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ABSTRACT

Botanical studies of rock streams on the western half of Rich Mountain and on the north slope of Mt.
Magazine in Arkansas question the common presumption that such streams require periglacial conditions
to form, and are now inactive relict features in this area, Trees along the margins of the streams examined
show abundant evidence of trauma resulting from Late Holocene movement, in the form of bent and tilted
stems. Cross sections of trees demonstrate marked eccentric growth associated with tilting and cambial
trauma associated with corrasion by rocks. That this damage is not the result of excessive snow loading
is indicated by the lack of such stressed trees away from the stream margins. Stressed growth and
shortened lifespan of trees on the Rich Mountain rock stream margins is shown by the small diameter
(less than 15 cm) of most, while older and larger trees are found on higher slopes away from the stream.

These rock streams are indicated to be moving, active features, not stabilized relicts of the Pleistocene.
Further study would permit more testing of this hypothesis and the establishment of a chronology of

movements in the last century,

INTRODUCTION

White (1981) defines a block stream as an elongate body of rocks
extending farther downslope than across slope; occurring on mountain-
sides or in the heads of ravines; overlying solid or weathered rock,
colluvium, or alluvium; and existing above or below treeline. In this
report block streams are referred to as rock streams.

It is commonly assumed that periglacial mass-wasting processes
produce rock streams (White, 1976), including those found in the Ap-
palachians (Hupp, 1982), the St. Francois Mountains of southeastern
Missouri (Peltier, 1950), and the Ouachita Mountains of west-central
Arkansas and east-central Oklahoma (Stone and McFarland, 1979). The
periglacial conditions of semipermanent snow fields and numerous
freeze-thaw cycles causes rocks to loosen from the cliff faces. These
blocks are transported downslope by creep, solifluction, gelifluction,
or a combination of these processes. After emplacement, fine materials
are removed by rain and snow meltwater. When conditions favorable
to the formation and downslope movement of these rock streams no
longer exist, they become stable, relict features, presumably of
Pleistocene age.

Mass wasting has been proposed as the general process responsible
for the formation of rock streams. Rapid mass wasting processes in-
clude slab failure, rock avalanche, and rockfall. Slab failures are the
common form of weathering on steep walls in hard rock. The release
of lateral confining pressures permits the opening of joints which cut
across geological structures or bedding planes. The result is a mass of
closely fitting masonry whose strength is entirely derived from friction
between blocks (Selby, 1982). Rock avalanches result when well-jointed
rocks lose internal cohesion. Rockfalls are confined to the removal of
individual and superficial blocks from a cliff face. Rock avalanches
and rockfalls are considered to be important processes in the forma-
tion of the rock streams on Mt. Magazine and Rich Mountain. Ground-
walter seepage, ice crystal formation, and ice wedging contribute to the
formation of separated blocks by infiltration and expansion along bed-
ding surfaces and vertical fractures. Eventually, the collapse of large
sections of the cliff occurs and forms the rock streams (Vere, 1986).

Rock streams may creep downslope or they may surge. Surging is
sudden movement or an increase in the rate of movement of rock
streams, Substrate movement associated with surging may create
noticeable and datable changes in growth patterns of woody vegeta-

tion (Shroder, 1978; 1980). In contrast to rapid movement, rock creep
involves long-term, slow deformation which is imperceptible except to
observations of long duration.

Many attempts to determine if slope movement is occurring and to
date movement utilizing dendrochronology and other botanical methods
have been made (LaMarche, 1968; Shroder, 1978, 1980; Hupp, 1983,
1984). Dendrochronology has been used to date rock avalanches (Butler
et al., 1986), fault movement (Page, 1970; LaMarche and Wallace, 1972)
and volcanic activity (Smiley, 1958; LaMarche and Hirschboeck, 1984).
Dendrochronology is superior to the radiocarbon technique for the
exact dating of young geological events in part because den-
drochronological dates do not have uncertainty (expressed as *‘plus or
minus’' error parameters) associated with them (Claque erf al., 1982),

Many different internal and external, structural and morphological
changes occur in trees because of downslope movement. Mass move-
ment events can cause permanent changes in external tree morphology
such as inclination or tilting of stems, shearing stress on roots and stems,
corrasion scars or bark removal, burial of stems, exposure of roots,
inundation, and denudation or the production of bare ground (Shroder,
1978). Tilting of trees is the most common morphologic change on Mt.
Magazine and Rich Mountain.

Immediate environmental change is reflected in internal structure and
morphology, affecting annual growth rings of trees (Shroder, 1978, 1980;
Hupp, 1984). Abrupt tilting of a tree results in subsequent rings that
are wide on one side of the trunk, in contrast to the opposite side where
the same rings are relatively narrow, When this pattern of eccentric rings
appears after years of relatively concentric ring production, the date
of the onset of the eccentric growth is usually within one year of the
event that caused the tilting (Hupp, 1984).

This botanical investigation of rock streams on Mt. Magazine and
Rich Mountain was undertaken to determine: 1) if these rock streams
are static, relict Pleistocene periglacial features or, 2) if they have moved
recently or are presently moving, and, if so, what is the rate of move-
ment (steady or surging). This investigation included observations of
tree morphology along rock-stream margins, examination of selected
tree cross sections, and comparison with a local tree-ring chronology.

SITE DESCRIPTION

Mt. Magazine is located in the Arkoma foreland basin in west-central
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Figure 1. Map of Arkansas showing locations of rock streams studied.
Triangle: Mt. Magazine; Rectangle: Rich Mountain,

Arkansas (Fig. 1). The caprock is Savanna Sandstone, a Pennsylvan-
ian deltaic deposit. The moderately thick-bedded, gray sandstone is
relatively resistant to weathering. A more or less continuous cliff up
to 30 meters (m) high surrounds the uppermost slopes of the mountain
(Vere, 1982). Underlying the Savanna Sandstone is the McAlester For-
mation, a unit that is less resistant to weathering and enables tree cover
to develop on its slopes.

Below the cliff face and extending downslope for several hundred
feet in some places, are numerous boulder-covered, vegetation-free sur-
faces (Fig. 2). These are rock streams. The largest rock stream occurs
on the north side of Mt. Magazine (Vere, 1982) and is the study site.

Figure 2, Looking downslope from the cliff at the head of the Mt.
Magazine rock stream. A lower section of the rock stream is in the center
background, separated from the upper section by a levee-like area.

The upper and most extensive portion of the rock stream is immediately
below the cliff face. It is approximately 100 m long by 100 m wide and
has an average slope of 27 degrees. The lower portion of the stream
is more elongate and not as wide (approximately 230 m long and 15
to 30 m wide) as the upper portion (Vere, 1982). The slope decreases

to between 2 and 14 degrees.

Rich Mountain and Black Fork Mountain are located along the
Arkansas-Oklahoma border in the Ouachita Mountains (Fig. 1). Both
mountains are elongate, east-west trending ridges composed of the Penn-
sylvanian Jackfork and Stanley Formations. The Jackfork Formation
includes beds of resistant, thickly-bedded, gray sandstone and easily
weathered shale. The steep north-facing slope of Rich Mountain and
south-facing slope of Black Fork Mountain are composed of a cliff of
Jackfork Sandstone at the mountain crest underlain by the Stanley Shale,
an easily weathered unit. Elongate rock streams occur beneath these
cliff faces or in ravines farther down the mountain slopes.

The rock stream examined here occurs in a ravine part way down
the mountain on the north-facing slope of Rich Mountain, along
Oklahoma Highway 1 (Fig. 3). As seen at Mt. Magazine, forest vegeta-
tion is developed on a boulder-rich substrate on either side and above
and below the rock stream. Beyond this area, normal forest vegetation
is developed on a relatively boulder-free substrate.

Figure 3. Looking upslope from the toe of the Rich Mountain rock
stream.

Unlike Mt. Magazine, however, normal forest vegetation is developed
on & boulder-rich substrate from above the rock stream to the crest of
the mountain. This vegetation includes all age classes of trees and some
understory species. The block substrate has accumulated a sufficient
amount of interstitial, fine-grained material to support tree growth. Also
in contrast to Mt. Magazine, a cliff face is not present at the head of
the ravine. However, small outcrops and abundant rubble does occur
parallel to the slope near the crest of Rich Mountain, indicating a resis-
tant bed of sandstone is present. This unit is the presumed source of
the rock stream. Lobate features with lateral and terminal levees were
observed in the ravine above the rock stream and may indicate that
movement has occurred as debris flow (Selby, 1982).

METHODS

Field work consisted of noting the morphology of trees adjacent to
the rock streams and locating trees that showed stress, such as leaning
or bending. Three samples were taken for laboratory analysis. The trees
selected were bent at least twice and were not over 10 centimeters (cm)
in diameter. One sample was taken on Mt. Magazine and the other two
samples were taken on Rich Mountain. Finally, tree diameters at 1.6
m height were measured at three sites adjacent to the rock stream on
Rich Mountain, Each measurement was taken within a plot having ap-
proximately a 6.0 m radius.
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Laboratory work consisted of sample preparation, species identifica-
tion, and tree-ring analysis. The stem cross sections were sanded to a
smooth finish with consecutively finer grades of sandpaper, starting
at 120 grit and finishing with 400 grit. The genus and species, where
possible, were identified by wood anatomy (Panshin and de Zeeuw,
1970) and bud and bark morphology (Harlow et al., 1979). The tree
rings were examined with a binocular microscope at 7 to 30X magnifica-
tion in the Tree-Ring Laboratory of the Geography Department, Univer-
sity of Arkansas, Fayetteville. Ring boundaries were marked; rings were
counted; and ring widths were measured using a computerized tree-ring
measurement system (Robinson and Evans, 1980). This data was com-
pared to the standard tree-ring index chronology for white oak
(Quercus alba) from Black Fork Mountain, Arkansas (Stahle ef al., 1985)
for crossdating purposes (Stokes and Smiley, 1968).

RESULTS

Tilting of trees is the most common morphologic change seen in trees
on Mt. Magazine and Rich Mountain. Tilting is recorded in tree growth
by eccentric ring development, by the production of anatomically distinct
reaction wood on the upper side of hardwoods, and by bent trunks (Fig.
4) as the tree subsequently grows upright again (Shroder, 1978). Single
abrupt inclination events generally produce easily dated changes in ring
growth. Gradual or long-term multiple inclinations produce compound
trunk curvature as well as complex reaction wood which may be very
difficult to date (Shroder, 1978),

A bent holly tree (/lex sp.) was sampled on the western margin of
the upper portion of the Mt. Magazine rock stream. The cross section
of the sample has concentric rings for the first two years, followed by
very eccentric rings (Fig. 5). This could be caused by the tilt evident
near the base of the trunk. The eccentric growth occurs along at least

T

Figure 5. Cross section of holly tree sampled at Mt. Magazine. Note
highly eccentric growth along several axes, indicating several episodes
of tilting in different directions. The wood belongs to the diffuse-porous
group. Each division of the scale is 1.0 cm.

two different axes, indicating that the tree was tilted in at least two
directions at different times. The rings become very eccentric and very
difficult to distinguish in the outer five rings of tree growth. This might
be attributed to competition from surrounding trees or trauma affect-
ing the root system. Several abrupt reductions in growth (Fig. 6)
suggest that other traumas occurred and one may be recorded by the
second bend in the tree,

0 5 10 15 20 25 30 35 40 45
YEAR

Figure 4. A bent tree (foreground) growing near the bottom of the
upper section of the Mt. Magazine rock stream.

i Arkansas Academy of Science, Vol. 41, 1987
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Figure 6. Rac_lial measurements of the holly sample from Mt. Magazine
alt_:n_g two lines marked in Fig. 5. Some of the outer rings are
missing on one radius.
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The cross section of black locust (Robinia pseudoacacia) collected
al site D at the toe of the rock stream on Rich Mountain has concen-
tric rings the first two years, followed by eccentric rings (Fig. 7). This
change in growth, as well as a bend near the base of the tree, may have
been caused by tilting. The cambium has died at one point on the radius

(Fig. 7), evidence of corrasion or impact injury at that point. As a possi-

Figure 7. Cross section of the black locust sampled at site C on Rich
Mountain. This tree has ring-porous wood. Note the cambial wound
(arrow) indicating direct trauma to the tree severe enough to destroy
the cambium at that point. Each division on the scale is 1.0 cm.

5

RING WIDTH (MM)

YEAR

Figure 8. Radial measurements of the black locust sample from Rich
Mountain. The abrupt reduction in growth at ring 13 may reflect the
cambial injury seen on the cross section (Fig. 7). Some of the outer
rings are missing from one radius.

ble consequence of this trauma, ring 13 and subsequent rings (Fig. 8)
are very small and discontinuous around the circumference of the stem,

The cross section of the persimmon tree (Diospyros virginiana) col-
lected at site B on the western edge of the Rich Mountain rock stream
formed concentric rings the first seven years, followed by somewhat
eccentric rings (Fig. 9). Ring 8 has a dark layer that could be evidence
of trauma. An abnormally abrupt reduction in growth after the fifth

Figure 9. Cross section of the persimmon sampled at site B. This tree
has semi-ring-porous wood. Each division of the scale is 1.0 cm.

ring (Fig. 10) may be associated with tilting or injury. This trauma may
also be recorded as a bend near the base of the tree that is the result
of tilting. The last rings were very difficult to distinguish because growth
was extremely slow, possibly a sign of injury.

Tilted trees are common on the vegetated, boulder-rich margins of
the rock streams of both Mt. Magazine and Rich Mountain. Most of
the trees on Mt. Magazine are leaning or bent, some several times. One
tree, noted but not sampled, had eight bends. These bends are evidence
of catastrophic tilting and subsequent renewed vertical growth. It is
possible that the pervasive malformation could result from snow and
frost damage. However, drastically malformed trees appear 1o occur
more frequently in the vicinity of the rock streams, an argument for
downslope movement of these materials.

In contrast to Mt. Magazine, a large portion of the vegetated, boulder-
rich surface above the rock stream on Rich Mountain supports normal
forest vegetation, It remains unclear why some portions of rock streams
accumulate deposits of fine-grained materials adequate to support
vegetation. Boulder size and age of the deposit may be two contributing
factors. The forest on Rich Mountain consists of a wide range of stem
sizes and ages, while Mt. Magazine appears to have only smaller and/or
younger trees, Some of the oak trees on Rich Mountain resemble the
oaks sampled on Black Fork Mountain that attain ages of 300 years
or more (Stahle er al., 1985). All age classes, including the oldest,

roceedings Arkansas Academy of Science, Vol. 41, 1987



S. M. Lookingbill, M. K. Cleaveland, and M. J. Guccione

3
E?
£
o
£
T 1
0] 5 10 15 20 25 30 35 40
YEAR

Figure 10. Radial measurement of the persimmon sample (Fig. 9) from

Rich Mountain,

Figure 11. Several of the bent trees growing in the area above the Rich
Mountain rock stream.

exhibit external morphological characteristics (Fig. 11) associated with
an unstable substrate, such as abrupt bends in their stems (Shroder,
1978, 1980).

Quantitative measurements of tree diameter at three sites on the lateral
margins of the lowest part of the Rich Mountain rock stream
demonstrate a dominance of smaller trees (Table 1) with a greater abun-

Percent of Trees in Dismeter Classes
e Disgeter Classes (Cm) ___ ____ No. Trees
Site 2-8 215 16=25 26=31 34-40 4160
B 33 37 25 B8 17 0 12
c 34 28 14 10 7 7 29
D 55 41 0 4 0 0 22

Table 1. Frequency of diameter classes of trees at three sites on the
margin of the Rich Mountain rock stream. The classes were adjusted
from even widths on the basis of apparent natural break points in the
distribution.

dance of small trees near the toe of the rock stream at Site D (Fig. 12).
Somewhat larger trees occur at sites B and C (about 20 m west of site
B), higher on the lateral margins of the rock stream than site D. This
suggests that the site at the toe of the rock stream is exposed (o more

100
80
80
70

60

40
a0
20

10

DIAMETER CLASS

Figure 12. Graph of the trees in different diameter classes at sites B,
C, and D. The classes are as shown in Table 1.

stressful conditions, or the trees are younger, while sites higher on the
lateral margins of the rock stream are subject to less growth stress, or
those trees attain greater ages.

Trees sampled on Rich Mountain in this study were compared to a
white oak (Quercus alba) tree-ring chronology compiled by Stahle er
al. (1985) from trees on nearby Black Fork Mountain, Arkansas. Because
the trees examined in this study are young, and show highly variable
growth patterns that seem to be influenced more by site disturbance
than by climate, crossdating, i.e., the matching of climatically controlled
growth patterns (Stokes and Smiley, 1968), is extremely difficult. In
addition, growth of the outer rings in all three samples is so sup-
pressed that there are missing rings, rendering any one-to-one match
impossible.

CONCLUSIONS

Rock streams exist on some mountains in Arkansas and Oklahoma
where a relatively resistant, massive sandstone unit forms a cliff face
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above a less resistant shale unit. These rock streams are elongate bodies
of coarse sandstone blocks commonly oriented approximately parallel
to the slope. These blocks are derived from the cliff of resistant sand-
stone by mass wasting. The rock streams are similar to active features
in alpine areas (White, 1976), and therefore have been considered to
be relict features formed in a periglacial regime during the Pleistocene
(Stone and McFarland, 1979).

There is botanical evidence for movement of the rock streams in ap-
proximately the past century. The central portion of the rock streams
does not support vegetation because insufficient fine-grained material
has accumulated. The botanical evidence is collected from the margins
where vegetation is present. Tree growth in this area may also result
from less frequent and violent mass movement compared to the cen-
tral portion of the rock stream.

The evidence for rock stream movement during the life span of a
tree includes external tree morphology, eccentric annual ring forma-
tion, and corrasion of the bark and cambium, resulting in abnormal
ring formation or cambial death. Tree morphology on Mt. Magazine
suggests that slope materials along the rock stream margins at this site
are not stable and movement downslope oceurs catastrophically or in
surges. Many trees have multiple bends and a large number of trees
are affected, although most do not attain a diameter greater than 15
cm. In contrast, the upper margin of the Rich Mountain rock stream
has many mature trees. The presence of fine-grained materials upslope
of the rock stream may facilitate movement as debris flows. Many of
the trees above and along the lateral margins of the rock stream show
morphologic evidence of movement. Therefore, slope materials at this
site have moved relatively recently,

Cross sections of selected bent trees at both sites support the
hypothesis of unstable slopes. All three samples examined have eccen-
tric tree rings. These result from tilting, probably caused by active slope
movement. One sample also exibits evidence of mechanical damage to
the stem, probably the result of direct damage to the stem and/or root
system of the tree by moving rocks.

This study demonstrates that botanical evidence can substantiate, and
potentially date, movement along the margins of rock streams. These
data support the hypothesis that Holocene movement occurs and that
the rock streams are not stable relict features. Further study and many
more samples (Butler er al., 1987) are needed to accurately date the
downslope movement, to determine if movement within and among
the rock streams are synchronous or are isolated and sporadic events,
and to establish the recurrence interval. Trees at the margins of the rock
streams should be compared to trees growing in the areas between rock
streams where the predominant mass-movement mechanism is creep.
These more stable trees can be used to construct a tree-ring chronology
and accurately date movements on the adjacent rock streams.
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