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Abstract 

According to recent literature, it is believed that the oligomeric form of amyloid beta (Aβ) 

is the leading cause of Alzheimer’s disease (1; 8; 10; 12-18). Additionally, recent studies have 

eluded to the impact of Alzheimer’s disease (AD) both economically and socially in today’s 

society where an increase of about 71% of AD related deaths were recorded between 2000 and 

2013 (7).  Since the oligomeric forms of Aβ vary in size, shape and some believe conformation, it 

is vital to utilize a separation technique, such as capilllary electrophoresis (CE) to further 

understand Aβ aggregation. By understanding Aβ aggregation, treatment of AD or preventive care 

measurements could be additionally developed.  

Therefore in this study, field amplified sample stacking (FASS) technique on the CE was 

utilized to provide higher resolution in oligomeric Aβ1-42 detection without causing significant 

changes to the aggregation. It was observed that the FASS technique provided smaller peak widths 

and increased peak heights on the CE compared to the non-FASS conditions. Furthermore by 

conducting thioflavin-t (ThT) assays, it was observed changing the buffer concentrations in 

accordance to the FASS technique conditions did not effect the overall aggregation. Thioflavin-t 

(ThT) assays were also conducted in order to determine an agitation rate where the oligomers of 

Aβ1-42 were observed on the CE.   

The  oligomeric species observed were believed to be less than or equal to 100 kDa. 

Additionally, Congo red and Orange G inhibition were conducted to confirm oligomeric Aβ1-42 

species were observed on the CE. Both inhibition studies alongside TEM imaging proved the 

aggregates observed on the CE in the 27 hour aggregation were smaller than proto-fibrils.  Future 

work on natural compound inhibition studies using CE are recommended to see how those 

inhibitors target Aβ1-42 species that are less than or equal to 100 kDa. 
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Chapter 1: Introduction  

As discoveries within the human proteome have increased, misfolded proteins and 

mutation of numerous proteins are being linked with various disorders (such as Alzheimer’s, 

Parkinson, Diabetes II, etc.) in today’s world (1-5). Misfolded proteins have the potential to 

interact with one another creating toxic aggregates, amyloidosis, that is most commonly known 

for fibril accumulation and an increase in β-sheet contents (1-2). An example of a disease 

associated with amyloidosis is Alzheimer’s disease. Alzheimer’s disease (AD) is a devastating 

progressive neurodegenerative disease without a viable preventative treatment. AD is the most 

common form of dementia and is believed to be caused by disruption in neurotransmitters (4; 6).  

With a growing increase in the life span of people, it is believed AD patient cases will also increase, 

creating a huge economic and social impact in the near future (3; 7).  

Though the exact mechanism of the disease is still unclear, AD consists of β-sheet 

structures with a wide range of cytotoxic aggregated amyloid beta (Aβ) and hyperphosphorylated 

tau proteins throughout the damaged brain tissues (1;8-10). Linkage between 

hyperphosphorylation of tau and Aβ has placed tau disruption (causing formation of neurofibrillary 

tangle) in cognitive decline as a downstream process of Aβ pathology (3; 9-12).  Furthermore, 

recent studies suggest that the small soluble Aβ oligomers form is the likely neurotoxic agent that 

is associated with the progress of AD (1; 8; 10; 12-18).  

Understanding Aβ oligomer aggregation through capillary electrophoresis (CE) can help 

for future work in analyzing the affects natural compound inhibitors have on Aβ aggregation and 

therefore, help find preventive treatment. In order to study the Aβ oligomer species, background 

information on Aβ, Aβ aggregation, and separation techniques needed to understand the peptide 

aggregation will be provided in this chapter. In Chapter 2, the specific research hypothesis and 
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results will be discussed in detail. Finally in Chapter 3, future research utilizing CE on analyzing 

Aβ aggregation with natural compound inhibitors will be recommended.     

1.1 Amyloid Beta 

The amyloid beta forming proteins are generated when amyloid precursor protein (APP) is 

cleaved by the β- and ϒ-secretases. Found on chromosome 21, APP is a single transmembrane 

protein that is not just limited to the brain (10; 19). This protein consists of a cysteine-rich domain 

in the extracellular domain and intracellular domain that are cleaved to produce both amyloid 

forming and non-amyloid forming proteins (10; 20). Though the exact functionality of APP is still 

unclear, it is believed that changing the expression of APP affects activities in the brain (10; 21-

22).  Therefore, it is important to understand the protein further in order to avoid other detrimental 

side effects within the human body.  

The β-secretase cleavage occurs in APP at the N-terminus of Aβ peptide; whereas, the ϒ-

secretase cleaves in the intracellular domain, creating the C-terminus of Aβ peptide. Aβ consist of 

36-42 residues with the most common cleavage being either at Aβ1-40 or Aβ1-42 (8;15).  Aβ1-40 is 

believed to be the predominant form; however, Aβ1-42 is more pathogenic and predominantly found 

in the Aβ plaque (3; 8; 14-15; 17; 23-24).  Even though Aβ1-40 and Aβ1-42 vary by two amino acids 

in the C-terminus, isoleucine and alanine, the difference causes variation in structural interactions 

as the peptide aggregates which leads for Aβ1-42 having more forms of aggregate and higher 

toxicity (24; 25). Aβ specificity of intramolecular interaction is believed to be due to the 

hydrophilic residues whereas the hydrophobic amino acids are believed to help increase 

aggregation (26; 27). Furthermore, studies have been conducted showing how decreasing the Aβ1-

42 level has reduced the AD risk level (25; 28).  
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Figure 1.1-1: Overview of Aβ aggregation where the amyloid peptide aggregates from the 
monomeric form into soluble intermediates and proto-fibrils to eventually fibrils plaques. 

 

As shown in Figure 1.1-1, the initial phase of the amyloid beta aggregation is the 

monomeric form of Aβ. These nontoxic Aβ monomers have been observed to interact with other 

oligomers or fibrils and also promote aggregation of the toxic residues (15). Amyloid beta 

monomer is believed not to be harmful. Kinetic studies have been conducted to demonstrate the 

conformational changes of amyloid beta from its alpha helical and/or random coil monomer 

structure to the formation of oligomers and eventually fibrils (26;29). The formation of oligomers 

is believed to be intracellular and can potential affect synapse functions, disruption of glutamate 

uptake, and prevent the ability to maintain proper memory (1; 3; 12; 30-31). Furthermore since the 

oligomer aggregates are quite unstable and time dependent, the exact shape, size, and pathological 

pathway are hard to determine (32; 33). Additionally with the varying size range of oligomers 

(from 10 kDa to 250 kDa), it is believed that the oligomers only vary in conformation when dealing 

with pre-fibrillar or fibrillary oligomers (32; 34). However, there are various types of oligomers as 

stated by Hamley and the aggregation pathway to determine which oligomeric species forms is 

dependent upon the experimental conditions and environment (3). Nonetheless, the fibrillary 

oligomers are believed to consist of similar conformation of fibrils; whereas, all other types of 

oligomers are believed to consist of a similar conformation with varying size range (32; 34).     
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1.1.1 Aggregates Formation 

Though exact quantitative analysis of Aβ aggregation is still undetermined, it is believed 

that with the addition of aggregates, the Aβ aggregates change (in size, shape or conformation) in 

the presence of fibrils depending on both higher aggregates and monomer species within the 

solution (5; 35; 36). Recent studies have shown that AD can occur without the presence of fibril 

plaques (12). Therefore, increased research is being conducted on understanding the soluble 

intermediate aggregates of Aβ. Some techniques, such as native page, enzyme-linked 

immunosorbent assay, light scattering, mass spectrometry and size exclusion chromatography, 

have been reviewed in depth by Pryor et al. (2012) to show the various advantages and 

disadvantages for each technique (37). Furthermore, in vitro studies conducted have highlighted 

the difficulty in narrowing the type of intermediate aggregates that can be formed (such as ADDLs, 

oligomers smaller than 30 kDa, fibrillar oligomer, protofibrils) and also the ability to analyze Aβ 

without causing alternative aggregate pathways due to experimentation (3; 8; 12; 16; 24; 34). 

Consequently, by studying the soluble aggregates through CE, the separation of the Aβ species 

can further help understand the aggregation pathway of Aβ in a rapid manner under non-

denaturing, non-organic conditions which should reduce interference with the Aβ kinetics. 

1.2 Capillary Electrophoresis   

Capillary electrophoresis (CE) separates proteins based on their shape, size and mass. 

Additionally, CE provides the opportunity to conduct separations with speed, automation, high 

resolution and efficiency (38; 39). Using glass narrow bore fused silica coated capillaries offers a 

high surface area to volume ratio which allows for heat to be dissipated more effectively.  

In CE separation, the sample is injected in the fused silica capillary by hydrodynamic 

injection or electrokinetic injection. Hydrodynamic injection applies pressure to the sample to push 
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it into the capillary and typically provides an unbiased representation of the sample. Electrokinetic 

injection uses an electric potential different to drive sample into the capillary and creates a bias 

towards charged species in the sample. After the introduction of the sample, an electric field is 

applied across the capillary causing the sample ions to migrate based on their electrophoretic 

mobility which is detected using UV absorbance and translated into an electropherogram, a plot 

of UV absorbance versus time.  

1.2.1 Electroosmotic Flow  

The separation of molecules occurs when the molecules in the capillary move under an 

applied field with a certain velocity and direction depending on the charge and mass of the 

molecules (40). Furthermore, the silica capillary inner wall consists of negatively charged silanol 

groups that when ionized under an applied field attracts the positive ions in the buffer and create 

an electrical double layer (38).  This double layer consists of both an immobile layer where the 

positive ions are interacting with the capillary (outer Helmholtz and inner Helmholtz plane) and a 

diffusive layer where the cations migrate toward the cathode creating a bulk flow (40; 41). The 

specific interaction of this electric double layer can be further described by the Stern-Gouy-

Chapman model (41-43). Furthermore, this interaction between the capillary wall and sample 

movement under an applied field is called the electroosmotic flow (EOF).  The EOF can be 

affected by changing the capillary length and the surface charges on the capillary wall due to the 

solution’s pH, concentration, etc. (40; 43).   

In cases dealing with non-charged species, EOF might be a beneficial.  Furthermore due to 

the interaction with the silica capillary, the positive ions travel faster under EOF causing less 

dispersion depending on the sample charge. However, when a sample has a strong negative charge, 

such as Aβ, the EOF opposes its migration and therefore leads to a more diffused sample peak. 
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Additionally, interaction with the ions on the wall can lead to a greater loss of protein being 

detected. Therefore, it is important to control or eliminate EOF which will also help increase the 

migration time precision, resolution and detection of the sample (44). In order to control 

electroosmotic flow (EOF), the capillary wall/ sample interaction can be manipulated by creating 

an environment that effects the viscosity of the sample, wall’s charge density or double layer 

thickness (38). The EOF can also be reduced or controlled by having online sample 

preconcentration (sample stacking, pH variation, increasing ionic strength etc.) and/or the capillary 

can be chemically modified or coated (38; 40; 43). 

Capillary coatings are often used to provide a homogeneous, viscous layer on the surface 

of the capillary (38; 45). Polymer coatings, such as poly(ethylene oxide) (PEO), adsorb onto the 

positively charged layer at the capillary’s surface by forming hydrogen bonds with silanol groups 

and provide a neutral surface for the ions within the capillary (38; 43; 45).  This provides the ability 

to utilize buffers at higher range (from pH 4-8) reducing wall-peptide interaction in a hydrophilic 

environment. It is important to note that as the polymer molecular weight increases, the sample 

wall interaction reduces but the stability of the coating also reduces (45). Therefore, it is vital to 

establish a good coating adsorption parameter and follow proper coating protocols. For example 

in order to have good coating adsorption, the capillary needs to be thoroughly washed before 

coating to ensure silanol groups on the wall are fully protonated.     

1.3 Other Techniques to Study Amyloid Oligomer Aggregates 

As the interest in the amyloid oligomer has increased due its linkage with AD progression, 

researchers are currently utilizing various techniques in order to determine the shape, size and 

interaction with other compounds of these aggregates. Therefore in order to establish a basis, 

comparison and/or verification of the oligomer aggregation study using CE, thioflavin-T assays 
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(ThT assays), dot blot analysis, transmission electron microscopy (TEM) analysis and 

centrifugation of the aggregates were conducted.    

1.3.1 Thioflavin-T Assay 

Vassar and Culling (1959) were the first to demonstrate the increase in fluorescent intensity 

of thioflavin T (ThT) upon the aggregation of amyloid peptide (46; 47). ThT is a cationic 

benzothiazole dye that consists of both polar and hydrophobic regions. Though some believe the 

attachment of dimethylamino groups linked to the polar region creates micelles in aqueous 

solutions which bind to amyloid β-sheets, other researchers have shown that under the ‘normal’ 

ThT conditions, micelles do not form and therefore, the exact molecular interaction of ThT with 

Aβ is still undetermined (46-48).  However, it is believed the closeness of the sidechains to the 

bound ThT within the binding channels of the β-sheets causes an increasing in fluorescent intensity 

in excitation from 385 to 450 nm and emission from 445 to 482 nm (47-49). This increase of 

intensity might be due to the inability of ThT to rotate about the shared carbon-carbon bonds 

between the benzylamine and benzathiole rings that occurs when ThT has free rotation and is not 

bound to Aβ (47).  

Since thioflavin-T (ThT) is not believed to disturb Aβ aggregation, ThT assays are a 

commonly used in vitro method to help model the aggregation by analyzing the increasing in 

fluorescent intensity. The binding fluorescence intensity usually results in a sigmoidal curve where 

the initial phase is considered the lag phase (29; 50). This lag phase is dependent upon the 

concentration, temperature, ionic strength, pH, metal ions, and/or agitation of the peptide (26; 36; 

51-52). The lag is also believed to consist of the smaller soluble amyloid species (from monomer 

to oligomer species). After the lag phase, a rapid elongation phase occurs in which there is a huge 

increase in ThT-amyloid binding and in turn an increase in fluorescent intensity. Once the 
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equilibrium (the plateau) of the overall aggregation is reached, the ThT-amyloid binding is 

believed to reach a point where most of the soluble aggregates are converted into insoluble fibrils, 

resulting in a decreasing in fluorescent intensity.  

1.3.2 Dot Blot Analysis and Transmission Electron Microscopy (TEM) Imaging 

One of the simplest qualitative methods to analyze amyloid beta aggregates is by 

conducting dot blots. Dot blot analysis can be conducted both by using either the direct or indirect 

method. The indirect method requires the use of both primary and secondary antibodies; however, 

in doing so, this method provides increased signal detection and therefore, better sensitivity. A 

small amount (1-5 μL) of Aβ is dotted on a nitrocellulose membrane due to small pore size and 

instantaneous binding ability with proteins. The primary antibody binds to the peptide due to 

protein specificity (either of sequence or conformation). The secondary antibodies are responsive 

to the primary antibodies where part of the antibody recognizes a certain epitope. Recent studies 

have shown that various primary antibodies, such as 6E10 and OC, can be utilized to detect the 

different Aβ species. 6E10 has been found to be reactive with amyloid amino acid residues 1-16 

and is mostly used as a control for amyloid experiments (53). Furthermore, OC is a polyclonal 

antibodies that detects fibril oligomer or fibril conformation of Aβ (34; 54).  

Another method utilized to further qualitatively understand the Aβ aggregates is 

transmission electron microscopy (TEM) imaging. Since TEM uses electrons instead of light, a 

greater resolution is achieved through this image magnifying technique. The Aβ is negatively 

stained and the fibril aggregates are well defined upon imaging (24; 55). Therefore, using TEM 

further confirms the qualitative analysis of dot blots, it provides an opportunity to distinguish the 

species detected by the antibodies in the dot blot analysis.    
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1.3.3 Centrifugation 

In hopes of determining the size range of Aβ species observed on CE, ultra-centrifugation 

were utilized along with membrane filtration. Pryor et al. previously used centrifugation to help 

determine specific sizes of various Aβ species (37).  Furthermore, upon conducting centrifugation 

experiments, relationship between the concentration, sedimentation and peptide shape have also 

been further explained in past studies (56-58). Since the fibril aggregates are insoluble, it is 

believed that these species cannot be detected on CE. Therefore, by using various molecular 

weights cutoff filters (MWCO) (300 kDa, 100 kDa, and 30 kDa), the sizes of the aggregates seen 

on CE can be determined. Most MWCO filters consist of hydrophilic membranes to reduce fouling 

and also provide up to about 90% rejection (59).  Due to the random coil like behavior of peptides, 

the separation of the higher molecular weight vs. the filter cut-off molecular weight is dependent 

upon the concentration of peptide, pore size of membrane and the influence of the various 

molecular size species within the solution (59).  Therefore, by using past studies as a basis for 

filtration, experiments utilizing membrane ultrafiltration might be able to help provide, a better 

understanding of the aggregates.   
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Chapter 2: Studying Aβ1-42 Oligomer Aggregates            

As stated in Chapter 1, understanding Aβ aggregation using a separation technique such as 

capillary electrophoresis (CE) can help in finding a future therapeutic treatment for AD. CE 

provides a rapid and high resolution analysis that requires small sample volumes. Previous work 

using CE with UV has been conducted using Aβ1-40 (60). Therefore, this study focused on studying 

how field amplified sample stacking (FASS) could improve resolution of Aβ1-42 oligomers without 

causing significant changes to the aggregation of the small soluble Aβ1-42 aggregates.   

The soluble oligomers should theoretically form during the lag time observed by the 

thioflavin t (ThT) assay and therefore, having an adequate lag time to analyze various aggregates 

of Aβ1-42 on the CE was essential. The time for oligomer formation of Aβ1-42 was estimated by 

conducting a ThT assay. Furthermore, the effects of field amplified sample stacking (FASS) in CE 

was examined to determine if FASS affects the aggregation of the sample as well as the resolution 

between aggregated species. The transmission electron microscope (TEM) analysis provided 

qualitative information about the conformation of the aggregates; whereas, the molecular weight 

cutoff centrifugal filters were utilized to estimate the molecular weights of the aggregated species 

detected by CE.  Inhibitors (such as Congo red and Orange G) were also used to provide additional 

information about the conformation of the aggregated species. The FASS and non-FASS CE 

results were also compared to computational results. 

2.1 Field Amplified Sample Stacking    

One of the greatest advantages of CE, other than the fast analysis time, is the ability to 

utilize very little sample volume in order to investigate the separation of various Aβ aggregate 

species. In order to improve the detection, reproducibility and separation of such aggregates, 

various sample pre-concentration techniques can be utilized depending on the CE parameters 
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established (parameter detail in Appendix B). Sample pre-concentration techniques in CE consist 

of large volume sample stacking, PEO based sample stacking, isotachophoresis, or differences in 

pH or conductivity between the separation and load buffer (44; 61-63). One of the simplest ways 

to improve resolution and increase sensitivity up to at least 10 fold with peptide samples is field 

amplified sample stacking (40; 44; 61- 62; 64- 65). FASS helps increase detection on the CE while 

providing the opportunity to reduce Aβ1-42 concentration. By analyzing Aβ1-42 on the CE using 

FASS, the potential to observe more oligomeric peaks is increased and the peptide cost per analysis 

is decreased.  

2.1.1 Theory 

The interactions in CE consist of three major components: the electrodes, the capillary and 

the sample or ion transportation. According to Kohlrausch if the background electrolyte, BGE, 

volume is large than changes at the buffer/electrode interface can be avoided (66). The two main 

driving forces in a capillary are then the electroosmotic (EOF) flows and electrophoretic flows 

under an applied field. The electrophoretic flow depends on the local environment and in turn the 

bulk electroosmotic velocity of the separation buffer (as known as BGE). Since the electrophoretic 

flow depends on the local environment, the velocity is influenced by the electric field relative to 

the BGE. Additionally, the EOF depends on the strength of the interaction of the BGE with the 

capillary wall under an applied voltage. For an environment with normal polarity and reverse 

injection, where the EOF travels toward the cathode, the sample’s negatively charged flow 

(electrophoretic mobility) has to be greater than the EOF in order to travel through the capillary 

and pass the detector. If the EOF is larger than the electrophoretic flow, the bulk flow will dictate 

the overall flow of the ions (43; 67). Since large EOF has the ability to promote laminar flow and 

zone broadening, it is believed that stacking efficiency can be increase with decreased EOF. Once 
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a specific separation environment is established (as stated in Appendix B), the capillary 

environment can be manipulated by one of the simplest method called field amplified sample 

stacking (FASS) to provide better resolution, reproducibility and detection (43; 68-69).    

In order to disturb the local field strength as shown in Figure 2.1.1-1, FASS involves 

injecting a sample at a lower buffer concentration (load buffer) than the BGE when utilizing the 

same buffer for both the sample and BGE. The field strength and conductivity consist of a linear 

relationship where the field strength is inversely proportionality to conductivity. Therefore, the 

sample buffer with the lower concentration migrates faster under applied field until the ions reach 

the BGE ions. Since the BGE consists of a higher conductivity, it has lower resistance and in turn 

a lower field strength than the load buffer. This leads to the stacking effect of the sample ions 

where an increase in the concentration will occur in the sample zone. In turn this will lead to a 

better separation and less band broadening.    
AU
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Conductivity
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Figure 2.1.1-1: Effects of FASS where upon applying an electric field the sample focuses at an 
interface between the sample buffer (load buffer) and the separation buffer (BGE) due to the 
difference in conductivity (65). 
 

In order to predict the effects of FASS, mathematical models have been developed where 

FASS has been studied in various EOF conditions (67; 70-71). The governing equation consists of 

Load Buffer=  
BGE 
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mass transport for a dilute electrolyte solution where molecular diffusion, electro-migration and 

convection effects are taken into account.  This equation along with the flux equation, respectively, 

can be described as: 

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑢𝑢∇𝐶𝐶𝑖𝑖 = ∇�𝐷𝐷𝑖𝑖∇𝐶𝐶𝑖𝑖 + 𝑧𝑧𝑖𝑖𝑢𝑢𝑚𝑚,𝑖𝑖𝐹𝐹𝐶𝐶𝑖𝑖∇𝑉𝑉�                       [Equation 2.1.1] 

𝑁𝑁𝑖𝑖 = −𝐷𝐷𝑖𝑖∇𝐶𝐶𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑢𝑢𝑚𝑚,𝑖𝑖𝐹𝐹𝐶𝐶𝑖𝑖∇𝑉𝑉                [Equation 2.1.2] 

where F is Faraday’s constant (9.648 X 104 C/mol), 𝑢𝑢𝑚𝑚,𝑖𝑖 is the electrophoretic mobility, u is the 

fluid velocity, V is the electrostatic potential, 𝑧𝑧𝑖𝑖 is the valence, 𝐷𝐷𝑖𝑖 is the diffusion coefficient and 

Ci is the concentration of species. The subscript for the diffusion coefficient, valence charge and 

concentration can either account for the anion or cationic species (70). The electrophoretic 

mobility can be determined using the Nernst-Einstein relation where it is depend upon the diffusion 

coefficient, rate constant and temperature. Since the capillary is coated with a neutral polymer and 

the charge density is considered negligible, the electric field distribution often assumed to be 

constant and electrically neutral everywhere. Being electrically neutral helps reduce the 

complexity of the environment where the sum of the charge multiplied by the concentration of 

both the BGE and load buffer is approximately zero. Additionally, this assumption helps establish 

an electrically insulated capillary with a set temperature.  

The initial condition consist of 0 volts where once the voltage is applied, the flow of the 

EOF will depend on the polarity and the strength of the applied voltage. Likewise, the boundary 

conditions along a single interface between the stationary and moving boundaries are as stated 

(70):𝐶𝐶𝐴𝐴(−𝐿𝐿, 𝑡𝑡) = 𝐶𝐶𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐴𝐴(𝐿𝐿 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑒𝑒, 𝑡𝑡) = 𝛾𝛾𝐶𝐶𝐴𝐴𝐴𝐴 where 𝛾𝛾 = 𝜕𝜕𝐿𝐿𝐿𝐿
𝜕𝜕𝐿𝐿𝐵𝐵𝐵𝐵

, CA =BGE 

concentration (Na+ focus), CBGE=BGE concentration and CLB= load buffer concentration. When 

considering the sample boundary conditions, the Danckwerts boundary condition is recommended 

where it is assumed that the injection point mass flux would be equal to the mass flux throughout 



14 
 

the capillary (72). By taking into account the Danckwerts boundary condition, a continuity of the 

sample at the inlet and outlet will be observed. Therefore, the mass balance will be satisfied. 

Furthermore, the initial conditions also described by Bharadwaj et al. highlight the importance of 

FASS by taking into account the concentration ratio of the BGE and load buffer as well as the 

sample gradient length (70). Both the concentration ratio and sample gradient length are believed 

to assist in determining the effect of stacking efficiency in the capillary.  

2.2 Materials and Methods 

Appendix D consists of a more detailed version of the protocols of all the methods 

described briefly below. It is important to note, all experiments were conducted utilizing proper 

safety and environmental regulations (wearing proper PPE, disposing chemicals in proper location 

etc.).  

2.2.1 Sample Preparation  

A 1 mg lyophilized powder of Aβ1-42 sample from AnaSpec (San Jose, CA, USA) was 

pretreated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as described by Pryor et al. 2014 (60). 

The pre-treated sample was separated into vials, dried and stored at -80°C. In order to analyze Aβ1-

42, the HFIP treated peptide was solubilized in 5 mM NaOH and kept on ice for 10 minutes. After 

10 minutes, enough sodium phosphate buffer with pH=7.4 was added to the sample to reach the 

desired final concentration. The final Aβ1-42 concentration utilized were 15 µM, 20 µM, 30 µM 

and 60 µM. The sample solution was kept on ice for an additional 20 minutes. When needed, 

samples were analyzed using a spectrophotometer at 277 nm to verify concentration (using Beer’s 

law with extinction coefficient of 1280 L/(mol*cm)).  
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Furthermore, initial FASS experiments were performed using 1 mg/mL of bovine serum 

albumin (BSA) fraction V from Sigma-Aldrich as a model protein. The protein samples varied in 

sodium phosphate buffer concentration ranging from 10 mM to 100 mM.  

Congo red and Orange G experiments were conducted using 16.7 µM stock solution of 

inhibitor where 2% of the total sample volume is the inhibitor. This concentration was based on 

the findings by Necula et. al and Pryor et al. (60; 73). Additionally, Congo red and Orange G were 

dissolved in water to make the stock solution in order to avoid any interference on the CE. 

2.2.2 ThT Assay 

The ThT assay, using RF-Mini 150 Recording Fluorometer (with excitation at 440±10 nm 

and emission at 490±10 nm), was conducted with a 5:1 molar ratio of the 14.29 μM ThT stock 

solution to 20 µM Aβ1-42 (74). The ThT stock solution was prepared by mixing 1 mM ThT 

(powdered ThT from Sigma-Aldrich) with 100 mM sodium phosphate buffer (pH=7.4) or 40 mM 

Tris-HCl with 150 mM NaCl (pH=8.07). The initial concentration of Aβ1-42 was 20 µM or 30 µM. 

The ThT stock solution concentration changed accordingly for the different amyloid beta 

concentration. For all ThT assays, agitation was performed utilizing a VWR micro plate shaker at 

25°C and either 800, 600, 500, 400, or 300 RPM. The fluorescent intensity was determined by 

subtracting the background (ThT alone) from the sample fluorescent intensity.  

2.2.3 CE Studies  

All studies were conducted at 25°C using UV detection on P/ACE MDQ Glycoprotein System 

from Beckman Coulter, Inc. with a 214 nm filter, the total capillary length of 31 cm and the length 

to detector of 10 cm. The CE consisted of an interface with a computer utilizing the 32 Karat 

software for collecting the CE data. All fused silica capillary tubing were purchased from 

Polymicro Technologies with an inside diameter of 51 μm. The Aβ1-42 samples were pressure 
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injected at 0.5 psi for various injection time depending on the sample concentration (detail stated 

in Appendix B Section II) and separated at 7 kV. The separation buffer (also called background 

electrolyte or BGE) for the CE was 100 mM sodium phosphate buffer with pH=7.4.  

In order to coat the capillary, the capillary was equilibrated by conducting a pre-conditioning 

wash on a new capillary that included a 0.1 M NaOH rinse, a water rinse and a 0.1 M HCl rinse to 

potentially wash away adsorbed substances on the capillary wall and regenerate the capillary. The 

capillary was coated using 0.5% 2000 kDa poly(ethylene) oxide (PEO) purchased from Sigma 

Aldrich. The high molecular weight coating provided a strong hydrophilic/neutral environment for 

peptide separation and had great self-coating properties.  In addition, a polymer separation matrix 

was used in each run to enhance the separation of the electrophoretic peaks. The polymer 

separation matrix consisted of 0.5% 50 kDa PEO dissolved in the 100 mM sodium phosphate 

buffer pH=7.4 and 0.1% of 0.1% 2000 kDa PEO. Once the capillary was coated, the capillary was 

utilized for at most 4 days depending on the amount of sample analyzed. Before each sample 

injection, the capillary was washed with filtered di-water to clean out contaminants and the coating 

was regenerated with the polymer matrix. The polymer coating can break down over time or have 

decreased efficiency due to protein adsorption. Therefore, a long wash followed by rinsing with 

polymer matrix (which contains a small amount of coating polymer) is believed to increase the 

lifetime of the capillary (75). 

2.2.4 TEM Imaging 

 Three microliter of sample was placed on a parafilm at certain time points (stated in Section 

2.2.6). At each time point, the 3 µL sample was transferred onto a 300 square grid nickel (VWR-

Electron Microscope Science) by placing the grid onto the sample. Excessive sample was removed 

from the grid by taking the grid and tapping the side to a filter paper. Then the grid was negatively 
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stained with 3 µL of 2% uranyl acetate. Uranyl acetate is utilized in order to keep the peptide 

sample from changing its kinetics and also provide a strong background contrast to the peptide. 

Excess stain was also removed and sample grids were air dried. All samples were viewed using 

AmtV602 software interfaced with JEM-1011 Electron Microscope (JEOL) at 100 kV. The 

magnification utilized were 25000X, 50000X and 100000X.   

2.2.5 Dot Blot Analysis 

 Nitrocellulose membranes were dotted with 5 μL Aβ1-42 at 0, 2, 4, 7, 12, 18, 24, and 27 

hours and air dried for 15-20 minutes after each time point. The membranes were then placed in a 

container that was placed within a zip lock bag that had drierite. The zip lock was then placed 

within a Tupperware and placed in a -20°C freezer. The drierite included an indicating dye which 

helped determine whether the zip lock contained moisture. Once aggregation was completed, the 

dried membranes were soaked in 5% milk with TBS-T and put on VWR Rocker at a tilt of 22 for 

an hour. Upon removing the milk solution and cleaning the membranes with TBS-T, the primary 

antibodies were placed on the membrane using a 1:2000 dilution for 6E10 and 1:4000 dilution for 

OC. The membranes were placed on the VWR Rocker overnight in the refrigerator with a tilt of 

34 and washed three times using TBS-T. The washes consisted of 5 minute intervals. The 

secondary antibodies were added to the membranes after the last wash where 1:4000 dilution was 

utilized for the anti-mouse IgG on the 6E10 membranes and 1:4000 dilution was utilized for the 

anti-rabbit IgG on the OC membranes. This was placed on the VWR Rocker for 40-45 minutes 

and washed three times with TBS-T. The substrate solution was made by adding 0.1 mL of 50 

mg/mL NBT (nitro blue tetrazolium chloride) in DMSO (dimethyl sulfoxide) and 0.05 mL of 50 

mg/mL of BCIP (5-bromo-4-chloro-3- indolyl phosphate) in DMF (dimethylformamide) to 15 mL 
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TBS-T MgCl2. Upon detection, this reaction was stopped by rinsing the membranes with 10% 

acetic acid and washed afterwards with distilled water.   

2.2.6 Aggregation Study 

After determining the agitation rate through ThT assays, all aggregation studies utilized a 

VWR micro plate shaker at 25°C and 300 RPM. At 0, 2, 4, 7, 12, 18, 24, and 27 hours, 20 µL of 

the Aβ1-42 in either 100 mM (n=3) or 40 mM sodium phosphate buffer (n=4) was used for the CE 

experimentations and 3 µL was used for TEM imaging (n=1 for each buffer). Data collected by 

the CE was analyzed to determine the migration time and absorbance intensity. The CE data was 

translated from 32 Karat using Excel VBA program and compared using Origin® (64 bit) from 

OriginLab Corporation. A bi-Gaussian fit was used to calculate the migration time, peak area, 

width and height. The resolution, RES, was determined by (40): 

𝑅𝑅𝑅𝑅𝑅𝑅 = 2(𝑥𝑥1−𝑥𝑥2)
�𝑤𝑤1,1+𝑤𝑤1,2�+�𝑤𝑤2,1+𝑤𝑤2,2�

            [Equation 2.2.3-1] 

where 𝑤𝑤1,1, 𝑤𝑤1,2 are the bi-Gaussian widths for the first peak and 𝑤𝑤2,1 𝑎𝑎𝑖𝑖𝑒𝑒 𝑤𝑤2,2 are the widths for 

the second peak and , 𝑥𝑥1 𝑎𝑎𝑖𝑖𝑒𝑒 𝑥𝑥2 are the migration time for the respective peaks.  

Additionally, Aβ1-42 samples were centrifuged using Nanosep MF centrifugal filters (Pall Life 

Science) where the filtrate was analyzed using the CE. The centrifugation process was conducted 

at 4°C. Initial experiments indicated that there was significant loss of the protein onto the filters 

and therefore the sample concentration was increased from 30 μM to 60 μM. The 60 µM Aβ1-42 

aggregated samples at 0 hour and 7 hours were analyzed. Additionally, 20 µL of the 60 µM Aβ1-

42 sample was studied using CE without centrifugation. This helped established a comparison with 

the filtered vs. unfiltered sample. The rest of the sample was filtered through either a 300 kDa, 100 

kDa or 30 kDa filter.  
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Alongside conducting ThT assay at 300 RPM, a parafilm sheet was dotted with 3 μL of 30 

µM Aβ1-42 at 0, 12, 27, 51, and 79 hours for TEM imaging, n=2. This data was used to compare 

with the CE for both 100 mM and 40 mM sodium phosphate buffer pH=7.4 samples. Additionally, 

20 µL of 30 µM Aβ1-42 inhibited by either Congo red or Orange G was studied using the CE at 0, 

2, 4, 7, 12, 18, 24 and 27 hours. TEM imaging was also conducted at 0, 12, 27, and 51 hours for 

both inhibitors, n=2.   

2.3 Results 

Several past studies have proven the various affects temperature, peptide concentration, 

agitation, and salt concentration etc. has on the aggregation of Aβ1-42 (36; 46-47; 51). In order to 

thoroughly analyze various soluble intermediates of Aβ1-42, the agitation rate of the Aβ1-42 

aggregation study needs to be low enough to allow for a long lag time phase. As further discussed 

in Appendix A Section III, the agitation rate of 300 RPM was determined by conducting ThT 

assays where it was believed the soluble aggregates can be carefully examined and further 

understood by CE analysis. Furthermore since Aβ1-42 was being examined on the CE where the 

FASS technique was going to be utilized, ThT assays for both 30 µM Aβ1-42 samples with either 

100 mM sodium phosphate or 40 mM sodium phosphate buffer were conducted. While conducting 

the ThT assays, the 100 mM sodium phosphate buffer produced a higher fluorescent intensity 

overall vs. the 40 mM sodium phosphate buffer (Figure A.3-3C). It is believed that the increase in 

fluorescent intensity was due to the higher concentration of β-sheet aggregates produced in the 100 

mM sodium phosphate buffer. Furthermore, it was interesting to note that the overall aggregation 

time between the two buffers did not vary by much (Figure A.3-3A and B). As shown in Appendix 

A Section III, a sharp increase in fluorescent intensity was observed after 7 hours of aggregation 

while a huge statistical decrease in intensity was observed by 80 hours for both 100 mM and 40 
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mM sodium phosphate buffer samples. Therefore, it was believed that the Aβ1-42 consist of 

insoluble fibril aggregates 80 hours into the aggregation.  

Additionally as a confirmation of the ThT assay, TEM imaging for the 40 mM sodium 

phosphate buffer samples was also conducted simultaneously. Though 0 hour uranyl acetate 

spotting was observed, the aggregates in 12 and 27 hours appeared to be clumpier than the 0 hour. 

Moreover at 12 hours, protofibril like aggregates, similar to the TEM imaging of Ahmed et al. 

(Figure 2.3.1-4), also appeared (24). The 27 hour TEM images (Figure 2.3.1-1) showed how the 

interconnected fibril formation started to occur. It is important to note that TEM imaging does not 

provide a proper platform to distinguish or identify these ‘clumpy’ smaller aggregates. However 

as shown in Figure 2.3-1 D and E, at 79 hours larger fibrils were observed with more 

interconnected clusters than 51 hours. Furthermore, the clumpy like aggregates were not visualized 

to the extent as the previous time points at 51 hours and were non-existent at 79 hour. To further 

understand the earlier Aβ1-42 aggregates, CE studies of up to 27 hours were conducted using an 

agitation rate of 300 RPM. Likewise, the effect the FASS technique had on CE separation and 

detection was also analyzed in hope to further improve CE separation technique.  
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Figure 2.3-1:3TEM imaging at A) 0 hour, B) 12 hour, C) 27 hour, D) 51 hour and E) 79 hour into 
the aggregation using JOEL with a magnification at 25000X and 100kV of 30 µM Aβ1-42  with 
500:10000 NaOH: 40 mM sodium phosphate buffer pH=7.4 ratio at 300RPM, 25°C. 

2.3.1 Capillary Electrophoresis: FASS Technique 

Various sodium phosphate buffer conductivities were determined to narrow the range of 

sample buffer concentrations to be used for FASS analysis (further discussed in Appendix B 

Section III). As shown in Appendix B Section III, initial experiments using FASS were conducted 

using 1 mg/mL BSA with sodium phosphate buffer concentration ranging from 10-50 mM. Upon 

comparing the data, further analysis of 100 mM, 40 mM and 30 mM sample buffer concentration 

were conducted on the CE.  Figure 2.3.1-1 (below) showed not only improved detection using the 

FASS technique, the experiments also showed a higher reproducibility established by utilizing this 

technique.  

A B C 

D E 
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Figure 2.3.1-1: 4A) Height, B) Width, and C) Area data from CE analysis for 5% 2000 kDa PEO 
coated capillary with a separation matrix of 0.5% 50 kDa PEO + 0.1% of 0.1% of 2000 kDa PEO 
and BGE of 100 mM sodium phosphate buffer (pH=7.4) where the sample consisted of 1mg/ml of 
BSA at the varying buffer concentrations, n=3. 

In Figure 2.3.1-1, the average area of the three varying buffer were equal which was 

expected because the BSA concentration was the same. However, in order to determine the optimal 

load buffer, it was necessary to look at the load buffer that produced the highest reproducibility, 

optimal detection, and less band broadening. Though the 30 mM sodium phosphate load buffer 

sample consisted of the best height detection, 40 mM sodium phosphate buffer was determined as 

the optimal option due to its ability to have high reproducibility and least amount of zone 

broadening. It is believed that when the concentration difference between the BGE and load buffer 

is high, then the sample can potentially behave similar to a laminar flow profile. This can affect 
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the way the sample travels in the capillary and cause width broadening. Therefore though 

increasing local field strength is beneficial, at a certain point it can cause negative effects as the 30 

mM sodium phosphate buffer data confirmed. In order to further explore whether FASS was also 

better when analyzing Aβ1-42, both 40 mM sodium phosphate and 100 mM sodium phosphate load 

buffer were utilized with the BGE being 100 mM sodium phosphate buffer. This provided an 

opportunity to see how the FASS method improved the separation and also the effect changing the 

load buffer has on the Aβ1-42 as well.   

Data collected with 30 µM Aβ1-42 confirmed the importance of utilizing the FASS 

technique where there was less band broadening and higher height absorbance detection with the 

40 mM sodium phosphate buffer sample vs. the sample with the same buffer as the BGE (Figure 

2.3.2-1).   In Figure 2.3.1-2, it is also important to note that the ‘spike-like’ peaks at or close to the 

5 minute peak were usually not replicated in repeated experiments (especially at the same 

migration time) and were believed to be due to microscopic bubbles either in the sample or 

separation buffer. Additionally if there are precipitates in the sample, the CE might develop spikes 

on the baseline or start to have an unstable baseline.  
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Figure 2.3.1-2:5 Representation electropherograms for the aggregation study at 300 RPM using 
A) 100 mM and B) 40 mM sodium phosphate load buffer at pH = 7.4 with a final concentration of
30 µM Aβ1-42. Other conditions included: 25°C with 0.5% 2000 kDa PEO capillary coating and 
100 mM sodium phosphate buffer (pH=7.4) as the BGE with a separation matrix of 0.5% 50 kDa 
PEO plus 0.1% of 0.1% of 2000 kDa PEO using a pressure injection of 0.5 psi for 13.3 seconds 
and 7 kV separation voltage. 

A 

B 
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Past studies have shown Aβ1-42 aggregation contains larger forms of aggregates especially 

if it is dissolved in HFIP (76). As shown in Figure 2.3.1-2A and B, both aggregation studies 

consisted of the observation of more than one species of Aβ1-42. Moreover, as the aggregation 

continued for 30 µM Aβ1-42 samples using both 100 mM or 40 mM sodium phosphate buffer with 

pH=7.4, the peak at 10 minutes slowly decreased as the peak at 5 minute increased (shown in 

Figure 2.3.1-2). Therefore, it is believed that the 10 minute peak was smaller Aβ1-42 aggregates 

then the 5 minute peak. A previous study by Wang et al. has shown that Aβ1-42 aggregates exhibit 

a higher surface charge which would explain a faster migration (77).  

By further comparing the peak areas, an understanding of the concentration of aggregates 

can be established. As observed in the Aβ1-40 aggregation study by Pryor et al., amyloid peptide 

pre-treated with HFIP treatment increased in the smaller aggregates before the decrease was 

observed (60). This same pattern was observed for both 40 mM and 100 mM sodium phosphate 

Aβ1-42 where an increase in the 10 minute peak is observed before it declined (Figure 2.3.1-3). In 

Figure 2.3.1-3A, the 10 minute aggregates of the 40 mM sodium phosphate buffer Aβ1-42 appearred 

to increase until 4 hours into the aggregation and then decreased. Additionally at 12 hours, both 

the 5 and 10 minute peaks were statistically similar. This could represent a similar distribution of 

the aggregates at 12 hour where by 27 hours into the aggregation study, the 5 minute increased 

and 10 minute peak decreased. The 5 and 10 minute peak areas of 100 mM sodium phosphate 

amyloid sample (Figure 2.3.1-3B) are statistically different for all except the 7 hour time point. 

The 10 minute peak for the 100 mM sodium phosphate sample showed a clear decline in 

aggregates. Furthermore, the 5 minute peak leveled after the 7 hour time point.  It is also interesting 

to note that both sample buffers consisted of a statistical difference compared to the 0 hour time 

point within 2 hours for the larger aggregates (5 minute peak). As stated in Chapter 1, the lag phase 
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is thermodynamically not favored. Therefore, it can be expected that the conversion of aggregates 

is preferably and continuous throughout the study. 

Figure 2.3.1-3: 6 CE data of 30µM Aβ1-42 with A) 40 mM load buffer, B) 100 mM load buffer 
with a 100 mM sodium phosphate pH=7.4 BGE buffer. The CE aggregation study is at 300RPM, 
25°C with 0.5% 2000 kDa PEO capillary coating and a separation matrix of 0.5% 50 kDa PEO 
plus 0.1% of 0.1% of 2000 kDa PEO using a pressure injection of 0.5psi for 13.3 seconds and 
7kV separation voltage, n=3. 

When comparing the 5 minute peaks for each buffer concentration (Figure 2.3.1-4A), the 

majority of the time points were statistically similar peaks except for 2-7 hour time points. The 

statistical difference for the 5 minute peak between the 2-7 hour time points might be due to the 

variable nature of the aggregations which tend to lead to larger variance in the data. Additionally, 

the 30 µM Aβ1-42 with the 40 mM sodium phosphate buffer also consisted of smaller peak area 

standard deviation than the 100 mM sodium phosphate buffer sample until 12 hours into the 

aggregation for the larger Aβ1-42 aggregates (shown in Figure 2.3.1-4A). This is consistent with 

the BSA data that showed better reproducibility at the lower concentration of sample buffer.  
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Figure 2.3.1-4: 7CE data of 30µM Aβ1-42 with A) the bigger species of 30µM Aβ1-42 comparison 
of the load buffers and B) the smaller species of 30µM Aβ1-42 comparison of the load buffers 
consisting of sodium phosphate pH=7.4 and 100 mM sodium phosphate pH=7.4 BGE buffer. 
The CE aggregation study is at 300RPM, 25°C with 0.5% 2000 kDa PEO capillary coating and a 
separation matrix of 0.5% 50 kDa PEO plus 0.1% of 0.1% of 2000 kDa PEO using a pressure 
injection of 0.5psi for 13.3 seconds and 7kV separation voltage, n=3. 

Once similar aggregation patterns were established between the ionic strengths, Origin® 

analysis of the data was conducted to compare the height, width and resolution of the peaks to 

understand the factors FASS method should effect the most. For CE detection, a signal that is 

greater than the noise by a factor of 3 is considered adequate. Therefore in hopes to analyze Aβ1-

42 using lower concentrations to reduce the peptide to cost ratio, it was important to be able to 

detect the peptide at lower limits of sample concentration. By utilizing the FASS method, the 

height increased for the smaller aggregates (Figure 2.3.1-5B) where 6 out of 8 time points (0, 2, 4, 

7, 18, and 24 hours) consisted of a significant statistical difference of the sample with 40 mM 

sodium phosphate buffer compared to the 100 mM sodium phosphate buffer. Additionally though 

in Figure 2.3.1-4A some 100 mM sodium phosphate Aβ1-42 appeared to have higher height 

detected, the statistical difference between the two buffers was not considered significant. For the 

larger Aβ1-42 aggregates heights that did have a statistical difference, the 40 mM sodium phosphate 
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buffer consisted of the better detection (due to increased height). Furthermore, having less band 

broadening provided the opportunity for better separation. Therefore by comparing the width for 

both buffers, the smaller 30 µM Aβ1-42 species with 40 mM sodium phosphate buffer consisted of 

a smaller peak width where up to 7 out of 8 of the widths were statistically different (Figure 2.3.1-

5D). The bigger aggregates (Figure 2.3.1-5A) were statistically similar except for 4 out of 8 time 

points where the 100 mM sodium phosphate had the larger width. Therefore, the detection of 30 

µM Aβ1-42 using the FASS technique provided less broadening and in turn should provide better 

separation. Since resolution helps indicate the separation between the peaks, it was believed FASS 

would provide higher resolution as well. The lower buffer Aβ1-42 consisted of a statistical higher 

resolution than the 100 mM sodium phosphate (Figure 2.3.1-5D). Therefore utilizing the FASS 

method with Aβ1-42 provided better resolution, smaller width and larger height. This confirmed 

FASS helps increase peak separation and could be considered beneficial for analyzing numerous 

peaks that are close together.  
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Figure 2.3.1-5: 8Average CE data of A) peak height for larger species of 30µM Aβ1-42, B) peak 
height for smaller species of 30µM Aβ1-42, C) peak width for larger species of 30µM Aβ1-42, D) 
peak width for smaller species of 30µM Aβ1-42, and E) resolution comparison of the load buffers 
consisting of 40 mM and 100 mM sodium phosphate pH=7.4 and BGE of 100 mM sodium 
phosphate buffer pH=7.4. The CE aggregation study is at 300RPM, 25°C with 0.5% 2000 kDa 
PEO capillary coating and a separation matrix of 0.5% 50 kDa PEO plus 0.1% of 0.1% of 2000 
kDa PEO using a pressure injection of 0.5psi for 13.3 seconds and 7kV separation voltage, n=3. 
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2.3.2 MWCO Filtration 

As shown in Figure 2.3.1-3A and B, the peak at 10 minute increased and then slowly 

decreased. Furthermore, since larger Aβ1-42 aggregates (5 minute peak) were also detected, it was 

believed that the 10 minute peak was most likely not just monomeric. Therefore even though the 

ThT assay helped establish the lag time, it was important to see whether the Aβ1-42 species observed 

by the CE is actually oligomers. In order to determine the molecular weight of the species observed 

by the CE, ultrafiltration with membrane filters were used. The concentration of Aβ1-42 was 

increased to 60 µM due to peptide loss by the membrane and the aggregation study was conducted 

for the 0 hour and 7 hour time point. Since the increased concentration of Aβ1-42 for ultrafiltration 

was larger and prone to aggregate faster according to past literature (5), CE study was also 

performed on 60 µM Aβ1-42 to confirm the same 5 and 10 minute peaks were observed although in 

different amounts. Additionally, the larger aggregates at 7 hour were at least 6 times the 

concentration (peak area) as the 30 μM Aβ1-42 whereas, the smaller aggregates were about 80% 

the size of the aggregates studied for the FASS technique. Therefore, the assumption of having 

larger aggregates at 60 µM Aβ1-42 was adequate. 

Upon conducting the centrifugation experiments of 60 µM Aβ1-4, about 99% peptide loss 

was observed when comparing all filter experiment with the un-filtered experiments. Additionally 

by looking at Figure 2.3.2-1, it was observed that the bigger aggregates were more likely to stick 

to by the membrane. Therefore in order to analysis the filtered data, a qualitative analysis was 

conducted where if the peak was observed, it was believed to be within the MW range of the filter 

cutoff weight. At 300 kDa and 100 kDa (Figure 2.3.2-1B and C), both peaks at 5 and 10 minutes 

were observed. Additionally at 30 kDa, only the 10 minute peak was consistently observed (n=3). 

Therefore, the 10 minute aggregates were believed to be less than 30 kDa (Figure 2.3.2-1D). 
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Furthermore according to the 7 hour 100 kDa filter experiments, it was also believed that the peak 

observed at five minutes contains aggregates consisting of a range from 30-100 kDa (n=3). In other 

words, the 5 minute peak ranges between 7-22 mer and the 10 minute peak is up to 7 mers. 

Therefore, the Aβ1-42 aggregates being analyzed by the CE range from higher molecular aggregates 

to small oligomer species throughout the aggregation and potentially smaller aggregates until 7 

hours into the 30 µM Aβ1-42 aggregation.   

Figure 2.3.2-1: 9 Representation electropherograms for A) unfiltered 60 µM Aβ1-42 n=4, B) 60 
µM Aβ1-42 sample filtered by MWCO of 300 kDa, C) 60 µM Aβ1-42 sample filtered by MWCO of 
100 kDa and D) 60 µM Aβ1-42 sample filtered by MWCO of 30 kDa, n=3 total for each filter. Other 
conditions included: 25°C with the aggregation study at 300 RPM and CE conditions of 0.5% 2000 
kDa PEO capillary coating and 100 mM sodium phosphate buffer (pH=7.4) as the BGE with a 
separation matrix of 0.5% 50 kDa PEO plus 0.1% of 0.1% of 2000 kDa PEO using a pressure 
injection of 0.5 psi for 13.3 seconds and 7 kV separation voltage. 

A B 

C D 
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2.3.3 TEM Analysis 

Oligomeric Aβ1-42 species are believed to range from 10 kDa up to 250 kDa and range in 

conformation from pre-fibrillar oligomers (such as globular, paranuclei etc.) to fibrillar oligomer 

(3; 34; 78). Therefore, it is difficult to distinguish the type of oligomer Aβ1-42 species just based 

on the molecular weight when analyzing the CE data. As stated in the previous section, the 10 

minute peak consisted of aggregates smaller than 30 kDa. However since the 5 minute peak 

consisted of aggregates ranging from 30-100 kDa, TEM imaging was conducted to qualitatively 

help further confirm species analyzed by the CE are not fibril/ proto-fibril species. In Figure 2.3.3-

1A and B, the TEM image further confirms that the 100 mM sodium phosphate consisted of 

slightly higher aggregates but was along a similar aggregation pathway as the 40 mM sodium 

phosphate buffer sample of 30 µM Aβ1-42.  The 12 hour (Figure 2.3.3-1A) showed how the 100 

mM sodium phosphate buffer sample consisted of ‘clumpier’ aggregates than the 40 mM sodium 

phosphate buffer. This was observed more clearly at a higher magnification (100,000X) where 

image was enhanced to distinguish uranyl acetate staining compared to aggregate detection. 

Additionally, the 27 hour of the 100 mM sodium phosphate buffer consisted of more fibril strands 

compared to the 40 mM sodium phosphate sample (Figure 2.3.3-1B). While comparing 40 mM 

sodium phosphate buffer CE and ThT Assay TEM images, the overall aggregation study was fairly 

similar in the sense that the first inter-connected fibrils appeared at 27 hours into the aggregation 

(Figure 2.3.3-1B and D). Furthermore by looking at the TEM image of 51 hours (Figure 2.3-1), it 

can be concluded that majority of the aggregates converted into fibrils. Therefore not only do the 

TEM images confirmed majority of the aggregates during the 27 hours are smaller than fibrils, the 

TEM images also potentially helped correlate the ThT and CE data where both aggregation 

behaved similarly even though the experiments were set studying varying time points.  
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Figure 2.3.3-1:10TEM imaging where data collected at CE time point intervals at A) 12 hour, and 
B) 27 hour of 30 µM Aβ1-42 with 40 mM sodium phosphate buffer pH=7.4 (right images) or with
100 mM sodium phosphate buffer pH=7.4 (left images) and where data collected at ThT Assay 
time point intervals at C) TEM imaging for 12 hour and D) TEM imaging for 27 hour with 40 mM 
sodium phosphate sample buffer pH=7.4 using JOEL with a magnification of 25000X and 100kV. 
Aggregation study conducted using a mini-shaker at 300 RPM and 25°C. 

Additionally by trying to correlate the CE and TEM imaging, it was observed by the CE 

that both 100 mM and 40 mM sodium phosphate buffer appeared to behave fairly similar except 

for the 7 hours bigger amyloid aggregates (Figure 2.3.1-4) when taking into account the standard 

deviation of the peak areas. It was believed since the peak area of the 100 mM sodium phosphate 

load buffer sample was larger than the 40 mM load buffer, the 100 mM sodium phosphate might 

consisted of larger aggregate species (Figure 2.3.1-4). Therefore by looking at the TEM images of 

the 7 hour time point, a better understanding of the aggregates was established. At 7 hours, there 

was an increased production of aggregates using the 100 mM sodium phosphate buffer compared 

to the 40 mM sodium phosphate buffer. The 30 µM Aβ1-42 image with 40 mM sodium phosphate 

buffer consisted of fibril-like strands (blue arrow) in the mist of circular-like aggregates (orange 
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arrow) as well as some short linear strands (orange arrow). Additionally, the 100 mM sodium 

phosphate buffer sample also consisted of the circular like aggregates (green arrow) but was 

surrounded with more short linear strands (orange arrows) vs. the 40 mM load buffer. These 

circular aggregates (orange arrow in Figure 2.3.3-2) appeared to be similar to the round particles 

discussed by Ahmed et al. (24).  Furthermore according to Ahmed et al., these circular aggregates 

(Figure 2.3.3-3) were oligomers. Additionally, in their studies it was found the average width of 

the oligomers to be 10-15 nm by utilizing AFM (atomic force microscope) (24). Therefore, TEM 

provided a platform to confirm the species observed by the CE with up to 100 kDa are some form 

of oligomers.  

Figure 2.3.3-2: 11TEM imaging of A) 40 mM or B) 100 mM sodium phosphate sample buffer 
(pH = 7.4) after 7 hours of aggregation using a mini-shaker at 300 RPM and 25°C. TEM conducted 
using JOEL with a magnification of 100000X and 100 kV of 30 µM Aβ1-42 with either 500:10000 
NaOH: 40 or 100 mM sodium phosphate buffer. The green arrow represent the circular like 
aggregates, the orange show the short strand aggregates and blue arrows represent the long 
aggregates. 

A B
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Figure 2.3.3-3: 12From Ahmed et al. Figure 2: “Characterization of Aβ42 oligomers, protofibrils 
and fibrils. (a) TEM of Aβ42 oligomers incubated at 4 °C for 6 h. (b) TEM of Aβ42 protofibrils 
incubated at 37 °C for 6 h” (24).  

By looking at current literature the fibril-like strands could be categorized according to the 

secondary nucleation pathway where these aggregates were most likely an elongated nucleating 

fibril (36). The elongated nucleating fibrils consisted of sites for proto-fibrils and potentially grew 

into becoming larger fibrils. As shown in Figure 2.3.3-2, the protofibril were interacting with one 

another and appeared to be elongating (blue arrow). Therefore, the CE provided an opportunity to 

further analysis the smaller aggregates compared to ThT assays which detected the higher 

aggregate forms of Aβ1-42 (increase of interaction with β-sheet) and the TEM images which showed 

the overall sample characteristics as a whole.  

2.3.4 Congo red and Orange G Inhibition 

Since the aggregates observed by the CE are believed to be up to 100 kDa, Congo red and 

Orange G inhibition studies were conducted to further investigate the nature of these aggregates. 

Congo red is believed to inhibit oligomer Aβ species or at least species smaller than fibrils (73; 

79). Therefore, it was hypothesized that the 5 minute peak (larger aggregates) will be reduced 

using Congo red. However the Congo red inhibition of 30 µM Aβ1-42 aggregation study at 300 

RPM results produced mixed data (Figure 2.3.4-1). As shown by Figure 2.3.4-1, the set of 

electropherograms in on the left (A) show the expected behavior of suppression of the 5 minute 
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peak with increasing aggregation time.  However, the set of electropherograms on the right (B) did 

not appear to be inhibited in the presence of the Congo red.  

Figure 2.3.4-1:13 Electropherogram representation of A) n=2 and B) n=2 for Congo red inhibition 
of 30µM Aβ1-42 with a 40 mM sodium phosphate sample buffer pH=7.4. The CE aggregation study 
was conducted at 300RPM, 25°C with CE 0.5% 2000 kDa PEO capillary coating and 100 mM 
sodium phosphate buffer (pH=7.4) as the BGE with a separation matrix of 0.5% 50 kDa PEO plus 
0.1% of 0.1% of 2000 kDa PEO using a pressure injection of 0.5 psi for 13.3 seconds and 7 kV 
separation voltage 

When taking a closer look at the peak areas (Figure 2.3.4-2B), a decrease in the Aβ1-42 

species < 30 kDa still occurred as the aggregation progresses. For the Set A electrophoresis 

experiments, there were statistically similar amount of small species present at all time points 

(Figure 2.3.4-2B) and statistically less of the bigger (30 – 100 kDa) Aβ1-42 species were formed as 

the aggregation time increased (Figure 2.3.4-2A). However, for Set B electrophoresis experiments, 

the amount of smaller aggregates present initially was higher overall and a greater amount of 

bigger species were formed. There are several possible explanation for the differences between 

these two sets of data.  First, Congo red is considered a weak inhibitor which could lead to 

variability in its ability to inhibit samples, especially in the presence of a significant amount of 

bigger aggregates at 0 hours (76).  In addition for Set B, there was a larger amount of bigger species 

A B 
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initially present which could be acting as seeds for the growth of oligomers and thereby bypassing 

the species that Congo red was actually able to inhibit.  Therefore, TEM imaging was also 

conducted to further understand what is happening during the aggregation.  

Figure 2.3.4-2: 14A) Bigger 30µM Aβ1-42 aggregates and B) smaller 30µM Aβ1-42 aggregates 
where Set A is from data similar to Figure 2.3.4-2A (n=2) and Set B is from data similar to Figure 
2.3.4-2B (n=2). The aggregation study consisted of Congo red inhibtion at 300RPM, 25°C with 
40 mM sodium phosphate pH=7.4 as the sample buffer. The CE setting consisted of  0.5% 2000 
kDa PEO capillary coating and 100 mM sodium phosphate buffer (pH=7.4) as the BGE with a 
separation matrix of 0.5% 50 kDa PEO plus 0.1% of 0.1% of 2000 kDa PEO using a pressure 
injection of 0.5psi for 13.3 seconds and 7kV separation voltage.  

As shown by the TEM images (Figure 2.3.4-3), the first fibril like aggregate was still 

observed at 12 hour where the fibril species development throughout the aggregation was similar 

to the un-inhibited aggregation of Aβ1-42. Therefore, the results confirmed Necula et al. findings 

where Congo red does not inhibit fibril species (73). The major difference between the Congo red 

compared to the un-inhibited aggregation was the type of smaller aggregate species observed in 

the TEM. In Figure 2.3.4-3, it was interesting to note that the circular like species were a lot more 

abundant (Figure 2.3.4-3E) vs. the ‘clumpy’ species observed in the 12 hour un-inhibited 

aggregation study (Figure 2.3.4-3F). Additionally when the circular like aggregates were observed 
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in the un-inhibited study, protofibril (short strands) were also observed. In the Congo red 

aggregation study, however, the proto-fibrils (short strands) were not observed throughout the 

aggregation. Therefore data obtained by the CE further confirms Congo red to be a weak inhibitor 

and the TEM images eluded to the fact that Congo red does have the capability to bind to various 

Aβ species as described by Wu et al. (80). 

Figure 2.3.4-3:15 TEM imaging at A) 0 hour, B) 12 hour, C) 27 hour, and D) 51 hour into the 
Congo red inhibition aggregation of 30 µM Aβ1-42  with 40 mM sodium phosphate sample buffer 
pH=7.4. The aggregation was conducted using a mini-shaker at 300RPM, 25°C and TEM imaging 
was produced using JOEL with a magnification of 25000X and 100kV, n=2. TEM image E is 
magnified version of B with a magnification of 50000X in order to visualize the ‘circular’ like 
aggregates and image F is an un-inhibited 12 hour TEM with magnification of 50000X.  

Since in the TEM images an increase of the circular aggregates and decrease in the 

clumpier aggregates was observed, dot blot analysis of un-inhibited Aβ1-42 were looked at for un-

inhibited amyloid. Two distinct categorizes of oligomer identified are called pre-fibrillar oligomers 

and fibrillar oligomers (34). Furthermore it is believed that since fibril oligomer have a 
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conformation similar to fibrils but differ in size, OC can detect the fibrillar oligomer (34; 81). 

Upon using the OC antibody, positive detection was observed throughout the aggregation which 

have been reported to detect fibril oligomers (Figure 2.3.4-4B).   6E10 (a control) antibody was 

also positive for all time points (n=3). Positive results for the 6E10 confirmed the species being 

detection is Aβ. Hence it is hypothesized that Congo red might prefer inhibition of fibrillar 

oligomers and proto-fibrils better than the pre-fibrillar oligomer (80).   

Figure 2.3.4-4: 16Dot blot analysis using A) 6E10 primary antibody, B)OC primary antibody for 
30 µM Aβ1-42 where the first row consisted of 0, 2, 4, 7 hour time points (starting from left to right) 
and the second row consisted of 12, 18, 24, and 27 hour time points (starting from left to right). 

After Congo red inhibition and dot blot analysis, Orange G inhibition was conducted in 

hope to further ensure fibril species are not observed on CE. Orange G is commonly known to 

inhibit fibrils and is believed to bind Aβ in such a manner that does not stop monomers from 

aggregating but prolongs or eliminates fibril formation (73). Upon conducting Orange G 

inhibition, increases in Aβ1-42 larger aggregates were observed (Figure 2.3.4-5) by CE with 

increasing aggregation time. Additionally, the smaller aggregate species increased and then slowly 

disappeared as the aggregation continued.  The increase in the smaller Aβ1-42 species from 0 hour 

to 2 hour into the aggregation was more prominent compared to the un-inhibited aggregation 

(Figure 2.3.1-1). However after 7 hours, the smaller aggregates (<30 kDa) began to decrease again 

which could indicate formation of another aggregate not shown on CE. Since the aggregation 

pattern using Orange G inhibition was similar to the un-inhibited aggregation study, the Orange G 

inhibition confirmed that the species detected by the CE are in fact not fibrils.  

A B
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Figure 2.3.4-5: 17Electropherogram representation of 30 µM Aβ1-42 of Orange G inhibition 
aggregation study at 300 RPM, 25°C with CE 0.5% 2000 kDa PEO capillary coating and 100 mM 
sodium phosphate buffer (pH=7.4) as the BGE with a separation matrix of 0.5% 50 kDa PEO plus 
0.1% of 0.1% of 2000 kDa PEO using a pressure injection of 0.5 psi for 13.3 seconds and 7 kV 
separation voltage. The sample buffer consisted of 40 mM sodium phosphate buffer pH=7.4.    

 

By looking at the specific peak areas (as shown in Figure 2.3.4-6), the inhibited Aβ1-42 

aggregate were in most cases greater in terms of concentration (peak area) than the un-inhibited 

species. The fact that the area and in turn concentration of the aggregates below 100 kDa was 

higher in the presence of the inhibitor further indicated the larger aggregate peaks (5 minute peak) 

were not fibrils but might be other forms of aggregates. The higher amounts of species detected in 

the present of Orange G also indicated their inability to be converted into larger species (fibrils) 

and therefore remained at higher concentrations in the species that were able to be detected by CE.  

It is important to note that Orange G also gives off a weak signal at the UV spectrum being used 

for peptide detection which could also be part of the increase in amount detected.  
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Figure 2.3.4-6:18 A) Inhibited Bigger 30µM Aβ1-42 aggregates vs. un-inhibited and B) Inhibited 
smaller 30µM Aβ1-42 aggregates vs. un-inhibited. The aggregation study consisted of Orange G 
inhibtion at 300RPM, 25°C with 40 mM sodium phosphate pH=7.4 as the sample buffer. The CE 
setting consisted of  0.5% 2000 kDa PEO capillary coating and 100 mM sodium phosphate buffer 
(pH=7.4) as the BGE with a separation matrix of 0.5% 50 kDa PEO plus 0.1% of 0.1% of 2000 
kDa PEO using a pressure injection of 0.5 psi for 13.3 seconds and 7 kV separation voltage, n=3. 

  

Since proto-fibrils and fibrils were observed at least within 7 hours into the un-inhibited 

aggregation, TEM imaging was also conducted to visualize the difference Orange G has on the 

aggregates. TEM imaging further confirms the increase in smaller aggregates where at 12 hour 

time point no proto-fibrils or fibril like species were observed (Figure 2.3.2-7B). Furthermore, the 

species at 12 hour appeared to be circular like aggregates (Figure 2.3.2-7E) that were earlier 

defined as oligomeric species. In the un-inhibited aggregated these circular like species reduced or 

appeared as ‘clumpy’ aggregates with fibrils observed. Additionally, the 0 hour TEM imaging 

barely had any if not any Aβ1-42 aggregates visualized on the TEM.  As the inhibited aggregation 

study continued, at 27 hours a few fibrils are observed in the TEM imaging where fibril species 

were observed. However, majority of the TEM image appeared to still consist of ‘clumpy’ 

aggregate like species. The fibrils observed at 27 hour might be due to inhibited degradation and/or 

the inability of Orange G to inhibit after a certain period of time.  The interesting aspect of the 
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Orange G inhibited aggregation was the reduction of proto-fibril species where elongated proto-

fibrils were observed (at 27 hours) but not the short stranded proto-fibrils at 12 hours. Therefore 

both the Congo red and Orange G data suggested that the CE aggregates are species smaller than 

proto-fibrils and most likely oligomers.  

 

 

Figure 2.3.4-7:19 TEM imaging at A) 0 hour, B) 12 hour, C) 27 hour into the Orange G inhibition 
aggregation of 30 µM Aβ1-42  with 40 mM sodium phosphate sample buffer pH=7.4. The 
aggregation was conducted using a mini-shaker at 300RPM, 25°C and TEM imaging was produced 
using JOEL with a magnification of 25000X and 100kV, n=2. TEM image D is magnified version 
of B with a magnification of 50000X in order to visualize the ‘circular’ like aggregates. 

 

2.3.5 Computational Analysis 

 Since the sample concentration was much lower than the concentration of the sample buffer 

(μm compared to mM), it was assumed the electric field strength is greatly dependent on the sample 

buffer and BGE. Furthermore, the local electric field is believed to affect the stacking 

characteristics where in an ideal dynamic situation the sample concentration saturates at the ratio 

of load buffer divided by BGE (70). This situation was modeled by the simple control volume 

analysis where the sample BGE interface is located far from both ends of the capillary.  

A B C 

D 
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Therefore, the mass balance yields to:  

𝑑𝑑𝜕𝜕𝑐𝑐
𝑑𝑑𝜕𝜕

= 𝐹𝐹𝑗𝑗𝑜𝑜 𝑧𝑧𝑐𝑐
𝑠𝑠𝑠𝑠𝜎𝜎𝑜𝑜𝛾𝛾

𝑡𝑡(𝐶𝐶𝑐𝑐𝐴𝐴 −
𝜕𝜕𝑐𝑐(𝜕𝜕)
𝛾𝛾

)              [Equation 2.3.5-1] 

and once the equation is rearranged it can be expressed as (70): 

𝜕𝜕𝑐𝑐(𝜕𝜕)/𝜕𝜕𝑐𝑐𝑜𝑜−1
𝛾𝛾−1

= 1 − exp (− 𝑗𝑗𝑜𝑜𝑣𝑣𝑐𝑐𝐹𝐹𝑧𝑧𝑐𝑐
𝑠𝑠𝑠𝑠𝜎𝜎𝑜𝑜𝛾𝛾

𝑡𝑡)             [Equation 2.3.5-2] 

where jo= current density, σo= electrical conductivity, ss=sample gradient length, vc=mobility of 

sample and zc= charge of sample. The sample gradient length can be determined using (70): 

𝑅𝑅𝑠𝑠 = 𝛾𝛾𝛾𝛾
𝐿𝐿𝑇𝑇(1+(𝛾𝛾+1)𝑎𝑎)

               [Equation 2.3.5-3] 

where V=voltage applied, Es=local electric field, LT= total capillary length and a= fraction of 

capillary with load buffer. Once the variables are determined, various time points can be plugged 

into Equation 2.3.5-2 to determine the effect of lower conductive buffer compared to BGE for the 

sample buffer (as shown in Figure 2.3.5-1). Additionally, the data utilized to theorize the control 

volume analysis consist of assuming a monomeric amyloid peptide with a uniform current density 

and electrical conductivity.  

 

Figure 2.3.5-1: 20Change in concentration vs. time in accordance to the control volume analysis 
where ϒ=1 is for 100 mM, ϒ=2 is for 50 mM, ϒ=2.5 is for 40 mM, ϒ=3.33 is for 30 mM, ϒ=2 is 
for 20 mM and ϒ=10 is for 10 mM sodium phosphate sample buffer pH=7.4 with BGE of 100 mM 
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sodium phosphate buffer pH=7.4, V=7000 kV, local field strength is stated in Appendix B Section 
III and total capillary length is 31 cm. 

 

As shown in Figure 2.3.5-1, the data developed by the theoretical input consisted of a 

graphical representation similar to Bharadwaj et al. where the concentration saturated at the 

gamma ratio (70). Therefore, the maximum enhancement of sample concentration using FASS 

was equal to the ratio of the buffer conductivity. Past studies have also shown that a local field 

strength between about 100-450 V/cm was an adequate separation environment (38; 75). As the 

difference between the BGE and load buffer increases, the higher end of the field strength is 

recommended where narrower peaks and better separation can occur (38; 43; 71). However, it is 

important to note that a huge difference between the concentrations of the sample buffer and 

separation buffer can also cause band broadening due to the increase in laminar flow characteristics 

created within the capillary. Therefore, it is important to establish the correct ratio difference 

between the two buffer systems. Even though a load buffer of 10 mM sodium phosphate provides 

highest concentration ratio, in practice this concentration might lead to zone broadening due to the 

huge difference in BGE and load buffer concentration. As the difference between the BGE and 

load buffer magnifies, the flow within the capillary behaves more like laminar flow, causing 

reduced resolution between peaks as well.  

 Additionally since the BSA data provided an approximate optimal load buffer of 40 mM 

sodium phosphate with the BGE at 100 mM sodium phosphate buffer pH=7.4, an idealized 2D 

computational simulation by Comsol® was developed to visualize the experimental difference of 

utilizing the FASS  compared to non-FASS method with Aβ1-42 (Figure 2.3.5-2). In order develop 

the 2D model, the affects due to the width of the capillary were ignored. The governing equations 

and boundary conditions stated in Section 2.1.1 were utilized to conduct the simulation. The 
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assumptions utilized consisted of no convection for the BGE due to neutral PEO coating on 

capillary. However, it is important to note that the BGE was assumed to be present in the capillary. 

This is possible since the separation matrix in the Aβ1-42 consist of 5% of 50 kDa diluted in 100 

mM sodium phosphate buffer. Furthermore, the theoretical diffusion coefficient for the peptide 

was assumed to be equivalent to the viscosity of water. The experimental diffusion coefficient was 

determined by utilizing 𝜎𝜎2 = 2𝑡𝑡𝐷𝐷 [Equation 2.3.5-4] where σ in this case is the variance, t is the 

migration time of the smaller aggregates and D is the diffusion coefficient of the amyloid (38). 

Additionally, the electric field distribution was also considered constant within the zones and the 

migration was based on the monomeric peptide charge of Aβ1-42.  

 

 

(Continued next page) 

A 
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Figure 2.3.5-2:21 2D Comsol® simulation of A) experimental 100 mM and B) experimental 40 
mM sodium phosphate load buffer pH=7.4 with BGE of 100 mM sodium phosphate buffer where 
the concentration of Aβ1-42 is 30µM. The applied voltage is 7000 V with Di for the 100 mM sodium 
phosphate buffer sample to be 0.025 cm2/min and Di for the 40 mM sodium phosphate buffer 
sample to be 0.0066 cm2/min.  

 

The Comsol® simulation also required the sample velocity to run the model. The 

experimental velocity was determined using 𝜇𝜇 = 𝐿𝐿𝐿𝐿
𝜕𝜕𝛾𝛾

 [Equation 2.3.5-6] where I is the length to 

detector, L is the total capillary length, t is the migration time and V is the voltage applied (40). 

Additionally, the Aβ1-42 charge was assumed to similar to the charge of a monomeric Aβ (-2.9). 

By looking at Figure 2.3.5-2A and B, it can be observed that the two experimental surface 

concentrations are fairly similar. Since both the 100 mM and 40 mM sodium phosphate buffer 

migration time for the smaller aggregates did not change much, it can be expected that the 

computational data will be similar based on the calculated inputs in the simulation. The migration 

time affected the calculated velocity which would change if the intrinsic properties of Aβ were 

further understood and a true velocity profile was determined. Additionally, it is believed that the 

Nerst-Hartley-Gordon diffusion coefficient expression provides better data correlation for dilute 

B 
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electrolyte solutions of experimental and theoretical data (82). The Nerst-Hartley-Gordon 

expression takes into account the relative viscosity of the solution as well as the concentration of 

the sample (82). Furthermore, for the experimental data aggregates of Aβ1-42 at time 0 consisted of 

species larger than monomers. Again, causing a deviation of experimental data from the Comsol® 

computational analysis.  However, the significance of the Comsol® simulation was that it offered 

the opportunity to explore the optimal sample injection end of the capillary as shown in Figure 

2.3.5-2. By injecting the sample toward the end located closer to the detector, better detection of 

the sample was provided. The inflow was located in the side of the detection window (Figure 2.3.5-

2A and B arrows) where higher detection is observed compared to injection in the farther end. 

Since the surface concentration determined through Comsol® did not provide a foundation 

to determine the concentration of sample at the point of detection using FASS, fundamental 

understanding of electrochemistry process was observed and a replication of Bharadwaj et al. 

computational analysis was attempted (70). Since electrochemistry is considered a complex field, 

many scientists have utilized the dilute solution theory as a basis for transport analysis similar to 

Bharadwaj et al. (70, 83-84). Based on this theory, it is assumed that the species in the solution 

move due to migration, convection and diffusion as stated earlier. Additionally, the flux equation 

is based upon the average velocity of the solution (84). This is only true for extremely diluted 

solutions. Furthermore, Bharadwaj et al. utilized the Cottrell system concept where the experiment 

is believed to be controlled by diffusion (83). This is believed to be true due to the experimental 

data variance observed in the FASS technique vs. non-FASS technique. However upon attempting 

a replication of Bharadwaj et al.’s work, complications occurred either due to lack of knowledge, 

information and/or time spent on the governing equation’s variables. Therefore, future work is 

needed to model the FASS technique using Aβ aggregates as the sample species. 
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2.4 Conclusion and Discussion 

 Recent studies have deduced the oligomeric species of Aβ to be the leading cause of AD. 

Hence in this study, it was confirmed that by using FASS on the CE better separation was reached 

and a better understanding of the Aβ1-42 oligomer species without external interference with the 

aggregation occurred. In order observe the oligomer aggregates, the lag time was increased by 

changing the agitation rate. While conducting ThT assays, it was believed that the agitation rate of 

300 RPM provided the optimal time range to analyze the oligomeric aggregates.  

Upon establishing an adequate lag time to study the Aβ1-42 aggregates, the optimal sample 

buffer for the FASS technique was determined to be 40 mM sodium phosphate pH=7.4 with the 

BGE at a concentration of 100 mM sodium phosphate pH=7.4. Then FASS conditions were 

compared with non-FASS conditions using Aβ1-42 to further understand whether FASS is 

beneficial separation technique when observing Aβ oligomers. While comparing the FASS and 

non-FASS technique, it was establishment that the 5 minute peaks was the larger aggregates (30-

100 kDa) compared to the 10 minute peak (< 30 kDa). According to the experimental data, the 

FASS technique provided maximum separation, reproducibility and Aβ detection.  

While conducting the FASS technique using the CE, it was also important to ensure the 

Aβ1-42 aggregation was not affected by varying sample buffer compared to the BGE. As shown by 

the CE data (Figure 2.3.1-2), the initial Aβ1-42 species in the aggregation is not monomeric. This 

was believed to be due to the HFIP treatment conducted earlier to ensure aggregates with β-sheets 

were not present. Both the peak areas for the 100 mM and 40 mM sodium phosphate buffer were 

statistically similar for majority of the time points. Therefore, the assumption was accepted that 

the lower conductive sample buffer did not change the overall aggregation by much when 
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comparing with the 100 mM sodium phosphate buffer sample. Moreover, it was believed that the 

amyloid formation favored for this aggregation consisted of a process similar to Figure 2.4.1-1. 

According to Figure 2.4.1-1, the initial stage was the monomeric species where with the addition 

of monomers species ranging from dimers to oligomers were formed. The aggregation pathway 

was believed to vary according to the original aggregates in the solution.  

 

Figure 2.4-1:22 Aggregation Aβ1-42 where the initial stages from monomer to oligomer species 
was observed with the addition of short strands of proto-fibrils. Eventually, the proto-fibrils strands 
elongate and were mixed with higher aggregates and short stranded proto-fibrils. The amyloid 
formation developed into producing nucleating fibrils and final various fibril formation occurred 
(85). 

 

By conducting MWCO filter experimentations, it was established that the 5 minutes peak 

aggregates ranged from 30 – 100 kDa. Additionally, the 10 minute peak aggregates consisted of a 

molecular weight of up to 30 kDa. Since majority of the oligomer forms range from 30 to 250 kDa, 

the filter experiments helped prove that the aggregates were considered within the oligomer species 

range. By 51 hours into the aggregation study, majority of the aggregates were fibrils (if not all 

aggregates). The TEM imaging additionally proved that by 27 hours majority of the higher 

aggregates were not fibrils. However since some fibril species were observed in the TEM imaging 

at 27 hours, further experimentations were conducted to narrow the Aβ species detected using 

inhibition studies using Congo red and Orange G.  
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Since Congo red was believed to inhibit oligomeric species or species smaller than fibrils, 

it was assumed that the 5 minute peak would not increase. However, mixed results were produced 

using Congo red inhibition. Half of the CE data consisted of an increase in the concentration of 

the 5 minute species whereas the rest of the experiments did not. These results confirmed past 

literature studies where Congo red was considered a weak inhibitor (79-80). Additionally 

inhibition studies using Orange G, fibril inhibitor, was conducted to prove data observed by CE is 

not fibril. The Orange G TEM images confirmed fibril inhibition where the CE data highlighted 

the effects the inhibition might cause on the overall aggregation. For the Orange G inhibition, the 

CE results showed a higher detection of the inhibited species. It was believed the inhibition of 

fibril could potentially promote off pathway aggregates. Furthermore upon binding to Aβ, Orange 

G was believed to increase its absorbance and therefore, could potential effect the overall 

absorbance observed by the CE as well. The TEM imaging for both Congo red and Orange G 

believed to consist of adequate proto-fibrils inhibition where majority of the short stranded species 

decreased during the aggregation. Furthermore, both Congo red and Orange G aggregation 

consisted of an increase in the circular aggregate production. According to Ahmed et al., oligomer 

species observed by atomic force microscopy (AFM) can range from disc-shaped pentamer to 

globulomers (para-nucleus etc.) (24). 

Since Congo red inhibition did not provide clear understanding of the data observed by the 

CE, it is recommended to conduct CE analysis using well known oligomeric inhibitors. This will 

further help distinguish the aggregates observed by the CE and also provide a clear picture of the 

aggregation study. Additionally upon attempting to conduct computational analysis, it is further 

recommended to utilize the dilute solution theory in order to develop a complete model showing 

the FASS technique using these conditions.   
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Chapter 3: Future Work with Natural Compound Inhibitors 

With growing research being conducted on AD, finding the optimal analysis method while 

looking at the affects certain preventive treatment might have in vitro is essential before conducting 

in vivo research. Therefore by utilizing a separation method like CE, further understanding of un-

inhibited and inhibited aggregates of Aβ can be determined and analyzed. Since current literature 

suggest the soluble Aβ oligomers to be the leading cause for AD, optimized separation conditions 

were determined using CE where Aβ1-42 aggregates equal to or smaller than 100 kDa can be 

studied. Therefore, by utilizing the CE, an opportunity is provided to see whether certain inhibitors 

target these species and what happens to the aggregation after addition of a potential inhibitor.  

Recent studies show how oxidative stress, caused by an imbalance between the defense 

mechanism and harmful reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), 

can occur in the early stages of AD (3; 6; 86-88). In terms of Aβ, it is believed the mitochondria 

plays a key role in oxidative stress and the soluble oligomer Aβ1-42 might potentially further 

promote oxidative damage (88). Though exact mechanism of oxidation for Aβ1-42 is unknown, one 

explanation is that the oxidation of Met can lead to increase in ROS and RNS production, and 

activities that induce mitochondrial dysfunctions in AD patients (6; 86-88).  Since in the previous 

chapter conditions were established to further study Aβ1-42 aggregates less than 100 kDa, inhibitors 

known for their anti-oxidant characteristics will be discussed further in this chapter for future work 

in order further understand the affects these inhibitors might have on the aggregates by utilizing 

CE as a separation technique, especially the oligomer aggregates.    
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3.1 Natural Compound Inhibitors   

Since it is believed that oxidative stress plays a major role in AD, there is reason to believe 

in the usefulness of polyphenol rich natural compound inhibitors. Numerous studies on 

determining the effects of certain inhibitors on AD have been conducted (3; 88). Polyphenols are 

flavonoids that consist of at least one phenol group and have major antioxidant properties. These 

flavonoids can be found in variety of organic foods such as fruits, vegetables, or plant derived 

beverages (89- 90). The polyphenols that will be recommended for future work consist of fisetin, 

quercetin, isorhamnetin, epigallocatechin 3-gallate (EGCG), and curcumin. Though past studies 

have been conducted using these inhibitors, no known study has been conducted using the CE with 

these inhibitors (88-90). Therefore, a study with CE may contribute further knowledge of how 

each inhibitor effects Aβ1-42 aggregates less than 100 kDa and the overall aggregation.  

According to past literature, fisetin, a flavonoid found in strawberries, inhibit fibrils and 

has been known to protect the nerve cells from oxidative stress (89; 91). It would be further 

interesting to see whether this rule also applies to fibril oligomers and whether the soluble 

intermediate aggregates increase due to fibril inhibition as observed by the Orange G data. Another 

antioxidant found in fruits (such as apples, apricots and blueberries) that is recommended is 

quercetin. Ansari et al. have shown quercetin to reduce cytotoxicity caused by Aβ1-42 and have 

further developed a dose response study using quercetin (89-90). Also, both quercetin and 

isorhamnetin have been studied for their anti-inflammatory effects (89-90; 92). In addition to 

having anti-inflammatory effects, isorhamnetin is believed to potentially have an effect on AD 

since it is a component found in Ginkgo leaf which is used to treat early AD symptoms (93). Since 

isorhamnetin has been studied for its effect on neurite-inducing activity of nerve growth, it would 

be interesting to further study this compound with Aβ1-42 (93). Furthermore understanding the 
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affects both quercetin and isorhamnetin have on Aβ1-42 species less than 100 kDa through the CE 

will provide the opportunity to determine the aggregates these inhibitors affect and whether the 

overall aggregation for Aβ1-42 will vary.  

The other two recommended natural compounds, epigallocatechin 3-gallate (EGCG) and 

curcumin, are commonly found in many South Asians daily cuisine. Both of these natural 

compounds are also known for their anti-inflammatory characteristics where past studies have 

been conducted to also show the ability of both natural compounds to inhibit oligomers and/or 

fibrils amyloid (94-95). With the extensive research being conducting utilizing these inhibitors for 

AD, using CE to understanding how the aggregates less than 100 kDa behave would not only 

provide insight on the effect of these inhibitor on the aggregation of Aβ1-42 but would hopefully 

further highlight the importance of having these natural compounds in a person’s diet.  

3.2 Conclusion  

 CE provides an opportunity to not only understand the aggregation of the intermediate 

species of Aβ, but it is also a great separation technique that provides a platform to observe how 

various inhibitors can affect the overall aggregation, especially when combined with other 

techniques such as TEM or AFM. Alterations in Aβ1-42 aggregates smaller than 100 kDa by using 

inhibitors like Congo red and Orange G were observed using CE. By establishing optimal 

separation conditions using the CE with Aβ1-42, it is further recommended to continue 

understanding the affect natural compound inhibitors have on Aβ1-42 aggregates that are smaller 

than 100 kDa. Natural compound inhibitors re-iterate the importance of having a healthy lifestyle 

in order to avoid or potentially reduce the risk of diseases such as AD. 
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Appendix A: Determining Sample Preparation and Agitation Rate 

I. Pre-Aggregation Sample Preparation  
Initial experimentation consisted of utilizing buffer system previously established in the 

laboratory.  This helped provide a foundation where understanding the pre-aggregation steps was 

necessary. According to literature, minute changes in Aβ concentration, pH, agitation, salt content, 

temperature, etc. can have leading effect in the pathway of the aggregates (26; 34; 36; 51-52). 

Therefore by using Thioflavin-T assay, aggregation studies were conducted to determine the effect 

certain parameters have. These parameters consisted of: 

1. Cutting pipette tips: This was believed to help suction in larger Aβ aggregates as the 

assay continues. 

2. Having a cooler (about 4°C) environment for Aβ during the pre-aggregation steps: This 

was believed to not promote aggregation while creating the ‘cell like’ environment 

before starting aggregation. 

3. Transferring the solution from one vial to another after put in the buffer to the solution: 

This was believed to ensure mixture of solution. 

4. Changing the amount of time Aβ solution consist of just the NaOH or is in the buffer 

system before starting the aggregation: This was believed to establish an adequate cell 

like environment from the in vitro experiments. 

Experimentations were conducted to further understand the advantages or disadvantage of each 

hypothesis relating to the specific parameters. It was quickly realized that though cutting the tips 

of the pipette provided better detection of the ThT-Aβ binding when establishing a comparison 

within the data, major inconsistent was seen. Furthermore, the difference in increase in intensity 

was not as significant as expected. Therefore, the inconsistent in data readings became a greater 
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issue and cutting the tips became a greater hindrance than benefit. Additionally, Figure A.1-1 

(below) shows the affect the other parameters have on ThT binding to Aβ. 

 

Figure A.1-1: 23Conducting ThT Assay at 800 RPM utilizing 20 µM Aβ1-42 in 40 mM Tris-HCl 
pH=8.07 and 150 mM NaCl at 25°C and 14.29 µM ThT stock solution (1 mM ThT diluted in 40 
mM Tris HCl buffer) at a mol ratio of 5:1 of Aβ to ThT. 

 

Figure A.1-1 represented five different experiments where Experiment 1, 3 and 5 consisted 

of adding NaOH 10 minutes before adding the buffer and the whole solution was kept on ice for a 

total of 30 minutes. Since the ice environment was not insulated and no lid was placed on the top 

of the container, the environment temperature is about 4°C. Experiment 2 consisted of adding 

NaOH and keeping it on ice for 10 minutes. After 10 minutes, the buffer was added and placed in 

room temperature for 10 minutes. It was interesting to note that though Experiment 2 started at a 

higher fluorescent intensity, its plateau consisted of a lower intensity than Experiment 1, 3, and 5. 

It was believed that keeping the solution at room temperature increased the aggregation rate 

(therefore higher initial fluorescent intensity) and produced insoluble fibrils faster than the other 

experiments.  Consequently, keeping the pre-aggregation steps where solution was placed on ice 

(about a 4°C environment) provided slower aggregation and in turn, better chance of detecting the 

soluble intermediates shown in Chapter 1 Figure 1.1-1.  
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Finally, Experiment 4 dealt with changing the vials before taking the first ThT data point.  

The interesting aspect about this investigation was that it behaved quite similar to Experiment 2 

where the fluorescent intensity at the plateau was lowered. By mixing the content in the vial, it 

ensures there is a uniform solution and the statistical difference until 10 minutes was not 

significant.      

II. Determining Agitation Rate 

Upon establishing the pre-aggregation step, it was important to re-evaluate the final thesis 

aim which is to study the oligomer form of Aβ and also the other soluble intermediate aggregates. 

Therefore, understanding what happens during the aggregation was important. Additionally, 

determining the optimal aggregation protocol to study the early aggregates in a timely manner was 

also beneficial in studying the sample using CE. Upon understanding how the addition of 

aggregates affected the overall aggregation, it was simple to conclude that the aggregation pathway 

cannot be determined thorough experiments looking at just monomer concentration vs. time (5; 

34-35). This concept was verified through ThT assays conducted using 20 μM Aβ1-42 (Figure A.2-

1 below).  

 

Figure A.2-1: 24ThT Assay where A) is conducted at 800 RPM and B) at 600 RPM agitation rate 
using 20 μM Aβ1-42 with 40 mM Tris-HCl pH=8.07 plus 150 mM NaCl and ThT stock solution of 
a concentration of 14.29 μM. The data is normalized in accordance to the highest fluorescent 
intensity in each aggregation study.  
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Furthermore, the graphs (Figure A.2-1) confirmed how the agitation also affected the rate 

of aggregation (5; 36; 96). Since the lag phase was thermodynamically not favored, it led to a rapid 

elongation phase (29; 51). However, as Figure A.2-1 showed if the agitation rate is lowered, the 

lag time was increased and the conversion of amyloid monomer to oligomer to fibrils took a longer 

timeframe. Therefore, there were five different agitation rate (800, 600, 500, 400, and 300 RPM) 

at which the aggregation was analyzed. These studies consisted of utilizing the 100 mM sodium 

phosphate buffer only because it was believed the lower ionic strength buffer concentration should 

increase the smaller aggregate population, which was not a negative effect while analyzing using 

the CE.  

As the agitation decreased, an increase in the lag time was observed. Figure A.2-2 (below) 

showed the agitation at 300 RPM to be a decent starting time to analysis the soluble intermediate 

aggregates since the amyloid concentration will vary either higher or lower than 20 µM when 

conducting CE analysis. Additionally, it was important to note the dip in fluorescent before the 

elongation phase. It was believed this dip in intensity represented the paranucleus form or globular 

oligomer of Aβ usually seen in Aβ1-42 (3; 97). Furthermore taking into account the structural form 

of a paranucleus, it was believed that it is harder for the Aβ: ThT binding to occur which in turn 

caused the lower fluorescent intensity. 
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Figure A.2-2: 25Red, green, blue data are different experiments of ThT Assay using a Mini-
Shaker at 25°C and 300RPM of 20μM Aβ1-42 with 100 mM sodium phosphate pH=7.4 and ThT 
stock solution of 14.29μM; standard deviation of repeated points shown in table on the right; data 
is normalized in accordance to higher fluorescent intensity in aggregation study.  

 

As shown in previous studies, it was believed the lower concentration of Aβ than 20 µM 

aggregated slower and the larger concentrations of Aβ led to shorter lag time (5; 36; 96). Therefore, 

since majority of the aggregation study in this thesis was conducted using 30 µM Aβ1-42, ThT 

assays for 30 µM Aβ1-42 was performed to understand the aggregation at 300 RPM (Figure A.2-3). 

Figure A.2-3 confirmed studies conducted in the past where the aggregation at 30 µM Aβ1-42 was 

faster than the 20 µM Aβ1-42; nonetheless, it was not faster by a great amount.   
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Figure A.2-3: 26Normalized data of (A) 100 mM sodium phosphate buffer, (B) 40 mM sodium 
phosphate buffer pH=7.4, n=2 using its highest fluorescent intensity for each aggregation study 
and (C) normalized data of 40 mM sodium phosphate buffer using 100 mM sodium phosphate 
buffer aggregation study’s highest fluorescent data; initial concentration was 30 μM Aβ1-42 with 
ThT stock solution of 16.67 μM at 25°C and 300 RPM.  

 

Though the 40 mM sodium phosphate buffer experiments appeared to start at a higher 

normalized fluorescent intensity the actually experimentation consisted of an overall lower 

fluorescent intensity compared to the 100 mM sodium phosphate buffer assays (as shown in Figure 

A.2-3 C). Additionally, the difference between at time 0 between the two buffers might be a result 

of the peptide before starting the aggregation. Compared to the 20 µM Aβ1-42, the 50 hour 

fluorescent intensity appeared to be the maximum intensity for all the experiments from where the 

fluorescent intensity started to decrease. Furthermore since the fluorescent intensity decreased by 

a huge percentage around 60 hours (Figure A.2-3) it was believed that an increase in insoluble 

Aβ1-42 aggregates was observed. In Figure A.2-3, major variance occurred close to 27 hours when 

utilizing 100 mM buffer and since it appeared to be the start of the plateau using 40 mM sodium 

phosphate sample buffer, it was a good timeframe to analysis Aβ1-42 aggregates using the CE and 

conduct experimentation at 300 RPM. 
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Appendix B: CE Parameters 
CE analysis requires a greater understanding between the connection of the peptide 

concentration utilized and CE setup. Table B-1 below is an analysis of how some specific factors 

influence peptide separation and what factors to consider when developing an experimental 

method. 

Specific Factors That Influence Peptide Separation Efficiency in CE 
Factors Influence Summary 
Capillary Length Migration time and efficiency are linearly proportional where the resolution is 

proportional to square root of length; longer capillaries preferred for complex 
mixtures 
 Due to past experiments, the capillary length was established as 31cm (60) 

Capillary  
Inner Diameter  
 

Resolution and efficiency are inversely proportional where mass loading and heat 
generation is proportional to diameter squared; smaller inner diameter capillaries 
allow higher voltage and ionic strength buffers 
 All fused silica capillary tubing were purchased from Polymicro 

Technologies with an inside diameter of 51μm 
Applied Voltage At constant capillary length, efficiency and resolution is proportional where 

migration time is inversely proportional to voltage; on current vs. voltage graph 
need linearity or else excessive joule heating will occur (further details in Section 
I Appendix B) 

Capillary 
Temperature 

Current and amount of sample injection is proportional to temperature where 
viscosity and analysis time are inversely proportional to temperature 
 Temperature set at 25°C (dealing with biological species- do not want to 

promote aggregation) 
Buffer pH Peptide charged groups pKa help establish pH range 

 The separation buffer for the CE is 100 mM sodium phosphate buffer with 
pH=7.4. Sodium phosphate buffers pH usually does not change much with 
a change in temperature and can mimic the cell environment fluid.  

Buffer  
Ionic Strength 

Mobility and EOF are inversely proportional to ionic strength and can effect joule 
heating, detection sensitivity where peak shape is also proportional to ionic 
strength (further details in Section III Appendix B) 

Pressure 
Injection  

Though hydrodynamic injection is more precise than electrokinetic injection, in a 
coated capillary the viscosity of sample can be effected (further details in Section 
II Appendix B) 

Detector Ultraviolet (UV) light detection is utilized due to the ability to detect Aβ at 214 
nm without any interference in analysis, provide detection with peptide content in 
micromolar range 

Table B-1: 1Summary of factors effecting separation in CE (40; 43). 
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Another important parameter is the reducing or avoiding wall-analyte interaction. As 

mentioned in Chapter 1, neutral polymer coating can create the positively charged layer at the 

surface of the fused silica capillary and help avoid creating a double layer interaction between the 

capillary walls. This will also lead to better separation and better peptide detection. 

I. Joule Heating  

A nonlinear relationship between the voltage and current can create excessive joule heating 

in the capillary. Joule heating is when electric current runs through a conductor (such as a capillary 

filled with buffer) which leads to an increase in temperature. Though the high surface to volume 

ratio of the capillary helps reduce the generated heat through the capillary wall, temperature 

gradient and excessive joule heating can cause natural convection to occur where the local changes 

on viscosity or the sample’s physical characteristics might be damaged (38). In turn, this will lead 

to poor resolution and separation.  

As stated in Table B-1, the separation buffer be utilized is 100 mM sodium phosphate 

buffer which is considered a high ionic strength buffer. High ionic strength buffers are preferred 

in an uncoated capillary; however, high ionic buffer concentrations can make the current exceed 

the thermostat capacity at higher voltages which can potentially result in peak broadening and poor 

separation (38). In order to confirm utilizing 7 kV will be an adequate applied voltage for the 

separation, an Ohm’s Law Plot was constructed using 100 mM sodium phosphate buffer pH=7.4. 

By constructing a current vs. voltage graph at the buffer concentration, the location of the point of 

non-linearity can be established. Hence, the voltage below that point can be utilized for future 

studies in hopes to avoid excessive joule heating. Figure B.1-1 (below), shows a linear regression 

(R2=0.96) where major deviation from linearity occurs around 16 kV. Though the current/ voltage 
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relationship between 10-12 volts appears questionable, voltages below 15 kV could be utilized for 

the experiments.  

 
Figure B.I-1: 27Ohm’s Law Plot analysis conducted utilizing 100 mM sodium phosphate buffer          
pH = 7.4 sample in 0.5% 2000 kDa PEO coated capillary with a pressure injection of 0.5 psi for 8 
seconds; at each voltage n = 4 where the data points recorded were close to the set voltage.  

 

 Results shown in Figure B.1-1 were similar to literature for phosphate buffer system (40). 

Furthermore since 7kV was still a conservative applied voltage, it was utilized in hopes to provide 

fast separation with optimum resolution. 

II. Pressure Injection 

Unlike in electrokinetic injection, it is simplifier to quantify the injection amount utilizing 

pressure injection (43; 40). This helped set a basis of injection time and compare results by looking 

at previous work. In order to determine the necessary injection time, the flowrate of sample loading 

in the capillary or injection amount was determined by (40): 

𝑄𝑄 = 𝜋𝜋𝑟𝑟2�∆𝑃𝑃𝑟𝑟2𝑡𝑡𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖𝑐𝑐𝜕𝜕/(8𝜔𝜔𝐿𝐿)�𝐶𝐶                    [Equation B.II.1] 

where Q= flowrate, r= inner radius of capillary, P= pressure difference, t= injection time, 

 𝜔𝜔= viscosity of sample, L= length of capillary column 

The sample is injected at 0.5 psi (as recommended by P/ACE MDQ User’s Guide Beckman 

Coulter) (98). Therefore, the three unknowns are the flowrate, viscosity of sample and injection 
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time. In literature, data consisting of 50 μM Aβ1-40 with a pressure injection of 8 seconds provides 

adequate separation and resolution (60). By using this as a basis and finding the flowrate, an 

estimation of the injection time needed can be calculated at various concentration. An important 

note to realize is that the viscosity of a peptide especially through a coated capillary is highly 

difficult to predict. Thus, a constant viscosity is determined assuming non-Newtonian flow at the 

point of injection since the flowrate into the capillary is believed to be constant and the viscosity 

is not dependent on the concentration. In turn, the injection time was determined at the varying 

concentrations.  

 For future experimentation, it is further recommended to determine whether injecting the 

separation buffer before and after the sample will help increase sample detection especially in a 

coated capillary.   

III. Field Strength 

As stated in Chapter 2, there is a linear relationship between the conductivity and field 

strength of a capillary under applied field where the difference between the field strength of the 

load buffer and BGE can be determined by (40; 99):  

𝐹𝐹𝑅𝑅 = �𝐿𝐿
𝐴𝐴
� ∗ �� 1

𝐾𝐾𝑠𝑠
− 1

𝐾𝐾𝑏𝑏
��             [Equation B.III.1] 

According to Equation B.III.1, FS is the field strength, I=current, A=cross sectional area of 

capillary, Ks=conductivity of sample buffer (load buffer), and Kb=conductivity of separation 

buffer (BGE).  Furthermore, the field strength can be looked in terms of local field strength in 

when considering the FASS method. Upon looking at Figure 2.1.1-1, it was observed that the local 

field strength affects the ions migration and zone broadening. The effect of the local field strength 

on the migration was especially true where molecular diffusion caused the zone broadening (67). 

With the CE parameters established as stated earlier in this appendix where neutral polymer 
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coating was utilized in the capillary to reduce EOF, it was important to understand exactly how 

the local field strength played into part when applying the FASS method.  

As stated in the Section 2.2, before each sample was injected into the capillary, the capillary 

was rinsed with both water and a polymer rinse. As the water rinse cleaned the capillary of 

absorbed residues, the polymer rinse provided the opportunity to further stabilize the coating. It is 

important to known the neutral PEO coat was important in the capillary because the reduction of 

EOF due to coat is quite high and beneficial in terms of sample detection. Additionally, the 

polymer rinse was composed of the BGE buffer and therefore, helped create an environment in the 

capillary that has both the polymer coating and also BGE. Since the both the polymer coating and 

rinse concentration of the polymer was less than the critical micelles concentration (CMC), 

entanglement of the polymer with the sample was less likely to occur (38). However, the BGE is 

expected to affect the sample interaction in the capillary under an applied field. When applying 

the voltage, the current traveled from the positive electrode to the negative (normal polarity) where 

the electrode with the negative polarity was presumed to consist of ground potential. Therefore 

due to the polymer rinse, migration of BGE occurred within the capillary. The BGE conductivity 

difference with a load buffer of lower concentration creates a stationary zone that also differed in 

resistivity as stated in Chapter 2. Hence, it created a local field strength and provided an 

environment for FASS.  

In order to narrow the sample buffer concentration and utilize Equation B.III.1, various 

sodium phosphate buffer conductivities were measured. As stated earlier, the BGE was 100 mM 

sodium phosphate buffer with pH=7.4. Therefore, the different conductivities and field strength of 

the various sodium phosphate buffer concentrations at and below 100 mM sodium phosphate are 

shown in Table B.III-1 (below).  
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Concentration Average 
Conductivity, µS/cm 

Field Strength, 
V/cm 

100 mM 11280.0 225.0 
75mM 9276.7 58.5 
60 mM 7890.0 116.4 
50 mM 6880.0 173.3 
45mM 6340.0 211.1 
40 mM 5766.7 259.0 
30 mM 4636.7 388.1 
25mM 3963.3 500.1 
10 mM 1731.3 1494.1 

5mM 993.3 2805.4 
1mM 238.3 12550.5 

Table B.III-1: 2Determine conductivities of various sodium phosphate buffer concentrations 
with pH=7.4 utilizing YSI Pro30 conductivity meter and finding the local field strenght in 
accordance to Equation B.III.1, n=3. 

  

According to past studies using local field strength range of about 100-400 V/cm provides 

adequate separation and resolution (43; 75). By using bovine serum albumin fraction V (BSA) as 

a standard, experimentations were also conducted where the sample buffer varied from 10-50 mM 

sodium phosphate buffer (pH=7.4). 

 

Figure B.III-1:28 1mg/ml BSA using 10 mM (pink), 25 mM (red), 30 mM (gray), 40 mM 
(yellow), 45 mM (blue) and 50 mM (green) sodium phosphate buffer pH=7.4 as the load buffer, 
analyzed from CE data utilizing 0.5% 2000 kDa PEO coating, 8 second injection of 0.5 psi where 
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the BGE is 100 mM sodium phosphate buffer pH=7.4, hx line= max height corresponding to each 
peak.  

 

 By looking at Figure B.III-1, it was concluded that the two buffer with the best detection 

were either 30 mM or 40 mM sodium phosphate buffer with the BGE of 100 mM sodium 

phosphate buffer. Furthermore, experimentation utilizing 100 mM (control), 40 mM and 30 mM 

sodium phosphate was set as a good starting point to determine ideal FASS conditions. 

It is recommended to further test Equation B.111.3 for future experiments to see whether 

adequate load buffer range for various buffers can be determined to utilize the FASS method.  
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Appendix C: Protocols 
I. Prepare Sodium Phosphate Buffer 

Objective: Make 100 mM sodium phosphate buffer 

Method: 

To make 0.10 M sodium phosphate dibasic and sodium phosphate monobasic in a 50 ml solution, 

first calculate the amount of grams needed of the two components for a 50 mL solution separately.  

The sample calculations are shown below: 

Sodium Phosphate Dibasic: 

0.10𝑚𝑚𝑖𝑖𝑚𝑚
𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟

∗ .05𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 ∗ 141.96
𝑔𝑔𝑟𝑟𝑎𝑎𝑚𝑚
𝑚𝑚𝑖𝑖𝑚𝑚

= 0.71 𝑔𝑔𝑟𝑟𝑎𝑎𝑚𝑚𝑔𝑔 

Sodium Phosphate Monobasic: 

0.10𝑚𝑚𝑖𝑖𝑚𝑚
𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟

∗ .05𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 ∗ 156.01
𝑔𝑔𝑟𝑟𝑎𝑎𝑚𝑚
𝑚𝑚𝑖𝑖𝑚𝑚

= 0.78 𝑔𝑔𝑟𝑟𝑎𝑎𝑚𝑚𝑔𝑔 

Procedure:  

 Creating Solution- 

1. Weight each gram amount in a weigh scale and put amount in two different sample tubes.  

2. Put 50 mL of Nano-filtered DI water in the sodium phosphate dibasic sample tube and 50 

mL in the sodium phosphate monobasic tube.  

3. Make sure solution is mixed well. 

4. Calculate the x amount of dibasic and y amount of monobasic sodium phosphate to make 

100 ml solution for pH=7.4. This is based on the sodium phosphate buffer pH table at a 

concentration of 100 mM. 

19𝑚𝑚𝑚𝑚 𝑖𝑖𝑜𝑜 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑎𝑎𝑔𝑔𝑖𝑖𝑖𝑖 + 81𝑚𝑚𝑚𝑚 𝑖𝑖𝑜𝑜 𝐷𝐷𝑖𝑖𝑀𝑀𝑎𝑎𝑔𝑔𝑖𝑖𝑖𝑖 = 100𝑚𝑚𝑚𝑚 

5. Since the final amount needed is 50 mL solution of the two combined, the equation in Step 

4 can be manipulated to determine the needed amounts of the two components: 
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19𝑚𝑚𝑚𝑚 𝑖𝑖𝑜𝑜 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑎𝑎𝑔𝑔𝑖𝑖𝑖𝑖
2

+
81𝑚𝑚𝑚𝑚 𝑖𝑖𝑜𝑜 𝐷𝐷𝑖𝑖𝑀𝑀𝑎𝑎𝑔𝑔𝑖𝑖𝑖𝑖

2
=

100𝑚𝑚𝑚𝑚
2

 

6. Get another sample tube and pipette to pipette the needed amounts of the two components 

for the 50 mL solution. 

Checking pH-                                                        

7. Turn on the pH meter and calibrate it: 

a. Clean the pH probe with DI Water and wipes 

b. Put pH probe in a pH of 4 and let the reading stabilize 

c. Set the readings to 4 by using the arrows and then press ‘Yes’ 

d. Repeat Steps a- c for a pH of 7 and 10 tubes. 

e. Clean pH probe again and put in sample (buffer in this case) 

f. Let the readings stabilize and read the final reading (sample pH) 

 

II. Monomerization and storage of Amyloid Beta Peptide 1-42 by HFIP  

Objective: 0.0271 mg Aβ1-42 storage in -80°C refrigerator 

Procedure:  

1. Place 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) on ice in the hood and let it cool for a few 

minutes (about 15 minutes). HFIP is highly corrosive and very volatile. HFIP treatment 

was used to remove any pre-existing aggregates from the sample and due to its transparence 

in UV light. It is important to note, however, that HFIP has been reported to induce 

oligomer formation.  

2. Take solid Aβ1-42 that is stored in the -80°C freezer and place on ice in chemical hood fume. 

3. Add enough HFIP to Aβ1-42 that the final concentration is 1mM: 
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Have: 0.836mg AB                                                           Want: 1mM concentration 

0.836 𝑚𝑚𝑔𝑔 𝐴𝐴𝐴𝐴 ∗ 1 𝑚𝑚𝑚𝑚𝐴𝐴𝑚𝑚
4514.1 𝑚𝑚𝑚𝑚

= 0.000185197 𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚  

Therefore, total volume is 185 µL. 

4. Rinse vial thoroughly and make sure well mixed in with the amyloid beta by pipetting 

solution in and out about 10 times.  

5. Incubate on ice for 60 minutes, keeping the vial closed. Solution should be clear and 

colorless. Any traces of yellow color or cloudy suspension indicates poor peptide quality 

and should not be used. 

6. Aliquot solution into non-siliconized micro-centrifuge tubes/vials with 0.0271 mg/vials 

(which means each tube has a total volume of 6 µL. Do not close tubes). 

7. Allow HFIP to evaporate overnight in the hood at room temperature. 

8. All traces of HFIP must be removed. The resulting peptide should be a thin clear film at 

the bottom of the tube. The peptide should not be white or chunky. 

9. Store dried peptide films over desiccant at -80°C. These stocks should be stable for several 

months.  

III. Nano-Drop Spectrometer    

Objective: Determine the concentration of sample 

Procedure: 

1. Turn on the program, ND-1000 and click Protein A280. 

2. Open the sampling arm and wipe the measuring pedestal with a Kim-wipes. 

3. A message should pop up stating to measure water first. Get 2 µl of di-water and put it on 

the measuring pedestal and close the sample arm. Click ok. (Note: while putting in the 

amount on the measuring pedestal, put your hand close to the area to avoid bubbles etc.) 
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4. Make sure using proper wavelength and take the blank reading. Make sure the nano-drop 

is properly cleaned; therefore, measuring water and/or buffer solution a couple of times 

before starting or until the water absorbance is fairly flat. Then take another blank.  

5. Wipe the measuring pedestal and measure the sample. Record the findings. Take at least 5 

different points. Upon determining the concentration using Beer’s law, take the average. 

6. Have the last measurement be of water to ensure proper cleaning. 

IV. Conductivity Meter  

1. Take conductivity meter (YSI Pro30), and clean the probe with nano-water. 

2. Make the needed buffer solutions. 

3. Turn on the meter, and stick the probe in appropriate solution. Record the conductivity 

measured (make sure you record the proper units also). 

4. Repeat steps until completion. 

5. Clean the probe with nano-filtered water in the end. 

V. ThT (thioflavin T) Assay at --- RPM 

Objective: Conduct a ThT assay with 20µM Aβ1-42 using 100 mM Sodium Phosphate buffer 

pH=7.4 at ---RPM        

Method: 

Prepare Aβ sample: 0.0271 mg Aβ1-42,: 14.3 µL 5mM NaOH, 285.7 µL 100 mM Sodium 

Phosphate 

𝑊𝑊𝑎𝑎𝑖𝑖𝑡𝑡: 𝑥𝑥 µ𝐿𝐿 5𝑚𝑚𝑀𝑀 𝑁𝑁𝑎𝑎𝑁𝑁𝑁𝑁 𝑎𝑎𝑖𝑖𝑒𝑒 𝑦𝑦 µ𝐿𝐿 100𝑚𝑚𝑀𝑀 𝑅𝑅𝑖𝑖𝑒𝑒𝑖𝑖𝑢𝑢𝑚𝑚 𝑃𝑃ℎ𝑖𝑖𝑔𝑔𝑜𝑜ℎ𝑎𝑎𝑡𝑡𝑖𝑖  

Need: 500:10000 ratio of NaOH to Sodium Phosphate 

Need Final Molarity of Aβ to be = 20µM 

*Add 14.3 µL 5mM NaOH to get the 500:10000 ratio.  
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Therefore, 100 mM Sodium Phosphate should be 285.7 µL.  

Prepare 1 mM ThT Stock for Assay: 

Make 1 mM ThT solution made in di-water: 

0.32𝑚𝑚𝑔𝑔 ∗
1 𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 𝑇𝑇ℎ𝑇𝑇
318.87 𝑚𝑚𝑔𝑔

=
𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚

1 𝑚𝑚𝑀𝑀 𝑇𝑇ℎ𝑇𝑇
= 0.001  𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑔𝑔 

Prepare ThT Stock Solution for Assay: 4.929mL buffer, 0.071mL of 1mM ThT  

Dilute 1 mM ThT to make a stock solution of 5 mL in 100 mM Sodium Phosphate buffer pH 7.4 

Figure out the amount of stock solution needed for the ThT assay: 

25 µ𝐿𝐿 𝐴𝐴𝐴𝐴 ∗ 20 µ𝑀𝑀 𝑖𝑖𝑜𝑜 𝐴𝐴𝐴𝐴
200 µ𝐿𝐿

= 2.5 µ𝑀𝑀 𝐴𝐴𝐴𝐴 

Where 200 µL     is the minimum volume required for the fluorometer 

𝑊𝑊𝑎𝑎𝑖𝑖𝑡𝑡:200µ𝐿𝐿 𝑣𝑣𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚𝑖𝑖 

𝑁𝑁𝑎𝑎𝑣𝑣𝑖𝑖: 25 µ𝐿𝐿 𝑖𝑖𝑜𝑜 𝐴𝐴𝐴𝐴 

 Actual volume: 200µL-25 µL= 175 µL of stock solution needed 

Find the molarity of the stock solution of ThT: 

Need a 5:1 ratio of AB (amyloid beta) and ThT stock solution (due to previous 

experiments) 

2.5µ𝑀𝑀 𝐴𝐴𝐴𝐴 ∗ 5 = 12.5 

200µ𝐿𝐿 ∗ 12.5
µ𝑀𝑀𝑖𝑖𝑚𝑚
𝐿𝐿

= 175 µ𝑚𝑚 ∗ 𝑅𝑅𝑡𝑡𝑖𝑖𝑖𝑖𝑆𝑆 𝑅𝑅𝑖𝑖𝑚𝑚𝑢𝑢𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 

 Where the stock solution in this case equals out to be 14.29 µM 

Find out the amount of 1mM ThT solution and Phosphate buffer (use Equation 1): 

14.29µ𝑀𝑀 ∗ 5𝑚𝑚𝑚𝑚 = 1𝑚𝑚𝑀𝑀 𝑇𝑇ℎ𝑇𝑇 ∗ 𝑉𝑉 

V=0.071 mL and therefore, we need 4.929 mL of buffer 
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Sample in Shimadzu RF Mini 150 Recording Fluorometer: 

 25 µL AB and 175 µL of ThT stock solution needed 

Shaker Setting: 25°C and ---rpm 

Procedures: 

1. Take the non-stick surface micro-centrifuge tube containing 0.0271 mg Aβ1-42 out of -80°C 

freezer. Put on ice in the hood. 

2. Add 5 mM NaOH to tube and place on ice 10 minutes. (Make sure not too many ice or not 

in ice: potential chance it might freeze and ruin aggregation study) 

3. Then add the buffer and let it stay for about 20 minutes on ice. 

4. Turn on the mini-shaker at---- rpm and 25°C.  

5. Turn on the fluorometer. Auto Zero the fluorometer using di-water. Make sure the optical 

filter in the fluorometer has the emission and excitation wavelength of 440nm and 490nm 

(respectively).   

6. Run a blank run in the fluorometer of the ThT stock solution (noise). Record reading. 

7. Take a time 0 reading of 25 µL Aβ1-42 and 175 µL of ThT stock solution in the fluorometer.  

a. Make sure you add the ThT before the Aβ1-42 for the sample in the cuvette.  

b. Add the Aβ1-42 in the fluorometer and make sure it mixes well with the ThT in 

cuvette by pipetting the Aβ1-42 in and out of the ThT.  

c. Also make sure the cuvette’s window is facing the direction the light will hit it (in 

this case left side of the sample chamber).  

d. The actual reading will equal to be point reading subtracted by the blank run.       

8. After taking the reading, put the rest of Aβ1-42 sample in mini-shaker.  

9. Clean the cuvette by vacuum. 
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10. Repeat step 7-9 for 9 different time point readings (make sure you make at least 30-70 µL 

of Aβ1-42 left before last time point).  

Note: to thoroughly clean the fluorometer cuvette:  

1. Add 200 µl of 1M Sodium Hydroxide, let it sit in the cuvette for 5 minutes and vacuum 

it out the cuvette 

2. Rinse with 200 µl di-water couple of times (2-3 times) 

3. Add 200 µl methanol, let it sit in the cuvette for 1 minute and vacuum it out the vial 

4. Wipe the outside of the cuvette to make sure it is clean and has no residue on it 

 

VI. Changing Capillary from Capillary Cartridge in CE 

Objective: Replace old capillary in the capillary electrophoresis machine. 

Experimental Equipment: 

Capillary 

Window Maker Device 

Wipes and DI Water 

Capillary Electrophoresis Machine (aka P/ACE MDQ Glycoprotein System) and Computer 

Display: 

                                         

Lid 

Capillary 
device 
(left=location) 

Vials 
(left=location) 
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Procedure: 

1. Open the lid from the Capillary Electrophoresis machine  

2. Unscrew the two screws connecting the capillary cartridge to the equipment 

3. Slowly pull the capillary cartridge up and out of its location 

4. Take out the two white clips in the ends of the capillary on the device and take out the 

black clip- (the UV window clipper). To pull out the window clipper, push the click inward. 

Take out the black ring from the window clipper using a pipette tip. Set the black ring on 

a pipette tip.  

5. Take the old capillary out (by pulling it out from one end) and dispose of it in the proper 

location.  

6. Take a new set of capillary and put it through the capillary hole in the capillary device. 

Slowly insert the capillary until it comes out the other end. Take the capillary board (black 

cutter) and place it and the edge of the table (snugged tight to the end of the table). Place 

the capillary device on the top end on the capillary board and make sure the capillary 

reaches the right side mark (white horizontal line in the picture above) on the capillary 

board.  

7. Cut the right side of the capillary according to the right side mark (white horizontal line in 

picture above) on the capillary broad using a razor blade. 

White Clips 

Black Clips 

Capillary 
Board 

Razor 

Pipette tip 
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8. Take the right side of the capillary and put it through the window maker until the capillary 

device is touching the window maker. Make sure the window maker is plugged in the 

switch and press the red button.  

9. Hold the red button until the window maker’s rings turn completely red and let go on the 

red button (upon completion of the rings turning red).  

10. Take the capillary out of the window maker.  

11. Take a task wipe (KIMWIPES-our lab usually uses this brand) and wet it in DI water.  

12. Wipe the black region on the capillary (produced during the window maker steps). Make 

sure the black residue is completely off. 

13. Push the capillary into the device until the window (step 12 area) is located in the middle 

region of the UV window in the capillary device.  

14. Clip back on the two white clips by slowly moving it up the capillary.  

15. Clip the black clip back on the capillary device and put the black ring in the window clipper.  

16. Put the capillary device on the capillary broad in the middle of the board and cut both ends 

according to the mark. 

17. Take the capillary device and put it in the Capillary Electrophoresis machine slowly.  

18. Screw on the two side screws.  
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VII. CE Methods 

For Water Polymer Rinse and Coat Sequence 

a. Pre-Conditioning Wash Method Consist of: 

Event Value (psi) Duration 
(min) 

Vial inlet 
side 

Vial outlet 
side 

Pressure 
Direction 

Compound 
in vial 

Rinse-
Pressure 

50 psi 20 min B1:C1 B0:C1 reverse 0.1M 
NaOH 

Rinse-
Pressure 

20 psi 20 min B1:C2 B0:C2 reverse Water 

Rinse-
Pressure 

20 psi 60 min B1:C3 BO:C3 reverse 0.1M HCl 

Rinse-
Pressure 

20 psi 10 min B1:C2 B0:C2 reverse Water 

b. Polymercoating Method Consist of: 

Event Value (psi) Duration 
(min) 

Vial inlet 
side 

Vial outlet 
side 

Pressure 
Direction 

Compound 
in vial 

Rinse-
Pressure 

20 psi 15 min B1:B1 B0:B1 reverse Water 

Rinse-
Pressure 

20 psi 15 min B1:B2 B0:B2 reverse 0.1M HCl 

Rinse-
Pressure 

50 psi 30 min B1:B3 BO:B3 reverse 200 kDa 
PEO 

Rinse-
Pressure 

20 psi 15 min B1:B1 B0:B1 reverse Water 

Wait   B1:B4 B1:B4  Water 
*Note: to make a method go to file->method->new and in each section (ex. Event) click the arrow 

in the right side of the first box below title to select the proper procedure.  
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For the Sample Run Sequence:  

c. Water Polymer Rinse Method Consists of: 

Event Value 
(psi) 

Duration 
(min) 

Vial inlet 
side 

Vial outlet 
side 

Pressure 
Direction 

Compound in vial 

Rinse-
Pressure 

50 psi 10 min B1:A1 B0:A1 reverse Water 

Rinse-
Pressure 

50 psi 10 min B1:A2 B0:A2 reverse Polymer separation 
matrix using 0.5% 50 
kDa in separation 
buffer with 0.1% of 
0.1% of 2000 kDa 
PEO  

 

d. A4samplerun7kV Consists of: 

 

Event Value  Duration  Vial inlet 
side 

Vial outlet 
side 

Pressure 
Direction 

Compound in vial 

Rinse-
Pressure 

50 psi 5 min B1:A2 B0:A2 reverse Polymer 
separation matrix 

Inject-
Pressure 

0.5 psi -- sec B1:A1 B0:A4 reverse Inject sample 

Separate-
Voltage 

7 kV -- min B1:A3 BO:A3 0.17MIN 
ramp, 
normal 
polarity 

Separate in 100 
mM sodium 
phosphate buffer 
pH=7.4 

*Note: for the A5 sample run, changed A4 to A5 in the method procedure etc. 

e. Final End Wash Method Consists of: 

Event Value  Duration  Vial inlet 
side 

Vial outlet 
side 

Pressure 
Direction 

Compound in 
vial 

Lamp-Off       
Rinse-
Pressure 

50 psi 10 min B1:A1 B0:A1 reverse Cleaning  

Wait  1 min B1:A4 BO:A4  Wait in water 
at end of 
experiment 
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VIII. Ohm’s Law Experiment 

Method: 

Capillary Electrophoresis: 

Utilizing P/ACE MDQ-UV Glycoprotein System 2006, conduct the experiment with 0.1M HCl, 

0.1M NaOH, DI water, 0.5% 2000 kDa PEO, 100 mM sodium phosphate buffer (pH 7.4), and 

0.5% 50 kDa PEO in 100 mM phosphate buffer (pH 7.4), wavelength of 214 nm, and at 7kV and 

25°C.  

Use CE Method:  

Final End Wash Method 

Water Polymer Rinse Method 

Ohm’s Law _kV (where I went from 1-20 kV) 

Value Duration Type Summary Components 
50.0 psi 10 min Reverse Water rinse DI water 
20.0 psi 10 min Reverse Phosphate buffer 

with PEO rinse 
0.5% 50 kDa 
PEO in 100 mM 
buffer 

_ kV 5 min  0.17 min ramp, 
normal polarity 

100 mM sodium 
phosphate buffer 

Procedure: 

Conduct lab where my sequences were set up with a waterpolymerrinse method in between each 

Ohm’s Law Method. The last method in each sequence was EndFinalWash. 

 

IX. BSA Experiments on CE 

Method:  

Capillary Electrophoresis: 

Utilizing P/ACE MDQ-UV Glycoprotein System 2006, conduct the experiment with 0.1M HCl, 

0.1M NaOH, DI water, 0.5% 2000 kDa PEO, 100 mM sodium phosphate buffer (pH 7.4), and 
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0.5% 50 kDa PEO in 100 mM phosphate buffer (pH 7.4) with 0.1% of the 0.1% 2000 kDa PEO, 

wavelength of 214 nm, injection time=8 seconds, and at 7kV and 25°C.  

Sample: 1 mg/ml BSA using various sodium phosphate buffer in sample (pH 7.4) 

1. Dissolve the needed weigh of BSA in various sodium phosphate buffer concentrations 

in separate vials. (For storage, place in -20°C or -80°C) 

Origin: Bi-gaussian method 

Procedure:  

For Experiment: 

1. Make sample in proper sodium phosphate concentrations. 

2. Make samples of just the sodium phosphate at the various concentrations (as blank buffer 

run). 

3. Open program: 32 Karat 

4. Click on MDQ-UV. If the direct control screen does not open automatically, click Control 

- go to Direct Control-Click View 

5. Go to the light bulb, click it and turn it off 

6. Click the load button and wait before opening the lid 

7. Put 20 µl of the sample in the sample vial (with the spring) for the CE. Make sure all the 

vials are full with the needed solutions in the CE. 

8. Close the lid 

Blank Run consist of: WaterPolymerrinse Method, A4-30buffercheckingrun Method, 

WaterPolymerrinse Method, A5-30buffercheckingrun Method, FinalEndWashMethod (Sequence 

name: completebufferrun) 



88 
 

Each sample run consist of: WaterPolymerrinse Method, BSA Method, and  

FinalEndWashMethod  (Method consists of pressure injection of 8 seconds and the separate 

voltage of 7kV for 10 minutes) 

9. Turn on the light 

10. Click the filter wheel and select the wavelength (214nm) 

11. Click Auto Zero (make sure everything in working proper) 

12. Click Control: Diagnostics: View 

Can see the amount of light going through ‘window’ in capillary (5 is a good rule of thumb 

#) 

13. Run the buffer and sample sequences according to the stated methods earlier. 

 

X. 30µM Amyloid Beta Sample using 100 mM or 40 mM Sodium Phosphate Buffer 

Method:  

Capillary Electrophoresis: 

Utilizing P/ACE MDQ-UV Glycoprotein System 2006, conduct the experiment with 0.1M HCl, 

0.1M NaOH, DI water, 0.5% 2000 kDa PEO, 100 mM sodium phosphate buffer (pH 7.4), and 

0.5% 50 kDa PEO in 100 mM phosphate buffer (pH 7.4) with 0.1% of the 0.1% 2000 kDa PEO, 

wavelength of 214 nm, injection time=13.3 seconds, and at 7kV and 25°C.  

Sample: 30µM amyloid beta (1-42) using 100 mM sodium phosphate buffer in sample (pH 7.4), 

and 40 mM sodium phosphate buffer in sample (pH 7.4) 

Make a 30µM Aβ1-42 Sample Concentration: 

1. Take 2 non siliconized micro-centrifuge tubes (non-stick tubes) containing 0.0271 mg 

Aβ1-42 out of -80°C freezer. Add 5mM NaOH so that the 500:10000 ratio between 
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NaOH:100 mM/or 40 mM Sodium Phosphate is maintained (the ratio is similar to the 

one in Landers with 10:200 ratio) 

𝑊𝑊𝑎𝑎𝑖𝑖𝑡𝑡: 𝑥𝑥 µ𝐿𝐿 5𝑚𝑚𝑀𝑀 𝑁𝑁𝑎𝑎𝑁𝑁𝑁𝑁 𝑎𝑎𝑖𝑖𝑒𝑒 𝑦𝑦 µ𝐿𝐿 100𝑚𝑚𝑀𝑀 𝑅𝑅𝑖𝑖𝑒𝑒𝑖𝑖𝑢𝑢𝑚𝑚 𝑃𝑃ℎ𝑖𝑖𝑔𝑔𝑜𝑜ℎ𝑎𝑎𝑡𝑡𝑖𝑖  

Total volume= 200 µL 

* 5mM NaOH = 9.52 µL to get the 500:10000 ratio.  

Therefore, 100 mM or 40 mM Sodium Phosphate = 190.48 µL.  

2. Let Aβ1-42 solution in 5 mM NaOH for about 10 minutes on ice (due previous 

experimental findings) 

3. Put the 190.48 µL of 100 mM or 40 mM Sodium Phosphate in 5mM NaOH and Aβ1-42 

solution and keep on ice for 20 minutes. 

Shaker Setting: 25°C and 300 rpm 

Origin: Bi-gaussian method 

Procedure:  

For Experiment: 

1. Make amyloid beta sample in proper sodium phosphate concentrations. 

2. Make samples of just the sodium phosphate at the various concentrations (as blank buffer 

run). 

3. Open program: 32 Karat 

4. Click on MDQ-UV. If the direct control screen does not open automatically, click Control 

- go to Direct Control-Click View 

5. Go to the light bulb, click it and turn it off 

6. Click the load button and wait before opening the lid 
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7. Put 20 µl of the sample in the sample vial (with the spring) for the CE. Make sure all the 

vials are full with the needed solutions in the CE. 

8. Close the lid 

Blank Run consist of: WaterPolymerrinse Method, A4-30buffercheckingrun Method, 

WaterPolymerrinse Method, A5-30buffercheckingrun Method, FinalEndWashMethod (Sequence 

name: completebufferrun) 

Each sample run consist of: WaterPolymerrinse Method, 30 micrMolarsolution Method, and  

FinalEndWashMethod separately (Method consists of pressure injection of 13.3 seconds and the 

separate voltage of 7kV for 30 minutes) 

9. Turn on the light 

10. Click the filter wheel and select the wavelength (214nm) 

11. Click Auto Zero (make sure everything in working proper) 

12. Click Control: Diagnostics: View 

Can see the amount of light going through ‘window’ in capillary (5 is a good rule of thumb 

#) 

13. For the Buffer Run Sequence:  

a. In the Sequence window, go to method section and select the needed methods 

(shown earlier) 

14. For the sample sequence, make sure you run waterpolymerrinse method separately before 

the sample sequence. In the sample sequence, either have finalendwash method or lamp 

off method. 
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XI. Congo Red or Orange G Sample Preparation 

Make a Congo red or Orange G Stock Solution: 

1. Prepare a 16.7 µM Congo red or Orange G stock solution in di-water.  

Make a 30µM Aβ1-42 Sample Concentration: 

1. Take a non-siliconized micro-centrifuge tubes (non-stick tubes) containing 0.0271 mg Aβ1-42 

out of -80°C freezer. Add 5mM NaOH so that the 500:10000 ratio between NaOH:100 mM/or 

40 mM Sodium Phosphate is maintained  

𝑊𝑊𝑎𝑎𝑖𝑖𝑡𝑡: 𝑥𝑥 µ𝐿𝐿 5𝑚𝑚𝑀𝑀 𝑁𝑁𝑎𝑎𝑁𝑁𝑁𝑁 𝑎𝑎𝑖𝑖𝑒𝑒 𝑦𝑦 µ𝐿𝐿 100𝑚𝑚𝑀𝑀 𝑅𝑅𝑖𝑖𝑒𝑒𝑖𝑖𝑢𝑢𝑚𝑚 𝑃𝑃ℎ𝑖𝑖𝑔𝑔𝑜𝑜ℎ𝑎𝑎𝑡𝑡𝑖𝑖  

Total volume= 200 µL 

* 5mM NaOH = 9.33 µL to get the 500:10000 ratio.  

Need 2% total volume to be inhibitor- 4 µL Congo red  or Orange G stock solution 

Therefore, 40 mM Sodium Phosphate = 186.67 µL.  

2. Add NaOH and after five minutes add 4 µL inhibitor stock solution to the amyloid beta. Let 

Aβ1-42 solution in 5 mM NaOH and inhibitor for a total of about 10 minutes on ice (due previous 

experimental findings) 

3. Put the 186.67 µL of 40 mM Sodium Phosphate in 5mM NaOH and Aβ1-42 solution and keep 

on ice for 20 minutes. 

Shaker Setting: 25°C and 300rpm 

Origin Analysis: Bi-gaussian method 
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XII. Dot Blot Assay 

Objective: Determine whether CE analysis shows similar results to dot blot analysis 

Method: 

Dot Blot Analysis: 

Utilizing nitrocellulose membrane, primary antibodies: 6E10 (BioLegend), and OC (EMD 

Millipore), secondary antibodies: anti-mouse and rabbit (EMD Millipore), TBS-T(tris buffer saline 

with 0.01% Tween 20), sodium phosphate buffer at 100 mM and 40 mM pH 7.4, 5% milk in TBS-

T, VWR Rocker, VWR Heating/Cooling Micro Plate Shaker, 4°C freezer, BCIP (5-bromo-4-

chloro-3-indolyl phosphate) purchased by Amresco, NBT (Nitro blue tetrazolium chloride) 

purchased from Biotium.  

Sample: 30µM amyloid beta (1-42) using 100 mM sodium phosphate buffer in sample (pH 7.4), 

and 40 mM sodium phosphate buffer in sample (pH 7.4) 

Shaker Setting: 25°C and 300rpm 

Method of Data Analysis: Image J 

Procedures: 

Dot Block Assay Set-Up: 

1. Cut the necessary amount of 0.1 µm nitrocellulose membrane needed for the experiment. 

Make sure you touch the membrane as little as possible and use tweezers at the corners of 

the membrane to hold the membrane. Cut a small portion of a side of the membrane corner 

to help verify sample order of the membrane  

2. Make 5% nonfat powdered milk solution in TBS-T (tris buffer saline with 0.01% Tween 

20), make sure it is well mixed (can keep for about two days) 
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Note: To make TBS-T: 

a. Prepare a 10X Stock 1 liter solution of TBS 

i. Get 500 mL di-water and add 66.1 g Tris-HCl, 9.7 g Tris-base, 875g NaCl 

and mix  

ii. Add 500 mL di-water to solution 

iii. Filter solution and store in 4°C refrigerator 

3. Dot the membrane in the less shiny side and let it dry (about 15-20 minutes). The dot should 

contain at most 5 µL 

4. Upon dotting the membrane for each aggregation time point, close container, put container 

in ziplock with drierite and place the container in the Tupperware. Place the Tupperware 

in the refrigerator in BELL 3131.   

5. Repeat Steps 3-4 for each aggregation time point. 

6. After the last time point, soak the membranes in and fill the container with enough bovine 

serum albumin (BSA) or in this case 5ml of 5% nonfat powdered milk to cover the 

membrane completely.  

Note: Make sure the membranes are dry before putting it in the container with the milk 

solution. If letting the membranes soak overnight, put the container on the shaker in the 

upstairs refrigerator or else at least soak the membranes for an hour. In my case, added 5 

ml of milk solution to container with membranes and put on VWR rocker with a tilt 

speed of 34 for an hour.  

Dot Block Protocol with Antibody 

1. Drain the milk solution and wash with 5ml of TBS-T (Tris Buffer Saline and Tween 20) 

three times. Note: Make sure not directly on the membrane. 
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2. Add the primary antibody to the 5% milk solution (dilute). Do not put directly on the 

membrane but make sure membrane completely covered. Shake the container gently with 

the antibody. Put the container in the 4C refrigerator in Room 3133 for overnight with a 

tilt speed of 29-32. 

a. The dilution ratio are: 

i. Aβ1-16 specific 6E10 antibody- make sure assay is working correctly (sees 

amyloid beta in general, publish to show you know what you are doing) 

(1:2000 dilution)  

ii. Aβ fibril specific OC antibody (1:4000 dilution- see fibrils) 

3. Drain the solution and wash 3 times with TBS-T to remove excess (cover the membrane). 

4. Add secondary antibody same way.  

i. For OC use alkaline phosphatase-conjugated anti-rabbit IgG (1:4000 dilution) 

***Note: if stock solution is diluted with glycerol than a 1:1500 dilution will 

be required for the same amount of antibody) 

ii. For 6E10 antibody use alkaline phosphatase-conjugated anti-mouse IgG 

(1:4000 dilution) 

5. Incubate with gentle shaking on VWR rocker with tilt of 34 at room temperature for 1 hour. 

6. Wash membranes 3 times in 1 X TBS-T. First two washes with 5 minutes interval. Last 

wash before start next step. 

7. Make substrate solution (make enough for all membranes and cover with foil wrap): 

a. Add 15 ml of TBWS-T MgCl2 to test tube 

b. Add 0.1mL 50 mg/ml NBT solution in DMSO to test tube 

c. Add 0.05ml 50 mg/ml BCIP solution to same test tube 
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8. Remove TBS-T and add substrate solution 

9. Have the membranes covered and incubate at room temperature with gentle agitation for 

1-5 minutes depending when bands reach desired intensity (if you notice purple precipitate 

the solution is probably done its job and you will only be adding color to the background). 

10. To stop the reaction rinse with stop solution of 10% acetic acid and rinse with distilled 

water. Then take the membranes and put on Kimwipes but try to protect from light (light 

will cause signal to fade) 

*Also conducted the experimentation without the freezing steps where after each time point the 

membranes were soaking in 5% milk solution and put in the refrigerator. Therefore, each time 

point consisted of a separate membrane. The milk solution was replaced every 12 hours. 

 

XIII. TEM Imaging 

Objective: Compare TEM with dot blot analysis 

Method: 

TEM Analysis: 

Utilizing PELCO Slim Tweezer put handle carbon film on 300 mesh nickel grids (Electron 

Microscopy Sciences), parafilm, dry tissue paper, 2% Uranyl Acetate (Electron Microscopy 

Science), VWR Heating/Cooling Micro Plate Shaker, JEM-1011 Electron Microscope (JEOL)  

Sample: 30µM amyloid beta (1-42) using 100 mM sodium phosphate buffer in sample (pH 7.395), 

and 40 mM sodium phosphate buffer in sample (pH 7.4) 

Shaker Setting: 25°C and 300rpm 

Method of Data Analysis: AMT software 

 



96 
 

Procedures: 

TEM sample preparation: 

1. Pipette 3μL of sample onto a parafilm. Put the shiny side of the grid onto the sample using 

slim tweezers. The dull side consist of the formvar coated grids which provides better 

sticking ability of grid and sample; however, due to experiments conducted by fellow 

researchers, the shiny side provides better results. Important Note: be carefully with the 

tweezers to avoid damaging the grids. Carefully remove grid from container-if move the 

grid container without the lid, the grids have a potential to fly off. Cannot use grids that 

have fallen etc.  

2. After 1-2 minutes, remove the grid and dry it by gently tapping it to a filter paper from the 

grids sides. 

3. Put the shiny side of the grid onto 3μL of 2% uranyl acetate. Uranyl acetate is a toxic 

radioactive chemical that is made from depleted uranium. Though uranyl acetate utilized 

in diluted, avoid long term exposure to the chemical. Important Note: Uranyl acetate 

consists of slight odor.  

4. After 45 seconds to 90 seconds, remove the grid and dry it by gently tapping it to the filter 

paper.  

5. Put the shiny side facing up in a glass container to further analysis using a TEM. 

TEM Analysis: 

6. Make sure the TEM has enough liquid nitrogen in it. Be careful while pouring in the liquid 

nitrogen. Wear proper gloves, avoid pouring onto skin- can cause cool burns. 

7. In the sample region, take the sample holder out of the container. Note: Do not touch area 

with the ruby with hands. 
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8. Use thick/ normal tweezers for opening the sample lid. To open, place the tweezer close to 

the lid indenture and use that to slant- lift upwards.  

9. Put in the sample in the 1 and 2 position if have more than one sample. Make sure sample 

is in the middle by looking at it through a microscope. Close the lid. 

10. Turn on the software AMT on the computer. Make sure beam is facing the right direction. 

11. Take the sample holder and slowly insert into the TEM location until the first stopping 

location (hear a click) 

12. Wait until the green light goes off a 2nd time, and turn the holder clockwise.  Then slowly 

guide the place holder into the TEM. 

13. Turn on the filament and gradually turn the filament node to see beam in the microscopy 

area 

14. Condense the beam inward into a little circle by increasing the magnification 

15. Saturate the filament by turning the filament node (to 77 or when images of filament has 

disappeared) 

16. Analysis the sample by moving throughout the grid and changing the magnification. Once 

found an image, bring beam down and switch beam towards the computer. 

17. On the computer, click live image and make sure the beam has an adequate intensity. 

18. After saving the image, can repeat procedure. Once imaging is complete, make sure the 

magnitude is at 800X, the microscope image is at the center of the grid and leave the sample 

node in the 1 position. 

19. Bring the filament beam down by turning the filament node all the way down to zero. 

20. Turn off the filament. 
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XIV. CE Centrifugation Experiment  

Objective: Determine cutoff molecular weight for both 60 μM Aβ1-42 solution using either 100 

mM or 40 mM sodium phosphate buffer and 5 mM NaOH 

Method:  

Capillary Electrophoresis: 

Utilizing P/ACE MDQ-UV Glycoprotein System 2006, conduct the experiment with 0.1M HCl, 

0.1M NaOH, DI water, 0.5% 2000 kDa PEO, 100 mM sodium phosphate buffer (pH 7.395), and 

0.5% 50 kDa PEO in 100 mM phosphate buffer (pH 7.395) with 0.1% of the 0.1% 2000 kDa PEO, 

wavelength of 214 nm, and at 7kV and 25°C.  

Make a 60µM Aβ1-42 Sample Concentration: 

1. Take 2 non siliconized micro-centrifuge tubes (non-stick tubes) containing 0.0271 

mg Aβ1-42 out of -80°C freezer. Add 5mM NaOH so that the 500:10000 ratio 

between NaOH:40 mM Sodium Phosphate is maintained  

𝑊𝑊𝑎𝑎𝑖𝑖𝑡𝑡: 𝑥𝑥 µ𝐿𝐿 5𝑚𝑚𝑀𝑀 𝑁𝑁𝑎𝑎𝑁𝑁𝑁𝑁 𝑎𝑎𝑖𝑖𝑒𝑒 𝑦𝑦 µ𝐿𝐿 40𝑚𝑚𝑀𝑀 𝑅𝑅𝑖𝑖𝑒𝑒𝑖𝑖𝑢𝑢𝑚𝑚 𝑃𝑃ℎ𝑖𝑖𝑔𝑔𝑜𝑜ℎ𝑎𝑎𝑡𝑡𝑖𝑖  

Total volume= 100.05 µL 

* 5mM NaOH = 4.8 µL to get the 500:10000 ratio.  

Therefore, 40 mM Sodium Phosphate = 95.25 µL.  

2. Let Aβ1-42 solution in 5 mM NaOH for about 10 minutes on ice (due previous 

experimental findings) 

3. Put the 95.25 µL of 40 mM Sodium Phosphate in 5mM NaOH and Aβ1-42 solution 

and keep on ice for 20 minutes. 

Centrifuge Setting: 14,100 X g (14.5 rpm)  

Origin Analysis: Bi-gaussian method 
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Procedure:  

For Experiment: 

1. Put the centrifuge in the refrigerator (4°C). This will help potentially avoid the 

occurrence of Aβ1-42 aggregation due to heating.  

2. Wash filter with 70% of ethanol at 14.5 rpm for 5 minutes (ethanol should be 

completely filtered through).  

3. Make sure filter/ vial does not contain any ethanol after wash. 

4. Wash filter with di-water at 14.5 rpm for 3 minutes.  

5. Make sure filter/ vial does not contain any water after wash. 

6. Wash filter with buffer at 14.5 rpm for 6 minutes (buffer should be completely filtered 

through).  

7. Make sure filter/ vial does not contain any buffer after wash. 

8. Take --µl at 0 hour of 40 mM sodium phosphate buffer amyloid beta sample and put in 

--kDa filter. 

9. Put the filter vial in the centrifuge and set to the proper conditions. (14.5 rpm and 5 

minutes) 

10. Transfer the sample from the filter (retenate) or the sample that comes out of the filter 

in two different nonstick tubes (filtrate). 

11. Open program on computer: 32 Karat 

12. Click on MDQ-UV. If the direct control screen does not open automatically, click 

Control - go to Direct Control-Click View 

13. Go to the light bulb, click it and turn it off 

14. Click the load button and wait before opening the lid 
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15. Put sample in CE (have control and sample vials).  

16. Put filtrate in the sample vial (with the spring) for the CE. Make sure all the vials are 

full with the needed solutions in the CE. Run sample in CE after centrifugation.  

17. Close the lid 

Run consist of 0.5psi pressure injection of 8 seconds.  

18. Turn on the light and click the filter wheel and select the wavelength (214nm) 

19. Click Auto Zero (make sure everything in working proper) 

20. Click Control: Diagnostics: View 

Can see the amount of light going through ‘window’ in capillary (5 is a good rule of thumb 

#) 

21. For the Sample Run Sequence:  

a. In the Sequence window, go to method section and select the needed methods 

(shown earlier) 

22. Take the next sample and repeat procedure. 

23. Take an un-filtered Aβ1-42 sample for each time point as well.  
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