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ABSTRACT 

 Natural air (NA), in-bin drying and storage of rough rice generally maintains high grain 

quality, but the associated slow movement and occasional stagnation of the drying front during 

the process may result in problems of rice quality reduction, mold growth, and mycotoxin 

development, especially for rough rice in the top layers of the bin. Using modeling techniques to 

simulate in-bin rough rice drying in typically-encountered field scenarios may provide a tool for 

rapidly predicting the grain condition as drying progresses. The objectives for this study were to 

(1) investigate accurate models for predicting equilibrium moisture content (EMC) of rough rice 

at set conditions of air temperature and relative humidity (RH), (2) develop and validate a 

mathematical model for predicting moisture content (MC) and temperature profiles of rough rice 

during NA, in-bin drying, and (3) perform computer simulations using the developed 

mathematical model to determine the impacts of drying strategy (rough rice initial MC, drying-

start date, air flowrate, and fan control strategy) on rough rice drying duration, maximum dry 

matter loss, and percent overdrying. In order to accomplish objective (1), adsorption and 

desorption isotherms of long-grain hybrid rough rice at temperatures ranging from 15°C to 35°C 

and RHs of 10% to 90% were determined by using a Dynamic Vapor Sorption analysis device. 

Non-linear fitting techniques were used to determine constants of models for predicting rough 

rice adsorption or desorption EMCs. It was determined that the modified Halsey and modified 

Chung-Pfost equations were the best models to describe rough rice adsorption and desorption 

isotherms, respectively (RMSEs = 0.54% MC in dry basis and 0.91% MC in dry basis, 

respectively). To achieve objective (2), Post-Harvest Aeration Simulation Tool - Finite 

Difference Method, developed by Bartosik and Maier (2004), was modified for rice and used to 

simulate in-bin rough rice drying in Arkansas. Simulation results were validated by field 



experiments, which used modern, on-farm bins equipped with “cabling and sensing technology” 

for in-bin RH and rough rice temperature measurement; the rough rice MC was calculated based 

on the measured RH and temperature data. The sensor-determined data and simulation results of 

MC and temperature were compared. The simulation results described well the general trends of 

rough rice MC and temperature profiles (for MC, mean RMSE = 0.56% MC in wet basis; for 

temperature, mean RMSE = 1.77°C). The study validated the accuracy of the developed 

simulation model for prediction of in-bin drying and storage of rough rice. In order to 

accomplish objective (3), simulations of in-bin drying of rough rice with different drying 

strategies was performed. A twenty-year weather data set (1995 to 2014) of ambient air 

temperature and RH of the U.S. Mid-South rice growing locations (Jonesboro, West Memphis, 

and Stuttgart, Arkansas, and Greenville and Tunica, Mississippi) were procured. Drying 

simulations were performed using air flowrates 0.55, 1.10, 1.65, and 2.20 m3 min-t-1, drying-start 

dates of 15 August, 15 September, and 15 October, and rough rice initial MCs of 16% to 22% 

(wet basis). Fan control strategies comprised running the drying fan continuously, at set window 

of natural air equilibrium moisture content, and air EMC window with supplemental heating 

option. Results showed that rough rice drying duration, dry matter loss, and percent overdrying 

were dependent on selected drying strategy with fan control strategy, initial rough rice MC, and 

air flowrate being key factors. Information generated using the simulations could guide rice 

producers, especially in selected U.S. Mid-South, to effectively dry rough rice in a timely 

manner, and mitigate problems of rice quality reduction, excessive mold growth, and mycotoxin 

contamination. 
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1. INTRODUCTION 

 

1.1 Problem identification 

In-bin drying and storage of rough rice using natural air (NA), if not managed properly, is 

prone to contamination of rough rice with mycotoxins (e.g., aflatoxin), posing significant public 

health risks and reducing overall rice quality. The NA drying method involves the use of a fan 

(often more than one) to mechanically push ambient air through a rough rice column, from the 

bottom to the top of the bin; as the air moves vertically through the rough rice column inside the 

bin, the air “quality” determines whether the rough rice gains or loses moisture. The air “quality”, 

also referred to as the equilibrium moisture content (EMC), defines the capability of the rough 

rice to hold moisture at set conditions of air temperature and relative humidity (RH). Depending 

on local weather conditions, the duration required for NA, in-bin drying may not be conducive 

for timely and complete drying, especially for upper layers of rough rice (Atungulu, Zhong, 

Thote, Okeyo, & Couch, 2015). It is important to know the extent to which drying with NA in a 

particular location influences rough rice drying duration to mitigate rice quality reduction, mold 

growth, and development of mycotoxin. 

A field study to obtain NA, in-bin drying kinetics for rough rice would require extensive, 

time-consuming, and costly experimentation. However, an accurate mathematical model may 

simplify prediction of the NA, in-bin drying process of rough rice. There is, therefore, a critical 

need to develop and validate an accurate model that could be used to simulate NA, in-bin drying 

of rough rice and the effects on rice quality. The model could be used for simulations to provide 

suitable drying conditions for rough rice at different geographical regions. In the absence of such 

a model to predict suitable drying strategies, in-bin rough rice drying and storage with NA will 
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be more susceptible to grain quality loss and contamination with toxigenic fungi and their 

associated mycotoxins, many of which are carcinogenic to humans. 

 

1.2 Equilibrium moisture content of rough rice 

Moisture content of rough rice plays an important role in drying, storage, milling, and 

end-use processing performance (Choi, Lanning, & Siebenmorgen, 2010). In rice drying, the 

EMC represents the MC that can be reached under a given condition of drying air temperature 

and RH. As such, the MC of grain in a bin, along with the air EMC associated with a particular 

grain, determine whether drying or rewetting occurs when air passes through the mass of grain. 

If the air EMC is less than the grain MC, the grain will dry – a phenomena referred to as 

desorption. If the air EMC is greater than the grain MC, the grain will rewet – a phenomena 

referred to as adsorption. The difference between desorption and adsorption isotherms is called 

hysteresis. Desorption EMCs are always greater than adsorption EMCs in the middle portion of 

the RH range, and the difference between them converges to zero at the least and greatest RHs 

(Brooker, Bakker-Arkema, & Hall, 1992; Choi et al., 2010).  

Mathematical models for estimating the EMC of grains such as rough rice are listed in 

ASABE Standard D245.6 (ASABE Standards, 2012). The modified Chung-Pfost, modified 

Halsey, modified Henderson, and modified Oswin equations can be used to describe the EMC of 

grains with sets of predetermined empirical constants in desorption and adsorption phenomena 

(table 1.1).  Many studies on EMC isotherms of rice have been done (Banaszek & Siebenmorgen, 

1990; Iguaz & Virseda, 2007; Ondier, Siebenmorgen, Bautista, & Mauromoustakos, 2011). 

Ondier et al. (2011) rewetted or dried long-grain hybrid rough rice with 11.6% initial MC (IMC) 

(all MCs are expressed on a wet basis (w.b.) unless specified otherwise) at temperatures of 10°C, 
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20°C, 30°C, 45°C, or 60°C and 10% to 70% RH, but the reported isotherms did not document 

the hysteresis effects. Iguaz and Versada (2007) dried medium-grain rough rice with 14.5% IMC 

at temperature of 40°C to 80°C and 15% to 85% RH, but the temperature range was above the 

typical NA drying temperature range (below 40°C (figure 4.5)). Banaszek and Siebenmorgen 

(1990) rewetted rice at temperature of 12.5°C, 15°C, 20°C, or 30°C and 70% to 90% RH, but the 

RH range only covers the upper part of typical NA drying RH range. Since none of the above 

findings showed both adsorption and desorption isotherms in NA drying temperature range for 

rough rice, a new study was needed to accurately predict the rough rice MC during in-bin drying. 

The results reported by foregoing authors were generated using the traditional methods in which 

samples were placed in desiccators or air-circulating chambers. With the preceding methods, 

samples may take several weeks to reach equilibrium in desiccators, or high air flowrate may 

affect the accuracy of data obtained from the weight-measuring equipment. A new method 

(Dynamic Vapor Sorption (DVS)), which utilizes low airflow inside the chamber, accurate RH 

control, and an accurate weighing balance was used in this study, instead of the traditional 

methods. 

Dynamic Vapor Sorption is a gravimetric method that measures how much of a solvent, 

such as water, is absorbed by a sample. Compared to the traditional saturated salt solution 

method, the DVS method uses a mixture of saturated water vapor and dried air to accurately 

control RH levels in a sealed chamber. When DVS is used, the fast equilibration duration 

between the sample and air can reduce sample respiration and mold growth on the sample. The 

method also uses an ultra-sensitive recording microbalance which improves the accuracy of 

weight change of the sample (Bingol, Prakash, & Pan, 2012). The DVS method is equipped with 

a chilled mirror hygrometer humidity sensor for accurate measurement of air RH. The DVS 
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method has been used in the pharmaceutical industries with success (Hogan & Buckton, 2001; 

Baumgartner, Kristl, & Peppas, 2002; Agrawal, Manek, Kolling, & Neau, 2004; Young, et al., 

2007). In recent years, the DVS method has found applications for measurement of isotherms of 

different food materials (Teoh, Schmidt, Day, & Faller, 2001; Guillard, Broyart, Bonazzi, 

Guilbert, & Gontard, 2003; Roman-Gutierrez, Mabille, Guilbert, & Cuq, 2003; Bingol et al., 

2012). Bingol et al. (2012) preformed a study to compare isotherms obtained using the DVS 

method and saturated salt solution methods for rough rice at 25°C and 0 to 100% RH; the authors 

recommended the DVS method for materials with low diffusion coefficients, such as rough rice. 

 

Table 1.1. Moisture sorption prediction models1   

Name of Model Equation2 

Modified Chung-Pfost 𝑀𝐶 × 100 = −
1

B
ln [−

(𝑇 + C) 𝑙𝑛(𝑅𝐻)

A
] 

Modified Halsey 𝑀𝐶 × 100 = [−
exp(A + B ∗ 𝑇)

ln(𝑅𝐻)
]

1
C

 

Modified Henderson 𝑀𝐶 × 100 = [
ln(1 − 𝑅𝐻)

−A ∗ (𝑇 + C)
]

1
B

 

Modified Oswin 𝑀𝐶 × 100 = (A + B ∗ 𝑇) (
1 − 𝑅𝐻

𝑅𝐻
)

−1
C

 

1ASABE Standard D245.6 (2012) 
2MC is air equilibrium moisture content in decimal dry basis; RH is relative 

humidity expressed as a decimal; T is temperature (°C); and A, B, and C are 

empirical constants. 

 

1.3 Natural air, in-bin drying  

 Figures 1.1 (a) and (b) show a photo and a schematic of an in-bin grain dryer, 

respectively. The dryer uses NA or slightly heated air at 3°C to 8°C above ambient (Brooker et 
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al., 1992). A typical in-bin grain dryer has perforated floor, one or more drying fan(s), grain 

spreader, and exhaust vents (figure 1.1(b)). The low temperature, relatively slow air flowrate 

(from 0.69 to 2.77 m3 min-t-1) associated with NA drying are generally known to prevent rice 

kernel fissuring and reduction in rice milling quality, especially head rice yield (HRY) (Cnossen, 

Siebenmorgen, Yang, & Bautista, 2001; Inprasit & Noomhorm, 2001; Ondier, Siebenmorgen, & 

Mauromoustakos, 2010; Ambardekar & Siebenmorgen, 2012). Preventing HRY reduction during 

drying is very critical and has significant economic importance for the rice industry (Cnossen & 

Siebenmorgen, 2000). Additional advantages of the NA, in-bin drying practice in the rice 

industry include enabling identity preservation of rice for specific market niches, flexibility to 

market rice at a time when maximum profitability is attainable, and increasing the drying 

capacity to avoid bottlenecks at commercial dryer facilities during peak harvest seasons. 

 

 

(a) 

(a) (b) 

Wet grain

Dry grain

Drying zone

Fan

Perforated floor

0.3-0.6 m

Exhaust 

vents
Exhaust 

vents

Grain 

Spreader
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(b) 

Figure 1.1. Natural air, in-bin drying bin diagrams (a) a photo of actual bins; (b) schematic of a 

single bin. 

 

The duration required to dry rough rice in a bin to targeted MC depends on the local 

weather (temperature and RH), air flowrate, fan control strategy, drying-start date, and IMC of 

the rice. The combinations of these factors can be controlled to create drying strategies. The 

drying strategies used may affect rice quality indices, including HRY, milled rice color, mold 

growth, and germination percentage (Sahay & Gangopadhyay, 1985; Tirawanichakul, 

Prachayawarakorn, Tungtrakul, Chaiwatpongskorn, & Soponronnarit, 2003; Schluterman & 

Siebenmorgen, 2004).  

In-bin drying can be accomplished through (1) uncontrolled drying and (2) EMC-

controlled drying modes of fan operation. Under the uncontrolled drying mode, the bin fan is 

Wet grain 

Dry grain 

Drying zone 

Fan 

Perforated floor 

0.3 - 0.6 m 

Exhaust  
vent 

Exhaust  
vent 

Grain  
Spreader 
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operated continuously until the grain dries to safe storage MC. Periods of extreme drying and 

rewetting are common, which increase the fan running duration, and consequently, result in 

greater fan operational costs. Also, if overdrying of rice occurs followed by rapid rewetting, 

fissuring of rice kernels due to rapid moisture adsorption may occur, resulting in reduced HRY 

(Siebenmorgen & Jindal, 1986).  

Recently-introduced “cabling and sensing technology” for use in NA drying bins allows 

monitoring of rough rice MC and automated fan control during drying and storage (Singh, Jayas, 

& Larson, 2014) which is referred to as EMC-controlled drying. Modern drying bins are 

equipped with cables (with sensors for grain temperature and air RH), plenum temperature, RH, 

and pressure sensors, headspace temperature and RH sensors, pitfall traps for insects, and a 

weather station. These devices communicate to a grain management software through wired or 

wireless communication thereby allowing the capability to monitor rough rice temperature and 

MC during drying. Decisions to turn the fan on or off are based on real time conditions of drying 

air EMC and temperature and rough rice MC and temperature. When the fan is turned on, drying 

air is pushed through rough rice in the bin thereby absorbing moisture from the rice (may add 

moisture to the rice if EMC of air is greater than MC of rice). The air moves upwards to the top 

where it exits the bin from the exhaust vents.  

The features of the modern bins allow the fan to be operated only under set conditions 

thereby minimizing overdrying or rewetting of rough rice. Some producers have bins equipped 

with low temperature heaters, such as gas burners or electric resistance heaters. The heaters are 

used to lower air EMC and increase the moisture removal rate during drying (Brooker et al. 

1992). In practice, the maximum and minimum EMC limits of inlet air are regulated to reduce 

energy consumption or reduce the drying duration. The minimum EMC for fan operation can be 
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fixed or changed as drying progresses.   

A problem with NA drying and lower drying rate can be failure of rice to dry adequately 

resulting in development of molds in the bins. From consumer and producer standpoints, the 

potential of mold growth that can lead to mycotoxin production on rice presents the greatest 

human health-related problem. Mycotoxins, especially aflatoxin, are known carcinogens that 

pose severe health hazards to consumers of grains and co-products. Even trace quantities of rice 

contamination with aflatoxin could lead to rejection of entire bins of rice and cause significant 

economic loss to producers (Richard, et al., 2003). At present, the United States Food and Drug 

Administration (FDA) regulates the level of aflatoxin at 20 ppb or less for grain destined for 

human consumption. It is vital that the in-bin drying strategy adopted for a particular locality 

prevents the production of mycotoxin on rice, and arrest excessive rice respiration, which leads 

to mold growth and dry matter loss (DML) of the grain (Seib, Pfost, Sukabdi, Rao, & Burroughs, 

1980). 

   

1.4 Modeling of in-bin drying  

Logarithmic, non-equilibrium, and equilibrium models have been used to predict grain 

drying characteristics. The non-equilibrium and logarithmic models can be applied in all grain 

drying systems (Pabis, Jayas, & Cenkowski, 1998; Ekechukwu & Norton, 1999). The non-

equilibrium modeling approach assumes that the drying air and the grain would not reach 

equilibrium in a given time interval; sets of partial differential equations are derived from the 

laws of heat and mass transfer, and the mathematical theory of drying single solid bodies 

(Srivastava & John, 2002). The logarithmic model describes deep-bed drying under uniform 

initial and constant boundary conditions (Barre, Baughman, & Hamdy, 1971). The logarithmic 
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model provides an explicit analytical solution of drying duration as a function of drying air 

parameters, and grain properties (Aregba & Nadeau, 2007). The typical air flowrate used during 

rough rice drying in NA bin systems is less than 2.77 m3 min-t-1 (2 cfm bu-1). With low 

temperature and low air flow rate, the drying air can be assumed to reach equilibrium in each 

layer of rice in the bin during a given time interval. Compared to the non-equilibrium and 

logarithmic models, equilibrium models have fast computation time (Sharp, 1982).  

Several authors have modified the equilibrium models of Bloome and Shove (1971) and 

Thompson (1972) to improve their accuracy for temperature and MC predictions during NA rice 

drying (Sharma & Muir, 1974; Mittal & Otten, 1982; Soponronnarit, 1988; Jindal & 

Siebenmorgen, 1994; Saksena, Montross, & Maier, 1998; Bartosik & Maier, 2004). Jindal and 

Siebenmorgen (1994) improved and validated Thompson’s equilibrium model (1972) for rice 

with experimental data and concluded that this model predicted grain temperature and MC with 

reasonable accuracy. Saksena et al., (1998) developed nine in−bin fan control strategies using a 

finite-difference method based on an equilibrium model; this resulted in a program termed the 

Post-Harvest Aeration Simulation Tool - Finite Difference Method (PHAST-FDM). Bartosik and 

Maier (2004) developed and simulated different fan control strategies using the PHAST-FDM 

program for in-bin drying of corn. With modern computational technology, a program, which 

was built on an equilibrium model, can be used to assess the impacts on NA rice drying with 

different combinations of drying strategies.  

Singh et al. (2014) reported on simulations to assess fan control options during NA, in-

bin drying of wheat in Canadian Prairies and provided optimal fan control strategies that 

minimized wheat spoilage. Lawrence, Atungulu, and Siebenmorgen (2015) performed a similar 

study on rough rice in Arkansas and gave suggestions on suitable air flowrates and fan control 
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strategies based on drying cost and drying duration. The type of fan control strategy, applied air 

flowrate, and drying-start date play major roles to dictate what the upper limit of IMC of rough 

rice should be to minimize rice quality reduction at a geographic location. The application of 

mathematical models and computer simulation is therefore useful in predicting in-bin drying 

performance in a particular geographic location.   
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2. OBJECTIVES 

 

 The objectives for this research were to investigate the effectiveness of using 

mathematical modeling approaches to simulate NA, in-bin drying of rice, and provide suitable 

drying strategies that maintain rough rice quality. The specific objectives for this study were as 

follow: 

1) Investigate accurate models for predicting EMC of rough rice at set conditions of air 

temperature and RH. 

2) Develop and validate a mathematical model for predicting MC and temperature profiles 

of rough rice during NA, in-bin drying in Arkansas. 

3) Perform computer simulations using the developed mathematical model to determine the 

impacts of rough rice IMC, drying-start date, air flowrate, and fan control strategy on rice 

drying duration, maximum DML, and percent overdrying at different rice-growing 

locations in the U.S. Mid-South.  
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3. MATERIALS AND METHODS 

 

3.1 Equilibrium moisture content determination 

Long-grain rice cultivar ClearfieldTM (CL) XL745, grown at Newport, Arkansas, was 

harvested in fall of 2014 at 16% MC. Immediately after harvest, rough rice samples were placed 

in sterile polyethylene bags, sealed, and stored in a cooler set at 4°C. The samples were stored in 

the cooler and retrieved later for experiments. To determine the IMC of rice, samples from the 

bags were retrieved and allowed to equilibrate at room conditions, and then 15 g of the sample 

was placed into a conductive oven set at 130°C (Shellblue, Sheldon Mfg., Inc., Cornelius, 

Oreg.). The sample was kept in the oven for 24 hours, after which it was removed, placed in the 

desiccator, and allowed to cool for at least half an hour (Jindal & Siebenmorgen, 1987).  

The adsorption and desorption isotherms of the rough rice samples at IMC of 16% were 

determined using a DVS analysis equipment (AquaLab Vapor Sorption Analyzer (VSA), 

Decagon Devices, Inc., Pullman, Wash.). Stainless steel cup, filled with 2 g of rough rice, was 

placed into the VSA chamber which was set to target temperatures 15°C, 25°C, or 35°C and RHs 

at 10%, 30%, 50%, 70%, and 90%. The VSA automatically recorded the rough rice weight 

changes at the set conditions, and equilibrium of the sample with the air was determined when 

the weight difference between two successive readings of the sample weight was less than 0.01% 

in one hour. Using the predetermined original rough rice IMC, the rough rice EMCs at various 

RHs and temperatures were calculated for both adsorption and desorption conditions. The 

experiments were done in triplicate.  
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3.2 Development of computer simulation platform and mathematical simulations  

A computer simulation program (PHAST-FDM), written in Visual Basic.NET (Microsoft 

Corp., Redmond, Wash.), was modified for use with rough rice. The program was used to 

simulate NA, in-bin drying of rough rice at representative rice-growing locations. Modifications 

of the program included development of an interactive Graphical User Interface (GUI), 

incorporation of updated EMC models of rough rice, addition of functions to calculate percent 

overdrying and rice DML, and addition of multiple options for controlling when to end the 

simulations. The model used for in-bin drying simulations was based on the following 

assumptions: 

1) In each layer, energy and moisture of rough rice and air reach equilibrium in a given time 

interval. 

2) Heat and mass transfer between the air and the rough rice are adiabatic. 

3) There is negligible heat loss through the bin wall.  

4) The initial temperature and MC of rough rice in each layer, inlet air temperature and RH 

throughout the drying period, and other input parameters (drying-start date, bin 

dimensions, air flowrate, simulation ending condition, and fan control strategy) are 

known. 

 

The energy balance applied to a thin rice layer was determined as described by Jindal and 

Siebenmorgen (1994):  

𝑐𝑎𝑇𝑜 + 𝐻𝑜(ℎ𝑣 + 𝑐𝑣𝑇𝑜) + 𝑐𝑔𝐺𝑜𝑟 + 𝑐𝑤𝐺𝑜(𝐻𝑓 − 𝐻𝑜) = 𝑐𝑎𝑇𝑓 + 𝐻𝑓(ℎ𝑣 + 𝑐𝑣𝑇𝑓) + 𝑐𝑔𝑇𝑓𝑟      (1) 

where, 𝑐𝑎 – specific heat of dry air (J (kg of dry air)-1 K-1);  𝑐𝒈 – specific heat of grain (J (kg of 

wet grain)-1 K-1); 𝑐𝒗 – specific heat of water vapor (J (kg of water vapor)-1 K-1);  𝑐𝑤 – specific 
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heat of water (J (kg of water in grain)-1 K-1);  𝐻𝑜 – absolute humidity of air entering the control 

volume ((kg of water) (kg of dry air)-1);  𝐻𝑓 – absolute humidity of air leaving the control 

volume ((kg of water) (kg of dry air)-1); 𝑇𝑜 – initial air temperature (oC); 𝑇𝑓 – final air and grain 

temperature (oC); ℎ𝒗  – latent heat of vaporization of water (J (kg of water vapor)-1); 𝐺𝑜 – initial 

grain temperature (oC); and r – grain mass to dry air ratio ((kg of wet grain) (kg of dry air)-1).  

On the left side of equation 1, the first term represents the energy of the dry air with 

respect to 1 kg of dry air before air entering the rough rice layer, and the second term represents 

the energy of the water vapor in the air with respect to 1 kg of dry air before air entering the 

rough rice layer; also, the third term represents the energy of the wet rough rice layer (with a fix 

percentage of water) with respect to 1 kg of dry air before air entering the rough rice layer. It is 

assumed that the change of the water in the rough rice is equal to the change of humidity in the 

air; therefore, the fourth term represents the energy difference of the water which is desorbed or 

adsorbed by the rough rice with respect to 1 kg of dry air. The three terms on the right side of 

equation 1 correspond to the first three terms of the left side of the equation, and they are for 

conditions after the air exits the rough rice layer. 

 The moisture balance applied to a thin rice layer, with the assumption that the mass of 

water evaporated from the rough rice in the layer is equal to the change in mass of water vapor in 

the air passing through the layer, was determined as described by Jindal and Siebenmorgen 

(1994): 

𝐻𝑓 − 𝐻𝑜 = (𝑀𝐶𝑜 − 𝑀𝐶𝑓) 𝑟/100                                               (2) 

𝑟 = (ρ𝑔 𝑑𝑥)/(ρ𝑎𝑣𝑎𝑡)                                                         (3) 

where,  𝑀𝐶𝑜 – initial MC of grain in percentage wet basis; 𝑀𝐶𝑓 – final MC of grain in 

percentage wet basis; 𝑡 – time interval (s);  ρ𝑎– density of air ((kg of air) m-3) ;  ρ𝑔– density of 
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grain ((kg of wet grain) m-3);  𝑣𝑎– velocity of air (m s-1); and 𝑑𝑥 – layer thickness (m).   

Using the exiting air RH and temperature, the rough rice MC in each layer at the end of a 

time step was determined. The modified Chung-Pfost equation (equation 4) with constants 

specified for long-grain hybrid rough rice in adsorption and desorption conditions was used:  

𝑀𝐶𝑒 = −
1

B
ln [

−(𝑇 + C) ln(𝑅𝐻)

A
]                                               (4)  

where, 𝑀𝐶𝑒 – equilibrium moisture content in percentage dry basis; 𝑅𝐻  – relative humidity in 

decimal; 𝑇 – temperature (°C); A, B, and C are empirical constants.  

Adsorption and desorption constants (two sets of A, B, and C) for equation 4 were 

determined in this study for long-grain hybrid rice cultivar (CL XL745). RH, temperature, and 

partial and saturated vapor pressures of air were determined thus (ASABE Standards, 2014): 

𝑅𝐻 =
𝑃𝑣

𝑃𝑠
                                                                           (5) 

𝑃𝑣 =
101325 𝐻

0.6219 + 𝐻
                                                                   (6) 

𝑃𝑠 = K × exp (
A + B 𝑇 + C 𝑇2 + D 𝑇3 + E 𝑇4

F 𝑇 − G 𝑇2
)                                        (7) 

where, 𝑅𝐻 – air relative humidity in decimal;  𝑃𝑣 – partial vapor pressure of air (Pa); 𝑃𝑠 – 

saturated vapor pressure of air (Pa); 𝐻 – absolute humidity of air ((kg of water) (kg of dry air)-1); 

𝑇 – air temperature (°C); K = 22105649.25;  A =  −27405.526; B =  97.5413; C =

 −0.146244; D =  0.12558 × 10−3; E =  −0.48502 × 10−7; F =  4.34903; G =  0.39381 ×

10−2. 

Using equations 1 to 7, the temperature and RH of air exiting each rough rice layer and 

the rough rice temperatures at the end of each time step were determined. Finite difference 

method was used to determine the time-step solutions of rough rice MC and temperature as well 
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as the intake and exit air conditions in successive layers of the rough rice inside the bin. The 

column of rough rice inside the bin was divided into N thin layers (N = 20). The depth of each 

layer of rough rice (dx) in this study was equal to the column height divided by the number of 

layers. The finite difference method illustrated in figure 3.1 is a two dimensional figure with 

number of times on the x-axis and layers on the y-axis. The model assumed fixed volume of air 

with constant air velocity passed into the drying bin, through N layers of rough rice, reaching to 

the top, and exiting the bin for j times. For instance, initial conditions of rough rice temperature 

GT(n,1) and moisture content M(n,1), for n ϵ (1,N) and initial air conditions of temperature 

AT(1,j) and absolute humidity AX(1,j), for j ϵ (1,J) are known, so other layer conditions could be 

calculated, thus: when air (AT(1,1) and AX(1,1)) passes through the first layer of rough rice for 

the first time, the rough rice layer conditions change from the initial conditions (M(1,1) and 

GT(1,1)) to equilibrium conditions (M(1,2) and GT(1,2)), and the air conditions also change 

from the inlet air conditions to the outlet conditions AT(2,1) and AX(2,1), which are the initial 

inlet air conditions of the second layer of rough rice. Similarly, when air (AT(2,1) and AX(2,1)) 

passes through the second layer for the first time, the second layer conditions change from M(2,1) 

and GT(2,1) to M(2,2) and GT(2,2), the air conditions also change from the inlet air conditions 

to the outlet conditions (AT(3,1) and AX(3,1)). This process is repeated until the first time Nth 

layer rough rice conditions (M(N,2) and GT (N,2)) and outlet air conditions (AT(N+1,1) and 

AX(N+1,1)) are known. Next, as second time air (AT(1,2) and AX(1,2)) passes through the first 

layer, the rough rice layer conditions change from the initial conditions (M(1,2) and GT(1,2)) to 

equilibrium condition (M(1,3) and GT(1,3)), and the air conditions also change from the inlet air 

conditions to the outlet conditions AT(2,2) and AX(2,2) which is the inlet air conditions of 

second layer of rough rice for the second time. This step is repeated until Nth layer rough rice 
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condition for the second time M(N,3) and GT(N,3) and outlet air conditions (AT(N+1,2) and 

AX(N+1,2)) are determined. Consequently, after third time air passes through all the rough rice 

layers, the conditions of rough rice (M(n,4) and GT(n,4), for n ϵ (1,N)) and all outlet air 

conditions (AT(n,3) and AX(n,3), for n ϵ (2,N+1)) are determined. By repeating these 

calculations step-wise, the conditions for all rough rice layers (M(n,j) and GT(n,j), for n ϵ (1,N) 

and  j ϵ (2,J+1)) and all outlet air conditions of the layers (AT(n,j) and AX(n,j), for n ϵ (2,N+1) 

and j ϵ (1,J)) were determined. 

The DML equation in the PHAST-FDM program was modified based on Seib et al. 

(1980) for rough rice. The DML equation used is: 

𝐷𝑀𝐿 = 1 − 𝑒𝑥𝑝[−A𝑡B𝑒𝑥𝑝(C(𝑇 − 15.6) + D(𝑀𝐶 − 0.14))]                                (8) 

where, DML – dry matter loss in decimal; t – storage duration (h 1000-1); T – temperature (oC); 

MC – moisture content in decimal wet basis; A, B, C, and D are listed in table 3.1 (Seib et al., 

1980). 

 

Table 3.1. Constants of dry matter loss equation (equation 8) used for rough rice.  Taken from 

Seib et al. (1980). 

 

Grain Type A B C D 

Long-grain 0.00189 0.654 0.068 33.61 

Medium-grain 0.00091 0.710 0.049 31.62 
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3.2.1 Development of user input-interface  

 A user-friendly interface that was developed for the program used in the simulation is 

shown in figure 3.2. The interface provides for selecting (1) fan control strategy, (2) bin 

configuration, (3) simulation date, (4) rice initial MC and temperature conditions, (5) simulation 

ending criteria, etc. The fan control strategies comprise of running the fan continuously which is 

shown as “Continuous natural air” in the user interface, during the day “Natural air day only”, 

during the night “Natural air night only”, at set windows of drying air EMC without 

supplemental heating option “EMC controlled natural air”, and at set windows of drying air 

EMC with supplemental heating option “EMC controlled air with supplemental heat”. Bin 

configurations include bin size and air flowrate. The program user could change initial 

temperature and IMC of each layer of rough rice and drying-start date. The interface allows the 

user to select presetted harvest location, grain type, and one or more of six different simulation 

ending criteria. The ending criteria are when (1) target average MC of dried rough rice falls 

below a specified MC which is shown as “Ave MC” in the user interface; (2) top layer MC of 

rough rice falls below a specified MC “Top layer MC”; (3) maximum DML of rough rice 

exceeds a specified percentage “Dry matter loss”; (4) simulation runs until a specific date “Fixed 

date”; (5) simulations runs until a fixed rice drying duration is achieved “# of days”; and (6) 

average temperature of rough rice exceeds a specified temperature “Temperature”. For example, 

the settings in figure 3.2 indicate that the simulation will end when top layer of rough rice dries 

below 14% MC or the drying duration reaches 90 days. To accurately calculate energy 

consumption and drying cost, the user has to enter fan and heater efficiencies, grain value, and 

the costs of electricity and propane gas.  
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Figure 3.2. Post-Harvest Aeration Simulation Tool user interface 

 

3.3 Simulations for model validation 

 Mathematical simulations of NA, in-bin drying of rice were performed. Simulation 

outputs included rough rice MC, temperature, and DML profiles for rough rice layers throughout 

drying period, and the average, maximum, and minimum MC and temperature of rough rice, 

average and maximum DML of rough rice, percent overdrying, drying duration, and fan and 

heater run durations. 

 Simulation results were compared with data obtained from field experiments, which were 

conducted in the 2014 rice drying period. Temperature and RH data from sensors installed in the 

bins, used in this study, were acquired, and the rough rice MCs were calculated based on 
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empirical relationships. For proprietary purposes, the empirical equation used by the sensor 

manufacturing company (OPI-Systems Inc., Calgary, Alberta, Canada) to calculate the rough 

rice MC is not documented. However, validation of results obtained from the sensors were 

performed. The model validation was split into two parts.  

 Compare meter-measured rough rice MC (i.e. MC determined in the lab using the 

AM5200 grain moisture tester (Perten Instruments Inc., Hägersten, Sweden) calibrated 

according to oven-moisture method measurement of rough rice (Jindal & Siebenmorgen, 

1987) with the field sensor-determined data of rough rice MC in two bins located at 

Burdette and Dermott, Arkansas [Figure 3.3 (bins A and B, respectively)].  

 Compare field sensor-determined data of MC and temperature with the simulated MC 

and temperature of rough rice in two bins located at Dermott, Arkansas [Figure 3.3 (bins 

C and D)].  
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Figure 3.3. Rice-growing locations in the U.S. Mid-South. Squares ( ) represent the bin 

locations used in validation study, and stars ( ) represent the bin locations used in the 

simulations of impacts of various drying strategies. 

 

Rough rice was sampled 1.22 m (4 ft) beneath the center surface from bins A and B using 

a partitioned brass sampling probe (Seedburo Equipment Co., Des Plaines, Ill.). Sampling was 

performed every two weeks, thus: at 0, 2, 4, 6, 8, and 10 weeks or until the top grain layer 

reached safe storage MC of 14%. Each sample weighed about 600 g. The rough rice samples 

were immediately packed in sterile polyethylene bags and transferred under refrigerated 

conditions to the lab for immediate MC analysis using the grain moisture tester (AM 5200, 

Perten Instruments Inc., Hägersten, Sweden). The grain moisture tester was calibrated using the 

oven-moisture method of rough rice (Jindal & Siebenmorgen, 1987) . The meter-measured MCs 
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were compared with the rough rice MC calculated from data recorded by the sensors. The data 

from the sensors was provided by the grain bin management company (OPI-Systems Inc., 

Calgary, Alberta, Canada).  

During the field experiments, there were some incidences, such as power outage, 

unplanned changes of fan control strategy settings, (e.g. manual override of the fan control 

strategy), or even movement of the rice in the bin. Accurate accounting for such incidences in 

simulations and validations was problematic, especially for bins A and B (table 3.2). However, a 

separate set of bins (C and D) which did not have the above incidences were selected for 

additional model simulation and validation. The meter-measured data of MC for bins C and D 

will not be presented in the results since the bin selection was after it was determined that drying 

progressed without interruption by the uncontrollable circumstances. Specifications of bins A, B, 

C, and D are listed in table 3.2. Temperature cables and temperature and humidity (TH) cables 

were suspended from the bin roof. The sensors were 1.22 m (4 ft) apart from each other on each 

cable.   

Weather conditions at Greenville, Mississippi, including hourly temperature and RH, 

were used as in-let air conditions for the Dermott, Arkansas location (48 km apart and the closest 

weather station). Hourly temperature and RH data of Greenville, Mississippi were procured from 

accuweather.com (AccuWeather, Inc., State College, Pa.). The EMC-NA fan control strategy 

was used in both bins C and D, but with different target EMC ranges (table 3.2). For EMC-NA 

fan control strategy, fan operation was switched off in one of the two cases (1) when both the 

plenum air EMC and bottom layer rough rice MC were less than the set EMC low limit, or (2) 

when both the plenum air EMC and the bottom layer rough rice MC were greater than the set 

EMC high limit. In table 3.2, the simulation-start date and time were set to be at the time when 
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the bin filling was finished; the simulation-end date and time were when actual sensor readings 

were equal to or lower than the targeted EMC. The air flowrate in the bins were not measured but 

calculated. 

 

Table 3.2. Configurations and drying strategies of bins A, B, C, and D. 

 Bin A Bin B Bin C Bin D 

Bin Location Burdette, Ark. Dermott, Ark. Dermott, Ark. Dermott, Ark. 

Sensor 

Locations 
Center and side Center and side Center and side Center and side 

Bin Diameter 14.63 m (48 ft) 14.63 m (48 ft) 14.63 m (48 ft) 14.63 m (48 ft) 

The Top-most 

Sensor Depth 

Center: 7.32 m (24 ft) 

Side: 6.1 m (20 ft) 

Center: 7.32 m (24 ft) 

Side: 6.1 m (20 ft) 

Center: 7.32 m (24 ft) 

Side: 6.1 m (20 ft) 

Center: 7.32 m (24 ft) 

Side: 6.1 m (20 ft) 

Fan 

Configuration 

40 HP 1750 RPM 

centrifugal fan; 2 fans 

in parallel 

40 HP 1750 RPM 

centrifugal fan; 2 fans 

in parallel 

30 HP 1750 RPM 

centrifugal fan; 2 fans 

in parallel 

30 HP 1750 RPM 

centrifugal fan; 2 fans 

in parallel 

[1]Fan Control 

Strategy 
EMC-H EMC-NA EMC-NA EMC-NA 

Target EMC 12.5% (w.b.) 12.5% (w.b.) 12.5% (w.b.) 12.5% (w.b.) 

Targeted EMC 

Range 
N/A 14.5% - 10.5% (w.b.) 13.5% - 10.5% (w.b.) 14.5% - 10.5% (w.b.) 

Issues for 

Simulation and 

Validation 

Targeted EMC limits 

changed during the 

drying period 

One fan was off 

during the first half of 

drying period 

N/A N/A 

Simulation-

start Date and 

Time 

N/A N/A 
26 Sept. 2014 at 

12:00 AM 

03 Oct. 2014 at 4:00 

AM 

Simulation-

end Date and 

Time 

N/A N/A 
21 Oct. 2014 at 11:59 

PM 

27 Oct. 2014 at 11:59 

PM 

[2]Initial Rough 

Rice 

Temperature 

(°C) 

N/A N/A 

Sensor6=20.44, 

Sensor5=20.39, 

Sensor4=21.11, 

Sensor3=21.61, 

Sensor2=21.56, 

Sensor1=22.83. 

Sensor6=26.33, 

Sensor5=26.17, 

Sensor4=26.11, 

Sensor3=26.00, 

Sensor2=24.11, 

Sensor1=24.94. 
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[2]Initial Rough 

Rice Moisture 

Content 

(%.w.b.) 

N/A N/A 

Sensor1=15.32, 

Sensor2=16.95, 

Sensor3=16.67, 

Sensor4=17.96, 

Sensor5=17.56, 

Sensor6=16.01. 

Sensor1=14.74, 

Sensor2=16.84, 

Sensor3=16.38, 

Sensor4=18.69, 

Sensor5=19.58, 

Sensor6=19.53. 

Plenum 

pressure 
N/A N/A 

1673.03 Pa (6.71 in 

H2O) 

1637.07 Pa (6.57 in 

H2O) 

[1] EMC-H represents equilibrium moisture content controlled air with supplemental heat fan control strategy; EMC-

NA represents equilibrium moisture content controlled natural air fan control strategy. 
[2] Sensor1 represented the first (bottom) layer, and Sensor2 represented the second layer MC which was 1.22 m (4 

ft) above the first layer. Therefore, Sensor6 was 7.32 m (24 ft) from the bottom of the bin. 

 

To calculate air flowrate of two fans in parallel, the airflow resistance equation listed in 

ASABE Standard D272.3 (ASABE Standards, 2011) was used. The fan curve for a one fan 

system was provided by the fan manufacture (The GSI Group, Assumption, Ill.) (figure 3.5). The 

total air flowrate for a two-fan system was calculated by multiplying the total air flowrate of the 

one-fan system at a given work by two. The airflow resistance curve was calculated using 

equation (9), which took into account rice depth and a correction factor for the cleanness of the 

rice. The cross point between the airflow resistance curve and the two-fan curve determined the 

air flowrate when the two fans were arranged in parallel. For bins C and D, the top-most center 

sensor was located 7.32 m (24 ft) from the bottom, and the top-most side sensor was located 6.10 

m (20 ft) from the bottom (figure 3.4). The side cable was installed 4.88 m (16 ft) from the center 

in a 14.64 m (48 ft) diameter bin. Bin coring (removal of grain at the bin center or core and 

returning it to the bin top) was implemented in bins C and D to improve uniformity of airflow 

(figure 3.4). The center rice height was 8.53 m (28 ft), and side height was 7.32 m (24 ft). For 

rough rice, the angle of repose of filling (γ) is 20°, and the angle of repose of emptying (β) is 36° 

(Boac, Casada, Maghirang, & Harner III, 2010). The average heights of rice column in bins C 

and D were about 7.62 m (24 ft) based on the assumption that the rough rice layer above the 

sensors were 1.2 m (4 ft) thick (figure 3.4).  The average height was calculated using the bin 
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volume divided by the horizontal cross-section area of the bin. The rice was assumed to contain 

medium level of foreign materials (correction factor C = 1.3). The cross point of two-fan curve 

and resistant curve indicated the total airflow was 765 m3 min-1 (27,000 cfm). Both bins had air 

flowrate of 1.07 m3 min-t-1 (0.77 cfm bu-1) (figure 3.5). 

∆𝑃

𝐿
=

a𝑄2

log𝑒(1 + b𝑄)
C                                                             (9) 

where, ∆𝑃 – pressure drop (Pa); L – grain column depth (m); Q – airflow (m3 s-m-2); a and b are 

grain specific constants. For rough rice, a = 2.24×104 (Pa·s2 m-3) and b = 13.2 (m2s m-3) when Q 

ϵ (0.0056, 0.152). The term C is the correction factor which depends on the cleanness of the rice 

(1 represents clean kernels only, and 1.5 represents rice with maximum amount of foreign 

materials).  

 

 

Figure 3.4.  Schematic diagram of top layer rough rice in bins C and D. The bin radius is 7.32 m 

(24 ft), and the side cable was located 4.88 m (16 ft) from the center. The bins was cored. The 

top-most sensor of center cable was located 7.32 m (24 ft) from the bottom, and top-most sensor 

of side cable was located 6.10 m (20 ft) top from the bottom. The rough rice layer above the 

sensors was 1.22m (4 ft) thick. β represents angle of repose of emptying (for rough rice, β = 36°), 

and γ represents angle of repose of filling (for rough rice, γ = 20°). 
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Figure 3.5.  Resistance curve for rough rice and total airflow in a bin system with one fan and 

two fan arrangements. 

 

 

3.4 Simulations to assess impact of in-bin rough rice drying strategies 

 Simulations were perform to evaluate implications of three fan control strategies 

comprising continuous NA (CNA), EMC-NA, and running the fan at set windows of drying air 

EMC-controlled air with supplemental heat (EMC-H). For each fan control strategy, rough rice 

at four IMC levels (16%, 18%, 20% and 22%) were dried at four air flowrates of 0.69, 1.39, 

2.08, and 2.77 m3 min-t-1 and drying-start dates of  15 August, 15 September, and 15 October. 

The simulations were performed using weather from representative rice-growing locations in the 

Mid-southern region of the U.S. (Jonesboro, West Memphis, and Stuttgart, Arkansas, and 

Greenville and Tunica, Mississippi (figure 3.3)). Twenty-year weather data (1995 to 2014) of 

hourly ambient air temperature and RH were procured from accuweather.com (AccuWeather, 

Inc., State College, Pa.) for simulation purposes.  

 For EMC-H fan control strategy, fan operation was switched off when both the plenum 

air EMC and bottom-layer rough rice MC were less than the set EMC low limit, or the heater 

would be switched on when both the plenum air EMC and the bottom layer rough rice MC were 
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greater than the set EMC high limit. For both EMC-H and EMC-NA fan control strategies, the 

set EMC high limit was one percentage point MC greater than the targeted EMC (equation 10), 

and a dynamic EMC low limit was used (equation 11). The fan-operation window narrowed as 

the rough rice MC approached the targeted EMC: 

𝐸𝑀𝐶ℎ𝑖𝑔ℎ 𝑙𝑖𝑚𝑖𝑡 = 𝐸𝑀𝐶𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 + 1                                                     (10) 

𝐸𝑀𝐶𝑙𝑜𝑤 𝑙𝑖𝑚𝑖𝑡 = 𝐸𝑀𝐶𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 −
(𝑀𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑀𝐶𝑏𝑜𝑡𝑡𝑜𝑚)

2
                  (11) 

where, 𝐸𝑀𝐶ℎ𝑖𝑔ℎ 𝑙𝑖𝑚𝑖𝑡 – the highest limit of the targeted EMC in percentage wet basis; 

𝐸𝑀𝐶𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 – the targeted EMC in percentage wet basis; 𝐸𝑀𝐶𝑙𝑜𝑤 𝑙𝑖𝑚𝑖𝑡 – the lowest limit of the 

targeted EMC in percentage wet basis; 𝑀𝐶𝑏𝑜𝑡𝑡𝑜𝑚 – bottom layer MC in percentage wet basis; 

𝑀𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 – average MC in percentage wet basis. 

 An rough rice column was divided into 20 thin layers for simulation purposes. The depth 

of rough rice in the bin was assumed to be 6.10 m (20 ft) which implied that each layer of rough 

rice had a thickness of 0.31 m. For a bin with diameter of 14.63 m (48 ft) containing 1,205 m3 

(29,082 bu) of rice, the air velocities inside the bins were determined to be 0.04, 0.08, 0.12, and 

0.16 m s-1 for 0.69, 1.39, 2.08, and 2.77 m3 min-t-1 air flowrates, respectively, which were 

relatively slow. Thus, it was assumed that the drying air and the rough rice within each layer 

reached temperature and moisture content equilibria air to grain within a specified time step (10 

min). Each simulation was ran for 90 days or stopped earlier if the top layer of rough rice dried 

to MC of 14%. Each simulation provided outputs of the total drying duration and final rough rice 

maximum DML, average rice MC, maximum MC, and minimum MC. The rate of overdrying 

was determined by calculating the percentage of the number of rice layers in the grain bin that 

would dry to MC below 12% out of 20 layers. Table 3.3 illustrates the simulation design carried 

out for this research. 
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Table 3.3. Simulation design for assessment of implications of natural air, in-bin drying 

strategies for rough rice in the U.S Mid-south. 

 

Fan Control Strategy* 
Air Flowrate 

(m3 min-t-1) 

Initial Moisture 

Content (%, 

wet basis) 

Drying-start 

Date 

Simulation 

Year 
Drying Location 

CNA 
0.69 

(0.5 cfm bu-1) 
16 15 Aug. 

1995 to 

2014 

Jonesboro, Ark. 

EMC-NA 
1.39 

(1 cfm bu-1) 
18 15 Sept. 

West Memphis, 

Ark. 

EMC-H 
2.08 

(1.5 cfm bu-1) 
20 15 Oct.  Tunica, Miss. 

 
2.77 

(2 cfm bu-1) 
22 

 
 Stuttgart, Ark. 

 
   

 Greenville, Miss. 

* CNA – Continuous natural air fan control strategy; EMC-NA – Equilibrium moisture content controlled natural air 

fan control strategy; EMC-H – Equilibrium moisture content controlled air with supplemental heat fan control 

strategy.  
 

3.4 Statistical analysis 

Results of rough rice MC during desorption and adsorption versus temperature and water 

activity (RH in decimal) were analyzed using nonlinear regression in JMP (JMP 12.0.0, SAS 

Institute, Inc., Cary, N.C.) to estimate the empirical constants (A, B, and C) of the four EMC 

models in table 1.1. Root mean square errors (RMSEs) between the predicted and meter-

measured EMC results were calculated and compared. The RMSE was calculated by using 

equation 12. The main effects of all variables on EMC and statistical parameters were 

determined using ANOVA (JMP 12.0.0, SAS Institute, Inc., Cary, N.C.), and statistical 

significance (α) was set to 0.05.  

Excel software (Microsoft Office 2013, Microsoft Corp., Redmond, Wash.) was used to 

calculate the RMSE, Nash-Sutcliffe efficiency (NSE), and Percent bias (PBIAS) to evaluate the 
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relationships among meter-measured sample MCs, the sensor-determined MCs, and MCs 

obtained from simulation output. The NSE defines the relative magnitude of the residual 

variance compared to the measured data variance (Nash & Sutcliffe, 1970). The NSE value 

ranges between -∞ and 1; value of 1 represents a perfect match of model to observed data. The 

NSE was calculated by using equation 13. NSE value equal to zero indicates that the model 

predictions are as accurate as the mean of the observed data. The PBIAS measures the average 

tendency of the simulated data to be larger or smaller than their observed counterparts (Gupta, 

Sorooshian, & Yapo, 1999). The PBIAS value is expressed in percentage and ranges between -∞ 

and +∞ and was calculated by using equation 14.  

RMSE = √∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑠𝑖𝑚)
2𝑁

𝑖=1

𝑁
                                                       (12) 

NSE = 1 −  
∑ (𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚)

2𝑁
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑚𝑒𝑎𝑛)
2𝑁

𝑖=1

                                                  (13) 

PBIAS =  
∑ (𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚) ∗ 100𝑁

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑁

𝑖=1

                                                   (14) 

where, 𝑌𝑖
𝑜𝑏𝑠 – observed or measured rough rice MCs; 𝑌𝑖

𝑠𝑖𝑚 – simulated or sensor predicted rough 

rice MCs; and 𝑌𝑖
𝑚𝑒𝑎𝑛 – the mean of observed or measured rough rice MCs; and N – the number 

of data points.   
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4. RESULTS AND DISCUSSION 

 

4.1 Sorption isotherms estimation 

 Average EMCs of rough rice CL XL745 under various temperatures (15°C, 25°C, and 

35°C) and RHs (10%, 30%, 50%, 70%, and 90%) are listed in figure 4.1 and table 4.1. Table 4.1 

shows that rough rice EMC significantly increased when air temperature decreased, or air RH 

increased in both adsorption or desorption isotherms. Comparing the adsorption EMC and 

desorption EMC for all the three temperatures at 30%, 50%, and 70% RHs indicated that the 

average desorption EMC was 2.14 percentage point MC higher than average adsorption EMC. 

For 10% or 90% RHs, the average adsorption EMC was very similar (less than half a percentage 

point MC) to the average desorption EMC for each temperature (figure 4.1). Missing data at 

15°C and 90% RH condition was due to the limitation of the VSA to obtain data at that condition.  

For each moisture sorption model listed in table 1.1, nonlinear regression analysis was 

used to determine empirical constants A, B, and C of adsorption and desorption isotherms for the 

ranges of temperature and RH studied. The empirical constants, generated using the data listed in 

table 4.1, are listed in table 4.2 alongside the RMSEs between the predicted and the meter-

measured EMC results. The new empirical constants are also compared with the constants listed 

in ASABE Standard D245.6 (2012) in table 4.2. Modified Chung-Pfost equation was the best fit 

for the desorption isotherms with the lowest RMSE (0.54% MC in dry basis), and Modified 

Halsey equation was the best fit for the adsorption isotherm with the lowest RMSE (0.91% MC 

in dry basis).  

The sum of RMSEs (SRMSE) of modified Chung-Post equation for the desorption 

isotherms and modified Halsey equation for the adsorption isotherms resulted in the smallest 
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SRMSE (0.54% + 0.91% = 1.43% MC in dry basis); however, it seemed not theoretically 

accurate to use two sets of equations to simulate NA drying of rough rice in some temperature 

and RH conditions. For instance, figure 4.2 indicated that the predicted adsorption EMC of rough 

rice would be greater than predicted desorption EMC when air temperature and RH are at 30°C 

and 95%, respectively. Since desorption EMCs are always higher than or equal to the adsorption 

EMCs (Brooker, Bakker-Arkema, & Hall, 1992; Choi et al., 2010), the combination of modified 

Chung-Post and modified Halsey equations would generate calculation errors at the high RH 

conditions, and this error would carry over in the finite difference model and affect the accuracy 

of predicted results. Therefore, the combination of modified Chung-Post and modified Halsey 

equations was not used in the simulation to predict the EMC. Figure 4.3 illustrates the desorption 

and adsorption EMCs at temperature of 10°C to 40°C and RH of 1% to 99% as predicted by the 

modified Chung-Post equation with the desorption and adsorption constants listed in table 4.2. 

The results showed that EMC decreased as temperature increased, and desorption EMCs were 

always higher than or equal to the adsorption EMCs. In figure 4.3, the desorption and adsorption 

EMCs were also compared with EMCs of long-grain rough rice (CL XL730) predicted by the 

modified Chung-Post equation with the constants listed in study of Ondier et al. (2011) for the 

same air condition. 

The SRMSE for each equation gives an estimation of the overall difference between the 

equations. The SRMSE of Modified Halsey equation was 0.09 percentage point MC (dry basis) 

lower than the SRMSE of Modified Chung-Pfost equation (table 4.2). Previous studies had 

shown that Modified Chung-Pfost equation was the best for describing EMC of rough rice for 

different temperature and RH ranges (Sun, 1999; Iguaz & Versada, 2007; Ondier et al., 2011). 

Since only one equation could be used in the simulation model, the Modified Chung-Pfost 
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equation was selected for use in the simulation to describe desorption and adsorption EMCs of 

long-grain rough rice at various air conditions.  

 

Table 4.1. Equilibrium moisture contents of long-grain hybrid rice cultivar CL XL745 at 

temperatures ranging from 15°C to 35°C and relative humidities ranging from 10% to 90% in 

desorption and adsorption conditions. For each sorption type and relative humidity combination, 

values within individual rows followed by the same lowercase letter are not significantly 

different. For each sorption type and temperature combination, values across individual columns 

followed by the same uppercase letter are not significantly different. 

 

Relative 

Humidity 

(%) 

Temperature (°C) 

15 25 35 15 25 35 

Adsorption Equilibrium Moisture Content (%w.b.) Desorption Equilibrium Moisture Content (%w.b.) 

10 11.9 a B 10.0 ab D 9.0 b D 12.4 a' D' 9.9 b' E' 9.1 b' E' 

 30 12.3 a B 10.5 ab D 9.5 b D 13.9 a' C' 12.3 b' D' 10.8 c' D' 

50 13.3 a B 12.5 a C 12.0 a C 16.3 a' B' 15.0 ab' C' 14.0 b' C' 

70 16.1 a A 15.8 a B 15.6 a B 18.8 a' A' 18.5 a' B' 17.3 a' B' 

90  22.6 a A 22.3 a A  22.6 a' A' 22.3 a' A' 
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Figure 4.1. Equilibrium moisture contents of long-grain hybrid rice cultivar CL XL745 at 

temperatures ranging from 15°C to 35°C and relative humidities ranging from 10% to 90% in 

desorption and adsorption conditions. 

 

Table 4.2. Constants, root mean square errors (RMSEs), and sums of RMSE (SRMSEs) of 

Modified Chung-Pfost, Modified Halsey, Modified Henderson, and Modified Oswin equations 

used for predicting desorption and adsorption isotherms of long-grain rough rice  

 

Model 
Sorption 

Type 
Source 

Model Constants RMSE 

(%MC d.b.) 

SRMSE 

(%MC d.b.) A B C 

Modified 

Chung-

Pfost 

Desorption 

Experiment* 861.4998 0.2382 9.6002 0.54 1.86 

ASABE† 579.9479 0.1894 52.1784  

ASABE‡ 412.02 0.17528 39.016  

Adsorption 
Experiment* 1086.5411 0.2454 29.8549 1.32 

ASABE† 590.3090 0.1936 55.2229  

Modified 

Halsey 

Desorption 
Experiment* 10.9302 -0.0320 3.9053 0.86 1.77 

ASABE† 8.1726 -0.006112 3.3578  

Adsorption 
Experiment* 9.0526 -0.0183 3.4783 0.91 

ASABE† 8.3821 -0.01029 3.3874  

Modified 

Henderson 

Desorption 

Experiment* 8.0518 × 10-7 3.5691 21.4187 2.34 4.34 

ASABE† 2.9747 × 10-5 2.1177 79.1993  

ASABE‡ 4.1276 × 10-5 2.1191 49.828  

Adsorption 
Experiment* 8.9734 × 10-7 3.3119 93.1951 2.00 

ASABE† 3.3900 × 10-5 2.1226 73.0724  

Modified 

Oswin 

Desorption 

Experiment* 17.9920 -0.1104 5.2319 0.79 2.11 

ASABE† 13.1323 -0.02873 3.9156  

ASABE‡ 14.431 -0.07886 3.137  

Adsorption 
Experiment* 15.0560 -0.0560 4.7226 1.32 

ASABE† 13.4692 -0.04410 3.9542  

*Constants generated using JMP 12.0.0 based on the experimental result of this study for predicting desorption and 

adsorption isotherms of long-grain hybrid rough rice (cv. CL XL745).  
†Constants generated using JMP 12.0.0 based on the equilibrium moisture content data listed in ASABE Standard 

D245.6 (2012) for long-grain rough rice (cv. Inga) in desorption and adsorption conditions.  
‡Constants listed in ASABE Standard D245.6 (2012) for long-grain rough rice.  
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Figure 4.2.  Equilibrium moisture content isotherms (% wet basis) predicted by the modified 

Chung-Pfost equation in desorption condition ( ) and modified Halsey equation in adsorption 

condition ( ) at temperature of 30°C. Model constants A, B, and C of modified Chung-Pfost 

equation are 861.4998, 9.6002, and 0.2382. Model constants A, B, and C of modified Halsey 

equation are 9.0526, -0.0183, and 3.4783. 
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(c) (d) 

Figure 4.3.  Equilibrium moisture content isotherms (% wet basis) of long grain rough rice 

predicted by the modified Chung-Pfost equation from present study (desorption ( ) and 

adsorption ( ) conditions) compared to data from Ondier et al. (2011) ( ) at temperature of 

(a) 10°C, (b) 20°C, (c) 30°C, and (d) 40°C. For present study, model constants A, B, C are 

861.4998, 9.6002, 0.2382 and 1086.5411, 29.8549, 0.2454 for desorption and adsorption 

conditions, respectively. For Ondier et al. (2011) study, model constants A, B, C are 501.7992, 

23.6330, and 0.2279. 

 

4.2 Simulations for model validation  

4.2.1 Meter-measured data vs. sensor-determined data 

 Table 4.3 shows the rough rice MC which was calculated from the temperature and RH 

data corresponding to the top-most sensor on the center cable. The calculated rough rice MCs 

were compared with meter-measured MC of rough rice samples at the top-most sensor location 

of the center cable in bins A and B. RMSE values showed that the meter-measured MC data 

were 1.48 percentage point MC and 0.73 percentage point MC lower than the MC values 

calculated from temperature and RH data of in-bin sensors in bins A and B, respectively. PBIAS 

values indicated that the rough rice MC values determined using the sensor data over-predicted 

the meter-measured rough rice MC data by 7.60% and 4.54% for rice in bin A and B, 
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respectively. The variation between the meter-measured and sensor-determined MCs could be 

related to (1) variation of sampling points relative to the sensor position, (2) the accuracy of 

prediction of temperature and RH by the sensors, and (3) accuracy of the equation used to 

calculate the rough rice MC from the temperature and RH data. In this study, rice samples were 

consistently taken within 0.61 m (2 ft) radius from the sensor. It was assumed that within that 

radius, the rough rice MC variability was negligible based on recommendations provided by 

sensor manufacturing company (OPI-Systems Inc., Calgary, Alberta, Canada) for spacing the 

sensors in a 14.6 m (48 ft) diameter bin. In general, sensor-determined rough rice MC data 

followed a similar trends as meter-measured data during the drying.  

 

Table 4.3.  Sensor-determined moisture content (MC) and meter-measured MC data for rough 

rice in bins A and B; comparison of root mean square errors (RMSEs) and percent biases 

(PBIASs). Rice in the bin was sampled 1.22 m (4 ft) below the top-most layer surface at the 

center. 

 

Bin location 
Sampling 

Date 

In-bin Sensor-determined 

MC data (%w.b.) 

Meter-measured 

MC (%w.b.) 

RMSE 

(%w.b.) 

PBIAS 

(%) 

Bin A 

(Dermott, Ark.) 

12/10/2014 20.33 19.22 

1.48 7.60 
26/10/2014 20.62 19.22 

9/11/2014 19.64 17.35 

21/11/2014 14.76 14.24 

Bin B 

(Burdette, Ark.) 

13/9/2014 16.33 15.53 

0.73 4.54 
27/9/2014 16.36 16.13 

11/10/2014 13.83 12.72 

25/10/2014 13.07 12.62 

 

4.2.2 Sensor-determined data vs. simulation results 

 Since rough rice located at the center top of the bin normally suffers the greatest quality 

impact during NA, in-bin drying, simulation and validation studies focused on the center rough 
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rice temperature and MC profiles. Figures 4.4 (a) and (b) show the simulated rough rice MC 

profiles (dashed lines) and the cable sensor-determined rough rice MC profiles (solid lines) in 

bins C and D, respectively. In both bins C and D, rough rice drying progressed from the bottom 

to the top to reach 14% MC or below in about 20 days. In figures 4.4 (a) and (b), the simulated 

rough rice MC profiles of the first five layers were similar to those of sensor-determined data. 

Fluctuations observed in results of figures 4.4 (a) and (b) are attributed to higher temperature and 

lower RH of air during the day compared to lower temperature and higher RH of air at night.  

Figures 4.5 (a) and (b) illustrate the simulated rough rice temperature profiles (dashed 

lines) and the center cable sensor-recorded temperature profiles (solid lines) in bins C and D, 

respectively. As the air moved from the bottom to the top, the air temperature decreased due to 

evaporative cooling. Consequently, S1 (representing sensor 1, bottom-most sensor) recorded the 

highest temperature, and S6 (representing sensor 6, top-most sensor) recorded the lowest 

temperature for most of the drying duration (figure 4.5). Figures 4.5 (a) and (b) indicate that the 

rough rice temperature profiles determined using the sensors had lower daily temperature 

fluctuations than the temperature profiles from simulations. The reason could be due to the fact 

that in modeling of the rice drying, heat conduction and convection between the outside 

environment and the bin were assumed negligible.   

For EMC-NA fan control strategy, if both the bottom layer rough rice MC and the air 

EMC are greater than set EMC limit, the fan operation will be stopped to avoid rewetting. 

Therefore, in figures 4.4 and 4.5, sections of the simulated rough rice MC and temperature 

profiles with horizontal straight lines (highlighted with boxes) indicated that the fans were turned 

off around 12 October. The increase in temperature and MC would be attributed to rough rice, 

bacteria, and mold respirations. The breakdown of rice carbohydrate produced heat, CO2, and 
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water. Typically, rough rice with higher MC has a higher respiration rate. Comparing the rough 

rice MC and temperature increments between different layers in both bins around 12 October, it 

was noted that the upper layer of rough rice with the highest MC had the highest MC and 

temperature increments, and the lower layer of rough rice with the lowest MC had the lowest or 

no MC and temperature increments (figures 4.4 and 4.5). Higher respiration rate along with 

increasing temperature and MC also imply higher DML of the rough rice (equation 8). It is also 

reasonable that after the fan operation was stopped, the sensor-determined rough rice MC and 

temperature slowly increased due to the air and the rough rice having considerably longer time to 

reach true equilibrium. 

Statistical comparisons of sensor-determined and simulated MC data of rough rice in bins 

C and D are listed in table 4.4 (a). The RMSEs of MC of rough rice in all layers for both bins 

were lower than or equal to 0.70% MC, except for the RMSE of the 6th layer of rice in bin C 

which was 1.07% MC. The NSE values indicated that except for the 6th layer of rice in bin C and 

1st layer of rice in bin D (NSEs = 0.42 and -0.33, respectively), the simulated results of rough 

rice MC profiles of the other ten layers in both bins predicted well the sensor-determined rough 

rice MC data (NSEs > 0.45). PBIAS values indicated that simulated results of the rough rice MC 

profile of the 6th layer of rice in bin C overestimated the sensor-determined rough rice MC 

profile by 5.76%, and the rest of the eleven layers in both bins had PBIAS values between -

3.53% and 3.22%. The faster drying rate of top layer rice in bin C could be due to nonuniform 

airflow in the grain mass. Uniform airflow throughout the grain mass could be restricted by 

materials other than grain (MOGs), such as fines and empty kernels. Comparing tables 4.3 and 

4.4 (a), all PBIAS and RMSE values of simulated rough rice MC profiles versus sensor-

determined rough rice MC profiles were less than the lowest PBIAS and RMSE values of sensor-
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determined rough rice MC data versus meter-measured rough rice MC data, respectively, except 

the RMSE of the 6th layer of bin C. The statistical parameters indicated that overall rough rice 

MC prediction was accurate (table 4.4 (a)).  

Statistical comparisons of sensor-recorded and simulated rough rice temperature data for 

bins C and D are listed in table 4.4 (b). The RMSEs were between 1.47°C and 2.28°C, and the 

NSEs were equal to or greater than 0.45. Similar to the results of MC comparison in bin C, the 

6th layer of rice had the largest (in negative) PBIAS value which indicated that the simulated 

rough rice temperature profile underestimated the sensor-recorded rough rice temperature profile 

by 3.07%. The rest of rough rice layers in bin C had PBIAS values between -1.46% and 1.78%. 

The PBIAS values of results from bin D showed that all the simulated rough rice temperature 

profiles underestimated the sensor-recorded rough rice temperature profiles by -3.54% to -2.07% 

in bin D. So, the rough rice temperature prediction in bin D was precise but not accurate. Based 

on statistical analysis listed in table 4.4 (b), the rough rice temperature prediction followed a 

similar trend as sensor-recorded rough rice temperature data. In table 4.4 (b), RMSE values of 

the 1st rough rice layer of bin D showed it that had about 10% (2.28°C × (23°C)-1 × 100%) 

temperature difference from the sensor-recorded data, but PBIAS of same layer showed that the 

prediction error was just -3.54% which was much smaller than the difference calculated based on 

RMSE. The reason was that RMSE took into account all the differences (∑(Yobs-Ysim)2), but the 

overestimation and underestimation values cancelled each other out in the PBIAS calculation (∑

(Yobs-Ysim)). Therefore, it is important to determine the NSE value to point out if the two sets of 

data match each other based on the variance (∑(Yobs-Ysim)2/(∑(Yobs-Ymean)2).  

Mean RMSE, NSE, and absolute PBIAS values of bins C and D are listed in table 4.4. 

For bins C and D, the mean RMSEs of rough rice MC are 0.54±0.29% MC and 0.57±0.10% MC, 
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respectively, the mean NSEs of rough rice MC are 0.79±0.23 and 0.68±0.50, respectively, and 

mean absolute PBIASs of rough rice MC are 2.23±2.00% and 2.37±0.97%, respectively (table 

4.4 (a)). All mean RMSE, NSE, and absolute PBIAS values of rough rice MC between bins C 

and D were not significantly different (α = 0.05). The mean RMSE, NSE, and absolute PBIAS 

values of rough rice MC indicated that the simulation accurately predicted rough rice MC 

profile. However, the mean RMSE and the mean absolute PBIAS of rough rice temperature in 

bins C (1.58±0.11°C and 1.11±1.21%, respectively) were significantly smaller than the mean 

RMSE and the mean absolute PBIAS of rough rice temperature in bin D (1.91±0.21°C and 

2.96±0.69%, respectively). Also, the determined mean NSE of rough rice temperature in bin C 

(0.83±0.03) was significantly higher than that in bin D (0.49±0.04) (α = 0.05). The statistical 

analysis indicated that the rough rice temperature profile predictions for bin C were more 

accurate than the temperature profile predictions for bin D. The variations between the results 

from the simulation and sensor-determined profiles could be due to the following reasons: (1) the 

EMC prediction difference. Under the same temperature and RH environment, the hysteresis was 

2.14 percentage point MC (figure 4.1). Therefore, if the EMC calculation does not consider 

adsorption and desorption effects, the error on rough rice MC profile can be up to 2.14 

percentage point MC under the same air condition. However, this could not be readily verified 

because the equation for predicting the EMC at the field was not disclosed to the researches due 

to proprietary reasons. (2) Sensing errors. As discussed in section 4.2.1, the RMSE between 

sensor-determined rough rice MC and meter-measured rough rice MC data were as large as 1.48 

percentage point MC (table 4.3). (3) Weather condition difference. Weather plays a significant 

role in NA, in-bin drying. Since weather station, located at Greenville, Mississippi, was about 48 
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km (30 miles) from the location of the bins, the slight differences in weather condition between 

the two locations could lead to different drying patterns.  
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Figure 4.4. Comparison of moisture content (MC) determined using in-bin, center cable sensor 

data and simulations. Solid lines represent the in-bin cable sensor-determined data (S1-6), and 

the dashed lines represent the simulation results (Layer1-6). Layer1 and S1 represent the first 

(bottom-most) layer MC, and Layer2 and S2 represent the second layer MC. The sensors were 

1.22 m (4 ft) apart; therefore, Layer6 and S6 are 7.32 m (24 ft) from the perforated screen floor. 

(a) bin C; (b) bin D. 
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Figure 4.5. Comparison of in-bin, center cable sensor-recorded temperature and simulated rough 

rice temperature results. Solid lines represent the in-bin cable sensor readings (S1-6), and the 

dashed lines represent the simulation results (Layer1-6). (a) bin C; (b) bin D. 

 

Table 4.4. Statistical parameters (Root mean square errors (RMSEs), Nash-Sutcliffe efficiencies 

(NSEs) and percent biases (PBIASs)) used to evaluate model performance for bins C and D. (a) 

comparison of moisture content calculated from sensor data of temperature and relative humidity 

and simulation, (b) comparison of temperature recorded by sensor and determined by simulations. 

 
(a)      Moisture Content Comparison 

Bin C 

Layer 1 2 3 4 5 6 Mean 

RMSE (% w.b. MC) 0.41 0.32 0.64 0.48 0.30 1.07 0.54±0.29* 

NSE 0.60 0.95 0.85 0.94 0.97 0.42 0.79±0.23* 

PBIAS (%) 0.46 -1.43 -3.31 -1.66 -0.73 5.76 2.23±2.00† 

Bin D 

Layer 1 2 3 4 5 6 Mean 

RMSE (% w.b. MC) 0.60 0.41 0.53 0.53 0.67 0.67 0.57±0.10* 

NSE -0.33 0.83 0.83 0.93 0.93 0.91 0.68±0.50* 

PBIAS (%) 3.22 -0.87 -1.98 -1.99 -3.53 -2.65 2.37±0.97† 

*Number represents one standard deviation from the mean. Mean = ∑ (𝑌𝑖)𝑁
𝑖=1 𝑁⁄  

†Number represents one standard deviation from the mean absolute PBIAS. Mean absolute PBIAS = ∑ (|𝑌𝑖|)
𝑁
𝑖=1 𝑁⁄  

 

(b)      Temperature Comparison 

Bin C 

Layer 1 2 3 4 5 6 Mean 

RMSE (°C) 1.77 1.47 1.55 1.60 1.62 1.47 1.58±0.11* 

NSE 0.81 0.87 0.85 0.83 0.80 0.82 0.83±0.03* 

PBIAS (%) -1.46 0.06 1.78 0.12 0.17 -3.07 1.11±1.21† 

Bin D 

Layer 1 2 3 4 5 6 Mean 

RMSE (°C) 2.28 2.04 1.83 1.82 1.82 1.69 1.91±0.21* 

NSE 0.56 0.48 0.46 0.50 0.50 0.45 0.49±0.04* 

PBIAS (%) -3.54 -3.96 -2.48 -2.85 -2.83 -2.07 2.96±0.69† 

*Number represents one standard deviation from the mean. Mean = ∑ (𝑌𝑖)
𝑁
𝑖=1 𝑁⁄  

†Number represents one standard deviation from the mean absolute PBIAS. Mean absolute PBIAS = ∑ (|𝑌𝑖|)
𝑁
𝑖=1 𝑁⁄  
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4.3 Simulations to assess impact of in-bin rough rice drying strategies 

 The implications of using fan control strategies (CNA, EMC-NA, and EMC-H) on 

duration of drying and maximum DML for rough rice at IMCs ranging from 16% to 22%, 

drying-start dates of 15 August, 15 September, and 15 October, air flowrates ranging from 0.69 

to 2.77 m3 min-t-1 (0.5 to 2.0 cfm bu-1) are shown in figures 4.6 and 4.7, respectively. Each error 

bar was constructed using 1 standard deviation from the mean. For each type of fan control 

strategy, rough rice with higher MC required longer drying duration; the higher the air flowrate, 

the shorter the drying duration. The results (figure 4.6 (a), (b), and (c)) show that operating 

EMC-H fan control strategy resulted in the shortest drying duration while EMC-NA fan control 

strategy had the longest drying duration; the drying duration increased when the rough rice 

drying started late in the year. EMC-NA fan control strategy had the largest drying duration 

difference between different drying-start dates followed by CNA strategy, and EMC-H fan 

control strategy showed small difference between different drying-start dates. For example, for 

rough rice at IMC of 20%, drying using 0.69 m3 min-t-1 (0.5 cfm bu-1) air flowrate resulted in 

drying duration of 42, 57, and 35 days when the drying was started on 15 August for CNA, 

EMC-NA, and EMC-H fan control strategies, respectively; but the same strategies resulted in 

drying durations of 44, 70, and 35 days for the 15 September and 55, 89, and 36 days for the 15 

October drying-start dates, respectively. The reason was that EMC-NA and CNA fan control 

strategy were largely dependent on the weather conditions. The EMC-H fan control strategy 

allowed lowering the air EMC using heater, thereby lengthening the window of drying duration 

in a day.  

 For each type of fan control strategy, the rice with higher IMC suffered higher maximum 

DML, and the higher air flowrate reduced the maximum DML of rice in the bin. The maximum 



46 

 

DML of rice for different drying-start dates is shown in figure 4.7. The maximum DML 

decreased when the drying started later in the year under the same air flowrate, IMC, and fan 

control strategy (figure 4.7). For example, rough rice at IMC of 22% dried using EMC-H fan 

control strategy with 0.69 m3 min-t-1 (0.5 cfm bu-1) air flowrate resulted in maximum DML of 

0.37% when the drying started on 15 August, and the maximum DML reduced to 0.27% or 0.22% 

when the drying started one month or two months later, respectively. The reason could be that 

temperature plays a paramount role in the DML equation as expressed by Seib et al. (1980). 

Generally, temperature of air drops as winter approaches, and the respiration rates of rough rice 

and microorganism on rough rice drops as well; therefore, rough rice maintains lower DML 

when temperature is lower. For rough rice with the same IMC and dried in bins with the same 

height, air flowrate, and fan control strategy, drying duration was related to drying-start date, but 

rough rice maximum DML was inversely related to drying-start date. Also, DML in excess of 0.5% 

indicates the quality of rough rice depreciated and thus reduced grade value (USDA-FGIS, 1994). 

The rough rice with maximum DML is could be found on the top layer of the drying bed which 

remains at high rough rice MC for longer duration than the bottom layers. 

 The large standard deviations (SDs) of drying duration or maximum DML for each data 

in figures 4.6 and 4.7 were caused by yearly and geographic weather differences. Assuming the 

result is a normal distribution, 68.3% of values lie within one SD above or below the mean. For 

each fan control strategy, comparing SDs of drying duration and maximum DML between 

different drying strategy combinations, the magnitudes of SDs of drying duration or maximum 

DML and magnitudes of drying duration or maximum DML were directly related, respectively. 

For instance, similar to drying duration, SDs also decreased when IMC decreased, or air flowrate 

increased. Comparing the overall SDs of drying duration and maximum DML for different fan 
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control strategies, the EMC-H fan control strategy resulted in much smaller SDs compared to 

other two fan control strategies and led to smaller differences in the SDs between different IMCs, 

drying-start dates, and air flowrates (figures 4.6 and 4.7). The results of using EMC-H fan 

control strategy showed that the ranges of SD of drying duration and maximum DML were 

between 0.6 and 2.5 days, and 0.00% to 0.03%, respectively. In general, the variation in drying 

duration and maximum DML resulted from yearly and geographic weather differences; EMC-H 

fan control strategy showed the highest resistance to the weather difference compared to CNA 

and EMC-NA fan control strategies.  
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(c) 

Figure 4.6. Effect of initial moisture content, fan control strategy (*CNA, EMC-NA, and EMC-

H), air flowrate (  0.69,  1.39,  2.08, and  2.77 m3 min-t-1), and drying-start date ((a) 15 

August, (b) 15 September, and (c) 15 October) on rough rice drying duration. Each error bar was 

constructed using 1 standard deviation from the mean. *CNA – Continuous natural air fan 

control strategy; EMC-NA – Equilibrium moisture content controlled natural air fan control 

strategy; EMC-H – Equilibrium moisture content controlled air with supplemental heat fan 

control strategy. 
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(b) 

 

(c) 

Figure 4.7. Effect of initial moisture content, fan control strategy (*CNA, EMC-NA, and EMC-

H), air flowrate (  0.69,  1.39,  2.08, and  2.77 m3 min-t-1), and drying-start date ((a) 15 

August, (b) 15 September, and (c) 15 October) on rough rice maximum dry matter loss. Each 

error bar was constructed using 1 standard deviation from the mean. *CNA – Continuous natural 

air fan control strategy; EMC-NA – Equilibrium moisture content controlled natural air fan 

control strategy; EMC-H – Equilibrium moisture content controlled air with supplemental heat 

fan control strategy. 

 

The effects of the studied drying strategies on minimum, maximum, and average final 

rough rice MC and percent overdrying of rough rice are shown in figure 4.8. The cross (×) and 

circular solid (●) marks represent the percent overdrying and the average final MC of the rough 

rice, respectively. The upper and lower limits of the solid box ( ▌) represent the average of the 

maximum and minimum final MCs attainable in the rough rice for the corresponding fan control 
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strategy, respectively. For example, in figure 4.8 (a) the simulations are performed with air 

flowrate of 0.69 m3 min-t-1 (0.5 cfm bu-1); the left-most data of figure 4.8 (a) represents rough 

rice at IMC of 16%, drying from 15 August with fan control strategy set such that NA was 

continuously passed through the rough rice for 90 days or stopped earlier when rough rice in the 

top layer dried to a MC of 14%.  

Based on the simulations, the feasibility to dry rough rice successfully, to the target MC, 

becomes questionable as the drying-start date delays from 15 August to 15 October, the air 

flowrate reduces from 2.77 m3 min-t-1 to 0.69 m3 min-t-1 (2.0 cfm bu-1 to 0.5 cfm bu-1), and rough 

rice IMC increases from 16% to 22%, especially for EMC-NA fan control strategy (figure 4.8). 

For a normal distribution, there are about 32% of values lying outside of one SD above or below 

the mean. Thus, if the upper error bar of drying duration exceed 90 days, it indicates that top 

layer rough rice had at least 16% chance of not being able to dry completely, and the maximum 

final MC and possibly the average final MC of rough rice would exceed 14%. For example, 

rough rice with 20% or 22% IMC was not dried successfully when the drying started from 15 

October using EMC-NA fan control strategy at air flowrate of 0.69 m3 min-t-1 as both average 

and maximum final MCs exceeded 14% (figure 4.8 (a)), and upper error bars of drying duration 

exceeded 90 days (figure 4.6 (c)). However, when CNA strategy was used, although upper error 

bars of drying duration were below 90 days in studied conditions (figure 4.6), figure 4.8 showed 

that all maximum final MCs were above 14% MC except in some cases when air flowrate was 

2.77 m3 min-t-1 (2 cfm bu-1); in some extreme cases, average final MCs were also above 14%. In 

the studied simulations, termination of the drying was executed when the top layer rough rice 

MC was 14% or after 90 days of drying. Evidently, the top layer rough rice MC was not the 

maximum final MC in the drying bed when CNA strategy was used. The reason for choosing top 
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layer rough rice MC to execute termination of simulation, instead of the highest MC layer of the 

whole rice bed, was because rice producers traditionally recognize that the drying operation 

would be completed when the top layer rough rice MC is lower than 14%. However, in actual 

practice, there is a possibility that air with high EMC may rewet the middle layer to exceed 14% 

MC when running fan continuously, as observed in the simulation results. Without the “cabling 

and sensing system” installed in the bin, the rice producers have no way to find out the MC of 

each layer of the rice bed. This problem may potentially result in rice quality reduction, 

especially for the under-dried rice layers at MC exceeding 14% MC.  

In the simulations, the target average MC of rough rice was set at 13% to represent what 

the rice industry considers to be the safe short-term storage MC for rough rice (IRRI, 2010). The 

lower limit of rough rice MC (MC of 12%) was set to take into account the need to avoid 

shrinkage related costs, which bear negative economic consequences to producers. High percent 

overdrying represents high economical loss to the rice producers. High overdrying was observed 

in the rice bed only for conditions with fans operated under CNA strategy. When the simulations 

were conducted using CNA strategy at air flowrate of 0.69 m3 min-t-1 (0.5 cfm bu-1), the percent 

overdrying increased, and the percent overdrying also increased. The maximum percent 

overdrying was 41.7% when rough rice with 22% IMC was dried from 15 September using CNA 

strategy at air flowrate of 2.77 m3 min-t-1 (2 cfm bu-1). In some drying cases using CNA fan 

control strategy, the minimum final MC was larger than 12%, but the percent overdrying was 

larger than zero. For example, when rough rice with 22% IMC was dried from 15 August using 

CNA strategy at air flowrate of 1.39 m3 min-t-1 (1 cfm bu-1), the resulting minimum final MC 

was 12.4% and the percent overdrying was 8.6%. This could be explained by the fact that the 

minimum final MCs and percent overdrying represent average of data obtained after individual 
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simulations which used a total of 20 years (1995-2014) of weather data at five locations; there 

might be a need to design drying guidelines by considering location-related effects.  

For EMC-NA or EMC-H fan control strategies, when both the bottom layer rough rice 

MC and plenum air EMC are above the set EMC high limit (14% MC), the control system would 

stop the fan operation or turn on the heater, respectively. Therefore, once a layer in the rice bed is 

dried below 14% MC, the layer cannot be rewetted to exceed 14% MC. Thus, the top layer rough 

rice has the maximum final MC in the bin and is the last layer to dry to 14% MC. Also, the fan-

operation window narrows as the rough rice MC approaches the targeted EMC (equation 11). For 

EMC-H and EMC-NA fan control strategies, the fan operation stops when both the bottom layer 

rough rice MC and plenum air EMC are less than the set EMC low limit; air which could overdry 

the rough rice is not permitted into the bin through the rice when the average rough rice MC is 

close to the targeted MC. Therefore, percent overdryings were nearly zero for all studied 

conditions when the fan was operated under the EMC-H and EMC-NA strategies (figure 4.8). 

The dynamic EMC low limit are regulated such that at the beginning, the bottom layer of grain 

was slightly overdried (equation 11); as the drying front moves to the top, the rice in the bottom 

layer slightly rewets and progressively and slowly increases to 12% MC. Ideally, the dynamic 

EMC low limit will speed up the drying duration. In actual operation, the success of dynamic 

EMC low limit is depended on the accuracy of the sensors, and sensor failure may cause 

significant overdrying or rewetting of the bottom layer of rice. Therefore, dynamic EMC low 

limit is often implemented manually in actual field scenarios. For example, the set EMC low 

limit of bin A was manually changed from 8.5% to 9.5% to 10.5% MCs as the drying progressed 

(table 3.2).  
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(c) 

 

(d)  

Figure 4.8. Effects of initial moisture content, fan control strategy, drying-start date, and air 

flowrate ((a) 0.69 m3 min-t-1 (0.5 cfm bu-1), (b) 1.39 m3 min-t-1 (1 cfm bu-1), (c) 2.08 m3 min-t-1 

(1.5 cfm bu-1), and (d) 2.77 m3 min-t-1 (2 cfm bu-1)) on percent overdrying (right Y-axis) and 

minimum, maximum, and average final moisture content of rough rice (left Y-axis); The cross (×) 

and circular solid (●) marks represent the percent overdrying and the average final MC of the 

rice bed, respectively. The upper and lower limits of the solid box ( ▌) represent the average of 

the maximum and minimum final MCs attainable in the rice bed. *CNA – Continuous natural air 

fan control strategy; EMC-NA – Equilibrium moisture content controlled natural air fan control 

strategy; EMC-H – Equilibrium moisture content controlled air with supplemental heat fan 

control strategy.  
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5. CONCLUSION AND FUTURE RESEARCH 

 

5.1 Equilibrium moisture content determination 

 Adsorption and desorption isotherms of long-grain hybrid rough rice (cultivar CL XL745) 

were determined, and the result showed the average desorption EMC was higher than average 

adsorption EMC, and rough rice EMC significantly increased when air temperature decreased, or 

air RH increased. Four empirical EMC models (modified Chung-Pfost, modified Halsey, 

modified Henderson, and modified Oswin) were fitted with actual data, and constants for 

predicting both adsorption and desorption EMCs were established. The modified Halsey and 

modified Chung-Pfost equations best predicted EMCs of long-grain hybrid rough rice for 

adsorption and desorption conditions, respectively. The modified Chung-Pfost equation and 

associated adsorption and desorption constants were selected for the simulation study.  

 

5.2 Simulations for model validation  

 On-farm, in-bin drying systems, equipped with sensors for automatic monitoring of grain 

temperature and RH in the bin, were used to validate a developed model for NA, in-bin drying of 

rough rice in Arkansas locations. Rough rice MC data determined by field sensors over-predicted 

the meter-measured MCs by 4.54% and 7.60%, and the RMSEs were 1.48% MC and 0.73% MC 

for drying bins located at Burdette and Dermott, Arkansas, respectively. The slight difference 

between results from field sensors and moisture meter measurements may be attributed to (1) 

variation of sampling points relative to the sensor position, (2) the accuracy of prediction of 

temperature and RH by the sensors, and (3) accuracy of the equation used to calculate the rough 

rice MC from the temperature and RH data. 
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 Simulation results of rough rice MC and temperature from the developed model were 

compared with field sensor-determined profiles for rough rice drying with EMC-NA fan control 

strategy. The mean RMSEs of rough rice MC and temperature were less than 0.57±0.10% MC 

and 1.91±0.21°C, respectively; mean NSEs of rough rice MC and temperature were greater than 

0.68±0.50 and 0.49±0.04, respectively; PBIAS range of rough rice MC were between -3.53% 

and 5.76%; PBIAS range of rough rice temperature were between -3.96% and 1.78%. These 

statistical parameters indicated that the simulated rough rice MC and temperature profiles 

predicted well the rough rice temperature and MC data, determined using field sensors.  

 

5.3 Simulations to assess impacts of in-bin rough rice drying strategies 

 The implications of fan control strategies, IMC, drying-start date, and air flowrate on in-

bin drying of rough rice at Jonesboro, West Memphis, and Stuttgart in Arkansas, and Greenville 

and Tunica in Mississippi were investigated. Drying simulations were performed using the 

PHAST-FDM model which was modified for rice. The simulations provided useful information 

to guide rice producers achieve successful rice drying. For example, figure 5.1 illustrates the 

critical operation ranges for various drying strategies that will limit rice drying within one month 

while maintaining maximum DML and percent overdrying equal to or lower than 0.5% and 10%, 

respectively.  
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Figure 5.1. Critical operation ranges for various drying strategies including initial moisture 

content (16%, 18%, 20%, and 22%w.b.), fan control strategy (*CNA, EMC-NA, and EMC-H), 

air flowrate (0.69, 1.39, 2.08, and 2.77 m3 min-t-1), and drying-start date (15 August, 15 

September, and 15 October), that will limit rough rice drying within one month while 

maintaining DML and percent overdrying of equal or lower than 0.5% and 10%, respectively. 

The green squares with diagonal stripes ( ) represent the suitable drying operation range, and 

the red squares with no diagonal stripes ( ) represent the unsuitable drying operation range. 

*CNA – Continuous natural air fan control strategy; EMC-NA – Equilibrium moisture content 

controlled natural air fan control strategy; EMC-H – Equilibrium moisture content controlled air 

with supplemental heat  fan control strategy. 

 

In general, EMC-H fan control strategy for in-bin drying of rough rice had the fastest 

drying rate, low percent overdrying, and high resistance to yearly and geographic weather 

differences (i.e. compared to other two fan control strategies); therefore, the drying duration and 

maximum DML were relatively consistent year by year. EMC-NA fan control strategy resulted 

in slower drying rate, low percent overdrying, and lower resistance to yearly and geographic 

Air Flowrate, m3 min-t-1 (cfm bu-1)
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weather differences; therefore, the drying duration and maximum DML varied year by year. 

Compared to EMC-NA fan control strategy, using CNA fan control strategy would be slightly 

faster and have slightly better weather resistance in terms of drying duration and maximum DML; 

however, the CNA may bear three disadvantages: (1) high percent overdrying, (2) negative 

quality impacts caused by rice overdrying and rewetting, and (3) potential safety concerns of 

mold growth leading to formation of mycotoxin.  

 

5.4 Future studies 

 In future, very carefully controlled lab and field studies that simulate in-bin rough rice 

drying are recommended to determine the kinetics of grain quality reduction. The determined 

results should be integrated in the models developed to provide robust results. Such results 

should address the kinetics of head rice yield reduction, rice discoloration, mold growth, and 

formation of mycotoxins. While conducting such experiments in the field, the following should 

be considered to obtain useful results: (1) implications of common cultural practices such as bin 

coring, bin leveling, comingling of rice, use of grain spreader, levels of MOGs in rice, and 

harvesting methods; and (2) year by year climate changes which may affect the choice of drying 

strategy in a specific location. 
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