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ABSTRACT 

 

Autophagy is a highly conserved cellular mechanism that is responsible for the 

degradation and recycling of damaged organelles.  Recently, autophagy has been involved in 

critical roles during overall development of the organism and degradation of damaged cellular 

components.  This pathway has witnessed dramatic growth in the last few years and has been 

extensively studied in yeast and mammals, however, there is a paucity of information in avian 

(non-mammalian) species.  First, we characterized genes involved in the autophagy pathway in 

male and female Jungle Fowl to determine gender and tissue specific differences.  Secondly, 

tissue and genotype differences in Japanese quail selected for resistance (R) or susceptibility (S) 

to restraint stress was determined.  Stress, whether external (temperature stress, disease, 

crowding) or internal (endogenous oxidative stress) reduces animal production efficiency. A 

major source of oxidative stress in cells is mitochondrial reactive oxygen species (ROS).  

Mitochondria are responsible for 90% of cellular energy (ATP) production and also a major site 

of ROS production.  Oxidative damage of membranes induces lipid peroxidation with increased 

production of aldehydes and peroxides including 4-hydroxy-2-nonenal (4-HNE).  Cells must 

expend energy to repair oxidative damage caused by 4-HNE protein adduct formation, possibly 

through utilization of the autophagy pathway.  Lastly, as a result of the genetic selection of 

broiler (meat-type breeder) chickens for enhanced growth rate and lower feed conversion ratio, it 

has become necessary to restrict feed intake. When broilers are fed ad libitum, they would 

become obese and suffer from several health-related problems of which, autophagy may be a key 

regulator.  In relation to this, feed efficiency (FE) is a very important genetic trait in poultry and 

livestock that can be negatively impacted by stress.  Preliminary data from our laboratory 

indicates that autophagy expression of several genes is upregulated in muscle of broilers 



 

 

exhibiting a high FE phenotype compared to the low FE phenotype.  This suggests that part of 

the cellular basis of FE may hinge on the ability of the cell to maintain optimal functionality by a 

more active endogenous repair system offered by the autophagy pathway.   
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1. INTRODUCTION 

  

 Autophagy is a highly conserved cellular mechanism that is responsible for the 

degradation and recycling of damaged organelles.  In recent years, autophagy has been shown to 

play critical roles during overall development of the organism as well as degradation. Christian 

de Duve is credited to be the founding father of this pathway, making important observations 

leading its discovery and name (deDuve and Wattiaux, 1966).  The term autophagy was used to 

distinguish the ‘eating’ (phagy) of part of the cell’s self (auto) from the breakdown of 

extracellular material (heterophagy) (Klionsky, 2007).  The name was coined from the 

observation of electron microscopy studies that showed novel single or double-membrane 

vesicles containing organelles in various stages of degradation (Clark, 1957; deDuve and 

Wattiaux, 1966) and, therefore, distinguishes it from the Ub-proteosome pathway that is specific 

for the degradation of short-lived or damaged proteins.  Although the autophagic pathway was 

considered to be primarily non-specific, de Duve suggested it was also possible that autophagy 

may have selective types that allowed targeted degradation of abnormal cellular constituents; an 

idea in autophagy that has gained much prominence (Klionsky, 2007).   

 Autophagy was first observed in mammalian cells with the molecular mechanisms having 

been delineated in yeast (Nakatogawa et al., 2009; Klionsky, 2007). A number of protein 

complexes, and signaling pathways that influence the regulation of autophagy, have been 

identified in yeast and many have mammalian orthologs.  Identification of autophagic genes in 

higher eukaryotes made it possible to analyze mammalian cells that express autophagy proteins 

that were tagged with fluorescent markers (Klionsky, 2007).  Through images from time-lapse 

studies, data suggested that autophagosome formation proceeds in a step-wise manner marked by 

expansion of the sequestering membrane (Mizushima et al., 2001).  A breakthrough for studying 
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the molecular basis of this pathway was through identifying the Atg (autophagy-related) gene 

(Yorimitsu and Klionsky, 2005).  There are currently 27, of the more than 30, genes that are 

purely ATG genes which have been identified in yeast as well as functionally characterized 

orthologs of the ATG gene products in higher eukaryotes including: mammals, insects, worms, 

and plants (Reggiori and Klionsky, 2002; Levine and Klionsky, 2004).   Studies in yeast have 

also advanced our understanding of molecular mechanisms required for not only the autophagy 

pathway, but also pexophagy (degradation of peroxisomes) and the Cvt (cytoplasm to vacuole 

targeting) pathway which is a highly selective process that involves the sequestration of at least 

two specific enzyme cargos Ape1 (aminopeptidase I) and Ams1 (α-mannosidase) (Scott et al., 

1997; Hutchins and Klionsky, 2001).  The discovery of the autophagy pathway has led to many 

new discoveries involved in the development of treatments ranging from cancer to Alzheimer’s 

disease.  While most studies have been aimed at human health, it is becoming clearer that 

autophagy could be very important in disease and/or stress-related illnesses in animal agriculture.  

 Stress, whether external (e.g. temperature stress, disease, crowding) or internal (e.g. 

endogenous oxidative stress) reduces animal production efficiency. A major source of oxidative 

stress in cells is mitochondrial reactive oxygen species (ROS).  Mitochondria are responsible for 

90% of cellular energy (ATP) production and also a major site of ROS production. Low levels of 

ROS modulate translation and transcription processes and high levels can oxidize proteins, 

lipids, and DNA. Heat stress has been shown to increase mitochondrial ROS production in 

broilers and layers (Mujahid et al., 2007a; Mujahid et al., 2007b; Azad et al., 2010) which could 

lead to mitochondrial autophagy (mitophagy) if radical (atom, molecule, or ion that has unpaired 

valence electrons) generation becomes excessive (Levine and Kroemer, 2008).   
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 Due to autophagy being a critical pathway for homeostasis, the process must be tightly 

controlled to avoid extensive self-digestion.  Preliminary data (as stated in following chapters) 

obtained from our laboratory indicated that; 1) heat stress alters expression of autophagy genes in 

quail muscle (QM7) cells in vitro, and 2) differential expression of autophagy genes occurs in 

breast muscle of broilers associated with the phenotypic expression of FE in vivo. By 

maintaining optimal functionality of proteins and organelles, as well as providing an alternative 

to cell death by necrosis or apoptosis, autophagy likely has important roles at the organismal 

level ranging from generalized stress, feed efficiency, and nutrient limitation, to disease response 

and toxin insult.  

 An animal that produces either greater body mass with the same feed intake or the same 

body mass with less feed intake would be considered more efficient than its contemporaries.  

That having been said, birds that are considered to have better feed efficiency typically have a 

lower proportion of feed intake to body mass. Using this definition, one can determine the 

relative efficiency of several species of agriculturally important animals including poultry.  This 

is important worldwide due to substantial challenges animal agriculture is facing, including a 

steep projected increase in demand and the need to adapt to changing environmental conditions. 

Due to a predicted increase in world population to 9 and 10 billion, United Nations FAO 

estimates that by 2050 there will be a 73% increase in meat and egg consumption and a 58% 

increase in dairy consumption over 2011 levels (Alexandratos, 2006).  With heat wave frequency 

and intensity projected to rise during the next century. Reducing the impact of climate change 

and cost of animal protein production is essential to achieve a sustainable, affordable, and secure 

animal protein supply.  To do so, mechanistic understanding (at molecular and cellular levels) of 

heat stress and feed efficiency response are necessary and of uppermost interest.   
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 Willems and colleagues have stated that generally accepted feed costs represent about 

70% of the cost of poultry production making a bird's ability to use feed efficiently very 

important (Willems et al., 2013).  Changing methods in lighting, temperature, and nutrition with 

birds have all been ways the industry has used to improve feed efficiency (FE) in meat producing 

poultry.  Perhaps the most recent area, as well as the one most likely to produce a lasting effect 

on the industry, is genetic selection for feed efficiency.  Originally bred for body weight gain, 

significantly larger birds were produced but, as feed costs began to increase, it became clear that, 

in order to be profitable, selection needed to include other traits (Willems et al., 2013).  While 

there are a multitude of ways for measuring feed efficiency, the two most often used are feed 

conversion ratio (FCR) and residual feed intake (RFI).  FCR can be defined as the amount of 

feed consumed per unit of weight gain, and is a composite trait of starting and ending body 

weight and feed intake (Skinner-Noble and Teeter, 2003).  RFI, on the other hand, is defined as 

the difference between actual and predicted feed intake based on the regression of requirements 

for production and body weight maintenance (Van der Werf, 2004).  The main problem is that 

feed utilization efficiency has not kept up with the growth rate of broilers (Aggrey et al., 2010).  

Due to biofuel policies and a growing global demand for animal protein, feed, fuel, and fertilizer 

costs have been on a steady rise leading to intensified focus on the development of selection 

strategies for the improvement of FE in poultry and livestock production (Steinfeld et al., 2006).  

These increases in feed cost have driven an increase in live production costs which, in turn, 

decreases profitability for the industry.  To alleviate this problem and make the industry more 

profitable, FCR has been implemented to make these improvements possible.  As stated earlier, 

feed intake is a heritable trait and, as Pym and colleagues demonstrated over a decade ago, 

genetic studies for FCR show that it could be improved by selection on growth (Pym, 1990).  



5 

 

Many researchers are searching for new and improved ways of developing feed efficient animals 

by studying genes and pathways that may be of importance to this trait.  The autophagy pathway 

is one such pathway that our laboratory has been studying in poultry.  Feed efficiency in poultry 

is very important to the industry therefore, using poultry as a model, we studied common genes 

involved in autophagy and compared how this pathway may be involved in birds that are 

selected for either high feed efficiency (HFE) or low feed efficiency (LFE).  We believe this 

study is the first of its kind in poultry, with feeding-type studies having been performed in cattle 

and Caenorhabditis elegans.  Looking for candidate genes influencing feed efficiency traits, Rolf 

and colleagues found that autophagy was present in Angus cattle when measuring for residual 

feed intake (RFI) (Rolf et al., 2012).  In another model, Morck and colleague indicated that the 

long-term starvation seen in C. elegans mutants that are “feeding-defective,” activates 

autophagy, and leads to depletion of fat deposits, small cell size, and small body size.  These 

experiments as well as others dealing with starvation, show that the autophagy pathway is 

involved in how these organisms cope with a certain feeding regime.  The question to which our 

feed efficiency experiment hopes to address is: to what degree does autophagy affect the high or 

low feed efficiency trait, and could this be a potential aid in helping to solve the feed efficiency 

problem in the poultry industry? 

 Autophagy, although a relatively new area of study, may be a pathway that leads to many 

new discoveries as well as help to uncover previously unknown mechanisms underlying 

diseases.  The aforementioned research suggests that this pathway is an important part of many 

topics covering a wide range of research; interest in it is only becoming more prevalent year to 

year.  With advances in animal agriculture becoming ever present, as well as a need to produce 

affordable, high quality animal protein world-wide, this pathway may be an important source for 
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many solutions to these problems.  The discoveries in this research have the potential to better 

understand heat stress and feed efficiency in animal agriculture, specifically commercial poultry; 

furthermore, it may lead to methods that will alleviate heat stress and improve feed efficiency in 

field.  

1.2 OBJECTIVES 

 

The objectives of my research in this dissertation were to characterize the autophagy 

pathway in avian species, to determine its regulation, by using challenging stressors, and effect 

on autophagy in how heat and oxidative stress are handle, and finally to determine autophagy 

expression levels in broilers and quail specifically phenotyped and carefully selected for high or 

low feed efficiency.    

Specific objectives for this dissertation are as follows: 

1.  To characterize the autophagy pathway in a) male and female jungle fowl, and b) in 

Japanese Quail selected for resistance and susceptibility to restraint stress.  

2.  To determine the effect of oxidative stress and heat stress on the autophagy pathway in 

avian muscle cells in vitro and Japanese Quail in vivo.  

3.  To understand the role that the autophagy pathway may play in the phenotypic expression 

of feed efficiency in broilers and quail 
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2. REVIEW OF THE LITERATURE 

 

2.1 INTRODUCTION 

 

Autophagy is a highly conserved cellular mechanism that is responsible for the 

degradation and recycling of damaged organelles, proteins, and other cytosolic components.  In 

recent years, autophagy has been shown to play a critical role during overall development of the 

organism as well as degradation.  Christian de Duve is credited to be the founding father of 

autophagy (deDuve and Wattiaux, 1966).  The term autophagy was used to distinguish the 

‘eating’ (phagy) of part of the cell’s self (auto) from the breakdown of extracellular material 

(heterophagy) (Klionsky, 2007).  The name was coined from the observation of electron 

microscopy studies that showed novel single or double-membrane vesicles containing organelles 

in various stages of degradation (Clark, 1957; deDuve and Wattiaux, 1966) and, therefore, 

distinguishes it from the Ub-proteosome pathway that is specific for the degradation of short-

lived or damaged proteins.  Although the autophagic pathway was considered to be primarily 

non-specific, de Duve suggested it was also possible that autophagy may have selective types 

that allowed targeted degradation of abnormal cellular constituents; an idea in autophagy that has 

gained much prominence (Klionsky, 2007).   

Autophagy was first observed in mammalian cells with the molecular mechanisms having 

been delineated in yeast. A number of protein complexes, and signaling pathways that influence 

the regulation of autophagy, have been identified in yeast and many have mammalian orthologs.  

An overview of different components of autophagy, particularly the three major steps of 

induction, elongation, and vacuole formation, is shown in Figure 1.  These steps will be 

discussed in greater detail below. 
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Identification of autophagic genes in higher eukaryotes made it possible to analyze 

mammalian cells that express autophagy proteins that were tagged with fluorescent markers 

(Klionsky, 2007).  Through images from time-lapse studies, data suggested that autophagosome 

formation proceeds in a step-wise manner marked by expansion of the sequestering membrane 

(Mizushima et al., 2001).  A breakthrough for studying the molecular basis of this pathway was 

through identifying the Atg (autophagy-related) (Yorimitsu and Klionsky, 2005).  There are 

currently 27 of the more than 30 genes that are purely ATG genes which have been identified in 

yeast as well as functionally characterized orthologs of the ATG gene products in higher 

eukaryotes including: mammals, insects, worms, and plants (Reggiori and Klionsky, 2002; 

Levine and Klionsky, 2004).   Studies in yeast have also advanced our understanding of 

molecular mechanisms required for not only the autophagy pathway, but also pexophagy 

(degradation of peroxisomes) and the Cvt (cytoplasm to vacuole targeting) pathway which is a 

highly selective process that involves the sequestration of at least two specific enzyme cargos 

Ape1 (aminopeptidase I) and Ams1 (α-mannosidase) (Scott et al., 1997; Hutchins and Klionsky, 

2001).  The discovery of the autophagy pathway has led to many new discoveries involved in the 

development of treatments ranging from cancer to Alzheimer’s Disease.  While most studies 

have been aimed at human health, autophagy could be very important in disease and/or stress-

related illnesses, agricultural animal health is also a research topic of importance.  

2.2 TYPES OF AUTOPHAGY 

 

Autophagy is a general term for the process in which organelles are enclosed in 

lysosomal structures for degradation and recycling of materials.  It has been found that there are 

three main types of autophagy: macroautophagy, microautophagy, and chaperone-mediated 

autophagy, with macroautophagy the most extensively studied using Saccharomyces cerevisiae 
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(baker’s yeast) (Tomotake et al., 2011) (See Table 1).  Macroautophagy is the term used in 

reference to the major lysosomal pathway for the degradation and recycling of cytoplasmic 

components.   

 Microautophagy refers to the process of invagination of the lysosomal membrane which 

then delivers a small part of the cytoplasm into the lysosomal lumen for degradation.  

Chaperone-mediated autophagy is the translocation of cytosolic proteins across the lysosomal 

membrane which requires protein unfolding mediated by chaperone proteins (Mizushima and 

Yoshimori, 2010).  Along with these main types of autophagy are more specific, selective types 

of autophagy such as pexophagy, for example, which itself has two types: macropexophagy and 

micropexophagy.  Pexophagy, discovered using methylotrophic yeast, involves a degradation 

pathway for peroxisomes which are single membrane organelles involved in metabolic processes 

such as fatty acid oxidation and detoxification of hydrogen and lipid peroxides (Mizushima and 

Yoshimori, 2010).  Another selective autophagy is piecemeal microautophagy of the nucleus, a 

specific microautophagic process that was discovered in S. cerevisiae.  During this type of 

microautophagy, blebs of nuclear membrane, as well as part of the nucleoplasm, are pinched off 

into the vacuole and degraded (Roberts et al., 2003).  Mitophagy, reticulophagy, ribophagy, and 

lipophagy are yet more selective types of microautophagy which can be used to remove damaged 

mitochondria, endoplasmic reticulum, and ribosomes respectively. 

2.3 SIGNALING PATHWAYS THAT REGULATE AUTOPHAGY 

 

The main signaling pathway as well as a master regulator of autophagy is mTOR, 

(mechanistic target of rapamycin) a highly conserved serine/threonine protein kinase that acts as 

a sensor of growth factors, nutrient signals, and energy status (Yang and Klionsky, 2010).  It 

exists in two complexes: mTORC1 and mTORC2 which are conserved from yeast to mammals.  
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In yeast, when mTORC1 is inhibited, (e.g. via rapamycin treatment or nitrogen depletion) 

autophagy is activated.  This complex inhibits autophagy through activation of the class I 

PtdIns3K (phosphatidylinositol 3-kinase) protein kinase B (PKB) pathway (Figure 1).  PKB also 

activates mTORC1 by inhibiting a downstream protein complex, tuberous sclerosis complex 1/2 

(TSC1/TSC2).  Phosphorylation of this TSC2 by PKB or extracellular-signal-regulated kinases 

(ERK1/2) leads to the disruption of its association with TSC1 and activates mTOR (Yang and 

Klionsky, 2010).  The TORC2 complex also regulates autophagy.  For PKB to be fully activated, 

mTORC2 is required. Inhibition of PKB, caused by mTORC2 depletion, activates forkhead box 

O (FoxO3).  FoxO3 is a transcription factor that stimulates autophagy in muscle cells 

independent of the activity of mTORC1 (Yang and Klionsky, 2010). 

 AMPK (AMP-activated protein kinase) is involved in another autophagy signaling 

pathway and is an important sensor of cellular bioenergetics, especially in response to energy 

stress (e.g. starvation or high energy demand).  When energy or nutrients are depleted, AMPK is 

activated by an increase in the AMP/ATP ratio through the upstream liver kinase B1 (LKB1) 

which also regulates cell polarity and functions as a tumor/growth suppressor.  Once AMPK is 

activated, it leads to the phosphorylation of TSC1/TSC2 and thus the inhibition of mTORC1 

complex (Yang and Klionsky, 2010).  Activation of AMPK can also occur in response to an 

increase in the cytosolic free Ca2+ concentration and cytokines such as TNF-related apoptosis-

inducing ligand (TRAIL) via activation of Ca2+/ calmodulin-dependent kinase kinase-β 

(CaMKKβ) and transforming growth factor-β-activating kinase 1 (TAK1) (Høyer-Hansen et al., 

2007; Herrero-Martín et al., 2009).  These pathways are required for Ca2+-induced or TRAIL-

induced autophagy (Høyer-Hansen et al., 2007; Herrero-Martín et al., 2009). 
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 The MAPK (mitogen activated protein kinase) and Erk1/2 pathway have a mostly 

inhibitory role on autophagy.  The Erk1/2 pathway activates mTOR, thereby inactivating 

autophagy and increasing cell synthesis and energy usage.  However, it has recently been 

suggested that the Erk1/2 pathway may regulate the induction of the autophagy pathway through 

glucose which was formally thought to inhibit autophagy (Moruno-Manchón et al., 2013). 

 The tumor suppressor p53 and its pathway exerts both positive and negative effects on 

autophagy.  Genotoxic stress or oncogenic activation of p53 induces autophagy by 

phosphorylation of AMPK which activates TSC1/TSC2 complex and leads to the inhibition of 

the mTORC1 pathway (Feng et al., 2005).  This tumor suppressor has also been known to induce 

autophagy through upregulation of the damage-regulated autophagy modulator (DRAM) 

(Crighton et al., 2006).  As a negative autophagy regulator, the inhibition of p53 or its 

proteasomal degradation, favors autophagy induction. 

 Another important signaling pathway comes through the B-cell lymphoma 2 (Bcl-2) 

protein family which also plays a dual role in autophagy regulation.  The antiapoptotic proteins: 

Bcl-2, B-cell lymphoma-extra-large (Bcl-XL), Bcl-2-like protein 2 (Bcl-L2L2), and induced 

myeloid leukemia cell differentiation protein (Mcl-1) all can inhibit autophagy, whereas 

proapoptotic BH3-only proteins, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 

(BNIP3), Bcl-2-associated death promoter (BAD), BCL2-interacting killer (BIK), Noxa, p53 up-

regulated modulator of apoptosis (PUMA), and BimEL, can induce autophagy (Levine and 

Kroemer, 2008).  When Bcl-2 binds to Beclin1, Beclin1 association with Vps34 is disrupted and 

this decreases the Beclin1 associated hVps34 PtdIns3K activity, inhibiting autophagy.       
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2.3.1 GENES ASSOCIATED WITH AUTOPHAGY 

  

 Characterization of genes in the autophagy pathway was carried out using mutagenesis-

based screens in S. cerevisiae (Marino and Lopez-Otin, 2004) (An overview of the 

genes/proteins involved in the autophagy pathway is shown in Figure 1, p. 42).  A high degree of 

homology between yeast and mammalian genes indicates the pathway is conserved in mammals 

as well.  Interestingly, the autophagic pathway in yeast seems to overlap with the cytoplasm-to-

vacuole targeting (Cvt) pathway, the only known biosynthetic pathway to utilize the machinery 

of autophagy for operation, as well as pexophagy. These different pathways often differ in 

genetic screens (a type of phenotypic screen that can provide information on gene function as 

well as molecular events that underlie biological pathways) which has led to autophagic genes 

having different names because of their involvement in overlapping processes (Marino and 

Lopez-Otin, 2004).  Most of these genes are involved in signaling complexes and pathways that 

are directly involved in the development of an autophagic response.  Among these are: mTOR 

(mechanistic target of rapamycin), ATG1 complex, and Vps34/class III PI3K 

(phosphatidylinositol 3-kinase) complex.  mTOR is a serine/threonine kinase that is involved in 

control of cellular processes in response to nutrient changes which are mostly monitored by 

AMPK (AMP-activated protein kinase).  Treatment with rapamycin, an immunosuppressant drug 

that inhibits TOR activity, will block cell cycle progression thus triggering autophagy (Raught et 

al., 2001).  ATG1 is a protein kinase that forms part of a protein complex that is involved in 

triggering Cvt and autophagy pathways (Kamada et al., 2000).  Triggered by nutrient deprivation 

or treatment with rapamycin, another gene, ATG13, becomes partially dephosphorylated, leading 

to ATG1-ATG13 interaction which triggers autophagy and the generation of autophagosomes 

instead of Cvt vesicles (Marino and Lopez-Otin, 2004).  In mammals, the ATG1 ortholog is 
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ULK1 (unc-51-like kinase) and may be functionally related to the ATG1 protein complex 

through interaction between two mammalian orthologs of ATG8 (a protein essential for 

autophagosome formation) (Marino and Lopez-Otin, 2004).  Other Atg genes include, a.) Atg14 

determines the localization of the autophagy-specific PI3-kinase complex, b.) Atg16L1 is part of 

a large protein complex that is necessary for autophagy also involving Atg12 and Atg5, c.) E1-

like activating enzyme is similar to Atg3 which is an E2-like conjugating enzyme with both 

having importance in the formation and sequestration of the autophagosome, d.) Atg 4 is 

important in the processing of LC3 (mammalian homolog of yeast Atg8) into LC3-II that is 

important in final sequestration of the autophagosome and used as a marker for the occurrence of 

autophagy (Mizushima and Yoshimori, 2010).  LC3-II is a protein located in the inner and outer 

membrane of autophagosomes and when ubiquitinated proteins at lysine 63 recruit the LC3-

interacting protein p62, p62 is then recognized by LC3-II.  Protein substrate tagged with 

ubiquitin-63, p62 and LC3-II forms a complex which is then engulfed by the autophagosome, 

and subsequently degraded by the lysosomes (Ichimura and Komatsu, 2010).  Vps34/class III 

PI3K complex is an enzyme family involved in processes such as intracellular trafficking, 

proliferation, and assembly of cytoskeletal elements (De Camilli et al., 1996).  This family of 

protein kinases was implicated in the autophagy pathway through the discovery that 3-

methyladenine (3-ME), a PI3K inhibitor, had an inhibitory effect on autophagy (Seglen and 

Gordon, 1982).  

2.4 AUTOPHAGY IN YEAST AND MAMMALS 

 

Yeast, specifically S. cerevisiae, were the first organisms in which the molecular 

mechanism of the autophagy pathway was discovered, and although autophagy has been highly 

studied in mammalian cells, scientists have only been able to develop this molecular 
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understanding through the application of yeast genetics (Wang and Klionsky, 2003).  In 1992, 

the laboratory of Yoshinori Ohsumi demonstrated that the autophagy morphology in yeast was 

similar to that in mammals, which proved to be a crucial step for further studies in this organism 

(Takeshige et al., 1992).  While this pathway occurs in all eukaryotic cells, in yeast it is 

maintained at basal levels under normal conditions and is induced by starvation (Wang and 

Klionsky, 2003).  Under starvation conditions, the activity of the autophagy pathway allows for 

excess proteins to be degraded and the now free amino acids to be reused for the synthesis of 

proteins essential for survival or used for energy production (Yorimitsu and Klionsky, 2005).  

Similar trends have been seen in nutrient starved cultured cells and tissues as well as nutrient 

depletion seen in response to birth and severing of the trans-placental food supply (Kuma et al., 

2004; Mizushima et al., 2004).  However, multicellular organisms, mammals in particular, have 

more diverse roles for autophagy than in lower eukaryotes (Marino and Lopez-Otin, 2004).  For 

example, although this pathway has an original function during starvation, it is also involved in 

programmed cell death, as stated earlier, as well as tissue specific functions.  It has been noted 

that research in mammalian autophagy has had major hurdles to overcome.  Two hurdles in 

particular are capturing a “dynamic process” with “static measurements” as well as separating 

“form” from “function,” and avoiding a common pitfall of assigning particular functions to this 

process given a certain setting (Mizushima and Yoshimori, 2010).  These challenges, along with 

others, have been partially overcome by applying advances in the molecular mechanisms of 

autophagy to the development and understanding of new methods in research of this area of 

study (Mizushima and Yoshimori, 2010). 

2.4.1 AUTOPHAGY IN NON-MAMMALIAN MODELS 
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 The autophagy pathway is best characterized in mammalian and yeast models, from 

which genes were identified and most mechanistic work has been conducted.  However, there are 

many other models in which the autophagy pathway has been observed that indicate that the 

action of most of these genes may be highly conserved among species.  For example, upon 

nutrient deprivation or overcrowding, Dictyostelium discoideum, a soil amoeba, will undergo a 

developmental cycle which ends in the production of a multicellular organism (Kessin, 2001).  

This process is thought to protect the developing Dictyostelium discoideum spores from the 

noxious environment of the soil, but insertional mutagenesis of orthologs of yeast Atg5, Atg6, 

Atg7, and Atg8 genes, results in loss of cellular viability and aberrant multicellular development 

during starvation (Otto et al., 2003; Otto et al., 2004).  Caenorhabditis elegans, with limited 

nutrients or increased temperature, will reversibly arrest into an alternative third larval stage that 

is suited to survive in an unfavorable environment (Riddle, 1997).  It has been shown that 

autophagy is enhanced during dauer development (an alternative long living larvae stage where 

the nematode is dormant) in seam cells (during postembryonic development, they can act as stem 

cells to produce neurons and support cells) important in formation of dauer cuticle and radial 

constriction of the nematode body (Meléndez and Levine, 2009). Furthermore, inactivation of 

Atg genes (orthologs of Atg1, Atg6, Atg7, Atg8, and Atg18) in C. elegans blocks morphogenetic 

and physiological features of dauer development, inhibits seam autophagy, and prevents dauer 

survival (Meléndez and Levine, 2009).  Plant processes similar to autophagy in mammals have 

been described in a number of biochemical and morphological studies (Matile, 1975; Moriyasu 

and Hillmer, 2000).  In plants, mutations in autophagy genes AtAPG7 and AtAPG9 does not 

disrupt completion of the life cycle, but does cause phenotypic alterations that may result from a 

defective ability to mobilize nutrients (Doelling et al., 2002; Hanaoka et al., 2002).  Although a 
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wealth of information exists on the autophagy pathway in a variety of mammalian and non-

mammalian species, very little information is available in avian species.  Therefore, the present 

dissertation aimed to characterize the autophagy pathway in male and female jungle fowl 

(Chapter 2), and to study its regulation by heat and oxidative stress (Chapter 3), as well as 

genetic selection through use of stress resistant (R) or susceptible (S) Japanese quail lines 

(Chapter 4).  

2.5 AUTOPHAGY AS A CELL DEATH AND DEVELOPMENTAL PATHWAY   

 

After the discovery of autophagy, existing cell death pathways were restructured.  

Apoptosis, the best known type of programmed cell death (PCD), is now referred to as type I 

PCD and autophagy is characterized as type II PCD (Wang and Klionsky, 2003).  The reasoning 

behind this is due to the morphology of the two pathways.  Type I PCD occurs when chromatin 

is fragmented and the cytoplasm condenses, whereas, type II PCD involves the appearance of 

autophagosomes that are important markers of the final sequestration stages of autophagy.  

Autophagy is mainly a cytoprotective pathway, functioning during normal cellular development 

and growth.  However, if cellular damage is extreme, superfluous autophagy can be used by the 

cell to initiate type II PCD.  For example, autophagy can act as a cellular defense mechanism to 

prevent infection by pathogenic bacteria and viruses but, on the other hand, it is also involved in 

type II PCD, contributing to certain disease pathologies (Cuervo, 2004; Kirkegaard et al., 2004; 

Shintani and Klionsky, 2004; Levine and Yuan, 2005).  Although both type I and II PCD 

pathways can involve the other for successful completion of each process, autophagic 

dysfunction is associated with various diseases (Klionsky and Emr, 2000).   Autophagy is active 

under basal conditions and helps to regulate the balance between protein synthesis and 

degradation.   
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A defect in autophagic genes such as Beclin1, an important gene in autophagy initiation 

and a tumor suppressor, can lead to carcinogenesis.  Links have also been found between 

defective autophagy and a number of neurodegenerative diseases such as Alzheimer’s, 

Huntington’s, and Parkinson’s diseases (Klionsky and Emr, 2000).  In fact, the question of 

whether or not autophagy is beneficial or destructive, came from a study investigating neuronal 

cell death (Ravikumar and Rubinsztein, 2004).  The study noted that axotomy, (severing of an 

axon) may cause neuronal cell death in neonatal or embryonic animals as this is the time when 

neurons are dependent on their targets for survival (Dixon, 1967; Holtzman et al., 1967).  In 

mature animals, on the other hand, survival factors are derived locally or through autocrine 

loops.  Axotomy, cutting or severing of an axon, of motorneurons can lead to a regenerative 

response without neuronal death (Matthews and Raisman, 1972; Matthews, 1973; Holtzman, 

1989).  In both of these situations, autophagy increased which has led to two opposing theories: 

1) autophagy is a mechanism that clears the way for neuronal regeneration, or 2) autophagy is a 

mechanism for cell destruction (Ravikumar and Rubinsztein, 2004).  Most researchers believe 

there is no reason why this pathway cannot perform both roles.  For example, caspases which are 

normally found in apoptosis pathways, may be important in cell survival under certain conditions 

where death by another means, i.e. autophagy, may prevail (Yu et al., 2004).  A strong 

association between autophagy and neurodegeneration is best seen in the Lurcher mouse model.  

In this model, heterozygotes with an activating mutation in a glutamate receptor develop 

cerebellar ataxia within the first four weeks of birth due to degeneration of the cerebellar cortex 

(Ravikumar and Rubinsztein, 2004).  The response in this model is usually death of the Purkinje 

cell, which plays a fundamental role in controlling motor movement, through activated apoptotic 

responses, but many studies show missing mechanisms.  Yue and colleagues set about 
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identifying these mechanisms and reported that Beclin1 was a component of the complex that 

binds to the glutamate receptor (Yue et al., 2002).  Two possibilities arose; either 1) the 

autophagy pathway was the missing pathway that contributed to Purkinje cell death, or 2) that 

the coupling of autophagy to neurotransmitter receptors plays an important role in regulating 

neuronal function (Yue et al., 2002).  They discovered that there is a biochemical link between 

the neurotransmitter for the glutamate receptor and autophagy.  The model that emerged was one 

where both apoptosis and autophagy contributed to excitotoxic cell death with Beclin1 being a 

key molecule in both pathways (Ravikumar and Rubinsztein, 2004). 

2.6 PHYSIOLOGICAL ROLE OF AUTOPHAGY 

  

 There has been an increase in autophagy research in the past decade which has led to an 

increase in our knowledge regarding the connections between autophagy and animals 

(patho)physiological and cellular systems.  These studies show a dual role for autophagy: 

positive or negative effects of this pathway depending on the specific disease and its level of 

progression (Huang and Klionsky, 2007).  A study by Ravikumar and colleagues showed that 

inhibition of mTOR, which induces autophagy, reduced the toxicity of certain aggregation-prone 

proteins like those found in cases of Huntington’s disease (Ravikumar et al., 2002).  Similar 

studies in murine models found that knockouts of Atg5 and Atg7 prevented symptoms of 

neurodegeneration in healthy organisms (Hara et al., 2006; Komatsu et al., 2006).  While an 

increase in the number of autophagosomes are seen in different physiological and pathological 

states in the nervous system, there is still confusion over why this is observed.  Is it simply the 

result of increased autophagic activity (induction of autophagosome formation), or is it a 

decrease in autophagosome-lysosome fusion (that decreases autophagosome removal and 

increases apoptosis)?  In neurological diseases, increased numbers of 
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autophagosomes/autophagic vacuoles (AVs) have become a feature of a number of neurological 

diseases, certain neuronal cell death pathways, and after neuronal injury (Ravikumar and 

Rubinsztein, 2004).  For scientists to understand whether this is a protective or destructive 

pathway, these phenomena have to be studied more in depth.  While these are more general 

examples, there are many ways autophagy plays a role in physiology. 

  Bacterial pathogens in humans can cause a wide variety of diseases through infection.  

Autophagy is a defense mechanism that can be activated by the immune system to target 

intracellular bacteria that have escaped the phagosome of the immune system, and target them 

for sequestration in the autophagosome that then fuses with a lysosome, thus eliminating the 

pathogen (Huang and Klionsky, 2007).  This elimination route by autophagy is specific to 

bacteria, whether it is in the cytosol, within immature phagosomes, or in damaged phagosome-

like vacuoles (Birmingham et al., 2006).  Some bacteria, however, have developed mechanisms 

to avoid the autophagy pathway and instead propagate in the cytosol or subvert the autophagy 

pathway and utilize it to replicate (Huang and Klionsky, 2007). 

 Viral pathogens also trigger the autophagic pathway through the immune system, but do 

so with a different initial mechanism.  Viruses, like bacteria, have evolved mechanisms to block 

or utilize autophagy to their advantage.  When a virus infects their host, host cells may secrete 

interferons (IFN), which are cytokines that can trigger antiviral mechanisms to restrict 

replication of the virus.  IFN has recently been shown to upregulate autophagy by activation of 

protein kinase R (PKR) which inhibits protein synthesis and restricts viral replication (Huang 

and Klionsky, 2007).  Using overexpression of Beclin1 in neurons it was shown that autophagy 

was inhibited during Sindbis virus replication, the cause of fatal encephalitis (Liang et al., 1998).  

Some positive-strand RNA viruses are able to induce autophagosome formation and use them as 
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replication sites thereby increasing the intracellular yields of the virus through autophagy 

(Jackson et al., 2005; Espert et al., 2007).   

The autophagic pathway has also been implicated in protein aggregation diseases.  As an 

adaptive response, degradation systems such as the ubiquitin-proteasome system and autophagy 

may be activated to eliminate the resulting abnormal inclusion bodies (Huang and Klionsky, 

2007).  Both degradative pathways are triggered by protein aggregates but their effectiveness lies 

in the degradation of different forms of the substrates (Teckman et al., 2000; Perlmutter, 2006).  

There are many examples of protein aggregate diseases such as endoplasmic reticulum (ER) 

storage diseases like alpha-1-antitrypsin (AT) deficiency or hypofibrinogenemia.  In 

hypofibrinogenemia, degradation of mutant fibrinogen, Augadilla γD, aggregates in the hepatic 

ER and is dependent on autophagy, whereas soluble mutant proteins are subjected to ER-

associated degradation (ERAD) by the proteasome (Perlmutter, 2006).  A recent study showed 

that increased activation of the ubiquitin-mediated autophagy–lysosomal degradation pathway 

induced by either corticosterone or Aβ (amyloid beta) treatment, may contribute to the 

pathological changes in pre-synaptic proteins and its functions (Wuwongse et al., 2013). This 

group showed that corticosterone-induced toxicity is associated with upregulation of the 

autophagy pathway which they believed was used as a potential mediator of protein degradation 

when protein aggregates formed as a result of treatment (Wuwongse et al., 2013).  It has also 

been reported that autophagy is responsible for the degradation of a mutant form of dysferlin, 

found in muscular dystrophy and Miyoshi myopathy, in which the mutant aggregates in the ER 

induce autophagy-mediated degradation (Fujita et al., 2007). 

 As mentioned earlier, autophagy is heavily involved in certain neurodegenerative 

diseases.  In regard to cytosolic aggregate-prone proteins, the role of autophagy is most clearly 
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seen in some forms of Parkinson’s disease, Huntington’s disease (HD), and Alzheimer’s disease 

(AD) (Rubinsztein et al., 2005; Nixon, 2006).  Autophagosome accumulation has been observed 

in studying these diseases in brains of patients, mouse models, and cell lines.  Although 

autophagy protects against the toxicity of aggregate-prone proteins, its activity must be 

controlled because excessive autophagy leads to cell death (Huang and Klionsky, 2007). 

 Cardiomyopathies and lysosomal storage disorders are also associated with autophagy.  If 

the function of a lysosome is altered, excessive amounts of undigested material will accumulate 

with the lysosome and eventually become toxic to the cell.  Interestingly, autophagy often 

correlates with these “autophagic vacuolar myopathies” (Huang and Klionsky, 2007).  Due to 

reliance on primarily morphological observations, it is not yet clear how these autophagic 

vacuoles are formed or whether the autophagic response is cytoprotective or contributive to the 

disease (Terman and Brunk, 2005). 

 Muscular disorders have been associated with deregulated autophagy, that is mainly 

observed in non-proliferative cells (muscle and neuronal) where accumulation of damaged 

materials is more severe (Shintani and Klionsky, 2004).  Analyses of unrelated patients with 

Danon’s disease (a disease in which weakening of the muscles that leads to myopathy) identified 

mutations in the gene for lysosomal-associated membrane protein 2 (Lamp2) (Nishino et al., 

2000).  In addition, a study performed in mice with a homozygous deletion of the Lamp2 gene, 

resulted in a phenotype typical of Danon’s disease which includes massive accumulation of 

autophagic vesicles in many tissues (Eskelinen et al., 2004).  Even with this evidence, it is still 

unclear whether the accumulation of autophagic vesicles in vacuolar myopathy results from the 

promotion of autophagosome formation or the decrease in fusion of the autophagosome with 

lysosomes (Shintani and Klionsky, 2004).       
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 Perhaps the oldest known link between human disease and autophagy was seen about 

twenty years ago in cancer, although the elucidation of the possible molecular mechanisms was 

only recently achieved (Botti et al., 2006; Kondo and Kondo, 2006).  Autophagy has had a two 

pronged role in cancer with it being implicated in tumorigenesis in both a positive and negative 

role and now the balance has tilted more towards its role as a tumor suppressor.  As tumors grow, 

cancer cells may need autophagy to survive nutrient-limiting as well as reduced oxygen 

availability conditions because of the poorly vascularized internal region of the tumor (Cuervo, 

2004).  It may also protect cancer cells against some forms of ionizing radiation by removing 

damaged mitochondria (mitophagy) which could protect against apoptosis and allow the 

continued survival of these transformed cells (Paglin et al., 2001; Alva et al., 2004).  Some 

evidence of this includes: a.) Reduced autophagic activity in tumor cells, b.) Absence of Beclin1, 

MAP1LC3, and Atg7 in different cancers, c.) Autophagy is induced in many anticancer 

therapies, and d.) Tumor suppressor genes such as PTEN (phosphatase and tensin homolog), 

p53, and the DAPK (death-associated protein kinase) protein family are involved in signaling 

autophagy induction (Crighton et al., 2006; Gozuacik and Kimchi, 2006; Kondo and Kondo, 

2006).   

Autophagy is thought to play an important role as an anti-aging mechanism because of its 

role in cellular and tissue remolding during morphogenesis in developing organisms.  Although 

function of autophagy in many tissues of an adult organism is minimal, protein and organelle 

turnover by autophagy is essential in homeostatic or housekeeping functions through removal of 

unwanted or damaged organelles and proteins (Levine and Klionsky, 2004).  Many believe that 

autophagy is related to anti-aging through these functions by removing or reducing reactive 

oxygen species and other toxic substances that could contribute to genotoxic stress (Levine and 
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Klionsky, 2004).  Studies using biochemical and genetic analyses, as well as protein caloric 

restriction on life span extension in diverse species (Bergamini et al., 2003), show a more direct 

role of autophagy in anti-aging pathways.  Perhaps the best-characterized pathway, is the 

insulin/insulin-like growth factor 1 (IGF-1) pathway which is highly conserved from yeast to 

human (Longo and Finch, 2003).   For example, the aging process related to autophagy has been 

analyzed in C. elegans, Drosophlia, and mice.  From studies done with C. elegans, it is now 

known that several components of the insulin-like signaling that affect the adult life-span in this 

species are known to regulate autophagy (Guarente and Kenyon, 2000; Bergamini et al., 2003).  

2.6.1 STRESS AND AUTOPHAGY 

  

 Autophagy is triggered by stressors such as: nutrient limitation, heat stress, oxidative 

stress, and/or the accumulation of damaged or excess organelles and abnormal cellular 

components (Huang and Klionsky, 2007).  With stress, autophagy is induced as a degradative 

pathway where it is involved in the elimination of potentially toxic components coupled with the 

recycling of nutrients that then aids in cell survival (Levine and Klionsky, 2004).  It is believed 

that from an evolutionary standpoint, autophagy may have developed as a mechanism to protect 

unicellular organisms against starvation and other forms of environmental stress (Levine and 

Klionsky, 2004).  This is due to the suggestion that stimuli to degrade organelles may have 

created a cellular medium that favored the acquisition of other advantages such as differentiation 

and development (Levine and Klionsky, 2004).  These processes both require cells to undergo 

changes and, therefore, must have some way to breakdown and recycle the components, making 

autophagy not just a coincidence, but rather that differentiation is triggered by environmental 

stressors that stimulate autophagic activity  (Levine and Klionsky, 2004).  An example of a 

pathway involved in both stress and aging is the insulin/insulin-like growth factor 1 (IGF-1) 
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signaling cascade that involves a tyrosine kinase receptor, PtdIns 3-kinase, and Akt/PKB.  In C. 

elegans, inactivation of this cascade can extend life-span up to 300% as well as increase heat and 

oxidative stress resistance, possibly leading to life-span extension (Shintani and Klionsky, 2004).  

Also, due to Akt/PKB pathway controlling the activity of mTOR (the autophagy inhibitor), 

down-regulation of this pathway may also induce autophagy, leading to life-span extension 

(Shintani and Klionsky, 2004).  Due to the rate of autophagy decreasing with age, as many 

pathways often do, some groups have looked at caloric restriction and induction of autophagy as 

a means to increase longevity.  This life-span extension is thought to be brought on by an 

increase in protection against oxidative damage, through mitophagy, and an increase in 

antioxidants, as well as by mechanisms involved in repair and replacement of damaged or 

defective DNA, lipids, and proteins (Shintani and Klionsky, 2004; Terman et al., 2004). 

2.7 ANIMAL AGRICULTURE, HEAT STRESS, AND AUTOPHAGY 

  

 Animal agriculture is facing substantial challenges, including a steep projected increase 

in demand and the need to adapt to changing environmental conditions. Due to a predicted 

increase in world population to 9-10 billion, United Nations FAO estimates that by 2050 there 

will be a 73% increase in meat and egg consumption and a 58% increase in dairy consumption 

over 2011 levels (Alexandratos, 2006); with heat wave frequency and intensity projected to rise 

during the next century. Reducing the impact of climate change and cost of animal protein 

production is essential to achieve a sustainable, affordable, and secure animal protein supply.  To 

do so, mechanistic understanding (at molecular and cellular levels) of heat stress response is 

necessary. 

 Modern poultry are particularly sensitive to heat stress due to highly metabolically active 

tissues.  As the Earth’s climate changes with global warming, this has become a very important 
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matter for the poultry industry. At temperatures exceeding 38°C, there is marked mortality in 

flocks (Squibb and Wogan, 1960).  Problems including reduced growth rates, reduced egg 

production with thin shells, smaller sizes, and reduction in hatching are all results of heat stress.  

Zhou and colleagues studied heat stress in tomato plants and found that heat stress activate 

autophagy genes with accumulation of autophagosomes (Zhou et al., 2014). We believe that 

similar mechanisms will be induced by heat stress in birds.  Reports of “thermal conditioning” 

indicate that exposure of embryos (pre-hatch) or neonates (during the first 4 d post hatch) results 

in greater resistance to heat stress and reduced body temperatures (DeBasilio et al., 2003).  Part 

of this protection is likely due to increased expression of protective proteins, such as the family 

of heat shock proteins (HSPs). Some argue that early exposure could affect weight gain and 

growth, and studies have shown that short-term exposure to heat stress during the first week of 

life did result in slow growth, however, this was immediately followed by compensatory growth 

with higher feed intake that counteracted any decrease in weight gain (Yahav and Hurwitz, 1996; 

Yahav et al., 1997; Yahav and Plavnik, 1999). These and many other studies have proven that 

thermal conditioning of chicks results in improvements in performance by the time they reach 

market age, clearly showing that heat stress and ways to combat this stress, is of major 

importance to the poultry industry worldwide.  Since the effect of heat stress on the autophagy 

pathway in poultry has not been documented, our laboratory set out to discover if this pathway 

had any influence on causing or protecting against heat stress.   Current and future studies, 

unlocking the potential of this pathway, may prove invaluable to the understanding of heat stress 

in livestock animals and how we can further prevent this costly issue.  

2.7.1 AUTOPHAGY IN FEEDING, STARVATION, AND FEED EFFICIENCY 
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 As the incidence of obesity or metabolic syndrome continues to rise, there is a clear 

demand to identify new and efficient therapeutic strategies. Therefore, insights into the 

molecular mechanisms of this devastating disease using different experimental models are of 

uppermost interest.  We decided to monitor if this pathway plays a role in efficiency and, if it 

does, how we can apply this to further improving feed efficiency in agricultural animals.  Feed 

efficiency has always been a topic of interest for many livestock industries and further research 

in this field, especially involving autophagy, may be applicable to help alleviate this issue or, at 

the very least, used as a tool to aid in further understanding of the mechanisms underlying this 

trait.   

Rodents are very useful models for the study of obesity, but it could be suggested that 

another equally good model for this study would be chickens (Gallus gallus). Whereas 

lipogenesis occurs in both adipose tissue and liver in rodents, (Goodridge and Ball, 1967; 

Leveille et al., 1968; Leveille et al., 1975) chickens are similar to humans in that lipogenesis 

occurs exclusively in the liver and is exported via the circulatory system to adipose tissue 

(Trayhurn and Wusteman, 1990). In addition, chickens are characteristically hyperglycemic 

compared with mammals, with their blood glucose levels averaging three times that found in hu-

mans (300 vs. 100 mg/dl) (Krzysik-Walker et al., 2008).  Genetic selection for production ef-

ficiency (rapid growth rate and feed efficiency) necessitates feed restriction in commercial meat-

type chicken (broiler) breeders that are hyperphagic, heavy, and prone to obesity. Broilers vo-

raciously consume approximately 4.1 kg of feed to achieve a 40-fold increase in body weight 

after hatch that is concomitant with tremendous increase in muscle development as well as ab-

dominal fat during a period of 42 days (Scheuermann et al., 2003). Relationships of effects of 

starvation on the autophagy pathway may be very pertinent to this established practice of skip-a-
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day feeding programs in broiler breeders used to prevent obesity and decreased reproductive 

performance. 

 Starvation studies in yeast were some of the earliest to document the induction of the 

autophagy pathway.  It is thought that because autophagy defective yeast mutants are not able to 

survive during nitrogen starvation, this pathway may be important for the cellular response to 

starvation as well as normal cytoplasmic constituent turnover (Tsukada and Ohsumi, 1993).   On 

the other hand, mammals encounter the first and most severe period of starvation during the early 

post-natal period.  It is well known that carbohydrate and lipid reserves are used during this 

period to overcome any life-threatening situations (Medina et al., 1992).  However, in addition to 

these reserves, it is thought that autophagy must also be activated to maintain an adequate amino 

acid pool until nutrient supply from milk reaches a steady state (Kuma et al., 2004).  The amino 

acids produced through autophagy can be used as an energy source, synthesis of proteins 

required for the appropriate starvation response, or converted into glucose in the liver (Kuma et 

al., 2004).  For example, it has been noted that the level of autophagy in mice remains low during 

embryogenesis but is immediately upregulated in various tissues and maintained at high levels 

for hours after birth before returning to basal levels within a few days (Kuma et al., 2004).  It 

was also shown that mice deficient for Atg5, (important in autophagosome formation) appear 

almost normal at birth and die within one day (exhibiting reduced amino acid concentrations in 

plasma and tissue) (Kuma et al., 2004).  Results from these studies suggest that the production of 

amino acids by autophagic degradation of ‘self’ proteins is important for survival in the early 

hours after birth considered ‘neonatal starvation’ (Kuma et al., 2004).  Evidence of autophagy 

and feed efficiency using this starvation model as a resource has been seen in many species and 
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may play a crucial role in studies of feed efficiency and restriction in avians (Mizushima et al., 

2004; Chera et al., 2009).   

While there are a multitude of ways for measuring feed efficiency, the two most often 

used are feed conversion ratio (FCR) and residual feed intake (RFI).  FCR can be defined as the 

amount of feed consumed per unit of weight gain, and is a composite trait of starting and ending 

body weight and feed intake (Skinner-Noble and Teeter, 2003).  RFI, on the other hand, is 

defined as the difference between actual and predicted feed intake based on the regression of 

requirements for production and body weight maintenance (Van der Werf, 2004).  Although 

these two methods are by far the most widely used and understood, there are alternative methods 

for measuring feed efficiency.  Some alternatives include: residual maintenance energy (RMEm) 

that, unlike RFI or FCR, aims to measure energetic efficiency without being perplexed by feed 

intake; residual gain (RG) which is defined as the residuals from the linear regression of average 

daily gain (ADG) on both feed intake and body weight; and residual intake and gain (RIG) which 

combines the beneficial characteristics of both RFI and RG such that RIG is independent of body 

weight, but when used for selection can increase weight gain as well as reduce feed intake 

simultaneously (Romero et al., 2009; Berry and Crowley, 2012).  With many options, which 

method should one choose or which works best for a certain scenario? 

 Although each has its own advantages and disadvantages, usage of FCR, which can be 

used on a large scale, and RFI, which tends to be used on a smaller scale, are common, making 

these the top two choices for measuring feed efficiency that are widely accepted.  FCR and RFI 

both require the measurement of individual feed intake, and use two different ways to obtain 

these feed intake values.  The first requires individually caged birds, which need to have their 

feed recorded and refilled on a daily or weekly basis, as well as has been widely studied, is cheap 
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and simple, but requires a significant amount of barn space where there is very little to no social 

interaction.  The second is an automated electronic feeding system that enables feed intake 

measurements on specific individuals to be taken in a group-house setting. This automated 

system measures a larger number of birds, as well as social interaction due to the group-housed 

environment (Howie et al., 2011; Tu et al., 2011).  Selecting for weight gain has been shown to 

make indirect improvements in FCR and, as a related genetic response, feed intake is increased 

but at a slower rate, thereby improving FCR (Varkoohi et al., 2011). In contrast, RFI would not 

be affected by the indirect selection of weight gain since this is accounted for in the computation 

via regression on body weight (Kennedy et al., 1993; Van der Werf, 2004).  FCR is used more 

often and selections based on this method have made significant improvements in feed 

efficiency.  Experimental trials with RFI show promising theoretical results, although it is 

important to recognize Kennedy and colleagues (Kennedy et al., 1993), who showed that RFI 

provides no additional information to a breeding program over and above what is provided by its 

component traits (Willems et al., 2013).   

Feed efficiency is important in the livestock industry, especially in poultry production.  

The cost of feed represents about 70% of the cost of production broilers, but feed utilization 

efficiency has not kept up with the growth rate of broilers (Aggrey et al., 2010).  Due to biofuel 

policies and a growing global demand for animal protein, feed, fuel, and fertilizer costs have 

been on a steady rise leading to intensified focus on the development of selection strategies for 

the improvement of FE in poultry and livestock production (Steinfeld et al., 2006).  These 

increases in feed cost have driven an increase in live production costs which, in turn, decreases 

profitability for the industry.  To alleviate this problem and make the industry more profitable, 

FCR has been implemented to make these improvements possible. 
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In poultry, as a result of the genetic selection of broiler (meat-type) chickens for 

enhanced growth rate and lower feed conversion ratio, it has become necessary to restrict feed 

intake, creating a starvation-like atmosphere in breeding stock to prevent poor reproductive 

performance.  When these animals are fed ad libitum, they become obese and suffer from several 

health-related problems (Richards et al., 2010).  Broiler hens tested under these conditions 

displayed low egg production and a high proportion of defective eggs (which could be alleviated 

by feed restriction) as well as a delay in sexual maturity and low reproductive fitness (Heck et 

al., 2004).  The modern commercial broiler under the same conditions displays, as an unintended 

consequence of this selective breeding, the loss of the ability for self-regulation of feed intake to 

closely match the requirements for maintenance, growth, and reproduction (Richards et al., 

2010).  Thus, this animal tends to overconsume feed which, similar to the broiler hens, can result 

in a range of metabolic disorders and health problems.  To try to keep this situation under control 

before it becomes an issue, broiler breeder birds must be subjected to severe feed restriction early 

in life to ensure that appropriate body weight (BW) and composition are achieved at critical 

phases of the production cycle (Richards et al., 2010).  Therefore, a vital adaptation to the 

restricted feed intake method that induces a starvation-like situation is autophagy.  As stated 

earlier, autophagy was first discovered using a starvation model and was shown to help protect 

the cell by enabling to “self-eat’ damaged organelles so as to utilize a new source of energy.  

This pro-survival mechanism initiates as a counter to apoptosis at first but, if continued with no 

positive results, the pathway can quickly become aggregated, leading to apoptosis.  Autophagy is 

a promising pathway for finding a molecular signature to solve heat stress in poultry and, if 

useful, could be adapted for use in livestock as well.  Therefore, the objectives of this 

dissertation research was as follows: 
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2.8 OBJECTIVES 

 

From the literature cited above, it is apparent that autophagy is a very important pathway 

and linked to many different conditions, from starvation to stress, that could impact avian species 

development and function.  Despite this importance, very little information is available on the 

autophagy pathway in birds or in how various types of stress or management conditions could 

affect the autophagy pathway.  My hypothesis for the project is that the autophagy pathway will 

be prevalent in avians and that this pathway will exert an effect on both exogenous and 

endogenous stressors as well as the phenotypic trait of FE between species.   Thus, the overall 

goal of research in this dissertation was to characterize the autophagy pathway in jungle fowl, to 

determine the effect of different types of stress on autophagy, and finally to determine if 

autophagy may contribute to the phenotypic expression of feed efficiency in broilers.    

Specific objectives for this dissertation are as follows: 

1.  To characterize the autophagy pathway in a) male and female jungle fowl, and b) in 

Japanese Quail selected for resistance and susceptibility to restraint stress.  

2.  To determine the effect of oxidative stress and heat stress on the autophagy pathway in 

avian muscle cells in vitro and Japanese Quail in vivo.  

3.  To understand the role that the autophagy pathway may play in the phenotypic expression 

of feed efficiency in broilers and quail 
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Table 1:  Classification 

of different types of 

autophagy 

      

Type of Autophagy 

 

Definition 

1. Macroautophagy Major lysosomal pathway for the degradation and recycling of 

cytoplasmic components. 

2. Microautophagy 

3. Aggrephagy 

 Pexophagy 

 Mitophagy 

 Reticulophagy 

 Ribophagy 

4. Chaperone-mediated 

Autophagy 

                

Invagination process of the lysosomal membrane that delivers a 

small part of the cytoplasm into the lysosomal lumen for 

degradation 

Selective autophagic degradation of protein inclusions caused by 

aggregate-prone or misfolded proteins 

Degradation pathway for damaged peroxisomes 

 

Degradation pathway for damaged mitochondria 

Degradation pathway for endoplasmic reticulum 

 

Degradation pathway for ribosomes 

 

 

Translocation of cytosolic proteins across the lysosomal membrane 

that requires protein unfolding mediated by chaperone proteins 
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Figure 1 Autophagosome formation in the autophagy pathway (Piekarski et al., 2015).  Autophagy 

is initiated by mTOR inhibition or AMPK activation in response to increased energy demand. 

Three steps in autophagy include induction, elongation, and autophagosome formation. Activation 

of ULK1 phosphorylates Autophagy genes (Atg13), Atg101 and FIP200. Beclin 1 is liberated from 

Bcl-2 and forms a complex with Vps34, Vps15 and Atg14 and AMBRA. Activated AMBRA a 

component of the PI3K CIII complex enables it to relocate from the cytoskeleton to the isolation 

membrane. Vps34 activation generates PI3P that catalyzes the first of two ubiquitination-like 

reactions that regulate membrane elongation; 1) Atg5 and Atg12 are conjugated in the presence of 

Atg7, 10, and 2. Attachment of the Atg5-Atg12-Atg16L1 complex on the isolation membrane 

induce covalent conjugation of PE to LC3 that facilitates isolation membrane closure. The Atg9-

Atg2-Atg18 complex cycles between endosomes (Golgi and phagophore), and carry lipids for 

membrane expansion. LC3-II is formed by LC3 conjugation to PE and Atg4 removes LC3-II from 

the outer surface of newly formed autophagosomes. Finally, LC3 on the inner surface is degraded 

when the autophagosome fuses with lysosomes. Abbreviations: AMBRA, autophagy/beclin-1 

regulator 1; Atg, autophagy-related genes; Beclin (ortholog of yeast Atg 6); LC3, microtubule-

associated protein light chain; PE, phosphatidylethanolamine; PI3K, phosphatidylinositol 3 

kinase; PIP3, phosphatidylinositol 3-phosphate; ULK1, UNC51-like kinase 

Figure 1 
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Figure 2 Signaling pathways as well as other activators of the autophagy pathway. There are 

four major pathways by which autophagy is most regularly initiated.  Inhibition of mTOR 

(through AMPK signaling) or AMPK activation (increase in cytosolic Ca2+ and LKB1 kinase) 

in response to increased energy demand are the two most common.  However, there are other 

pathways and activators outside of these two.  PI3K-1/Akt signaling pathway activates mTOR by 

inhibiting TSC1/2 which activates mTOR.  MAPK/ERK1/2 signaling activates mTOR inhibiting 

autophagy, but recent studies show that this pathway may regulate the induction autophagy by 

glucose (Moruno Manchón, et al., 2013). The fourth major pathway, p53/genotoxic stress 

induces autophagy by phosphorylation of AMPK which then activates TSC1/TSC2 complex that 

then leads to the inhibition of the mTORC1 pathway. Bcl2 family of proteins acts indirectly to 

inhibit autophagy through inhibition of Beclin1 (important in membrane nucleation), whereas the 

BH3-only family of proteins can indirectly activate autophagy.        

  

Figure 2 
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3.1 ABSTRACT 

 

 As a result of the genetic selection of broiler (meat-type breeders) chickens for enhanced 

growth rate and lower feed conversion ratio, it has become necessary to restrict feed intake. When 

broilers are fed ad libitum, they would become obese and suffer from several health-related 

problems. A vital adaptation to starvation is autophagy, a self-eating mechanism for recycling 

cellular constituents. The autophagy pathway has witnessed dramatic growth in the last few years 

and extensively studied in yeast and mammals however, there is a paucity of information in avian 

(non-mammalian) species. Here we characterized several genes involved in autophagosome 

initiation and elongation in Red Jungle fowl (Gallus gallus) and Japanese quail (coturnix coturnix 

Japonica). Both complexes are ubiquitously expressed in chicken and quail tissues (liver, leg and 

breast muscle, brain, gizzard, intestine, heart, lung, kidney, adipose tissue, ovary and testis). 

Alignment analysis showed high similarity (50.7 to 91.5%) between chicken autophagy-related 

genes and their mammalian orthologs. Phylogenetic analysis demonstrated that the evolutionary 

relationship between autophagy genes is consistent with the consensus view of vertebrate 

evolution. Interestingly, the expression of autophagy-related genes is tissue- and gender- 

dependent. Furthermore, using two experimental male quail lines divergently selected over 40 

generations for low (resistant, R) or high (sensitive, S) stress response, we found that the 

expression of most studied genes are higher in R compared to S line. Together our results indicate 

that the autophagy pathway is a key molecular signature exhibited gender specific differences and 

likely plays an important role in response to stress in avian species. 

Key words: autophagy, gene expression, chicken, quail, tissue distribution 
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3.2 INTRODUCTION 

 

 Autophagy or cellular self-digestion, a lysosomal degradation pathway that is conserved 

from yeast to human, plays a key role in recycling cellular constituents, including damaged 

organelles [1]. Based on their mechanisms and functions, there are various types of autophagy, 

including micro- and macro-autophagy, as well as chaperone-mediated autophagy [2,3]. The first 

two types have the capacity to engulf large structures through both selective (specific organelles 

such as mitochondria or endoplasmic reticulum referred to as mitophagy or reticulophagy, 

respectively [4,5]) and non-selective mechanisms (bulk cytoplasm), whereas chaperone-mediated 

autophagy degrades only soluble proteins [6]. Micro-autophagy refers to the sequestration of 

cytosolic components directly by lysosomes through invaginations in their limiting membrane. 

However macro-autophagy refers to the sequestration within an autophagosome, a unique double-

membrane cytosolic vesicle. Autophagosomes fuse with late endosomes and lysosomes, 

promoting the delivery of organelles, aggregated proteins and cytoplasm to the luminal acidic 

degradative milieu that enables their breakdown into constituent molecular building blocks that 

can be recycled by the cell [7]. 

A number of protein complexes (more than 30) and signaling pathways that regulate autophagy 

have been identified in yeast and many of these have mammalian orthologs (for review see [8]). 

These proteins can be grouped according to their functions at key stages of the autophagy pathway. 

The beclin-Vps34 complex is involved in the initiation of autophagosome formation. Beclin-1 

enhances Vps34 activity [9] and binds to several partners that induce autophagy including ambra-

1 [10] , UVRAG [11], and bif-1 [12]. The second complex implicated in the initiation step of 

autophagosome formation is the ULK1/Atg1-Atg13-FIP200 complex [13]. Indeed, Atg13 binds 

ULK1 and when they are dephosphorylated they activate ULK1 that phosphorylates FIP200 to 
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induce autophagosome formation [14-16]. For the autophagosome elongation, two ubiquitin-like 

systems are involved. The E1 ubiquitin activating enzyme-like, Atg7, activates Atg12 that is 

transferred to Atg10. Atg12 binds to Atg5 and then form a conjugate with Atg16L1 resulting in an 

800-kDa complex [17] that is essential for the elongation of the pre-autophagosomal membrane. 

The second ubiquitin-like complex involves the protein microtubule-associated protein 1 light 

chain 3 (LC3/Atg8). LC3 is cleaved by Atg4B to form the cytosolic isoform LC3-I [18]. LC3-I is 

conjugated to phosphatidylethanolamine in a reaction involving Atg7 and Atg3 to form LC3-II 

which in turn targeted to elongating autophagosome membrane [19]. For the maturation and fusion 

stage, autophagosome moves, via dynein motor proteins [20,21] towards the microtubule 

organizing center where the lysosomes are enriched. Autophagosome fuses with lysosome in a 

reaction involving several proteins including ESCRT [22], SNAREs [23,24], Rab7 [25,26], and 

the class C Vps proteins [27]. Recently, it has been reported that beclin-1 functions in the 

maturation of autophagosome through interaction with Rubicon [28]. 

Autophagy is essential for maintaining cellular homeostasis and autophagy malfunction is 

associated with diverse diseases such as neurodegeneration [29], cancer [30], immunity [31] and 

metabolic syndrome [32]. The amount of research focused on the autophagy pathway has 

witnessed dramatic growth in the last few years and the bulk of data are mainly originated from 

yeast and mammals. There is, however, a paucity of information on avian (non-mammalian) 

species. Therefore, the present study aimed firstly to characterize autophagy-related genes and 

their tissue distribution in chicken and quail, and secondly to determine their regulation by gender 

and genotype. 
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3.3 MATERIALS AND METHODS 

 

3.3.1 ETHICS STATEMENT 

 

 The present study was conducted in accordance with the recommendations in the guide for 

the care and use of laboratory animals of the National Institutes of Health and the protocol was 

approved by the University of Arkansas Animal Care and Use Committee under protocols 13039 

and 10025. 

3.3.2 ANIMALS 

 

Chickens. Red Jungle fowl male and female chickens (Gallus gallus) (body weight average 1049 

± 52 and 1654 ± 67g for female and male, respectively) were reared in floor pen under 

environmentally controlled facilities and under standard poultry rearing conditions (22 ± 3°C for 

temperature and 50 ± 5% relative humidity)  . Chickens were supplied with food (12.6 MJ·kg−1, 

22% protein) and water available ad libitum.  

Japanese quail. In order to assess whether the expression of autophagy-related genes is regulated 

by genotype, two lines of male Japanese quails (coturnix coturnix Japonica) were used. These two 

lines were established by long-term divergent selection for circulating corticosterone response to 

restraint stress, after which the low stress line (resistant, R) had 66% low plasma corticosterone 

levels compared to their high stress (sensitive, S) counterpart [33]. Quails of each genetic line were 

reared separately in floor pen under environmentally controlled facilities and were allowed ad 

libitum access to water and food (12.6 MJ·kg−1, 22% protein). 

Animals were killed by cervical dislocation and tissues (liver, leg and breast muscle, brain, gizzard, 

intestine, heart, lung, kidney, adipose tissue, ovary and testis) were removed, immediately snap 

frozen in liquid nitrogen, and stored at -80°C until use. 
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3.3.3 RNA ISOLATION, REVERSE TRANSCRIPTION, AND QUANTITATIVE REAL-

TIME PCR 

 

 Total RNA was extracted from chicken and quail tissues by Trizol reagent (catalog # 

15596018, Life Technologies) according to manufacturer’s recommendations, DNAse treated and 

reverse transcribed (catalog # 95048-100, Quanta Biosciences). RNA integrity and quality was 

assessed using 1% agarose gel electrophoresis and RNA concentrations and purity were 

determined for each sample by Take 3 micro volume plate using Synergy HT multi-mode 

microplate reader (BioTek, Winooski, VT). The RT products (cDNAs) were amplified by real-

time quantitative PCR (Applied Biosystems 7500 Real-Time PCR system) with Power SYBR 

green Master Mix (catalog # 4312074, Life Technologies). Oligonucleotide primers used for avian 

autophagy-related genes are summarized in Table 1. The qPCR cycling conditions were 50 °C for 

2 min, 95 °C for 10 min followed by 40 cycles of a two-step amplification program (95 °C for 15 

s and 58 °C for 1 min). At the end of the amplification, melting curve analysis was applied using 

the dissociation protocol from the Sequence Detection system to exclude contamination with 

unspecific PCR products. The PCR products were also confirmed by agarose gel and showed only 

one specific band of the predicted size. For negative controls, no RT products were used as 

templates in the qPCR and verified by the absence of gel-detected bands. Relative expressions of 

target genes were determined by the 2–ΔΔCt method [34]. 

3.3.4 MULTIPLE ALIGNMENT AND MOLECULAR EVOLUTION 

 

 Sequence alignments and percentage of amino acid conservation were assessed with the 

Clustal W and MUSCLE multiple alignment algorithms [35,36] using chicken (non-mammalian) 

and mammalian autophagy-related gene (beclin1, Atg3, Atg5, Atg9a, Atg10, Atg12, Atg14, 

Atg13, Atg7, Atg4b, Atg4a, Atg16L1, UVRAG, Ambra1) sequences from database (see Table 3.1 
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for GenBank accession numbers). The phylogenetic tree based on these nucleotide sequence 

alignments was constructed using the neighbor-joining method of the MEGA6 program [37]. 

3.3.5 STATISTICAL ANALYSES 

 

 Data were analysed by two-factor ANOVA with tissue and gender (for chicken) and tissue 

and genotype (for quail) as classification variables. If ANOVA revealed significant effects, the 

means were compared by Tukey multiple range test using the Graph Pad Prism version 6.00 for 

Windows, Graph Pad Software, La Jolla California USA. Differences were considered significant 

at P<0.05. 

3.4 RESULTS 

 

3.4.1 TISSUE DISTRIBUTION OF AUTOPHAGY-RELATED GENES IN CHICKENS AND 

QUAIL 

 

 Since the role of autophagy-related genes is still unknown in avian species, we classified 

them in the following sections based on their roles in yeast and mammals. Gene complexes 

involved in autophagosome initiation (beclin1, Ambra1, UVRAG, Atg9a, Atg13 and Atg14) and 

elongation (Atg3, Atg4A, Atg4B, Atg5, Atg7, Atg10, Atg12 and Atg16L1) were ubiquitously 

expressed in chicken and quail. Only one band of the predicted size for each gene was observed in 

liver, leg and breast muscle, brain, gizzard, intestine, heart, lung, kidney, adipose tissue, ovary and 

testis (Figure 3.1a,b and Figure 3.2a,b). The sequences of the fragments were identical (100%) to 

these previously described in GenBank (for accession number, see Table 3.1 and 3.2).  

3.4.2 EXPRESSION OF AUTOPHAGOSOME INITIATION COMPLEX IN DIFFERENT 

TISSUES OF FEMALE AND MALE CHICKENS 

 

 The autophagosome initiation complex was expressed in all tissues examined in female 

and male Red Jungle fowl chickens. In female chickens, beclin 1 was highly expressed in the heart, 
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brain and leg muscle, followed by the ovary (Figure 3.3a). Ambra 1 mRNA abundance was higher 

in the ovary followed by kidney, lung, heart, brain and the liver (Figure 3.3b). UVRAG and Atg13 

genes were highly expressed in the brain and the liver (Figure 3.3c and d). Atg9a mRNA levels 

were greater in the brain followed by breast muscle, ovary and liver (Figure 3.3e). The highest 

amount of Atg14 mRNA was found in the ovary followed by the liver, brain, kidney, heart and the 

breast muscle (Figure 3.3f). In males, however, the highest levels of beclin1 mRNA were observed 

in brain and testis, followed by leg and breast muscle and liver (Figure 3.3a). The greatest 

expression of Ambra 1 and Atg13 genes was found in kidney and testis (Figure 3.3b). UVRAG 

gene was highly expressed in liver and testis followed by the brain (Figure 3.3c). Atg9a mRNA 

abundance was high in the liver, brain, leg and breast muscle followed by the testis (Figure 3.3e). 

Atg14 gene expression was high in kidney followed by testis, intestine, brain, liver and breast 

muscle (Figure 3.3f). 

Interestingly, when tissues from the two genders were plotted together, female chickens exhibited 

greater hepatic abundance of beclin 1 (3.57 fold, P<0.05), UVRAG (1.5 fold, P<0.01), Atg13 (6.25 

fold, P<0.01), and Atg9a mRNA (1.35 fold, P<0.05) compared to males (Figure 3.3a, c, d and e). 

Females also exhibited significant higher expression of the following genes: beclin1 in leg muscle 

(4.25 fold), brain (2 fold) and heart (6.24 fold, Figure 3.3a), Ambra 1in lung and heart (3.67 and 

4.72 fold respectively, Figure 3.3b), UVRAG in leg muscle, brain , and heart (4.4, 4.75, and 8.75 

fold respectively, Figure 3.3c), Atg13 in brain (3.24 fold, Figure 3.3d), Atg9a in breast muscle, 

brain and ovary (2.71, 5.42, and 1.87 fold respectively, Figure 3.3e) and Atg14 in ovary (1.94 fold, 

Figure 3.3f) compared to males. However, in male chickens, Ambra 1 and Atg14 gene expression 

was higher in kidney (1.62 and 2.76 fold respectively, P<0.01, Figure 3.3d and f) and Atg13 
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mRNA levels were higher in testis and kidney (4.4 and 14.6 fold respectively, P<0.01, Figure 3.3d) 

compared to female. 

3.4.3 EXPRESSION OF AUTOPHAGOSOME ELONGATION COMPLEX IN DIFFERENT 

TISSUES OF FEMALE AND MALE CHICKENS 

 

 As the initiation complex, the autophagosome elongation complex is ubiquitously 

expressed in both male and female chickens. In females, the highest amount of Atg3 mRNA was 

found in the ovary followed by brain and kidney. Atg4A mRNA was abundant in the liver, heart, 

brain, leg and breast muscle. Atg5 gene expression was higher in the liver, brain, gizzard, heart 

and breast muscle (Figure 3.4a, b and d). Atg4B gene was highly expressed in brain, followed by 

ovary and liver (Figure 3.4c). Atg7 and Atg12 mRNA were abundant in liver followed by ovary, 

brain, lung, kidney and leg muscle for Atg7 and ovary and brain for Atg12 (Figure 3.4e and g). 

Atg16L1 mRNA levels were high in heart followed by breast muscle, brain, liver, ovary and leg 

muscle (Figure 3.4h). In males, however, the highest amount of Atg3, Atg4B, Atg7, Atg10, Atg12 

and Atg16L1 mRNA was found in testis followed by kidney, brain and liver for Atg3, intestine, 

brain, liver and kidney for Atg4B, brain, liver and kidney for Atg7, kidney, liver, brain, intestine 

and heart for Atg10, liver, brain and kidney for Atg12, and kidney, breast muscle, intestine, brain 

and liver for Atg16L1 (Figure 3.4a, c, e, f, g and h). Atg4A and Atg5 mRNA levels were high in 

kidney and intestine followed by testis, liver, brain and breast muscle for Atg4A and testis, liver 

and brain for Atg5 (Figure 3.4b and d). Importantly, when we profile the autophagosome 

elongation complex for each tissue within the two genders, only a few genes showed gender- and 

tissue-dependent pattern. Female chickens displayed significant high expression of Atg4A in leg 

muscle, heart and ovary (4.18, 2.85 and 1.68 fold, respectively, Figure 3.4b), Atg4B in the brain 

(3.41 fold, Figure 3.4c), Atg7 in liver, brain and lung (5.88, 2.59 and 14 fold, respectively, Figure 
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3.4e), and Atg16L1 in liver, leg muscle, brain and heart (1.69, 5, 1.85 and 5.24 fold, respectively, 

Figure 3.4h) compared to males. 

 However, male chickens exhibited significant higher levels of Atg4A mRNA in kidney 

(3.12 fold, Figure 3.4b), Atg4B mRNA in intestine (13.11 fold, Figure 3.4c), Atg5 mRNA in 

kidney and intestine (3.43 and 4.61 fold, respectively, Figure 3.4d), Atg7 mRNA in testis (2.17 

fold, Figure 3.4e), Atg10 in testis and kidney (4.61 and 4.65 fold, respectively, Figure 3.4f), 

Atg12 in testis (9.25 fold, Figure 3.4g), and Atg16L1 in testis and kidney (1.52 and 5.31 fold, 

Figure 3.4h). Atg3 gene expression did not differ between male and female in every studied 

tissue (Figure 3.4a). 

3.4.4 EXPRESSION OF AUTOPHAGOSOME INITIATION COMPLEX IN DIFFERENT 

TISSUES OF S AND R QUAIL LINES 

 The autophagosome initiation complex was expressed in all tissues examined in quail. 

Beclin 1 mRNA levels were abundant in testis, heart and leg muscle of R line and in adipose tissue 

and testis of S line (Figure 3.5a). The highest amount of Ambra1 was found in lung, heart and leg 

muscle of R line and in intestine, lung, heart, kidney, and breast muscle of S line (Figure 3.5b). 

The UVRAG expression was high in lung and adipose tissue of R quail and in lung followed by 

testis, lung, heart and intestine in S line (Figure 3.5c). The highest amount of Atg13 was found in 

leg muscle and kidney of R line and in intestine followed by kidney and testis in S line (Figure 

3.5d). Atg9a gene was highly expressed in leg and breast muscle followed by intestine in R line 

and in intestine and adipose tissue in S line (Figure 3.5e). Atg14 gene expression was found to be 

high in lung, adipose tissue and intestine in both lines (Figure 3.5f). When tissues from the two 

lines were plotted together, R line exhibited significant higher mRNA abundance of beclin 1 in leg 

muscle, heart, and testis (2.76, 2.72 and 1.46 fold, respectively), Ambra 1 in lung and adipose 

tissue (1.46 and 2.37 fold, respectively), UVRAG in gizzard and adipose tissue (17.3 and 7.1 fold, 
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respectively), Atg13 in liver, leg muscle, brain, heart, lung and kidney (2.56, 46.5, 11.9, 3.4, 11.4 

and 3.2 fold, respectively), Atg9a in lung, leg and breast muscle (3.86, 8.8 and 8.3 fold, 

respectively), and Atg14 in in lung (1.77 fold) compared to S line (Fig. 5a, b, c, d, e and f). 

However, S line exhibited significant higher levels of  beclin 1 in adipose tissue (17.8 fold), Ambra 

1 in breast muscle and intestine (9 and 12.5 fold, respectively), UVRAG in intestine and heart (17 

and 1.7 fold, respectively), Atg13 in breast muscle, intestine and adipose tissue (7.5, 4.8 and 4.6 

fold, respectively), Atg9a in intestine and adipose tissue (3.4 and 4.2 fold, respectively), and Atg14 

in adipose tissue (2.6 fold) compared to R line (Figure 3.5a, b, c, d, e and f). 

3.4.5 EXPRESSION OF AUTOPAGOSOME ELONGATION COMPLEX IN DIFFERENT 

TISSUES OF R AND S QUAIL LINES   

 Atg3 gene was highly expressed in adipose tissue of both lines followed by testis, heart, 

leg muscle, gizzard and liver in R line and by testis, lung and heart in S line (Figure 3.6a). The 

highest amount of Atg4a mRNA was found in leg muscle and adipose tissue of R line and in 

intestine of S line (Figure 3.6b). Atg4b mRNA levels, however, was high in adipose tissue, leg 

muscle, brain and lung of R line and in intestine and brain of S line (Figure 3.6c). Atg5 was 

highly expressed in intestine, heart, adipose tissue and lung of R line and its expression remain 

unchanged between the examined tissues of S line (Figure 3.6d). Atg7 mRNA abundance was 

found to be high in adipose tissue, leg muscle, brain and lung of R line and in brain, adipose 

tissue and intestine of S line (Figure 3.6e). Atg10 was highly expressed in leg muscle in R line 

and in brain of S line (Figure 3.6f). The highest amount of Atg12 mRNA was found in lung of R 

line but did not differ between tissues in S line (Figure 3.6g). Atg16L1 gene expression was high 

in adipose tissue followed by leg muscle and lung in R line and in leg and breast muscle of S line 

(Figure 3.6h). Interestingly, when the two genotypes are plotted together, R line displayed 

significant high levels of Atg3 in liver, leg muscle, gizzard, heart, and testis (6.6, 7.4, 10, 2.7, 
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and 3.3 fold, respectively), Atg4a in leg muscle and adipose tissue (9.4 and 5.6 fold, 

respectively), Atg4b in leg muscle, lung and adipose tissue (13.9, 7, and 8.7 fold, respectively), 

Atg5 in intestine, heart and adipose tissue (33, 8, and 5 fold, respectively), Atg7 and Atg10 in leg 

muscle (9.7 and 12.3 fold, respectively), Atg12 in lung (77 fold), and Atg16L1 in liver, leg 

muscle, brain, lung, and adipose tissue (6.25, 3.89, 5.2, 25, and 39 fold, respectively) compared 

to S line (Figure 3.6a-h). However S line exhibited higher mRNA levels of Atg3 in intestine (4.8 

fold), Atg4a in kidney (8.4 fold), and Atg16L1 in breast muscle (2.6 fold) (Figure 3.6a-h). 

3.4.6 ALIGNMENT AND PHYLOGENETIC TREE ANALYSIS OF CHICKEN 

AUTOPHAGY-RELATED GENES WITH OTHER SOURCES 

 

 Comparison of the nucleotide sequences of autophagosome initiation and elongation-

related genes between chickens and other species showed low to high similarity (52.6%-91.5%) 

(Table 3.2). Phylogenetic analysis indicates that chicken Atg4b, Atg7, Atg9, Atg10, Atg14, 

Atg16L1, and Ambra1 are more closely related to the mouse orthologs however Atg3 and Atg4a 

are closely related to the pig orthologs, beclin1 is closely related to the horse ortholog, UVRAG is 

closely related to the rat ortholog and Atg5 is closely related to the bovine ortholog (Figure 3.7). 

3.5 DISCUSSION 

 

 Autophagy is an evolutionary conserved catabolic process regulating the degradation of a 

cell’s own components through the lysosomal machinery [38]. It plays a key homeostatic role in 

every cell type to preserve the balance between the synthesis, degradation, and subsequent 

recycling of cellular components [39]. Currently, more than thirty different autophagy-related 

genes have been identified by genetic screening in yeast, and many of these genes are conserved 

in plants, flies and mammals [40]. However, data in birds are scarce. Here, we report for the first 

time the characterization of fourteen avian genes involved in the autophagosome initiation and 
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elongation. All genes had high basal expression levels in every examined tissue from chicken and 

quail maintained under normal (low stress) physiological conditions. These data indicate that avian 

cells are also equipped with the autophagy system which may be involved in numerous vital cell 

processes including cellular homeostasis, tissue development and a defense mechanism against 

aggregated proteins, damaged organelles and infectious agents. 

 The MUSCLE alignment and the phenogram construction of nucleotide sequences of 

chicken autophagy-related genes and their mammalian orthologs show high homology and indicate 

that the evolutionary relationship is consistent with the consensus view of vertebrate evolution. 

Although the evolutionary conservation of the autophagy pathway, many of the mechanistic 

breakthroughs in delineating how autophagy is regulated and executed at the molecular level have 

been made in yeast [41]. Here, our quantitative real-time PCR analysis revealed that the expression 

of avian autophagy-related genes is tissue specific suggesting a tissue-dependent modulation 

mechanism of autophagy under physiological conditions and corroborating results from previous 

studies in rats [42] and mice [43]. This may reflect fundamental differences in the fate of the tissue 

and/or cells, the role of the autophagy-related genes and their interactions in rapidly dividing 

versus post-mitotic cells. For instance, inhibition of autophagy using Atg7 small interfering RNA 

inhibited cell death during starvation in neuronal cells, but increased cell death in fibroblasts [42]. 

Most likely there is no single autophagy pathway across all tissues, and even within the same 

tissue, multiple effectors and mediators may exist. 

 We have also demonstrated that avian autophagy-related gene expression is gender 

dependent. Although the underlying mechanism(s) for this apparent sexual dimorphic expression 

is (are) unknown, the results are not surprising because sex-dependent differences in the activation 

of the autophagic cytoprotection pathway have been reported in mammals [42,44,45]. The gender-
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associated differences in autophagy-related genes observed in our study could be a result of 

physiological, morphological, and hormonal differences between both sexes. Indeed, variations in 

androgen levels have been shown to be an important factor for the development of autophagy [44]. 

Sobolewska and co-workers showed that 17 beta-estradiol and progesterone exerted stimulatory 

effects on autophagy in bovine mammary epithelial cells [46]. Furthermore, a sexual dimorphism 

of estrogen receptor (ERα and ERβ) expression was observed in basal vascular smooth muscle 

cells (VSMC) and their regulation by oxidative stress was also found to be gender-dependent 

(alteration in female but not in male VSMC) [47]. Additionally, The downstream cascades 

mediating the cardio-protective effects of ERβ in tumor necrosis factor receptor-2 (TNFR2) 

knockout mice has been shown to be gender-dependent with activation and translocation of signal 

transducer and activator of transcription 3 (STAT3) in female and decrease of c-jun N-terminal 

kinase (JNK) in male [48]. Because STAT3 activation has been associated with autophagy 

processes [49], and JNK phosphorylates B-cell lymphoma 2 (Bcl-2) triggering its release from 

beclin 1 in response to various stimuli [50], the existence of sexual dimorphic autophagy signaling 

cascades is very likely. As autophagy is tightly linked to starvation and fatty acid metabolism [42], 

it is possible that other sex-dependent hormones known to be involved in the regulation of energy 

homeostasis and lipid metabolism such as leptin, insulin and ghrelin, may affect autophagy-related 

gene expression as previously reported in mammals [51-54]. 

 Interestingly, we also found that the expression of autophagy-related genes is tissue- and 

genotype-dependent in male Japanese quails. These quail lines were divergently selected for 

circulating corticosterone response to restraint stress [33]. The high stress or sensitive line had, in 

general, high plasma corticosterone levels, high mortality, increased bacterial colonization, high 

fearfulness, low sexual activity and high stress-induced osteoporosis compared to their low stress 
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(resistant) counterpart [33,55-58]. Although the role and the regulation of the autophagy-related 

genes are still unknown in avian species, the high expression of most studied genes in the R line 

suggest that the autophagy might be a protective mechanism in response to stress and  might be 

involved in the aforementioned behavior and physiological differences between the two quail lines. 

For instance, inhibition of autophagy has been shown to aggravate the effect of glucocorticoid on 

cell viability of chicken primary osteocytes [59] which may explain the high stress-induced 

corticosterone levels and osteoporosis in S lines. Furthermore, sperm quality has been linked to 

autophagy (LC3B) processing [60] which may support the heightened reproductive efficiency of 

male R quails which are characterized by increased testis expression of beclin1 and Atg3 genes. 

Since autophagy has been, recently, reported to be associated with the development of learning 

and memory in fear conditioning [61], the low expression of Atg13 and Atg16L1 in the brain of S 

line might be involved in their high fearfulness. Intriguingly, the expression of autophagosome 

initiation (Ambra 1, UVRAG, Atg13, Atg9a) and elongation genes (Atg3 and Atg4a), except Atg5, 

was higher in the intestine of S line compared to the R line. The biological significance of this 

differential expression is not known at this time and further studies are warranted.   

3.6 CONCLUSION 

 

 In conclusion, the characterization herein of several genes involved in autophagosome 

initiation and elongation will open new research avenues to understand the regulation and the roles 

of autophagy in avian species maintained under physiological and pathophysiological conditions. 

Further studies are warranted to identify and characterize genes involved in autophagosome 

maturation in birds. The present study also provides proof of principle evidence supporting gender- 

and genotype-dependent differences in autophagy in avian species and better insight into the 

underlying mechanisms may ultimately help to develop new management tools for poultry 
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production improvement. The quail lines may be a useful model to study stress-related disorder in 

human and develop therapeutic strategies. 
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Table 3.1 Oligonucleotide PCR primers 

a Accession number refer to Genbank (NCBI). 

 

Table 3.1 Multiple alignment of the amino acid sequences of chicken autophagy-related genes 

with their mammalian orthologs. Genbank accession number is indicated for each gene and each 

species between brackets.  
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 SPECIES 

GENE Human Mouse Rat Horse Pig Bovine 

Chicken 
Beclin 1  75.97 73.87 74.03 75.26 72.28 75.36 
(NM_001006332) (NM_003766) (NM_019584) (NM_001034117) (XM_005597370) (XM_005668792) (NM_001033627) 

Chicken 
Atg3  81.84 81.6 79.7 75.57 80.33 91.53 
(NM_001278070) (NM_001278712) (NM_026402) (NM_134394) (XM_005601995) (XM_003132682) (NM_001075364) 

Chicken 
Atg5  80.11 75.55 72.09 68.96 68.84 79.53 
(NM_001006409) (NM_004849) (NM_053069) (NM_001014250) (XM_005596852) (NM_001037152) (NM_001034579) 

Chicken 
Atg9A  71.97 71.37 66.47 74.7 80.01 73.46 
(NM_001034821) (BC_065534) (NM_001288612) (NM_001014218) (XM_001493040) (NM_001190275) (NM_001034706) 

Chicken 
Atg10  59.76 64.64 65.6 62.35 69.42 59.12 

(XM_424902) (NM_001131028) (NM_025770) (NM_001109505) (XM_005599592) (NM_001190281) (NM_001083531) 

Chicken 
Atg12  65.87 52.69 54.48 75.89 61.67 66.99 
(XM_003643073) (NM_004707) (NM_026217) (NM_001038495) (XM_003362836) (NM_001190282) (NM_001076982) 

Chicken 
Atg14  65.13 64.74 65.33 74.53 65.34 64.05 

(XM_426476) (NM_014924) (NM_172599) (NM_001107258) (XM_001914860) (XM_001924990) (NM_001192099) 

Chicken 
Atg13  65.84 67.14 75.47 69.47 61.84 63.58 
(XM_003641387) (NM_001205119) (NM_145528) (NM_001271212) (NM_001242529) (XM_003122826) (NM_001076812) 

Chicken 
Atg7  75.77 71.52 76.28 74.05 76.15 69.17 
(NM_001030592) (NM_006395) (NM_001253717) (NM_001012097) (XM_005600372) (NM_001190285) (NM_001142967) 

Chicken 
Atg4B  79.19 78.26 50.76 78 75.8 76.06 

(NM_213573) (NM_013325) (NM_174874) (NM_001025711) (XM_005610806) (NM_001190283) (NM_001001170) 

Chicken 
Atg4A  69.32 66.82 65.76 73.15 72.51 78.03 
(NM_001271986) (NM_052936) (NM_174875) (NM_001126298) (XM_005614404) (XM_005657911) (NM_001001171) 

Chicken 
Atg16L1  67.77 68.31 70.67 65.24 78.4 67.59 
(XM_003641751) (NM_030803) (NM_001205391) (NM_001108809) (XM_005610723) (NM_001190272) (NM_001191389) 

Chicken 
UVRAG  77.23 76.16 73.96 76.6 ---------- 75.73 
(NM_001030839) (AB.12958) (NM_178635) (NM_001107536) (XM_001917231)  (NM_001193026) 

Chicken 
AMBRA1  70.69 73.38 73.4 77.09 74.5 72.66 

(XM_001233288) (NM_001267782) (NM_172669) (NM_001134341) (XM_005598075) (XM_003122844) (NM_001034522) 

 

Table 3.2 Multiple alignment of the amino acid sequences of chicken autophagy-related genes 

with their mammalian orthologs. 

  

Table 3.2 

 

Table 3.2 
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Figure 3.1 Characterization of autophagosome initiation (a) and elongation-related 

genes (b) in various tissues of male and female Red Jungle Fowl (Gallus gallus) by 

RT-qPCR as described in materials and methods.  Signals were visualized by agarose 

gel electrophoresis. 

 

Figure 3.2 Characterization of autophagosome initiation (a) and elongation-related 

genes (b) in various tissues of stress-sensitive (S) and stress-resistant (R) male 

Japanese quail (Coturnix coturnix Japonica) using RT-qPCR. Signals were visualized 
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Figure 3.2 Characterization of autophagosome initiation (a) and elongation-related genes (b) in 

various tissues of stress-sensitive (S) and stress-resistant (R) male Japanese quail (Coturnix 

coturnix Japonica) using RT-qPCR. Signals were visualized by agarose gel electrophoresis. 
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Figure 3.3 

 

Figure 3.3 

Figure 3.3 Comparison of relative expression of autophagosome initiation-related genes in 

various tissues of male and female Red Jungle Fowl. Total RNA from each tissue was DNAse-

treated, reverse transcribed, and subjected to real-time quantitative PCR as described in material 

and methods. Samples were run in duplicate, and the average threshold cycle (Ct) values were 

determined for the target and houskeeping genes. Relative quantity of autophagy genes was 

determined by the 2-ΔΔCt method [58]. Data are presented as mean ± SEM (n=6 for each gender 

and each tissue). * Sex-matched differences among tissues (*P<0.05 and **P<0.01). Different 

letters indicate tissue-matched differences among gender (a-e, difference between tissues within 

female and α-δ indicate differences between male tissues). 
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Figure 3.4 Comparison of relative expression of autophagosome elongation-related genes in 

various tissues of male and female Red Jungle Fowl. Total RNA from each tissue was DNAse-

treated, reverse transcribed, and subjected to real-time quantitative PCR as described in material 

and methods. Sample were run in duplicate, and the average threshold cycle (Ct) values were 

determined for the target and houskeeping genes. Relative quantity of autophagy genes was 

determined by the 2-ΔΔCt method [58]. Data are presented as mean ± SEM (n=6 for each gender 

and each tissue). * Sex-matched differences among tissues (*P<0.05 and **P<0.01). Different 

letters indicate tissue-matched differences among gender (a-e, difference between tissues within 

female and α-δ indicate differences between male tissues). 
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Figure 3.5 

 

Figure 3.5 

Figure 3.5 Relative expression of autophagosome initiation-related genes in various tissues of R 

and S male Japonica quail lines. Total RNA from each tissue was DNAse-treated, reverse 

transcribed, and subjected to real-time quantitative PCR. Sample were run in duplicate, and the 

average threshold cycle (Ct) values were determined for the target and housekeeping genes. 

Relative quantity of autophagy genes was determined by the 2-ΔΔCt method [58]. Data are 

presented as mean ± SEM (n=6 for each line and each tissue). * Line-matched differences among 

tissues (*P<0.05). Different letters indicate tissue-matched differences among Lines (a-c, 

difference between tissues within R line and α-ε indicate differences between tissues within S 

line). 
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Figure 3.6 Comparison of relative expression of autophagosome elongation-related genes in 

various tissues of R and S male Japonica quail lines. Total RNA from each tissue was DNAse-

treated, reverse transcribed, and subjected to real-time quantitative PCR. Sample were run in 

duplicate, and the average threshold cycle (Ct) values were determined for the target and 

houskeeping genes. Relative quantity of autophagy genes was determined by the 2-ΔΔCt method 

[58]. Data are presented as mean ± SEM (n=6 for each line and each tissue). * Genotype-

matched differences among tissues (*P<0.05 and ***P<0.001). Different letters indicate tissue-

matched differences among genotype (a,b, difference between tissues within R line and α-β 

indicate differences between tissues within S line).  
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Figure 3.7 

 

Figure 3.7 

0.02 

Figure 3.7 Phylogenetic relationships among chicken autophagy-

related genes and their mammalian orthologs were inferred using 

the neighbor-joining method in MUSCLE alignment and MEGA6. 

Scale bar indicates the substitution rate per residue. Genbank 

accession numbers are included in the phenogram and in Table 3.1. 
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4.1 ABSTRACT   

 

 Whereas the process of autophagy (self-digestion) has been well characterized in yeast 

and mammals, relatively little information is known regarding the autophagy pathway in avian 

species.  Therefore, experiments were conducted to determine the effect of heat and oxidative 

stress on expression of autophagy-related genes and protein expression in quail muscle cells 

(QM7 cells) in vitro and the effect of heat stress in Japanese Quail in vivo.   To induce oxidative 

stress, QM7 cells were treated with 0, 32, and 64 M 4-hydroxy 2-nonenal (4HNE) (a stable 

secondary lipid peroxide).  After 30 min, an increase in LCB3 (define, an indication of 

autphagosome formation) was observed using immunofluorescence.  Increased expression of 

several autophagy pathway proteins (e.g. mTOR, p-mTOR, Beclin 1, Atg 3, LC3B) was also 

observed 30 min after 64 uM 4-HNE treatment in comparison to control treated cells. Next, 

autophagy expression was analyzed in QM7 cells exposed to heat stress (45 C) or control (37 C) 

conditions.  After 7 h of heat stress at 45 C followed by 1 h recovery at 37 C, HSP70, AMPKa1 

and FOXO1 expression was elevated in comparison to Control treated cells. In a second heat 

stress study in vitro, time course changes in autophagy pathway expression was monitored at 0.5. 

1, 2, and 4 h of heat stress at 45 C.  In this time course study, there was an increase in mRNA 

expression of all genes studied (AMPKa1, Beclin1, Atg3, Atg7, Atg16L1 and LC3B) at 1 h 

followed by a decline at 2 and 4 h of heat stress.  To assess the effect of heat stress in vivo, 

Japanese Quail selected for resistance (R) or susceptibility (S) to restraint stress, were exposed to 

75 min of heat stress at 42 C with control birds maintained at 25 C.   The S Japanese Quail line 

exhibited up-relation of 5 of 6 autophagy-related genes in response to heat stress whereas the R 

line exhibited an increase in expression of only 1 autophagy related gene in the liver with down-

regulation of two other genes.  The results of this study indicate that heat and oxidative stress can 
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alter the activity (expression) of the autophagy pathway in avian cells and that there may 

differences in autophagy response to heat stress in Japanese Quail selected for resistance and 

susceptibility to restraint stress.  

KeyWords: autophagy, heat stress, oxidative stress, Japanese Quail  
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4.2 INTRODUCTION 

    

Stress, whether external (e.g. temperature stress, disease, crowding) or internal (e.g. 

endogenous oxidative stress) reduces animal production efficiency. A major source of oxidative 

stress in cells is mitochondrial reactive oxygen species (ROS).  Mitochondria are responsible for 

90% of cellular energy (ATP) production and also a major site of ROS production. Low levels of 

ROS modulate translation and transcription processes and high levels can oxidize proteins, lipids 

and DNA. Heat stress has been shown to increase mitochondrial ROS production in broilers and 

layers (Mujahid et al., 2007a; Mujahid et al., 2007b; Azad et al., 2010) which could lead to 

mitochondrial autophagy (mitophagy) if radical generation becomes excessive (Levine and 

Kroemer, 2008).     

 A relatively new field in cell biology is autophagy in which cells digest damaged 

components (e.g. proteins, organelles) to maintain optimal cell viability and function (Klionsky, 

2005; Levine and Kroemer, 2008). It is a highly conserved pathway (from yeast to humans) with 

many novel findings coming from laboratories every year in many fields of study.  Figure 1 (pg. 

43) shows the characterization of several genes involved in the autophagy pathway, of which, 

many genes were characterized for the first time in avians (Chapter 3) (Piekarski et al., 2015).  

When energy sources are limiting, cells initiate autophagy to help maintain mitochondrial ATP 

production (Alers et al., 2012). Autophagy involves a network of proteins regulated by rapid and 

reversible post-translational modifications. In autophagy, damaged cytosolic components (e.g. 

proteins, cytoskeleton) and entire organelles (e.g. mitochondria) are transported to lysosomes via 

autophagosomes where hydrolytic enzymes rapidly degrade sequestered material (Chen and 

Klionsky, 2011; Cuervo and Macian, 2012).  Autophagy is critical for homeostasis, but the process 

must be tightly controlled to avoid extensive self-digestion.   A recent characterization of the 
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autophagy pathway revealed tissue- and gender-specific differences in jungle fowl (Gallus gallus) 

as well as tissue and genotype differences in quail (Coturnix coturnix japonica) (Piekarski et al., 

2015).  By maintaining optimal functionality of proteins and organelles, as well as providing an 

alternative to cell death by necrosis or apoptosis, autophagy likely has important roles at the 

organismal level ranging from generalized stress, feed efficiency, and nutrient limitation, to 

disease response and toxin insult.   

  Animal agriculture is facing substantial challenges, including a steep projected increase in 

demand and the need to adapt to changing environmental conditions. Due to a predicted increase 

in world population to 9 and 10 billion, United Nations FAO estimates that by 2050 there will be 

a 73% increase in meat and egg consumption and a 58% increase in dairy consumption over 2011 

levels; with heat wave frequency and intensity projected to rise during the next century 

(Alexandratos et al., 2006). Reducing the impact of climate change and cost of animal protein 

production is essential to achieve a sustainable, affordable, and secure animal protein supply.  To 

do so, mechanistic understanding (at molecular and cellular levels) of heat stress is necessary and 

of uppermost interest.  The current study aimed to determine the effects of heat and oxidative stress 

on the autophagy pathway in avian species using in vitro and in vivo models.   

4.3 MATERIALS AND METHODS 

 

4.3.1 ANIMALS  

 

 All animal procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of Arkansas (Fayetteville, AR 72701) protocol #13039. 

In order to assess the expression of autophagy-related genes during times of heat stress, 

two lines of male Japanese quail (Coturnix coturnix Japonica) were used. These two lines were 

established by long-term divergent selection for circulating corticosterone response to restraint 
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stress, after which the low stress line (resistant, R) had 66% low plasma corticosterone levels 

compared to their high stress (sensitive, S) counterpart (Satterlee and Johnson, 1988). Quail of 

each genetic line were reared separately in floor pens under environmentally controlled facilities 

and were allowed ad libitum access to water and food (12.6 MJ·kg−1, 22% protein).  Quail were 

heat stressed in environmental chambers (Conviron 18L) for 75 min at 42°C with control birds 

maintained at 25°C. 

Animals were humanely killed by cervical dislocation and tissues (liver, leg muscle, and 

breast muscle) were removed, immediately snap frozen in liquid nitrogen, and stored at −80°C 

until use.  For these studies we wanted to look at highly metabolically active tissue and so selected 

muscle and liver tissue to work with for heat stress studies. 

 

4.3.2 CELL LINE 

  

 Avian muscle cells (Quail Muscle Clone 7, QM7) were obtained from ATCC (Manassas, 

VA) cultured, and were maintained in 10 cm petri dishes (BD Biosciences, East Rutherford, NJ) 

M-199 media (Life Technologies, Grand Island, NY) complemented with 10% fetal bovine serum 

(Life Technologies, Grand Island, NY), 10% tryptose phosphate broth (Sigma-Aldrich, St. Louis, 

MO), and 1% penicillin-streptomycin (Biobasic, Amherst, NY) at 37°C under a humidified 

atmosphere of 5% CO2 and 95% air.  At 80-90% confluence, cells were subcultivated and 

treatment began at the 12th passage with n = 3.  Heat stress was imposed by 7h exposure to 45°C 

followed by a 1h recovery at 37°C.  Control cells were maintained at 37°C.  For time-course studies 

QM7 cells were heat stressed at 45°C, with no recovery period, for 4h with measurements taken 

at 0.5, 1, 2, 4h.  Oxidative stress was chemically induced by treating cells with 0, 32, or 64 µM 4-

HNE (4-hydroxy-2-nonenal) (Billerica, MA).  Cells were removed form plates using a cell lysis 
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buffer (Na3SO4, NaF, PMSF, Aprotinin, Leupeptin, and Pepstatin).  Cells were isolated for either 

protein or RNA and stored at -80°C.   

4.3.3 IMMUNOFLUORESENCE 

 

 Cells were grown on chamber slides (Lab-Tek, catalog #1773801) and, after 50-60% 

confluency was reached, were treated with the same concentrations of 4-HNE.  After 30 min, 

media was removed and cells were fixed for immunofluorescence using Alexafluor 488 

(Invitrogen) for LC3B detection.  Immunofluorescence was performed as previously described 

(Dridi, 2012).  Briefly, cells were grown to 50-60% confluence in chamber slides (Lab-Tek, 

Hatfield, PA) and fixed in methanol for 10 min at –20°C. Cells were blocked with protein block 

serum free blocking buffer (Dako, Carpinteria, CA) and incubated with rabbit LC3B (Cell 

Signaling, Danvers, MA) primary antibody overnight at 4°C and visualized with Alexa Fluor 488-

conjugated secondary antibody (Molecular probes, Life Technologies, grand Island, NY).  After 

DAPI counterstaining, slides were cover slipped in Vectashield (Vector Laboratories, Burlingame, 

CA). Images were obtained using the Zeiss Imager M2 with a 20X Plan-APOCHROMAT 20x/0.8 

objective and a 100X EC PLAN-NEOFLUOR 100x/1.3 oil objective. Alexa Fluor 488 fluorophore 

was observed through filter set 38 1031-346 with an excitation of BP 470/40, beam-splitter of FT 

495, and emission spectrum of BP 525/50. Differential interference contrast images were collected 

using DIC M27 condensers. The Alexa Fluor 488 fluorophore was excited for 500 ms prior to 

capturing each image using an Axio Cam MR3 camera. All analysis was performed using 

AxioVision SE64 4.9.1 SP1 software (Carl Zeiss Microscopy GmbH 2006- 

2013). 

4.3.4 QUANTITATIVE REAL-TIME PCR 
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 Quantitative real-time PCR methods were performed as previously described (Lassiter, 

2015).  Briefly, total RNA was extracted from chicken and quail tissues by Trizol reagent (catalog 

#15596018, Life Technologies) according to manufacturer’s recommendations, DNAse treated 

and reverse transcribed (catalog #95048-100, Quanta Biosciences).  The integrity and quality of 

RNA was assessed using 1% agarose gel electrophoresis and RNA concentrations and purity were 

determined for each sample by Take 3 micro volume plate using Synergy HT multi-mode 

microplate reader (BioTek, Winooski, VT). The RT products (cDNAs) were amplified by real-

time quantitative PCR (Applied Biosystems 7500 Real-Time PCR system) with Power SYBR 

green Master Mix (catalog #4312074, Life Technologies).  Oligonucleotide primers were used for 

avian autophagy-related genes determined as previously described in Table 3.1 (p. 64) of Chapter 

3. The qPCR cycling conditions were 50°C for 2 min, 95°C for 10 min followed by 40 cycles of a 

two-step amplification program (95°C for 15 s and 58°C for 1 min). At the end of the amplification, 

melting curve analysis was applied using the dissociation protocol from the Sequence Detection 

system to exclude contamination with unspecific PCR products. Relative expressions of target 

genes were determined by the 2–ΔΔCt method (Schmittgen and Livak, 2008). 

 

4.3.5 STATISTICAL ANALYSES 

 

Data were analyzed by two-factor ANOVA for quail with genotype (R vs. S) and 

environment (HS vs. TN) as classification variables. If ANOVA revealed significant effects, the 

means were compared by Tukey’s multiple range test using the Graph Pad Prism version 6.00 for 

Windows, Graph Pad Software, La Jolla California USA. Differences were considered significant 

at P<0.05. 

 

4.4 RESULTS AND DISCUSSION 
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4.4.1 4-HNE TREATMENT AFFECTS AUTOPHAGY-RELATED GENES IN QM7 CELLS 

  

Eukaryotic organisms depend on homeostatic mechanisms which ensure overall 

maintenance and cellular viability.  Autophagy plays a major role in cellular maintenance through 

sequestration and lysosomal degradation of large protein aggregates as well as damaged organelles 

that are inaccessible to smaller proteolytic systems in the cell.  Internal stress, such as oxidative 

stress, can reduce an animal’s production efficiency; with the major source of oxidative stress in 

cells presenting in the form of mitochondrial reactive oxygen species (ROS).  Mitochondria are 

responsible for 90% of cellular energy (ATP) production and also a major site of ROS production. 

Low levels of ROS modulate translation and transcription processes and high levels can oxidize 

proteins, lipids and DNA. Heat stress has been shown to increase mitochondrial ROS production 

in broilers and layers (Mujahid et al., 2007a; Mujahid et al., 2007b; Azad et al., 2010) which could 

lead to mitochondrial autophagy (mitophagy) if radical generation becomes excessive (Levine and 

Kroemer, 2008).  With mitochondrial ROS, a secondary lipid peroxide is formed (4-hydroxy 2-

nonenal, 4HNE) that can cause significant toxicity (Skulachev, 1997; Brand et al., 2004).  Through 

immunofluorescence and protein expression of autophagy genes exposed to the stable secondary 

lipid peroxide 4-HNE, we showed that the autophagy pathway is indeed active during times of 

oxidative stress (Figures 4.1 and 4.2 respectively).   

Microtubule-associated protein 1A/1B-light chain 3 (LC3) is a soluble protein that is 

distributed ubiquitously in tissues and cultured cells and an important component of autophagy 

(formation of the autophagosome) (Asanuma et al., 2003).  LC3 contains two isoforms: a cytosolic 

form of LC3 (LC3-I) is conjugated to phosphatidylethanolamine to form LC3-

phosphatidylethanolamine conjugate (LC3-II), and then is recruited to autophagosomal 

membranes. Autophagosomes then fuse with lysosomes (autolysosomes), and intra-
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autophagosomal components are degraded by lysosomal hydrolases. During this time, LC3-II in 

the autolysosomal lumen is degraded and when the autolysosome lyses, it releases the now free 

proteins and amino acids that can be used as a new energy source for the starving or stressed cell 

in need of repair. Detecting LC3 by immunoblotting or immunofluorescence has become a reliable 

method for monitoring autophagy and autophagy-related processes, including autophagic cell 

death (Tanida et al., 2008).  Observation of distinct puncta in images of the stressed QM7 cells 

validated autophagosome formation and, in turn, the confirmation of autophagy activation.  Figure 

4.1 shows increased LC3B expression in QM7 cells following exposure to 4-HNE for 2h using 

immunofluorescence. DAPI (4', 6-diamidino-2-phenylindole) strongly binds to nuclear DNA such 

that the merged image shows the presence of LC3B to be perinuclear (i.e. cytosol and 

membranous) in 4-HNE treated cells. The formation of LC3A and B isoforms in QM7 cells under 

4-HNE oxidative stress has also been demonstrated (data not shown).  This image, along with 

protein data from western blotting and data received from qPCR (Figure 4.2), indicates that 

autophagy is indeed progressing following acute oxidative stress. 

4.4.2 WESTERN BLOT ANALYSIS OF AUTOPHAGY-RELATED GENES IN 4-HNE (QM7) 

AND HEAT STRESSED (QM7; QUAIL) SAMPLES  

  

 The effect of 4-HNE induced oxidative stress on autophagy related protein expression is 

shown in Figure 4.2.  Densitometry analysis (Figure 4.2) suggests mTOR, p-mTOR, Beclin1, and 

Atg3 all were decreased in QM7 cells after a 30 min exposure to 64 µM 4-HNE (Figure 4.2).  

These results lend credence to the possibility that once mTOR has signaled downstream to initiate 

autophagy its expression decreases, the same with Beclin1 and Atg3.   

 The presence of molecular chaperone HSP70 (heat shock protein 70kDa), transcription 

factor FOXO1 (forkhead box protein O1), and p-AMPK (phospho-AMP activated protein kinase) 

were also measured through Western blot analysis.  Heat stress (7 h 45°C and 1 h 37°C recovery) 
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induced the expression of Hsp70 and p-AMPK.  In addition, FOXO1 expression (which plays a 

role in the regulation of autophagy) was also increased in response to HS.  Increased levels of p-

AMPK indicates that autophagy may be activated (Figure 4.3) in heat stressed QM7 cells and 

would be instrumental in enhancing expression of downstream target molecules of the autophagy 

pathway.  A recent article showed that the autophagy pathway is mediated through the regulatory 

role of the chaperone activity of Hsp70 (Dokladny et al., 2013). 

 Protein expression analysis was conducted on liver and leg muscle of R and S Japanese 

quail under thermoneutral (TN) and heat stress (HS) conditions.    Though the expression levels 

changed between tissues, with HSP70 significantly increased in liver and Beclin1 significantly 

increased in leg muscle, it is consistent with previous findings that autophagy is tissue specific in 

Japanese Quail (Figure 4.4) (Chapter 3).  Another explanation for this difference come from 

studies with autophagy and the heat shock protein (HSP) family.  Doklandy and colleagues have 

shown that the HSP family may regulate autophagy and, in fact, show evidence directly linking 

the HSP and autophagy systems as well as demonstrate a master regulatory role of HSP70 in 

controlling autophagy (2013). 

4.4.3 ANALYSIS OF HEAT STRESS IN QM7 CELLS  

 

Considering Hsp70 plays a key role in the protection of cells during times of heat stress, 

we decided to look also at mRNA expression levels of this gene under the same conditions (Figure 

4.5).    A significant increase can be seen in the levels of Hsp70 in heat stressed cells as compared 

to the control QM7 cells, clearly indicating signs of heat stress (Figure 4.5).   

Using a time course study (30 min, 1h, 2h, 4h) QM7 cells were heat stressed AT 45°C with 

a 1h recovery and compared to control cells kept at 37°C.  Autophagy gene expression of Beclin1, 

AMPKα1, LCB3, Atg7, 16L1, and 3 was analyzed and results show an interesting time course 
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response in all genes.  All autophagy related genes (Atg) showed an increase at 1h of heat stress 

(Figure 4.6).  This indicates that QM7 cells may utilize the autophagy pathway during times of 

heat stress up to 1h and then may reach a threshold in which the pathway shifts into apoptosis due 

to accumulation of autophagosomes.  For example, if mitochondrial depolarization and release of 

proapoptotic factors exceed the autophagic capacity, apoptosis ensues (Kundu and Thompson, 

2008).  Cells from the present study were observed under a microscope for floating, rounded, or 

cytoplasm shrinkage all of which were largely not detected allowing the assumption of very little 

cell death at the end of the experiment that was due to heat stress exposure (data not shown).  For 

further clarification, a cell viability assay, or apoptosis/necrosis markers, will need to be conducted 

in the future to determine actual number of cell death in relation to heat stress studies.  Another 

possible explanation to this pattern may be that autophagy, now activated, has removed any 

organelles damaged by heat stress and provided new energy for cellular repair, with expression 

levels for these genes having returned to baseline by the fourth hour.  The other three genes show 

a similar pattern, but with the highest expression levels seen at the 1 and 2h time points.  An 

increase in AMPK signals an activation in the autophagy pathway, which can be seen by the 

increase in all subsequent autophagy genes tested.  Beclin1 and LCB3 have been used as definitive 

biomarkers in the autophagy pathway (Meyer et al., 2013).  We show here that there is a difference 

at the 1h time point in both AMPKα1 and Beclin1 with the highest levels of LC3B expression at 

both the 1 and 2h time points.  Because LC3B is one of the last genes in the autophagy pathway, 

this may suggest that the autophagy pathway is sustained in these cells for up to 2h of heat stress 

before levels start to diminish. 

4.4.4 EFFECT OF HEAT STRESS IN VIVO  

  



 

87 

 

Previously, differences in autophagy expression was observed between male and female 

Japanese quail (Piekarski et al., 2015, Chapter 3).  The purpose of this experiment was to determine 

if differences in autophagy could be observed in R nad S quail under thermoneutral (TN) or heat 

stress (HS) conditions.  The same genes (Beclin1, AMPKα1, LCB3, Atg7, Atg16L1, and Atg3) 

were analyzed in tissue (muscle) obtained from quail either held at thermoneutral (TN) levels or 

heat stress (HS) conditions in environmental chambers.  When comparing a change under HS 

conditions between R and S quail in leg muscle, it can be seen that expression of LC3B, and 

Atg16L1 increase with HS, and are unchanged in Atg7,  Atg3, AMPKα1, and Beclin1 (Figure 4.7).  

Under thermoneutral conditions (TN), in the low stress line, there was a significant increase in 

expression of Atg7, Atg3, and Atg16L1 with no difference in expression of LC3B, and Beclin1 

and an increase in expression in the high stress line in AMPKα1 (Figure 4.7).   In liver, it can been 

seen that there was an overall increase in expression in all genes (Atg3, Atg7, and Beclin1) while 

no change was observed in AMPK, Atg16L1, and LC3B (Figure 4.8).  Also, under TN conditions, 

there is increased expression in Atg3, Atg7, and LC3B in the low stress line with no difference in 

expression of AMPKα1, Beclin1, and Atg16L1 (Figure 4.8).  A recent study has shown that heat 

stress is related to autophagy (Dokladny et al., 2013).  The expression of autophagy gene LC3B is 

indicative of autophagosome formation and many, including this group, look to its expression as 

a marker that autophagy is occurring in their experimental model.  These results show that LC3B 

expression is active in both tissues but because it did not reach significance, it could be that 

autophagy is either defective in these animals, or that it detects a cellular inefficiency and was 

finishing autophagosome formation, and thus, autophagy.  This shows there is indeed a difference 

between lines as well as that heat stress does affect the autophagy pathway and could mean that 

autophagy is activated in these animals as a compensatory mechanism, aiding in cell survival under 
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heat stress.  Immunofluorescence and protein measurements will be measured in future studies to 

help to determine if this is the cytosolic, autophagosome form of LC3B or the nuclear form before 

it is involved in autophagosome formation. 

Interestingly, the activation of LC3B, indicated by increased immunofluorescence as well 

as increased expression in the western blot analysis, was observed, showing that LC3B expression 

was high and autophagosome initiation was occurring in response to 4-HNE treatment (Figure 

4.1).  If samples were obtained at time points later than 30 min post 4-HNE treatment, one could 

expect to see LC3B eventually decrease as the autophagosome would lyse or this pathway would 

be no longer useful (with too high a level of stressor) and the cell would give into the apoptosis 

pathway.  The results shown in Figure 4.2 suggest a possible cascade-like pathway, where once an 

upstream gene sends a signal to activate the next gene in the cascade, it then decreases its signaling 

and expression levels eventually return to baseline; this then continuing to occur with sequential 

genes in the pathway.  More experiments will need to be performed to confirm this mechanism. 

Due to animal agriculture facing substantial challenges from a projected increase in 

demand for high quality animal protein and the need to adapt to higher temperatures due to climate 

change, increasing production efficiency, especially during periods of heat stress, while reducing 

the environmental impact and cost of animal protein is essential to achieving a sustainable, 

affordable, and secure animal protein supply.  At opposite ends of the homeostatic system 

spectrum are autophagy and heat shock response (Dokladny et al., 2013).  As has been stated 

before, exposure to stressors such as radiation, heavy metals, and heat, can lead to protein 

denaturation, damage of nucleic acid, and even death (Dokladny et al., 2013).  Pathways such as 

autophagy and the heat shock pathway have been developed by organisms to help them withstand 

the damage that can be come from these stressors.  In the heat shock pathway, specific proteins 
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called heat shock proteins are activated to help decrease stress-related damage.  Among these 

proteins, HSP70 offers protection against damaging factors at the macromolecular, single cell, and 

whole organism levels (Dokladny et al., 2013).  Heat shock proteins are molecular chaperones that 

assist in folding of proteins as well as translocation, degradation, and reactivation of damaged 

proteins (Hendrick and Hartl, 1993).  Due to their role in protection and degradation, the interaction 

of the heat shock and autophagy pathways became of interest to our laboratory and, specifically, 

my research.  Although both pathways represent protein management alternatives for a stressed 

cell, there is not much literature on the relationship of these two pathways; Doklandy and 

colleagues having the majority of published works in this field, with recent additions by other 

laboratories.  The laboratory of Doklandy has shown that the heat shock system is prioritized 

through its ability to interrupt activation of the autophagic response (Dokladny et al., 2013).  We 

have seen similar responses in the stress resistant line of liver of heat stressed Japanese quail where 

HSP70 levels were highly expressed and autophagy gene Beclin1 showed no difference in 

expression between the stress susceptible and resistant lines under the same heat stress conditions 

(data not shown).  Doklandy and colleagues have shown that the knockdown of HSF-1 increased 

the LC3 lipidation associated with autophagosome formation as well as the requirement for HSP70 

and HSF1 in this formation (Dokladny et al., 2015).  As was shown above, we found that during 

heat stress, QM7 cells exhibited an increase in LC3B expression at the 1h time-point.  In addition, 

we saw an increase in expression of LC3B in the high stress line of quail when exposed to heat 

stress, possibly meaning there is an upregulation of autophagosome formation to help the cell cope 

with heat stress damage.   
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4.6 CONCLUSION 

 

Reducing the impact of climate change and cost of animal protein production is essential 

to achieve a sustainable, affordable, and secure animal protein supply.  To see this reduction come 

to fruition, a better understanding of the mechanistics underlying the causative effects of heat stress 

must be determined.  Autophagy, upregulated during many different types of stress, is a pathway 

which may contribute greatly to alleviating this issue.  Additional studies will need to be performed 

to further dissect these mechanisms and whether or not they have potential for alleviating or 

preventing heat stress in animal agriculture. 
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Figure 4.1 
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Figure 4.1 Autophagosome formation through the presence of puncta 

visualization using the fluorescent marker for LC3b after 30 min of 

exposure to 64 µM 4-HNE.  White arrows show location of puncta. 
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Figure 4.2 Western blot analysis of autophagic genes in response to 4-

HNE treated QM7 cells (64 µM, 30 min).  An increase in Atg3 and 

LCB3 was observed with a decrease in p-mTOR and total mTOR 

suggesting a cascade-like signaling pathway. (n=3 on 10mm plates) 

Figure 4.2 

 

Figure 7 Western blot 

analysis of autophagic 

genes in response to 4-

HNE treated QM7 cells 

(64 µM, 30 min).Figure 

4.2 
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Figure 4.3 Western blot analysis showing heat stress (7 h 45°C and 1 h 37°C 

recovery) induced the expression of Hsp 70, p-AMPK, and protein expression in 

quail muscle (QM7) cells. (n=3 on 10mm plates) 

Figure 4.3 

 

Figure 8 
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Figure 4.4 Western Blot analyses of HSP70 and Beclin1 expression in Japanese quail leg 

muscle and liver.  Significant increases can be seen in the expression of Beclin1 in the leg 

muscle of the R line, with a significant increase in expression of HSP70 in the liver of the R 

line; S=susceptible, R=resistant.  Bars represent mean + SE of 6 observations/group.   

 

Figure 9 mRNA analysis showing heat stress (7 h 45°C and 1 h 37°C recovery) significantly induced 

the expression of Hsp 70 as compared to control in quail QM7 cells.Figure 4.4 Western Blot 

analyses of HSP70 and Beclin1 expression in Japanese Quail leg muscle and liver.  

Significant increases can be seen in the expression of Beclin1 in the leg muscle of the R 

line, with a significant increase in expression of HSP70 in the liver of the R line.  Bars 

represent mean + SE of 6 observations/group.   

Figure 4.4 
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HS 

 Figure 4.5 mRNA analysis showing heat stress (7 h 45°C and 1 h 37°C 

recovery) significantly induced the expression of Hsp70 as compared to 

control in quail QM7 cells.  Bars represent mean + SE on 3, 6mm 

plates/treatment. 

Figure 4.5 

 

Figure 4.5 



 

98 

 

  Figure 4.6 
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Figure 4.6 mRNA analysis of the effect of heat stress on autophagy pathway gene 

expression in QM7 cells.  QM7 cells were exposed to heat stress (HS) at 45°C and 

thermoneutral (TN) at 37°C conditions.  Bars represent mean + SE of 3 observations/ 

6mm plate.  Letters (A,B,C,D) represent mean and SE and denote significance. 

 

Figure 4.6 mRNA analysis of the effect of heat stress on autophagy pathway gene 

expression in QM7 cells.  QM7 cells were exposed to heat stress (HS) and 

thermoneutral (TN) conditions.  Bars represent mean + SE of 3 observations/ 6mm 

plate.  Letters (A,B,C,D) represent mean and SE and denote significance. 
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Figure 4.7 The effect of heat stress on autophagy pathway gene expression in leg muscle tissue 

of Japanese quail selected for susceptibility (high stress) or resistance (low stress) to restraint.  

Quail were exposed to heat stress (HS) or thermoneutral (TN) conditions.  Bars represent mean + 

SE of 6 observations.  Letters (A,B,C,D) represent mean and SE and denote significance. 

 

Figure 4.7 The effect of heat stress on autophagy pathway gene expression in leg muscle tissue 

of Japanese quail selected for susceptibility (high stress) or resistance (low stress) to restraint.  

Quail were exposed to heat stress (HS) or thermoneutral (TN) conditions.  Bars represent mean + 

SE of 6 observations.  Letters (A,B,C,D) represent mean and SE and denote significance. 

Figure 4.7 
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Figure 4.8 The effect of heat stress on autophagy pathway gene expression in liver tissue of 

Japanese quail selected for susceptibility (high stress) or resistance (low stress) to restraint.  

Quail were exposed to heat stress (HS) or thermoneutral (TN) conditions. Bars represent mean + 

SE of 6 observations/group.  Letters (A,B,C,D) represent mean and SE and denote significance. 

Figure 4.8 
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5.1 ABSTRACT 

  

 Feed efficiency (FE) is a very important genetic trait in poultry and livestock that can be 

negatively impacted by stress of any kind.  Autophagy expression of several genes (AMPKα1, 

mTOR, Atg16L1, and Atg7) were upregulated in breast muscle of broilers exhibiting a high FE 

phenotype compared to broilers exhibiting a low FE phenotype.  This suggests that part of the 

cellular basis of FE may hinge on the ability of the cell to maintain optimal functionality by a 

more active endogenous repair system offered by the autophagy pathway.  Furthermore, using 

two experimental Japanese quail lines selected for low feed efficiency (LFE) or high feed 

efficiency (HFE) it was found that the expression of several autophagy-related genes were 

increased in the low efficient line of 30 wk old quail with expression in the HFE group showing 

significant increases in only two genes (mTOR and Atg3).  This suggests that there may be a 

difference in the pathway between poultry species as well as a possible age effect (autophagy is 

known to have a decrease in activity as an organism ages).  This increase in mTOR would 

essentially block the autophagy pathway which is seen by the decrease in expression of all 

subsequent autophagy genes.  Since autophagy has been shown to play a key role in stress (such 

as starvation), as well as fat metabolism, the differential expression of autophagy-related genes 

between the lines indicated that these birds, as well as future studies with stress resistant and 

susceptible quail, would be a very useful model to study the differences between LFE and HFE 

animals giving us greater insight into autophagy and feed efficiency.   

 

 

 

Keywords: Autophagy, feed efficiency, broiler, quail, low feed efficiency, high efficiency, 

parent, second generation 
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5.2 INTRODUCTION 

 

Autophagy has been shown to play an important role in elimination of damaged proteins 

and organelles from cells.  Recently, Rolf and colleagues reported that autophagy may play a 

role in feed efficiency (determined by residual feed intake- RFI) in Angus cattle (Rolf et al., 

2012).  In another model, Morck and colleague indicated that the long-term starvation seen in C. 

elegans mutants that are “feeding-defective,” activates autophagy, and leads to depletion of fat 

deposits, small cell size, and small body size (Morck et al., 2006).  These experiments as well as 

others dealing with starvation, show that the autophagy pathway is involved in how these 

organisms cope with a certain feeding regime.  The question to which this experiment hopes to 

address is: to what degree does autophagy affect the high or low feed efficiency trait, and could 

this be a potential aid in helping to solve the feed efficiency problem in the poultry industry.  

Previous studies have also been conducted at the cellular level in regards to the 

mechanistics of feed efficiency.  One of these studies aimed to determine the relationship 

between feed efficiency and mitochondrial function and biochemistry (Bottje et al., 2002).  Due 

to the fact that mitochondria are the “powerhouse” of the cell, and 90% of the energy for the cell 

is produced them, it was proposed that some variations seen in broiler growth performance as 

well as phenotypic expression of feed efficiency (Emmerson, 1997) may be due to or related to 

mitochondrial function (Bottje et al., 2002).  This group studied mitochondrial function, 

respiratory chain activity, and electron leak and found that they are all linked to feed efficiency 

in broiler breeder males that have either the high or low feed efficient trait (Bottje et al., 2002).  

Members of the same group published another study to assess proton leak kinetics (proton 

conductance) in breast muscle mitochondria from broiler breeder with the same high or low feed 

efficient trait (Bottje, et al., 2009).  Proton motive force that develops from proton pumping 
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across the inner mitochondrial membrane is used to drive ATP synthesis in the electron transport 

chain during oxidative phosphorylation. It is also possible that these protons may flow back into 

the mitochondria and effectively short circuit the coupling of ATP synthesis in a process called 

proton leak (Brand, 1995).  It has been show that this leak represents up to 30% of oxygen 

consumption in isolated liver cells and up to 50% of oxygen use in perfused muscle (Brand, 

1990; Rolfe and Brand, 1996), therefore, proton leak could contribute as much as 25% of total 

basal metabolic rate of an animal (Rolfe and Brand, 1996, 1997; Rolfe et al., 1999). Because of 

this, the previously mentioned group hypothesized that proton leak could be involved in the 

phenotypic expression of FE in animals (Bottje et al., 2009).  This study showed that subtle 

differences existed in proton leak kinetics in mitochondria from broilers exhibiting the high or 

low feed efficient trait (Bottje et al., 2009).  They showed a lower activity of respiratory 

complexes in the low FE broiler which they believe as possibly from an increase in protein 

oxidation (Bottje et al., 2008).  A higher ROS may mean more damage to cells which would lead 

to an increase in the autophagy pathway, specifically mitophagy, to clear out these damaged and 

dysfunctional mitochondria to try and save the cell from further damage.  With studies such as 

these, it was suggested to view autophagy as another possible underlying factor in this trait and 

to determine whether or not it is beneficial to commercial animals. 

An animal that produces either greater body mass with the same feed intake or the same 

body mass with less feed intake would be considered more efficient than its contemporaries.  

That having been said, birds that are considered to have better feed efficiency typically have a 

lower proportion of feed intake to body mass. Using this definition, one can determine the 

relative efficiency of several species of agriculturally important animals including poultry.  

Willems and colleagues have stated that generally accepted feed costs represent about 70% of the 



 

105 

 

cost of poultry production making a bird's ability to use feed efficiently very important (Willems 

et al., 2013).  Changing methods in lighting, temperature, and nutrition with birds have all been 

ways the industry has tried to manage feed efficiency in meat producing poultry.  Perhaps the 

most recent area, as well as the one most likely to produce a lasting effect on the industry, is 

genetic selection for feed efficiency.  Originally bred for body weight gain, significantly larger 

birds were produced but, as feed costs began to increase, it became clear that, in order to be 

profitable, selection needed to include other traits (Willems et al., 2013).  While there are a 

multitude of ways for measuring feed efficiency, the two most often used are feed conversion 

ratio (FCR) and residual feed intake (RFI). 

 FCR can be defined as the amount of feed consumed per unit of weight gain, and is a 

composite trait of starting and ending body weight and feed intake (Skinner-Noble and Teeter, 

2003).  RFI, on the other hand, is defined as the difference between actual and predicted feed 

intake based on the regression of requirements for production and body weight maintenance 

(Van Der Werf, 2004).  Although these two methods are by far the most widely used and 

understood, there are alternative methods for measuring feed efficiency.  Some alternatives 

include: residual maintenance energy (RMEm) that, unlike RFI or FCR, aims to measure 

energetic efficiency without being compounded by feed intake.  Although each has its own 

advantages and disadvantages, usage of FCR, which can be used on a large scale, and RFI, which 

tends to be used on a smaller scale, are common, making these the top two choices for measuring 

feed efficiency that are widely accepted.  RMEm is also becoming more favorable as it avoids 

confounding environmental effects and allows measurement standardization (Romero et al., 

2011).   
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 The cost of feed represents about 70% of the cost of production broilers, but feed 

utilization efficiency has not kept up with the growth rate of broilers (Aggrey et al., 2010).  Due 

to biofuel policies and a growing global demand for animal protein, feed, fuel, and fertilizer costs 

have been on a steady rise leading to intensified focus on the development of selection strategies 

for the improvement of FE in poultry and livestock production (Steinfeld et al., 2006).  These 

increases in feed cost have driven an increase in live production costs which, in turn, decreases 

profitability for the industry.  To alleviate this problem and make the industry more profitable, 

FCR has been implemented to make these improvements possible.  As stated earlier, feed intake 

is a heritable trait and, as Pym and colleagues demonstrated over a decade ago, genetic studies 

for FCR show that it could be improved by selection on growth (Pym et al., 1990).  Studies such 

as this were performed because efficiency deteriorates overtime because the broiler has an ever-

increasing body mass to maintain (Leeson, 2009).  Genetic potential drove much of the change in 

feed efficiency values from 2.2 to 1.75 today, but due to changes in the industry, (range of bird 

weights, males and females grown separately) there is a range of dietary specifications and 

feeding programs and because of this, the poultry meat business is questioning the usefulness of 

classical feed efficiency (Leeson, 2009).  The trend now is to consider energy efficiency rather 

than feed efficiency and because many are searching for new and improved ways of developing 

feed efficient/energy efficient animals by studying genes and pathways that may be of 

importance to this trait.  RMEm, defined as the residual of estimated maintenance requirement as 

a function of energy intake, is another way of looking at efficiency in production birds.  In the 

search for a more efficient bird, the RMEm methodology has been evaluated and applied to 

multiple studies as a refinement to the traditional measure of FCR (Romero et al., 2011).  It is 

possible that selection for specific components of energy efficiency, such as utilizing mechanism 
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of the autophagy pathway, may have a positive effect on the productivity of broilers and broiler 

breeders (Romero et al., 2011).  Feed efficiency is very important to the industry in these 

animals, using poultry as a model, we studied common genes involved in autophagy and 

compared how this pathway may be involved in birds that are selected for either high feed 

efficiency (HFE) or low feed efficiency (LFE).   

 Based on these earlier studies, we hypothesize that autophagy will be up-regulated in the 

LFE animals.  To study this hypothesis we used muscle from: 

 a. Low and high feed efficient Broilers (LFE, HFE, respectively) 

 b. Low and high feed efficient Japanese Quail (LFE, HFE, respectively) 

5.3 MATERIALS AND METHODS 

 

5.3.1 INITITAL STUDIES 

 

Japanese quail selected for susceptibility or resistance to restraint stress (Satterlee et al., 

1988) were used to characterize autophagy genes in 11 tissues under thermoneutral conditions 

(Chapter 3). 

5.3.2 FEED EFFICIENCY STUDIES  

 

Three separate experiments were performed using twelve broilers within a single male 

line selected for either high feed efficiency (6 birds) or low feed efficiency (6 birds) 

characteristics; twelve male Japanese quail (Coturnix coturnix Japonica) selected for high or low 

feed efficiency (6 HFE, 6 LFE) from the parent line and; twelve (6 HFE, 6 LFE) from the second 

generation.  Birds were used to compare autophagy in feed efficiency.  Breast muscle tissue from 
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the broilers and Japanese quail parent line (30 wks) and second generation (6 wks) were 

collected.  For all studies, tissues were flash frozen and stored at -80°C. 

Feed efficiency, gain, and feed intake were calculated for broilers and Japanese quail and 

are shown in Tables 5.1 and 5.2, respectively.  

5.3.3 QUANTITATIVE REAL-TIME PCR 

 

Real-Time qPCR data was derived from Lassiter, 2015. Briefly, total RNA was extracted 

from chicken and quail tissues by Trizol reagent (catalog #15596018, Life Technologies) 

according to manufacturer’s recommendations, DNAse treated and reverse transcribed (catalog 

#95048-100, Quanta Biosciences). RNA integrity and quality was assessed using 1% agarose gel 

electrophoresis and RNA concentrations and purity were determined for each sample by Take 3 

micro volume plate using Synergy HT multi-mode microplate reader (BioTek, Winooski, VT). 

The RT products (cDNAs) were amplified by real-time quantitative PCR (Applied Biosystems 

7500 Real-Time PCR system) with Power SYBR green Master Mix (catalog #4312074, Life 

Technologies).  Oligonucleotide primers were used for avian autophagy-related genes determined 

as previously described in Table 3.1 of Chapter 3. The qPCR cycling conditions were 50°C for 2 

min, 95°C for 10 min followed by 40 cycles of a two-step amplification program (95°C for 15 s 

and 58°C for 1 min). At the end of the amplification, melting curve analysis was applied using the 

dissociation protocol from the Sequence Detection system to exclude contamination with 

unspecific PCR products. Relative expressions of target genes were determined by the 2–ΔΔCt 

method (Schmittgen and Livak, 2008). 

5.3.4 STATISTICAL ANALYSES 

 

Data were analyzed by one-factor ANOVA with genotype as classification variable and 

Student’s T-test was ran as a comparison. If ANOVA revealed significant effects, the means were 
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compared by Tukey’s multiple range test using the Graph Pad Prism version 6.00 for Windows, 

Graph Pad Software, La Jolla California USA. Differences were considered significant at P<0.05. 

5.4 RESULTS AND DISCUSSION 

 

5.4.1 GENE EXPRESSION IN LOW AND HIGH FEED EFFICIENT BROILER BIRDS 

 

The body weight gain, feed intake and feed efficiency data for broilers in Exp. 1 is shown 

in Table 5.1.  The high FE phenotype broilers exhibited greater weight gain on the same amount 

of feed as the low FE phenotype broiler, resulting in higher efficiency.  In experiment 2, 6 wk old 

(second generation of selection) high FE Japanese Quail also exhibited greater body weight gain 

on the same amount of feed compared to the low FE phenotype quail (Table 5.2).   However, first 

generation 30 wk old high FE quail males exhibited greater gain as well as lower feed intake (FI) 

compared to the low FE phenotype (Table 5.3).    

In experiment 1, broilers selected for the LFE or HFE trait were used.  Gene expression 

was measured on six autophagy related genes (Atg3, Atg16L1, Atg7, mTOR, AMPKα1, and 

Beclin1). Results show that there was increased expression of Atg16L1, Atg7, AMPKα1, and 

mTOR in the HFE compared to LFE broilers birds (Figure 5.1).  Usually an increase in mTOR 

would shut down the autophagy pathway by signaling that the cell has had its energy demands met 

and that processes such as cell synthesis and maturations can proceed.  Due to the fact that mRNA 

is being measured here, it is not clear what may be happening post-translationally.  It is not 

uncommon to see expression of both mTOR and autophagy genes in mRNA, as well as with 

protein.  In this experiment, we see that two genes (Atg7, Atg16L1) significantly expressed are 

genes towards the end of the autophagy pathway.  This could mean that autophagy signaling travels 

a cascade-type route in which these latter signals may still be spiked, finishing an earlier signal.  

The autophagy pathway may also be mTOR independent, meaning that if AMPKα1 levels are 
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increased then Beclin1 levels would be as well to start the signaling cascade.  Lastly, many of the 

genes involved in the autophagy pathway are parts of complexes.  Atg7 and Atg16L1 happen to 

be two of these genes, the former involved as an E1-like enzyme initiating complexes to form and 

the latter is part of a complex where it is an integral gene that, if not present, can halt the autophagy 

pathway from continuing further.  In figure 5.1, one can see the significance of expression in the 

HFE line where the chart shows the fold difference of LFE for all genes measured.     

5.4.2 GENE EXPRESSION IN LOW AND HIGH FEED EFFICIENT JAPANESE QUAIL 

 

Experiment 2 was conducted in breast muscle tissue of male Japanese quail phenotyped 

for high and low FE. The parent line was sampled and seven genes (AMPKα1, Beclin1, LC3B, 

mTOR, Atg3, Atg16L1, and Atg7) important in the autophagy pathway were selected for 

expression analysis.  When AMPKα1 is decreased, mTOR is active, leaving it free for cell 

synthesis and other energy consuming processes, and the autophagy pathway is inhibited (Chapter 

5).  This seems to be the case with the parent line where all other autophagy genes, with the 

exception of Atg3, having a decreased expression in the HFE line (Figure 5.3).  Though rare, the 

autophagy pathway can still be active with an increase in mTOR, especially when looking at 

mRNA levels.  It has been seen that Beclin1 mRNA expression significantly increases with age in 

murine muscle models (Wohlgemuth et al., 2010).  In this older line of quail, there is no significant 

difference in Beclin1 expression, although it is expressed higher in the LFE group than the HFE 

group.  It is possible that this means the LFE group has a more active autophagy mechanism, 

possibly due to compensation for not being able to efficiently convert feed into usable energy as 

well as their HFE counterparts or that there is a possible defect in the autophagy pathway of these 

animals.  There has also been evidence of an increase in autophagy protein expression in HFE 

versus LFE in a global protein expression experiment (unpublished observations).  
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Experiment 3 was conducted in breast muscle of second generation (6 wks) quail 

phenotyped for high and low feed efficiency.  Results in the second generation show very little 

differences between expression of autophagic genes.  Not much change can be seen with most 

autophagy genes in the second generation, showing that autophagy is active at this point (Figures 

5.3 and 5.2).   

Looking at the expression of Atg7 shows no change in the second generation between HFE 

and LFE, but a change could be seen in the parent line (Figure 6.1).  A previous study showed that 

Atg7 mRNA expression did not change with age in rat muscle but expression was significantly 

elevated in old calorie restricted rats compared to old ab libitum fed rats (Wohlgemuth et al., 2010).  

LC3B expression, essential for expansion of the early autophagosome, showed an increase in 

expression in LFE in the second generation although the difference did not reach significance 

(Figure 6.1).  This is similar to earlier results in rats that showed no change in mRNA levels in 

muscle of old rats compared to young rats, with a tendency to be lower in the older rats similar to 

what is seen in our parent line (Wohlgemuth et al., 2010).  It seems as though gene expression for 

the upstream regulators are similar to what one would expect in normal autophagy.  The second 

generation birds have no significant difference in the amount of AMPKα1 mRNA expression but 

the relation can be seen by looking at mTOR (Figure 6.1).  The expression of mTOR shows a 

decrease in the HFE line of the second generation where the AMPKα1 is increased.  This is an 

indicator that the autophagy pathway is activated and that the HFE line of the second generation 

is able to utilize the autophagy pathway efficiently.  Although upstream regulators were 

upregulated or unchanged, the mRNA expression of LC3B that regulates this pathway downstream 

seemed to decrease.   
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It seems as though gene expression for the upstream regulator, Beclin1, is similar to what 

we would expect in normal autophagy.  Although Beclin1 expression was unchanged, the mRNA 

expression of LC3B that regulate this pathway downstream also did not change (Figure 5.2).  This 

could suggest a possibility that this pathway runs in a cascade-like fashion and these genes, at the 

time tissues were collected, had not yet received an upstream signal to be activated.  It could also 

point to a possible impairment of autophagic degradation.  Further studies, including protein 

measurement and testing other downstream regulatory proteins such as the receptor for chaperone-

mediated autophagy LAMP-2 (Lysosome-associated membrane protein 2) must be performed to 

further define the current data. 

Feed efficiency has been a major criterion in defining broiler performance influencing 

everything from diet energy level to health management (Leeson, 2009).  Broilers use feed for two 

reasons: growth and maintenance with young birds using more for growth than maintenance 

having a high efficiency which dwindles over-time due to their ever-increasing body mass 

(Leeson, 2009).  Interest in feed efficiency has always been of concern but in recent years, with a 

growing world population and increased cost of feed product, much emphasis has been placed on 

better understanding its underlying mechanisms and how to continue to improve feed efficiency 

numbers.  Although feed efficiency has been improved over the years firstly, through changes in 

management (optimizing temperatures, lighting, and bird densities) and secondly, research such 

as nutrition and genetic selection for feed efficiency, there are still more avenues through which 

to explore improvement.  Nutrition has been at the forefront for a long time, however genetics may 

be the next front runner in this line of research and autophagy in particular may have a larger role 

than most may have thought. 
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Data from this experiment shows that the autophagy pathway is expressed in high and low 

feed efficient broilers and quail.  The broilers exhibited a significant increase in expression in 

nearly all genes of the HFE line.  This could explain why these animals are more efficient at 

converting feed into usable energy than their LFE counterparts.  The autophagy pathway is 

involved in the clearance of damaged cytosolic components, in turn making the cell better able to 

cope during times of stress while providing elements from the lysate of these dissolved 

components to aid in providing the cell with energy.  The quail line showed expression of this 

pathway, but showed instead the activation of mTOR.  Once activated, mTOR can inhibit the 

autophagy pathway, as shown in Figure 5.2, by the decrease in expression of autophagic genes.  

This may have happened in these birds because the autophagy pathway may have already been 

activated and performed its function of removing damaged cellular material.  It should be noted 

that one can come to this conclusion because LC3B levels are slightly increased, though did not 

reach significance, in the HFE line (Figure 5.2).  This means that autophagy was activated and 

autophagosomes formed.  What is shown here may be the cells energy levels restored and the 

stressor “eliminated” enough that the cells can inhibit the autophagy pathway and activate the 

mTOR pathway which, in turn, activates energy-consuming processes such as cell synthesis and 

growth.  The second generation showed that autophagy gene expression is activated in most genes 

studied, but no delineation could be made as to what “step” the pathway was performing in the 

breast muscle of these animals. 

Autophagy is one of several different intracellular proteolytic systems that contributes to 

protein degradation.  Because it is part of the lysosomal system, autophagy plays a role in 

conditions that require extensive cellular remolding such as cell differentiation, embryogenesis, 

and complete cellular destruction that occurs in some forms of cell death (Shintani et al., 2004; 
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Massey et al., 2006; Cuervo, 2004).  It has been shown that feed restriction on chickens reduces 

incidence of sudden death syndrome (SDS) in poultry, and can attenuate the age-related 

impairment of autophagy, which is a possible mechanism by which it attenuates age-related 

cellular damage and death (Bowes et al., 1988; Wohlgemuth et al., 2010).  The role of autophagy 

and feed efficiency, can be appreciated by its tight linked to feeding as some of the first studies 

identifying the pathway were performed in starvation models.  Identifying how feed restriction 

acts in parallel to high and low efficient birds involving the autophagy pathway may be an 

important step in delineating some mechanistic features of this pathway and how, through 

understanding gene expression, it can aid in improving feed efficiency.  

5.6 CONCLUSION 

 

In conclusion, FE is a topic of uppermost importance in all aspects of animal production.  

The poultry industry has come a long way since the inception of the broiler and broiler breeder 

with many still searching for ways to improve upon these models.  With a growing demand for 

high quality animal protein coupled with the cost of feed for poultry production, making a bird's 

ability to use feed efficiently has become a topic of interest the world over.  The results found in 

this study aim to shed light on one of many pathways, and factors affecting this pathway, that may 

be involved in whether or not a bird is efficient.   

 The autophagy pathway is indeed activated in both generations of Japanese quail as well 

as the broilers studied.  While the original objective in quail was to determine whether or not 

autophagy played a role in generational effects of feed efficiency, it became clear that too many 

factors could have had a role in the data received so all experiments were evaluated individually.  

However, this has now opened a new investigation into a possible age effect autophagy has on 

these lines as well as possible effects that different diets have on these animals.  Future studies will 
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be aimed at delineating at what age the autophagy pathway is most efficient in these birds.  Other 

studies will include observing differences in the pathway due to different feed (beginner, grower, 

and finisher) as well as continuing to look at a possible generational effect, comparing birds of the 

same age with the same diet over multiple age groups to determine if there is an optimal age and 

diet associated with an increase or decrease in autophagy activation. 

More data needs to be collected to identify underlying mechanisms which play a potentially 

larger role in this trait.  With further research, autophagy may yet become a key factor in 

determining and producing efficiency in production animals.    
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  Table 5.1 

 

Table 5.1 

Table 5.1 Feed efficiency, feed intake, and gain data for high and low FE male broilers.  Feed 

efficiency was measured as feed intake/weight gain (g/2wks). Mean + SE of 6 observations and 

(*) represents P<0.05. 

  

Table 5.3 

 

Table 1 

Feed 

efficiency, 

feed intake, 

and gain 

data for 

high and 

low FE male 

broilers.Ta

ble 5.2 

Table 5.3 Feed efficiency, feed intake, and gain data for high and low FE male Japanese quail.  

Feed efficiency was measured as feed intake/weight gain (g/2wks). Mean + SE of 6 observations 

and (*) represents P<0.05 

* * 

* * * 

Table 5.2 Feed efficiency, feed intake, and gain data for high and low FE male Japanese quail.  

Feed efficiency was measured as feed intake/weight gain (g/2wks). Mean + SE of 6 observations 

and (*) represents P<0.05 

Table 5.2 

 

Table 5.1 

* * 

* 

* 



 

119 

 

 

  Figure 5.1 

 

Figure 5.2 

Figure 5.1 Expression of autophagic genes as a fold difference of FE in broiler line, including 

AMPKα1 (AMP activated protein kinase α1), mTOR (mechanistic target of rapamycin), Beclin1 

(Bcl-2 interacting protein), Atg16L1, Atg7, and Atg3.  Bars represent mean + SE (n=6) and (*) 

represents P<0.05 

 

Figure 5.2 Expression of autophagic genes as a fold difference of FE in broiler line.  All genes 

show increase in expression in high feed efficiency line with some reaching significance.  Bars 

represent mean + SE (n=6) and (*) represents P<0.05 
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Figure 5.2 H-N: Autophagy gene expression in second generation Japanese quail.  Data shows a 

significant increase mTOR of the LFE line with increases in Beclin1, Atg16L1, and LC3B 

although these did not reach significance (H-N).  Bars represent mean + SE (n=6) and (*) 

represents P<0.05. 
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Figure 5.3 

 

Figure 5.3 

Figure 5.3 Expression of autophagic genes in Japanese quail line exhibiting HFE or LFE 

phenotypes.  Values are shown as a fold difference of high compared to low FE.  Bars represent 

mean + SE (n=6) and (*) represents P<0.05. 
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CHAPTER 6:  

Generational Effect of autophagy on Parent and Second Generation Feed Efficient Quail 

Alissa Piekarski, K. Lassiter, E. Greene, B.W. Kong, S. Dridi, and W. Bottje 
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6.1 ABSTRACT 

 

The primary objective of this study was to observe differences in autophagic genes, if any, 

between a high and low feed efficient (HFE, LFE, respectively) quail parent line and its second 

generation.  Using twelve Japanese quail (Coturnix coturnix Japonica), mRNA of autophagy gene 

expression was measured.  Data revealed a significant increase in autophagy genes of the parent 

line in Atg3, and mTOR with decreases in all other genes within the HFE group.  The second 

generation yielded interesting results showing a significant increase in mTOR of the LFE line with 

increases in Beclin1, Atg16L1, and LC3B although these did not reach significance.  In conclusion, 

there may be an age effect happening between these lines as well as a difference in feed that may 

have affected the outcome of this study.  Further research will need to be performed in order to 

remove these underlying factors. 
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6.2 INTRODUCTION 

  

The cost of feed represents about 70% of the cost of production broilers, but feed 

utilization efficiency has not kept up with the growth rate of broilers (Aggrey et al., 2010).  Due 

to biofuel policies and a growing global demand for animal protein, feed, fuel, and fertilizer costs 

have been on a steady rise leading to intensified focus on the development of selection strategies 

for the improvement of FE in poultry and livestock production (Steinfeld et al., 2006). With 

autophagy playing an important role in cell survival and turning damaged organelles and cellular 

components into usable energy, it is clear why it would be studied for its use in energy 

efficiency.  This highly conserved cellular mechanism is responsible for the degradation and 

recycling of damaged organelles, and has been shown to play critical roles during overall 

development of the organism as well as degradation.  Using feeding-type studies performed in 

cattle (Rolf et al., 2012) and Caenorhabditis elegans (Mörck et al., 2006), focus was placed on 

how this pathway may contribute to the feed efficiency trait between generational lines of HFE 

and LFE Japanese quail.  In addition, previous studies from this laboratory have showed a lower 

activity of respiratory complexes in the low FE broiler which is believed to be from a possible 

increase in protein oxidation (Bottje et al., 2009).  A higher ROS may mean more cellular 

damage which could lead to an increase in the autophagy pathway, specifically mitophagy, to 

clear out damaged and cells and try to save the cell from further damage.  After observing the 

results from this study, it was decided to research autophagy as another possible underlying 

factor in the feed efficient trait and to determine whether or not there is a generational effect. 

In addition, it has been noted in invertebrates and higher organisms that a decline in 

autophagy occurs with age as well showing a decrease in chaperone-mediated autophagy 

(Wohlgemuth et al., 2010).  It has been shown that levels of LAMP2a were significantly lower in 
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lysosomes from old rats and later delineated that it is the number of binding sites that declined 

with age, but binding affinity was not altered (Cuervo, et al., 2000).  Looking at these factors 

could be essential to understanding how to create a more feed efficient/energy efficient bird, 

satisfying the growing demand for food while simultaneously decreasing costs for industry. 

6.3 OBJECTIVE 

 

Therefore the objective of this study was to determine whether or not autophagy has a 

generational effect on the parent and second generation HFE and LFE Japanese quail lines.  

6.4 MATERIALS AND METHODS 

6.4.1 ANIMALS 

 

Twelve male Japanese quail (Coturnix coturnix Japonica) selected for high or low feed 

efficiency (6 HFE, 6 LFE) were used to compare autophagy in feed efficiency. A parent line 

(30wks of age) was compared against the second generation (6wks of age).  Breast muscle tissue 

from the Japanese quail parent and second generation lines were collected.  For all studies, 

tissues were flash frozen and stored at -80°C. 

Feed efficiency, gain, and feed intake were calculated for and Japanese quail and are 

shown in Tables 5.2 and 6.1 for the parent and second generation, respectively.  

6.4.2 QUANTITATIVE REAL-TIME PCR 

 

Real-Time qPCR data was performed as previously described (Lassiter, 2015). Briefly, 

total RNA was extracted from chicken and quail tissues by Trizol reagent (catalog #15596018, 

Life Technologies) according to manufacturer’s recommendations, DNAse treated and reverse 

transcribed (catalog #95048-100, Quanta Biosciences). RNA integrity and quality was assessed 

using 1% agarose gel electrophoresis and RNA concentrations and purity were determined for 
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each sample by Take 3 micro volume plate using Synergy HT multi-mode microplate reader 

(BioTek, Winooski, VT). The RT products (cDNAs) were amplified by real-time quantitative PCR 

(Applied Biosystems 7500 Real-Time PCR system) with Power SYBR green Master Mix (catalog 

#4312074, Life Technologies).  Oligonucleotide primers were used for avian autophagy-related 

genes determined as previously described in Table 3.1 of Chapter 3. The qPCR cycling conditions 

were 50°C for 2 min, 95°C for 10 min followed by 40 cycles of a two-step amplification program 

(95°C for 15 s and 58°C for 1 min). At the end of the amplification, melting curve analysis was 

applied using the dissociation protocol from the Sequence Detection system to exclude 

contamination with unspecific PCR products. Relative expressions of target genes were 

determined by the 2–ΔΔCt method (Schmittgen and Livak, 2008). 

6.4.3 STATISTICAL ANALYSES 

  

 Data were analyzed by two-factor ANOVA with genotype as classification variables. If 

ANOVA revealed significant effects, the means were compared by Tukey’s multiple range test 

using the Graph Pad Prism version 6.00 for Windows, Graph Pad Software, La Jolla California 

USA. Differences were considered significant at P<0.05. 

6.5 RESULTS 

 

This experiment was conducted in male Japanese quail phenotyped for high and low FE 

(Table 6.1).  The parent line, and second generation were sampled and seven genes (AMPKα1, 

Beclin1, LC3B, mTOR, Atg3, Atg16L1, and Atg7) important in the autophagy pathway were 

selected for expression analysis.  Results showed a decrease in AMPKα1 expression of HFE in the 

as well as a significant increase in mTOR and Atg3.  When AMPKα1 is decreased, mTOR is 

active, leaving it free for cell synthesis and other energy consuming processes, and the autophagy 

pathway is inhibited (Chapter 5).  This seems to be the case with the parent line where all other 
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autophagy genes, with the exception of Atg3, having a decreased expression in the HFE line 

(Figures 5.3 and 5.4).  Though rare, the autophagy pathway can still be active with an increase in 

mTOR, especially when looking at mRNA levels.  It has been seen that Beclin1 mRNA expression 

significantly increases with age in murine muscle models (Wohlgemuth et al., 2010).  In this older 

line of quail, there is no significant difference in Beclin1 expression, although it is expressed higher 

in the LFE group than the HFE group.  It is possible that this means the LFE group has a more 

active autophagy mechanism, possibly due to compensation for not being able to efficiently 

convert feed into usable energy as well as their HFE counterparts.   

Looking at the expression of Atg7 shows no change in the second generation between HFE 

and LFE, but a change could be seen in the parent line (Figure 6.1).  A previous study showed that 

Atg7 mRNA expression did not change with age in rat muscle but expression was significantly 

elevated in old calorie restricted rats compared to old ab libitum fed rats (Wohlgemuth et al., 2010).  

LC3B expression, essential for expansion of the early autophagosome, showed an increase in 

expression in LFE in the second generation although the difference did not reach significance 

(Figure 6.1).  This is similar to earlier results in rats that showed no change in mRNA levels in 

muscle of old rats compared to young rats, with a tendency to be lower in the older rats similar to 

what is seen in our parent line (Wohlgemuth et al., 2010).  It seems as though gene expression for 

the upstream regulators are similar to what one would expect in normal autophagy.  The second 

generation birds have no significant difference in the amount of AMPKα1 mRNA expression but 

the relation can be seen by looking at mTOR (Figure 6.1).  The expression of mTOR shows a 

decrease in the HFE line of the second generation where the AMPKα1 is increased.  This is an 

indicator that the autophagy pathway is activated and that the HFE line of the second generation 

is able to utilize the autophagy pathway efficiently.  Although upstream regulators were 
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upregulated or unchanged, the mRNA expression of LC3B that regulates this pathway downstream 

seemed to decrease.  This could suggest a possibility that this pathway runs in a cascade-like 

fashion and these genes, at the time tissues were collected, had not yet received an upstream signal 

to be activated.  It could also point to a possible impairment of autophagic degradation.   

Further studies, including protein measurement and testing other downstream regulatory 

proteins such as the receptor for chaperone-mediated autophagy LAMP-2 (Lysosome-associated 

membrane protein 2) as well as feed evaluation and comparison must be performed to further 

define the current data.  As it currently shows, there seems to be an age effect happening between 

these two lines. Only further research into the effects of autophagy on different age groups of these 

quail lines can help clarify how the autophagy pathway is affecting the feed efficiently trait.   

6.6 DISCUSSION 

 

Autophagy, which becomes active when the cells energy stores decline, has gained much 

interest from groups studying cancer to aging.  This pathway seems to be part of many cellular 

processes as well as central to many diseases.  Because it is part of the lysosomal system, 

autophagy plays a role in conditions that require extensive cellular remolding such as cell 

differentiation, embryogenesis, and complete cellular destruction that occurs in some forms of cell 

death (Shintani et al., 2004; Massey et al., 2006; Cuervo, 2004).  The role of this catabolic pathway 

and feed efficiency, can be appreciated by its tight linked to feeding as some of the first studies 

identifying the pathway were performed in starvation models.  Identifying how feed restriction 

acts in parallel to high and low efficient birds involving the autophagy pathway may be an 

important step in delineating some mechanistic features of this pathway and how, through 

understanding gene expression, it can aid in improving feed efficiency.  
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Due to the fact that animal agriculture is facing substantial challenges, including a steep 

projected increase in demand and the need to adapt to changing environmental conditions, 

identifying factors that could aid in understanding feed efficiency has become an important 

research topic in the agricultural field.  Due to a predicted increase in world population to 9 and 

10 billion, United Nations FAO estimates that by 2050 there will be a 73% increase in meat and 

egg consumption and a 58% increase in dairy consumption over 2011 levels (Alexandratos et al., 

2006). Reducing the cost of animal protein production is essential to achieve a sustainable, 

affordable, and secure animal protein supply.  To do so, mechanistic understanding (at molecular 

and cellular levels) of heat stress and feed efficiency response are necessary and of uppermost 

interest.   

This study aimed to begin an understanding of autophagy and how it effects feed efficiency 

over generations.  It was found that the parent line had already utilized the autophagy pathway due 

to the increase in expression levels of mTOR with the concomitant decreased expression in all 

other autophagy genes with the exception of LC3B.  Expression of this gene led to the possibility 

that autophagy had occurred earlier in the cells of this tissue, but had since been inhibited due to 

clearance of the damaged material and alleviation of cellular damage.  In the second generation 

birds it seems as though the HFE line was currently utilizing autophagy by showing an increase in 

AMPKα1 compared to mTOR under both LFE and HFE conditions.  This shows that the autophagy 

pathway is activated and, although mTOR is expressed, it is not significant with respect to the 

amount AMPKα1.  It should also be noted that because this is mRNA, there will be levels of 

mTOR expressed at the same time levels of AMPKα1 and other autophagy genes are expressed.  

Future work will need to utilize protein data to better understand upregulation or downregulation 
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of this pathway under these conditions.  With a better mechanistic understanding, autophagy may 

yet prove to be an important cellular determinant of this desirable trait. 

6.7 CONCLUSION 

  

 In conclusion, this study reveals that the autophagy pathway is indeed activated in both 

generations of Japanese quail.  While the original objective was to determine whether or not 

autophagy played a role in generational effects of feed efficiency, it became clear that too many 

factors could have had a role in the data received.  However, this has now opened a new 

investigation into a possible age effect autophagy has on these lines as well as possible effects that 

different diets have on these animals.  Future studies will be aimed at delineating at what age the 

autophagy pathway is most efficient in these birds.  Other studies will include observing 

differences in the pathway due to different feed (beginner, grower, and finisher) as well as 

continuing to look at a possible generational effect, comparing birds of the same age with the same 

diet over multiple age groups to determine if there is an optimal age and diet associated with an 

increase or decrease in autophagy activation. 
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  Figure 6.1 
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Figure 6.1 H-N: Autophagy gene expression in second generation Japanese quail.  Data shows a 

significant increase mTOR of the LFE line with increases in Beclin1, Atg16L1, and LC3B 

although these did not reach significance (H-N).  Bars represent mean + SE (n=6) and (*) 

represents P<0.05. 
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7. CONCLUSION 

 

In this dissertation, the expression of autophagy-related genes were determined in two 

avian species maintained under different physiological, genetic, and environmental conditions.  

The autophagy pathway is a very important pathway linked to many different conditions, such as 

starvation and stress which could impact avian species development and function.  Despite this 

importance, very little information is available on the autophagy pathway in birds or in how 

various types of stress or management conditions could affect the autophagy pathway.  The 

overall goal of research in this dissertation was to characterize the autophagy pathway in jungle 

fowl, to determine the effect of different types of stress on autophagy, and finally to determine if 

autophagy may contribute to the phenotypic expression of feed efficiency in broilers.   

We found that the autophagy pathway is tissue, gender, and genotype specific and this pathway is 

indeed found in avian species. This characterization can open new research avenues to understand 

the regulation and the roles of autophagy in avian species maintained under physiological and 

pathophysiological conditions. Further studies are warranted to identify and characterize genes 

involved in autophagosome maturation in birds.  This study gives insight into autophagy in avian 

species as well as into the underlying mechanisms that may ultimately help to develop new 

management tools for poultry production improvement. The quail lines may also be a useful model 

to study stress-related disorders in humans and, from this study, develop further therapeutic 

strategies. 

Due to the aid or progress autophagy lends to certain diseases in human and murine models, 

we decided to see whether to not this pathway played any role in heat stress on birds.  We saw that 

high stress quail showed an upregulation of two key genes involved in the final stages of 
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autophagy, Atg16L1 and LC3B.  These genes are indicative of autophagosomes formation and the 

degradation of damaged particles.  There was also an upregulation of autophagy genes in the low 

stress line with a possibility that these genes, which are expressed at a higher level in the low stress 

line, could be involved in the development of this trait.  Reducing the impact of climate change 

and cost of animal protein production is essential to achieve a sustainable, affordable, and secure 

animal protein supply.  To see this reduction come to fruition, a better understanding of the 

mechanistics underlying the causative effects of heat stress must be determined.  Autophagy, 

upregulated during many different types of stress, is a pathway which may contribute greatly to 

alleviating this issue.  Further studies will need to be performed to determine these exact 

mechanisms as well as studies to determine the roles of the genes involved in autophagy during 

heat stress and whether or not they have potential for alleviating or preventing heat stress in animal 

agriculture. 

Our next research topic of interest was to perform experiments on high and low feed 

efficiency in male broilers and male Japanese quail.  The high feed efficient line of broilers 

seemed to have an increase in overall autophagy genes expressed.  This, again, may be due to the 

genotype of these birds with the high feed efficiency birds able to produce new forms of energy 

from nutrients released via the autophagy pathway breaking down damaged organelles.  High 

and low feed efficient Japanese quail were used as well where we see a possible age effect 

occurring with the expression of autophagic genes in parent (30 wks) versus second generation 

(6 wks).  It seems only two genes were significantly higher in the high feed efficient line in the 

parent group whereas no significant difference was found in the second generation group.  Feed 

efficiency is a topic of uppermost importance in all aspects of animal production.  The poultry 

industry has come a long way since the inception of the broiler and broiler breeder with many 
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still searching for ways to improve upon these models.  With a growing demand for high quality 

animal protein coupled with the cost of feed for poultry production, making a bird's ability to use 

feed efficiently has become a topic of interest the world over.  The results found aim to shed 

light on one of many pathways, and factors affecting this pathway, that may be involved in 

whether or not a bird is efficient.  More research will have to go into the mechanisms behind 

these differences such as age, and feed composition, with future experiments to determine those 

mechanisms currently underway.    
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APPENDIX  

1. IACUC approval for heat stress studies 
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2. IACUC approval for feed efficiency studies 
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