which are both nutrient and non-nutrient, produce 

regulatory effect in the organ tissues of the human body, particularly to control a disease or to 

elicit a specific physiological function. Many bioactive peptides are inactive, and require 

enzymatic proteolysis for release from their protein precursors. Once activated, these bio-

peptides exert activities such as ACE-Inhibitory, immuno-modulatory, antimicrobial, mineral 

binding, and anti-mutagenicity. 

Shimizu and Dong Ok Son (2007) studied the effect of food-derived peptides and their 

intestinal functions while getting hydrolyzed by digestive enzymes in the intestinal tract. The 

absorption of the peptides intact is important for their action in their target organs, while the 

intestine-modulatory peptides can express their functions in modulating the intestinal epithelial 

cell functions. These peptides are studied to cause prevention of certain intestinal diseases. 

Certain peptides showed cytotoxicity which leads towards a cancer protective effect that could 

exist for such bioactive peptides (Hartmann R. et al., 2007).  
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Antihypertensive activity and sources 

Heart disease is number one cause of diseases-related deaths in the United States and it 

affects both children and adult population (Mozaffarian et al., 2014). According to the American 

Heart Association and the Center for Disease Control and Prevention 610,000 people die of 

heart-related diseases in the U.S (CDC, 2015). Hypertension is a major risk factor for coronary 

heart disease and the most important factor for stroke related deaths (National Heart, Lung and 

Blood Institute, 2014). Individuals less than 50 years old are prone to increased cardiovascular 

risk due to elevated blood pressure. Increase in blood pressure is known to be significant due to 

aging, but diet and other environmental factors cause hypersensitivity due to alterations in 

biochemical pathways.   

Proteins from foods have been shown to possess anti-disease properties (Mine and 

Shahidi, 2006). Most bioactive peptides are antihypertensive and show their activity by 

inhibiting angiotensin-I converting enzyme (ACE-I). ACE-I belongs to a nonspecific dipeptidyl-

carboxypeptidase group of enzymes which is associated with the regulation of blood pressure. It 

modulates the rennin-angiotensin system by converting the decapeptide angiotensin I into 

angiotensin II, a potent vasoconstricting octapeptide. This leads to an increase in blood pressure, 

and hence, inhibition of the ACE-I will result in an antihypertensive effect (Shin Z. I. et al., 

2001). Research found ACE-I inhibitory bioactive peptides in soy-protein enzyme hydrolyzates. 

In vivo experiments on ‘spontaneously-hypertensive’ rats had lowered blood pressure when the 

peptide fractions were administered orally. Alcalase digests of soy protein also produced 

antihypertensive peptides in the same experiment (Wu J., and Ding X., 2001). There was a 

significant (P<0.05) decrease in systolic blood pressure in the rats when oral doses of these 

peptides were given in a dose-dependent manner. However, higher doses (1000 mg/kg of body 



21 

 

weight/day) did not produce any effect on the blood pressure of normo-tensive rats. Fermented 

soybean products are a good source of ACE-I inhibitory bioactive peptides. Research found that 

traditional Asian fermented soy foods, such as soybean paste (His-His-Leu), soy sauce, natto, 

tempeh, and chunggugjang, a traditional fermented Korean soybean product have ACE-I 

inhibitory peptides (Okamoto A. et al 1995, Gibbs B. F. et al 2004, Potter S. M., 1995, Korhonen 

H, and Pihlanto, 2003).  

 Healthier and natural ACE-I inhibitory peptides can be prepared from daily dietary food 

proteins. These novel functional food additives will replace the expensive and health diminutive 

ACE-I inhibitor drugs. Anti-ACE-I activity of has been investigated in casein (Maruyama et al 

1985), fish muscle (Kohama et al 1998), soy sauce (Okamoto et al 1995), and rapeseed (Marczak 

et al 2003), from the respective peptides either in vitro or in vivo. Potter, in 1995, reported that 

hyperlidemic or hypercholesterolomic lesions that cause arteriosclerosis and hypertension are 

preventable by consumption of soybean protein. Fermented products like soybean paste (Ahm et 

al 2000) and soybean hydrolysate (Yu et al 1996) were shown to have exerted an inhibitory 

activity on ACE-I in vascular tissue in vivo. Four ACE-I inhibitory peptides isolated from the 

peptic digests of proteolysis of glycinin were engineered using varied proteases to harness 

peptides that exhibit ACE-I inhibitory activity. Accordingly, the Protease P hydrolysate 

contained a suite of very potent ACE-I inhibitory peptides that were subsequently fractionated 

and purified. A significant fraction of the ACE-I inhibitory activity could be ascribed to a 

pentapeptide, Val-Leu-Ile-Val-Pro (VLIVP). Considering the diversity and complexity of the 

different protein types of soybean, soy protein provides an abundant source of biologically active 

peptides. Many potential antihypertensive peptide sequences are embedded in the available 

protein sequence data for glycinin, the major storage protein and 11S globulin of soybean. This 
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potential is yet to be realized. There exists therefore a great potential for releasing these bioactive 

peptides from their latency using proteases of varied specificity. In the present investigation, 

proteolysis of glycinin was engineered using varied proteases to harness peptides that exhibit 

ACE-I inhibitory activity. 

There have been reports on antihypertensive food peptides with bioactivity other than 

ACE-I inhibition. These peptides were found to possess antioxidant, vasodilator, and opioid 

activities (Yoshikawa et al 1994, Fujita et al 1996, Sipola et al 2002, and Kuono et al 2005). 

Peptides derived from egg-white, and their synthetic analogues exerted non-ACE-I-mediated 

vasodilator effects in controlling hypertension (Fujita et al., 2000). In other studies, pepsin 

hydrolyzed egg white inhibited ACE-I in Vitro and exhibited antihypertensive effects in 

spontaneously hypertensive rats in vivo (Miguel et al 2006). Peptides from egg whites 

significantly reduced the vascular resistance and produced blood-pressure-lowering effects in 

hypertensive rats, independent of ACE-I inhibition (Fujita et al 2000). Although more studies are 

necessary to clarify the mechanisms responsible for the antihypertensive and vasodilator 

properties of these sequences, our findings provide new evidence for the potential of egg-white 

peptides as functional food ingredients with therapeutic benefits in the prevention and treatment 

of hypertension and other associated disorders. The ACE-I inhibition has a major role in anti-

hypertensive activity resulting in reduction of heart disease; the peptides exerting such 

bioactivity are favorable for production either by enzyme hydrolysis of protein isolates or 

artificial synthesis. The bioactive peptides have varied activity depending on the organ tissue in 

to which they are exposed. Hence, these peptides can be studied for additional bioactivity and 

health promotion, since research supports such a possibility. Various sources of bioactive 

peptides and their activities are listed in Table 2.2. 
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Table 2.2. List of proteins and their products with anti-ACE-I activities. 

Anti-ACE-I agent Source Reference 

Peptide fractions Fish (Tuna) Lee et al., 2010 

Peptides  Spinach Yang et al., 2003 

Peptide Tuna muscle Qian et al., 2007 

Peptide fractions Yogurt Donkor et al., 2007 

Peptides Hydrolyzed corn gluten Yang et al., 2007 

Protein Hydrolysates Pipe fish (Syngnathus 

schlegeli) muscle protein 

Wijesekara et al., 2011 

Proteins Casein Maruyama et al., 1987 

 

Various cancers and anti-carcinogenic compounds. 

 

Colon cancer 

Colon cancer or colorectal cancer is the third most common cancer and the third leading 

cause of cancer related mortality in the United States (American cancer society, 2015). Eleven 

percent of total cancer deaths are due to colorectal cancer, especially in men who are 50 years 

and beyond. It has relatively low incidence in women. Most colon cancers develop as a tissue 

growth into the center of the colon or the rectum called Polyps. Certain types of polyps normally 

tend to become cancerous and are called adenomas. Ninety five percent of colorectal cancers are 

adenocarcinomas. Evidence shows that dietary components are the major factors in the cause of 

the colorectal cancer. Animal fat, red meats, chocolate, alcohol and refined cereals are the foods 

that have been identified to promote high incidence of colorectal cancers in the Western societies 

(Sandler RS, 1996, Potter JD, 1996, Levi et al., 1999). Number of clinical and epidemiological 

studies provide clues that these food compounds may act as suitable markers or dietary 

determinants that when modified and prepared in a bio-functional form can serve as bioactive 

compounds in reducing the incidence of colorectal cancers (Cancer statistics, 2004)., whereas 

fruits, vegetables, fiber, whole grains and their compounds like folate and calcium have been 
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identified as protective agents against not only colorectal but also other cancers (Levi et al.,  

1999). Apoptosis is found to be the best natural defense against cancer. The molecule, P53 

induces apoptosis in some cell types when over-expressed, and is in fact considered invaluable to 

induce apoptosis in states of DNA damage (Sherr, 1996). The P53-induced apoptosis activity is 

common since P53 can either activate death genes like the Bax, or suppress survival genes like 

the Bcl-2 (Miyashita et al., 1994). Both these are considered molecular markers to detect 

apoptosis. 

Breast cancer 

Generally, most breast cancers originate in the ducts (ductal carcinoma) while others are 

found in lobules (lobular carcinoma) or in other parts of the breast tissue. The common form of 

breast cancer is the invasive ductal carcinoma that develops and penetrates the duct wall before 

invading the fatty tissue of the breast before spreading to other parts of the body. According to 

American Cancer Society invasive type of breast cancer accounts for about 80% (DeSantis, 

2013). It is the second leading cause of cancer-related death in women and over 3 million women 

have been treated in the U. S. so far for breast cancer (Siegel, 2014).  

Lung Cancer 

Lung cancer develops along the lining of the bronchi, and with time, causes precancerous 

changes within the lung. It is the most leading cause of cancer death in men and women in the 

United States due to the habit of cigarette smoking among the population (American Cancer 

Society, 2015). Formation of chemicals for new blood vessels allows for tumor formation and 

denotes true cancer development. At an advanced stage the cancer cells break away and spread to 

other tissues, which is called metastasis and 85% of all lung cancers are non-small cell type 

(American Cancer Society, 2015). According to the American Cancer Society (2015) other 
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classifications of lung cancers include squamous cell carcinoma, adenocarcinoma, and large-cell 

undifferentiated carcinoma. For the year 2015, it is estimated that 221,200 new cases of lung 

cancer (both small cell and non-small cell) will be diagnosed and 158,000 deaths are predicted.  

Liver cancer 

 Liver cancer is the leading cause of cancer related deaths in the world but it is less 

common in the United States among major cancers discussed here (American Cancer Society, 

2015) with 35,660 new cases that are expected to be diagnosed and 24,550 deaths are predicted 

in 2015. It is more common in men than in women and is caused by mutations in the liver cells 

resulting in several types of malignant (cancerous) and benign (non-cancerous) tumors. 

However, benign tumors, most common type is hemangiomas, do not grow into nearby tissues or 

spread to distant parts of the body. Hepatocellular carcinoma is the most common type which 

forms cancer nodules in the liver and is the most common type seen in the U. S.  

Prostate Cancer 

Prostate cancers start developing in the prostate gland with very small morphological 

changes occurring to the gland cells. This type of cancer is also called adenocarcinoma. The 

changes that occur are called prostatic intraepithelial neoplasia (PIN) that can be either low-

grade or high-grade. A large number of cancerous cell proliferations are expected in the case of 

high-grade differentiation (American cancer society, 2006). Prostate cancer is the most common 

non-skin cancer in the United States. It is the second most cause of cancer death in men, first 

being lung cancer. The American Cancer Society has predicted approximately 220,800 new 

cases and 27,540 deaths due to prostate cancer in 2015 in the Unites States (American cancer 

society, 2015). There is not much involvement of food proteins or peptides with prostate cancer 

research as yet, as they do with other cancers.  
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Blood cancer 

 Unregulated proliferation of abnormal blood cells are characterized as a group of diseases 

called blood cancers. The disease affects the production and function of blood cells in the bone 

marrow, which is the site for stem cells that mature and develop into three types of blood cells: 

red blood cells, white blood cells, or platelets. In most blood cancers the abnormal or cancerous 

cells prevent blood from performing many functions, including fighting infections or preventing 

serious bleeding. According to American Society of Hematology there are three major kinds of 

blood cancers:  

1. Leukemia is caused by the rapid production of abnormal white blood cells which impairs 

the bone marrow to produce red blood cells and platelets and reduces the ability to fight 

infections. 

2. Lymphoma affects the lymphatic system, which removes excess fluids from the body and 

produces immune cells. Abnormal lymphocytes become lymphoma cells, which multiply 

and collect in the lymph nodes and other tissues thereby disrupting the immune system. 

3. Myeloma affects the plasma cells which are white blood cells that produce disease- and 

infection-fighting antibodies.  

The American cancer society estimates 54,270 new cases of leukemia in 2015 and 24,450 

deaths are expected due to the disease in the United States. The leukemia’s are classified into 

four main groups according to cell type and rate of growth: acute lymphocytic (ALL), chronic 

lymphocytic (CLL), acute myeloid (AML), and chronic myeloid (CML). Chemotherapy is the 

only treatment for blood cancers and the expected survival ranges between 25% (AML) to 84% 

(CLL) depending on the cancer state and disease progression. 
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Control of cancer using food components 

Researchers have hypothesized several mechanisms of action using specialty compounds 

in mitigating breast cancer. Aiding chemoprevention using vitamins and other compounds to 

reduce the risk of developing cancer, block or suppress malignant transformations or disease 

progressions has gained considerable attention in the recent years. Some of the possible bio-

chemical mechanisms include apoptosis, arresting cell cycle progression, and also interfering 

with metabolism. Several food products are known to contain biomolecules that aid in alleviating 

the disease progression by preventing cancerous cell proliferation. Agricultural products 

including fruits and vegetables are considered good sources of anti-cancerous/anti-proliferative 

agents (Hocman G, 1989). For example, breast cancer cell lines when tested with the juice 

extracts of Brassica family exhibited anti-proliferative effects signifying the presence of 

constituents within the vegetables can prevent cancer progression (Brandi et al, 2005). Proper 

modification and application of these products can replace costly drugs or other invasive 

treatments of cancer. 

There are several compounds documented and thought of as being able to delay or reduce 

cancer progression. Tricin, for example, present in rice bran is a flavone that is shown to cease 

colon cancer cell proliferation. Furthermore, it inhibited cycloxygenase activity, reduced 

prostaglandin production and thus interferes in intestinal carcinogenesis in mice (Cai et al., 

2005). Certain chemo-preventive phenols obtained from brown rice were shown to inhibit 

growth of both colon and breast cancer cells. Most of the functions that rice bran elicits are 

attributed to its non-protein components. However, recent studies have shown that a peptide 

derived from rice bran to possess activity against cancer (Kannan et al., 2010, Li et al., 2014a 

and 2014b), Alzheimer’s and obesity (Kannan et al., 2012). The newly discovered soybean 
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peptide lunasin is shown to be an anticancer agent even though evidence of an effect of soy 

peptides on oncogenesis still requires groundwork (Kobayashi H. et al., 2004). Suppression of 

ovarian cancer cell invasion by blocking urokinase upregulation was attributed to Kunitz trypsin 

inhibitor, a soy peptide with anticancer properties in their study by Xiao R. et al (2005). Papain 

catalysis of Tuna dark muscle by-products resulted in a 12 amino acid peptide that showed 

anticancer effect (Hsu et al., 2011). Kim S. E et al (2000) studied the inhibition of tumorgenesis 

by a soy protein isolate diet due to enhanced production of somatostatin which caused anti-

proliferation effect. Several low and high molecular weight peptides derived from giant squid 

(Dosidicus gigas) using proteolysis have been demonstrated to show cytotoxicity against MCF-7 

human breast cancer cells (Aleman et al., 2011). Peptides from other seafood sources including 

shrimp and snow crab proved to be sources of peptides with anticancer activities (Doyen et al., 

2011, Kannan et al., 2011). Peptides obtained by thermolase hydrolysis of defatted soy protein, 

further purified with ethanol and fractionated by gel filtration chromatography, showed an in 

vitro cytotoxicity on mouse monocyte macrophage cell line. At 1 mg/mL, this fraction 

significantly affected cell cycle progression by arresting the cells in G2/M phases. Purification of 

these peptides with C18 HPLC resulted in 1157 Da nonapeptide (X-Met-Leu-Pro-Ser-Tyr-Ser- 

Pro-Tyr) (González de Mejía E. et al., 2004). 

A protein in blood with a tripeptide sequence (Arg-Gly-Asp) is commonly known to bind 

and exert biological functions like interference with cancer cell cycle progression (Yang et al, 

2006). Peptides containing this particular sequence demonstrated positive anticancer activity by 

inhibiting tumor growth formation, induced apoptosis and cell cycle (G1 phase) arrest in breast 

cancer cell lines (Yang et al, 2006). A plant protein, calcaelin isolated from the mushroom 

Calvatia caelata was found to reduce breast cancer cell viability and progression (Ng et al, 
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2003). The differences in protein expressions during healthy and cancer state have been utilized 

by studies to identify and monitor these marker proteins for cancerous states to determine the 

disease progression (Roberts et al, 2004). A few of them include estrogen receptor-alpha, beta-

caesin, bax, and cytokeratin 7.  

Food sources have been studied for reducing lung cancer by deriving compounds that 

affect the cancer cell apoptosis and biochemical pathways that can lead to tumor stasis. Studies 

have found an association between consumption of large quantities of fish and a decreased rate 

of lung cancer (Takezaki et al, 2001). Certain chemical compounds, called cumestrans, present in 

green vegetables have been shown to suppress lung cancer disease states (Schabath et al., 2005).  

Isoflavones present in a wide variety of food products including soybeans, yams and chickpeas 

are common anticancer agents in reducing the rate of lung cancer (Shimazu et al., 2010). Certain 

proteins are also known to elicit anticancerous and apoptotic roles. Researchers have 

demonstrated apoptotic properties of milk on transformed cell lines where the protein responsible 

was identified as a multimeric form of alpha-lactalbumin (Hakansson et al, 1995). The lung 

cancer cells (A549) exhibited characteristic features of apoptosis while their viability was 

reduced by 98%. Animals fed with protein rich diets (casein) showed reduced pulmonary 

metastatic disease and tumor weight in other studies (Mahaffey et al, 1987). 

Certain nutrients that are found in natural foods have been shown to reduce the incidence 

of developing prostate cancer, and also help slow down the disease progression. Again the 

nutrients present in fruits and vegetables serve important roles in mitigating prostate cancer. Of 

the many compounds present in fruits and vegetables, lycopene has been long considered to be 

an excellent fighter against prostate cancer. Lycopene is present in tomatoes, papaya, grapefruit, 

watermelons, and guava. The action of lycopene is attributed to its ability to scavenge free 
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radicals and serve as a powerful antioxidant (Hwang et al., 2005). It has been shown that 

antioxidants slow cancer progression even at the stage when tumors are clinically detectable 

(Borek, 2004). Soy proteins have been studied to cause a possible reduction in the prostate 

cancer disease progression. With soy proteins it is only a possibility that they may inhibit 

prostate cancer since they affect tumor cell apoptosis and not inhibition of cancer cell 

proliferation. (Bylund et al., 2000). 

Chief compounds that are known to arrest prostate cancer cell proliferation are the 

flavones/isoflavones, soy proteins, substances like sulforaphane present in cruciferous 

vegetables. Bowman Birk inhibitor (BBI), a soy protein component, has been shown to suppress 

carcinogenesis in human prostate cancer cells and has also been the subject of promising clinical 

trials in cancer patients (Meyskens 2001, and Badger et al 2005). Large studies have shown that 

consuming at least two servings of tomato sauce per week confers a significantly lower risk of 

developing organ-confined prostate cancer, locally advanced disease, and metastatic disease 

(Bowen et al., 2002, Giovannucci, 2002). Sulforaphane, a compound found in cruciferous 

vegetables such as broccoli and cauliflower, helps the body to repair the damage caused by 

cancer-causing substances, thereby helping to slow the cancer growth process (Myzak et al., 

2005). Isoflavones have been shown to influence the production, metabolism, and excretion of 

testosterone and estrogens, hormones that can play important roles in the development and 

spread of prostate cancer (Dillingham et al., 2005). Increased consumption of soy products or 

isoflavones has shown some effect on slowing the rate of prostate specific antigen (PSA) rise in 

several studies, but not all patients responded in the same manner and the results have been 

inconclusive (Davis et al.,  2000). 
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Spinach flavonoids possessing antioxidant properties are known to cause 

chemoprevention of PCA using human PC3 cells. They are also known to have anti-proliferative, 

and anti-inflammatory properties. Flavonoids were found to arrest cell-cycle G1 phase, and cell-

cycle prolongation that could possibly mediate the growth arrest of prostate cancer cells (Bakshi 

et al., 2004).  Peptides derived from spinach have also shown significant biological activities in 

human cell lines (Yang et al., 2003). Another example of action of flavonoids originates from 

grape seed extract. Studies have shown that grape seed extract inhibits cancer cell proliferation 

and induces apoptosis of the same in nude mice (Agarwal et al., 2002). Mechanism of action 

points to markers involved in the apoptotic signaling pathway. Markers like caspases were 

broken down upon treatment of cells with grape seed extract. The study concluded that the 

flavonoids from grape seed extract activated certain caspases and induces caspase mediated 

apoptosis (Agarwal et al., 2002). 

Role of proteins and peptides against cancer 

Proteins and peptides have been shown to affect anti-proliferative effects on colon cancer 

cells, and these have been confirmed with animal studies.  Predominantly flavones and 

isoflavones have been shown to possess anti-proliferative/anticancer effects on colon cancer cell 

lines. Cereals like rice or rice bran for example, has proteins, and other important components 

that inhibit cancerous cell proliferation (Kannan et al., 2008, 2009, Li et al., 2014). Amino acids 

may play an indirect role in impeding cancer induction. Many protein diets including soy protein 

contain non-essential amino acids that promote glucagon production. This in turn down regulates 

the activity of insulin and, produces IGF-1 (insulin like growth factor-1) antagonists. 

Additionally, the presence of low levels of essential amino acids in many diets (vegan diets) may 

decrease hepatic IGF-1 synthesis. This causes a negative effect in cancer formation. Hence these 
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diets when void of excess fat may prove protective against prostate, breast and also colon cancers 

that are linked to insulin resistance (McCarty et al., 1999).  

Although genetic factors are associated with the etiology of the disease and that they 

predispose individuals to colorectal cancer, much of this predisposition appears to be related to 

differences in dietary habits (Potter JD 1996). A number of in vitro studies suggest that proteins 

may be protective against colorectal and many other cancers. For example the whey protein has 

been proven to reduce the incidence of tumor formation in rats that were chemically induced to 

have colon cancer (Hakkak et al., 2001). The same study compared the effect of casein protein as 

diet to that of whey protein in decreasing the tumor formation, and found that casein did not 

prove as effective in reducing the tumor formation. Also whey proteins have been shown to 

protect more effectively than red meat against chemically induced formation of aberrant crypt 

foci that are considered as markers for colon cancer, first detected in rodents in 1987 (Bird RP, 

1987) and in Wistar rats (Belobrajdic et al.,  2003). Other proteins investigated for anti-

carcinogenic properties of the colon include alpha-lactalbumin. Studies demonstrated cell growth 

during the initial 3 to 4 days at low concentrations of the protein alpha-lactalbumin (10-25 

ug/mL). After the fourth day, cell proliferation had ceased with low viable cell counts suggesting 

probably a delayed apoptotic behavior (Sternhagen et al., 2001). 

Proteomics has greatly aided in the study of mechanisms of actions of several food 

components. Some of them include psychoactive compounds present in grape seed extract (Kim 

et al., 2006), and anti-microbial peptides from cheese extracts (Losito et al., 2006). Molecular 

targets on which these dietary components act have been elucidated using the colon cancer cells 

as a model with the help of proteomic techniques like the 2-dimensional gel electrophoresis, and 

mass spectrometry. The tryptic or proteolytic digests of proteins, biological actions of 
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compounds like quercetin on the growth of cancer cells was studied to the level of the proteome 

within the cell by Davis and Hord (2005). It was also found from the same study that quercetin 

altered the expression of 20 proteins at least 2-fold, and the proteins included several heat shock 

proteins and annexins. These proteins play significant roles in the physiology of apoptosis, 

metabolism, and gene regulation. (Wenzel et al., 2004). Irrespective of the compound studied, a 

clear understanding of the mechanism of anti-cancerous or anti-proliferative effects can be 

visualized by studying the patterns of protein expression inside the cell that is subjected to study. 

That way proteomics proves useful.  

As evident from the relatively fewer studies on proteins/peptides studied in relation to 

cancer therapeutics, compared to non-protein substances we emphasize the need to conduct more 

studies that help validate the bio-functional roles of proteins/peptides in cancer therapeutics. 

With advent of new processing strategies in rice to improve protein yields, there is a need to 

evaluate these rice bran proteins/peptides for their anticancer roles. The following table (2.3) lists 

the proteins/peptides that have been so far implicated in anticancer effects.  

Table 2.3. List of proteins/peptides with anticancer activities. 

Type of cancer Anticancer agent Source Reference 

Prostate Proteins Soy Bylund et al., 2000 

Breast Protein Soy Badger et al., 2005 

 Peptides with RGD 

sequence 

 Yang et al., 2007 

 Calcaelin protein Mushroom 

(Calvatia 

caelata) 

Ng et al., 2003 

 

 Peptide Rice bran Kannan et al., 2010 and 

Li et al., 2014 

Lung Alpha-lactalbumin Milk Hakansson et al., 1995 
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Table 2.3. List of proteins/peptides with anticancer activities (cont.). 

Type of cancer Anticancer agent Source Reference 

 Casein and other proteins Animal Mahaffey et al., 1985 

 Peptide fractions Rice bran Kannan et al., 2008 

Leukemia Ribosomal inactivating 

proteins 

Seeds of Abrus 

precatorius 

Hideki et al., 2004 

 Lfcin-B peptide Lactoferrin-B 

protein 

Yoo et al., 1997 

 

Purification of peptides and characterization 

Proteins and their constituent amino acids are present abundantly in many food sources. 

The separation of bioactive peptides from enzymatic hydrolysates provides scope to create 

functional foods that can slow disease progressions. Isolation and identification of proteins or 

peptides of interest for bioactive functional roles is thus a very important step. Peptides are 

known to be important biological modulators and proper analytical separation and purification 

techniques can alone identify specific amino acid sequences for reproduction and synthesis. 

Isolation and separation of protein/peptide of interest from a pool of proteins becomes a 

challenging task, because many proteins/peptides can possess closely related physicochemical 

properties (Pouliot et al., 2006).  Fractionation and purification techniques are normally 

performed based on where and for what purpose the final product/molecule is rendered 

applicable. For purification of food components expensive methods such as chromatography are 

used to achieve purity for industrial applications.  

Various preparative chromatographic methods have been used to purify proteins and 

peptides, including, ion-exchange chromatography, hydrophobic interaction chromatography, 

affinity chromatography and size exclusion chromatography. Out of several separation 
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techniques available High Pressure Liquid Chromatography (HPLC) happens to be the most 

widely used method for analytic as well as preparative separations of proteins and peptides. 

Reverse phase HPLC is extensively employed with (or without) pairing to ion-exchange 

chromatography for efficient purification of single peptides from a pool (Byun  et al.,  2001, 

Stepnowski et al., 2005, Kannan et al., 2008). Conventional UV and fluorescence detectors 

enable detection of proteins and peptides of interest but, structural characterization of purified 

peptides can be achieved by amino acid analysis, SDS–electrophoresis and mass spectrometry 

(MS). Furthermore, MS analysis can include matrix-assisted laser desorption/ionization 

(MALDI) to enable precise structural information and characterization. 

Ion-exchange chromatography is used to separate molecules based on their charge where 

the retention time in the solid matrix (column) also depends on the electrostatic interactions. The 

isoelectric point (pI) is the most important property of proteins and their products, which is 

utilized in effective purification techniques. Various peptides were subjected to ion exchange 

chromatography and other effective purification techniques from their native proteins, for 

example, Lactoferricin was isolated from Lactoferrin (Dyonisius et al, 1997, Recio et al., 2000) 

and Luffacylin isolated from a vegetable (Luffa acutangula) seed protein (Parkash et al, 2002).  

Size exclusion chromatography is another technology that can be used to separate 

relatively large peptides (>1kDa). The column gel matrix for this method of separation consists 

of a definite pore size for the molecules to pass or retain based on their size. Smaller molecules 

diffuse faster than their larger counterparts and the differences in the retention time allows for 

their separation. Generally, size exclusion when coupled with ion exchange and HPLC can 

produce better separation as the molecules are separated by size as well as the net charge which 

determines their distinct retention time (Prakash et al., 2002).  
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Nisin, a peptide from bacteria classified as bacteriosin, was identified and purified using 

a combination of chromatographic methods. The researchers established a two-step process 

where the sample were adsorbed on a hydrophobic resin followed by ion (cation) exchange resin 

which enabled a 100% recovery of the compound (Stoffels et al., 1993). Using sepharose cation-

exchange gel elution with NaCl and by HPLC technique using low pressure were studied by 

Uteng et al. (2002) which resulted in 90% recovery of the bacterial peptide. Hence, 

characterization of peptides can be accomplished using single or combinations of 

chromatographic. However, efficiency of the purification process requires various trials of 

optimizing the technique and hence substantiates as a challenging action. Recent automation and 

sophistication of instruments has aided in quicker and convenient procedures for protein 

separations. 

High pressure liquid chromatography or Reverse Phase-HPLC has become extremely 

popular for protein separation and purification techniques to obtain purified peptides. In reversed 

phase, separation is achieved through partition and adsorption where the stationary phase is non-

polar (or less polar than in the mobile phase). The analytes are retained on the column until a 

polar solvent (in the case of a mobile-phase gradient) is used to elute them. Large peptides 

(>4,000 Da) are analyzed with columns with greater pore diameter (300A) while the smaller 

molecular pore sizes (60-100A) are preferred for separation of smaller peptides. The 

physicochemical characteristics of peptides, hydrophobic or hydrophilic, influence the choice of 

stationary phase used. Acetonitrile is the most widely used organic solvent for peptides since it 

has high transparency during UV detection between 200 and 220 nm. Ion-pairing reagents 

including organic acids, have been used to increase efficiency in separation and to yield pure 

peptides (Piot et al, 1992, Dionysius and Milne 1997, Hoek et al., 1997, Kannan et al., 2010). 
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Initial identification followed by purification using RP-HPLC separation technique with Mass 

spectrometry and Matrix Assisted Laser Desorption Ionization-Time of Flight were conducted 

for peptides obtained from food products with bioactivities and antimicrobial properties 

(Shimazaki et al., 1998, Leonil et al., 2000). The following table (2.4) illustrates the types of 

HPLC used for separation of food peptides, their separation mechanism and characteristics of 

separation. 

Table 2.4. HPLC methods involved with food peptides (Nollet, 2004). 

HPLC type Separation mechanism Characteristics 

RP-HPLC Hydrophobic interaction of the 

peptides with the stationary phase 

High resolution 

High speed 

Standard separation procedures 

Prediction of retention times 

Good detection and reproducibility 

Quantitative recovery using volatile 

buffers 

Moderate capacity in analytical columns 

IE-HPLC Ionic interaction of peptides with 

anion exchangers or cation 

exchangers as stationary phase 

Moderate resolution 

High speed 

High capacity 

Prefractionation of peptides by charge 

Wide range of pH 

SE-HPLC Size exclusion of peptides on 

hydrophilic polymers as stationary 

phase 

Moderate or low resolution 

High speed 

Very high capacity 

Desalting 

Good prefractionation by size 

Molecular weight determination 

Presence of nonspecific interactions 

 

Characterization of proteins and peptides using proteomic tools 

Characterization protocols have been made simpler, quicker and reliable with the arrival 

of modern proteomic techniques that aid in precise and quick identification and detection of 

structural components of a peptides within a complex as well as pure mixture. Several proteomic 

tools were developed based on several factors that are involved in characterizing a compound’s 
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purity and to ascertain its functionality. Coupling of chromatography and spectrometry in tandem 

has enhanced separation, improved mass determining capabilities, decreased process time and 

increased sensitivities. Mass spectrometer and its accessory coupling instruments are the most 

popular tools available for studying proteins. 

Mass spectrometry (MS) 

It is an analytical technique for determination of the elemental composition and chemical 

structure of molecules such as peptides. The principle is to ionize chemical compounds to 

generate charged molecules or their fragments and measure their mass-to-charge ratios (Horn et 

al., 2000). In an MS protocol the sample is impacted with electron beam to ionize the 

compounds. The resultant charged particles are subjected to an electric field where the separation 

of molecules occurs based on mass-to-charge ratio which are measured to identify the individual 

compounds. There are two methods for ionization during MS, electrospray ionization (ESI) and 

matrix-assisted laser desorption/ionization (MALDI). The latter is used for thermolabile and non-

volatile compounds with high molecular mass. MALDI is used successfully in biochemical 

studies for the analysis of proteins, peptides, glycoproteins, oligosaccharides, and 

oligonucleotides (Hillenkamp, 1991). The accuracy of the compounds mass is based on analyzer 

type and performance. However, most advanced instruments will be capable of measuring 

masses to within 0.01% of the molecular mass of the sample, up to 40,000 Da.  

The MALDI technique based ionizing the samples by bombarding with a laser light is the 

standard procedure before a low concentration of the sample is pre-mixed with a highly 

absorbing matrix compound for the most consistent outcomes. Sputtering of analyte and matrix 

ions from the surface of the mixture occurs when the laser energy is transformed into excitation 

energy. Since this energy transfer is efficient the analyte molecules are spared from 
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decomposition by avoiding excessive direct energy. The time-of-flight (TOF) analyzer attached 

to the MALDI uses an electric field to accelerate the ions through the same electric potential, and 

measures the time they take to reach the detector. The compounds are identified based on their 

velocity to reach the detector which depends exclusively on their mass.  

Tandem mass spectrometry (MS-MS) is the most advanced screening method for 

structural information about a compound. It uses fragmentation of specific sample ions inside the 

mass spectrometer to identify them and the information is pieced together to generate structural 

evidence of the intact molecule. A tandem mass spectrometer is a specialized instrument that 

displays results in the form of a mass spectrum, which is a graph that shows each specific 

molecule by weight (mass) and how much of each molecule is present. It can sort biochemically 

important molecules of similar weight in a sample and can detect specific compounds in complex 

mixtures based on their characteristic fragmentation patterns. Peptides fragment in a reasonably 

well-documented manner where the protonated molecules fragment along the peptide backbone 

and also show some side-chain fragmentation with certain instruments. The three different bonds 

that can fragment along the amino acid backbone are the NH-CH, CH-CO, and CO-NH (most 

common), which give rise to the “b” and/or the “y" ions. Each amino acid residue is indicated by 

the mass difference between two adjacent “b” ions, or “y" ions. 

Amino acid sequences of peptides 

The exact sequence and the number of amino acids that constitute proteins/peptides is 

determined by the n-terminal amino acid sequence. Proteins are probed for the occurrences of 

functional di- or tri-peptides within their structures. This is to identify critical areas that impart 

significant functional characteristics to the protein. Further, these findings provide exact amino 

acid composition of functional peptides for in vitro synthesis. Di-deoxy method is the standard 
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for N-terminal amino acid sequencing and these studies have been done several times when 

peptides are involved. Alcalase treatment of soybean proteins formed low molecular weight 

peptides which are isolated and identified to be effective against hypertension. A sequence of 9 

amino acids obtained from hydrolysis of rice albumin protein was found to promote immuno-

stimulation. Several peptides ranging in amino acids of about 5-10 have been successfully 

isolated and proven beneficial against disease characteristics. Determination of the correct 

sequence and number of amino acids that constitute proteins/peptides is by the N-terminal amino 

acid sequence of proteins and peptides.  

The activity of biologically functional peptides is due to their amino acid composition 

and sequence. For example, two peptides purified from canola protein hydrolysate were shown 

to inhibit ACE-I activity after purification. The amino acid analysis of the peptides showed 45% 

content of aromatic amino acids in comparison to 8.5% of the hydrolysate (Wu et al, 2008). 

Many peptides are known to have multifunctional properties as the size of their active sequences 

may vary from two to twenty amino acid residues (Meisel and FitzGerald, 2003). For example, 

in ß-casein amino acid sequence the peptides 60-70 show immune-stimulatory, opioid and ACE-

I inhibitory activities. Hence, these sequences are classified as strategic zones and are protected 

from proteolysis due to proline residues and high hydrophobicity (Migliore-Samour and Jolles, 

1988; Meisel, 1998). There are several examples of multi-functional peptides from various 

sources including milk and rice (Vogel, 2012, Kannan et al., 2012).  The αs1-casein fraction 

194-199 showing immune-modulatory and ACE-I inhibitory activity (Korhonen and Pihlanto, 

2003). The C-terminal moiety of κ-casein, residues 106–169, cleaved by chymosin from 

Caseinomacropeptide (CMP) during cheese making was reported to have diverse nutritional and 

biological significances due to unique amino acid composition. Researchers have suggested 
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CMP as a protein source for the treatment of Phenylketonuria, a hereditary disorder in which 

aromatic amino acids cannot be metabolized, since CMP does not contain the aromatic amino 

acid residues (Leonil et al, 2000). 

Proteins can thus be probed for the occurrences of functional di- or tri-peptides within 

their structures to identify critical areas that impart significant functional characteristics to the 

protein. The findings can also provide amino acid composition of functional peptides and the 

precise sequence information can help peptides to be synthesized in large scale for ingredient 

formulation as a nutraceutical agent. 

Biological activities of soybean peptides 

 Soy peptides have been studied for disease resistance and also for biological activity 

against spread of certain non-pathological diseases. Research has found out that hydrophobic soy 

peptides with anticancer activity have arrested cancer cell cycle progression in the in vivo 

studies. The mouse monocyte macrophage cell line P388D1 was incubated with the soy peptides. 

The peptides arrested the cell growth at the G2/M phase of the cell cycle. The cells were stained 

with propidium iodide, and DNA analysis of each phase was done using the Fluorescent 

Activated Cell Sorter (FACS) equipment (Kim et al., 2006). Numerous peptides with various 

bioactive functions have been identified in soy. Lunasin is one such peptide from soy which is 43 

amino acid residues long and has been shown to be chemo-preventive in mammalian cells and in 

a skin cancer mouse model against oncogenes and chemical carcinogens. (Jeong H. J. et al., 

2003). In the Bio-pep database (Dziuba J. et al., 2003) more than 1500 different bioactive 

peptides like angiotensin converting enzyme (ACE-I) inhibitors and dipeptidyl peptidase IV 

inhibitors have been listed. Some peptides are with opioid agonistic and antagonistic, 

antioxidative, anticancer, anti-hypertensive, and immuno-modulatory actions. The present 
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research is to develop peptides from soy with biological activity against hypertension and cancer 

cells. 

Emphasizing the amino acid roles in cancer progression, and the lack of studies on 

involvement of protein hydrolysates and peptides in ACE-I (potential biochemical agent for 

inducing hypertension) and multiple-site cancer (colon, lung, liver, breast, prostate and blood 

cancer cell lines) proliferation inhibition, we propose to investigate roles of peptides extracted 

from soybeans (an established source of flavonoids and other compounds responsible for anti-

proliferative effects). Literature information on soybean proteins/peptides on control of cancer 

proliferation has been mostly involving soy isoflavones and naturally occurring peptides that 

have anti breast-cancerous effects, or other bioactive functions. However, nothing has been done 

using high oleic acid soybeans with comparatively higher amounts of protein as well as 

methionine and cystine to prepare medium sized synthesizable bioactive peptides. Research in 

genetically engineered high oleic acid soybean has a great future, since there is production of 

higher quality vegetable oil and utilization of the byproduct from the oil industry in developing 

certain nutraceuticals that can be the future of disease prevention and control. Knowing the 

amino acid sequences of these peptides would enable the industry to produce synthetic peptides 

with equivalent bioactivity.  

Studies with soybean components will emphasize that the incidence of cancers are much 

lower in Asian countries where soy is used as chief ingredient in the population’s staple diet. 

Several technological options available in the literature are on the production, preparation, 

gastrointestinal resistance evaluation, identification of specific bioactivities, and separation and 

purification strategies for food derived peptides. Depending upon the nature of the bioactivity 

and the target site it is critical to consider all the options available before conditions can be 



43 

 

established for the production of bioactive peptides. With such an understanding peptides 

derived from soybean meals have been prepared and evaluated for anti-ACE-I and anticancer 

activities. In the following chapters the ways adopted for preparation and characterization 

biologically active soybean peptides have been documented. 
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CHAPTER 3 

Protein content and amino acid profiling of 44 soybean lines developed in Arkansas 

(Part of the chapter published in the Journal of American Oil Chemists’ Society, May 2015, 

92(7): 1023-1033.) 

 

Abstract 

Soybeans are cultivated in the United States chiefly for cooking oil, while the residue 

after oil extraction (soybean meal) is mostly used in animal feed formulations. High protein 

content in the defatted soybean meals led to its extraction and application in food products due to 

its good quality. However, soy protein is naturally deficient in sulfur-containing amino acids, 

methionine and cysteine. But, in recent years, plant breeding techniques have been used to 

enhance the protein and fatty acid quality in soybeans. In this study, forty four selected soybean 

lines were evaluated for their moisture and protein contents and amino acid composition. The 

moisture was determined by AACC air oven method, protein content by an automated Kjeldahl 

method and the amino acid profiling was conducted based on AOAC official method. The 

moisture percentage ranged between 5.2 and 12.9 % among the lines while the protein content on 

dry basis ranged between 40 and 53 %. The amino acid analysis showed high methionine content 

in the R05-4494 and R05-5491 with ‘high protein and fatty acid’ as yield attributes. High 

cysteine content was found in one of the high oleic acid soybean line, CRR05-188, which is 

comparable to that in the check lines, UA-4805 and 5601-T. The results indicated that fatty acid 

associated attributes in the soybean lines did not influence the protein content. This study will 

promote newly developed specialty soybean lines with high oleic acid and high protein content 

that can add value to the crop and provide nutritious ingredients for food product manufacturers.  
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Introduction 

Soybean is an excellent source of protein and oil and is the second major crop grown in 

the United States. The USA is the largest producer and exporter of soy in the world and the 

forecast for 2014 production is approximately 3.3 billion bushels (~27 kg/bushel) according to 

the Crop Production Report by the United States Department of Agriculture (2012). The 

American Soybean Association and the regional soybean boards have a major role in producing 

better quality soybeans using genetic engineering and plant breeding techniques by improving 

various attributes including enhanced yields, pest and disease resistance, lipid quality and 

quantity, and protein content and quality (Cober and Voldenga, 2000, Cahoon, 2003). Soybeans 

are primarily grown for the edible oil which is separated by various extraction methods, resulting 

in a leftover residue called soybean meal. Soybean meal is a major ingredient in animal feed 

formulations as a source of complete protein. It is also a chief source of high-quality plant-based 

protein in human diet. Hydrolysates prepared from the soybean proteins are in great demand as 

ingredients for food applications as well as in protein supplements that provide nutritional and 

health benefits (Reynolds et al., 2006, Genovese et al., 2007, de Moura et al., 2008). 

Improvements in soybean processing and functional characteristics have diversified the ever-

increasing demand for soy protein ingredients (Uzzan and Labuza, 2004). 

New soybean lines are produced with higher yields, higher protein content, and recently 

with higher amounts (up to 80 %) of oleic acid in their lipid composition (Clemente and Cahoon, 

2009). A higher percentage of monounsaturated fatty acids such as oleic acid is preferred over 

polyunsaturated fatty acids which have lower oxidative stability (O’Keefe et al., 1993, Warner 

and Knowlton, 1997). Variations in the plant genes are the cause for differences, not only in the 

oil content but also in the concentration of crude protein, possibly even in the amino acid 
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composition (Takagi and Rehman, 1996, Mazur et al., 1999, Monteros et al., 2008). Researchers 

have found an increase in lysine in the hybridized high oleic acid soybean seeds compared to the 

parent lines (Dixon, 1996, Health Canada, 2000). The amino acid composition of the seed 

protein depends on the storage protein content, nitrogen supply during the growth phase, and 

asparagine levels in the embryonic stage of the plant (Sebastia et al., 2005). There has not been 

much research in evaluating the essential amino acid content, specifically sulfur-containing 

amino acids in the soy protein from high oleic acid soybean seeds. Oil-extracted soybean meals 

contain approximately 1 % residual oil and have 48 % crude protein with all the essential amino 

acids required for human health except for the sulfur amino acid methionine (Krishnan, 2005).  

This is the first time that amino acid analysis of soybean lines with varying oleic acid 

composition has been studied. The 44 soybean lines used in this study were bred for attributes 

including yield, protein content, low linoleic acid, high oleic acid content, high yield and high 

protein. The major objectives of this study were to analyze the protein and its amino acid 

composition among 44 soybean lines.  

Materials and Methods 

The seeds of 44 soybean lines (R05-4509, R95-1705 (non-GMO), R05-4476, R05-4487, 

R05-4473, R05-4507, R05-4492, Satellite, R05-4494, S03-543CR, N98-4445, R05-5491, R05-

5340, R05-4457, R05-4478, R05-4505, R05-5362, Osage, S01-9265, UA-4805, 5601-T, R05-

5351, S04-4729RR, TN01-235, S04-3835 RR, R05-5510, Satellite, N98-4445, Kristine, 5002-T, 

IA-3017, TN-5123, R05-4481, R05-5342, R05-5494, CRR05-188, V01-1693, V01-6338, V01-

1702, S01-9364, Ozark, IA-2064, R05-5358, KS-5007) from two Arkansas Agricultural 

Research Stations (ARS) based in Fayetteville (FAY) and Stuttgart (STU) were provided by Dr. 

Pengyin Chen, Plant breeder and Professor, Department of Crop Soil and Environmental 
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Sciences, University of Arkansas. Kjeltec 2200 auto-distillation unit (Foss, Eden Prairie, MN) 

was used to determine the protein content in the flour. Rotovapor (Buchi, Flawil, Switzerland) 

was used for vacuum distillation and Beckman HPLC system (Fullerton, CA) was used for 

quantitative amino acid analysis. An Ika mill (Ika-Werke, Staufen, Germany) was used for 

grinding the samples. All chemicals, solvents, and reagents with highest purity were purchased 

from Sigma (St. Louis, MO, USA). 

Moisture and Protein Content Determination.  

The seeds were ground, passed through a 60-mesh sieve, and the flour was collected, 

bagged and stored at 5 °C. The moisture percentage of the flour was calculated based on the 

AACC official method (2000). The soybean flour samples were weighed in aluminum pans and 

dried at 135 °C for 3 h. The moisture percentage was calculated as the ratio between the moisture 

lost from the sample and the actual weight of the sample before drying. This was done in 

triplicate for all the 44 seed samples. Protein content of the soybeans was performed using the 

Kjeldahl method (AOAC, 1997). The soybean flour samples were weighed in digestion tubes 

and digested for 1 h at 420 °C after adding the Kjeldahl tablets and 10 mL sulfuric acid. The 

samples were distilled and titrated against 0.1 N HCl in the automated Kjeldahl distillation unit. 

The protein percentage was calculated with a conversion factor of 6.25 for nitrogen. The 

moisture percentage was used to calculate the protein content by dry weight for all the samples. 

All analyses were conducted in triplicate. 

Determination of Amino acid Composition.  

The amino acid analysis of the flour from the 44 lines was conducted using the AOAC 

method (1997). The approximate weight of each soybean meal test sample for amino acid 

analysis was calculated by the formula: Ws = 1000/Ns; where Ws is the weight of the sample in 
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milligrams, and Ns is the nitrogen content (%) in each sample. Performic acid solution was 

prepared and kept at room temperature for 30 min and cooled in an ice bath for 15 min before 

adding to the samples. All flour samples were weighed into 250-mL Erlenmeyer flasks and 

cooled in an ice bath. Five milliliters of performic acid was added to each flask with the sample, 

stirred for 15 min, and all flasks were kept in an ice bath for 16 h for oxidation. After oxidation, 

the performic acid was decomposed by adding 0.84 g of sodium metabisulfite to each sample 

flask under a fume hood and stirring for 10 min. The oxidized products were hydrolyzed in 6 M 

HCl-phenol solution for 24 h at temperatures between 110 and 120 °C. The hydrolyzed sample 

solution was cooled to room temperature, and 20 mL norleucine solution was added as HPLC 

elution standard. The solutions were evaporated using a rotary evaporator under vacuum (until 

5–10 mL remained), diluted with sodium citrate buffer and the pH adjusted to 2.2. The volume 

of the hydrolyzed sample solution was made up to 50 mL with the buffer solution and stored at 5 

°C in polyethylene bottles. The solutions were injected  into a C18 ion exchange column (heated 

to 70 °C) using an auto-sampler attached to the HPLC system, and the amino acids were detected 

based on the absorbance measured at 254 nm. Eluent buffer solutions, procured from Pickering 

Laboratories (Mountain View, CA, USA), containing sodium citrate and hydrochloric acid at 

varying pH (3.2, 4.2 and 6.4) were used. The elution times of each amino acid on the column 

were compared to an amino acid standard and the amount of each amino acid was calculated in 

mg/g based on the peak area. 

 Statistical analysis: 

The JMP software from SAS institute (Cary, NC) was used for the statistical analyses – 

Student’s t test, analysis of variance, means and standard deviations (P value <0.05). The data 

were collected in triplicate for all the experiments. 
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Results and Discussion 

Moisture and Protein Content.  

The moisture percentage in the flour among the 44 soybean lines ranged between 5.2 ± 

0.0 and 12.9 ± 0.1 % (Table 3.1). The moisture values varied due to the difference in the 

agronomic growing conditions of the lines, moisture content at harvest and the processing 

conditions of the 44 lines. Nevertheless, the moisture content did not have a significant impact 

on the protein content in the seeds. 

The protein percentage among all 44 lines ranged between 40.8 ± 0.2 and 53.5 ± 0.1 % 

approximately by dry weight. The differences in the protein content among the soybean lines 

could be due to the genetic variation among the soybean lines. There was a statistically 

significant difference in the protein content of the soybean lines as shown in Table 3.1. Both 

Fayetteville and Stuttgart Agricultural research stations produced high protein lines. The 

variation in the protein content among the lines could be attributed to the dissimilarities in the 

soils of the two regions. R05-4509 (STU), R05-4476 (STU), R05-4487 (STU), R05-4473 (STU), 

and R95- 1705 had the highest protein yields which were not significantly different from each 

other according to the Student’s t test (P > 0.05) while R05-4509 (STU) showed the highest 

protein content of 53.5 ± 0.1 % among all the lines.  

 The highest protein content on dry basis (d. b.), 53.5 ± 0.1 % was from high protein line 

and fatty acid line, R05-4509, which was not significantly different (statistically) from that of the 

high yielding line, R95-1705 with 52.7 ± 0.4 % protein. The protein content of R05-4509 (STU), 

R95-1705 R05-4476 (STU), R05-4487 (STU), and R05-4473 (STU) was much higher than 

normal and those with high oleic acid, S03- 543CR and N98- 4445A (Fay), are also found to 

have significantly high protein content. Lines grown for the high yield and high protein attributes 
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had higher protein content than the high oleic acid lines which is consistent with previous studies 

(Cober and Voldenga, 2000). Two other high oleic acid lines, CRR05-188 and TN-5123 from the 

Fayetteville ARS stations, had 45.2 and 44.5 % protein which are not statistically different from 

each other and similar to the ‘check’ lines—N98-4445A foundation and 5002-T. The ‘check’ 

soybean lines are used as positive control for comparison of an attribute (high yield, high protein 

or high oleic acid, etc.) among the new breeds of soybean seeds developed. ‘Foundation’ lines 

are those developed by the breeder (copyrighted) for distribution among the growers. The lowest 

amount of protein on dry basis was found in the KS-5007 low linolenic acid soybean which is 

40.8%.  

Amino Acid Content.  

 The amino acid analysis of the 44 soybean lines showed variability in protein 

composition, while the presence of high oleic acid content did not provide a wide variation. 

Hence, other components, including isoflavones and oligosaccharides in the seed, could utilize 

the available carbon skeletons during development. A positive correlation between protein, lipid, 

sugars and isoflavones during the soy seed growth and maturity have been observed in previous 

studies (Kim et al., 2006). The essential amino acid composition of the seed protein in 44 lines is 

given in Table 3.2. The amino acid composition among the high oleic acid soybeans lines did not 

differ significantly (P value <0.05, data not included). High methionine and cysteine content 

were observed in lines: R05-4494, R05-5491, 5002 T, Kristine, R05-5362 and R05-5352, which 

were 53.7 ± 1.4, 43.5 ± 0.1, 41.8 ± 4.8, 41.0 ± 0.8, 35.2 ± 3.6 and 39.9 ± 0.4 mg/g, respectively. 

Table 3.3 shows the list of soybean lines which had the highest amounts of methionine content 

which can be sources of complete protein. This could be due to the nitrogen assimilation during 

the seed development which determines the amino acid composition of the seeds (Sebastia et al., 
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2005). The methionine content in the six soybean lines (addressed above) are significantly higher 

in comparison to egg (34 mg/g) and milk (20 mg/g) proteins (Table 3.4). Cysteine is the other 

sulfur containing amino acid which is non-essential to humans but is required for the 

maintenance of protein structure and function. Table 3.3 shows the soybean lines which had the 

highest cysteine content: R05-4505—35.5 ± 0.3 mg/g, S01- 9265 —30.8 ± 4.8 mg/g, Satellite 

STU 23.7 ± 1.5 mg/g and CRR05-188—25.5 ± 3.3 mg/g which is a high oleic acid line. These 

values are higher than those found in milk protein (8 mg/g) and are equal or higher in 

comparison to egg protein (24 mg/g). 

 The CRR05-188 is the only high oleic soybean line that showed higher cysteine content, 

although its seed protein content is lower in comparison to S03-543CR and N98- 4445A (high 

oleic acid lines). This indicates that sulfur amino acid content in soybeans is not related to the 

amount of total seed protein. The soybean line S03-543CR showed the highest amounts of 

essential amino acids—threonine, valine, isoleucine and leucine among all the lines tested 

irrespective of their traits. It also showed significantly high amounts of lysine amino acid when 

compared with the 44 soybean lines. This shows that soybean lines bred for high oleic acid can 

also provide substantial essential amino acid content along with high protein. The protein content 

in the TN-5123 high oleic acid soybean line was not significantly different in comparison to 

CRR05-188, but the essential amino acid content was lower in comparison to other high oleic 

acid lines. Hence, other factors, including soil environment and growth conditions, affect the 

protein formation during seed development. 

 Among all the soybean lines, the compositions of glutamine, asparagine and lysine amino 

acids are highest in that order, respectively (Fig. 1). Glutamine is essential for gut health while 

asparagine maintains the integrity of the nervous system (Newburg and Fillios, 1982, Tuohy et 
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al., 2003). Lysine is known to be an essential amino acid which helps in serotonin regulation and 

has a moderating effect on blood pressure and the incidence of stroke (Tuohy et al., 2003, 

Smriga et al., 2002). The amino acid analysis procedure from AOAC official methods (994.12) 

was selected to quantify the sulfur-containing amino acids methionine and cysteine. However, 

quantification of aromatic amino acids, tryptophan and tyrosine, was affected during hydrolysis 

and oxidation and these were not detected during the ion-exchange liquid chromatography.  

 All 44 soybean lines showed high amounts of lysine which agrees with the accepted 

notion that legume seeds are rich in this amino acid (Iqbal et al., 2006). While glutamine and 

asparagine were non-essential amino acids, supplementation of lysine is essential to humans 

since it is not synthesized in the body. Lysine plays an important role in transamination reactions 

and is utilized to produce vital proteins, including elastin and collagen (Eyre et al., 1984, Reiser 

et al., 1992, Akagawa and Suyama, 2001). The comparison of essential amino acids (range) 

among the tested 44 soybeans and other protein sources including eggs and milk are given in 

Table 3.4. 

 Researchers have engineered quality traits through plant breeding to enhance the sulfur 

amino acid content, even though natural mutations in soybeans have also expressed these 

beneficial effects. The genetic alterations have been tested specific to the trait loci that trigger the 

formation of methionine and cysteine during the seed growth (Fujiwara et al., 1992, Krishnan, 

2005). Soil sulfur and nitrogen content during the growth of the soybeans also affects the 

methionine and cysteine content in the soybean protein (Krishnan et al., 2005). Other genetic 

attributes like high protein, high monounsaturated fatty acid content, and higher yields or disease 

resistance may contribute to enhanced sulfur amino acids, but this is inconclusive. 
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Conclusion 

The protein contents of soybean lines R05-4509, R95-1705, R05-4476 and R05-4487 

were higher among all the lines tested. Soybean lines with ‘high oleic acid’ (S03- 543CR and 

N98-4445A) were also found to have substantially enhanced protein content (approximately 48 

% d. b.). Lines grown for the ‘high protein and fatty acid’ attribute had 47–52 % (d. b.) protein 

content which was comparable to that in the ‘high oleic acid’ lines. Amino acid analysis showed 

a significantly higher methionine levels (P value <0.05) in soybean lines recognized for protein 

and fatty acid content (R05-4494 and R05-4478). Both methionine and cysteine contents were 

elevated in the soybean lines attributed for protein and fatty acid. 
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Table 3.1. Seed moisture and protein content of selected 44 Aransas-grown soybean lines. 

Cultivar1 Moisture % Protein % (dry basis) Yield Attributes2 

R05-4509 (STU) 11.9 + 0.0def  53.5 + 0.1a High protein and fatty acid 

R05-4473 (STU) 13.1 + 0.1def 52.1 + 0.2b High protein and fatty acid 

R05-4507 (STU) 12.0 + 0.0kl 50.1 + 0.1c High protein and fatty acid 

R05-4492 (STU) 11.5 + 0.0efg 49.6 + 0.6cd High protein and fatty acid 

R05-4494 (STU) 11.8 + 0.3efg 48.6 + 0.0def High protein and fatty acid 

R05-4457 (STU) 5.3   + 0.1rs 47.4 + 0.2fghij High protein and fatty acid 

R05-4478 (STU) 6.1   + 0.1pqrs 47.4 + 0.1fghij High protein and fatty acid 

R05-4505 (STU) 11.4 + 0.1a 47.3 + 0.1ghijk High protein and fatty acid 

R05-4481 (STU) 12.6 + 0.1efg 45.2 + 0.3nop High protein and fatty acid 

R95-1705 (FAY) 6.4   + 0.0qrs 52.7 + 0.4ab High yield 

Osage (FAY) 6.1   + 0.1pq 46.7 + 0.3ijkl High yield 

S01-9265 (FAY) 9.4   + 0.2kl 46.5 + 0.2ijklm Low saturated fat 

Satellite (FAY) 6.7   + 0.2opq 45.7 + 0.3lmnop Low saturated fat 

V01-6338 (FAY) 5.7   + 0.1qrs 43.7 + 0.2qr Low saturated fat 

UA-4805 (STU) 11.6 + 0.0bcde 46.4 + 0.6ijklmn Check 

5601-T (STU) 11.2 + 0.0bcde 46.4 + 0.2jklmn Check 

5002-T (STU) 11.7 + 0.0efghi 45.2 + 0.3nop Check 

S03-543CR (FAY) 6.2   + 0.2pqr 48.4 + 0.5defg High oleic acid 

N98-4445A (FAY) 8.4   + 0.1m 48.1 + 0.4efg High oleic acid 

TN-5123 (FAY) 7.6   + 0.2mno 45.2 + 0.3nop High oleic acid 

CRR05-188 (FAY) 6.4   + 0.0pq 44.5 + 0.4pq High oleic acid 

S04-4729RR 

(FAY) 

7.9   + 0.3bcde 46.1 + 0.1klmno Low linolenic acid 

TN01-235 (FAY) 8.2   + 0.3m 46.0 + 0.6lmno Low linolenic acid 

S04-3835 RR 

(FAY) 

8.1   + 0.1mn 46.0 + 0.4lmno Low linolenic acid 

Kristine (FAY) 6.2   + 0.0abcd 45.4 + 0.8mnop Low linolenic acid 

IA-3017 (FAY) 7.9   + 0.2hijk 45.2 + 0.2nop Low linolenic acid 

V01-1693 (FAY) 9.7   + 0.1mn 43.8 + 1.4qr Low linolenic acid 

V01-1702 (FAY) 10.3 + 0.0mn 43.7 + 0.6qr Low linolenic acid 

S01-9364 (FAY) 7.1   + 0.1nop 43.5 + 0.8qr Low linolenic acid 

IA-2064 (FAY) 5.2   + 0.0s 42.8 + 0.2r Low linolenic acid 

KS-5007 (FAY) 10.5 + 0.2l 40.8 + 0.2s Low linolenic acid 

Ozark (FAY) 8.3   + 0.0m 43.2 + 0.3r Conventional 

R05-4476 (STU) 11.6 + 0.0jkl 52.6 + 0.1ab Fatty acid 
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Table 3.1. Seed moisture and protein content of selected 44 Aransas-grown soybean lines 

(cont.). 

Cultivar1 Moisture % Protein % (dry basis) Yield Attributes2 

R05-4487 (STU) 11.9 + 0.0def 52.3 + 0.2ab Fatty acid 

Satellite(STU) 12.0 + 0.0defg 48.9 + 0.1de Fatty acid 

R05-5491 (STU) 10.4 + 0.1fghij 47.6 + 0.2efghi Fatty acid 

R05-5340 (STU) 10.7 + 0.4abc 47.4 + 0.5fghij Fatty acid 

R05-5362 (STU) 10.8 + 0.2ab 46.8 + 0.2hijkl Fatty acid 

R05-5351 (STU) 11.5 + 2.1pqr 46.3 + 0.8jklmno Fatty acid 

R05-5510 (STU) 9.9   + 0.1cde 45.7 + 0.4lmnop Fatty acid 

R05-5342 (STU) 12.9 + 0.1ijk 45.1 + 0.4op Fatty acid 

R05-5494 (STU) 11.8 + 0.1ghij 44.6 + 0.3pq Fatty acid 

R05-5358 (STU) 9.7   + 0.1efgh 41.0 + 0.2s Fatty acid 

Values given are averages of three replications ± standard deviation and those not connected by 

same letter in each column are significantly different (P<0.05). 1STU is abbreviated for Stuttgart 

and FAY is abbreviated for Fayetteville. 2Yield attributes are the traits specific to the breed of 

the developed lines. (Rayaprolu et al., 2015). 
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Table 3.2 (a-h). Essential amino acid composition (mg/g protein) in 44 soybean lines grown 

in the state of Arkansas.  

(a) 

Amino acid R05-4509 R95-1705 R05-4476 R05-4487 R05-4473 R05-4507 

Cysteine 15.2±0.0ab 14.8±0.4a 15.1±0.5ab 14.5±0.7a 13.4±0.8a 14.6±0.3a 

Threonine 44.1±0.7mn 41.8±0.6l 43.7±0.7m 42.2±0.5lm 36.8±0.5k 41.6±0.6l 

Valine 31.4±0.9h 40.7±0.5l 35.5±0.8ij 29.5±0.6g 23.1±0.6cd 38.2±0.5k 

Isoleucine 32.7±0.8jk 40.2±0.3p 37.1±0.8n 32.0±0.5jk 22.3±0.5e 36.2±0.4m 

Leucine 67.4±0.7k 68.9±0.5l 67.4±0.6k 64.2±0.6i 55.6±0.5de 64.5±0.3i 

Lysine 109.0±1.0q 113.5±0.9s 112.0±0.9rs 107.3±1.3p 101.6±0.9m 109.5±0.7q 

Methionine 22.3±1.2f 24.3±0.9g 23.5±1.0g 20.6±1.1ef 19.1±0.7e 21.4±0.9f 

Phenylalanine 40.5±0.9j 46.7±0.6m 45.1±0.8lm 46.0±0.9m 41.4±0.6k 45.4±0.4lm 

Histidine 53.8±0.6jk 56.3±0.4l 54.7±0.6k 51.6±0.5i 44.9±0.5g 52.7±0.4j 

 

(b) 

Amino acid R05-4492 Sat (STU) R05-4494 S03-543CR N98-4445A R05-5491 

Cysteine 16.5±0.0b 23.7±1.5e 15.9±0.1ab 14.2±0.5a 14.9±0.3a 15.5±0.6ab 

Threonine 21.0±0.0ef 21.8±0.0ef 20.0±0.1de 45.2±0.7n 18.5±0.6d 21.3±0.4ef 

Valine 29.2±0.1g 22.7±0.1c 25.6±0.6e 42.1±0.5m 27.9±0.4f 33.8±1.4i 

Isoleucine 24.3±0.1f 22.0±0.0e 22.5±0.0e 39.2±0.6o 25.9±0.3f 31.6±1.7j 

Leucine 66.7±0.4jk 57.8±0.4ef 68.3±0.2kl 69.1±0.5l 51.3±0.5b 71.2±3.9m 

Lysine 109.7±1.5q 60.7±0.3g 98.1±6.5k 123.8±0.8u 53.4±0.7de 117.2±7.0t 

Methionine 26.4±0.3h 17.1±0.1d 53.7±1.4p 24.3±1.2g 14.2±0.0bc 43.5±0.1o 

Phenylalanine 47.1±0.1n 35.4±0.1fg 31.1±2.7d 48.0±0.4o 30.1±0.2c 46.1±3.0m 

Histidine 52.5±0.1j 33.6±0.0cd 49.3±0.4h 56.2±0.5l 30.9±0.2b 56.6±2.5l 

 

(c) 

Amino acid R05-5340 R05-4457 R05-4478 R05-4505 R05-5362 Osage 

Cysteine 14.6±0.6a 21.3±2.3cd 15.3±0.1a 35.1±0.3h 14.9±0.2a 14.7±0.4a 

Threonine 19.4±0.3d 21.6±0.0ef 19.9±0.2d 21.2±0.0ef 18.6±0.8d 41.4±0.7l 

Valine 35.0±1.0ij 23.8±0.0cd 26.5±0.4ef 20.2±0.1bc 36.4±0.8j 24.7±0.9d 

Isoleucine 31.8±0.3j 23.6±0.0ef 22.9±0.0ef 19.6±0.1d 31.3±0.2j 24.2±0.7f 

Leucine 69.6±0.5l 58.1±0.2f 65.4±0.3ij 56.6±0.4e 68.3±0.6kl 60.4±0.5fg 

Lysine 104.2±0.9o 60.0±0.1g 107.5±0.9p 60.2±1.0g 103.3±0.1mn 104.1±1.1o 

Methionine 33.6±1.3j 14.2±0.0bc 33.3±4.3k 13.8±0.1b 35.2±3.6l 19.9±0.5e 

Phenylalanine 47.6±1.6n 35.0±0.2fg 44.5±0.3l 34.7±0.2f 47.4±0.9n 44.1±0.8l 

Histidine 55.1±0.6l 33.9±0.1cd 52.7±0.3j 32.2±0.2c 54.9±0.2kl 51.5±0.6i 
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Table 3.2 (a-h). Essential amino acid composition (mg/g protein) in 44 soybean lines grown 

in the state of Arkansas (cont.). 

(d) 

Amino acid S01-9265 UA-4805 5601T R05-5351 S04-4729RR TN01-235 

Cysteine 30.8±4.8g 13.1±0.6a 14.3±0.6a 16.4±0.1b 19.2±1.2c 15.4±0.2ab 

Threonine 21.9±0.0ef 16.7±0.6c 14.9±0.3b 20.0±1.6de 27.0±1.7h 13.7±0.1a 

Valine 22.7±0.0c 29.6±0.7g 24.9±1.2de 31.6±0.5h 30.0±3.6gh 19.7±0.9b 

Isoleucine 22.3±0.1e 27.0±0.1g 17.2±0.1bc 29.7±0.4i 31.4±4.2j 14.6±0.0a 

Leucine 57.7±0.3ef 62.3±0.5gh 57.6±0.5ef 53.3±0.8c 65.8±3.6ij 43.5±0.1a 

Lysine 61.8±0.0h 96.1±0.2j 102.9±0.3m 50.1±0.0c 56.0±3.0f 48.3±0.1bc 

Methionine 16.0±0.8d 34.5±3.8l 33.0±3.2j 13.7±0.2b 28.5±0.7ij 12.4±0.0a 

Phenylalanine 34.1±0.1f 41.3±1.3k 44.6±1.4l 32.0±0.6de 33.4±2.9e 26.6±0.0b 

Histidine 34.5±0.0d 50.0±0.4hi 45.3±0.7g 32.8±0.2c 38.3±2.3f 27.3±0.0a 

 

(e) 

Amino acid 

S04-

3835RR R05-5510 Sat (Fay) N98 (Fdn) Kristine 5002T 

Cysteine 15.7±0.2ab 16.6±0.0b 22..0±1.9de 14.0±05a 16.2±0.7b 14.5±0.2a 

Threonine 20.8±1.4de 19.5±1.3d 21.1±0.0ef 43.5±0.6m 21.7±0.7ef 16.8±1.3c 

Valine 36.4±0.4j 32.6±0.0h 19.1±0.0b 35.4±0.8ij 30.6±1.6gh 22.0±0.4c 

Isoleucine 34.6±0.2l 30.9±0.0i 16.9±0.1b 34.4±0.8l 27.6±1.6g 19.5±1.2d 

Leucine 56.0±1.5e 71.6±0.2m 54.0±0.0d 62.8±0.8h 68.6±4.0kl 67.1±0.1k 

Lysine 54.3±0.0c 111.0±1.4r 63.9±0.4i 109.6±1.4q 102.9±0.0m 103.0±0.7mn 

Methionine 13.7±0.7b 32.5±1.9 j 18.0±0.0d 23.4±0.9g 41.0±0.9n 41.8±4.8n 

Phenylalanine 36.4±0.1h 50.2±1.5p 33.7±0.0e 45.3±1.0lm 39.0±0.1i 38.6±0.2i 

Histidine 34.4±0.2d 58.7±0.7m 32.3±0.0c 52.0±0.6j 53.9±1.9jk 54.5±2.1k 

 

(f) 

Amino acid IA-3017 TN-5123 R05-4481 R05-5342 R05-5494 CRR05-188 

Cysteine 20.1±0.4c 15.0±0.1ab 19.7±0.1c 16.7±0.0b 16.6±0.2b 25.5±3.3f 

Threonine 24.8±0.6g 20.0±0.7de 24.0±1.2g 24.2±0.1g 23.5±0.2fg 19.8±0.0d 

Valine 35.8±0.8ij 16.8±0.0a 25.9±0.4e 27.0±0.2f 26.5±2.3ef 31.7±0.0h 

Isoleucine 35.6±0.1lm 16.7±0.8b 22.7±0.0e 28.0±0.0gh 27.4±2.5g 32.3±0.1jk 

Leucine 66.1±0.7jk 51.9±0.8b 57.9±0.0ef 60.8±0.0fg 57.5±0.9ef 66.4±0.2jk 

Lysine 53.7±2.1de 61.0±1.7h 62.1±0.4h 50.5±1.7c 52.8±0.5d 61.8±0.5h 

Methionine 20.2±1.0ef 16.7±1.9d 14.2±1.2bc 20.2±2.5ef 26.4±2.0h 15.8±0.1c 

Phenylalanine 37.0±0.4h 24.9±0.9a 34.5±1.0f 29.3±0.7c 29.1±1.2c 38.7±0.3i 

Histidine 38.2±0.5f 30.0±1.1b 33.1±0.2cd 34.2±0.0d 32.7±0.7c 38.5±0.0f 
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Table 3.2 (a-h). Essential amino acid composition (mg/g protein) in 44 soybean lines grown 

in the state of Arkansas (cont.). 

(g) 

Amino acid V01-1693 V01-6338 V01-1702 S01-9364 Ozark IA 2604 

Cysteine 20.3±0.4c 16.4±0.1b 14.7±0.3a 16.7±0.2b 16.0±0.5b 20.6±0.1c 

Threonine 22.0±0.9f 17.5±1.5cd 21.6±0.9ef 19.8±0.0d 44.2±0.7mn 22.9±1.5f 

Valine 26.9±0.5ef 23.1±1.4cd 24.2±1.0de 30.6±1.7gh 32.2±0.9h 31.4±0.2h 

Isoleucine 25.4±0.1f 17.3±1.1bc 32.3±1.7jk 27.7±1.6g 31.3±0.8j 30.7±0.1i 

Leucine 61.1±0.6g 53.1±0.3c 58.9±0.2f 65.6±0.7j 64.5±1.0i 59.5±0.1f 

Lysine 60.9±0.8g 49.1±0.4b 46.8±1.3a 111.8±2.7r 100.1±1.3l 54.5±0.1e 

Methionine 21.4±0.4f 20.9±2.0ef 27.8±0.3hi 32.6±1.5j 20.3±0.6ef 14.0±0.4bc 

Phenylalanine 33.1±1.5e 26.6±0.2b 26.8±0.6 b 41.2±2.9k 48.5±0.9o 33.1±0.8e 

Histidine 35.3±0.3d 30.1±0.6b 31.4±1.0 b 55.9±1.1l 54.2±0.7k 36.3±0.1e 

 

(h) 

Amino acid R05-5358 KS-5007 

Cysteine 16.3±0.2b 16.4±0.1b 

Threonine 19.7±0.6d 34.2±0.2j 

Valine 21.8±0.9c 32.1±0.1h 

Isoleucine 19.2±1.0d 27.2±0.1g 

Leucine 73.3±1.1n 63.8±0.2i 

Lysine 137.8±3.0v 96.9±0.3j 

Methionine 39.9±0.4m 26.1±0.1h 

Phenylalanine 36.5±1.2h 44.2±0.0l 

Histidine 50.7±1.5hi 54.2±0.1k 

 

Values are means ± standard deviation of triplicate analysis and those not connected by same 

letter in each row are significantly different from each other (P<0.05). Soybean lines: Sat (Fay) = 

Satellite (Fayetteville); Sat (STU) = Satellite (Stuttgart); N98 (Fdn) = N98-4445A (Foundation). 

(Rayaprolu et al., 2015). 
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Table 3.3. Soybean lines with comparatively higher methionine and cysteine content (mg/g 

of protein) among the tested soybean lines. 

  

Soybean line     Methionine (mg/g)           Yield Attribute 

 

R05-4494  53.7 ± 1.4a     High protein and fatty acid 

R05-5491  43.5 ± 0.1b     Fatty acid  

5002-T   41.8 ± 4.8bc     Check 

Kristine  41.0 ± 0.8bc     Low linolenic acid 

R05-5362  35.2 ± 3.6d     Fatty acid 

R05-5358  39.9 ± 0.4bc     Fatty acid 

UA-4805  34.5 ± 3.8d     Check  

R05-4478  33.3 ± 4.3d    High protein and fatty acid  

 

Soybean line       Cysteine (mg/g) Genetic Attribute 

 

R05-4505  35.1 ± 0.3a   High protein and fatty acid 

S01-9265  30.8 ± 4.8a  Low saturated fat 

Satellite STU  23.7 ± 1.5b  Fatty acid  

CRR05-188  25.5 ± 3.3ab  High oleic acid 

 

Values are means ± standard deviation and those not connected with same letter are significantly 

different (P<0.05). STU = Stuttgart. (Rayaprolu et al., 2015). 
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Table 3.4. Comparative analysis of essential amino acid composition (mg/g protein) of egg, 

milk and soy protein. 

Amino acid Egg protein* Milk protein* Soy protein# 

Cysteine 24 7.9 13.1 - 35.1 

Threonine 47.8 47.3 14.9 - 45.2 

Valine 48.2 63.8 16.8 - 42.1 

Isoleucine 51.4 68.5 14.6 - 40.2 

Leucine 82.9 103.5 43.5 - 73.3 

Lysine 66.4 68.3 46.8 - 137.8 

Methionine 34.9 20.2 12.4 - 53.7 

Phenylalanine 59.5 46.7 24.9 - 50.2 

Histidine 23.5 21.8 27.3 - 58.7 
*Source: FAO. Accessed at: www.fao.org/docrep. #Values for soy protein are from the 44 

soybean lines that are presented as a range. (Rayaprolu et al., 2015). 
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Figure 3.1. One-way analysis of amino acid profile among the 44 soybean lines.  

The mean weight (mg/g of protein) from amino acid analysis are shown for each amino acid 

detected in the protein. (Rayaprolu et al., 2015). 
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CHAPTER 4 

Preparation of gastro-intestinal resistant peptide fractions from N98-4445A, R95-1705 and 

S03-543CR soybean lines, and their ACE-I inhibitory activities 

 

(Parts of the chapter published in Food Research International Journal, 2013, 50: 282-288 and 

in the Journal of American Oil Chemists’ Society, 2015, 92(7): 1023-1033.) 

 

Abstract  

Soy is an abundant and relatively inexpensive source of proteins which are known for 

their high nutritional values and excellent nutraceutical and functional properties. Enzymatic 

digestions of soy allergenic proteins are of interest, since, enzymatic digestion is done not only to 

get rid of a large portion of allergenic proteins but also obtain peptides. Potentially 

hypoallergenic peptides thus obtained may be considered for unexplored bio-functional 

attributes. In this study protein isolates were prepared from three selected soybean lines, R95-

1705 (high in protein), N98-4445A (high in oleic acid and protein) and S03-543CR (high in oleic 

acid and protein) with highest purity (90%). Conditions were optimized for enzymatic digestion 

of the protein isolate with Alcalase (subtilisin) using response surface methodology. The protein 

hydrolysates obtained were exposed to simulated gastric and intestinal juices for testing their 

resistance to human digestive enzymes (GI). The resistant hydrolysates were then separated 

based on molecular cut-off sizes into three different fractions using ultrafiltration membranes. 

This resulted in GI resistant protein fractions with distinct molecular cut-offs: <5kDa, 5-10kDa 

and 10-50kDa that were freeze dried. Furthermore, the GI resistant fractions were tested for 

angiotensin-I-converting enzyme (ACE-I) inhibition activity. The 5-10kDa protein hydrolysate 

(500 μg/mL) from R95-1705 showed highest inhibition of the ACE-I by 49 %. The results from 

this study will promote the use of high oleic acid soybeans as a source of protein and peptides 

with functional activities. 
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Introduction 

Proteins from plant sources are part of human diet which are incorporated into several 

products in the food industry. This is due to their functional properties which are beneficial for 

maintaining human health. Soybean is a widely cultivated legume for edible oil and the co-

product or residue after oil extraction is chiefly used as meal in farm animal feed. The soybean 

meal or oil extracted residue is mainly known for the protein content which has been 

increasingly consumed by humans as a good substitute for animal protein. There are various 

methods to separate native proteins from seed flour without denaturing it and retaining its 

properties. The seed flour can be treated with enzymes to prepare the protein isolate by digesting 

the starch with alpha-amylase (Shih and Daigle, 1997, Tang et al., 2002). However, alkaline 

hydrolysis is the simplest method of solubulizing the protein, and separating it from the starch. 

Researchers have shown that soy proteins lose their allergenic properties when digested with 

proteases. The resulting hydrolysates when tested for their binding abilities to either a 

monoclonal antibody or sera obtained a negative result (Obata et al., 1998; Yamanishi et al., 

1996)). Obata et al (1998) reported reduction of allergenicity in tofu (soybean surd) after 

enzymatic digestion. Reduction in allergenicity after enzymatic digestion of soybean grains was 

demonstrated by Yaminishi et al (1996). This also leads to the generation of pure peptides 

(Kannan et al., 2010). 

Alcalase and liquipanol are two proteases with broad specificity that can cleave the 

proteins either at Arg-Arg residues or at uncharged carboxy terminal end residues. Enzyme 

specificities provide the ability to cleave the substrate proteins at specific sites. This information 

for various proteases commonly used in food protein hydrolysis are given in Table 4.1. Bioactive 

peptides thus released can potentiate biological effects with even a fraction of them being 
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absorbed in our body. However, specificity and extent of hydrolysis are important factors that 

need to be controlled to improve functional properties of food proteins and peptides. The 

solubility of proteins increases with increase in degree of hydrolysis (DH) possibly due to the 

reduction in molecular weight and an increase in the number of polar groups (Nielsen, 1997). 

Degree of hydrolysis represents the proportion of peptide bonds hydrolyzed and it is calculated 

using the equation DH = (hn x 100)/htot where hn is number of peptide bonds hydrolysed and htot 

is total number of peptide bonds present in the parent protein. The units of h and htot are both 

meq/gm (Adler-Nissen, 1986). The htot of a protein is calculated from the amino acid 

composition of the specific protein being hydrolyzed (Adler-Nissen, 1986). During hydrolysis, a 

new carboxyl and a new amino group is released for each cleaved amide bond. The number of 

hydrolyzed peptide bonds can be calculated by determining the number of newly formed N-

terminal or C-terminal groups in hydrolysates. The amount of released a-amino groups can be 

measured by using reagents that react specifically with amino groups, yielding compounds that 

can be detected spectrophotometrically. Reagents generally used are o-phthaldialdehyde (OPA), 

ninhydrin, and trinitrobenzenesulphonic acid (TNBS). 

 Proteins have proved to be excellent sources for bioactive peptides, especially in reducing 

hypertension, which is a precursor for heart disease (Leppälä, 2000, Palatini and Julius, 2009). 

Inhibition of angiotensin-1-converting enzyme (ACE-I) activity has a potential link to a 

hypertension lowering effect, by preventing the conversion of angiotensin I to Angiotensin II, 

where the latter compound is responsible for contracting the epithelial layer of arteries causing 

an increase in blood pressure (Boudier et al., 1992). Previous studies have shown that peptides 

derived from soybean protein with limited enzymatic hydrolysis possess ACE-I inhibitory 

activity (Wu and Ding, 2002, Kuba et al., 2005) and other bio-activities (Rayaprolu et al., 2013). 
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There have been no studies determining the presence of higher than normal amounts of 

methionine from high oleic acid soybean meals, or the influence of amino acid content and 

sequence which can elicit significant biological activities. The objective of this study was to test 

for ACE-I inhibitory activity of the peptide fractions obtained from previous research. Food-

derived proteins and peptides have already been considered for interesting applications as 

medical foods or pharmaceutical preparations. This is the first time that amino acid analysis of 

soybean lines with varying oleic acid composition and ACE-I inhibitory activity assessment of 

Alcalase enzyme-derived peptides from their protein isolates has been studied.  

 

Materials and Methods 

 The seeds of 44 soybean lines, N98-4445A, R95-1705 and S03-543CR, were obtained 

from Dr. Pengyin Chen, Plant breeder and Professor, Department of Crop Soil and 

Environmental Sciences, University of Arkansas. Food grade enzyme Alcalase 2.5L (EC 

3.4.21.62) was purchased from Novozyme (Bagsvaerd, Denmark) for preparing the protein 

hydrolysates.  

Preparation of soy meal and protein extraction  

Seeds of all three soybean lines were provided by Dr. Pengyin Chen (Soybean breeder, 

University of Arkansas, Fayetteville, AR, USA). The seeds from two high oleic acid soybean 

lines (N98-4445A and S03-543CR) and one high protein line (R95-1705) were ground and 

sieved (250 microns) to obtain uniform particle size. The lipid was extracted using the solvent N-

hexane (1:3 w/v ratio of flour: solvent) and the lipid content of the meal was determined by the 

Soxhlet method (AOAC, 1995). The meals were suspended in de-ionized (DI) water (10% w/v) 

and protein isolates were prepared by alkali extraction method (pH 9.5 at ambient temperature 
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for 3 hr) using 3N NaOH solution. The supernatants were separated by centrifugation at 3000 g 

for 15 min and the residue was re-extracted by repeating the process. The collected supernatants 

for each soy line were mixed to prepare the isolate using isoelectric precipitation at pH 4.5. The 

final pH was adjusted to 7.0 and the three SPIs were freeze dried. The protein percent was 

determined by the Kjeldahl method based on a conversion factor of 6.25 for Nitrogen (AOAC, 

1995).  

Optimization of conditions for enzymatic hydrolysis with Alcalase  

The conditions for optimization of enzymatic hydrolysis using Alcalase were determined 

based on the Box-Behnken Design of the Response Surface Methodology (RSM) (Ma and 

Ooraikul, 1986). The SPI was mixed with DI water (1:10 w/v) and homogenized. Enzymes were 

purchased from Novozyme Inc. (Bagsvaerd, Denmark). The suspensions were subjected to 

treatments involving four factors at three levels in the design viz., pH (6.5, 7.5 and 8.5), time (30, 

60 and 90 min), temperature (55, 62.5 and 70 °C), and enzyme concentration (1, 3.5, and 5 

Anson units). The enzyme was inactivated at 85 °C for 3 min; the hydrolysates were cooled to 

ambient temperature and centrifuged at 3,000 g for 10 min. The degree of hydrolysis (DH) was 

determined using the OPA method in the supernatants that were collected. DH is defined as the 

percentage of peptide bonds cleaved from the total number of peptide bonds in the protein 

(Mahmoud et al., 2006). Ten micro liters of the samples were added to 3 mL of OPA reagent and 

the solutions were left to stand for 2 min before taking the spectrophotometer reading at 340 nm 

(Adler-Nissen, 1978). Blank was prepared using 400 µL of DI water in 3 mL of OPA reagent. 

400 µL of 0.01% serine solution in 3 mL of the reagent was used as a standard. The optical 

density (OD) values of all the samples were recorded and the following formulae were used to 

calculate the degree of hydrolysis (Neilsen et al., 2001): 
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Serine-NH2 = (SampleOD-BlankOD)/(StandardOD-BlankOD)*0.9516*V*100/X*P 

Where, V = sample volume; X = amount of protein in the sample; and P = protein % in sample. 

Hydrolyzed peptide bonds H = (Serine-NH2-β)/α, where α and β value for soy are 0.248, and 

0.97 respectively. Degree of hydrolysis DH = H/Htot * 100, where Htot is the total number of 

peptide bonds in soy, which is 7.8 (Neilsen et al., 2001). 

Preparation of gastro-intestinal environment resistant peptide hydrolysates with molecular 

sizes, <5 kDa, 5-10 kDa, and 10-50 kDa 

The simulated gastro-intestinal (GI) juice was prepared mimicking the human GI tract 

secretions for treating the protein hydrolysates after Alcalase treatment (Kannan et al., 2008). 

Resistance to gastric juice was determined by treating the protein hydrolysates with Pepsin (0.32 

g/100 mL) after adjusting the pH to 2.0 using 3N hydrochloric acid solution and stirring for 1hr 

at 37 °C. The enzyme was inactivated by adjusting the pH to 7.2 and the contents were 

centrifuged at 3000g for 10min to separate the supernatant. The pH of supernatant was adjusted 

to 8.0 using 3N sodium hydroxide solution and enzyme Pancreatin (0.1 g/100 mL) was added to 

test for resistance against the intestinal juice. The protein hydrolysates were stirred for 1hr at 37 

°C before inactivating the enzyme in water bath at 85 °C for 3min. The GI treated peptide 

hydrolysates were centrifuged at 3000 g for 10 min and the supernatants were passed through the 

membrane filters of Romicon ultrafiltration system (Koch membrane systems, Wilmington, MA, 

USA) with molecular cut-off sizes of 5, 10 and 50kDa. The hydrolysates were passed through 

each column starting with 5 kDa as the permeates were collected and retentates were passed 

through 10 kDa and then through a 50-kDa column following the similar process. The specific 

peptide fractions, <5, 5–10 and 10–50 kDa, were obtained as a results of ultrafiltration process. 

All the fractions were freeze dried and stored at 5 °C. Further study included testing the peptide 
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fractions for ACE-I inhibitory activity which was compared with that of non-GI resistant 

fractions. 

ACE-I Inhibitory Activity Assay 

 A modified method of Cushman and Cheung (1971) was used to conduct the ACE-I 

inhibition activity assay. Protein hydrolysates at 500 µg/mL (30 μL), N-hippuryl-L-histidyl-L-

leucine (HHL: 150 μL, 6.5mM), and ACE-I (25 μL, 2.5 mU) were incubated at 37 °C for 1 h. 

Hydrochloric acid (250 μL, 1N) and ethyl Acetate  (1.5 mL) were added to stop the reaction, and 

the contents were mixed by vortexing before centrifugation at 2000 g for 5 min. One milliliter of 

the top layer (containing hippuric acid extracted with ethyl Acetate) was collected, and ethyl 

Acetate was removed using a roto vapor. The residual hippuric acid is dissolved with deionized 

water (1 mL) and absorbance was measured at 228 nm. Captopril (10mM) was used as positive 

control while a solution containing ACE-I and HHL was used as blank solution. Inhibition of 

ACE-I was calculated using the formula: 

% inhibition = 1- [(Abstest – Absblank) / Absblank] x 100. 

The % ACE-I inhibition was defined as the percentage of ACE-I activity inhibited by a specific 

amount of peptides. A dose response study was conducted for the fraction with highest ACE-I 

inhibition using fraction concentrations between 200 and 1200 μg/ mL with increments 200 μg/ 

mL using the above method. The date from the dose response was used to determine the IC50 

value for the peptide with highest activity. 

Purification of the fractions with highest ACE-I activity 

A reverse phase HPLC analysis of the peptide fractions with highest ACE-I activity was 

conducted with a two solvent system. Solvent A was prepared with 0.1% Trifluoro Acetic acid in 

Millipore water and solvent B was 50% Acetonitrile in water with 0.1% Trifluoro Acetic acid. A 
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linear solvent gradient was sued for a 75 minute run with a 1 mL/min flow rate. Solvent A had a 

gradual decrease in gradient from 100% to 0% while solvent B had 0 to 100% gradient over the 

75 min run. A C18 protein separation column (Sigma Aldrich, MO, USA) was used in isolating 

the single peptides. 

Statistical analysis: 

The JMP software from SAS institute (Cary, NC) was used for the experimental design 

and all the statistical analyses. Statistical analysis of the effect of four factors viz., pH, enzyme 

concentration, time and temperature on the degree of hydrolysis was conducted using the Box-

Behnken design of the response surface method. The optimized conditions for the degree of 

hydrolysis were determined based on the 3 point prediction profiler and a P value <0.05 was 

used for all the analyses. 

 

Results and Discussion  

Purity of protein isolates 

Previous literature has shown that alkali extraction is an optimized method to isolate 

proteins for studying their functional properties (Okezie and Bello, 1988). Hence, protein from 

the three soy meals was extracted at a lower pH of 9.5 at ambient temperature and the process 

was repeated to maximize the yield without affecting the protein quality. Protein contents of the 

soybean lines were ~91 % for S03-543CR and N98-4445A, and ~93 % for R95-1705 (Table 4.2) 

signifying high protein purity.  

Optimization of conditions for enzymatic hydrolysis  

The objective was to hydrolyze the proteins present in the prepared high-purity soy meal 

protein isolates to liberate peptides that may be of bioactive value. In order to accomplish 
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hydrolysis of the proteins, a Box-Behnken RSM statistical design was chosen to evaluate 

combinations of variables such as pH, temperature, enzyme concentration and time of hydrolysis 

at three levels for optimal hydrolysis (Table 4.3). Degree of hydrolysis (DH) was determined for 

each combination and an optimum value was selected to achieve optimal hydrolysis of the 

proteins that resulted in both high and low molecular weight fractions. The amount of enzyme 

added and the pH of the suspension had shown significant effect on the DH which ranged 

between 18.8 % and 57.4 %. A DH of 30 % was selected as the optimum condition at pH 7, 

enzyme concentration of 1.675 AU, temperature of 55 0C for 45 min (Figure 4.1). The optimized 

conditions were selected to allow formation of considerable size peptides and to prevent total 

digestion of the protein when exposed to the gastro-intestinal juices.   

GI resistance and preparation of peptide fractions  

While larger size peptide fractions are known for their functionality in food products (Wu 

et al.,  1998), smaller size peptide fractions were also considered as they have been shown to 

have higher potency (Wu and Ding, 2002) for wider applications. Simulated GI resistance 

demonstrated the resistant of peptides to digestion in the GI tract and could be available for 

absorption through the intestine. Three molecular cut off membrane columns of 5, 10 and 50kDa 

were used to fractionate the peptide hydrolysates and permeates and retentates were collected 

from each column. The nine specific fractions of <5kDa, 5-10kDa and 10-50kDa for each soy 

line were collected to test the cancer cell inhibitory property. 

Activity of Protein Hydrolysates.  

 Three soybean lines, S03-543CR and N98-4445A (with high oleic acid) and R95-1705 

(high yield and non-GMO), were selected based on their high protein content. The alkali 

extraction method provided >90 % protein yield in the isolates (yield: >83 % d. b. by mass 
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balance) which were used to prepare the protein fragments. The optimal conditions to 

accomplish the Alcalase enzymatic hydrolysis of the proteins in order to derive peptides of 

varying sizes were achieved using a statistical design for a 30 % degree of hydrolysis to derive 

protein hydrolysates or peptides of varying sizes (Rayaprolu et al., 2013). The ultrafiltration of 

GI-resistant protein hydrolysates using molecular cut-offs columns—5, 10 and 50kDa provided 

the fractions <5, 5-10, 10-50 and >50kDa (yield: 1.8–2.1 % d. b. by mass balance, derived from 

the isolate) for each soybean line with protein content ranging between 89 and 92 %. Initial 

screening showed comparatively poor ACE-I inhibition by the >50kDa fractions which were 

eliminated during further testing. The non-GI fractions showed overall low ACE-I inhibition 

when compared to the GI fractions which was in agreement with previous research (Kannan, 

2009). 

 A concentration of 500 μg/mL was used for the study where the results showed overall 

low activity in comparison to the positive control, captopril (approximately 75 % inhibition). 

However, the highest inhibition among the fractions was 48.9% by the 5-10kDa obtained from 

R95-1705 soybean line (Figure 4.2), and this fraction was chosen for the dose response study to 

determine the minimum inhibitory concentration. The <5-kDa fraction from the high oleic acid 

soybean line N98-4445A showed an inhibition of 42.2 ± 1.3 % which was the only other 

significant activity observed against the ACE-I enzyme among all the protein hydrolysate 

fractions. Peptides of both large and small sizes have shown bioactivities in previous studies and 

have exhibited functionalities that can be used in food products (Wu et al., 1998, Wu and Ding, 

2002). The hydrolysates tested for GI resistance could potentially be available for absorption 

through the intestine when consumed as food and elicit the health beneficial bioactivities in the 

target tissues. Researchers have shown that peptides of various molecular sizes are absorbed 
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through the intestinal wall but the ability of absorption decreases with an increase in molecular 

size (Roberts et al., 1998).  

Dose response study of the fraction with highest activity and purification using 

chromatography 

 A dose response study of the 5-10kDa fraction (R95-1705) revealed an increase in ACE-I 

inhibitory activity as the dosage of the fractions increased (Figure 4.3). The highest inhibition 

was achieved at 1200 μg/mL concentration (75.5 ± 2.8 %) which was not significantly different 

from that shown by 1000 μg/mL concentration (72.4 ± 1.4 %). An increase in ACE-I inhibition 

was observed at ≥800 μg/mL concentration, although the highest inhibition by the fractions was 

significantly lower in comparison to the positive control. The dose response provided the 

inhibitory concentration at 50 % activity (IC50) of the 5-10kDa protein fraction from R95-1705 

to be 563 μg/mL. These results are significant as R95-1705 is a non-GM soybean line, which can 

have a potential impact on its utilization in foods or supplemental therapeutics. The ACE-I 

inhibitory activity can be attributed to the pool of peptides from 5-10kDa and their amino acid 

sequences. However, other studies have reported significant ACE-I inhibitory activity by similar 

molecular size peptide fractions which were derived from marine protein sources (Lee et al., 

2010). Previous studies from the current research group have shown the ability of large 

molecular size peptide fractions (>50 kDa) to have ACE-I inhibition (Lassissi et al., 2014). 

Researchers have also reported ACE-I and atherosclerosis inhibition by hydrolysates obtained 

from both glycinin and β-conglycinin fractions of soy protein (Kuba et al., 2005, Adams et al., 

2004). Hence, the peptide fraction from R95-1705 (5-10kDa) with anti- ACE-I activity may have 

been derived from either the glycinin (11S) or β-conglycinin (7S) fractions of the proteins which 

needs further examination.  
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 Several factors can be attributed to the substantial anti-ACE-I activity that can be studied, 

starting with the purification of the peptide pool from the 5-10kDa fraction from R95-1705 

soybean line. The HPLC analysis of the peptide fraction showed 5 individual peptides which 

were separated by the elution time on the column (Figure 4.4). The solvent system and the 

gradient used were efficient in separating the 5 peptides in the fraction.  

Studies have also shown that protein hydrolysates and peptides derived from various food 

sources possess anti-ACE-I activities (Lee et al., 2010, Balti et al., 2010, Lassissi et al., 2014). 

Although most researchers tested (pure) peptides derived from either fermentation or enzymatic 

hydrolysis, very few studies have demonstrated the bioactivity of GI-resistant protein 

hydrolysates which contain a pool of peptides. Preparation of hydrolysates is economical in 

comparison to derivation of pure peptides. Peptide fractions can provide synergistic effects and 

have shown multiple bioactivities (Kannan et al., 2008, Rayaprolu et al., 2013). 

 

Conclusion 

The protein fraction from the R95-1705, a non-GM soybean, showed highest ACE-I inhibition. 

This is the first time ACE-I inhibition has been achieved with GI-resistant non-GMO soy protein 

hydrolysates derived by enzymatic digestion of high purity protein isolates. The 5-10kDa protein 

fraction at a higher dose presented an enhanced ACE-I inhibitory activity. In conclusion, this 

study provides amino acid composition of soybean lines that are grown for definite yield 

attributes and demonstrates functional activity of protein/peptide fractions derived from selected 

soybean lines.  
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Figure 4.1. The prediction profiler of the JMP showing the optimized conditions. (DH=degree of 

hydrolysis, Enz=Enzyme concentration). (Rayaprolu et al., 2015). 
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Figure 4.2. The ACE-I inhibitory activity of soybean peptide fractions at 500µg/mL 

concentration. Values are means ± standard deviation. Bars not connected wtih same letter are 

significantly different (P <0.05). (Rayaprolu et al., 2015). 
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Figure 4.3. Dose response study of 5-10kDa and <5kDa peptide fractions from R95-1705 

and N98-4445A soybean lines on ACE-I inhibitory activity. Captopril 10mM – Positive 

control. Negative Ctrl – 1.0% saline. Bars are means ± standard deviation and those not 

connected with same letter are significantly different (P<0.05). (Rayaprolu et al., 2015). 

  

0

10

20

30

40

50

60

70

80

90

200 400 600 800 1000 1200 Captopril Neg. Ctrl

R95-1705

(5-10kDa)

N98-4445A

(<5kDa)

Dose of Protein Fractions

%
 A

C
E

 I
n

h
ib

it
io

n

a a 

b 
b 

c 

d 

e 

f 

g 

e 

g 
g 

h 

i 



95 

 

 
Figure 4.4. Purification of the 5-10kDa peptide fraction from R95-1705 using HPLC 

method. The arrow heads represent 5 individual peptides present in the 5-10kDa fraction which 

showed combined activity against ACE-I. (Rayaprolu et al., 2015). 
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Table 4.1. Types of proteases and specificity of these enzymes used for protein hydrolysis in 

general (Adler-Nissen 1993). 

Enzyme Type of protease Specificity 

Liquipanol 

Bromelain 

Alcalase 

 

Protex 6L 

Trypsin and Chymotrypsin 

Carboxypeptidase 

Cysteine 

Cysteine 

Serine 

 

Serine 

Serine 

Metallo 

Broad 

Broad, prefers Arg-Arg peptides 

Broad, prefers uncharged residue’s 

carboxyl site 

Broad for peptide bonds 

Lys, Arg, Phe, Trp, Tyr, Ala 

Terminal amino acids at C-terminus 

with exceptions: Pro, Arg, Lys 
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Table 4.2. Protein content (purity) in the isolate extracted from three soybean lines (N98-4445A, 

R95-1705 and S03-543CR). 

Soybean line   Protein % (dry basis) 

    S03-543CR    90.82 ± 0.61a 

    N98-4445A    91.6 ± 0.95a 

 R95-1705   93.34 ± 1.29b 

 

Values (means ± standard deviation) not connected with same letters are significantly different 

(P<0.05). (Rayaprolu et al., 2015). 
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Table 4.3. The Box-Behnken design of the surface response method to determine the 

optimal degree of enzymatic hydrolysis. 

S.No Pattern Enzyme pH Time (min) Temperature (°C) 

1 −−−− 1 6.5 30 55 

2 −−−+ 1 6.5 30 70 

3 −−+− 1 6.5 90 55 

4 −−++ 1 6.5 90 70 

5 a000 1 7.5 60 62.5 

6 −+−− 1 8.5 30 55 

7 −+−+ 1 8.5 30 70 

8 −++− 1 8.5 90 55 

9 −+++ 1 8.5 90 70 

10 0a00 3.5 6.5 60 62.5 

11 00a0 3.5 7.5 30 62.5 

12 000a 3.5 7.5 60 55 

13 0 3.5 7.5 60 62.5 

14 0 3.5 7.5 60 62.5 

15 000A 3.5 7.5 60 70 

16 00A0 3.5 7.5 90 62.5 

17 0A00 3.5 8.5 60 62.5 

18 +−−− 5 6.5 30 55 

19 +−−+ 5 6.5 30 70 

20 +−+− 5 6.5 90 55 

21 +−++ 5 6.5 90 70 

22 A000 5 7.5 60 62.5 

23 ++−− 5 8.5 30 55 

24 ++−+ 5 8.5 30 70 

25 +++− 5 8.5 90 55 

26 ++++ 5 8.5 90 70 

The pH, time, temperature and enzyme concentration (Enz) are the independent variables, 

each with three levels. The column S. No. shows the number of experimental runs while 

‘Pattern’ column shows the design for each experiment where ‘-‘stands for the lowest level, ‘0’ 

is for the middle and ‘+’ is for the highest level for each variable.  
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CHAPTER 5 

Peptides Derived from High Oleic Acid Soybean Meals Inhibit Colon, Liver and Lung 

Cancer Cell Growth 

 

(Part of the chapter published in Food Research International Journal, 50: 282-288.) 

 

Abstract 

Soybean meal, a co-product after oil extraction from seeds, is rich in protein. Our objective was 

to utilize this co-product, obtain gastrointestinal (GI) resistant peptides from the isolated protein, 

and test for bioactivity against colon, liver and lung cancer cell lines. N98-4445A, S03-543CR 

high oleic acid soybean lines, and R95-1705 high protein soybean line were used for this study. 

Protein isolates were prepared at alkaline pH and hydrolyzed using Alcalase enzyme to generate 

peptide hydrolysates. After determining gastrointestinal resistance of the peptide hydrolysates 

they were fractionated into definite molecular sizes of <5 kDa, 5-10 kDa, and 10-50 kDa and 

tested against human colon (HCT-116, Caco-2), liver (HepG-2) and lung (NCL-H1299) cancer 

cell lines. MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium) cytotoxicity assay was performed to test in vitro cancer cell viability upon 

treatment with peptide fractions. The peptide fractions from N98-4445A and S03-543CR lines 

showed cell growth inhibition of 73 % of colon cancer (HCT-116), 70 % of liver cancer cells and 

68 % of lung cancer cells. Dose response showed that the peptides had significant inhibitory 

effect at higher concentrations (1000 µg/mL to 600 µg/mL) and gradually decreased with 

decreased dosage (500 µg/mL to 100 µg/mL). Soybean peptide fractions can thus be a source of 

bioactivity against colon, liver and lung cancer cell proliferation.  
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Introduction 

Soybeans are grown for commercial edible oil, and among the genetic lines the high oleic 

acid (HOA) lines are in demand from the industry due to high oleic to linolenic acid ratio that is 

more stable in food products (USDA 2009). The HOA soy lines have genetically manipulated 

fatty acid content in the seeds with higher amounts of mono-unsaturated oleic acid as a substitute 

for poly-unsaturated linoleic acid (Cahoon, 2003 and Hyten et al., 2004). High oleic acid oil 

causes low rancidity in the foods prepared with the soybean oil, giving them a longer shelf life. 

Studies have also shown an increase in essential amino acid, lysine in the hybridized high oleic 

acid soybean seeds compared to the parents (Kinney, 2007). This is an essential criterion since 

the residue after oil extraction from the seeds, soy meal, is a rich source of protein with the 

essential amino acids except for the sulfur containing amino acid methionine. Soybean protein is 

an excellent healthy substitute for animal protein and is used as a protein supplement in muscle 

building. While processed animal meats are known to cause health concerns including cancer 

and heart disease due to the presence of nitrosamines, soy protein has been proved to promote 

health without causing any detrimental health conditions (Norat et al., 2001). 

Cancer is the second leading cause of death in the United States after heart disease. The 

Centers for Disease Control and Prevention has claimed an estimated 577,190 cancer deaths in 

2012 (ACS, 2012). Approximately 1.6 million new cancer cases were to be diagnosed of which 

approximately 9 % are colorectal and approximately 29,000 new cases of liver and related 

organs are expected in 2012. According to American Cancer Society an estimated 14 % of 

cancer diagnoses in 2012 are related to lung and bronchus while, colorectal cancer is ranked third 

among all cancer deaths in the United States (ACS, 2012). Treatment of cancer is highly 

expensive involving drugs that have adverse side effects and toxicity complications. Cheaper 
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alternative methods using bioactive peptides can have better prospects in the economics of 

cancer prevention and therapy. These bioactive peptides are derived from food ingredients and 

are acceptable due to their non-toxic nature (Silva-sanchez et al., 2008). Bioactive peptides from 

food sources like egg protein and milk protein with health promoting properties have been 

studied extensively in the recent years (De Mejía and De Lumen, 2006). Peptides from fermented 

soy products including Tempeh and Natto (Gibbs et al., 2003) and those formed after enzymatic 

digestion of protein from soybeans and rice bran have shown bio-activity against cancer (Zang et 

al., 1998; Kannan et al., 2008). Researcher also studied peptides derived from bacterial 

fermentation of milk to determine their bioactivity (Algaron et al., 2004). However, no literature 

information on bioactivity is available on protein or peptides derived by enzymatic hydrolysis 

from high oleic acid soybean meals.  

The primary objective of this research was to derive peptides from the soybean meal of 

high oleic acid soybean lines N98-4445A and S03-543CR and compare the cell proliferation 

inhibition with that of the peptides prepared from a high protein soybean line R95-1705. 

Alcalase enzyme was used to hydrolyze the isolated protein, since it is extensively studied and 

used in the industry (Gupta et al., 2002). In this study, peptide hydrolysates were prepared from 

high oleic acid soy protein isolates (SPIs), tested for gastrointestinal resistance, fractionated 

based on molecular size, and tested for multiple site cancer inhibiting activities. 

 

Materials and methods 

Preparation of Protein Isolate and Enzymatic Hydrolysis to Derive Gastro‑Intestinal 

Resistant Peptide Fractions 
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Seeds from the three selected (based on high protein content) soybean lines (high oleic acid: 

N98-4445A, S03- 543CR; high yield: R95-1705) were ground, defatted and passed through a 60-

mesh (250 μm particle size) sieve. Suspensions of the flours were prepared to extract the protein 

at an alkaline pH of 9.5 precipitated at isoelectric pH of 4.5 to obtain the protein isolates. The 

protein isolates were digested using the enzyme Alcalase 2.4L under optimal conditions to derive 

varying size protein hydrolysates (Rayaprolu et al., 2013). The hydrolysates were then passed 

through a simulated gastro-intestinal (GI) environment using the enzymes, pepsin and 

pancreatin, at 37 °C to derive GI-resistant protein hydrolysates. Ultrafiltration molecular cut-off 

membrane columns were used to collect the peptide fractions, <5, 5–10 and 10–50kDa, which 

were freeze-dried and stored at 4 °C. 

Cell proliferation inhibition assay against human cancer cell lines and dose and time 

response study 

The GI resistant peptide hydrolysates were tested on human cancer cell lines and normal 

human colon and lung cell lines for toxicity. The Caco-2 (ATCC number: HTB-37), HCT-116 

(ATCC number: CCL-247) colon epithelial cancer cells and CCD-18Co normal colon fibroblast 

cells (ATCC number: CRL 1459); HepG-2 (ATCC number: HB-8065) liver epithelial cancer 

cells; NCL-H1299 (ATCC number: CRL-5803) lung cancer cells and LL 47 (MaDo) normal 

lung fibroblasts (ATCC number: CCL-135); and the culture media were purchased from ATCC 

(Manassas, VA, USA). The cell lines were cultured in 25 cm2 flasks by adding 10mL of media 

and incubating at 37 °C with 5% CO2 for 24 - 48 hours. Stock cultures were prepared 

(approximately between 200,000 to 2,000,000 cells) by trypsinizing the monolayer of cells with 

3 mL of Trypsin-EDTA reagent (0.1% Trypsin + 0.53mM EDTA solution).  
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The prepared stocks were used to culture the cells in 25 cm2 flasks, trypsinized and 

transferred to 96-well tissue culture plates with fresh media and incubated at 37 °C with 5% CO2 

for 48 hr. The peptide fractions in solution (800 µg/mL) were added to the wells along with fresh 

media and the plates were incubated at 37 °C with 5% CO2 for 24-36 hours. For the dose 

response study, 10-50 kDa peptide fractions from N98-4445A soy line were prepared with 

varying concentrations ranging from 100 g/mL to 1000 g/mL and compared with 200 g/mL 

Genistein. The plates were observed for disruption of the mono layer over a period of 18 to 72 

hours. The 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium) (MTS) (Promega Inc., Madison, WI, USA) assay was conducted to determine the 

cell growth inhibition by the peptides. Wells untreated were considered as the negative control 

and the test was done in triplicate for all cell lines. The mitochondria of the live cells metabolize 

the MTS reagent and form a soluble substance called Formazan. The amount of formazan 

liberated in solution formed by the cancer cells was used to determine the number of live cells by 

measuring the absorbance at 490 nm in a micro plate reader (Bio-Rad Inc., Hercules, CA, USA). 

The % inhibition of the cancer cell proliferation by the GI resistant peptide fractions were 

calculated as: 

% Inhibition = 1 – [(AbsTest - AbsNegCtl)/(AbsPosCtl - AbsNegCtl)] * 100 

Where, AbsTest = absorbance of the test sample, AbsNegCtl = absorbance of the negative control, 

and AbsPosCtl = absorbance of positive control (Genistein). 

The hydrolysate with highest inhibitory activity was also tested for cell toxicity using the 

MTS assay against normal human colon cell line. The dose response test was conducted for the 

fraction with highest activity against cancer cell proliferation at a dosage ranging from 100 to 
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1000 g/mL. This was used to calculate the minimum effective concentration of the peptide 

fractions against the cancer cells. 

Statistical analysis 

The Student’s t test with JMP software from SAS institute (Cary, NC) was used for the statistical 

analyses: analysis of variance, means and standard deviations (P value <0.05). 

 

Results and discussion 

Preparation of GI resistant peptide fractions under optimal conditions  

Protein extraction under alkaline conditions yielded highest purity (91-93%) as per 

previous research (Okezie and Bello, 1988). The Box-Behnken RSM statistical design was 

effective in evaluating the optimal conditions for enzymatic hydrolysis of protein isolates from 

the three soybean lines based on degree of hydrolysis. A DH of 30 % was selected as the 

optimum condition at pH 7, enzyme concentration of 1.675 AU, temperature of 55 °C for 45 min 

to derive high and low molecular weight protein fractions. This allowed for formation of 

considerable size peptides that can resist complete digestion when exposed to the gastro-

intestinal juices.   

Peptides of varying sizes were shown to provide functionality in food products (Wu et 

al., 1998, Wu and Ding 2002). The resistance to GI juices by the peptides demonstrated the 

potential for getting absorbed through the intestinal lining and to elicit tissue level functional 

properties. Ultrafiltration technology proved adequate for separating the GI resistant peptides 

based on their molecular sizes. The three membrane size cut-offs, <5 kDa, 5-10 kDa and 10-50 

kDa, from each soy line were collected to test the cancer cell inhibitory property.  

Inhibition of cancer cell proliferation 
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Colon cancer cell growth inhibition (Caco-2 and HCT-116) 

Two colon cancer cell types were chosen to test the effectiveness of the peptide fractions 

derived from the three soy meals. While Caco-2 represents cells derived from cancerous colon, 

HCT-116 represents a colon with tumorigenic pathology. The Caco-2 cells showed slower 

growth in vitro (24 to 48 hr) when compared to HCT-116, HepG-2 and NCL-H1299 cell lines 

(18 to 24hr) which was based on the rate of mono layer formation. The high molecular sized 

fractions (10-50 kDa) from S03-543CR line showed 50% inhibition on Caco-2 cancer cells 

(Figure 5.1) which was not significantly different from that of the low molecular weight <5 kDa 

fractions from N98-4445A, while the positive control inhibited 63% of the cancer cells . The 

highest inhibitory activity on Caco-2 cells was documented by the <5 kDa peptide fractions of 

N98-4445A soy line (54%) which was not significantly different from that of 10-50 kDa 

fractions of the S03-543CR line (50 %) (Figure 5.1). The 10-50 kDa fractions from N98-4445A 

4445A inhibited 73% of the HCT-116 cancer cells and this was statistically significant when 

compared to the positive control (77% inhibition). Figure 5.2 shows the activity of the peptide 

fractions on HCT-116 where <5kDa fraction from R95-1705 showed the only other significant 

inhibition. Even though the inhibition of Caco-2 cancer cells by the soy peptides was not 

statistically comparable to that of genistein, a 50% or more inhibition of the cancer cells is a 

significant amount of bioactivity against colon cancer growth. This significant inhibitory activity 

of the GI resistant hydrolysates against both cancer cell lines has potential use in restricting the 

malignancy of the disease.  

Liver cancer cell growth inhibition (HepG-2) 

The 10-50 kDa fractions of N98-4445A and S03-543CR soybean lines at a concentration 

of 800 μg/mL inhibited approximately 70% of HepG-2 cells which was not significantly 
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different from that of the positive control Genistein at 200 μg/mL (Figures 5.3). The <5 kDa 

fractions from N98-4445A line also showed significant inhibition of 64% which was similar to 

that of the positive control as per the statistical analysis. The inhibitory effect of the other peptide 

fractions was not statistically significant at a P value of <0.05 for the <5 kDa fractions from R95-

1705. 

Lung cancer cell growth inhibition (NCL-H1299) 

On the NCL-H1299 lung cancer cells, the <5kDa fractions from N98-4445A and 5-

10kDa fractions from S03-543CR showed 68% inhibition which was statistically comparable 

with the 73% inhibition of cell growth by the positive control Genistein. The 10-50kDa fractions 

from the high oleic acid soybean lines N98-4445A and S03-543CR also showed 50% and 47% 

inhibition of the lung cancer cells respectively, which was significantly lower than that of the 

smaller size fractions (Figure 5.4). 

Dose response study on the inhibition of HCT-116 colon cancer cell growth 

Even though the smaller peptide fractions had shown cell proliferation inhibition, the 

overall results from the study show that the 10-50kDa peptide fractions from the high oleic acid 

soybean lines N98-4445A and S03-543CR and had a significant inhibiting effect on both colon 

and liver cancer cell lines. A statistically significant inhibitory effect was demonstrated by the 

high oleic acid soybean peptide fractions although, dose used in the study were four times that of 

the positive control. Dose response study of the most effective (73% inhibition) 10-50kDa 

peptide fractions of N98-4445A soybean line showed that the inhibition of cancer cells was 

consistent at higher concentrations of 1000 μg/mL to 600 μg/mL on HCT-116 colon cancer cells 

and decreased to insignificant levels when the concentrations lowered from 500 μg/mL to 100 

μg/mL (Figure 5.5). This test also showed that at the highest dosage level the cancer cell 
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inhibition was higher than that of the anticancer agent, Genistein, at 200 μg/mL. The minimum 

effective concentration of genistein (200 ug/mL) was used as a positive control for comparison 

that showed highest inhibitory activity. Beyond this dose, clumping of cells was observed, 

limiting effective counting of cells. Most effective inhibition of all the cancer cells tested 

occurred during 36 and 48 hours of incubation with the protein hydrolysates. The IC50 value, 

which demonstrates the concentration of the hydrolysate where the cancer cell population is 

reduced by half, was 0.39 mg. The Analysis of Variance for the dose response on the HCT-116 

colon cancer cells study showed an F ratio of 379.9 which was significant at <0.0001 (R2 = 0.99) 

and the Student’s T test value was 2.10 (α = 0.05). The analysis also demonstrated that there was 

no significant difference in the activity between 400 µg and 500 µg doses while a 600 µg dose is 

the minimum inhibitory concentration required to achieve a significant inhibition of the colon 

cancer cell population. 

Toxicity study of the most effective anticancer hydrolysates 

 The hydrolysates from all three soybean lines were tested for toxicity on normal human 

colon (CCD-18Co) and lung (LL 47 (MaDo)) cell lines. The MTS cell proliferation inhibition 

assay showed zero toxicity of the peptide hydrolysates which was comparable to negative control 

(media only) for both the cells.  

 

Conclusion 

Preparation of protein isolate from the meals helped in removal of extraneous matter 

including starch, and provided protein with high purity for hydrolysis with Alcalase. Gastro-

intestinal resistance test showed that the peptide fractions can remain active when consumed. 

The high inhibition percentage of the high oleic acid lines could have possibly been due to the 
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amino acid make-up, sequence and the terminal residues of these smaller peptide fractions. The 

results were conclusive of the hypothesis that bioactive cancer inhibiting peptide fractions can be 

derived from enzymatic hydrolysis of the isolated soybean protein. The present study has 

significance since the peptides with cancer cell inhibiting activity can add value to oil separated 

meal from high oleic acid soybean lines. Cancer cell inhibiting peptides have been produced 

from high oleic acid soybean lines, N98-4445A and S03-543CR for the first time in this study 

with a possibility of generating substantial economic value to the soybean growers. It could be 

concluded that peptide fractions derived from meals of high oleic acid soybean lines have the 

property of inhibiting cancer cell growth in human cell lines and could have potential 

nutraceutical use against colon, liver and lung cancers. 
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Figure 5.1. Caco-2 colon cancer cell line growth inhibition by gastro-intestinal resistant 

peptides from the three soybean lines. Positive control: Genistein 200 µg/ml, Negative control: 

Culture media only. Values (means ± standard deviation) not connected with same letters are 

significantly different (P<0.05). (Rayaprolu et al., 2013). 
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Figure 5.2. HCT-116 colon cancer cell line growth inhibition by GIPs from the three 

soybean lines. Positive control: Genistein 200 µg/ml, Negative control: Culture media only. 

Values (mean ± standard deviation) not connected with same letters are significantly different 

(P<0.05). (Rayaprolu et al., 2013). 
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Figure 5.3. HepG-2 Liver cancer cell line growth inhibition by GIPs from the three soybean 

lines. Positive control: Genistein 200 µg/ml, Negative control: Culture media only. Values 

(means ± standard deviation) not connected with same letters are significantly different (P<0.05). 

(Rayaprolu et al., 2013). 
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Figure 5.4. NCL-H1299 lung cancer cell line growth inhibition by gastro-intestinal resistant 

peptides from the three soybean lines. Positive control: Genistein 200 µg/ml, Negative control: 

Culture media only. Values (means ± standard deviation) not connected with same letters are 

significantly different (P<0.05). (Rayaprolu et al., 2013). 
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Figure 5.5. Dose response study (1000g/mL to 100g/mL) of 10-50 kDa peptide fractions 

of N98-4445A on HCT-116 colon cancer cell line. Pos ctl:  positive control - Genistein 

200µg/ml, Neg ctl: Negative control - Culture media only. Values (means ± standard deviation) 

are in triplicate. (Rayaprolu et al., 2013). 
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CHAPTER 6 

Bioactivity of soybean protein fractions against human blood, breast and prostate cancer 

cell lines 

 

ABSTRACT 

In this study, we examined in vitro bio-activity of the peptide fractions against blood (CCRF-

CEM and Kasumi-3), breast (MCF-7), and prostate (PC-3) cancer cell proliferation. Gastro-

intestinal resistant peptide fractions (<5, 5-10 and 10-50kDa) prepared from seed proteins of two 

high oleic acid soybean lines - N98-4445A, S03-543CR and one high protein line - R95-1705, 

were tested for anticancer activity against human breast, blood and prostate cancer cell lines. 

Anti-proliferative cell titer assay was conducted to assess the inhibitory effects of the peptide 

fractions, while Trypan blue dye exclusion assay was used to determine the dose response of 

most effective fractions. Results showed that the peptide fractions inhibited the cancer cell lines 

up to 68% and the minimum inhibitory concentration ranged between 608-678 µg/mL. This 

multiple site in vitro cancer inhibition by GI friendly peptides could have potential use in food 

ingredients or nutritional supplements in alternative cancer therapy. 
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Introduction 

The use of alternative methods in treating diseases like cancers has been on the rise in 

recent years. Conventional treatment methods like radiation and chemotherapy have become 

highly expensive and involve adverse side effects. Advanced cancer treatment methods employ a 

holistic approach by incorporating dietary or nutritional, spiritual and physical therapies along 

with drugs and radiation. As part of nutritional supplementation, bioactive peptides have a 

prominent role in alternative medicine which involves controlling diseases using food derived 

macro molecules (Zhang et al., 1998, Korhonen & Pihlanto, 2003, Kannan et al., 2008). Certain 

other bioactive molecules are from natural sources like plants (Ng 2003, Ohba et al., 2004, Silva-

Sánchez 2008). One of the major approaches to produce bioactive peptides was enzymatic 

hydrolysis or fermentation, especially from sources like soybean, wheat, corn, rice, sunflower, 

milk, eggs, and meat (Wang and de Mejia, 2005, De Mejia, 2006, Gibbs et al., 2004).  

Although it is used as a low cost animal feed, the potential nutritive nature, especially of 

the protein obtained from soybean meal components is well documented (Gallagher et al., 2004). 

With studies conferring bioactivities to proteins, we found it necessary to test soybean protein 

hydrolysates for reducing the risk of cancer disease on cell culture models. Soybean meal has 

≥45% protein with possible unique amino acid types and sequence that could render bioactive 

nature by mitigating apoptosis in cancer cells (Hernandez-Ledesma et al., 2009, Hsieh et al., 

2010). It is also of significant importance for the bioactive peptides to possess resistance to 

gastrointestinal environment when ingested. Soy has several value-added uses and has proven to 

be a source of peptides derived by enzymatic hydrolysis that have shown nutraceutical and 

functional properties (Rayaprolu et al., 2013). However, studies are lacking on the effect of 

peptides from high oleic acid lines on cancers like blood (leukemia), breast and prostate, which 
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are estimated to cause a total of 94,000 deaths (2014) in the United States (ACS 2014). This is 

the first study that utilized high oleic acid soy meal as a starting raw material to produce peptides 

with anticancer activity against breast, blood and prostate cancers that can have a significant 

impact in their treatment. Our previous studies have shown anticancer activities against colon, 

liver and lung cancer cells (Rayaprolu et al., 2013). The present study is in continuation to 

evaluate anti-proliferative activity against blood (CCRF-CEM, Kasumi-3), breast (MCF-7) and 

prostate (PC-3) cancer cell lines. Utilization of a low cost soybean meal to produce effective 

anticancer peptides is the significant achievement of this research. The objectives of this research 

were to select two high oleic acid and one high protein soybean lines to prepare peptides, prepare 

protein hydrolysates with enzyme Alcalase under optimum conditions, treat peptides with 

simulated gastro-intestinal juices, fractionate the peptides using ultrafiltration and investigate the 

anticancer activity of GI resistant fractions on the human blood, breast and prostate cancer cell 

lines.   

 

Materials and Methods 

 Seeds from three soybean lines, S03-543CR and N98-4445A (high in oleic acid) and 

R95-1705 (high in protein, non-transgenic) were provided by Dr. Pengyin Chen (Professor, Plant 

Sciences Department, University of Arkansas). Food grade enzyme, Alcalase, was purchased 

from Novozyme Inc. (Bagsvaerd, Denmark) and gastro-intestinal enzymes pepsin and pancreatin 

were purchased from Sigma-Aldrich (St. Louis, MO). The ultrafiltration system was purchased 

from Koch membrane systems (Massachusetts, USA). The cell lines and media were obtained 

from ATCC (Manassas, VA) and Fetal Bovine Serum was purchased from Atlanta Biologicals 

(Altlanta, GA, USA). The reagents for cell proliferation inhibition were purchased from Sigma-
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Aldrich (St. Louis, MO) and Promega Inc. (Madison, WI). The cells were observed for 

morphological changes using a Vistavision inverted phase contrast microscope (VWR, West 

Chester, PA). All other chemicals and supplies were obtained from VWR (West Chester, PA). 

Inverted phase contrast microscope was purchased from (VWR Inc., West Chester, PA). 

Preparation of Enzyme-Treated Soy Protein Hydrolysates. 

 The soybean seeds were ground to flour and sieved (250 μm) for uniform particle size. 

The lipid was removed using the solvent, N-hexane, to collect the residue which is called the 

soybean meal. The meals were suspended in water (10% w/v) and protein was isolated at an 

alkaline pH of 9.5 under ambient temperature conditions. The protein was separated from 

solution using isoelectric pH (4.5) as described previously (Rayaprolu et al., 2013) and the 

isolates obtained with ~90% purity were then freeze dried and stored at 5 0C.  

The protein isolates were suspended in water (10% w/v), mixed to homogeneity, the pH 

was adjusted to 7.0 and incubated at 55 ºC. These isolates were treated with the enzyme Alcalase 

(at a concentration of 1.675 Anson units) for 1 hour based on the optimal conditions for a 30% 

degree of hydrolysis using the Box-Behnken Design of the Response Surface Methodology 

(Diniz & Martin, 1996, Rayaprolu et al., 2013). The enzyme was inactivated at a temperature of 

90 °C, and hydrolysates were separated by centrifugation, freeze dried and stored at 5 ºC. 

Preparation of Gastrointestinal (GI) Juice Resistant Soy Peptide Fractions. 

The enzyme treated hydrolysates were passed through a simulated gastric and intestinal 

solution as previously described (Rayaprolu et al., 2013). The GI-resistant protein hydrolysates 

were fractionated using Ultrafiltration system equipped with 1" diameter hollow-fiber 

polysulfone membrane cartridges. Nominal molecular weight cut-offs (MWCO) of 50, 10, and 5 

kDa sequential ultrafiltration columns were used. The filtered soluble GI-resistant protein 
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hydrolysates were passed through the columns as the retentates and permeates were collected 

separately for each soybean line. Approximately a quarter of the total volume of protein 

hydrolyates were obtained which are now addressed as GI-resistant peptide fractions (<5kDa, 5-

10kDa and 10-50kDa). The nine molecular cut-off fractions from the three soybean lines (3 

soybean lines X 3 fractions) were freeze-dried and were tested for inhibitory activity against 

human blood (CCRF-CEM and Kasumi-3) and breast (MCF-7) and prostate (PC-3) cancer cell 

lines. 

Propagation of Human Cancer Cell Lines. 

Human prostate cancer cell line PC-3 (ATCC# CRL-1435) was cultured in F-12K 

medium, Kasumi-3 (ATCC# CCL-2725) and CCRF-CEM (ATCC# CCL-119) blood cancer cell 

lines were cultured in RPMI-1640 medium, and the breast (epithelial) cancer cell line MCF-7 

(ATCC# HTB-22) was cultured in Eagle’s Minimum Essential Medium. The peripheral blood 

cells (ATCC# PCS-800-010) were cultured in the recommended Hank's Balanced Salt Solution 

and used for toxicity tests. All the media were devoid of antibiotics and supplemented with 10% 

fetal bovine serum. The cells were incubated at 37 °C Cells in a humidified atmosphere 

containing 5% carbon dioxide. The growth phase of all cancer cells was monitored using an 

inverted phase contrast microscope. After cell growth achieved 80%, they were treated with the 

peptide fractions, <5kDa, 5-10kDa and 10-50kDa, from the three soybean lines. The anti-

proliferation assay was performed to determine the anticancer activity.  

Determination of Anti-Proliferative Activity of the Peptides - MTS Colorimetric Assay. 

The [3-(4,5- dimethyl thiazole-2-yl)]-2,5-diphenyl tetrazolium bromide (MTS)-based cell 

titer assay was used to determine the effect of soybean peptide fractions on the cytotoxicity 

against cancer cells.. The blood cancer cell lines, CCRF-CEM and Kasumi-3, were allowed to 
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grow in suspension (medium) since they do not attach to the well surface. Fresh growth media 

was added by separating the cells using centrifugation (1000 x g for 5 min). The pellet was 

rinsed and re-suspended in fresh media before transferring into the 96-well plate for 36 hour 

incubation at 37 ºC and 5% CO2. The prostate (PC-3) and breast (MCF-7) cancer cells were 

cultured in the 25 cm3 flask with the growth media to form a monolayer on the flask surface. The 

cells were checked for conformation (Trypan blue dye exclusion test) for minimum counts of 

≥3000. They are detached from the flask surface by adding Trypsin-EDTA and re-suspended in 

respective fresh media. The four types of cancer cells were transferred to separate 96-well plates 

(200 µL/well) for a 36 hour incubation at 37 ºC and 5% CO2. The nine soybean peptide fractions 

dissolved in water (800ug/mL) were added to the wells with the cancer cells. A column of wells 

were treated with saline (negative control) while Genistein (200 µg/mL) was used as positive 

control for comparison of growth inhibition. The cancer cells were incubated for 18-36 hours 

while being observed for cell death due to the test compounds. The MTS dye was added to 

determine cell survival and termination was observed by the formation of colored formazan 

product. The 96-well plate was read at 490 nm in a Microplate Reader (Bio-Rad Inc., Hercules, 

CA, USA) and the percent inhibition was determined based on the absorbance value (Rayaprolu 

et al., 2013).  

Quantitative Evaluation of Dose Response by Trypan Blue Dye Exclusion Assay. 

The cancer cell growth inhibition based on dosage of GI resistant soy peptide fractions 

was established based on the Trypan Blue dye exclusion assay. This is conducted for the GI-

resistant peptide fractions that showed highest cytotoxicity against the four cancer cells tested. 

For trypan blue staining, 500 µL of cells from each cancer cell culture were aseptically 

transferred to a 24 well plate and incubated for 72 hours. The peptide fractions with 



122 

 

concentrations ranging from 200 to 1000 µg/mL were added to the wells along with media and 

incubated for 48 to 60 hours at 37 ºC and 5% Co2. The wells were treated with 0.4% (w/v) 

Trypan blue solution prepared in 0.81% NaCl and 0.06% (w/v) dibasic potassium phosphate. 

Cell counts were determined using a dual-chamber hemocytometer and a phase contrast 

microscope. Numbers of viable cells were recorded based on the stain retention.  

Calculations and Statistics. 

All tests were conducted in triplicate to minimize experimental error and were repeated 

for reproducibility. The JMP 12.0 statistical software (SAS institute, Cary, NC) was used for all 

data analyses.  

 

Results and Discussion 

Protein hydrolysate preparation 

Protein isolates prepared from the meal (defatted flour) of the R95-1705, S03-543CR and 

N98-4445A soybean lines had a purity of 90% or higher due to the effective alkaline extraction 

procedure (Rayaprolu et al., 2013). Alcalase, a food grade enzyme, was sued to produce protein 

hydrolysates from the isolates. The degree of hydrolysis was used as the response variable in the 

modelling of enzymatic hydrolysis and varying molecular sized protein fragments were collected 

(Nielsen et al., 2001). This was in congruence with the premise of this study which is to 

determine the bioactivities of peptides with various lengths and amino acid sequences. The 

simulated GI resistance test demonstrated that the peptides are resistant to digestion in the GI 

tract and will remain bioactive without undergoing any degradation when consumed. The protein 

content of the GI-resistant fractions from the three soybean lines ranged between 85 and 88% 

purity. 
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Anti-proliferative activity of GI-resistant peptide fractions against cancer cell lines 

Previous studies have shown that protein products are effective against various cancers 

(Bylund et al., 2000, Badger et al., 2005). All the 4 cancer cell types had counts ranging from 

3000 to 5000 (>70% confluence) during the growth phase in the culture flasks. The 

morphological confirmation of the blood, prostate and breast cancer cells during initial 

proliferation showed no shrinkage or nuclear blebbing, which was essential for the experiment. 

The results showed that 68% of CCRF-CEM blood cancer cells were inhibited by the 

10-50kDa fraction from the N98-4445A soybean line (Figure 6.1) which was the highest among 

all fractions tested. The 5-10kDa fraction from the same soybean line showed 52% cytotoxicity 

which was significantly different from the 5-10kDa fraction of S03-543CR (41% inhibition). 

On the Kasumi-3 blood cancer cell line <5kDa (52%) and 10-50kDa (49%) fractions from the 

N98-4445A soybean line and 5-10kDa (55%) fraction from S03-543CR inhibited the cell 

growth with no statistically significant difference (P<0.05) amongst them (Figure 6.3). 

However, the 5-10kDa of S03-543CR had the highest inhibition among all the fractions. The 5-

10kDa fractions from S03-543CR and R95-1705 soybean lines showed 41 (CCRF-CEM) and 

37 (Kasumi-3) percent inhibition respectively which was the only other significant reduction 

observed during the MTS assay on the two blood cancer cell lines (Figures 6.1 and 6.2).  

The 5-10kDa fraction from S03-543CR soybean line showed 63% inhibition against the 

PC-3 prostate cancer cells, while the 10-50kDa fraction from N98-4445A soybean line inhibited 

58% of the cells (Figure 6.3). Similar sized fraction (5-10kDa) obtained from R95-1705 

soybean line also showed 38% inhibition of the PC-3 cells but there was significantly lower. 

The other fractions that were tested did not demonstrate any activity against the prostate cancer 
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cells. This is the first study that revealed the efficiency of GI resistant fractions from a seed 

protein in inhibiting in vitro prostate cancer cell proliferation. 

The MCF-7 breast cancer cells were used as a model system for testing anti proliferative 

activity and biochemical pathways by various researchers (Doyle et al., 1998, Kannan et al., 

2009, Chen et al., 2012 and Li et al., 2014a). The 5-10kDa fraction from the R95-1705 soybean 

line showed a significantly high activity among all the fractions with 63% inhibition of MCF-7 

cells (Figure 6.4). This was not statistically different (P value <0.05) from the positive control. 

This result has a major impact on future studies involving anticancer agents from plant sources 

since R95-1705 is a non-transgenic (non-GMO) soybean line. The <5kDa and 10-50kDa from 

the R95-1705 soy line also inhibited the MCF-7 cells and the activity was significant in 

comparison to the other fractions. The three fractions from the S03-543CR high oleic acid line 

showed extremely poor activity against the breast cancer cells while the fractions from N98-

4445A soybean line showed 18-30% inhibition of the MCF-7 cells.  

The normal peripheral blood cells were required to be cultured immediately after 

thawing the procured frozen stocks and showed 2 x 103 counts when cultured with the growth 

medium in the 96-well plates. The toxicity test of the peptide fractions on normal human blood 

cell line showed no significant effect (< 2-5%) in comparison to Genistein that showed 

inhibition of normal blood cells by 11%. These results demonstrate that the peptide fractions 

can reduce the cancer cell growth without affecting the neighboring normal human cells. A 

summary of effective cancer cell inhibitory activity demonstrated by the various peptide 

fractions is given in Table 6.1. Further purification of the fractions into pure peptides may 

provide enhanced anticancer effect. Other researchers have demonstrated an effective anticancer 

activity of single peptides against breast cancer (Kannan et al., 2009 and Li et al., 2014a, 
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2014b). These results have demonstrated the immense potential of peptide fractions and 

peptides in reducing in vitro breast cancer cell proliferation. Continuation of this research with 

clinical trials may provide potential drug-free or supplemental therapeutic solutions in treating 

cancers. 

Dose response study based on Trypan blue dye exclusion method 

 The Trypan blue dye exclusion test has been used for numerically quantifying the cell 

counts. This test provided the cell counts against the dose response of the specific fractions that 

showed highest inhibitory activity based on MTS colorimetric method. The established cell 

counts based on Trypan blue assay provided a quantitative scrutiny of the effectiveness of 

peptide fractions against the cancer cells. The results from the assay correspond to the cell 

survival/viability percentage calculated based on the counts in comparison to a known positive 

control, Genistein. Among the fractions, the 5-10kDa fraction from S03-543CR soybean line 

showed the best growth inhibition of both prostate and Kasumi-3 blood cancer cell lines (Figure 

6.5). The dose response showed significant increase in activity at >600 µg/mL which was 

observed on PC-3, CCRF-CEM and MCF-7 cell lines with approximately 50% reduction in cell 

survival. The 5-10kDa fraction from the S03-543CR soy line showed the highest reduction at 

1000µg/mL on PC-3 cell counts which was not significantly different in comparison to Genistein 

(P value <0.05). Although the cell survival % reduced to less than 20% in the blood cancer cell 

lines (CCRF-CEM and Kasumi-3) the positive control had the significantly higher inhibition. On 

the MCF-7 breast cancer cell line, the 5-10kDa fraction showed a significant reduction in cell 

survival at the ≥800µg/mL dose. The minimum effective concentration (EC50) for the 5-10kDa 

(S03-543CR) fraction against PC-3 prostate cancer cells was found to be 608 µg/mL. The 10-

50kDa fraction from N98-4445A against CCRF-CEM blood cancer cells was 678 µg/mL while 



126 

 

the 5-10kDa fraction of S03-543CR had an EC50 value of 611 µg/mL on the Kaumi-3 cells. On 

the MCF-7 breast cancer cell line, the 5-10kDa fraction from R95-1705 showed a significant 

reduction in cell survival (10%) at a dosage of 1000 µg/mL dose with an EC50 of 654 µg/mL.  

 

Conclusion 

Enzymatic hydrolysis (with and without protein extraction) has been proven to be a 

promising approach to obtain peptides from protein sources that are considered a bio-waste 

(Kannan et al., 2008, 2009 and Rayaprolu et al., 2013). This study is the first of its kind to report 

utilization of soybean meal to obtain bioactive peptides against multiple-site cancer cells. Soy 

peptide fractions obtained after proteolytic digestion and tested for GI resistance showed potent 

anticancer activity against human blood, breast and prostate cells. These GI resistant peptides are 

suitable for use in food product applications due to potential bio-availability when consumed.  
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Figure 6.1. Bioactivity of peptide hydrolysates prepared from two high oleic (N98-4445A 

and S03-543CR) and one high protein (R95-1705) soybean lines against CCRF-CEM 

human blood cancer cells. Positive control: Genistein 200 µg/ml, Negative control: Saline. The 

bars represent % inhibition values expressed as means ± standard deviation (of triplicates) and 

those not connected by same letter are significantly different (P <0.05). 
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Figure 6.2. Bioactivity of peptide hydrolysates prepared from two high oleic (N98-4445A 

and S03-543CR) and one high protein (R95-1705) soybean lines against Kasumi-3 human 

blood cancer cells. Positive control: Genistein 200 µg/ml, Negative control: Saline. The bars 

represent % inhibition values expressed as means ± standard deviation (of triplicates) and those 

not connected by same letter are significantly different (P <0.05). 

  

a 
a 

a 
a 

b 

c 

c 

d 

d 
d 

e 



131 

 

 

 

Figure 6.3. Bioactivity of peptide hydrolysates prepared from two high oleic (N98-4445A 

and S03-543CR) and one high protein (R95-1705) soybean lines against PC-3 human 

prostate cancer cells. Positive control: Genistein 200 µg/ml, Negative control: Saline. The bars 

represent % inhibition values expressed as means ± standard deviation (of triplicates) and those 

not connected by same letter are significantly different (P <0.05).  
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Figure 6.4. Bioactivity of peptide hydrolysates prepared from two high oleic (N98-4445A 

and S03-543CR) and one high protein (R95-1705) soybean lines against MCF-7 human 

breast cancer cells. Positive control: Genistein 200 µg/ml, Negative control: Saline. The bars 

represent % inhibition values expressed as means ± standard deviation (of triplicates) and those 

not connected by same letter are significantly different (P <0.05). 
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Figure 6.5. Dose response study of GI resistant fractions with highest anticancer activity 

based on Trypan blue dye exclusion assay. Positive control: Genistein 200µg/ml. PC-3: 

Prostate cancer; CCRF_CEM: Blood cancer; Kasumi-3: Blood cancer; and MCF-7: Breast 

cancer. Soybean lines are designated as: S03 = S03-543CR, N98 = N98-4445A and R95 = R95-

1705. Values expressed as means ± standard deviation (of triplicates) and those not connected by 

same letter for each cancer type and protein hydrolysate combination are significantly different 

(P <0.05). 
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Table 6.1. Summary of anticancer activity of selected peptide fractions prepared from 

three soybean lines against human cancer cells.  

Type of Cancer cell  Anticancer activity (% inhibition) of GI-resistant peptide fractions  

    (N98) 10-50kDa             (S03) 5-10kDa                 (R95) 5-10kDa  

Blood, CCRF-CEM 68.0±0.5a                          41.0±0.7b 23.3±0.9c 

Blood, Kasumi-3 49.6±1.9b                         55.3±3.3a 37.2±2.7c 

Breast, MCF-7 33.1±1.6b                         10.4±3.9c 64.9±3.9a 

Prostate, PC-3 57.9±1.7b                         63.2±5.1a 39.0±6.8c 

The values presented are means ± standard deviations from triplicate analysis. The values not 

connected by same letters in each horizontal row are significantly different (P <0.05). 
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CHAPTER 7 

Purification and characterization of single peptides with anticancer activities 

 

Abstract 

The objective of this research was to identify and purify peptides from the protein hydrolysate 

fraction prepared from soybean line that previously showed significant activity against human 

cancer cell lines. Protein isolate from a high oleic acid soybean line N98-4445A was used to 

prepare the peptide pools. The 10-50kDa molecular size cut-off fractions showed the highest 

activity which were purified using peptide specific affinity chromatography column. Reverse 

phase HPLC identified three peptides from the fractions. These three individual peptides were 

tested for anti-proliferative activity against HCT-116 colon cancer cell line, CCRF-CEM blood 

cancer cell line and HepG-2 liver cancer cell line using (3-(4, 5-dimethylthiazole-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell titer assay. Enhanced 

colon cancer cell inhibition activity of 80% was observed after testing a pure peptide which also 

demonstrated a time-response of 96 hour after incubation based on Trypan blue dye exclusion 

study. This single peptide with highest activity had a molecular size of 18kDa with 158 amino 

acid residues. The impact of this study lies in deriving a pure single peptide with anti-

proliferative activity on human colon and blood cancer cells. 
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Introduction 

 Physical and chemical treatments, including enzymatic catalysis of food proteins are 

conducted to derive bioactive peptides. But, chemical treatments may contribute to inactive 

peptides by preventing them from being released from the parent protein – as resistant peptide 

bonds can be generated (Rutherford-Markwick and Moughan, 2005). However, enzymatic 

hydrolysis has been proven to be the most effective method to derive bioactive peptides from 

protein sources (Seppo et al., 2003, Korhonen and Pihlanto, 2006, Kannan et al., 2008, 2009 and 

2012, Rayaprolu et al., 2013 and 2015). Controlled enzymatic hydrolysis can generate peptides 

that can elicit bioactivity including anti-proliferative action against cancer cell lines. Studies 

have shown that enzyme catalysis provides peptides from various food sources that can act as 

physiological biomolecules (Yoo et al., 1997, Ng et al., 2003, Korhonen and Pihlanto, 2003, 

Ohba et al., 2004, Gibbs et al., 2004, Kannan et al., 2010, Li et al., 2014). Identifying the peptide 

structure and the amino acid sequence can provide further details into its functional properties 

and its synthesis for pharmaceutical and nutraceutical applications. 

Proper analytical separation and purification techniques can identify peptides that are 

important biological modulators. Various analytical separation techniques include 

microflitration, ultrafiltration, nanofiltration, and reverse osmosis. Deeslie and Cherian (2006) 

studied soy protein hydrolysate fractionation using ultrafiltration membranes using membrane 

pore sizes that were specific to the molecular size distribution of the peptides with functional 

properties. Reverse phase high performance liquid chromatography (RP-HPLC) with ion-

exchange or size exclusion chromatography has been widely used for efficient purification of the 

peptides (Le´onil et al, 2000) prepared using catalysis with Alcalase and flavourzyme (Prakash et 

al., 2002). A peptide inhibiting obesity was isolated and purified from soybean protein 
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hydrolysate using a systematic separation with ultrafiltration, gel filtration chromatography, and 

reverse-phase HPLC by previous researchers (Kim et al., 2007). These methods provided 

evidence to distinguish and select the appropriate search results for peptide purification.  

For a comprehensive characterization of complex mixtures of peptide, chromatographic 

analytical methods were used to better separate peptides prior to mass spectrometric analysis 

(Léonil et al., 2000). These methods can be used in succession to achieve a very high degree of 

resolution. The most effective way to identify and quantify proteins and their modifications by 

mass spectrometry (MS) is to analyze enzyme (trypsin) digests of the proteins of interest. Liquid 

chromatography (LC) coupled with mass spectrometry is by far the most informative technique 

for determining the purity of protein/peptide samples (Ono et al., 2006, Peng et al., 2003) It is a 

technique of analytical chemistry to identify the molecular mass of isolated individual peptides 

present in a sample by measuring the mass-to-charge ratio and abundance of gas-phase ions. The 

mass spectrum is a plot of the ion signal as a function of the mass-to-charge ratio which provides 

the number of ionic components present and indicates the length of the proteins/peptides 

(Desiderio, 1990, Sunner et al., 1995). Database search when used in conjunction with MS offers 

increasingly enhanced information in the characterization of peptides. Of the ionization modes, 

Matrix assisted laser desorption ionization (MALDI) has made it possible to not only determine 

the accurate mass of peptides obtained in a hydrolysate of food proteins but also is able to 

identify the purity of a pure protein or peptide, determine its fragmenting patterns and also 

determine the de novo sequence of the amino acids.  

  Our previous studies have shown that a 10-50kDa fraction obtained from a high 

oleic acid soybean line has anti-proliferative activity against blood (CCRF-CEM), colon (Caco-2 

and HCT-116) and liver (HepG-2) cancer cell lines. Hence, the objective of this study was to 
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separate single pure peptides from a pool using RP-HPLC and size exclusion, and test them on 

colon, blood and liver cancer cell lines for investigation of cell proliferation inhibitory 

properties. Further characterization and amino acid sequence of the single peptide, that showed 

highest cancer cell cytotoxicity, was determined by mass spectrometry. 

 

Materials and methods 

Purification of hydrolysates by HPLC to separate single peptides 

Soy protein isolate was prepared by alkaline hydrolysis (pH 9.5) from the seeds of N98-

4445A soybean line. It was hydrolyzed using Alcalase enzyme, tested for simulated gastro-

intestinal juice resistance and fractionated using ultrafiltration columns with definite molecular 

size cut-offs (Rayaprolu et al., 2013). The 10-50kDa peptide fractions so derived showed highest 

anti-proliferation activity against colon, liver and blood cancer cells. This fraction was selected 

for further purification using a Supelco Bio Wide pore C-18 semi-preparative chromatography 

column from Sigma Aldrich (St. Louis, MO) connected to an HP 1050 series HPLC system from 

Agilent Technologies (Santa Clara, CA), to identify and separate individual peptides.  

A two solvent reverse phase HPLC analysis of the peptide fractions was conducted. 

Solvent A: 0.1 % Trifluoro Acetic acid in 10mM Phosphate buffer at pH 7.3 and solvent B: 50 % 

Acetonitrile in water with 0.1 % Trifluoro Acetic acid in a linear gradient for a 90 minute run. 

The flow rate was maintained at 1 mL/min with the solvent A: 50 % to 0 % for 50 min and 

solvent B: 0 to 100 % for 90 min.  

Size exclusion chromatography of peptides 

 Analytical grade Sephadex G-15 hydrophilic resin was purchased from Sigma Aldrich 

(St. Louis, MO) and packed into a glass column and equilibrated with Millipore water. The 
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column was connected to a semi-preparative HPLC system with one pump running in a binary 

phase. A 1mL sample of 10-50kDa peptide hydrolysate (~0.5 mg/mL protein concentration) was 

loaded onto the column at 1 mL/min flow rate. Five bed volumes of degassed, double filtered 

water were used to wash the peptide fractions as they pass through the resin beads in the stacked 

column. The individual peptides from the fraction were eluted using Millipore water with a run 

time of 85 minutes. The eluates were collected, concentrated in the Spin-X concentrator from 

Corning life sciences (Corning, NY), lyophilized and stored at 4 °C until used for cancer cell 

proliferation inhibition activity. The bioactivity against cancer cells by the pure peptides 

obtained after ion-exchange was determined using the cell proliferation inhibition assay.  

Determination of anti-proliferation activity against cancer cells by the pure peptides. 

The [3-(4,5- dimethyl thiazole-2-yl)]-2,5-diphenyl tetrazolium bromide (MTS) based cell 

titer assay was used to determine the effect of soybean peptide fractions on the cytotoxicity 

against cancer cells.. The cancer cell lines CCRF-CEM (blood), HCT-116 (colon) and HepG-2 

(liver) were cultured in the required growth media in in the 25 cm3 flasks. The blood cancer cells 

remained suspended over the length of the culture and did not attach to the well surface. Hence, 

fresh growth media was added every 72 hours by separating the cells using centrifugation (150 g 

for 5 min). The colon and liver cancer cell lines were detached from the flask surface by adding 

Trypsin-EDTA and re-suspended in respective fresh media. All cell lines were incubated at 37 ºC 

and 5% CO2 for 72 hours and checked for confluence using Trypan blue dye exclusion assay 

(Kannan et al., 2008). After ensuring a minimum count of ≥3000 they were transferred into 

separate 96-well plates. The three peptides purified from the 10-50kDa fraction obtained from 

N98-4445A soybean line were added (dissolved in water) to the wells with the cancer cells. 

Saline (1%) and genistein (200µg/mL) were used as controls for comparison of growth 
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inhibition. The incubated 96 well plates were observed periodically for cell death due to the test 

compounds. The MTS dye was added to the wells to determine mitochondrial activity and 

termination of the assay was observed due to the formation of colored formazan product. 

Absorbance of the well constituents were measured at 490 nm using a micro Epoch plate reader 

from Biotek (Winooski, VT) and the percent inhibition was determined based on the absorbance 

value. 

Time response study of most effective peptide on colon cancer cells 

The Trypan blue dye exclusion assay was used to determine the time response of the 

most effective peptide for cytotoxicity against the blood and colon cancer cells over the 

incubation period (Strober, 2001). The cells were cultured in 25 cm3 flasks for ≥70% confluence 

and transferred to a 24-well plate. The peptide (700 µg/mL) was added to the cells and incubated 

at 37 ºC and 5% CO2 for 96 hours. Trypan blue dye was added to the wells at periodic intervals 

to determine the surviving cell counts using the hemocytometer. Cell survival was determined at 

24, 48, 72 and 96 hours of incubation and survival percentage was calculated. Cell counts from 

the control samples, saline solution and genistein (200 µg/mL), were used for comparison. 

Determination of the peptide mass and sequence using Mass Spectrometry 

Sodium Dodecyl Sulfate-Poly Acrylamide Gel Electrophoresis (SDS-PAGE) was used to 

identify the single peptides present in the fraction and to ascertain the approximate molecular 

size of the single peptide with highest activity. Serum albumin (70kDa) was used as a molecular 

standard. The peptide was separated from the gel matrix and sliced to small pieces before 

washing, to remove the stain, using 25mM ammonium bicarbonate solution in acetonitrile. The 

gel pieces with the peptide were washed in acetonitrile and dried before adding trypsin for 

digestion. The tryptic digests were analyzed for the sequences of amino acid residues using 
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liquid chromatography coupled with mass spectrometry (LC-MS) to separate the tryptic fractions 

and mass spectrometry (MS/MS) system to identify the amino acid sequences with the highest 

score. The samples were analyzed using spectrometer for emergence of peaks corresponding to 

single peptide based on their mass ratios (Grimm et al., 1998). 

The molecular mass of the peptide with highest activity identified and collected after 

chromatography studies was confirmed using the matrix assisted laser desorption ionization & 

time-of-flight (MALDI-TOF) Bruker Daltonics GMBH (Bremen, Germany) at the State Wide 

Mass Spectrometry Facility, University of Arkansas. All other HPLC grade chemicals were 

purchased from Sigma (St. Louis, MO).  

Statistical analysis 

All tests were conducted in triplicate to minimize experimental error and were repeated 

for reproducibility. The JMP 9.0 statistical software (SAS institute, Cary, NC) was used for all 

data analyses.  

  

Results 

Purification of the peptide fraction with highest activity to obtain single pure peptides 

Based on the previous results (Rayaprolu et al., 2013) from the cytotoxicity assay on the 

cancer cell lines, the 10-50 kDa peptide fraction with highest activity (70-73%) obtained from 

N98-4445A soybean line was selected for further purification. HPLC analysis of the 10-50kDa 

fractions revealed three peaks at varying elution times. The Figure 1 shows the isolation of three 

single peptides from the 10-50 kDa peptide fractions from N98-4445A soybean line. The semi-

preparative HPLC was used with an affinity column to collect the peptides separately based on 

their elution times. The retention times for the three peptides were found to be 58, 67 and 79 
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minutes. The chromatogram identified the three peaks at distinct retention times. The three 

peptides were separately collected using the size exclusion column, concentrated, lyophilized 

and stored at 4 °C.  

Anti-proliferative activity of pure peptides against blood, colon and liver cancer cell lines. 

 The single peptides collected from the chromatographic separation were tested for 

inhibition activity against the blood, colon and liver cancer cells. They were designated as E58, 

E67 and E79 based on their retention times during the chromatographic elution. The MTS assay 

determined the anticancer activity of the pure peptides, E58, E67 and E79, on the blood, colon 

and liver cancer cells (Figure 2).  The test showed that the peptide E67 had significant anti-

proliferative activity against colon and blood cancer cells with 74 and 80% inhibition 

respectively. The positive control, genistein, had higher comparatively inhibition of both the 

cancer cells. The E79 peptide showed highest activity of 75% inhibition against the liver cancer 

cells.  

 Although the peptide did not show a 100% kill on the colon cancer cells, it is significant 

to note its enhanced effect against cancer cell proliferation of 80% which can support its role in 

alternative cancer therapies. Previous studies have noted similar observation when a pure 

peptide, produced from rice bran and sequenced for amino acids, was tested for apoptotic 

molecular targets in MCF-7 breast cancer cells (Li et al., 2014a). The pure peptides 

demonstrated significantly higher anti-proliferation activity on the three cancer cells in 

comparison to that of the peptide fractions (Rayaprolu et al., 2013) from which they were 

purified, which was observed in our previous research. Based on the results the peptide E67 with 

the highest activity (80%) was further evaluated for cancer cell survival response using the 

Trypan blue dye exclusion assay to determine the impact of incubation time.  
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Time response study of the most effective peptide against human cancer cells. 

 The cell counts from the Trypan blue dye exclusion assay were used to quantify the effect 

of the peptide for reduction in cancer cell growth over time. The time response study showed that 

the peptide E67 reduced the survival of colon cancer cells to ~11% after 96 hours of incubation 

(Figure 3). However, the peptide reduced the CCRF-CEM blood cancer cell population by 

approximately 19% by the end of 96 hour incubation period. Similar observation was made by 

previous studies using single peptides that reduced cancer cell proliferation (Kannan, 2009). It 

was observed that the positive control genistein caused rapid cell death by 48 hour incubation 

and reduced the cancer cell population to almost 0% by 96 hours. It is also noted that the cell 

survival was reduced by >50% by 72 hours in both blood and colon cancer cells.  

Determination of molecular size and characterization of the peptide with most significant 

anti-proliferation activity on human cancer cells. 

The SDS-PAGE analysis showed the single peptides in the 10-50kDa fraction (Figure 

7.4.). The approximate molecular mass of the most effective peptide ranged between 15-20kDa 

in the gel electrophoresis which was confirmed by the MALDI-TOF analysis to be 18kDa. The 

MS/MS spectra of peptides contained fragment ions, which result from single or multiple 

cleavages of peptide backbone bonds. The mass spectrometry (MALDI-TOF-MS) analysis 

located an intact peptide based on the single protonated molecular ions (M+H+) which indicated 

the presence of the pure peptide that showed highest bioactivity in previous studies (Wysocki et 

al., 2005, Tamvakopoulos, 2007, Murao et al., 2007, Kannan et al., 2010).  

 Characterizing a pure peptide and identifying its structural components confirms the 

peptide to its identity, and enhanced bioactivity. Absence of knowledge on the sequence of a 

peptide can explain the extraction of sequence information from MS/MS spectra or fragment ion 
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spectra through de novo sequencing. The tryptic hydrolysates with arginine or lysine residues at 

the N terminal when analyzed with MS revealed the peptide sequence which were matched with 

the soybean proteome for confirmation. The number of amino acids were identified from the C 

terminus end (Sequence) and a match with the National Center for Biotechnology Information 

(NCBI) database for the N-terminal amino acids showed a high prediction (>95%) with 158 

amino acids in the peptide sequence. This peptide is recognized as the 2S albumin precursor 

from the soybean proteome provided in the NCBI database. The peptide sequencing with LC-MS 

and MS/MS analysis shown in Figure 5 (a, b and c) identified 158 amino acid residues in the 

sequence given as: MTKFTILLISLLFCIAHTCSASKWQHQQDSCRKQLQGVNLTPCEKHIM 

EKIQGRGDDDDDDDDDNHILRTMRGRINYIRRNEGKDEDEEEEGHMQKCCTEMSELRS

PKCQCKALQKIMENQSEELEEKQKKKMEKELINLATMCRFGPMIQCDLSSDD-n.  

Presence of multiple lysine, arginine and cysteine amino residues in the sequence 

potentially contributed to the anti-proliferation activity on cancer cells which is in congruence 

with previous research (Usui et al., 2004, Cooper et al., 2011, Nakase et al., 2012). Medium 

sized (<50kDa) bioactive peptides as have been isolated and purified from various cereals and 

legumes (Korhonen and Pihlanto, 2003). Hence, this advocates and confirms the production of a 

cancer anti-proliferative peptide from soybean protein isolate after enzymatic hydrolysis.  

 

Conclusion 

 Soybean is a good source to derive a pure bioactive peptide that showed 80% inhibition 

human colon and blood cancer cells in comparison to the 10-50kDa peptide fraction (73%) from 

which it was purified. Purification of the peptide fraction resulted in a potent single peptide with 
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highest anti-proliferative activity that can be tested against other prominent cancer cells. This 

research has potential implications in inexpensive and alternative cancer therapy. 
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Figure 7.1. HPLC analysis of the 10-50 kDa peptide hyrdolysate from N98-445A with three 

eluents identified based on time and peak area. Acetonitrile (50%) and water (100%) with 

Trifluoro Acetic acid (0.1%) was used as the solvent system to purify the peptides. Single peaks 

were depicted by the arrow heads. 
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Figure 7.2. Single peptides purified from 10-50kDa fraction of N98-4445A soybean line 

show enhanced anti-proliferative activities against human blood, colon, and liver cancer 

cell lines. Bars represent means ± standard deviations and those not connected with same letter 

are significantly different (P <0.05). The dosage of the peptides applied was 700 µg/mL while 

1% saline solution was used as negative control (Neg Ctrl). 
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Figure 7.3. Confirmation of cancer cell survival reduction by the E67 peptide tested on 

HCT-116 colon cancer and CCRF-CEM blood cancer cells using Trypan blue dye 

exclusion assay. Bars presented are means ± standard deviation and those not connected by 

same letter for each cancer type are significantly different (P <0.05). Genistein (200 µg/mL) was 

used as positive control (Pos Ctrl) for comparison which was shown for each cancer type 

separately. 
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Figure 7.4 (a, b). Identification of the single pure peptide with significantly high activity 

against cancer cells using SDS-PAGE analysis. The arrow shows the anticancer peptide 

isolated from the N98-4445A soybean line. Serum albumin was used as a standard protein. 
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Figure 7.5 (a, b, c and d). Profile of the pure peptide sequence identified using LC-MS and MS/MS. Figure 7.5a shows the LC-MS 

analysis of the tryptic fractions in a sequence while the figures 7.5b - 7.5d show the MS/MS profiles of the three tryptic fractions 

which are used to identify the sequence of the peptide from the soybean proteome. 
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Amino acid sequence: 

MTKFTILLISLLFCIAHTCSASKWQHQQDSCRKQLQGVNL

TPCEKHIMEKIQGRGDDDDDDDDDNHILRTMRGRINYIRR

NEGKDEDEEEEGHMQKCCTEMSELRSPKCQCKALQKIME

NQSEELEEKQKKKMEKELINLATMCRFGPMIQCDLSSDD 

(Fig. 7.5a) 

(Fig. 7.5b) (Fig. 7.5c) (Fig. 7.5d) 
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CONCLUSION 

The basis for this research was utilization of an inexpensive co-product of soybean oil 

industry in developing novel gastrointestinal environment resistant biologically active peptides. 

These peptides showed effective inhibition of angiotensin-I converting enzyme (ACE-I), which 

regulates hypertension, and multiple-site cancer cell anti-proliferation activity. Higher protein 

content is a criterion for choosing soybeans as a good source for generating innovative bioactive 

peptides against chronic diseases. This is in congruence with FDA’s recommendation that adding 

25 g of soy protein in the diet can reduce risk of heart-related as well as other diseases. Currently 

soybeans with higher content (≥85%) of oleic acid are becoming popular in the U. S. which can 

also be excellent source of proteins. This research has demonstrated that alkaline method of 

protein separation from the meal, hydrolysis using food-grade enzyme, evaluation of resistance 

to gastrointestinal (GI) juices and fractionation using ultrafiltration was favorable in deriving 

peptides that were GI resistant. Testing the potency of the GI resistant peptides by challenging 

them for activities including anti-ACE-I and multiple-site anti-proliferation of cancer cells is the 

characteristic aspect of this research.  

Medium molecular weight 10-50kDa fractions and a pure peptide derived from the 

peptide pool demonstrated significant bioactive properties. This single peptide containing 158 

amino acid residues in the sequence was characterized using mass spectrometry and established 

proteomic tools. This information on its structural components can be used for synthesizing the 

peptide for applications as a health promoting food ingredient, nutraceutical or for medicinal use. 

This can initiate future research in the direction of using protein products as components in 

alternative therapies for chronic human diseases. 
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