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Abstract 

A shift in public demand towards more organic and locally produced fruit and vegetables 

has been occurring across the United States in recent years. A common practice in organic fruit 

production is the application of organic ground covers to supply nutrients while enhancing other 

soil properties. A need for research exists in the southern region of the U.S. examining the 

effects of regionally applicable ground cover and nutrient management on nitrogen availability 

and the microbial community to provide information to organic farmers in the region. Two 

studies were conducted to determine how 12 treatment combinations of four ground covers 

(compost, wood chips, paper mulch, and mow-and-blow) and three organic fertilizers (poultry 

litter, organic commercial fertilizer, and a no-fertilizer control) applied every year in April from 

2006 to 2013 affected soil properties. In the first study, soils from March 2007 and 2013 were 

analyzed to determine the long-term effects of the treatment combinations on soil chemical and 

biological properties at the 0-10 and 10-30 cm depths. In addition, denaturing gradient gel 

electrophoresis (DGGE) was performed on soil microbial DNA to determine if treatment 

additions over time had altered the denitrifying community. In the second study, soil biological 

and chemical properties were measured at the 0-10 cm soil depth before (March) and after (May) 

yearly ground cover applications (April) to determine how nutrient contents and microbial 

populations responded to additions immediately (May) and long-term (March) and if responses 

were the same each year or changed through life of the orchard. Organic matter increased 

through time regardless of ground cover treatment, with compost resulting in the greatest 

increase from 1.84 % in 2007 to 5.29 % in 2013. Soil water content, electrical conductivity, 

microbial biomass nitrogen (N), ammonium (NH4
+-N), and nitrate-N were all greater in 2013 

than in 2007. Microbial species richness (R) was greatest in 2013 in soil receiving compost and 



 

wood chips compared to the other ground cover treatments and R in those two ground covers 

also increased significantly from 2007 to 2013. Shannon-Weaver index of diversity in 2013 

progressed from greatest to least in the order of compost ≥ wood chips ≥ paper ≥ mow-and-blow 

control with diversity in wood chips significantly increasing from among the lowest diversity in 

2007 to among the highest diversity in 2013. The second study revealed many treatment 

differences that were not apparent in the first study when comparing only the beginning and end 

of the study. Soil organic carbon (C) and N, microbial biomass C and N, NH4
+-N, and enzyme 

activities increased through time, peaked during 2009-2011, and declined to levels with 

relatively few differences between 2007 and 2013 values. Denitrifying communities (nirK) 

analyzed by DGGE, were a sensitive indicator of treatment effects responding to ground cover 

treatments in 2007. The trends through time in dissolved nutrients and microbial biomass suggest 

that the microbial community was not growing continually over time, but shifting in composition 

and diversity of nirK-containing organisms and possibly other groups facilitating N-cycling.  
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1. Introduction 

Organic management of crops in the United States has increased rapidly in recent years, 

with sales increasing 69% from 2008-2014 (NASS, 2015a). Apples were the top-grossing 

organic fruit crop in 2014, with $250 million in sales. However, organic production and organic 

sales are not evenly distributed throughout the country. Organic crop sales were greatest in the 

same regions where the most production took place, concentrated in the northeast, north central 

and western U.S. (NASS, 2015a). The climate in these regions is favorable for apple production 

and organic management. Consequently, the high density of apple orchards and research 

programs in place in the northeast and northwest are the major source of organic management 

data collected in the U.S. to date. In the southeast, naturally occurring soil organic matter (OM) 

content is generally low in Ultisols, the predominant soil order of the region (Eswaran et al., 

2002). In addition, humid and warm temperatures promote insect, disease, and weed growth 

(Harvell et al., 2002). Although the number of organic farms in Arkansas is less than 50, over 

90% of the crops were sold within 100 miles of the farm (NASS, 2015a). Consumer demand for 

locally produced food has also been increasing; the National Agricultural Statistics Service 

(2015b) reported nationwide increases in the number of farmers markets (180%), regional food 

hubs (288%), and farm-to-table programs at schools (430%) since 2006.  

Orchards are perennial systems requiring long-term management strategies to ensure their 

success. Nutrient supply is necessary in all systems, along with disease and pest protection as 

well as weed control, especially in humid climates such as is found in the southeastern U.S.  

Ground covers are frequently applied as a management strategy in organic orchards to meet 

some of these needs and include a wide variety of living and non-living materials, such as 

nitrogen fixing legumes, animal manure, compost, and plant or plastic based mulch. Organic 
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matter supply and decomposition by microorganisms provide nutrients essential to the survival 

of the apple trees. However, management goals must include limiting N losses from soil. Besides 

losing N, nitrate leaching and/or incomplete denitrification can contribute to atmospheric and 

aquatic pollution. If managed properly, organic ground covers can provide both immediate and 

lasting benefits to soil quality, including increased OM, cation exchange capacity (CEC), soil 

microbial activity, and reduced nitrate concentrations (Marriot and Wander, 2006; Hansen et al., 

2001; Yao et al., 2005).  

A range of impacts from application of organic amendments has been reported in various 

cropping systems worldwide. Goyal et al. (1999) reported increases in soil C and N and 

microbial biomass in integrated systems utilizing a pearl millet/wheat rotation on a sandy loam 

soil receiving inorganic fertilizer added with wheat straw, farmyard manure, or legume cover 

crop compared to synthetic fertilizer only.  Compost and poultry litter also increased biological 

activities in a degraded soil in a semi-arid region of Spain and increased potentially 

mineralizable C and N pools and basal respiration in a citrus orchard in Italy (Canali et al., 

2004). TerAvest et al. (2010) reported highest N accumulation and uptake efficiency with 15N 

labeled compost applied with wood chip mulch compared to a legume cover crop or tillage in a 

Washington apple orchard on a sandy loam. Kramer et al. (2006) reported decreased nitrate 

pollution, increased denitrification potentials, denitrification rates, and denitrification efficiency 

with increased OM and microbial activity when nutrients were supplied by alfalfa or compost 

additions compared to soils receiving synthetic fertilizers only in another Washington apple 

orchard.  

In contrast, others reported problems with nitrogen loss, through leaching or 

denitrification. Pimentel et al. (2005) observed a greater percent of added N lost as nitrate in a 
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silt loam soil from a legume system than an animal based or conventional management of row 

crops. The legume system provided excess N in some years and loss was exacerbated by 

environmental factors (heavy fall and winter rains). However, in an orchard system similar to 

this study, Hoagland et al. (2008) reported a lack of N supply from wood chips compared to 

legume based ground covers. Wood chip addition caused short-term N immobilization and 

retained soil moisture which increased tree growth, but also encouraged N loss through 

denitrification.  

Denitrification is a step-by-step pathway that ultimately reduces NO3
- to N2, by nitrate, 

nitrite, nitric oxide, and nitrous oxide reductases (Zumft, 1997). Denitrification has wide-

reaching economic and environmental impacts because nitrous oxide is a greenhouse gas and a 

potential product of denitrification. Bacterial denitrification proceeds when nitrate, soluble 

organic carbon, limited oxygen and denitrifying organisms are present. Denitrification has been 

well studied in systems with both conventional and organic management. However, impacts of 

organic ground cover and nutrient source amendments on denitrification from perennial systems 

with low organic matter soils characteristic of the southeastern U.S. are not as well studied, and 

less is known about the long-term effects of repeated soil amendments on the denitrifier 

community.  

An organic orchard was established in Fayetteville, AR in 2006 to obtain regionally 

applicable data concerning a wide range of challenges experienced by local farmers. Two studies 

were conducted to assess the effects of seven years of annual ground cover (compost, shredded 

paper, wood chips, and mow-and-blow as an informal control) and fertilizer (poultry litter, 

commercial, no fertilizer control) treatment combinations to an organically managed apple 

orchard soil.  The first study compared treatment effects in 2007 and 2013 at 0-10 cm and 10-30 



4 

cm on soil properties necessary for denitrification to occur and the denitrifying community, using 

denaturing gradient gel electrophoresis (DGGE) to investigate nirK-harboring organisms change 

over time. I hypothesized that treatments where substrate availability (OM, DOC, NO3
-) and soil 

conditions (pH, temperature, water content) were most conducive to denitrification, microbial 

biomass and nirK-community richness and diversity would be greatest.  

The intent with agricultural management is to create an efficient N cycling community 

that is larger, diverse and more responsive to additions and can adapt to change as well as 

simultaneously limit N losses. Therefore, the second study was an assessment of treatment 

effects on available soil C and N and microbial biomass and activity from 2007-2013 before and 

after annual treatment applications. It was hypothesized that treatments which add more organic 

matter will have larger and more active soil communities in response to substrate availability and 

treatments with low C:N ratios will result in more mineralization and greater amounts of 

inorganic N. Overall, investigating the effects of ground covers and organic fertilizers in a low 

organic matter soil under climatic conditions of the humid southeastern U.S. will provide much 

needed insight into management of perennial horticultural systems. 
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2. Literature Review 

2.1 Nitrogen Cycle 

 A biogeochemical cycle consists of pools and fluxes. In conceptualizing biogeochemical 

cycles, pools are organizational units where various forms of nutrients are grouped. Fluxes are 

the flows between pools, with many biogeochemical processes driven by microorganisms. 

Investigating the fluxes between these nutrient pools and the processes driving them is 

paramount in efficient management of a system. Terrestrial nitrogen (N) pools include organic 

and inorganic N in the soil, N contained in plant biomass, and gaseous forms of N in the soil 

atmosphere. Pools vary in size and tend to be inversely proportional to the rate of turnover. For 

example, dinitrogen is an inert gas that is reduced by prokaryotes during dinitrogen fixation, a 

process that consumes a large amount of energy. Inorganic N, conversely, is a small pool that is 

rapidly turned over. Inorganic forms of N, ammonium (NH4
+) and nitrate (NO3

-) are most readily 

taken up by plants, but small organic molecules may also be immobilized. Organic soil N 

originates from plant and animal residues in forms either available to microorganisms or resistant 

to breakdown. Conversion of organic N into inorganic N by microorganisms is referred to as 

mineralization. 

 

2.1.1. Mineralization/Immobilization 

During mineralization, heterotrophic microorganisms including bacteria, fungi and 

actinomycetes release enzymes that aid in the breakdown of large organic molecules.  

Specifically, proteins and humic compounds are broken down into simpler amino acids, amides, 

and amines, the amino groups are hydrolyzed, and NH4
+ is released into the soil solution. 

Immobilization is the opposite of mineralization; inorganic forms of N are converted into organic 
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forms of N. The amount of nitrogen mineralized or immobilized may be affected by the C:N 

ratios of the substrate and microorganisms (Frankenberger and Abdelmagid, 1985), as well as, 

the microbial respiration rate and ATP content, an indicator of microbial biomass and microbial 

activity (Bengtsson et al., 2003). Immobilization of soil N by microbes occurs when there is a 

deficit of N (high C:N ratio) in the substrate being decomposed and thus inorganic N becomes 

incorporated into biomass of the microorganisms and is not available for plant uptake. Cookson 

and Murphy (2004) reported that removing the dissolved organic matter pool, a source of N and 

C, resulted in a decrease in potentially mineralizable N and a decrease in gross mineralization. 

Barrett and Burke (2000) conducted a study on grassland soils from Texas to Montana and 

observed that the highest rates of immobilization occurred in soils containing with higher C:N 

ratios. Microorganisms use inorganic N in the soil solution to synthesize proteins and other N 

containing compounds essential to their life. 

When organic amendments and fertilizers are being added to stimulate plant growth, the 

transformation of N from organic to plant available inorganic forms can be examined to gain a 

better understanding of the specific needs of the system. The ability and efficiency of the 

microbial community to decompose the substrate and transform the organic N into inorganic 

forms has implications on the amount of fertilization that needs to occur.  Measuring organic C 

and N, potentially mineralizable nitrogen, microbial biomass, and inorganic N will develop a 

picture of how these processes are unfolding. 

 

2.1.2. Nitrification 

Nitrate is the form of inorganic N that is commonly present under oxidized conditions. 

Nitrification involves two transformations of N, the enzymatic oxidation of NH4
+ to NO2

-, and 
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NO2
- to NO3

- occurring quickly thereafter. Rapid nitrite oxidization to nitrate is imperative 

because even low levels of nitrite can be toxic to plants. Two groups of aerobic bacteria are 

involved in nitrification. Nitrosomonas and Nitrosopira are the primary two genera of ammonia 

oxidizing bacteria (AOB) (Head et al., 1993), while Nitrobacter is the most commonly isolated 

genera of nitrite oxidizing bacteria; all are in the family Nitrobacteraceae (Grigorova and Norris, 

1990).  

Bacteria are not alone among nitrifying organisms. Heterotrophic nitrification was 

observed under cultured conditions by Foct and Verstraete (1977) and has since been recognized 

as important in forest soils (Schimel et al., 1984; Brierley, 2001). Leininger et al. (2006) looked 

at 12 soils of varying textures, geographic locations, and management and found in all soils 

sampled that the amoA gene copies of the ammonia oxidizing archaea (AOA) were more 

abundant than the ammonia oxidizing bacteria (AOB) amoA gene copies, with the greatest 

difference in the ratio of AOA:AOB being  > 1000:1 occurring in the deepest sampled depth (30-

40 cm). However, the authors suggest that abundance of AOA’s may or may not have a direct 

relationship to ammonia oxidization. Offre et al. (2009) and Taylor et al. (2012) lend evidence to 

support that AOA do contribute to ammonia oxidation in soils. Current research will continue to 

shed light on the importance of AOA in soils. Another group of organisms that can perform 

ammonia oxidation are in the order Planctomycetes and are capable of anaerobic oxidation—

referred to as anammox (anaerobic ammonium oxidation) (Strous et al., 1999). Hu et al. (2011) 

reported the natural environments that anammox have been identified and include freshwater, 

terrestrial, extreme environments and the largest contribution in marine ecosystems.  The recent 

developments in ammonia oxidizer diversity add to the excitement and importance of studying 

soil microbial ecology in order to better manage cropping systems.  
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Nitrate is of significant importance because nitrate is plant available but is mobile and 

can be leached from soils creating an environmental hazard. Therefore, understanding the factors 

that affect these processes such as temperature, moisture and pH is essential. Aerobic processes 

such as mineralization and nitrification proceed at their maximum rates near 60% water – filled 

pore space (Linn and Doran, 1984a). Similarly, Mahli and McGill (1982) reported nitrification 

occurs more quickly in soils at or near field capacity than at either lower or higher moisture 

contents. 

 Temperature is another factor that affects nitrification rates as illustrated by a study 

conducted on three soils in Alberta, Canada. Nitrification rates increased from 4 to 20 °C, with 

greatest rates of nitrification between 10 and 20 °C. The variation in these findings is evidence 

that the selection for nitrifiers with either high or low temperature optimums varies with climate 

(Mahli and McGill, 1982). The high rates observed at these temperatures do not coincide with 

other studies in warmer climates.  For example, Myers (1975) reported the optimum nitrification 

temperature of approximately 35 °C in a clay-loam tropical soil. 

 In addition to temperature and moisture, soil pH affects nitrification. Morrill and 

Dawson (1967) examined 116 soils over a range of pH values; these were split into four groups 

with averages of 7.85, 6.38, 5.39, and 5.12. The group with the average pH of 6.38 exhibited the 

fastest oxidation of ammonium to nitrite with the least nitrite accumulation. These findings have 

been reproduced many times throughout the years, with culturable nitrifers having an optimal pH 

of 7.5-8.0 (Prosser, 1989), but without culturing all nitrifiers this may not be an accurate 

representation of the whole population. Acid tolerant nitrifiers do exist and have been observed 

in a variety of environments. Pennington and Ellis (1993) observed acidic nitrification in forest 

and grassland soils and attributed this to autotrophic oxidation as opposed to heterotrophic 
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oxidation.  Nitrification is an acidifying process, and the microbial community existing in 

different soils under different environmental conditions will respond uniquely. There is a need to 

analyze soil microbial communities of interest with regards to nitrification and the influence of 

organic amendments and fertilizers on silt loam soils to gain further understanding of how these 

processes will proceed in perennial systems given the change in conditions with different ground 

cover and nutrient source management. 

 Nitrate can be lost from soil in surface runoff, leached to groundwater, volatized, or 

denitrified if conditions become anaerobic. When dealing with organic systems, losses of 

greatest importance are leaching and denitrification. Nitrates leached from the soil can 

contaminate aquatic systems. Surface runoff is also a major problem in fertilized agricultural 

fields receiving soluble inorganic N fertilizers. Soluble inorganic fertilizers are easily transported 

in the soil solution and runoff. It is widely accepted that excess N in surface waters and 

groundwater cause eutrophication. Eutrophication can lead to algal blooms resulting in decreased 

oxygen concentrations in the water column followed by potential harm or death of aquatic 

organisms. In order to avoid costly N losses and environmental hazards, a balanced and efficient 

N cycling community must be strived after.  

 

2.1.3. Denitrification 

Heterotrophic bacterial denitrification is the transformation of nitrate to gaseous forms of 

N (NO, N2O, N2) catalyzed by nitrate reductase (Nar), nitrite reductase (Nir), nitric oxide 

reductase (Nor) and nitrous oxide reductase (Nos). Each reduction in the denitrification pathway 

can be accomplished by a variety of organisms carrying the genes that code for the enzymes 

responsible for reductions. While heterotrophic bacterial denitrification is generally the most 
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predominant and has been the most widely studied of the processes in surface soil, there are 

other denitrifying organisms. Autotrophic bacteria that denitrify use inorganic sources as the 

electron donor (Straub, 1996). Fungi perform denitrification and have been found to contain Nor 

(Uchimura et al., 2001) and Nir (Kobayashi et al., 1995). Some have reported that denitrification 

by fungi dominates denitrification by bacteria in soils (McClain and Martens, 2006; Laughlin 

and Stevens, 2002). Denitrification by archaea occurs by both assimilatory and dissimilatory 

pathways (Martinez-Espinosa et al., 2001); however, much less is known about archaeal 

denitrification comparatively. Nitrifiers have been found to produce N2O as a by-product of 

AOB (Hooper and Terry, 1979) as well as a step in the production of N2 from NO2
- (Wrage et al., 

2001). Aerobic denitrification has also been discovered in the last decade (Su et al., 2004; Okada 

et al., 2005). This new knowledge will surely change understanding of the nitrogen cycle.  

Heterotrophic bacterial denitrifiers use dissolved organic carbon as a carbon source and 

nitrate as the terminal electron acceptor in anaerobic respiration.  Aerobic respiration is at a 

maximum at 60% water filled pore space and begins to decline above this point (Linn and 

Doran, 1984a; Linn and Doran, 1984b). Denitrification occurs when the soil water content is 

great enough to result in sufficient lack of oxygen limiting aerobic respiration, at approximately 

80% water filled pore space (Linn and Doran, 1984a; Linn and Doran, 1984b). Soil texture 

affects denitrification rates and products. Maag and Vinther (1960) exposed soils with six 

different soil textures to varying water contents and temperatures. They found increasing 

temperature and soil moisture increased denitrification rates in sandy loam soil, while only 

temperature increased rates in coarse sandy loam and the ratio of N2 to N2O was lower in coarse 

sandy loam than sandy loam soil. Soil pH also affects denitrification. In a review of 50 years of 

pH and denitrification dynamics, Simlek and Cooper (2002) stated that acidic soils do not 
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produce as much N gas as neutral or slightly alkaline soils and suggested that this may be related 

to acidic effects on nutrient availability or adaptations by the organisms. Acidic soils often had a 

greater N2O:N2 ratio (Simlek and Cooper, 2002).  

 Denitrification is temporally and spatially variable because of dependence on oxygen 

level and substrate availability in soils, and can be concentrated in hotspots. These microsites of 

high rates of denitrification were examined by Parkin (1987) by taking soil samples from a 

Beltville silt loam. Parkin (1987) optimized all factors that control denitrification in all samples 

and observed variability that can be attributed to the dispersion of the enzymes controlling 

denitrification. In the samples where hotspots occurred, 25-85% of the denitrification activities 

were associated with particulate organic matter content of the sample.  

 

2.2. Challenges in Microbiology 

 The study of microbial ecology is challenging. The greatest causes for this challenge are 

that microorganisms cannot be seen with the unaided eye and that they are dynamic in response 

to changes in the environment. There are a number of methods that can be used to identify, 

count, classify and analyze microbial actions and interactions. The methods used to study 

microbial ecology have expanded in the recent past. However, despite advancement with new 

technologies, ultimately, microbial ecology is a methods-limited discipline.  

Serial dilutions and culturing on selective media is the traditional method of studying soil 

microorganisms. This method alone cannot be used to grasp the scale of microbial activity in the 

soil. There are species that exist in the soil that cannot survive under cultivated conditions. 

Therefore, there are species that have never been cultured because appropriate methods for 

culturing these organisms have not yet been optimized or discovered (Amann et al., 1995). Soil 
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is a habitat for a wide range of microorganisms, each unique in many ways. As a result, it is 

impossible to develop one method to isolate all soil microorganisms (Bakken, 1997). Cultivation 

conditions do not mimic those of the organism’s natural habitat and frequently oversimplify 

ecological interactions, making it difficult to extrapolate relevance of results to the soil 

environment. Thus, microbial ecologists often take a multi-pronged approach to studying 

microbial communities in soil. Methods may focus on microbial abundance and biomass, activity 

and function, and community structure and diversity.      

 

2.3. Microbial Biomass 

 In order to understand the N cycle, microbial ecologists are interested in the size of the 

microorganism pool. Decomposition is largely completed by microorganisms; therefore, it is 

important to know the amount of microorganisms present. Options to quantify this pool include 

cell counts or measuring microbial biomass. Counting cells is challenging because it is difficult 

to differentiate among cells and/or between cells and soil particles.  It is possible that an 

ecologist would just be concerned with a specific group of organisms; however, measuring 

microbial biomass is a viable option when concerned with the entire pool. Microbial biomass 

helps to address the functional redundancy of a system. Functional redundancy refers to the 

ability of many groups of organisms to perform the same ecological function. For example, many 

bacteria and fungi are heterotrophic decomposers of organic matter performing the same 

ecological function. It is important to measure microbial biomass when studying soil ecology 

because microbial biomass is the center for biological activity in soils, an indicator of soil 

fertility (Beck et al., 1997). Microbial biomass has an approximate turnover time of one to two 

months (Davidson et al., 1992), and because of this microbial biomass is a sensitive indicator of 
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fluxes in the system that may not be immediately observable in the passive or stable organic 

matter pools. Measuring this pool before or and after fertilization or some other environmental 

change is one way to determine how responsive the community is to the change. Microbial 

biomass C and N can both be measured as a function of the soil microbial biomass. 

 Microbial biomass can be measured in a number of ways, but there are three common 

methods: chloroform fumigation-incubation, chloroform fumigation-extraction method, and 

substrate-induced respiration method (SIR). Beck et al. (1997) examined ten different variations 

of three common methods, using 20 different soils, to see how closely the results for microbial 

biomass C were related. All variations ranked the soils in virtually the same order according to 

amount of microbial biomass C in the soil suggesting that the results of the three methods are 

similar enough for comparison. There are advantages and disadvantages to these methods that 

are worth noting. Relevant to this study, a disadvantage to the chloroform-fumigation extraction 

technique is the possibility of causing harm to the cells and that would lead to an under-

estimation of microbial biomass. However, the chloroform-fumigation extraction method is 

advantageous when compared to the chloroform-fumigation incubation method because the 

extraction method takes significantly less time and does not require a carefully controlled 

incubation and as a result there is no need for correction of loss of N through denitrification 

(Brookes et al., 1985). Duxbury and Nkambule (1994) stated that the largest disadvantage with 

the fumigation methods is that results are affected if the C:N ratio is too wide, which is generally 

not known before the procedure is completed. A general disadvantage of using microbial 

biomass to indicate soil quality is that the size of the pool is affected by the amount and quality 

of substrate in the soil and can be temporarily elevated as a response to additions (Duxbury and 
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Nkambule, 1994). A limitation of the microbial biomass approach is that all microorganisms are 

treated equally, and thus, there is no differentiation of organisms in the biomass. 

2.4. Enzymes 

It is not only important to know how much biomass or how many organisms are present 

but to also know what those organisms are doing. The function of the organisms and the capacity 

of the system are valuable in understanding nutrient cycles. One way to assess the function of 

soil microorganisms is to measure the enzymatic activity. Enzymes are proteins that catalyze 

chemical reactions and each is unique to the type of reaction they are catalyzing. Enzymes 

catalyze several reactions necessary to microbial life including decomposition of organic 

materials, formation of organic matter, and nutrient cycling (Dick, 1994). Soil contains free 

enzymes, immobilized enzymes, and enzymes in microbial cells (Tabatabai and Dick, 2002). 

Biochemical reactions depend on the enzymes in soil and the available energy sources found in 

the substrate (Kiss et al., 1978).  

 Enzyme activities are particularly useful in determining soil health because they change 

sooner than other measurable variables, can be analyzed using simple procedures, and are closely 

related to microbial activity (Das and Varma, 2011; Dick et al., 1996). Depending on the process 

of interest and the enzymes involved in the process, different methods can be used.  A particular 

method of interest in determining the presence and amount of enzyme activities is the 

colorimetric method. Substrate is added to a solution containing a sample of microorganisms and 

subjected to non-limiting conditions. When the enzyme present in the sample cleaves the 

substrate specific to the enzyme of interest, a colored product is formed. The color of the product 

depends on the substrate that is added to the solution. Once the reaction is complete, the colored 

solution can be analyzed using a spectrophotometer and compared to standards in order to assess 
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the amount of enzymatic activity in that sample. In the case of glucosaminidase, a key enzyme 

involved in the breakdown of large N-containing molecules into labile amino sugars, a p-

nitrophenyl compound is the substrate added to the soil and the yellow colored product is p-

nitrophenol (Eivazi and Tabatabai, 1990).   

 

2.5. Denaturing gradient gel electrophoresis  

 Many molecular based techniques to investigate the microbial community in soil rely on 

polymerase chain reaction (PCR) to amplify specific DNA fragments, or sequences, within a 

given genome of interest, including denaturing gradient gel electrophoresis (DGGE). DGGE 

separates DNA fragments of the same length according to their denaturing points allowing for 

discrepancies in sequences to be visualized (Fischer and Lerman, 1983).  This technique is 

implemented in order to get a “picture” of the diversity of a given microbial community.  

 Extraction of DNA is required before PCR or DGGE can be performed. In soils, a bead-

beating procedure is commonly performed for DNA extraction. Beads are placed with a sample 

that is shaken vigorously in lysing buffer; cells are physically lysed and DNA is released into the 

solution. After the DNA in solution is separated from other compounds, the three-step PCR 

amplification process takes place. First, samples are heated to denature DNA, temperatures are 

then lowered to allow for annealing of primers, and the primers will be extended and new DNA 

strands will be synthesized through the activity of a heat-stable DNA polymerase such as Taq 

polymerase derived from the thermophilic organism Thermus aquaticus and free nucleotides. A 

primer is a sequence of DNA that is designed to bind to fragments of DNA that are unique to the 

gene that is being amplified. Primers can be designed to target a taxonomically diverse to narrow 

group of organisms.  
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Relevant to this study, primers have been designed previously to successfully target 

genes associated with the processes involved in denitrification.  For example, the nosZ gene of 

denitrification is targeted because it encodes the catalytic subunit of nitrous oxide reductase. In a 

study completed by Henry et al. (2006), a comparison of the nirK, nirS, and nosZ genes was 

conducted. By targeting the nosZ gene it was determined that only 5% of the bacterial 

community studied contained the nitrous oxide reductase gene. 

Denaturing gradient gel electrophoresis consists of a polyacrylamide gel that has a 

gradient of substances that denature or separate the strands of DNA; commonly this is a mixture 

of urea and formamide. Denaturing gradient gel electrophoresis should not be confused with 

agarose gel electrophoresis that is used to visualize PCR products separated by fragment size. In 

contrast, DGGE separates by sequences of DNA because of the denaturants in the gel. The DNA 

will reach a point in the gradient where the area in the DNA with the lowest melting point 

denatures; here, because the DNA gene fragment contains a guanine-cytosine (GC) clamp (i.e. a 

sequence of about 40 G and C base pairs) the molecule will stop and form a band in the gel 

(Muyzer and Smalla, 1997). Adding a GC-clamp to the 5’ end of the PCR primer will enhance 

the detection of sequence variants from 50% to nearly 100% (Myers et al., 1985; Sheffield et al. 

1989). In order to achieve the most vivid separation of DNA fragments, the optimal gradient and 

duration must be experimentally determined (Muyzer and Smalla, 1997).  

 Denaturing gradient gel electrophoresis is often used to study community complexity. 

DGGE has been used to profile microbial mat and biofilm communities, as well as, communities 

around hydrothermal vents (Muyzer et al., 1993; Muyzer et al., 1995). DGGE can also be used to 

detect changes in a microbial community over time, which is helpful when studying how the 

community is affected after changes occur in the environment. One of the major limitations of 
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the method is the small size of fragments that can be separated, up to 500 base pairs (Myers et al. 

1985). Also, only the dominant species in the sample will be detected. It has been shown that 

populations that make up 1% or more of the community will be detected with DGGE (Muyzer et 

al., 1993; Murray et al., 1996). 

 

2.6. Organic Amendments 

Orchards are perennial systems requiring long-term management strategies to ensure their 

success. Many factors affect orchard management decisions, initial characteristics of site location 

are crucial in making these decisions. Soil physical, chemical and biological characteristics are 

among factors that need to be addressed. Challenges arise when an orchard is managed 

organically. In this case, all synthetics including inorganic fertilizers are replaced with organic 

fertilizers and/or organic amendments. The most apparent benefit of organic soil amendments is 

the addition of organic matter. Soil organic matter consists of the decomposing plant and animal 

residues along with the microbial biomass performing decomposition and the chemical products 

and byproducts of biochemical processes (Lal, 2007).  

Research investigating differences between organic, integrated, and conventional systems 

provide positive feedback for organic management, citing a range of benefits to soil health. 

Increased OM, and soil microbial activity as well as reduced nitrate leaching are among the 

benefits observed. Yao et al. (2005) compared pre and post-emergence residual herbicide, 

mowed-sod, and hardwood bark mulch ground covers in an apple orchard on a silty clam loam. 

Higher OM (80%), cation exchange capacity (CEC), calcium (Ca) and phosphorus (P) 

availability, pH and respiration were observed in the mulch treatment. The higher respiration rate 

was most likely a direct effect of the microbial decomposition of the mulch. Organic farming 
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added OM resulting in a 14% increase in the soil organic carbon fraction compared to 

conventional management system and was beneficial in increasing N availability (Marriot and 

Wander, 2006).  

Soil ammonification and nitrification in conventional and organic tomato cropping 

systems in California were compared. Burger and Jackson (2003) reported that the greater OM 

supply increased microbial activity and led to a greater N supply that lasted into the growing 

season.  Kramer et al. (2006) reported organically managed soil decreased nitrate pollution, 

increased denitrification potentials, denitrification rates, and denitrification efficiency while 

increasing the OM and microbial activity of the soil. Nitrate leaching was greater in the 

conventionally managed soil, and the highest N2 emissions were observed in the organically 

managed soils while the N2O emissions were not significantly different. In regards to N cycling, 

the ability of a microbial community to fully carry out denitrification, with N2 as the end product, 

has many environmental implications. Hansen et al. (2001) also reported nitrate leaching was 

greater in conventional than in organic systems. In contrast, Pimentel et al. (2005) observed 

similar and more nitrate leaching when comparing two organic plots with conventional 

management. An organically managed legume supplied twice as much N as needed and heavy 

winter rains along with summer drought stunted corn and led to more N loss because of reduced 

N uptake by the corn (Pimentel et al., 2005). 

Despite these research data, the evidence that organically grown fruit production 

produces more or higher fruit quality is not as strong or clear as the evidence for increased soil 

health. Peck et al. (2006) compared productivity and fruit quality in organic, integrated, and 

conventionally managed apple orchards. All productivity and fruit quality parameters were 

variable among the treatments and over time, possibly as a result of a biennial bearing pattern in 
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the organic system. The only parameters that were significantly better in organically managed 

fruit were higher anti-oxidant levels and better and longer storage capacity. Roussos and 

Gasparatos (2009) also found variable results in their comparison and concluded that the 

conventional and organic systems exhibited similar quality characteristics and lower yield. 

However, greater market value for organic apples could possibly make up the difference in the 

lack of yield.  Reganold et al. (2001) compared organic, integrated, and conventional apple 

orchards in Washington State from 1994 to 1999. Along with increased soil quality and less 

negative environmental impact, sweeter apples and higher profitability were reported. There was 

no significant difference in the yield of apples among the three systems.   

A variety of organic amendments exist that may contain any combination of C, N, 

potassium (K), P, micronutrients or other molecules, which may be helpful for plant growth 

when released during decomposition. If managed properly, organic amendments such as ground 

covers can provide a slow release of essential nutrients, increase infiltration, reduce erosion, 

provide weed control, and improve soil structure and tilth. Not every amendment will provide the 

needs of a particular system in the same way, some may actually provide excess beyond 

requirements and losses will occur. The goal of organic N management is to facilitate efficient 

internal terrestrial N cycling without promotion of N losses, especially as those can result in 

atmospheric and aquatic pollution. Ground covers are applied to the surface of the soil and have 

both immediate and lasting effects.  Ground covers protect against wind, buffer temperature 

fluctuations by protecting the soil surface from drying out (Snyder and Connell, 1993). Ground 

covers block seeds from entering the soil and germinating, and thus provide some weed 

management. Ground covers have also been reported to have effects in reaching below the 
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topsoil. Larney et al. (2004) reported increased nitrate from compost, manure, alfalfa, and straw 

amendments at the 15-30 cm depth one year after application. 

Ground cover and organic fertilizer treatments are being tested around the world to 

determine which locally available materials work well in a particular system and produce desired 

results. Tejada (2006) added two organic amendments, a crushed cotton gin compost and poultry 

manure, to a degraded soil in a semi-arid region of Spain. Both of the treatments increased 

biological activities of the soil, but the poultry manure exhibited a greater increase in microbial 

biomass and enzymatic activities. Canali et al. (2004) showed limited effects of compost and 

poultry litter applications in a citrus orchard in Italy, but did observe greater amounts of 

potentially mineralizable C and N pools and a greater basal respiration rate. Baldi et al. (2010) 

compared compost applied at two rates (10 and 5 t/ha/yr), cattle manure (10 t/ha/yr) and a 

mineral fertilizer in a peach orchard and concluded that the higher rate of compost applied (10 

t/ha/yr) restored fertility and could be used in the management of the orchard. Excess nitrate in is 

a concern when a large amount of compost is applied, but nitrate concentrations were not 

significantly different among the treatments for most of the sampling dates, even though SOM 

was different (Baldi et al., 2010). Mineralization and N release of SOM may not only be 

dependent on the concentration of SOM, which would explain the similar levels of nitrate across 

treatments. 

Granatstein and Mullinix (2008) compared a variety of inert and living mulches with the 

goals of weed control, increasing water retention and providing N to organic fruit trees in the 

Pacific Northwest. Wood chips, shredded paper, and clover provided the best weed control and 

mulched plots retained 15-20% more moisture than unmulched plots. Alfalfa hay, wood chips, 

and paper contributed to the highest infiltration rates. Alfalfa provided the most N of all of the 
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treatments with the clovers having similar results; the high N treatments resulted in negative 

effects on fruit quality and the alfalfa induced alternate bearing patterns. The moisture benefits of 

wood chips are also described in Hoagland et al. (2008), but wood chips did not provide enough 

N to the apple trees as determined by foliar samples and did not stimulate microbial activity. 

However, the results are over a two-year period in a newly established orchard and more time 

may be needed to see the full benefits of the mulch. Wood chips provided better conditions for 

apple trees than legume cover crops, which outcompeted the new trees for nutrients (TerAvest et 

al., 2010). From the literature, there is a consensus for the need for more research on ground 

covers and organic systems in general, to fully understand these systems and processes and aim 

to increase production and soil health without accumulating excess nutrient concentrations and 

contributing to non-point source pollution.   

Ground covers and organic fertilizers have significant impacts on the microbial system to 

which they are applied. Microorganisms mediate N cycling and the processes affected by of the 

integration of environmental, physical, chemical, and biological factors. Organic matter increases 

overall soil health and is the backbone of organic systems with the potential to create an 

environment that can sustain plant life without the addition of inorganic fertilizers. However, 

excess N can pollute water and the atmosphere. Soil and molecular analyses can diagnose the 

demand for N revealing inefficiencies within the system and how the treatments are affecting 

microbial communities at various depths in the profile. The intent is to create an efficient N 

cycling community that is diverse and responsive to additions and can adapt to change and 

simultaneously limit N losses. Investigating the effects of the ground covers and organic 

fertilizers in a specific soil under conditions unique to the southern U.S. will give much needed 

insight into management of these perennial orchard systems. 
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3. Denitrifier Community Response to Seven Years of Ground Cover and Nutrient 

Management in an Organic Apple Orchard Soil 

 

Keywords: denitrification, microbial community, nitrogen, organic, ground cover, DGGE 
 

3.1. Abstract 

 

Ground cover addition is common in organic orchard management and can serve multiple 

purposes such as providing a nutrient source while protecting the soil surface. In the current 

study, twelve treatment combinations of one of four ground covers (compost, wood chips, paper 

mulch, and mow-and-blow) combined with one of three organic fertilizers (poultry litter, organic 

commercial fertilizer, and no-fertilizer control) were applied every year in April from 2006 to 

2013. Soil was sampled in March 2007 and 2013 to determine the short and long-term effects of 

the treatment combinations on soil chemical and biological properties at the 0-10 and 10-30 cm 

depths. In addition, denaturing gradient gel electrophoresis (DGGE) was performed to determine 

if treatment additions over time had altered the denitrifying community. Organic matter (OM) 

increased through time regardless of ground cover treatment, though compost increased OM the 

most from 1.84 % in 2007 to 5.29 % in 2013. Soil water content, electrical conductivity, 

microbial biomass N, ammonium-N, and NO3
--N, which were all greater in 2013 than in 2007. 

Microbial species richness (R) was greatest in 2013 in soil receiving compost and wood chips 

compared to the other ground cover treatments, and R in those two ground covers also increased 

significantly from 2007 to 2013 (P <0.0001). Shannon-Weaver index of diversity (H) in 2013 

progressed from greatest to least in the order of compost ≥ wood chips ≥ paper ≥ mow-and-blow 

control with diversity in wood chips significantly increasing from among the lowest diversity in 

2007 to among the highest diversity in 2013. At the 10-30 cm soil depth, there was a main effect 

of ground cover on organic matter content (P = 0.0445) ranging in order from compost (1.78 %) 

≥ wood chips (1.61 %) > paper (1.56 %) ≥ mow-and-blow control (1.46 %). There were no 
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significant interactions or main effects of ground cover, fertilizer or year on the ecological 

indices calculated from the DGGE profiles at the 10-30 cm soil depth.  In the 0-10 cm soil depth,  

microbial species richness (R), diversity (H and D), and evenness (J and E) in compost 

treatments was greater than wood chip or mow-and-blow treatments, which coincided with 

elevated DOC concentrations in compost treatments in 2007. The nirK community responded to 

wood chip treatments, significantly over time with greater species richness and diversity in 2013. 
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3.2. Introduction 

 

Orchards are perennial systems requiring long-term management strategies to ensure their 

success. Nutrient supply is necessary in all systems, along with disease and pest protection and 

weed control in many systems, especially humid climates such as those found in the southeastern 

United States.  One way to meet some or all of these needs in organic systems is with the 

application of ground covers, which encompass a wide variety of living and non-living materials, 

such as nitrogen fixing legumes, animal manure, compost, and plant or plastic based mulch. If 

managed properly, organic amendments including organic, ground covers such as those used in 

this study (compost, shredded paper, wood chips, and a mow-and-blow control) can have both 

immediate and lasting effects, including a slow release of essential nutrients, increased 

infiltration, wind protection and reduced erosion, weed control, and improved soil structure. The 

goal of organic nitrogen (N) management is to facilitate efficient internal terrestrial N cycling 

without promotion of N losses, especially as those can result in atmospheric and aquatic 

pollution. Microbial decomposition and nutrient cycling are the driving force behind the supply 

of nutrients to the crop in organically managed agriculture.  Through the addition and subsequent 

decomposition of organic matter, microbial activity is stimulated. Processes involved in the N 

cycle can be altered, depending on the inputs of organic substrates and the resultant changes in 

microbial community composition. Microbial activity and the soil nutrient cycling services they 

provide play a significant role in healthy soil functioning.   

Denitrification is a microbial mediated process and a mechanism of soil N loss having 

wide-reaching economic and environmental impacts. Nitrous oxide is a greenhouse gas and a 

potential product of denitrification. Denitrification has been well studied in both conventional 

and organic management systems. However, impacts of organic ground cover and nutrient 
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source amendments on denitrification from perennial systems with low organic matter soils 

characteristic of the southeastern U.S. are not as well studied, and even less is known about long-

term effects on the denitrifier community.  

Research investigating differences between organic, integrated, and conventional systems 

provides positive feedback for organic management, citing a range of benefits to soil health. 

Increased organic matter (OM), cation exchange capacity (CEC), soil microbial activity, and 

reduced nitrate leaching are among the benefits observed (Marriot and Wander, 2006; Hansen et 

al., 2001; Yao et al., 2005). Kramer et al. (2006) reported apple orchard soil in Yakima, 

Washington supplied with nutrients from alfalfa or compost additions had decreased nitrate 

pollution and increased denitrification potentials, rates, and efficiency with increased OM and 

microbial activity when compared to soils receiving synthetic fertilizers only. In contrast, 

Pimentel et al. (2005) compared two organic management treatments, a legume based row crop 

rotation and an animal based row crop rotation with a conventionally managed row crop rotation 

system, and observed more added N lost as nitrate in a silt loam soil from the legume system, 

which was exacerbated in some years by environmental factors.  

Ground covers used in organic systems have included a multitude of materials. There are 

also a vast amount of organic fertilizers available. Ground cover and organic fertilizer treatments 

are being studied to determine which combinations of materials work well. Tejada (2006) added 

crushed cotton gin compost and poultry manure to a degraded soil in a semi-arid region of Spain. 

While both increased biological activities of the soil, there was a greater increase in microbial 

biomass and enzymatic activities with poultry manure addition. 

Others also reported positive impacts with compost addition, Canali et al. (2004) 

observed greater potentially mineralizable C and N pools and a greater basal respiration rate in a 
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citrus orchard in Italy. Baldi et al. (2010) compared compost applied at two rates (10 and 5 t ha -1 

yr -1), cattle manure (10 t ha -1 yr -1) and a mineral fertilizer to a silty loam soil in an Italian peach 

orchard and concluded that the higher rate of compost applied (10 t ha -1 yr -1) restored fertility 

by increasing soil OM and supporting fruit production. Even though various amounts of OM 

were added to the soil, nitrate levels were not significantly different among the treatments for 

most of the sampling dates, indicating mineralization of OM was not solely dependent on 

amount applied (Baldi et al., 2010).  

Granatstein and Mullinix (2008) compared a variety of inert and living mulches with the 

goal of weed control, increasing water retention and providing N to organic fruit trees in the 

Pacific Northwest. Alfalfa mulch and white clover mowed and burned treatments contributed to 

greater percent leaf N in the last two years of the study, while wood chips, shredded paper, and 

clover provided the best weed control, and mulched plots retained 15-20% more moisture than 

unmulched plots. TerAvest et al. (2010) applied wood chips mulch, legume cover crop, and 

tillage fertilized with 15N labeled composted poultry litter in an apple orchard on a sandy loam in 

central Washington State and observed the greatest benefits in N accumulation and uptake 

efficiency from wood chip additions. However, in a similar study on organic apple orchard 

management strategies conducted also conducted in central Washington, Hoagland et al. (2008) 

reported a lack of N supply from wood chips compared to legume based ground covers. Addition 

of wood chips caused short-term N immobilization and retained soil moisture which increased 

tree growth but also encouraged N loss through denitrification. From the literature, there is a 

consensus for the need for more research on ground covers and organic systems in general in 

order to fully understand these systems and processes with the overall goal of increasing 
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production and soil health without accumulating excess nutrient concentrations and contributing 

to non-point source pollution. 

Denitrification is a step-by-step pathway that ultimately reduces NO3
- to N2, by nitrate, 

nitrite, nitric oxide, and nitrous oxide reductases (Zumft, 1997). Each reduction in the 

denitrification pathway can be accomplished by a variety of organisms carrying the genes that 

code for the enzymes responsible for reductions. Bacterial denitrification proceeds when nitrate, 

soluble organic carbon, limited oxygen and denitrifying organisms are present. Denitrifiers use 

dissolved organic carbon as a carbon source and nitrate as the terminal electron acceptor in 

anaerobic respiration.  Aerobic respiration is at a maximum at 60% water filled pore space and 

begins to decline above this point; thus, denitrification occurs when the soil water content is 

great enough to result in sufficient lack of oxygen limiting aerobic respiration, at approximately 

80% water filled pore space (Linn and Doran, 1984a; Linn and Doran, 1984b). Soil texture 

affects denitrification rates and products. Maag and Vinther (1960) exposed soils with six 

different soil textures to varying water contents and temperatures. They found increasing 

temperature and soil moisture increased denitrification rates in sandy loam soil, while only 

temperature increased rates in coarse sandy loam and the ratio of N2 to N2O was lower in coarse 

sandy loam than sandy loam soil.  

Soil pH also affects denitrification. In a review of 50 years of pH and denitrification 

dynamics, Simlek and Cooper (2002) state that acidic soils do not produce as much N gas as 

neutral or slightly alkaline soils and suggest this may be related to acidic effects on nutrient 

availability or adaptations by the organisms. Acidic soils often had a greater N2O:N2 ratio 

(Simlek and Cooper, 2002).  
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To gain insight into the community diversity and the relative contribution of organisms to 

the functional potential of denitrification, diversity and abundance of denitrification genes can be 

analyzed. There are two nitrite reductase genes, copper containing (nirK) and cytochrome cd1 

containing (nirS) which are functionally the same and are each found in a large number of 

diverse organisms in soils (Coyne et al., 1989; Braker et al., 1998; Hallin and Lindgren, 1999; 

Heylen et al., 2006). In this study, I targeted nirK, to better understand the denitrifier community 

diversity and potential to contribute to terrestrial N loss; nirK has been shown to work well in 

environmental samples and with denaturing gradient gel electrophoresis (DGGE) (Throbäck et 

al., 2004).  

Soil and molecular analyses can diagnose the demand for N and reveal inefficiencies 

within the system and how the treatments are affecting microbial communities at various depths 

in the profile. The intent with agricultural management is to create an efficient N cycling 

community that is diverse and responsive to additions and can adapt to change and 

simultaneously limit N losses. Investigating the effects of ground covers and organic fertilizers in 

a low organic matter soil under climatic conditions of the humid southeastern U.S. will provide 

much needed insight into management of perennial horticultural systems. The objective of this 

study was to determine if seven years of annual ground cover (compost, shredded paper, wood 

chips, and mow-and-blow as an informal control) and fertilizer treatment combinations (poultry 

litter, commercial, no fertilizer) to an organically managed apple orchard soil changed the soil 

denitrifying community or the potential for denitrification over time. This objective was 

achieved by using DGGE to investigate nirK harboring organisms and to determine how the 

community structure and diversity have changed over time. Soil biological and chemical 

properties measurements were analyzed to determine if available nutrients and soil conditions 
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necessary for denitrification to occur had changed over time. I hypothesized that treatments 

where substrate availability (OM, DOC, NO3
-) and soil conditions (pH, temperature, water 

content) were most conducive to denitrification, microbial biomass and nirK community richness 

and diversity would be greatest. 

 

3.3. Materials and Methods 

 

3.3.1. Experimental Design 

The 0.30-ha organic apple orchard is located at the University of Arkansas Main 

Agriculture Experiment and Extension Center in Fayetteville, Arkansas (36°N, 94°W). 

Enterprise apple trees (Malus domestica Borkh.) with M26 rootstock were planted in 2006 on 

Captina (Fine-silty, siliceous, active, mesic Typic Fragiudult) and Pickwick (Fine-silty, mixed, 

semiactive, thermic Typic Hapludult) silt-loam soils (NRCS, 2014). Before planting, the area 

was tilled and leveled, and lime and manure were added to adjust pH and organic matter. Soil 

properties at the beginning of the experiment in 2006 are shown in Table 1 and orchard 

preparation details can be found in Choi et al. (2011a). The orchard was managed following the 

National Organic Program Standards (AMS, 2012). The ground covers included urban compost 

(C), white shredded paper (P), wood chips (W), and a mow-and-blow control (M). The compost 

applied was composed of vegetative waste (i.e., grass clippings, wood pruning, and yard waste), 

composted for 90 to 120 d, obtained from the City of Fayetteville, AR until 2011, and beginning 

in 2012 was obtained from PC Turnkey in Springdale, AR, and composted using an active-pile 

process. Wood chips were also obtained from the City of Fayetteville, AR and consisted of 

mainly hardwood species. The shredded paper was obtained from the University of Arkansas, 

Fayetteville, AR. Mow-and-blow treatments consisted of tall fescue (Festuca arundinacea 

Schreb. ‘KY 31’) planted between rows and other naturally occurring native, herbaceous species. 



38 

Each ground cover treatment was applied to the surrounding tree area (2 x 2 m²) and two guard 

trees every April at a depth of 7.5-12 cm. Each ground cover also received locally available 

poultry litter or commercial pelletized organic fertilizer, a pelletized poultry manure (Perdue 

AgriRecycle, Seaford, DE) was used through 2011 until discontinued and was replaced with an 

alfalfa (Medicago sativa) based commercial organic product (Bradfield Organics Feed Solutions, 

St. Louis, MO) in 2012. Fertilizers were applied at a rate of 50 g of N per tree per year of tree 

age (450 g N per tree maximum), or no fertilizer (control). Full details of management of ground 

covers and fertilizers are described in Mays et al. (2014) and Mays et al. (2015).  Average carbon 

(C), nitrogen (N), phosphorus (P), and potassium (K) concentrations for ground covers and 

fertilizer treatments are shown in Table 2, characterization details are described in Choi et al. 

(2011b).  

3.3.2. Soil Sampling, Storage and Characterization 

Samples were collected in March 2007 and 2013 from 0-10 and 10-30 cm depths. 

Composite samples were obtained by sterilized soil probe by collecting 8 cores randomly at least 

15 cm from the trunk and within 60 cm between trees in a row and 45 cm between rows and soils 

were stored in sterile bags. Soil temperature at 10 cm depth was measured around each tree at the 

time of sampling. Soils were immediately placed on ice in the field, stored at 4 °C upon return to 

the laboratory, sieved through a sterilized 2-mm sieve, and stored moist at 4 °C with a subsample 

frozen at -80 °C until DNA was extracted.  

Gravimetric soil water content was determined from soil (10 g) oven dried at 105 °C for 

at least 24 hr until a constant weight was reached. All soil properties are expressed per gram of 

oven-dry soil. Electric conductivity (EC) and pH of the soil were measured potentiometrically 
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using 1:2 soil-to-water ratio. Organic matter content was determined using loss-on-ignition (6 hr 

at 550 oC). 

 

3.3.3. Extractable C and N, Microbial Biomass C and N and Total C and N 

Microbial biomass C and N were measured using chloroform-fumigation extraction 

(Vance et al., 1987). Unfumigated and 24-hr chloroform-fumigated soil samples were extracted 

at 1:5 ratio (wt:vol) in 0.5 M K2SO4, shaken for 30 min, and filtered through Whatman #42 

filters. A Shimadzu TOC-V PC-controlled total organic carbon and attached total N analyzer 

(Shimadzu, Columbia, MD) was used to determine the dissolved organic carbon (DOC), and 

dissolved total nitrogen (DTN) solution concentrations and microbial biomass was calculated 

from the difference in C and N concentrations between fumigated and unfumigated samples.  

A single extraction approach (Jones and Willet 2006) was used to calculate DOC, DTN, 

nitrate-N (NO3
--N), and ammonium-N (NH4

+-N) per g dry soil from unfumigated soil samples. 

Concentrations of NH4
+-N and NO3

--N were determined colorimetrically using a Skalar 

segmented-flow autoanalyzer (Skalar Inc., Norcross, GA). The salicylate hypochlorite procedure 

was used to measure NH4
+-N (Mulvaney, 1996). Using a modified Greiss-Illosvay procedure, 

NO3
--N was determined by utilizing Cd/Cu reduction of NO3

- to NO2
- (Mulvaney, 1996). 

Nitrate-N and ammonium-N were summed to calculate inorganic N (Ni), and dissolved organic 

nitrogen (DON) was calculated by subtracting Ni from DTN (Jones and Willet, 2006).  

 

3.3.4. PCR 

DNA was extracted from soil (~500 mg) using the NucleoSpin Soil DNA Extraction Kit 

(Clontech Inc., Mountain View, CA) according to manufacturer’s protocol. Extracted DNA was 



40 

quantified using spectrophotometry (ND2000; Thermo Fisher Scientific Inc., Waltham, MA), 

and diluted to the same concentration before use in PCR. The nirK gene fragment was amplified 

with primers F1aCu [ATC ATG GTS CTG CCG CG] and R3Cu [GCC TCG ATC AGR TTG 

TGG TT] with a 33-bp GC-clamp (5’ GGC GGC GCG CCG CCC GCC CCG CCC CCG TCG 

CCC 3’) (Hallin, 1999; Throbäck et al., 2004).  Reactions (25 µL) contained a final 

concentration of 1× PCR buffer (10 mM tris- HCl, 50 mM KCl, 0.01% (wt:vol) gelatin) 1.5 mM 

MgCl2, 200 µM each dNTP, 600 ng/µL BSA, 0.5 µM of each primer, 1.25 units of Taq 

polymerase (GoTaq®; Promega, Madison, WI) and 1 µL of 5 ng µL-1 template DNA for 0-10 cm 

samples, and 2 µL of 5 ng µL-1 template for 10-30 cm DNA. A PTC-200 DNA Engine (MJ 

Research Inc., Waltham, MA) thermal cycler was used to carry out PCR reactions. The following 

conditions were determined experimentally to optimize target amplification:  initial denaturation 

at 94 ᵒC for 2 min, 30 (0-10 cm) or 35 (10-30 cm) cycles of 94 ᵒC for 30 sec, 59 ᵒC for 45 sec, and 

72 ᵒC for 45 sec, and final extension at 72 ᵒC for 7 min. DNA template and cycle number were 

increased in 10-30 cm samples because of otherwise limited amplification. 

Amplification was confirmed by gel electrophoresis in 1.5% agarose gels stained with 

ethidium bromide and were digitally visualized with a Kodak EDAS 290 system and ID software 

package (Kodak, New Haven, CT). DNA mass standards (Bio Rad Laboratories, Hercules, CA) 

were used with each gel to confirm distance of migration and determine DNA concentration. 

 

3.3.5. DGGE 

The PCR amplified products (~ 20 µL) were loaded onto polyacrylamide DGGE gels for 

community profile creation. Protocols for F1aCu:R3Cu from Throbäck et al. (2004) were 

modified to suit the samples being analyzed. Vertical gels 1.0-mm thick containing 7% 
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polyacrylamide (acrylamide:bisacrylamide ratio of 37.5:1) were electrophoresed in 1.5X TAE 

buffer (40 mM Tris-acetate and 1 mM EDTA, pH 8.0) at 90V and 60 ᵒC for 16 hr in a D-code 

system (Bio Rad Laboratories). Linear gradients were created using 45% and 75% denaturing 

solutions (100% equal to 7 M urea and 40% deionized formamide). Gels were stained for 20 min 

with SYBR Green and visualized using a Kodak EDAS 290 system and ID software package 

(Kodak).  

Digital pictures of the gels were imported to Gel Compar II (Applied Maths Inc., Austin, 

TX) to analyze the presence or absence of bands and migration distances. Band detection and 

lane width were set to default values, with the exception of disk size to subtract background 

which was set to 10.0%. Software determination values for migration distances of detected bands 

were manually converted into a presence-absence table, where 0 designated the absence of a 

band, and 1 designated the presence of a band. A 3% optimization and 0.5 position tolerance 

were selected for the band matching settings.  

Total band number per lane represents species richness (R), and band intensities were 

normalized by dividing the individual band intensity by the greatest intensity on the gel to reduce 

potential differences due to staining or picture quality. Diversity indices including Shannon-

Weaver (H), Shannon-Weaver index of equitability (J), Simpson’s (D) and Simpson’s index of 

equitability (E) were calculated using the equations described in Wakil et al. (2008). In addition 

to the traditional diversity indices, a more recent approach to community analysis was also used 

and is based on calculating range-weighted richness (Rr) and functional organization (Fo) 

according to Marzorati et al. (2008). Range-weighted richness is a calculation that considers the 

width of the gradient used in DGGE, and this is considered to be related to the quality of 
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environment for the microorganisms. The expectation is that a wider range in gradient is needed 

to capture a larger amount of genetic variability.  

The functional organization analysis uses Pareto-Lorenz evenness curves (Lorenz, 1905) 

to plot DGGE data to determine the distribution of species in a community or the distribution of 

band intensity within a lane. The cumulative proportion of abundances (intensity) is plotted on 

the y-axis and the cumulative proportion of species (bands) is plotted on the x-axis. The 20% 

vertical axis line is used to score each curve. A 25% curve would represent a community with 

high evenness and low functionality. A 45% curve represents communities that are balanced, 

because some species are present in high numbers, but the majority of the species are present in 

decreasing amounts. This structure would be best suited to handle disruptions to the system. An 

80% curve represents a community with few dominant species with the remaining species 

present at low proportion; this community type can be highly functional under current conditions 

but is susceptible to changes in the environment.  

 

3.3.6. Statistical Analyses 

An analysis of variance (ANOVA) using SAS (version 9.4, SAS Institute Inc., Cary, NC) 

was performed to determine the effects of ground cover and fertilizer treatments and year on 

measured variables. The 0-10 cm and 10-30 cm depths were analyzed separately. The design was 

a 4 x 3 randomized complete block (i.e. 12 total treatment combinations of ground cover by 

fertilizer) with three replications, which was treated as the whole plot portion with a split plot for 

year. Interactions were only presented when they were significant (P < 0.05), otherwise only 

significant main effects were presented. During the DGGE analysis, some replications in the 0-

10 cm depth were excluded because of low quality results, resulting in uneven sample sizes and a 
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large number of least significant differences (LSD) to compare treatment means. To simplify the 

explanation of treatment effects, the most conservative LSD for each factor level was chosen to 

perform mean separations. Unless specifically noted in tables, significant differences at the 

whole plot level encompass differences at the split plot level. In the 10-30 cm depth, some DNA 

samples did not amplify well or at all during PCR, resulting in treatment combinations and/or 

blocks with only one replication for DGGE related measurements. Here an ANOVA was 

performed to determine the effects of ground cover and year on diversity indices excluding 

blocks and fertilizer.  

 

3.4. Results 

3.4.1. 0-10 cm Soil Depth 

There was a main effect of ground cover on pH (P = 0.0007, Table 4), but no interactions 

were significant. Soil pH was highest in the paper treatment, followed by compost, with lower 

and similar soil pH under wood chips and in the mow-and-blow treatments (Table 4). Nitrate-N 

(NO3
--N) concentrations were also affected by the main effect of ground cover (P = 0.0256, 

Table 3) with concentrations highest in compost and wood chips (Table 4). Nitrate-N 

concentration in the mow-and-blow soil was not different from soil receiving wood chips, while 

soil nitrate-N concentration with paper was significantly lower than with wood chips. A main 

effect of year was observed for EC, water content, Bio N, NH4
+-N, and NO3

--N, which were all 

greater in 2013 than in 2007 (Tables 3 and 5).  

There was a significant ground cover by fertilizer interaction on DOC, Bio C, Bio N and 

OM, and temperature (Table 4). Compost in combination with any fertilizer resulted in more 

DOC than any other treatment combination (Table 6). However, in the compost treatment, 
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poultry litter had a negative effect on microbial biomass C concentrations and soil organic 

matter, with measurements lower than the no-fertilizer control. Commercial fertilizer 

significantly increased DOC, Bio C, Bio N, and OM in soil receiving wood chips compared to 

the no-fertilizer control in that ground cover. Poultry litter fertilizer increased DOC, Bio N, and 

OM, but not Bio C in soil receiving wood chips compared to the no-fertilizer control in that 

ground cover. There were no differences observed in mow-and-blow or paper treatments in 

response to fertilizers with the exception of Bio N in paper treatments increasing compared to the 

control with the addition of poultry litter and commercial fertilizer. Microbial biomass C and N 

followed the same numerical trends as each other in response to fertilizers across ground covers 

although differences were not always significant. There was no significant differences in soil 

temperature with fertilizer addition within a ground cover, and no consistent trends across 

ground covers.  

The interaction of ground cover and fertilizer had a significant effect on many of the 

diversity indices (Table 7). Richness was greater in communities where compost was applied in 

combination with any of the three fertilizer treatments compared to the other three ground covers 

in the absence of fertilizer (Table 8). Richness increased significantly in soil receiving 

commercial fertilizer and wood chips or the mow-and-blow compared to the absence of fertilizer, 

but not paper, and it decreased in the compost treatment compared to the absence of fertilizer. 

Soil receiving wood chips was the only treatment to increase in both richness and Shannon-

Weaver diversity (H) in the presence of poultry litter or commercial fertilizer compared to the 

soil in that ground cover but the absence of fertilizer. Shannon –Weaver index of equitability (J) 

did not change much with fertilizer within a ground cover except with the mow-and-blow where, 

although richness increased, J decreased with commercial fertilizer compared to the absence of 
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fertilizer. Functional organization did not show many large differences; however, Fo was lower 

in soil with poultry litter and paper compared to commercial fertilizer and paper.  

There was a significant fertilizer by year interaction on richness (Table 7). Fertilizer 

affected richness after only one application in April 2006, with commercial fertilizer increasing 

richness compared to no fertilizer and poultry litter in 2007 (Table 9). By 2013, richness 

increased such that it was greater than measured in 2007 and was similar across fertilizer 

treatments.  

Ground cover treatments had varying effects on DOC, DON, Bio C, and OM depending 

on year (Table 3). Dissolved organic carbon showed a short-term response to ground cover in the 

compost treatment in 2007, measuring about twice the concentration as found in other ground 

covers (74 µg C g -1 compared to 32 - 44 µg C g -1; Table 10). By 2013, ground covers, with the 

exception of the mow-and-blow, increased DOC from the 2007 values, with largest 

concentrations continuing to be measured in the compost treatment. In contrast to DOC, DON 

decreased significantly through time in all ground covers except compost which was greater in 

DON than other ground covers in both years. Microbial biomass C was lower in 2013 than 2007 

in mow-and-blow and paper treatments, decreasing by about half in each treatment. Microbial 

biomass C did not vary by year with the addition of compost or wood chips. Organic matter 

increased over time regardless of ground cover treatment. There was an increase of organic 

matter over time in compost from 1.84 % in 2007 to the greatest overall organic matter of 5.29 

%. Conversely, OM in mow-and-blow control increased to a lesser extent and mow-and-blow 

was significantly lower in OM than in the wood chips and compost treatments in 2013. 

In addition to the significant interactions of fertilizer and ground cover and fertilizer and 

year, all seven ecological indices were also significantly affected by the interaction of ground 
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cover and year (Table 7). Species richness (R) was greatest in 2013 in soil receiving compost and 

wood chips compared to the other ground cover treatments in 2013, and R in those two ground 

covers increased significantly compared to richness in each respective ground cover in 2007 

(Table 11). Shannon-Weaver index of diversity (H) in 2013 progressed from greatest to least in 

the order of compost ≥ wood chips ≥ paper ≥ mow-and-blow control with diversity in wood 

chips significantly increasing from among the lowest diversity in 2007 to among the highest 

diversity in 2013. Equitability either did not change through time or, in the wood chips treatment, 

decreased. Compost and paper were more even (J) than mow-and-blow and wood chips in 2013. 

The community in the compost treatment was more diverse than in mow-and-blow and wood 

chips in 2007 and was more diverse than in mow-and-blow and paper treatments in 2013. 

Simpson index of diversity (D) was affected similarly in 2007; communities where compost was 

applied had greater Simpson’s index value than other ground covers. The community in the 

wood chip treatment was only similar in Simpson’s index value to that in compost in 2013. 

Simpson’s diversity ranged in order from compost = wood chips > paper ≥ mow-and-blow 

treatments in 2013. 

While richness increased markedly in the wood chips treatment, communities in 2007 

were more even than 2013, according to both Shannon’s index of equitability (J) and Simpson’s 

index of equitability (E) (Table 11). Simpson’s index of equitability did not change through time 

in paper and the mow-and-blow treatments, but it decreased in compost and wood chips. 

Communities in compost and wood chips were more evenly distributed (E) than in mow-and-

blow or paper treatments in 2007. Conversely, communities in paper showed greater evenness 

(E) than compost or wood chips in 2013. Mow-and-blow and paper treatments did not alter 

communities from 2007 and 2013 in calculations of the Shannon and Simpson indices. In 2007, 
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compost communities had lower functional organization than other communities. Functional 

organization (more species at greater abundances) increased from 2007 to 2013 in soil with 

compost, mow-and-blow and wood chips, but decreased during that time in soil from the paper 

treatment.  

There was a ground cover by fertilizer by year effect on range-weighted richness (Rr) (P 

= 0.0069, Table 7). The only difference in Rr in 2007 was soils where compost was combined 

with poultry litter or no fertilizer were significantly greater than the same fertilizer treatments in 

the wood chips ground cover treatment (Table 12). The poultry litter with wood chip 

combination and compost with no-fertilizer control combination were similar in 2013 and had 

the greatest range-weighted richness measured. Regardless of fertilizer, both compost and wood 

chip communities had greater range weighted richness in 2013 than in 2007. Range-weighted 

richness did not vary in mow-and-blow and paper communities within a fertilizer combination 

between 2007 and 2013.  

3.4.2. 10-30 cm Soil Depth 

A main effect of year was observed for multiple soil properties (Table 13). Soil OM and 

ammonium-N (NH4
+-N) concentrations increased through time (Table 14). Microbial biomass C 

and N concentrations were significantly lower in 2013, with a large difference (56.6 µg C g-1) 

observed in Bio C over time (Table 14). Water content was also lower in 2013 than in 2007 

(Table 14). There was a main effect of ground cover on OM content (P = 0.0445, Table 13) 

ranging in order from compost (1.78 %) ≥ wood chips (1.61 %) > paper (1.56 %) ≥ mow-and-

blow control (1.46 %). 

There was a ground cover by year interaction on electrical conductivity (EC), pH, DOC, 

DON, and NO3
--N (Table 13). There were no differences in EC among ground cover treatments 
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in 2007 (Table 15). Electrical conductivity increased in all ground cover treatments through time 

such that in 2013 EC was highest in compost followed by wood chips, then paper, and finally the 

mow-and-blow control. The soil pH was similar in the paper and compost treatments in 2007, 

which was greater than in soils with mow-and -blow and wood chip additions. Compost, paper 

and wood chip additions all increased soil pH over time. Soil receiving paper had the highest pH 

in 2013, followed by compost and wood chips which were similar and greater in pH than the 

mow-and-blow. The only significant change in DOC over time within a ground cover was an 

increase with the addition of compost. There was both a short and long-term response in DOC in 

soils with compost addition, which increased DOC concentrations compared to mow-and-blow 

and paper additions in 2007 and in 2013. In 2007, there were no differences in DON 

concentrations. Compost, paper and wood chip additions all increased DON concentrations in 

soils over time, but DON concentrations were greater with compost applications compared to all 

other ground covers in 2013. Ground cover additions did not result in significantly different NO3
-

-N concentrations in 2007. Compost followed by wood chips increased NO3
--N through time and 

those treatments had greater concentrations in 2013 than soils with mow-and-blow and paper 

treatments. 

Fertilizer and ground cover interactions had significant effects on DON and pH (Table 

13). Soil DON concentrations were greater without the addition of fertilizer within all four 

ground cover treatments (Table 16). Wood chip additions in combination with poultry litter 

produced greater concentrations of DON than wood chips with commercial fertilizer. Although 

the same pattern of fertilizer effects on DON concentrations was present in other ground cover 

treatments, differences were not significant. Soil pH was highest with the addition of paper in the 

absence of fertilizer directly followed by commercial fertilizer. Compost and paper applied with 
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any fertilizer had greater soil pH than all wood chips and mow-and-blow treatment 

combinations.  

 Fertilizer addition had significant effects on soil DON and NO3
--N concentrations over 

time (Table 14). There were no differences in DON or NO3
--N concentrations in 2007 among 

fertilizer treatments. In 2013, DON concentration was greatest in soils with no fertilizer addition, 

increasing 23.7 µg N g -1 from 2007 (Table 17), while the DON concentrations with commercial 

fertilizer and poultry litter were about 20 and 40%, respectively, of the value measured in the 

absence of fertilizer. Nitrate-N was greater in 2013 than 2007 and was greater in the presence, as 

opposed to the absence, of fertilizer. 

There were no significant interactions or main effects of ground cover, fertilizer or year 

on the ecological indices calculated from the DGGE profiles (Table 18). There was a main effect 

of ground cover on organic matter content (P = 0.0445, Table 13) ranging in order from compost 

(1.78 %) ≥ wood chips (1.61 %) > paper (1.56 %) ≥ mow-and-blow control (1.46 %). 

 Only 25 and 23 measurements were useable in 2007 and 2013, respectively, out of 36, 

limiting ability to detect significance in treatment effects. Richness, ranged from 24.43 to 35.17 

in the 10-30 cm depth; in comparison, richness ranged from 22.2 to 45.0 in the 0-10 cm depth 

(Tables 9 and 19). On average, lower but not drastically different diversity index values were 

observed in the 10-30 than in 0-10 cm (Tables 9 and 19). Results may be indicating greater 

spatial variability in the movement of ground cover and fertilizer treatment effects below the 

surface 10 cm, making it more difficult at our sample size to detect treatment effects.   
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3.5. Discussion 

Considering the physical density and chemical complexity, it is not surprising that 

compost was responsible for large increases in OM (Neilsen et al., 2003; Cayuela et al., 2004; 

Yao et al., 2005). Baldi et al. 2010 also reported large increases in OM of 169% after 9 years 

with the highest rate of compost applied, 10 t ha -1 yr -1, in a peach orchard.  The building of soil 

organic matter, the rate of decomposition and nutrient cycling, depends upon the substrate 

quality, the microbial community and soil conditions (temperature, moisture and pH). A 

determining characteristic of substrate quality is the composition of the materials being added 

(Bengtsson et al., 2003; Mungai and Motavalli, 2005); sugars, proteins and starches are easily 

decomposed, while hemi-cellulose, cellulose and lignin are increasingly difficult to decompose 

(Tisdall and Oades, 1982). In our study, the most difficult ground cover to breakdown, according 

to lignin content of similar materials used by others was compost, wood chips, mow-and-blow 

and paper (~ 39%, 26%, 12%, and 6.5%, respectively) (Francou et al., 2008; Holland et al., 

1991; Chen et al. 2002; Komilis and Ham, 2003).   

The C:N ratio of the of the ground covers and/or fertilizer added are also important  

because microorganisms incorporate the carbon, nitrogen and other nutrients to create proteins 

and other key building blocks of their biomass during the decomposition process, and the C:N 

ratio of microorganisms is 5:1-15:1 and if N is limiting it will be immobilized (Frankenberger 

and Abdelmagid, 1985; Nicolardot et al., 2001). Barrett and Burke (2000) conducted a study on 

grassland soils from Texas to Montana and observed that the highest rates of immobilization 

occurred in soils containing with greater C:N ratios. Lower C:N residues (< 20:1) are considered 

greater quality resources. In this study, compost C:N ratio averaged 13.1, wood chips was 39.2, 

mow-and-blow was 15.9 while the C:N ratio of paper was 205.9 (Table 2). However, there are 
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exceptions to the rule, benefits have been reported by others with the use of high C:N additions, 

for example Yao et al. (2005) measured soil microbial community responses to ground covers, 

including grass and mulch in a New York orchard on a silty clay loam over 12 years. In the 

mulch treatment with a high C:N of 98:1, OM doubled, less N leached, respiration was greater, 

and bacterial counts increased (Yao et al., 2005). Huang et al. (2008) compared mulch to no 

mulch treatments in two hardwood plantations in Australia, and found that mulch had greater 

immobilization rates than the non-mulch, more SOM and H (calculated form BIOLOG plates) 

than non-mulch treatments. In contrast in the current study, a low C:N ratio treatment, mow-and-

blow had few significant differences overall, except increased in OM and denitrifier species 

richness over time. Yao et al. (2005), also saw few differences in the grass treatment in their 

study except that soil N retention was greater than in herbicide treatments.  

Without fertilizer, nitrogen could be limiting and decomposition and cycling in these 

treatments could be slowed. It would be expected that adding paper or wood chips would 

immobilize N and combining a fertilizer would increase the decomposition by increasing the N 

available to the microorganisms (Singh and Gupta, 1977).  However, results of lower 

decomposition with nitrogen additions to litter have also been reported (Hobbie, 2008; Berg, 

2008; Fang et al., 2007) related to the biochemical interactions of N containing compounds 

during decomposition. The commercial fertilizer had a greater percentage of nitrogen (4.4%) and 

a lower C:N ratio (7.8) than the poultry litter (1.9% N, 19.4 C:N) (Table 2). Fertilizers increased 

OM, DOC, Bio C and N in the wood chip treatments, and surprisingly differences in paper 

treatments were not significant from the no-fertilizer control except for an increase in Bio C and 

N. The larger biomass with the addition of fertilizer in paper treatments suggests that the total 

community may be getting larger but the response is not being measured in the nirK gene 
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targeted. Residue quality may be impacting microbial biomass in this case, as paper has the 

lowest lignin content of the ground covers. Species richness (R) and diversity (H) of nirK 

containing denitrifiers in the soil receiving wood chips and fertilizers were greater compared to 

wood chips and no fertilizer. Poultry litter and compost combination had a significant negative 

effect on OM and biomass C and N compared the no-fertilizer control. The combination of 

compost and poultry litter applications has not been widely studied, so it is possible there is a 

synergistic effect occurring with this treatment combination; however, the governing 

mechanisms are beyond the scope of the current study but pose an interesting research question 

for future investigation. 

Even though compost and wood chip treatments increased OM and DOC over time, and 

changed the microbial community, the response was different. With the addition of resources 

available in the soil (OM, DOC, and DON), a large microbial community is expected in 2013 

(Kramer et al., 2006; Baldi et al., 2010). However, there was lack of increase in microbial 

biomass carbon concentrations from 2007 to 2013, which could have been a result of the 

significantly cooler temperatures at the time of sampling in 2013. This decrease was not 

measured in wood chips and compost treatments and may have resulted from a buffering effect 

of those ground covers (Pickering et al., 1998). Soil DNA concentrations increased from 2007 to 

2013, and a similar increase in the total community seemed likely throughout the DGGE analysis 

of the soil denitrifier community but community composition was impacted differently by 

ground cover and nutrient source treatments.  

Denitrification is highly dependent upon DOC, nitrate and pH. Total microbial 

community richness and diversity has been strongly linked to soil pH (Fierer and Jackson, 2006) 

and specifically, denitrifiers are positively correlated with soil pH (Hallin et al. 2009). Barta et 
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al. (2010) reported a strong correlation of quantity of denitrifiers (nirK and nirS) and dissolved 

organic carbon and nitrogen concentrations as well as pH in spruce forest soils. Dandie et al. 

(2011) conducted a study in Canada on soils with either agricultural (maize) or riparian (mixed 

wood understory) zones and found that nirK harboring organisms were most strongly correlated 

with soil pH and found along with Attard et al. (2011) that nirK are more important in 

agricultural ecosystems compared to their nirS counterparts. However, in the current study the 

soil pH was 7.01 (compost), 6.83 (mow-and-blow), 7.32 (paper), 6.84 (wood chips), and these 

values were similar to those with highest diversity and abundances reported by others (Fierer and 

Jackson, 2006; Barta et al., 2010) suggesting that in this study, pH is not limiting the nirK 

community and that other factors, such as DOC or soil water content, are most likely having a 

greater impact on nirK communities.  

Dissolved organic carbon and nitrogen are not necessarily labile; however, they are the 

soluble fraction of organic matter that is physically available for use by microorganisms (Cook 

and Allan, 1992; Aiken and Costaris, 1995; Chantigny, 2002).The rapid increase in dissolved C 

and N could have immediately impacted species richness and Shannon and Simpson diversity 

with the addition of compost in 2007 and may explain the lack of response over seven years, 

because the response was already being measured. Suzkics et al., (2009), reported changes in 

nirK abundance after only a 4 day incubation of two forest soils under varying soil moisture 

contents, which supports the findings in the current study of changes within the nirK community 

in 2007 in the compost treatment after only 1 year of treatment applications.   Correlations 

between dissolved organic carbon and nirK have been reported by many others (Jin et al., 2014; 

Barta et al., 2010). Attard et al. (2011) reported that soil organic carbon content explained 76% 

and 53% of the variability of the annual crop/grassland rotation and the till/no till rotation sites 
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studied, respsectively; water-filled pore space and nitrate contributed to the variability as well, 

but the nitrate correlation was weak. Kandeler et al. (2006) examined denitrifier abundance in a 

glacier foreland and reported that organic carbon was the most important factor contributing to 

differences in that ecosystem. All treatments in the current study increased in DOC 

concentrations through time except the mow-and-blow treatments, but the only treatment that did 

not increase through time in species richness was paper, possibly because this treatment 

contributed the least amount of nitrate-N of the four ground covers. The consistently high DON 

with compost addition may be a result of the large amount of organic matter being added in the 

compost treatment where concentrations remain elevated or it could be an indication that 

mineralization is not proceeding efficiently. Even though there is smaller biomass in the compost 

treatments, nitrate concentrations measured in decreasing order of compost ≥ wood chips ≥ 

mow-and-blow control ≥ paper suggest that in addition to high DON concentrations in both 2007 

and 2013, mineralization and nitrification are occurring at rates sufficient to accumulate 

excessive nitrate concentrations. However, there is not less DNA in the compost treatments, 

which may indicate that although the community is not growing it is changing to a community 

that is more specialized in the breakdown of the complex molecules in the compost, or that the 

microbial biomass is responding quickly to additions and the flux biomass is not being captured. 

Rousk et al. (2015) reported that changes in, sandy clay loam SOM after the addition of glucose 

similarly affected the mineralization of varying ages of soil organic matter (2-13 months) in a 

perennial rye grass/white clover, and increased SOM mineralization could not be explained by 

microbial growth dynamics.  

The response in nitrate follows the same trend as DOC, which are both necessary for 

denitrification, and these responses were also similar to trends in denitrifier diversity indices, 
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high in compost and wood chips followed by paper and mow-and-blow. Although nitrate has not 

been as strongly linked to denitrifiers (Attard et al. 2011) compared to organic carbon or pH, it is 

central to denitrification. Nitrate-N was greater in 2013 than in 2007 in this study, possibly 

contributing to the increase in richness observed over time in the compost, mow-and-blow and 

wood chip nirK communities. 

The nirK community structure has not been studied extensively with DGGE in orchard 

soils, but some have investigated nirK communities with DGGE in other agricultural soils.  

Wertz et al., (2009), used DGGE to investigate the nirK community in a potato-spring wheat 

rotation over a potato growing season in Canada and found the communities were spatially 

variable between the soil in the potato hills, the furrow soil, and soil from areas close to the 

potato plants on the hill and varied over time in the hill soil. The richness of nirK communities in 

the potato field soil (< 20 DGGE bands) was less than the richness of nirK in the current study (> 

20 DGGE bands), however different primers were used during PCR which could have an effect 

on species richness (Wertz et al., 2009). Clark et al. (2012) investigated the impacts of N 

management to activity and diversity in the Broadbalk wheat experiment established 160 years 

ago. They calculated H from DGGE completed using the same primers used in this study. Their 

H values ranged from 2.9-3.1 with R range of 18-23 and in comparison our H values ranged 

from 3.0-3.5 with R ranging from 31-45. They reported a positive relationship between nirK and 

N2O flux but, overall, physiochemical properties may have more influence on emissions with 

high OM soil.  

 

3.6 Conclusion 

 

 All ground covers increased organic matter over time, and all ground covers except mow-

and-blow increased DOC over time but compost added the most OM and DOC. There was more 
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NO3
--N, NH4

+-N, and DON in 2013 than in 2007. I hypothesized that treatments where substrate 

availability (OM, DOC, NO3
--N) and soil conditions (pH, temperature, water content) were most 

conducive to denitrification, microbial biomass and nirK community richness and diversity 

would be greatest. The hypothesis regarding microbial biomass was not supported by the results, 

mow-and-blow treatments added less OM and DOC, while compost and wood chip treatments 

added more OM, DOC, and NO3
- -N but microbial biomass did not differ across ground covers 

within a year. The treatments with the biggest impact on denitrifying nirK organisms were 

compost and wood chips. The change in the compost communities was apparent in 2007 by 

greater species richness and diversity compared to the other ground cover treatments. Wood 

chips had the greatest change through time of the ground cover additions and in 2013 had similar 

species richness and diversity when applied in combination with either fertilizer even though 

DOC concentrations were less than in compost treatments.   
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3.8. Tables  
 
 
Table 1.  Initial properties of an organically managed apple orchard silt loam soil, Fayetteville, 
AR, 2006 (n=36). 

aEC is electrical conductivity; OM is organic matter; N is nitrogen; C is carbon; P is 
phosphorous; K is potassium 
  

Year  pH ECa Bulk Density OM   N C P K 
  (μmhos cm -1) (g cm3 -1) (%)   ------------(mg kg -1)------------- 

2006 6.57 73.75 1.34 1.47   0.09 0.95 34 170 
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Table 2. Nutrient contents of ground cover and fertilizer treatments applied in an organically 
managed apple orchard, Fayetteville, AR. (n=6). 

 

Data for each ground cover and fertilizer are averaged across 2006-2011. 
aC is carbon; N is nitrogen; P is phosphorous; K is potassium 
 
 
 
 
 
 
 
 
 
 
 
 

Treatment Ca N C:N P K 
  ------ (%)------  ------ (%)------ 

Compost 20.5 1.6 13.5 0.2 0.5 
Wood Chips 29.7 0.7 39.2 0.1 0.3 
Paper 36.8 0.2 205.9 0.0 0.0 
Mow-and-Blow 40.0 2.2 15.8 0.3 1.5 

Commercial Fertilizer 31.3 4.4 7.8 1.4 2.6 
Poultry Litter 29.5 1.7 19.4 1.3 1.4 
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Table 3. Analysis of variance (ANOVA) summary of the effects of ground cover and fertilizer treatments over time and their 
interactions on soil properties at the 0-10 cm depth of a silt-loam soil in an organically managed apple orchard, Fayetteville, AR, 2007 
and 2013. 

aDOC is dissolved organic carbon, DON is dissolved organic nitrogen, NO3
- -N is nitrate-N, NH4

+-N is ammonium-N, Bio C is 
microbial biomass carbon, Bio N is microbial biomass nitrogen, EC is electrical conductivity, OM is organic matter, temp is 
temperature, and H2O is soil-water content. bGC is ground cover and Fert is fertilizer source. 
*P < 0.05

Soil Property GCb Fert GC*Fert Year GC*Year Fert*Year GC*Fert*Year 

DOCa <0.0001* 0.2663   0.0351* <0.0001* <0.0001* 0.7543 0.2842 
DON   0.0026*   0.0036* 0.0820 <0.0001*   0.0206* 0.5338 0.8424 
NO3

--N   0.0256* 0.0350 0.1083 <0.0001* 0.1642 0.1240 0.2563 
NH4

+-N 0.5325 0.1168 0.1440 <0.0001* 0.2194 0.2199 0.9857 
Bio C 0.6768 0.2421   0.0395*   0.0021*   0.0396* 0.0545 0.1684 
Bio N 0.7494 0.0899   0.0152*   0.0010* 0.3121 0.3170 0.1243 
pH   0.0007* 0.0711 0.1981 0.4248 0.0745 0.6749 0.9856 
EC 0.3043 0.4268 0.3492   0.0001* 0.3055 0.3952 0.4011 
OM   0.0036* 0.0975   0.0026* <0.0001*   0.0196* 0.1895 0.0513 
DNA   0.0325* 0.3706 0.7745 <0.0001* 0.7866 0.9284 0.5287 
Temp   0.0163* 0.9859   0.0046* <0.0001*   0.0148*   0.0254* 0.0531 
H2O 0.2032 0.9727 0.6848   0.0001* 0.4323 0.5941 0.4878 
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Table 4.  The effects of ground cover management treatments on 
the soil properties at the 0-10 cm sample depth in an organically 
managed apple orchard, Fayetteville, AR (n=18). 

 

 

 

 

 

 
 
 

Means followed by different letters within a column are significantly different (P < 0.05).  
LSD’s to compare means at α = 0.05, pH (0.15), NO3

- -N (1.98), DNA (6.20) 
 

  

Ground Cover pH NO3
- -N 

(µg N g -1 ) 
DNA 

 (ng µL-1 ) 

Compost 7.01b 4.61a 35.26a 
Mow-and-Blow 6.83c   2.53bc 32.24a 
Paper 7.32a 1.17c 25.32b 
Wood Chips 6.84c   3.54ab   31.28ab 
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Table 5. The effects of sample year on soil properties at a sample depth of 0-10 cm in an 
organically managed apple orchard, Fayetteville, AR, 2007 and 2013 (n=36).  
 

Year 
 

H2Oa 

 
EC 

(μmhos cm -1) 
Bio N 

(µg N g -1 ) 
NH4

+-N 
(µg N g -1 ) 

NO3
- -N  

(µg N g -1 ) 
DNA 

 (ng µL-1 ) 

2007 0.17b  46.63b 12.19b 1.78b 0.92b 22.78b 

2013 0.22a      333.0a 16.68a 7.93a 5.01a 39.27a 
aH2O is soil-water content; EC is electrical conductivity; Bio N is microbial biomass nitrogen; 
NH4

+-N is ammonium-N; NO3
- -N is nitrate-N  

Means followed by different letters within a column are significantly different (P < 0.05).  
LSD’s to compare means at α = 0.05, H2O (0.02), EC (126.9), Bio N (2.48), NH4

+-N (0.77), 
NO3

- -N (0.98), DNA (6.15) 
 
 
 
 
 
  



 

 

Table 6. Soil chemical and biological properties affected by ground cover and fertilizers treatments at the 0-10 cm depth of an 
organically managed apple orchard, Fayetteville, AR, 2007 and 2013 (n=6). 
Ground Cover  
 

Fertilizer DOCa 
(µg C g -1) 

Bio C 
(µg C g -1) 

Bio N 
(µg N g -1) 

 OM 
(%) 

Temp 
(°C) 

Compost  None 157.5a  74.0ab 17.7a  3.98a 10.9de 
 Poultry litter   140.6ab  47.7cd   12.6bc  2.87bc 10.3e 

 
Commercial  130.8b      63.2abcd   16.2ab  3.85a 11.0cde 

Mow-and-Blow  None 36.0e 81.2a     14.5abc  1.96e 10.9de 
 Poultry litter   50.2de    66.3abc   12.7bc  2.24de 11.5abcd 

 
Commercial  38.9e    66.6abc   13.3bc  2.11de 11.5abcd 

Paper  None 81.4c 39.6d 10.7c  2.27de 11.5abcd 
 Poultry litter 86.5c      64.8abcd   15.6ab  2.55cd 11.1bcde 

 
Commercial  83.4c      64.3abcd   15.5ab  2.34cde 10.9de 

Wood Chips  None 60.6d     48.3bcd 10.6c  2.21de 11.7abc 
 Poultry litter 89.4c       59.3abcd   15.6ab  2.84bc 12.1a 
 Commercial 88.0c        83.7a 18.1a  3.20b 11.7abc 

aDOC is dissolved organic carbon; Bio C is microbial biomass carbon, Bio N is microbial biomass nitrogen, and 
OM is organic matter. 
Means within columns followed by similar letters are not significantly different (P < 0.05). 
LSD’s to compare means at α = 0.05, DOC (20.8), Bio C (26.1), Bio N (4.4), OM (0.55), Temp (0.90) 
 
 
  

70 



 

 

71 

Table 7. Analysis of variance (ANOVA) summary of the effects of ground cover and fertilizer treatments 
over time and their interactions on soil ecological indices at the 0-10 cm depth of a silt-loam soil in an 
organically managed apple orchard, Fayetteville, AR, 2007 and 2013. 

 
 
 
 
 
 
 
 
 
 
 

aR is species richness; H is Shannon Weaver index; J is Shannon Weaver index of equitability; D is 
Simpson’s index; E is Simpson’s index of equitability; Rr is range weighted richness; and Fo is functional 
organization. 
* P < 0.05 

 
 

Diversity 
Index 

  GC    Fert GC*Fert Year GC*Year Fert*Year GC*Fert*Year 

Ra 0.0024*  0.0371* 0.0028* <0.0001* <0.0001*   0.0473* 0.1271 
H 0.0128*  0.0442* 0.0146* <0.0001* 0.0015* 0.1550 0.6922 
J 0.0461*  0.2158 0.0081* 0.0423* 0.0094* 0.2546 0.0903 
D 0.0026*  0.1793 0.2499 0.0005* 0.0099* 0.4776 0.4940 
E 0.1908  0.9431 0.0953 0.0480* 0.0294* 0.3365 0.4767 
Rr 0.0004*  0.1327 0.0019* <0.0001* <0.0001*   0.0393*   0.0069* 
Fo 0.2323  0.0225* 0.0142* 0.0003* <0.0001* 0.5431 0.1110 
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Table 8. Ecological diversity indices calculated from DGGE profiles of nirK in the 0-10 cm 
soil depth affected by ground cover and fertilizer combinations, in an organically managed 
orchard in Fayetteville, AR  
Ground Cover Fertilizer Ra H J     Fo 

Compost  None 41.0a 3.46a 0.93ab 0.41bc 
 Poultry litter 36.1abc 3.37ab 0.94a 0.43abc 

 
Commercial  35.1bc 3.37ab 0.95a 0.41bc 

Mow-and-Blow  None 25.2f 2.95de 0.92ab 0.44ab 
 Poultry litter 26.8ef 3.00cde 0.92ab 0.45a 
 Commercial  34.3bcd 3.02cde 0.85c 0.45a 

Paper  None 29.5ef 3.14bcd 0.94a 0.42abc 

 Poultry litter 31.2cde 3.18bcd 0.93ab 0.40c 

 
Commercial  31.3cde 3.19bcd 0.93ab 0.46a 

Wood Chips  None 27.2ef 2.83e 0.89bc 0.42abc 
 Poultry litter 36.7abc 3.26abc 0.92ab 0.45a 

 
Commercial  37.0ab 3.31ab 0.93ab 0.45a 

 
aR is species richness; H is Shannon Weaver index; J is Shannon Weaver index of 
equitability; and Fo is functional organization. 
Sample sizes listed in Appendix A, Table 3. 
Means within columns followed by similar letters are not significantly different (P < 0.05). 
LSD’s to compare means at α = 0.05, R (5.8), H (0.23), J (0.4), Fo (0.04) 
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Table 9. The effect of fertilizer treatments and year on species richness (R) in the 0-10 cm depth 
of a silt loam soil in an organically managed orchard in Fayetteville, AR, 2007 and 2013 

 

 
 

Sample sizes listed in Appendix A, Table 3. 
Means followed by different letters within a column are significantly different (P < 0.05) 
LSD’s to compare means at α = 0.05, Whole plot (3.77), Split plot (3.56) 
 
 
 
 
 
 
  

Year None Poultry litter Commercial  

2007 25.5c 26.6c 31.0b 
2013 35.9a 38.8a 37.9a 
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Table 10. The effect of ground cover treatment and year interaction on soil properties measured 
at 0-10 cm in an organically managed apple orchard in Fayetteville, AR, 2007 and 2013 (n=9). 

aBio C is microbial biomass carbon, DOC is dissolved organic carbon, DON is dissolved organic 
nitrogen, and OM is organic matter. 
Means within columns followed by similar letters are not significantly different (P < 0.05).  
LSD’s to compare means at α = 0.05, Bio C- Whole plot (36.8), Split plot (25.9), DOC- Whole 
plot (26.9), Split plot (22.9), DON- Whole plot (3.2), Split plot (2.2), OM- Whole plot (0.69), 
Split plot (0.69), Temp-Whole plot (0.90), Split plot(0.80) 
 

Ground Cover 
  

Year Bio Ca 
(µg C g -1) 

DOC 
(µg C g -1) 

DON 
(µg N g -1) 

OM 
(%) 

Temp 
(°C) 

Compost  2007   64.5abc   73.9c 9.20a 1.84d 14.4b 
  2013   58.8abc 212.0a 9.06a 5.29a  7.1d 

Mow-and-Blow   2007       93.4a   32.5d 4.72b 1.12e 15.9a 
 2013       49.3bc    50.9cd 0.55d 3.08c  6.8d 

Paper  2007  75.1ab   38.3d 5.01b 1.19de 15.3a 
 2013       37.3c 129.3b 1.45c 3.58bc  7.0d 

Wood Chips  2007    63.2abc   44.2d 5.41b 1.23de 15.6a 
 2013    64.3abc 114.4b 0.61d 4.26b  8.0c 
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Table 11.  Ecological diversity indices calculated from DGGE profiles of nirK in the 0-10 cm 
soil depth affected by ground cover in 2007 and 2013, in an organically managed orchard in 
Fayetteville, AR  

Ground Cover Year Ra H J D E Fo 

Compost 2007 31.9b 3.30abc 0.95a 23.34ab 0.74a 0.37e 
 2013 43.0a 3.50a 0.93ab 25.21a 0.60d 0.46ab 

Mow-and-Blow 2007 26.7c  2.95ef 0.90bc 16.59cd 0.62cd 0.43bcd 
 2013 30.9b 3.04def 0.89c 19.32c 0.62cd 0.47a 

Paper  2007 30.0bc 3.13cde 0.92abc 18.99cd 0.63cd 0.45abc 
 2013 31.3b 3.21bcd 0.94a 21.21bc 0.67bc 0.40de 

Wood Chips  2007 22.2d 2.89f 0.94a 15.43d 0.70ab 0.42cd 
 2013 45.0a 3.37ab 0.89c 27.06a 0.60d 0.46ab 

aR is species richness; H is Shannon Weaver index; J is Shannon Weaver index of equitability;  
D is Simpson’s index; E is Simpson’s index of equitability; and Fo is functional organization. 
Sample sizes listed in Appendix A, Table 3. 
Means followed by similar letters are not significantly different (P < 0.05). 
LSD’s to compare means at α = 0.05, R- Whole plot (4.2), Split plot (3.9), H- Whole plot 
(0.20), Split plot (0.17), J- Whole plot (0.04), Split plot (0.03), D- Whole plot (3.8), Split plot 
(4.6), E- Whole plot (0.73), Split plot (0.82), Fo-Whole plot (0.04), Split plot (0.03) 
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Table 12. Range weighted richness (Rr) calculated from DGGE profiles of communities affected by ground cover 
and fertilizer treatment interactions in the 0-10 cm soil depth of an organically managed orchard in Fayetteville, 
AR, 2007 and 2013  
   2007  2013 
Ground Cover None  Poultry litter Commercial None Poultry litter Commercial 

Compost 223.7defg  223.1defg 194.0efgh  587.7a 381.4bc 360.8bc 

Mow-and-Blow 126.2ghi  103.6ghi 214.4defgh  120.1ghi 197.0defgh 293.3cde 

Paper 139.9fghi  166.6efghi 230.9defg  191.1efgh 257.5cdef 203.9defgh 

Wood Chips   41.2i    90.9hi 151.3fghi  322.3bcd 593.9a 450.8b 

Sample sizes listed in Appendix A, Table 3. 
Means within columns followed by similar letters are not significantly different (P < 0.05). 
LSD’s to compare means at α = 0.05, Whole plot (134.4), Split plot (127.1) 
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Table 13. Analysis of variance (ANOVA) summary of the effects of ground cover and fertilizer treatments over time 
and their interactions on soil properties at the 10-30 cm depth of a silt-loam soil in an organically managed apple 
orchard, Fayetteville, AR, 2007 and 2013. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aDOC is dissolved organic carbon; DON is dissolved organic nitrogen; is nitrate-N; NH4
+-N is ammonium-N; 

Bio C is microbial biomass carbon; Bio N is microbial biomass nitrogen; EC is electrical conductivity; OM is 
organic matter; H2O is soil-water content. 
* P < 0.05  
 
 
 
 

Soil 
Property GCa Fert GC*Fert Year GC*Year Fert*Year GC*Fert*Year 

DOCa 0.0017* 0.0747 0.5700   0.0860   0.0002* 0.1191 0.9817 

DON 0.0179* <0.0001* 0.0042* <0.0001*   0.0010* <0.0001* 0.0778 

NO3
- -N 0.0007*   0.0066* 0.1783 <0.0001* <0.0001*   0.0478* 0.4249 

NH4
+-N 0.2855 0.6620 0.9722 <0.0001*  0.1003    0.5463 0.9877 

Bio C 0.2057 0.3396 0.4185 <0.0001*  0.2010 0.5933 0.8801 

Bio N 0.7795 0.1091 0.0552 <0.0001*  0.2990 0.7842 0.9561 

pH 0.1163 0.1511 0.0027* <0.0001* <0.0001* 0.9331 0.8619 

EC 0.0011* 0.0558 0.9007 <0.0001* <0.0001* 0.0693 0.9133 

H2O 0.0716 0.7834 0.5187   0.0001*  0.0679 0.9474 0.6543 

OM 0.0445* 0.8291 0.4186 <0.0001*  0.2399 0.9043 0.5339 

DNA 0.0100* 0.5079 0.1216   0.0170*  0.7301 0.7941 0.5285 
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aH2O is soil water content; OM is organic matter; Bio C is microbial biomass carbon; Bio 
N is microbial biomass nitrogen (Bio N); (NH4

+-N) is ammonium-N. 
Means followed by different letters within a column are significantly different (P < 0.05). 
LSD’s to compare means at α = 0.05, H2O (0.03), Bio C (12.5), Bio N (0.51), NH4

+ (0.16), DNA 
(1.19) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Year 
 

H2Oa 

 
OM 
(%) 

Bio C 
(µg C g -1 ) 

Bio N 
(µg N g -1 ) 

NH4
+ 

(µg N g -1 ) 
DNA  

(ng µL-1) 

2007 0.24a 0.96b 74.06a 3.76a 0.05b 4.32a 
2013 0.17b 2.24a 17.42b 1.99b 0.52a  2.88b 

Table 14.  The effects of sample year on soil properties at a sample depth of 10-30 cm in an 
organically managed apple orchard, Fayetteville, AR, 2007 and 2013 (n=36).  
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Table 15.  Soil properties in the 10-30 cm depth affected by ground cover treatment and year, in 
an organically managed apple orchard in Fayetteville, AR, 2007 and 2013 (n=9). 

a EC is electrical conductivity; DOC is Dissolved organic carbon; DON is dissolved organic 
nitrogen; (NO3

-) is nitrate-N  
Means within columns followed by similar letters are not significantly different P < 0.05. 
* Significantly different on the split plot level. 
LSD’s to compare means at α = 0.05, EC- Whole plot (22.3), Split plot (18.8), pH-Whole plot 
(0.42), Split plot (0.17) DOC- Whole plot (8.43), Split plot (6.27), DON-Whole plot (4.80), Split 
plot (4.64), NO3

- -Whole plot (1.79), Split plot (1.40)   
 
 
 
 
 
 
 
 
 
 
  

Ground Cover Year ECa 

(μmhos cm -1) 
pH DOC 

(µg C g -1) 
DON 

(µg N g -1) 
NO3

- 

(µg N g -1 ) 

Compost  2007 26.80e 6.64bc* 35.57b 4.39d 1.77c 
  2013 215.02a 6.96ab* 51.10a 23.20a 8.59a 

Mow-and-Blow   2007 16.10e 6.38c 27.24cd* 3.76d 0.64c 

 2013 128.71d 6.44c 19.94d* 7.96cd 1.44c 

Paper  2007 16.42e 6.56bc 26.64cd 3.10d 0.36c 

 2013 158.09c 7.13a 29.52bc 15.05b 1.01c 

Wood Chips  2007 16.18e 6.30c 30.94bc 4.16d 0.89c 

 2013 182.06b 6.95ab 30.71bc 12.38bc 4.61b 
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Table 16. Soil chemical and biological properties affected by ground cover and fertilizer 
treatments at the 10-30 cm depth of a silt loam soil, in an organically managed apple orchard in 
Fayetteville, AR (n=6). 
Ground Cover 
  

Fertilizer DONa 
(µg N g -1) 

      pH 
 

Compost  None 25.13a 6.81c 
 Poultry litter   9.27d 6.75d 
 Commercial  6.99def 6.84bc 

Mow-and-Blow  None   9.74cd 6.35i 

 Poultry litter   4.28ef 6.47g 
 Commercial   3.56f 6.41h 

Paper  None 14.73b 6.97a 

 Poultry litter   7.17def 6.70e 
 Commercial   5.33ef 6.88b 

Wood Chips  None 13.52bc 6.63f 

 Poultry litter   7.66de 6.64f 
 Commercial   3.63f 6.60f 

aDON is dissolved organic nitrogen. 
Means within columns followed by similar letters are not significantly different (P < 0.05). 
LSD’s to compare means at α = 0.05, DON (3.90), pH (0.05) 
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Table 17. The effect of fertilizer on soil properties at the 10-30 cm soil depth of a silt loam soil 
over time in an organically managed orchard in Fayetteville, AR, 2007 and 2013. (n=4). 
Year 
  

Fertilizer DONa 
(µg N g -1) 

NO3
- 

(µg N g -1 ) 

2007 None   3.93c 0.75c 
 Poultry litter   3.86c 1.25c 
 Commercial   3.77c 0.74c 

2013  None 27.63a 2.53b 

 Poultry litter 10.33b 5.13a 

 Commercial   5.98c 4.08a 
aDON is dissolved organic nitrogen; (NO3

-) is nitrate-N 
Means within columns followed by similar letters are not significantly different (P < 0.05) 
LSD’s to compare means at α = 0.05, DON- Whole plot (4.13), Split plot (3.42), NO3

- - (1.24), 
Split plot (1.21)  
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Table 18. P-values from analysis of variance (ANOVA) for ecological indices 
from DGGE of 10-30 cm depth.   

 
 
 
 
 
 
 
 
 
 
 
 

aR is species richness; H is Shannon Weaver index; J is Shannon Weaver 
index of equitability; D is Simpson’s index; E is Simpson’s index of 
equitability; Rr is range weighted richness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Diversity 
Index 

GC Year GC*Year 

Ra 0.8360 0.1445 0.5507 

H 0.4464 0.4689 0.3044 

J 0.5698 0.2510 0.2610 

D 0.8108 0.2316 0.3967 

E 0.9127 0.2058 0.2608 

Rr 0.8778 0.1593 0.6957 



83 

aR is species richness; H is Shannon Weaver index; J is Shannon Weaver index of equitability;  
D is Simpson’s index; E is Simpson’s index of equitability; and Fo is functional organization. 
Sample sizes listed in Appendix A, Table 4. 
There are no differences in means or treatment effects on indices; table is for reference only. 
 

Table 19. Ecological diversity indices calculated from DGGE profiles of nirK in the 10-30 
cm soil depth affected by ground cover and year 2007 and 2013, in an organically managed 
orchard in Fayetteville, AR (n=9). 

Ground Cover Year R H J D E Rr 

Compost 2007 32.2 3.13 0.91 17.92 0.59 251.02 
 2013 32.0 3.14 0.90 17.12 0.54 257.34 

Mow-and-Blow 2007 32.3 3.05 0.90 18.25 0.57 319.66 
 2013 29.7 3.03 0.91 17.62 0.59 258.20 

Paper  2007 30.0 2.69 0.83 16.13 0.53 269.11 
 2013 27.0 2.79 0.92 16.43 0.67 217.07 

Wood Chips  2007 35.2 3.21 0.91 19.46 0.56 328.69 

 2013 24.4 2.74 0.91 13.43 0.61 186.81 
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4. Soil Microbial and Nutrient Responses to Seven Years of Ground Cover Management in 

an Organic Apple Orchard 

 

Keywords: Ground covers, long-term, nutrient cycling, microorganisms 

 

4.1. Abstract 

  

Organically managed orchards require sources of nutrition acquired from alternatives, 

typically organic fertilizers or ground covers, to synthetic, inorganic fertilizers used in 

conventionally managed systems.  Through the addition and subsequent decomposition of 

organic matter, microbial activity is stimulated. The goal of organic management is to facilitate 

efficient internal terrestrial N cycling without promotion of N losses, especially as those can 

result in atmospheric and aquatic pollution.  The objective of this study was to determine the 

effects of seven years of annual additions of four ground covers (compost, wood chips, paper 

mulch, and mow-and-blow) and three organic fertilizers (poultry litter, organic commercial 

fertilizer, and a no-fertilizer control) in a total of twelve treatment combinations on nutrient 

cycling potential in an organic apple orchard soil established in 2006. Organic matter, microbial 

biomass, enzyme activity, dissolved organic carbon and nitrogen, and nitrate concentrations were 

measured in March and May annually from 2007-2013 at the 0-10 cm soil depth to evaluate the 

impacts of treatment combinations on decomposition and microbial activity. Organic matter 

content increased in all treatment combinations, 1.83% to 3.75% in the 0-10 cm depth, from 

2007 to 2013.  Dissolved organic carbon concentrations increased gradually over time across 

fertilizers in the wood chip and paper ground covers, dramatically increased in the compost 

ground cover from an average of 76 μg C g -1   in 2007 to highs of 287, 355, and 399 μg C g -1 

(commercial, poultry litter, control, respectively) in 2010. Microbial biomass nitrogen was 

variable over time, with concentrations across treatments showing a trend of increasing from 

2007-2011 during the transition and early production years, but then decreasing thereafter such 
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that concentrations in 2013 were not significantly different from 2007. There was an elevated 

response early with mow-and-blow additions in both dehydrogenase and β-glucosaminidase 

activities. The trends over time in dissolved nutrients and microbial biomass suggests that the 

community is not growing continually over time, although it could be shifting in composition 

and diversity.  
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4.2. Introduction 

 

As public concern over environmental and health impacts of synthetic fertilizer and 

pesticide use in crop production grows, organic fruit production is increasing. Sales of organic 

crops increased 69% from 2008-2014, with apples topping the list of sales of organic fruit with 

$250 million in sales in 2014 in the United States (NASS, 2015). Large numbers of organic 

farms per capita are concentrated in the northeast, north central and western U.S. (NASS, 2015). 

Regional climate in these areas is well suited for fruit production and also for organic 

management. Consequently, the high density of apple orchards and research programs in place in 

the northeast and northwest are the major source of organic management data collected in the US 

to date. In the southeast, naturally occurring soil organic matter content is generally low in 

Ultisols, the predominant soil order of the region (Eswaran et al., 2002). In addition, humid and 

warm temperatures promote insect, disease, and weed growth (Harvell et al., 2002).  Arkansas is 

one of several states in the southeast region that has less than 50 organic farms (NASS, 2015a), 

and research investigating organic management strategies for apple and other fruit tree 

production in this area has been limited. However, consumer demand for locally produced food 

has also been increasing, the National Agricultural Statistics Service (2015b) reported 

nationwide increases in the number of farmers’ markets (180%), regional food hubs (288%), and 

farm-to-table programs at schools (430%) since 2006, indicating a growing need for locally 

appropriate research to meet challenges.  The apple orchard used in the present study, was 

established in 2006 in Fayetteville, AR.  

One commonly implemented management strategy in organic orchards is the application 

of ground covers or organic amendments as a mulch. Benefits have included increased organic 

matter (OM), cation exchange capacity (CEC), soil microbial activity, and reduced nitrate 
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concentrations (Marriot and Wander, 2006; Hansen et al., 2001; Yao et al., 2005). Selection of 

ground covers is dependent upon orchard management goals, and also on regional availability. 

The ground covers used in this study were obtained locally (compost, shredded paper, wood 

chips, and a mow-and-blow control) and applied in combination with organic fertilizers 

(composted poultry litter, commercial fertilizer, and no-fertilizer control) to supply necessary 

nutrients, such as nitrogen, to the crop. In order for the nutrients in the ground covers and 

fertilizers to be released and become available for uptake by the trees, they must first be 

decomposed.  

Soil microorganisms perform key ecosystem services that are necessary for healthy soil 

functioning, including litter decomposition and nutrient cycling. It is imperative to understand 

how and to what extent additions affect the microbial community and soil nutrient content 

throughout the life of the orchard, so nutrient management strategies can be implemented to 

avoid atmospheric or aquatic pollution by limiting nitrogen loss through greenhouse gases or 

leaching. This is a challenge of organic management but there are also many benefits of organic 

management that have been reported. Evidence supporting organic or integrated management 

over conventional management is widespread and includes different cropping systems and a 

range of soil amendments in various soil types. Kramer et al. (2006) supplied synthetic fertilizers 

in conventional treatments, alfalfa or compost in organic treatments, and integrated combinations 

to an apple orchard in Yakima, Washington, and observed organic systems decreased nitrate 

pollution, increased denitrification potential, rate, and efficiency while increasing the OM and 

microbial biomass and activity when compared to conventional treatments. Goyal et al. (1999) 

also reported increases in soil C and N and microbial biomass in integrated systems 

(combinations of inorganic fertilizer and wheat straw, farmyard manure, or green manure) 



88 

compared to synthetic fertilizer only in a pearl millet/wheat rotation on a sandy loam soil.  Baldi 

et al. (2010) reported that compost applied at 10 t ha -1 yr -1 to a silty loam in an Italian peach 

orchard positively affected fertility by increasing soil organic matter and supporting fruit 

production and concluded this rate could effectively replace mineral fertilizers but noted nitrate 

levels could be a concern with large amounts of organic inputs. 

Positive effects reported with ground cover and fertilizer addition and specific rates of 

application may change as soil type or organic amendment source are changed. Regionally 

available materials need to be tested to confirm expected treatment responses because 

composition of amendments can vary greatly depending on nutrient content of initial substrate 

and for some materials, manufacturing process, such as composting. For example, Canali et al. 

(2004) observed the effects of two compost additions, poultry manure and mineral fertilizer, in 

an Italian citrus orchard soil, and after 6 years of annual additions, the only significant treatment 

differences out of twenty measured properties were greater potentially mineralizable C and N 

pools and a higher basal respiration rate in the compost treatments. Hoagland et al. (2008) 

reported a lack of N supply from wood chips compared to legume based ground covers. Wood 

chips addition caused short-term N immobilization, and retained soil moisture which increased 

tree growth but also encouraged N loss through denitrification. Although there have been studies 

examining effects of organic amendments on soil biological and chemical properties in other 

climates, none have measured immediate and long-term effects of annual organic ground cover 

and fertilizer interactions in the southeast region of the U.S.  

The objective of this study was to determine how seven years of annual ground cover 

(compost, shredded paper, wood chips, and mow-and-blow as an informal control) and fertilizer 

(poultry litter, commercial organic, and a no-fertilizer control) treatment combinations have 
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affected soil carbon and nitrogen pools and microbial biomass and activity over time in the 

surface soil. Soil biological and chemical property measurements were analyzed before (March) 

and after (May) yearly ground cover applications (April) to determine how nutrient contents and 

microbial populations responded to additions immediately (May) and long-term (March) and if 

responses were the same each year or changed throughout the life of the orchard. It was 

hypothesized that treatments which add more OM will have larger and more active soil 

communities in response to substrate availability and treatments with low C: N ratios will result 

in more mineralization and greater amounts of inorganic N. 

 

4.3. Materials and Methods 

 

4.3.1. Experimental Design   

Enterprise apple trees (Malus domestica Borkh.) with M26 rootstock were planted on a 

pH and organic matter adjusted 0.30-ha plot at the University of Arkansas Agriculture 

Experiment and Extension Center in Fayetteville, Arkansas (36°N, 94°W) that was tilled, limed, 

and leveled in 2005 in preparation for organic orchard management which began in 2006 (Table 

1). The orchard is located on two silt loam soils, a Captina (Fine-silty, siliceous, active, mesic 

Typic Fragiudult) and a Pickwick (Fine-silty, mixed, semiactive, thermic Typic Hapludult) 

(NRCS, 2014). The orchard was managed following the National Organic Program Standards 

(AMS, 2012). Treatments were applied every April to the surrounding tree area (2 x 2 m²) and 

two guard trees. Twelve treatments included ground covers of compost (C), white shredded 

paper (P), wood chips (W), or a mow-and-blow control (M) applied at a depth of 7.5-12 cm in 

combination with, a no fertilizer control, locally available poultry litter, or a commercial 

pelletized fertilizer, a pelletized poultry manure (Perdue AgriRecycle, Seaford, DE) was used 
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through 2011 and was discontinued and replaced with an alfalfa (Medicago sativa) based 

commercial organic product (Bradfield Organics Feed Solutions, St. Louis, MO) in 2012. 

Fertilizers were applied as a nutrient source at a rate of 50 g of N per tree per year of tree age to a 

maximum of 450 g N per tree, or without an added fertilizer in a no-fertilizer control. From 

2006-2011, the compost substrate was vegetative waste (i.e., grass clippings, wood pruning, and 

yard waste), composted 90 to 120 d, obtained from the City of Fayetteville, AR, and changed in 

2012 to compost from PC Turnkey in Springdale, AR, composted using an active-pile process. 

Wood chips were sourced from the City of Fayetteville, AR and consisted of mainly hardwood 

species. Shredded paper was acquired from the University of Arkansas, Fayetteville, AR. The 

mow-and-blow treatments consisted of tall fescue (Festuca arundinacea Schreb. ‘KY 31’) 

planted between rows and other naturally occurring native, herbaceous species. Each ground 

cover treatment was applied to the surrounding tree area (2 x 2 m²) and two guard trees every 

April at a depth of 7.5-12 cm. Average carbon (C), nitrogen (N), phosphorus (P), and potassium 

(K) concentrations for ground covers and fertilizers are shown in Table 2. Ground cover and 

fertilizer average nutrient (carbon, nitrogen, phosphorus and potassium) concentrations are 

shown in Table 2. Compost was not applied in 2010 and the orchard was tilled within rows in 

July 2008, samples in 2009 and 2010 were taken from outside the tillage area as described below 

to avoid any potential effects of tillage on measured soil properties. All details describing the 

orchard preparation and management and the sources and characterization of the ground cover 

and fertilizers are described in Choi et al. (2011a), Choi et al. (2011b), Mays et al. (2014), and 

Mays et al. (2015).  Weather data were collected at the University of Arkansas Agricultural 

Research and Extension Center in Fayetteville, AR and the means reported in Table 3 were 
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obtained from a report generated from National Oceanic and Atmospheric Association (NOAA) 

data (2015).

4.3.2. Soil Collection and Characterization 

Samples were collected using a sterilized soil probe from the 0 - 10 cm soil depth in 

March and May (before and after annual April treatment applications) from 2007 to 2013 and 

stored in sterile bags. Composite samples were obtained by randomly collecting cores with a 

sterilized probe in an area 15 cm or more from the trunk of the tree, 60 cm between trees in a row 

and 45 cm between rows. Soil temperature at 10 cm depth was measured at each tree. Soils were 

immediately stored at 4 °C until sieved through a sterilized 2-mm sieve, and returned to storage, 

moist at 4 °C. 

Gravimetric soil water content was determined by measuring soil (10 g) weight change 

after drying at 105 °C for at least 24 hrs, and used to express soil properties as per gram of oven-

dry soil. Soil pH and electric conductivity (EC) were measured with a potentiometer using 1:2 

soil-to-water (wt:vol) ratio. Organic matter content was determined using loss on ignition (6 hr at 

550 °C). 

 

4.3.3. Extractable C and N  

Dissolved organic carbon (DOC), dissolved total nitrogen (DTN), nitrate (NO3
--N), and 

ammonium (NH4
+-N) were measured from moist (unfumigated) soil (8.0 g) using the single-

extraction approach described by Jones and Willet (2006). Extraction of C and N from moist soil 

was completed by adding 1:5 (wt:vol) 0.5 M K2SO4 , shaking on a reciprocating shaker for 30 

minutes, and filtering through Whatman #42 filters. The DOC and DTN concentrations per g dry 
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soil were calculated after measuring C and N in extracts using a Shimadzu TOC-V PC-controlled 

total organic carbon and attached total N analyzer (Shimadzu, Columbia, MD). The chloroform-

fumigation extraction method (Vance et al., 1987) was used to determine microbial biomass C 

and N. Soils were fumigated for 24 hrs with ethanol-free chloroform and were extracted to 

measure DOC and DTN as previously described. Microbial biomass C and N were calculated as 

the difference in DOC and DTN concentrations between fumigated and unfumigated samples.  

Soil ammonium-N (NH4
+ -N) and nitrate-N (NO-

3
 -N) concentrations were measured 

using a Skalar segmented-flow autoanalyzer (Skalar Inc, Norcross, GA). Ammonium 

concentrations were measured using a salicylate hypochlorite procedure and nitrate was 

measured using the Greiss-Illosvay procedure, utilizing Cd/Cu reduction of NO3
- to NO2

- 

(Mulvaney, 1996). Dissolved organic nitrogen (DON) was calculated by subtracting inorganic N 

(sum of NO3
--N and NH4

+-N concentrations) from dissolved total nitrogen concentrations (DTN) 

(Jones and Willet, 2006).  

 

4.3.4. Potentially Mineralizable N 

 Potentially mineralizable nitrogen (PMN) was determined by incubating soil (8 g) in 

anaerobic conditions for 7 days at 40 °C (Bundy and Meisinger, 1994). Ammonium 

concentrations after the 7-day incubation were measured as described above, but using 1M 

K2SO4 (20 mL) to displace N on exchange sites. Ammonium concentrations of unfumigated 

microbial biomass extracts served as initial (day 0) concentrations and were subtracted from post 

incubation (day 7) concentrations to calculate PMN. 
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4.3.5. Enzyme Activities - Dehydrogenase, β-Glucosaminidase 

Dehydrogenase enzyme activities (µg triphenyl formazan (TPF) g- 1 soil for 24 hr -1) were 

determined using colorimetric analysis (Casida et al., 1964, Tabatabai, 1994). Moist soil (3 g), 

calcium carbonate (30 mg CaCO3), 3% 2, 3, 5, - triphenyltetrazolium chloride (0.5 mL) solution 

and Milli-Q water (1.25 mL) were incubated for 24 hrs at 37 °C. Soil was washed quantitatively 

with methanol (50 mL total) and filtered after incubation, and absorbance of the filtrate was 

measured by spectrophotometry at 485 nm.  

β-Glucosaminidase (NAGase) enzyme activities were determined colorimetrically using 

the method described by Parham and Deng (2000), and measured with a spectrophotometer 

(Cary 50, Varian, Inc., Palo Alto, CA) at 405 nm.  Moist soil subsamples (1 g) were incubated 

with (4 mL) acetate buffer (pH 5.5) and p-nitrophenyl-N-actetyl-B-D glucosaminidase (10 mM 

pNNAG) substrate at 37 °C  for 1 hr. Reactions were stopped with sodium hydroxide (4 mL of 

0.5 M NaOH) and calcium chloride (0.5 M CaCl2), and filtered through Whatman #40 filter 

paper.  

 

4.3.6. Statistical Analyses 

 

The design was a split-split plot. The whole plot was 4 x 3 randomized complete block 

(ground cover x fertilizer), and the split plot was year (2007-2013) and the split-split plot was 

month (March and May). Ground cover, fertilizer, year and month effects on measured soil 

parameters were evaluated by analysis of variance (ANOVA) using SAS (version 9.4, SAS 

Institute Inc., Cary, NC).  Least significant differences (LSD) were used to separate means at α = 

0.05, with up to three LSD’s used when significant interactions involved all possible factor 

levels. Only the highest order interaction that was significant is depicted graphically. To narrow 
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the results to the scope of the current study, only ground cover main effects or significant 

interactions involving ground cover are presented. A full set of significant interactions is 

presented in Appendix A, Tables 1 and 2.  

 

4.4. Results 

 

4.4.1. Soil Characteristics 

 

There was a significant ground cover by fertilizer by year by month effect on soil 

temperature (P < 0.0001, Table 4). As expected, soil temperature fluctuated most as a result of 

sampling time and May was always higher than March (Figure 1). Few differences stand out 

between ground cover and fertilizer treatments except for March 2010 and March 2012. Soil 

temperature data are missing for March 2008, which accentuates differences in temperature with 

ground cover application from May 2007 to May 2008, where compost and wood chip were 

similar and paper and mow-and-blow were similar (Figure 1).  

Water content was significantly affected by ground cover and year interaction (P < 

0.0001, Table 4). In 2007, water content was lower than any other year regardless of ground 

cover application (Figure 2). All treatments had similar effects on water content over time, 

increasing yearly until 2010 or 2011 (mow-and-blow) and then decreasing and becoming stable 

in following years. Water content in mow-and-blow control treatment soil was less than other 

treatments until 2011, while soils with compost addition had greater water content than others 

until 2011. After 2011, there were no significant treatment differences in soil water content. 

4.4.2. Nutrient supply and change in nutrient status over time 

 

Ground cover and fertilizer interaction effects on organic matter content differ 

significantly with month and between years (P < 0.0001, Table 4). Organic matter content 
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increased in all treatment combinations, 1.83% to 3.75%, from 2007 to 2013 (Figure 3). The 

trend over time in paper, wood chips and the mow-and-blow control was a gradual and steady 

increase regardless of fertilizer, and final organic matter amounts were similar in all treatment 

combinations (although mow-and-blow with no fertilizer and paper with commercial fertilizer 

were significantly different). Compost addition had more variable and dramatic effects on 

organic matter content. There was a rapid increase from May 2008 to March 2010, followed by a 

relatively stable period and OM was continually greater compared to other treatments. Fertilizer 

type did not vary the organic matter content at most times in the compost treatment; however, 

there was a negative effect of poultry litter addition with compost compared to the other two 

nutrient sources measured in 2012 and 2013. 

There was a significant effect of ground cover and fertilizer interaction through the years 

on DOC concentrations (Table 4, P = 0.043). Paper, wood chips, and mow-and-blow additions 

did not alter DOC concentrations greatly over years, although concentrations were highest across 

the three ground covers in 2011 (Figure 4). Fertilizer significantly increased DOC in these three 

ground covers, but only in some years. Dissolved organic carbon increased with poultry litter 

addition compared to the control in mow-and-blow in 2009 and 2013, in paper in 2008, 2009 and 

2013, and in wood chips in 2013. The DOC was increased by poultry litter more often than from 

the commercial fertilizer, which increased DOC in paper in 2008, and wood chips in 2013. The 

only difference in DOC response between the poultry litter and commercial fertilizer in these 

ground covers was more DOC with poultry litter in the mow-and-blow treatment in 2009. 

In contrast, DOC response to compost application was lower with poultry litter in 2009 and 

2012, but more frequently with commercial fertilizer (2009-2011, and 2013) compared to 

without fertilizer. Regardless of fertilizer, DOC soil concentrations under the compost ground 
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cover increased rapidly until 2010 to concentrations double that of soil receiving other ground 

covers. The DOC concentrations then decreased through the remaining years but were 

consistently higher compared to other ground cover treatments.  

Dissolved organic nitrogen (DON) concentration was significantly affected by ground 

cover, year and month (Table 4, P = 0.0131). Trends were similar in paper, wood chips and 

mow-and-blow over time (Figure 5). Concentrations were similar initially in these treatments, 

steadily increased in 2009 and 2010 then steadily decreased in 2012 and 2013 with only slight 

differences between adjacent measurements. Paper treatments had more DON than mow-and-

blow treatments in March 2009, 2010, 2011 and May 2010, 2011, 2013, and wood chip 

treatments were greater than mow-and-blow in March 2010 and May 2011. Paper treatments had 

more DON than wood chip treatments in May 2008, 2009, 2010, and 2013, but DON 

concentrations were never different in March. The least amount of DON was measured in 2013; 

in March concentrations were less than 2 µg N g -1, and in May there was close to 0 µg N g -1 

with wood chip addition. Compost addition increased DON at a faster rate and to a larger 

magnitude than other ground cover additions. Although DON in compost was similar to initial 

(2007) and final (2013) concentrations of some other ground covers, DON  was greater than in 

soil from the other ground covers from 2008-2012.  

There was a significant ground cover by fertilizer by year by month effect on potentially 

mineralizable nitrogen (PMN) concentrations (P < 0.0001, Table 4). Treatment effects on PMN 

were highly variable across time, with few trends spanning treatment combinations (Figure 6). 

However, PMN was not measured until 2009, potentially affecting the observed long-term 

trends. On average, there was less PMN in compost and wood chip treatments than paper and 

mow-and-blow treatments. The response of PMN to compost addition was mostly stable across 
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fertilizers through time, decreasing in 2012 and 2013 to less than initial (2007) concentrations. 

Fertilizer addition did not change PMN in soil receiving wood chips, except in May 2011, when 

PMN was markedly higher with wood chip addition in the no-fertilizer control treatment. In 

2013 there was more PMN in fertilized soils receiving wood chips compared to the no-fertilizer 

control-wood chip treatment combination. Potentially mineralizable nitrogen in the paper 

treatments did not vary much over time besides an increasing trend until 2012. Of all the ground 

covers, the fertilizer effect was most apparent in paper treatments, where the positive effect of 

fertilizer was not always significant (poultry litter > no fertilizer in March 2009, 2011, 2013 and 

May 2010, 2012; commercial fertilizer > no fertilizer in March 2009 and May 2010) but the 

trend was consistent over time. The response in PMN to the mow-and-blow control ground cover 

was variable with fertilizer and where there were short-term differences between adjacent 

sampling dates. Potentially mineralizable nitrogen concentrations spiked with poultry litter 

addition in the mow-and blow treatment every year in May except in 2012; whereas high PMN 

concentrations in commercial fertilizer treatment were also measured May but were less frequent 

(not 2010 or 2011). In contrast, mow-and-blow with the no-fertilizer control had almost no effect 

on PMN concentrations over time. 

There was a significant ground cover by year by month effect on ammonium-N 

concentrations (P = 0.0157, Table 4). Ammonium-N concentrations fluctuated month to month 

within years and were different depending on year (Figure 7). May concentrations were usually 

greater than March but there were exceptions in 2008 and 2012. High NH4
+-N concentrations 

were measured in May 2009 and 2010 in all treatments, except with compost addition which had 

less effect on concentrations at these and other time points. The response in early years in NH4
+-

N to mow-and-blow was different than other ground covers. By May 2007 concentrations were 
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higher than other treatments and NH4
+-N was continuously elevated with no drastic decrease 

until March 2010. Ammonium concentrations did not differ in mow-and-blow from other 

treatments past this date. 

There was a significant ground cover by fertilizer by year effect on soil nitrate 

concentrations (P = 0.0422, Table 4). Nitrate concentrations were low and similar in 2007 and 

similar across treatments (except wood chips with poultry litter) but responded differently 

through time depending on ground cover and fertilizer interaction (Figure 8). There are two 

prominent trends across ground covers:  1) increasing NO3
--N over time peaking in 2013, and 2) 

poultry litter addition resulting in significantly more NO3
--N than commercial fertilizer or the no-

fertilizer control. In all compost treatments, NO3
--N concentrations spiked in 2009. There was a 

similar response of the same magnitude measured in NO3
--N concentration in the mow-and-blow 

control treatment with poultry litter addition. Effects on NO3
--N concentrations from other 

ground cover and fertilizer treatments were not as marked until 2013. After 2008, there was a 

steady but slow increase in NO3
--N in all paper, wood chips and the mow-and-blow treatments; 

however, poultry litter addition resulted in a greater increase in NO3
--N concentrations in some 

years. The paper and poultry litter combination tended to have a greater NO-
3-N concentration 

than in the commercial fertilizer or control with paper ground cover, but concentration was not 

significantly greater until 2012, and in 2013 the greatest amount of NO3
--N measured during the 

duration of the study was in this treatment.  

 

4.4.3. Microbial community size and activity 

 

There was a significant ground cover by fertilizer by year by month interaction effect on 

microbial biomass carbon (Bio C) and nitrogen concentrations (Table 4) which varied differently 
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from March to May depending on the year (Figure 9). Generally, Bio C in compost, paper and 

wood chip treatment combinations increased initially (2007-2008), temporarily decreased in 

March 2009, and then continued to increase, peaking between 2010 and 2011, before finally 

decreasing to concentrations similar to 2007. In all compost treatments, there was a large spike in 

Bio C concentrations in March 2010, (near 200 µg C g -1 of dry soil), at least double and up to 

quadruple flanking measurements. There was a spike of a smaller magnitude in the wood chip 

treatments in March 2010, followed by another in 2011, with eventual decline through the final 

years to concentrations similar to those measured in 2007. Overall, trends in Bio C in wood chips 

and paper treatments were similar, but concentrations in the paper treatments were of a greater 

magnitude and the decrease in concentrations in May 2010 was not as drastic, creating an 

extended peak from 2010 to 2011 instead of two distinct peaks in biomass concentration. 

Microbial biomass C in the mow-and-blow treatments was very consistent in 2007 and 2008, and 

similar to other treatments exhibiting a temporary decrease in March 2009 before a slow and 

steady increase from 2009 to 2011. Unlike other treatments, in mow-and-blow the no-fertilizer 

control never spiked, but changed gradually through time, although poultry litter (2011 and 

2012) and commercial fertilizer (2012 and 2013) did result in marked increases in Bio C in May 

samplings.  

Microbial biomass nitrogen (Bio N) concentrations were very responsive to treatments 

with short and long-term fluctuations (Figure 10). Overall, initial concentrations were similar 

across treatments and then increased to varying magnitudes and for different durations before 

decreasing in 2013 to concentrations similar to those measured in 2007. There was a trend of 

steady increase in Bio N with compost addition from May 2007 until March 2010 (except 

commercial fertilizer in May 2009), concentrations then remained fairly stable until decreasing 



 

100 

in 2013. Microbial biomass N with wood chip addition fluctuated within years, peaking in March 

from 2008 to 2011. Concentrations were similar across fertilizers in the wood chip ground cover 

except that poultry litter resulted in higher Bio N in 2009 and 2010 compared to the other two 

fertilizers. The most dramatic response in Bio N was with the addition of paper; Bio N increased 

from 2007 to 2010, and included the greatest concentration of Bio N measured during the study 

in the poultry litter treatment combination. However, concentrations tended to decrease in 2012 

and 2013.  

There was a significant ground cover by year by month effect on dehydrogenase 

activities (P = 0.0383, Table 4). Dehydrogenase activities varied month to month and through 

years but was similar across ground covers in 2007 (Figure 11). Early on (2007-2008) more 

activity was measured in March than in May, while in following years May was usually more 

active but activities varied with ground cover. There were higher activities in mow-and-blow in 

2007-2008 compared to other ground covers, and activities peaked in March 2008. From 2009 

through 2012, dehydrogenase activities were steady in mow-and-blow. Compost, paper and 

wood chip additions increased activities as well, but effects were highly variable through time 

and activities did not peak until May 2010. There was a large difference in activities in response 

to wood chip treatments, increasing from among the lowest to the highest dehydrogenase 

activities measured from May 2009 to May 2010. Dehydrogenase activities were similar in all 

treatments in March 2013 and lower than any other time point.  

There was also significant ground cover by year by month effect on β-Glucosaminidase 

activities (NAGase) (P=0.0003, Table 4). β-Glucosaminidase activities also fluctuated over the 

duration of the study; however, March to May differences within year did not vary greatly 

(Figure 12). There was an elevated response in the early years of the study with mow-and-blow 
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additions until 2010, and again in May 2012 and May 2013, which was the greatest amount of 

NAGase activity measured throughout the study. In 2011, NAGase activities were high in mow-

and-blow, paper, and wood chips.  Compost addition did not produce large changes in NAGase 

activities through time and was consistently lower than other ground covers through time.  

 
4.5. Discussion 

 

Effects of organic ground covers and fertilizers to soil nutrients and microbial processes 

can be linked to environmental conditions (temperature, moisture and pH) and the quality of the 

substrate. Microorganisms have a low C:N ratio (5:1-15:1) and will immobilize N when 

decomposing organic materials with limited N contents; therefore, lower C:N residues (< 20:1) 

are considered higher quality resources. In addition, decomposition rate varies with the litter 

composition; sugars, proteins and starches are easily decomposed, while hemi-cellulose, 

cellulose and lignin are increasingly difficult to decompose (Tisdall and Oades, 1982). Ground 

covers may positively affect soil physical properties. Increased water holding capacity (Neilsen 

et al., 2003) is one frequently reported as benefit of mulch. Granatstein and Mullinix (2008) 

compared a variety of inert and living mulches with the goals of weed control, increasing water 

retention and providing N to organic fruit trees in the Pacific Northwest. Wood chips, shredded 

paper, and clover provided the best weed control and mulched plots retained 15-20% more 

moisture than unmulched plots. Alfalfa hay, wood chips, and paper contributed to the highest 

infiltration rates. In this study, all ground covers increased moisture likely because of protection 

of the soil surface and increasing the soil organic matter and ground covers also affected soil
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temperature but ground cover and fertilizer effects had impacts beyond moisture and 

temperature. In the current study, focus was on effects of treatments on microbial responses and 

changes in nutrient availability. 

Soil organic matter increase was expected with annual additions of ground covers and 

fertilizers (Yao et al., 2005; Kramer et al., 2006); however, rate of increase and total 

accumulation in the compost treatment exceeded expectations. Previous studies have shown that 

significant increases in OM can occur with short-term compost applications. Soil OM increases 

of 75%, 145%, and 185% relative to a control were reported by Cayuela et al. (2004) following 

single applications of compost with various initial ratios of olive mill waste to sheep manure that 

were made to a loam soil with an initial 1.8% OM. Yearly application of three municipal 

biosolids and two animal biowastes and peat moss significantly increased soil OM content up to 

2% after four years, and all treatments had more OM than the control by the second year of 

application to a loamy sand (Zebarth et al., 1999). Baldi et al. 2010 reported OM increases of 

169% after 9 years with the highest rate of compost applied, 10 t ha -1 yr -1, in a peach orchard. In 

contrast, smaller increases in soil C and N were reported by Neilsen et al. (2003), after applying 

two biosolids, shredded paper, an alfalfa mulch, and black plastic mulch for seven years to an 

apple orchard soil, the most total C and N was in a biosolid treatment (19 g C kg -1, 1.8 g N kg -1) 

compared to the control (10 g C kg -1, 1.0 g N kg -1). Increases in OM with compost addition in 

the present study were over 6% after four years of applications (2006-2009). A horticulture 

decision to not apply compost in 2010 was made to protect the trees in that treatment, but was 

the only skipped treatment application in the study.  Organic matter in compost treatments 

decreased from 2010 and was more comparable to the other ground covers. Ground cover and 

nutrient source application rates were not investigated as part of this study and should be 
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investigated in the future for optimization in organically managed, perennial systems in 

southeastern U.S. Organic matter content increased similarly in other treatments, which is 

surprising considering that the average nutrient content (N, P, K) and C:N ratio of the three 

materials was very different.

 Fertilizer addition rarely affected the response in organic matter content, even in 

treatments receiving paper which had the highest C:N ratio. This suggests that the C:N ratio is 

not the only factor controlling decomposition rates. In addition to the C:N ratio, the substrate 

quality of the materials affects nutrient cycling (Bengtsson et al., 2003; Mungai and Motavalli, 

2005). The lignin content of compost will vary with initial substrate, but a compost of similar 

initial substrates was 39% (Francou et al., 2008). The lignin content of the other three ground 

covers was likely lower which could explain in part why these ground covers accumulated less 

organic matter (Francou et al., 2008). Wood chips contain approximately 28% lignin (Holland et 

al., 1990). Lignin content of tall fescue has been found to be less than 12% (Chen et al. 2002), 

and office paper lignin content is 6.5% or less (Komilis and Ham, 2003). 

Dissolved organic carbon and nitrogen concentrations, including the temporal trends in 

concentrations, appear to be strongly influenced by the soil organic matter content.  Dissolved 

organic carbon and nitrogen are the soluble fraction of organic matter that is physically available 

for use by microorganisms containing both labile and recalcitrant fractions but may not directly 

be related to mineralization rates (Cook and Allan, 1992; Aiken and Costaris, 1995; Chantigny, 

2002). Gonet and Debska (2006) reported DOC and DON concentrations that were still elevated 

above the control 10 years after varying rates of cattle slurry were applied to soil. Moisture and 

temperature are also positively correlated with DOC production (Christ and David, 1996), 

decomposition and mineralization of soil organic matter (Kirschbaum, 1995; Leiros et al., 1999). 



 

102 

Chow et al. (2006) reported DOC production ranging from 150 µg g -1 to 400 µg g -1 during a 60-

day incubation in a California delta peat soil at water contents of 0.3 g g -1, and reported DOC 

in the same soil was more than double those concentrations when the soil water content was 

increased. Interestingly, in this study, the trend in soil water content over time in the ground 

cover treatments is almost identical to the trend observed in DOC with compost additions. 

Dissolved organic nitrogen concentrations in the compost treatments follow the same overall 

trend as DOC and OM except initial and final DON concentrations are the same across 

treatments.  

Potentially mineralizable nitrogen is a measure of ammonium N that is easily 

decomposable and available for microorganisms to use. In contrast to other pools of nutrients 

measured in the study, PMN in compost treatments is lower than other treatments, which is 

interesting because amount of substrate or C:N ratio is not N-supplying in this case, suggesting 

that organic N present in compost treatments is tied up in complex molecules, such as lignin, as 

previously discussed. Generally PMN was highest in mow-and-blow treatments which has a low 

C:N, a low lignin content, and fertilizer addition increased the amount of easily decomposed 

compounds present. Burger and Jackson (2003) reported more PMN with organic management 

(legume cover crop, composted poultry litter, harvest residue) of a tomato-corn rotation than in 

conventional (harvest residue, fertilizer) tomato-wheat rotation. The greatest amount of PMN 

measured was ~ 40 µg N g-1, measured in June, which is consistent with the range of PMN 

measured in the current study, with paper and wood chip additions (36 to 48 µg N g -1) (Burger 

and Jackson, 2003).  

 Ammonium concentrations in this study fluctuated greatly. In comparison, concentrations 

were greater than soil from either conventional or organic cropping systems at any of the five 
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sample dates (< 2 µg NH4
+ g -1) measured by Burger and Jackson (2003). Continually elevated 

NH4
+-N in mow-and-blow compared to other ground covers from 2007-2009 supports the idea 

that mineralization was greatest in mow-and-blow compared to other ground covers early in the 

life of the organic apple orchard because easily broken down substrates stimulated microbial 

activity. Overall, the trend in NH4
+-N is similar across ground covers, although at times NH4

+-N 

concentrations differ in magnitude and were different from trends in other measured variables, 

suggesting that environmental factors influence both the potential availability and the production 

of NH4
+-N.  

 Overall, NO3
- -N was low with a few exceptions in 2009 and 2013. Less NO3

- -N has 

been reported with organic amendments vs. integrated or conventional fertilization in a 

Macadamia nut orchard in Honolulu, Hawaii (Bittenbender et al., 1998) and apple orchard in 

Yakima, Washington (Kramer et al., 2006). In 2013, NO3
- -N was very high across ground covers 

with fertilizer application, possibly a result of increased N mineralization rates stimulated by 

labile N from dead microbial biomass after a very cold winter (Table 3; Figure 1 and 8) (DeLuca 

et al., 1992; Herrmann and Witter, 2002). High NO3
- -N in 2013 corresponds with low NH4

+-N in 

May 2013, which is not surprising because nitrification increases rapidly with temperature 

(Morrill and Dawson, 1967; Avrahami et al., 2003). Evanylo et al. (2008) compared an 

uncomposted poultry litter, compost, fertilizer and a control and reported the greatest 

concentration of nitrate (5.49 mg L-1) in runoff during a rainfall simulation with the addition of 

an uncomposted poultry litter manure. Similarly, in the current study, the poultry litter fertilizer 

resulted in the greatest response in NO3
- in all ground covers. Although the C:N of poultry litter 

is higher than the commercial fertilizer and they were applied at the same rate of N, the data 

suggest ammonium in poultry litter is readily nitrified (Preush et al., 2002).  
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Some of the most unexpected results of the study were the microbial biomass responses 

to treatments, including few changes in initial and final concentrations, paper additions having 

the greatest response and more microbial biomass measured in March rather than May in some 

years. A larger, more active microbial community with organic amendments is one of the most 

commonly published benefits of organic management. Farmyard manure, green manure (legume 

cover crop), and wheat straw applied with fertilizer had positive effects on microbial biomass C 

ranging from 273 mg C kg -1 to 423 mg C kg -1 in a pearl millet-wheat rotation on a sandy loam 

in a tropical climate (Goyal et al., 1999). In comparison, the most microbial biomass C in the 

current study was 214 mg C kg -1, measured in March 2011, with paper and poultry litter 

addition. Paper had the largest positive impact on Bio C concentrations, and was increased by 

fertilizer. Residue quality may be controlling the fluctuations in microbial biomass, as paper with 

the lowest lignin content treatment had the greatest effect on biomass, followed by the two 

ground covers with intermediate lignin content, wood chips and mow-and-blow.  

Interestingly, large responses in Bio C were measured in March 2010, a peak in Bio C 

concentrations in compost treatments and more Bio C were also measured in paper and wood 

chip treatments at this date, which corresponded to one of the coldest March temperatures. While 

similar temperatures were measured in March 2013, microbial biomass C was very low across 

treatments, which is more consistent with expectations of microbial biomass and processes 

correlating with temperatures (Myers, 1975; Hassan et al., 2015). One possible explanation for 

the difference in microbial biomass concentrations between years may be attributed to 

differences in timing in response to cold temperatures. DeLuca et al. (1992) and Herrmann and 

Witter (2002) both reported increased mineralization rates in response to freeze thaw cycles 

resulting from labile nutrients contained within dead microbial biomass. In 
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March 2010, the high biomass could be a result of growth from microorganisms using the labile 

nutrients from the dead biomass while in 2013, biomass may have died and the labile nutrients 

are not being taken up by the new biomass yet. 

Microbial biomass nitrogen responded to treatments similarly as microbial biomass C. 

One interesting response that stands out was very low microbial biomass N measured in May 

2009 in compost with commercial fertilizer addition, which corresponds to very low PMN and 

very high nitrate in this treatment in 2009. Nitrate-N was also high in 2009 in the other fertilizer 

treatments receiving compost and while microbial biomass N and PMN, were different, 

nitrification is apparently high across fertilizers. Nitrifiers are a physiologically specialized group 

(Head et al., 1993) that are present in low amounts compared to the total microbial population 

(Hermansson and Lindgren, 2001) and differences in quantities, or activities regardless of cell 

numbers, of nitrifiers may not be reflected in the total microbial biomass. 

Dehydrogenase activities are an indicator of overall aerobic activity and are variable 

across ground covers through time. Tejada et al. (2006) concluded compost and poultry litter 

treatments increased dehydrogenase activity over time, but more so in poultry litter, because 

higher amounts of labile carbon in these treatments stimulated activity. In this study, DHase, 

NAGase activities, and NH4
+-N concentrations were initially greatest in the mow-and-blow 

suggesting decomposition and mineralization of N of labile compounds was initially greatest in 

the treatment not receiving an added ground cover layer, only clippings of plant materials 

growing within that system. Soil receiving the other ground covers eventually surpassed mow-

and-blow in DHase activities and peaked in 2010; however, NAGase activities were never 

greater than in the mow-and-blow treatments, but paper and wood chips were similar in 2011. 

Goyal et al. (1999) reported the wheat straw application promoted more dehydrogenase activities 
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and microbial biomass, but rates of less than 67 µg triphenyl formazan (TPF) g -1 soil for 24 hr -1 

were much less than those measured in the current study, which were typically over 100 µg TPF 

g -1 soil. Similarly, more NAGase and DHase activities were measured with the additions of 

straw and alfalfa compared to poultry manure or sewage sludge incorporated four times within a 

two-year period to a coarse loamy Alfisol in California (Martens et al., 1992). 

 

4.6. Conclusion 

 

Although compost addition had the largest impact on the soil organic matter content as 

well as DOC and nitrogen concentrations, microbial activities (DHase and NAGase) and Bio C 

and N were not stimulated to a greater extent compared to the other treatments through seven 

years of annual ground cover and nutrient applications. However, the ability of the community to 

nitrify was not negatively impacted by compost amendments, as greater or similar amounts of 

soil nitrate-N were measured in 2009 and 2013 without larger total microbial biomass. In the 

other ground cover treatments, greater amounts of PMN, NH4
+-N, microbial biomass, DHase and 

NAGase activities throughout the study indicate that these residues are being cycled more readily 

than compost. Substrate quality of ground cover and nutrient combinations seem to impact soil 

microbial biomass, enzyme activities and resultant nutrient availability to a greater extent than 

the total C and N added or the C:N ratio.  
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4.8. Tables 

Table 1. Initial properties of an organically managed apple orchard silt loam soil, Fayetteville, 
AR, 2006 (n=36). 

aEC is electrical conductivity; OM is organic matter; N is nitrogen; C is carbon; P is 
phosphorous; K is potassium 
 

  

Year  pH ECa Bulk Density OM   N C P K 
  (μmhos cm -1) (g cm3 -1) (%)   ------------(mg kg -1)------------- 

2006 6.57 73.75 1.34 1.47   0.09 0.95 34 170 
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Table 2. Nutrient contents of ground cover and fertilizer treatments applied in an 
organically managed apple orchard, Fayetteville, AR (n=6). 

 

Data for each ground cover and fertilizer are averaged across 2006-2011 
aC is carbon; N is nitrogen; P is phosphorous; K is potassium 
 

Treatment Ca N C:N P K 
  ------ (%)------  ------ (%)------ 

Compost 20.5 1.6 13.5 0.2 0.5 
Wood Chips 29.7 0.7 39.2 0.1 0.3 
Paper 36.8 0.2 205.9 0.0 0.0 
Mow-and-Blow 40.0 2.2 15.8 0.3 1.5 

Commercial Fertilizer 31.3 4.4 7.8 1.4 2.6 
Poultry Litter 29.5 1.7 19.4 1.3 1.4 
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Table 3. Monthly mean air temperatures and precipitation measured at the University of Arkansas Agricultural Research and 
Extension Center in Fayetteville, AR from 2007 to 2013 (NOAA, 2015). 

aT is Temperature; P is Precipitation; bJan. is January; Feb. is February; Mar. is March; Apr.is April; Aug. is August; Sept is September; Oct. is 
October; Nov. is November; Dec. is December  
 
  

  2007  2008  2009  2010  2011  2012  2013 
Month Ta P  T P  T P  T P  T P  T P  T P 
 °C mm  °C mm  °C mm  °C mm  °C mm  °C mm  °C mm 

Jan.b 16.7 1.3  20.7 30.2  14.6 0.3  20.9 0.0  11.3 7.6  21.0 56.6  18.9 65.5 
Feb. 20.5 0.5  21.9 123.4  25.2 38.1  11.9 6.1  26.8 63.2  25.2 48.8  23.2 55.1 
Mar. 40.5 5.1  32.6 108.7  35.6 15.7  29.3 29.7  32.2 32.8  40.7 119.1  26.4 108.5 
Apr. 38.1 50.5  37.6 153.2  38.3 27.7  44.4 22.4  40.5 267.5  45.3 53.1  38.0 144.5 
May 48.8 47.0  48.2 129.0  45.7 38.1  49.8 65.5  44.6 138.7  53.3 45.7  46.8 266.7 
June 56.3 48.0  55.1 61.5  58.7 60.7  60.1 3.0  61.9 16.5  59.9 64.5  57.6 24.9 
July 59.0 15.0  60.3 114.3  59.6 31.8  61.7 240.3  68.0 9.1  65.3 36.1  59.7 63.8 
Aug. 64.2 0.0  59.2 0.0  58.8 55.9  65.1 0.0  66.2 52.1  60.1 88.4  58.1 154.7 
Sept. 53.6 22.1  49.8 158.0  48.8 78.5  56.5 215.6  48.4 94.7  54.3 73.7  54.9 101.9 
Oct. 43.9 20.1  41.7 81.0  36.7 214.4  40.8 17.0  43.0 50.0  41.9 4.6  41.9 31.5 
Nov. 36.3 4.3  32.9 19.1  33.6 11.2  36.5 7.9  32.6 151.4  31.7 22.6  27.7 64.3 
Dec. 22.1 33.3  16.9 1.8  20.7 0.0  14.9 0.0  16.0 1.0  29.0 43.2  17.3 88.6 



 

 

Table 4. Analysis of variance (ANOVA) summary of the effects of ground cover and fertilizer treatments, month and year, and their 
interactions on soil properties at the 0-10 cm depth of a silt-loam soil in an organically managed apple orchard, Fayetteville, AR, 
2007-2013 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

aGC is ground cover and Fert is fertilizer source; bH2O is water content; OM is organic matter; Temp is soil temperature; DOC is 
dissolved organic carbon; DON is dissolved organic nitrogen; NO3

- -N is nitrate-N; NH4
+-N is ammonium-N; Bio C is microbial 

biomass carbon; Bio N is microbial biomass nitrogen;  DHase is dehydrogenase activity; NAGase is β-glucosaminidase activity. 
Complete ANOVA found in Table 1, Appendix A 
* P < 0.05
 
 
 

Soil Property GCa  GC*Fert GC*Yr GC*Fert*Yr GC*Yr*Mo GC*Fert*Yr*Mo 

H2Ob <0.0001* 0.1738 <0.0001*  0.6291      0.0882       0.4875 

OM <0.0001* 0.0459 <0.0001*  0.0022*    <0.0001*     <0.0001* 

Temp <0.0001*   0.0006* <0.0001* <0.0001*    <0.0001*     <0.0001* 

DOC <0.0001* <0.0001* <0.0001*  0.0433*      0.2105       0.0515 

DON <0.0001* <0.0001* <0.0001*  0.1405      0.0131*       0.2956 

NO3
- -N   0.0001* 0.6194 <0.0001*  0.0393*      0.0422*       0.0671 

NH4
+ -N <0.0001*        0.0602   0.0031*  0.4753      0.0157*       0.9559 

PMN <0.0001*    0.0133* <0.0001*  0.0250*    <0.0001*     <0.0001* 

BioC   0.0036*    0.0221* <0.0001*  0.5372    <0.0001* 0.0294* 

BioN <0.0001*    0.0325* <0.0001*  0.1340    <0.0001* 0.0003* 

DHase   0.0002*    0.0160* <0.0001*  0.1190      0.0383*       0.1704 

NAGase <0.0001*        0.2144 <0.0001*  0.2230      0.0003*       0.1885 
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4.9. Figure Captions 

 

Figure 1.   Soil temperature (°C) measured at 10 cm in every ground cover and fertilizer 
treatment combination in March and May from 2007 to 2013, in an organically managed apple 
orchard in Fayetteville, AR. Soil temperature data for March 2008 are missing. Fertilizer 
treatments effects are depicted within each ground cover treatment graph, open circles are no 
fertilizer control, closed triangles are poultry litter, and closed squares are commercial fertilizer 
(n = 3). LSD’s to compare means at α = 0.05, Whole plot (1.33), Split plot (1.27), Split-split plot 
(1.16) 
 
Figure 2.   Soil water content (g H2O g -1 of dry soil) affected by ground cover (compost, paper, 
mow-and-blow, and wood chips) and year averaged across all three fertilizers for both March 
and May samplings for each year from 2007 to 2013 in an organic apple orchard in Fayetteville, 
AR (n = 18). LSD’s to compare means at α = 0.05, Whole plot (0.021), Split plot (0.019) 
 
Figure 3.   Organic matter content (%) in each ground cover and fertilizer treatment combination 
measured in March and May from 2007 to 2013 in an organic apple orchard soil in Fayetteville, 
AR. Fertilizer treatments effects are depicted within each ground cover treatment graph, open 
circles are no fertilizer control, closed triangles are poultry litter, and closed squares are 
commercial fertilizer  (n = 3). LSD’s to compare means at α = 0.05, Whole plot (1.22), Split plot 
(1.14), Split- split plot (1.07) 
 
Figure 4.   Dissolved organic carbon (DOC) concentrations (µg C g -1 of dry soil) as affected by 
ground cover and fertilizer treatment combinations from 2007 to 2013 in an organic apple 
orchard soil in Fayetteville, AR. Fertilizer treatments effects are depicted within each ground 
cover treatment graph, open circles are no fertilizer control, closed triangles are poultry litter, 
and closed squares are commercial fertilizer (n = 3). LSD’s to compare means at α = 0.05, 
Whole plot (48.32), Split plot (44.65) 
 
Figure 5.   Dissolved organic nitrogen (DON) concentrations (µg N g -1 of dry soil) affected by 
ground cover (compost, paper, mow-and-blow, and wood chips) averaged across all three 
fertilizers (no fertilizer control, poultry litter, and commercial) in March and May from 2007 to 
2013 in an organic apple orchard in Fayetteville, AR (n = 9). LSD’s to compare means at α = 
0.05, Whole plot (4.7), Split plot (4.4), Split- split plot (4.3) 
 
Figure 6.   Potentially mineralizable nitrogen (PMN) (µg NH4

+-N g -1 of dry soil) affected by 
ground cover and fertilizer combinations in March and May from 2007 to 2013 in an organic 
apple orchard soil in Fayetteville, AR. Fertilizer treatments effects are depicted within each 
ground cover treatment graph, open circles are no fertilizer control, closed triangles are poultry 
litter, and closed squares are commercial fertilizer (n = 3). LSD’s to compare means at α = 0.05, 
Whole plot (16.28), Split plot (15.09), Split- split plot (14.93) 
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Figure 7.  Ammonium concentrations (µg NH4
+-N g -1 of dry soil) ground cover (compost, paper, 

mow-and-blow, and wood chips) averaged across all three fertilizers (no fertilizer control, 
poultry litter, and commercial) measured in March and May from 2007 to 2013 in an organic 
apple orchard in Fayetteville, AR (n = 9). LSD’s to compare means at α = 0.05, Whole plot 
(1.98), Split plot (1.88), Split- split plot (1.82) 
 
Figure 8.   Nitrate concentrations (µg NO3

- -N g -1 of dry soil) affected by affected by ground 
cover (compost, paper, mow-and-blow, and wood chips) and fertilizer (no fertilizer control, 
poultry litter, and commercial) combinations from 2007-2013 in an organic apple orchard in 
Fayetteville, AR (n = 3). LSD’s to compare means at α = 0.05, Whole plot (10.04), Split plot 
(9.45), Split-split plot (9.44) 
 
Figure 9.   Biological carbon (µg C g -1 of dry soil) as affected by ground cover and fertilizer 
treatment combinations from 2007 to 2013 in an organic apple orchard soil in Fayetteville, AR. 
Fertilizer treatments effects are depicted within each ground cover treatment graph, open circles 
are no fertilizer control, closed triangles are poultry litter, and closed squares are commercial  (n 
= 3). LSD’s to compare means at α = 0.05, Whole plot (51.50), Split plot (48.46), Split- split plot 
(44.35) 
 
Figure 10. Biological nitrogen (µg N g -1 of dry soil) ) as affected by ground cover and fertilizer 
treatment combinations from 2007 to 2013 in an organic apple orchard soil in Fayetteville, AR. 
Fertilizer treatments effects are depicted within each ground cover treatment graph, open circles 
are no fertilizer control, closed triangles are poultry litter, and closed squares are commercial (n 
= 3). LSD’s to compare means at α = 0.05, Whole plot (10.23), Split plot (9.66), Split- split plot 
(9.34) 
 
Figure 11. Dehydrogenase activities (µg triphenyl formazan (TPF) g - 1 soil for 24 hr -1) affected 
by ground cover(compost, paper, mow-and-blow, and wood chips) addition averaged across all 
three fertilizers (no fertilizer control, poultry litter, and commercial) in March and May from 
2007-2013 in an organic apple orchard in Fayetteville, AR (n = 9). LSD’s to compare means at α 
= 0.05, Whole plot (55.73), Split plot (52.26), Split- split plot (51.40) 
 
Figure 12. β-Glucosaminidase (NAGase) (µg g -1 hr -1) activity affected by ground 
cover(compost, paper, mow-and-blow, and wood chips) addition averaged across all three 
fertilizers (no fertilizer control, poultry litter, and commercial) in March and May from 2007-
2013 in an organic apple orchard in Fayetteville, AR (n = 9). LSD’s to compare means at α = 
0.05, Whole plot (15.60), Split plot (14.30), Split- split plot (14.30) 
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5. Conclusion 

  

  The purpose of this thesis was to determine how locally applicable ground covers 

(compost, wood chips, paper mulch, and mow-and-blow) combined with one of three organic 

fertilizers (composted poultry litter, organic commercial fertilizer, and no-fertilizer control) 

applied annually from 2006-2013 in an organically managed apple orchard system on a highly 

eroded mineral Ozark highlands soil, affected soil properties and microbial processes in the 

Southern United States. Results suggest that all treatments were capable of increasing organic 

matter content and nutrient availability over the seven years of the study. However, the 

interactions between ground covers and fertilizers, timelines of treatment effects, and microbial 

community shifts are complex. The long-term nature of the second study in this thesis revealed 

many treatment differences that were not apparent in the first study when comparing only the 

beginning and end of the study.  

Although compost addition had the largest impact on the soil organic matter content, and 

dissolved organic carbon and nitrogen concentrations, microbial activities (DHase and NAGase) 

and microbial biomass C and N were not stimulated to a greater extent compared to the other 

treatments through seven years of annual ground cover and nutrient applications. However, the 

ability of the community to nitrify was not negatively impacted, as greater or similar amounts of 

soil nitrate-N were measured in 2009 and 2013 without an equivalently large amount of total 

microbial biomass. In the other ground cover treatments, greater amounts of PMN, NH4
+-N, 

microbial biomass, DHase and NAGase activities throughout the study indicate that these 

residues are being cycled more readily than compost. Substrate quality of ground cover and 
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nutrient combinations seem to impact soil microbial biomass, activity and resultant nutrient 

availability to a greater extent than the total C and N added or the C:N ratio.  

The treatments with the biggest impact on denitrifying nirK organisms were compost and 

wood chips. The change in the compost communities was apparent in 2007 by greater species 

richness and diversity than the other treatments. Wood chips communities changed greatly over 

time and in 2013 had similar species richness and diversity when applied in combination with 

either fertilizer even though DOC concentrations were less than in compost treatments.  I 

hypothesized treatments where substrate availability (OM, DOC, NO3
--N) and soil conditions 

(pH, temperature, water content) were most conducive to denitrification, microbial biomass and 

nirK community richness and diversity would be greatest. The hypothesis regarding microbial 

biomass was not supported by the results, mow-and-blow treatments added less OM and DOC, 

while compost and wood chip treatments added more OM, DOC, and NO3
- -N but microbial 

biomass did not differ across ground covers within a year.  

Further investigations into the interaction between compost and fertilizer, especially 

poultry litter, are needed to fully understand the impacts on the soil biological and chemical 

properties. More molecular analyses, including qPCR or next generation sequencing, to 

determine how nitrogen cycling communities are responding would also be beneficial, because 

they serve as sensitive and dynamic indicators of changes in soil properties, are the agents of 

decomposition and retain and turnover nutrients in soil.  
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6. Appendix A 
 

 
 
Table 1. Analysis of variance (ANOVA) summary of the effects of ground cover and fertilizer treatments, month and year, and their 
interactions on soil properties at the 0-10 cm depth of a silt-loam soil in an organically managed apple orchard, Fayetteville, AR, 
2007-2013 

aDOC is dissolved organic carbon; DON is dissolved organic nitrogen; is nitrate-N; NH4
+-N is ammonium-N; Bio C is microbial 

biomass carbon; Bio N is microbial biomass nitrogen; EC is electrical conductivity; OM is organic matter; H2O is soil-water content. 
* P < 0.05 
  

Soil  
Property 

GC Fert GC*Fert Yr GC*Yr Fert* 
   Yr 

GC*Fert 
*Yr 

Mo Yr*Mo GC* 
Yr*Mo 

Fert* 
Yr*Mo 

GC*Fert* 
Yr*Mo 

H2Ob <0.0001* 0.3873  0.1738 <0.0001* <0.0001* 0.9003 0.6291 0.4937 <0.0001* 0.0882 0.4192 0.4875 
OM <0.0001* 0.0832  0.0459 <0.0001* <0.0001*   0.0227*   0.0022* 0.5095 <0.0001* <0.0001*   0.0279* <0.0001* 
Temp <0.0001*   0.0135*    0.0006* <0.0001* <0.0001*   0.0002* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* 
DOC <0.0001*   0.0005*  <0.0001* <0.0001* <0.0001* 0.1296   0.0433* <0.0001* <0.0001* 0.2105   0.0164* 0.0515 
DON <0.0001* <0.0001*  <0.0001* <0.0001* <0.0001* 0.0998 0.1405   0.0280*  0.0062*   0.0131*   0.0250* 0.2956 
NO3

- -N   0.0001* <0.0001*  0.6194 <0.0001* <0.0001* <0.0001*   0.0393* <0.0001* <0.0001*   0.0422* <0.0001* 0.0671 
NH4

+ -N <0.0001* 0.8385  0.0602 <0.0001*   0.0031* 0.6165 0.4753   0.0040* <0.0001*   0.0157* 0.1152 0.9559 
PMN <0.0001* 0.0154    0.0133* <0.0001* <0.0001*   0.0002*   0.0250* 0.2663 <0.0001* <0.0001* 0.3854 <0.0001* 
BioC   0.0036* 0.1625    0.0221* <0.0001* <0.0001*   0.0066* 0.5372 0.1049 <0.0001* <0.0001* 0.4769   0.0294* 
BioN <0.0001* 0.2829    0.0325* <0.0001* <0.0001*   0.0019* 0.1340 <0.0001* <0.0001* <0.0001* 0.0495   0.0003* 
Dhase   0.0002* 0.5511    0.0160* <0.0001* <0.0001* 0.1785 0.1190   0.0015* <0.0001*   0.0383* 0.7366     0.1704 
Nagase <0.0001*   0.0016*      0.2144 <0.0001* <0.0001*   0.0114* 0.2230 <0.0001* <0.0001*   0.0003* 0.0644     0.1885 



 

Table 2. Analysis of variance (ANOVA) summary of the effects of ground cover and fertilizer treatments, month and year, and their 
interactions on soil properties at the 10-30 cm depth of a silt-loam soil in an organically managed apple orchard, Fayetteville, AR, 
2007- 2013 

aDOC is dissolved organic carbon; DON is dissolved organic nitrogen; is nitrate-N; NH4
+-N is ammonium-N; Bio C is microbial 

biomass carbon; Bio N is microbial biomass nitrogen; EC is electrical conductivity; OM is organic matter; H2O is soil-water content. 
* P < 0.05 
 
 
  

Soil  
Property 

GC Fert GC*Fert Yr GC*Yr Fert* 
Yr 

GC*Fert 
*Yr 

Mo Yr*Mo GC* 
Yr*Mo 

Fert* 
Yr*Mo 

GC*Fert* 
Yr*Mo 

H2Ob   0.0010* 0.6732 0.2984 <0.0001*   0.0012* 0.9969 0.7737 <0.0001* <0.0001*  0.0013* 0.9994 0.7087 
OM   0.0007* 0.9962 0.5770 <0.0001* 0.5476 0.9735 0.7373 <0.0001*   0.0034* 0.2738 0.1063 0.9995 
Temp <0.0001*   0.0004* 0.0295 <0.0001* <0.0001*   0.0008*   0.0005* <0.0001* <0.0001*   0.0136* 0.0581 0.8291 
DOC <0.0001* <0.0001*   0.0014* <0.0001* <0.0001* <0.0001*   0.0160* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* 
DON <0.0001* <0.0001* 0.1781 <0.0001* <0.0001* <0.0001* 0.9580 <0.0001* <0.0001*   0.0132* <0.0001* 0.6548 
NO3

- -N 0.0584   0.0175* 0.2675 <0.0001* <0.0001* <0.0001* 0.5783 <0.0001* <0.0001* <0.0001* <0.0001* 0.6808 
NH4

+ -N 0.1559   0.0268* 0.1799 <0.0001* 0.2493   0.0464* 0.9442 <0.0001*   0.0012*   0.0001* 0.1642   0.0009* 
PMN   0.0100* 0.1080 0.9423 <0.0001* 0.0619 0.9780 0.9087   0.0134* <0.0001* 0.6276 0.8968 0.9767 
BioC 0.0939 0.0739 0.7926 <0.0001* 0.3493 0.1304 0.5875    0.9100 <0.0001* 0.0863 0.1071 0.4246 
BioN 0.1207 0.2964 0.9746   0.0014* 0.0730 0.8537 0.7945 <0.0001* <0.0001*   0.0200* 0.8460 0.9695 
Dhase 0.1105   0.0119* 0.3884 <0.0001* 0.1368 0.6561 0.6732 <0.0001* <0.0001* 0.1956 0.4407     0.5659 
Nagase   0.0010* 0.6732     0.2984 <0.0001*   0.0012* 0.9969 0.7737 <0.0001* <0.0001*   0.0013* 0.9994     0.7087 

135 



 

Table 3. Sample sizes of the DGGE analysis of nirK in the 0-10 cm depth in a silt-loam soil in an organically managed 
apple orchard, Fayetteville, AR, 2007-2013 

 

 
 
 
 
 
 
 

aGC is ground cover; PL is poultry litter; Comm is commercial fertilizer; bC is compost; M is mow-and-blow; P is 
paper; W is wood chips 
 
 
 
 
 
  

  2007 2013  Total 
GCa Control PL Comm Total  Control PL Comm Total  Control PL Comm Total 

C 3 3 2 8  3 2 2 7  6 5 4 15 
MB 3 3 3 9  3 3 3 9  6 6 6 18 
P 3 3 3 9  3 3 2 8  6 6 5 17 
WC 3 3 3 9  3 3 3 9  6 6 6 18 

Total 12 12 11 35  12 11 10 33  24 23 21 68 
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Table 4. Sample sizes of DGGE analysis of nirK in 10-30 cm depth of silt-loam soil in an organically managed apple orchard, 
Fayetteville, AR, 2007-2013 

 
 
 
 
 
 

 
 

aGC is ground cover; PL is poultry litter; Comm is commercial fertilizer; bC is compost; M is mow-and-blow; P is 
paper; W is wood chips 
 
 
 
 
 
  
 

  2007 2013  Total 
GCa Control PL Comm Total  Control PL Comm Total  Control PL Comm Total 

Cb 2 1 3 6  2 1 1 4  4 2 4 10 
MB 2 3 2 7  2 3 2 7  4 6 4 14 
P 2 1 3 6  1 1 3 5  3 2 6 11 
WC 1 3 2 6  2 3 2 7  3 6 4 13 

Total 7 8 10 25  7 8 8 23  14 16 18 48 
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