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ABSTRACT 

 

The U.S. Army has determined a huge cost savings of up to 51% can be accomplished by 

reducing the gross vehicle weight, for their personnel carrier, by 33%. To cut cost, composite 

materials are needed. Man-made composites can have superior material properties (high-

strength, high-fracture toughness, and lightweight), but they are prone to delamination at the 

glued-layered interface. In contrast, fish scale is a natural composite that has the same material 

properties and, additionally, tend not to delaminate.  

The focus of this study was to learn how nature integrates hard and soft materials at each 

length scale to form a layered composite that better resists delamination. Previous research 

conducted by others had suggested that from the nano-to-millimeter length scale the individual 

components of the fish scale are glued to form layers in the composite. My research provided a 

detailed description, using novel experiments, to explain how hard and soft materials have been 

mixed/integrated at each length scale, optimized by volume fractions, and subtly vary material 

properties. The material variations were compared to mechanical properties of modulus, 

hardness, and for the first time energy dissipation. 

(a) The combination of the hard (inorganic minerals) and soft (polymer-like organic 

collagen fibers) are integrated instead of being glued at the nano scale. At the micron scale for 

the two-layered composite the outer dental enamel (hard) layered interface uses a saw tooth 

shaped joint to connect to the inner bone (hard open-like foam) layer. At the millimeter scale the 

material and mechanical properties are gradually graded through the thickness, away from the 

interface.  



 

 

(b) Within each layer, at the micron scale, there are subtle variations in materials. 

However, the outer dental enamel (hard) layer has 90-percent hard (inorganic minerals), 

10 percent (polymer-like organic collagen fibers), by volume. Whereas, the inner bone (hard 

open-like foam) layer has 60 percent hard (inorganic minerals) and 40 percent (polymer-like 

organic collagen fibers), by volume.  

(c) Because hard and soft materials are mixed/integrated within the layers from the 

nano-to-micro length scales; along with property away from the interface at the millimeter scale 

the local stresses that lead to delamination are reduced. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Motivation 

As a result of recent budget restraints, the U.S. Army has looked to reduce production 

cost for some of its military assets. For example, the Army has determined a huge cost savings 

can be accomplished by reducing the gross vehicle weight for the Mine-Resistant Ambush 

Protected (MRAP) personnel carrier by thirty-three-percent (Joint Light Tactical Vehicle, 2015). 

The MRAP weighs [7-15] tons and cost [300 -550 (base models)] $k/vehicle to build (Mine-

Resistant Ambush Protected, 2015). Whereas, the next generation Joint Light Tactical Vehicle 

(JLTV) is expected to weigh [4.5-10] tons and [230 -270 (base models)] $k/vehicle] to build 

(Joint Light Tactical Vehicle, 2015). To be able to cut cost up to fifty-one-percent while 

maintaining military personnel safety, engineered composite materials will need to be used. 

Engineered composite (inhomogeneous) materials are well known for their superior structural 

properties. Composites are attractive because they can have the superior structural properties of 

being impact/penetration resistant, lightweight, high-strength, high-stiffness, and can provide 

good fatigue and corrosion resistance, Figure 1.1 (Structural Composites and Sandwhich Panels, 

2015). Additionally, engineered composites are multilayered systems that have interfaces that are 

glued. In the general sense, composite materials are defined as two or more physically and 

chemically distinct materials which, when combined, have improved properties over the 

individual materials (Strong, 2008). When comparing engineering composites to other structural 

materials such as steel, concrete, and foams, we find: (a) steel has high-strength, high-fracture 

toughness, but is extremely heavy, (b) concrete has high-strength, but is very brittle, has little 
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fracture toughness and is very heavy, (c) foam is impact resistant, lightweight, but has low 

fracture-toughness, and low-strength.  

 

Figure 1.1 Schematic of multilayered composite material system 
(Structural Composites and Sandwhich Panels, 2015). 

Although composites are promising and offer mutual exclusive material properties (high-

strength, high-fracture toughness, and lightweight) that are not found in other structural 

materials, they are prone to delamination at the glued layered interface. Usually man-made 

engineered composites tend to delaminate when impacted because the glued layers de-bond. 

Delamination at layer interfaces is the primary mechanism that leads to the failure of composite 

materials, Figure 1.2 (Makhecha, 2005; Columbia Accident Investigation Board, 2003). As an 

example, if engineered composites are used as sandwich panels on space shuttles, they can 

become damaged by impact. As an outcome of the impact damage, the glued sandwich panels 

may delaminate and fail almost instantaneously if exposed to the extreme thermal temperatures 
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and weight of gravity, causing the shuttle to explode. (Makhecha, 2005; Columbia Accident 

Investigation Board, 2003).  

 

Figure 1.2 Composites fail by delamination when impacted, foam-tile delamination led 
to Columbia space shuttle disaster (Columbia Accident Investigation Board, 2003). 

In contrast to man-made composites, most superior performing materials (high-strength, 

high-toughness, and lightweight) found in nature are layered composite systems that use a two-

component mixture of materials that are integrated at each length scale from the nano-to- 

millimeters to form what is called a (hierarchal structure). From the nano to micron length scale 

the hard materials (similar to metals) are mixed with soft materials (similar to polymers) then 

varied by volume fractions, spatial proximity, and directional placement in the layers to produce 
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a delamination resistant composite system. These delaminate resistant biocomposite structures 

[e.g., alligator gar (Atractosteus spatula) exoskeleton fish scale] have mechanical properties that 

vastly exceed the properties of their relatively weak constituents Figure 1.3 (Wegst, U., Schecter, 

M., Donius, A., and Hunger, P., 2010). Shown in Ashby’s chart “a,” Figure 1.3, are the specific 

values (that is, normalized by density) of strength and stiffness (or Young’s modulus) for both 

natural and synthetic materials.  

 

Figure 1.3 Ashby design chart of mechanical properties showing fracture toughness 
plotted against Young’s modulus for natural and engineered composite materials 

(Wegst, U., Schecter, M., Donius, A., and Hunger, P., 2010). 

At the millimeter scale after integrating the hard and soft material, the natural composites 

can have values of strength and toughness that are very comparable to those of most metals and 

alloys.  
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Specifically, shown in Figure 1.3, the engineering properties of the fish scales two 

individual layer components are similar to the outer dental enamel (hard) and inner cancellous 

bone (soft-sponge-like foam). The hard enamel is lightweight, has high-strength but is brittle and 

has a low fracture toughness. Whereas the sponge-like cancellous bone is lightweight, but it is 

soft, low-strength and has low fracture toughness. However, when the (hard) enamel is mixed 

with the (soft) sponge-like cancellous bone, they combine to make a lightweight fish scale 

layered composite that has high-strength with good fracture toughness whose engineering 

properties are comparable to metal alloys. 

1.2 Problem 

Most superior performing materials found in nature possess a hierarchal composite 

structure. The formation of the weak individual constituents found in fish scale composite is a 

function of its environmental conditions (i.e., water temperature and soluble minerals). Within 

each layer, at the micron scale, there are subtle variations in the spatial proximity and directional 

placement of the hard and soft materials. The fish scale is made up of 90 percent hard (inorganic 

minerals) and 10 percent soft (polymer-like organic collagen fibers) by volume. However, 

knowledge is lacking on how nature integrates hard and soft materials at each length scale to 

form a layered composite that is lightweight has high-strength with good fracture toughness but 

does not delaminate. 

1.3 Scientific Objective 

The objective of this research effort is to: (a) Investigate how nature might produce a 

composite made from a hard (inorganic mineral) and soft (polymer-like organic fibers) to form a 

layered structure that exhibits superior performing delamination resistance when externally 

loaded. (b) Explain how the hard and soft materials are integrated in the fish scale to form a 
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layered structure that is lightweight and has high-strength with good fracture toughness so they 

may not delaminate. (c) Suggest what fish scale design principles can be applied to the design of 

man-made engineered composite systems. 

1.4 Hypothesis (H) 

The hypothesis (H) is that the fish scales resist cracks and delamination because of the 

mixing and integration of materials occurring at millimeter, micron, and nano scales. Evidently, 

the fish scale’s hard (inorganic minerals) and soft (polymer like organic fibers) material volume 

fractions and variations within the layers reduces the local stresses that lead to delamination and 

crack formation caused by impact/penetration. 

1.5 Approach 

To meet the objectives of this research effort and to test the hypothesis, I further 

experimentally investigated from the nano-to-millimeter length scale the delamination resistant 

mechanisms in fish scale. At each length scale a detailed description was provided of how the 

hard and soft materials were mixed, what were the material variations within the layers, and what 

effect did the materials and variations have on mechanical properties in the composite system. 

1.6 Research Innovation 

Previous research conducted by others has suggested that from the nano-to-millimeter 

length scale the individual components of the fish scale are glued rather than being integrated to 

form layers in the composite. However, sufficient evidence had yet to be provided that neither 

proves nor disproves the suggested assumption. The innovation of this research is that for the 

first time a detailed description was provided as to how hard and soft materials are mixed and 

integrated at each length to form a layered structure. In addition my research provided details on 
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how the hard and soft materials vary by volume fractions, spatial proximity, and directional 

placement within the layers. Furthermore, the material variations were compared to mechanical 

properties of modulus, hardness, and for the first time energy dissipation were used to explain 

why the natural composite has high strength, good toughness, and may not delaminate.  

As an additional outcome of my research, to be able to meet my research objective and 

sufficiently test the hypothesis, a fundamental material science approach was used to develop an 

experimental protocol. Currently, there are no satisfactory standard combined protocols for 

investigating the material integration, local mechanical properties, material variation and 

integration at each length scale (millimeter, micron, and nano). Therefore, the development of 

the experimental protocol was needed so that the material variation and integration from the 

nano-to-millimeter length scale could be adequately explained. The experimental protocol used 

in this research is based on fundamental principles as opposed to the applied research methods of 

trial and error. The approach used here makes use of design concepts rather than iterative 

techniques that are employed across the engineering and scientific communities. 

1.7 Organization of Thesis 

Chapter 2 of this document provides a detailed overview of the current state of 

knowledge for exoskeleton fish scales and the experimental methods used in the characterization 

of bio-composites. Chapter 3 describes the experimental plan, materials, and methods used in 

this study. Chapter 4 provides the experimental data, analysis, and results for type, integration, 

and variation of materials, and mechanical properties for the layers at each length scale. 

Chapter 5 discusses the specific questions raised by the hypothesis, insight provided for the 

biological design principles, and suggested methodologies for developing bioinspired engineered 
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composite designs that exhibit advanced high-performance. Chapter 6 provides the summary, 

contributions/conclusions, from this research, and offers recommendations for future work. 
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CHAPTER 2:  STATE-OF-KNOWLEDGE 

 

2.1 Advanced Engineered Composites Overview 

Advanced engineered composites have been widely used by public and private sectors for 

marine, automotive, transportation, and aerospace industries (Gururaja 2012). In general, 

composites are used because no single structural material can be found that has all of the desired 

characteristics to meet the demands for specific applications. Engineered composites are robust 

and are often preferred by designers because individual materials are used in concert for the 

enhancement of performance characteristics. For instance, heterogeneous (dissimilar) carbon 

fiber–reinforced polymers (CFRP’s) materials are used wherever high strength-to-weight ratio 

and rigidity are key to performance such as in airplane wings (Jones, 1999). The wings must be 

light for air flight and durable enough to resist torsion, compressive, tensile, shearing, and 

flexural failure. 

In recent years, the composites that are in use are comprised of advanced materials and 

typically function under extreme operating conditions. For example, high earthquake areas, 

subzero temperature environments, nuclear blast, or instances of penetration effects caused by 

mid-to-high rate situations are the extreme conditions in which the composites should be able to 

perform well. Therefore, the myriad of attributes advanced composites offer that may be used to 

meet designers tailored requirements are: (a) tailorable physical and mechanical properties (e.g., 

anisotropic strengthening, toughness, durable, lightweight, high stiffness/crush resistance, 

strength-to-weight ratios and complex geometries, (b) conductive properties (e.g., optical or 

electrical ranging from none, to low, to high), (c) corrosion resistance, (d) thermal/flammable 

resistance, and (e) renewability/recyclability (Gibson, 1994). 
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2.2 Current Limitations of Advanced Engineered Composites 

One of the most critical aspects when designing composites is to prevent de-bonding/ 

delamination of layers and at interfacial transition zones (ITZ’s) of dissimilar materials. For 

example, engineered sandwich panel composites have the superior properties of being 

lightweight and temperature resistant and have been consistently used on space shuttle surfaces; 

thereby making space travel possible. However, an accident occurred, on February 1, 2003, 

during the Columbia space mission when the surface layer of the composites panel space shuttle 

received impact damage from a foreign object. As an outcome of the impact damage, the 

composite panel became unglued and delaminated. The space shuttle could no longer perform as 

designed. Failure occurred almost instantaneously because the damaged de-bonded surface areas 

were exposed to the extreme thermal temperatures (3000 °F) and gravity of at least 5G (where G 

is the gravitational constant is approximately equal to 6.674×10−11 N�m2/kg2), causing the 

shuttle to explode. (Makhecha, 2005; Columbia Accident Investigation Board, 2003).  

The capability to prevent composites from delaminating has eluded designers. 

Engineered composites are vulnerable to delamination when impacted or penetrated (Qiao, Yang, 

and Bobaru, 2008; Geubelle and Baylor, 2008). Delamination at the interface is the primary 

mechanism that leads to the failure of composite materials (Tippetts, 2005). The interface is an 

important factor controlling the stiffness, strength, and fracture properties for composite 

materials at the macro scale (Needleman, 1989). Because of expanding needs for new high 

performance materials that are cheaper and environmentally acceptable, researchers have turned 

to nature for answers by investigating superior performing biological materials.  
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2.3 Biological Materials Overview 

Over the last two decades, both design engineers and researchers have turned to nature 

with the hopes of understanding how biological materials are efficiently created to have superior 

properties such as high-strength, high toughness, and lightweight (Wegst and Ashby, 2004). 

Researchers have learned nature does not design structures rather it designs for functionality 

using whatever materials are indigenous to the geographical location. Functionality is what 

dictates the formation of the structure (Srinivasan, Haritos, and Hedberg, 1991; Weiner, Addadi, 

and Wagner, 2000). From an evolutionary standpoint, the biological materials adapted to their 

environment by enhancing their functionality in response to external stimuli. The adaptation by 

biological organisms has traceable developmental processes documenting how the systems adjust 

to their ever-changing surroundings. The motifs that are common in the development of 

biological materials, shown in Figure 2.1 I summarized the previous research efforts as to how 

the three integrated stages occur (Goodsell, 2004; Oyen, 2011 Ehrilich, 2010; Luz and Mano, 

2009; Sarikaya, Fong, Frech, and Humbert, 1999). 

The three sequential occurring stages are External Stimuli, Phase Ordering, and 

Structural Formation. Stage I is where nature acquires indigenous materials to be used for its 

constructs. Biological materials routinely make use of the commonly available periodic 

elements: carbon(C), nitrogen (N), calcium (Ca), hydrogen (H), oxygen (O), silica (Si), 

phosphorus (P), iron (Fe), and magnesium (Mg), which then form into proteins and minerals 

(Meyers, Chen, Lin, and Seki, 2008). Nature uses the same periodic elements to serve different 

purposes in the structural development process. For instance, the periodic elements of Ca, C, and 

O can form calcium carbonate (CaCO3). 



 

 
12 

 

Figure 2.1 Three integrated stages of developmental processes 
for adaptive biological materials. 

In the Nacre (Mother of Pearl) layer for the mollusks seashells, CaCo3 is the main 

molecule that drives the structural formation of high-strength mineralized aragonite layers within 

the seashell, Figure 2.2. Yet, in bone and tooth, CaCO3 assumes the role of solubilizing agent 

used for promoting ion transport within the hydroxyapatite molecule. The hydroxyapatite 

molecule is the primary constituent responsible for developing the high-strength mineralized 

structural layers found in bone and tooth (Goodsell, 2004; Ehrilich, 2010; Meyers, Chen, Lin, 

and Seki, 2008). 
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Figure 2.2 Schematic and scanning electron microscope images 
of the structural arrangement for aragonite crystal layers 

found in nacre (Meyers, Chen, Lin, and Seki, 2008). 

Another important aspect of all biological material formation is the hydration state. 

Nature uses hydration to facilitate the organism’s development starting from the incubation 

period through the end of cessation. The environmental conditions provide the efficient energy 

source to drive the reaction kinetics, usually occurring at ambient temperature with standard 

pressure and hydration states as determined by the required functionality (e.g., structural 

formation/geometry and mechanical property development). More importantly, nature responds 
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to the environmental conditions to maintain a delicate balance between the role the periodic 

elements play in the construction and functionality of the organisms. 

Next, Stage II begins with self-organizing the media and metrics defined in Stage I. The 

entity then uses the directed self-assembly process to attach the building blocks at each length 

scale with the variation in how the materials are integrated. In Stage II, the way materials are 

mixed, distributed, and integrated plays a key role in the amplification of properties that governs 

the formation of the multifunctionality for the system. The amplification of properties is very 

complex and unique for each length scale starting from the atomic level through the macro level 

(one-angstrom to one-millimeter) depending on the characteristic length for the system. 

After nature has systematically gathered, organized, and measured the ingredients within 

the confines of the environmental constraints, as denoted in Stages I-II, finally Stage III can 

begin. The construction of biological material structure encompasses several aspects of 

formation. Biological materials, specific to structures that have undergone the biomineralization 

process, develop characteristics during formation of being low density, durable, self-sensing, and 

able to repair themselves when damaged (Mann, 2001). 

2.4 Mineralized Biological Composites 

A mineralized biological composite constitutes two phases: hard (inorganic minerals) 

matrix phase integrated with a soft (polymer-like organic fiber reinforcement phase) (Dunlop and 

Fratzl, 2010; Baohua and Huajian, 2010; Wegst, Bai, Saiz, Tomsia, and Ritchie, 2015; Dubey 

and Tomar, 2010; Yang, Chen, McKittrick, and Meyers, 2012). Scientists discovered the 

biomineralized composites are advanced because of their length scale dependent material 

ordering, grading of mechanical properties, and functional role, and have exhibited superior 

performance under extreme conditions (Meyers, Chen, Lopez, Seki, and Lin, 2011; Fratzl, 2007). 
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Subsequent to the scientist’s discovery, design engineers have become fascinated with the novel 

characteristics and the possibilities of learning from nature how to synthesize bioinspired 

materials and structures for use in engineering applications (Barthelat, 2007a; Bhushan, 2009). 

Examples of superior performing advanced mineralized biological composites are bone, teeth, 

and exoskeleton fish scales (Chen, McKittrick, and Meyers, (2012)). 

2.4.1 Exoskeleton Fish Scale 

Material designers are in need of multifunctional composite materials that can readily 

meet a variety of in-service requirements (e.g., mechanical, sensing, or repairing) (Hanus and 

Harris 2013). Exploring simpler structured biomaterials other than bone and tooth is 

advantageous and can have a huge payoff for the composites community (Hanus and Harris 

2013). Exoskeleton fish scales are another one of Mother Nature’s biomineralized analogues that 

exhibit superior performance characteristics. Scientists are extremely challenged with the 

characterization, interpretation of processes, and functionality of the complex biomineralized 

systems such as nacre, bone, and tooth. By investigating less complex biological constructs, 

there is a greater chance for designers to use “biomimicry” or “bioinspiration” for synthesizing, 

designing, and manufacturing superior performing advanced composites. 

Designers are frequently challenged when vetting new composite materials systems, 

especially those biological material composites deemed superior performing in nature. The new 

composites will need to: (a) meet engineering requirements, (b) have performance characteristics 

that are scalable from the nano to macro level, (c) be affordable to produce, and (d) be 

environmentally safe. By studying the less complicated structure of exoskeleton fish scale, 

designers are more likely to develop future advanced composites materials that can better meet 
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the challenging need to maintain the nation’s infrastructure, aircraft, and automobiles. Also, the 

fish scale can be used as a stepping-stone for understanding more complicated material systems. 

Designers have recently shown great interest in studying exoskeleton fish scales for 

potential use in a wide variety of engineering applications. Researchers have observed that the 

protective biomineralized hard outer layer seems to function as body armor for the fish (Bruet, 

Song, Boyce, and Ortiz, 2008a; Song, Reichert, Kallai, Gazit, Wund, Boyce, and Ortiz, 2010). 

The fish scales are especially attractive for study because it is relatively simple and involves 

fewer discrete layers, yet the fish scale exhibits superior mechanical response and has 

comparable nanoindentation moduli with bone and tooth (Oyen, 2011; Chen, Lin, Yang, Lopez, 

Li, Olevsky, and Meyers, 2011). From a design engineer’s vantage point, when fewer 

components are incorporated there is higher probability the composite’s design will: (a) meet 

specifications, (b) require less optimization, and (c) can ultimately be manufactured. Therefore, 

the designer is more likely to develop a superior performing advanced composite structure with 

the in-service lifecycle maintenance requirements that are manageable and affordable (Hoa, 

2009; Ashby, 2007; Salonitis, Pandremenos, Paralikas, and Chryssolouris, 2010). The remaining 

portion of this section will discuss the current state of knowledge for the exoskeleton fish scale. 

Nature has synthesized the scales of fish to serve many purposes attracting several 

researchers in their studies of evolution, functions, structures, and properties (Chen, McKittrick, 

and Meyers, 2012; Sire, 1989a; Sire, 1989b; Sire, 1995a; Sudo, Tsuyuki, Ito, and Ikohagi, 2002; 

Richter and Smith, 1995; Wiley, 1976; Williamson, 1849; Alfaro, Gonzales, and Ferrara, 2008; 

Bartol, Gharib, Weihs, Webb, Hove, and Gordon, 2003; Raschi and Tabit, 1992). Although 

several classes of fish have been investigated, scientists/observationists have been able to only 

find one fish scale group that form extremely hard, high-strength exterior biomineralized 
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lightweight layers, Figure 2.3 (Yang, Chen, Gludovatz, Zimmermann, Ritchie, and Meyers, 

2013a; Goodrich, 1907).  

 

Figure 2.3 Images of different fish scale types and their overlaps; 
(a)–(b) Placoid, (c)-(d) Ganoid, (e)-(f) Cycloid, (g)-(h) Ctenoid. 

(Cosmoid scales not shown) (Yang, Chen, Gludovatz, 
Zimmermann, Ritchie, and Meyers, 2013a). 
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The bony fish scale group is called ganoid. Ganoid scales are found in the Actinopterygii: 

gar and birchir fish class. The inception of both fish happened during the “Cretaceous” time 

period, occurring [66–144] million years ago (Gottfried, Krause, June 1998; Daget, Gayet, 

Meunier, and Sire, 2001). The fish developed before the continental plates broke apart to form 

the African, South American, and Asian continents. As a result, the birchir and gar had 

widespread distribution in locations as diverse as Spain, India, Cuba, and North and Central 

America (Gayet, Meunier, 1991; Domingo, Grimes, Soler-Gijón, López-Martínez, 2009; Kumar, 

Rana, and Paliwal, 2006; Smith, Grandstaff, and Abdel-Ghani, 2006; Gayet, Meunier, and 

Werner, 2002). Table 2.1 presents the speciation and general structural features for the gar and 

birchir fish that have been studied (Allison, et al. 2013; Yang, Chen, Gludovatz, Zimmermann, 

Ritchie, and Meyers, 2013a; Géraudie, 1988).  

The ganoid scales are multilayered with mechanically graded modulus and hardness 

properties. The outermost layer is the strongest with strength decreasing and toughness 

increasing for innermost layers (Allison, et al. 2013). The scales are diamond-shaped, with the 

outer edges of the scale being thinner to allow overlapping, Figure 2.4 (Shark, 2015). 

Peg-and-socket joints along with sharpey fibers connect the adjacent overlapping scales, 

Figure 2.5 (Bruet, Song, Boyce, and Ortiz, 2008a). The overlapped connectors create a layer of 

uniform thickness that matches the scales’ interior orthogonal thickness, Figure 2.6. 

Although the ganoid scales of the gar and birchir fish have very similar speciation and 

general structural features, the two fish have differing structural layer arrangements. Examples of 

differing structural layer arrangements for the Senegal birchir (Polypterus senegalus) and 

Mississippi alligator gar fish (Atractosteus spatula) are illustrated in Figures 2.7 and 2.8, 

respectively (Bruet, Song, Boyce, and Ortiz, 2008a). The most commonly reported layer labels  
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Table 2.1. Speciation and general structural features for gar and birchir fish 
(Allison, et al. 2013; Yang, Chen, Gludovatz, Zimmermann, Ritchie, 

and Meyers, 2013a; Géraudie, 1988). 

 Fish Species 

Speciation Profile Gar Birchir 

Temporal Range Late Cretaceous–Recent Cretaceous–Recent 

Kingdom Animalia Animalia 

Phylum Chordata Chordata 

Class 
Actinopterygii  

(Ray-Finned Fishes) 
Actinopterygii  

(Ray-Finned Fishes) 

Sub-Class Neopterygii Cladistia 

Order Lepisosteiformes Polypteriformes 

Family Lepisosteidae Polypteridae 

Genera 

1Atractosteus; 
Lepisosteus 

1Polypterus; 
Erpetoichthys 

Structural Member Bone/Tooth/Scale Bone/Tooth/Scale 

Constituent Materials  
Hydroxyapatite Mineral; 

Collagen Fibers 
Hydroxyapatite Mineral; 

Collagen Fibers 

Structural Features 

 Biomineralized; 
 Multilayered;  
 Hierarchical 
 Functionally Graded 
 Composite 

 Biomineralized; 
 Multilayered;  
 Hierarchical 
 Functionally Graded 
 Composite 

1Most frequently studied. 

 

are provided for each fish type. Earlier layer designations provided by observationists have 

varied. For instance, the work discussed in Smith (2006) pointed out there has been a long-

standing debate since the 1850s whether or not the polypterus is a three- or four-layered system.  

In recent years, because of advanced microscope technology, the number of layers found 

in each fish type has been determined with more certainty (Bruet, Song, Boyce, and Ortiz, 

2008a; Allison, et al. 2013; Yang, Chen, Gludovatz, Zimmermann,Ritchie, and Meyers, 2013a). 

The Mississippi alligator gar fish scale has been shown to have two-layers (outer ganoine + inner  
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Figure 2.4 Images of different fish scale types and their shapes (Shark, 2015). 

 

Figure 2.5 Birchir fish with peg and socket connecting scales 
(Bruet, Song, Boyce, and Ortiz, 2008a). 
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Figure 2.6 3-D printed prototype demonstrating peg-and-socket joint connecting 
the adjacent overlapping birchir ganoid scales [Images courtesy of the 

U.S. Army’s Institute for Soldier Nanotechnology located at 
Massachusetts Institute of Technology].  

 

Figure 2.7 Structural layer arrangements for the Senegal birchir 
(Polypterus senegalus) (Bruet, Song, Boyce, and Ortiz, 2008a). 

lamellar bone) and the Senegal birchir fish scale has four-layers (outermost ganoine + 1st inner 

dentine + 2nd inner isopedine + inner most bone) (Bruet, Song, Boyce, and Ortiz, 2008a; Allison, 

et al. 2013; Yang, Chen, Gludovatz, Zimmermann, Ritchie, and Meyers, 2013a). 
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Figure 2.8 Structural layer arrangements for the Mississippi alligator gar fish (Atractosteus 
spatula) [Images courtesy of the U.S. Army’s Engineer Research and 

Development Center (ERDC)-Geotechnical and Structures 
Laboratory (GSL) located in Vicksburg, Mississippi].  

However, the comparisons made to other better understood biological materials are still 

open for questions. Observers have long debated the dissimilarities and resemblances of the 

structure and formation/growth mechanisms for each individual fish and also when comparing 

the birchir to the gar fish, along with other biomineralized composite materials such as bone and 

tooth (Williamson, 1849; Goodrich, 1907; Wiley, 1976; Géraudie, 1988; Sire, 1989a; Sire, 

1989b; Gayet, Meunier, 1991; Sire, 1995a; Gottfried, Krause, June 1998; Daget, Gayet, Meunier, 

2001; Gayet, Meunier, and Werner, 2002). Subsequently, the debate has led researchers to 

postulate the inherent mechanical response is directly related to the fish’s intrinsic structure 

arrangement and chemical composition. The general postulate has been proven many times over, 

however, the structural specific layer make-up, formation, and growth mechanisms for the two 

fish scales are still not clear (Smith, 2006; Géraudie, 1988). 
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From a detailed review of literature, the material compositional differences in the two 

fish are subtle. Also, there are few differences in the local mechanical properties (elastic modulus 

and hardness) determined from nanoindentation experimentation. Elastic modulus and hardness 

appears to be similar within the ganoine layers and when taking measurements across the 

interface into the dentin layers and lamellar bone for the birchir and gar fish, see Figures 2.9 and 

2.10, respectively (Bruet, Song, Boyce, and Ortiz, 2008a; Allison, et al. 2013; Yang, Chen, 

Gludovatz, Zimmermann, Ritchie, and Meyers, 2013a; Yang, Gludovatz, Zimmermann, Bale, 

Ritchie, and Meyers, 2013b); although, from microindentation experiments and simulations, the 

measured global response indicates the birchir is better at resisting uniaxial loading when 

compared to the gar, see (corresponding) Figures 2.11 and 2.12, (Bruet, Song, Boyce, and Ortiz, 

2008a; Song, Oriz, Boyce, 2011; Chandler, Allison, Rodriguez, Moser, and Kennedy, 2014). 

 

Figure 2.9 Illustration of nanoindentation measured elastic modulus and 
hardness for Birchir fish scale (Bruet, Song, Boyce, and Ortiz, 2008a). 

Evidently, increased resistance is attributed to the number of layers found in the birchir. 

Such use of layered structures is well known to design engineering. For example, pavement 

design makes use of the principle of starting with the highest modulus materials on the surfaces 

followed by successively decreasing modulus layers to redistribute and dissipate stress and 
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Figure 2.10 Illustration of nanoindentation measured elastic modulus 
and hardness for gar fish scale (Allison, et al. 2013). 

deformation. More generally, civil engineers incorporate highly heterogeneous geological 

materials in construction such as foundations, slopes, and retaining walls. The design procedures 

include stress and deformation design/analysis for load transfer of point loads laterally and 

vertically through the layers as uniformly distributed loads. As an example, Table 2.2 outlines the 

often-used methods and theories by the civil engineers’ communities that may be relevant to the 

biomaterials research community when understating the stress transfer mechanisms exhibited by 

layered and hierarchically graded composites (Mallick. and El-Korchi, 2009; Huang, 1993; 

Yoder and Witczak, 1975; Timoshenko and Lessels, 1925; Lambe, and Whitman, 1969; Terzaghi, 

1943; Das, 1990; Das, 1994; AASHTO, 1993; Ashish, Mehta, Cleary, Guo, Musumeci, Zapata, 

and Kettleson, 2011; Brill, 1998; Bull and Singh, 1990; Chou, 1997; Hammonds, 1997; 

Hammonds; Ioannides, and Korovesis, (1990); UFC 03-260-02, 2001b; Westergaard, 1925). 
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Figure 2.11 Microindentation simulation contours of stress, plastic strain and pressure fields of 
a birchir scale via multilayered finite element analysis (FEA) simulations. In “a”– “c,” finite 

element analysis predictions of von Mises stress field, S22 (normal stress on the plane 
perpendicular to the 2 axis), S11 (normal stress on the plane perpendicular to the 

1 axis) and pressure at a maximum depth when fully loaded, and S23 (shear 
stress on the plane perpendicular to the 3 axis acting in the 2 direction), 
S33 (normal stress on the plane perpendicular to the 3 axis) and plastic 
equivalent strain after fully unloaded for three models: all ganoine (a), 

discrete (b) and gradient (c) models for 1-N-maximum-load 
indentation (Bruet, Song, Boyce, and Ortiz, 2008a). 
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Figure 2.12 Microindentation simulation contours of stress, plastic strain and pressure 
fields of a gar scale via multilayered FEA simulations. When the indentation force 

is 10-N. (a) von Mises stress, (b) maximum principal stress, (c) effective plastic 
strain (Chandler, Allison, Rodriguez, Moser, and Kennedy, 2014). 

Table 2.2 Example methods for understanding load transfer in highly heterogeneous geological 
materials used in civil engineered structures (Huang, 1993; Yoder and Witczak, 1975; 

Timoshenko and Lessels, 1925; Lambe, and Whitman, 1969; Terzaghi, 1943; Das, 
1990; Das, 1994; AASHTO, 1993; UFC 03-260-02, 2001b; Westergaard, 1925). 

 Theories Applications 

Design/Analysis Methods   

CBR Pavement Design 

 Boussinesq approximation 

 Layered Elastic 
Stress distribution in soils and 
flexible pavements 

AASHTO Pavement Design 

 Boussinesq approximation 

 Layered Elastic 

 Westergaard analysis 

Load transfer and stress 
distribution in flexible/rigid 
pavements 

Foundation Design  Terzaghi’s 
Shear deformation determination 
near soil surface 

Retaining Wall Design 

 Rankin 

 Coulomb’s 
Lateral/vertical earth pressure 
determination at soil depths 
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Upon further inspection, both birchir and gar ganoine layers have similar moduli and are 

effective in redistributing the microindentation point load through the layers’ interfacial zones for 

the immediate underlying layers. The uniqueness of the gar fish scale is the ganoine-bone layers 

have a modulus mismatch, which acts to effectively transfer load across the interface, allowing 

the layered composite to remain undamaged when at the similar microindentation load levels, 

Table 2.3 (Chandler, Allison, Rodriguez, Moser, and Kennedy, 2014). 

In man-made systems, one of the most critical aspects when designing composites is to 

prevent de-bonding/delamination of layers and at interfacial transition zones (ITZ) of dissimilar 

materials. The modulus mismatch for the dissimilar materials leads to de-bonding/delamination 

at the ITZ causing premature shear failure. Therefore, the source of delamination resistance in 

ganoid fish scales is particularly attractive for additional research. 

Table 2.3 Microindentation experimental observations for birchir and gar scales, under 
different load levels (Chandler, Allison, Rodriguez, Moser, and Kennedy, 2014). 

 Microindentation Loads (N) 

 ≈ 0.5 ≈2.0 ≈10.0 

Fish Type    

Birchir No cracking 

Ring cracking at the 
edge of the indentation 
imprint Already damaged 

Alligator Gar No cracking 

No cracking 
 

 

 

Ring cracking at the 
inside and outside of 
indentation imprint, 
interface cracking at the 
ganoine–bone junction, 
vertical cracking in 
ganoine layer 
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2.4.2 Role of Material Hierarchy in Fish Scale and Other Biomineralized Composites 

The formation/growth processes/functions may differ across the wide variety of 

biomineralized composites (e.g., fish, bone, tooth). Uniquely, the secret to nature’s superior 

performing composite structures appears to be attributed to the materials hierarchy. Many 

biocomposites are complex structures that have arisen from millions of years of evolution, 

maintaining relatively simple chemical composition at ambient conditions, while modifying its 

physical geometrical structure (Bruet, 2008b). Naturally occurring biomineralized composite 

structures rely upon their hierarchical structure, rather than different composition, to provide 

exceptional mechanical properties such as high stiffness, toughness, and crack resistance. 

Remarkably, stiffness and toughness are examples of mutually exclusive properties for 

lightweight manufactured materials (Ritchie, 2011). 

The toughness of the functionalized constituents making up the biocomposite systems is 

several magnitudes greater than that of the individual component materials. As an example, 

illustrated in Figure 2.13 is the hierarchical structure of collagen, which scans over different 

material length scales, from nano to macro. The macroscopic mechanical material behavior is 

controlled by the interplay of properties throughout various scales (Buehler, 2007). Recent 

studies have shown that the desirable engineering properties of exceptional flexural stiffness, 

toughness, and adhesion are readily found in flaw tolerant biomaterials (Gao, Ji, Buehler, Yao, 

2004). 

The exoskeleton of fish scales has a hierarchical biocomposite structure, which is thin, 

lightweight, and durable. Nature has chemically/geometrically engineered the exoskeleton fish 

hierarchal structure to include bulk properties of strength and ductility that are several orders of 

magnitude higher than those found within the discrete structural units of hydrated collagen fibers  
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Figure 2.13 Overview of hierarchical structure of collagen, which scans over 
different material length, scales, from nano to macro (Buehler, 2007). 

and hydroxyapatite minerals. Note that the use of these weak constituent materials is a limitation 

imposed on biological systems by the ambient water temperature and requirement for soluble 

minerals. Typically, the inorganic phase of hard hydroxyapatite mineral matrix is interfaced with 

embedded polymer-like, soft organic collagen fibers reinforcement phase. The discrete molecular 

units of hydroxyapatite crystals and bundled collagen fibers form a structural unit at the 

characteristic length scale of approximately one-micron (Ochsner, and Ahmed, 2011; Nudelman, 

Pieterse, George, Bomans, Friedrich, Brylka, Hilbers, de With, and Sommerdijk, 2010). 

Independently these phases are weak but when combined in the appropriate volume fractions 
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they form an extremely high-strength, high toughness biocomposite system that is also 

lightweight (Barthelat and Espinosa, 2007b). 

2.4.3 Challenges of Measuring Chemical Composition, Structural Arrangement, and 
Mechanical Attributes within Materials Hierarchy from Experimental Laboratory Methods 

Recently, researchers have set forth the goal to analyze/design/prototype composite 

structures that have been inspired by nature (Bruet, Song, Boyce, and Ortiz, 2008a; Song, 

Reichert, Kallai, Gazit, Wund, Boyce, and Ortiz, 2010). Nature has used self-assembly to 

meticulously form its complex structure (Chung, Oh, Kwak, Lee, Meyer, Wang, Hexemer, and 

Lee, 2011; Sarikaya, Fong, Frech, and Humbert, 1999). The limited constituent’s nature uses in 

the formation of robust hierarchical structures is one of the features of nature that has gained 

researchers attention. To be able to meet the researchers’ goals, the biocomposite system must 

first be reverse engineered. Reverse engineering can help with the understanding of how, what 

are the inherent chemical, morphological, and mechanical attributes that can lead to such 

enhanced performance and multi-functionality. 

However, using laboratory experimental methods to probe the material hierarchy of 

biomineralized composites is challenging. The challenges are due to three aspects of multi-scale 

investigation. Firstly, even though researchers understand that several hierarchical levels exist in 

the composite material, it is not obvious how the structure spans across many orders of 

magnitude of spatial scales (Aizenberg, Weaver, Thanawala, Sundar, Morse, Fratzl, 2005). 

Secondly, by not knowing how many hierarchical levels exist, determining which experimental 

methods are appropriate is difficult. What is clear is no single experiment will sufficiently 

elucidate the attributes for the materials’ multi-length scale mixing, integration, and variation 

(Bauerlein, Behrens, Epple, and Pickett-Heaps, 2007). Lastly, because the soft and hard materials 

at each length scale in biomineralized composites exhibit gradual variation in material properties, 
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the researcher is challenged with developing a robust experimental plan that may better aid in 

identifying the subtle attributes for relevant mechanisms observed at each length scale and across 

scales (Beniash, 2011). 

2.5 Biological Composite Materials Summary 

Biological materials are well organized and exhibit superior property characteristics of 

lightweight, high strength, high toughness, and energy absorbency. Nature does not design 

structures rather it adapts to achieve niche functionality using whatever materials are indigenous 

to the geographical location. The functionality is what dictates the formation of the structure. 

Biological organisms adapt to environmental changes by enhancing their functionality. 

Biomineralized composites have exhibited superior performance under extreme conditions. 

Examples of superior performing advanced mineralized biological composites are bone, teeth, 

and exoskeleton fish scales. The characterization, interpretation of processes, and functionality of 

the more complex biomineralized systems such as nacre, bone, and tooth is difficult. The 

composites are advanced, because of hierarchical ordering, grading of properties, and 

multifunctionality. However, researchers are having difficulty explaining what the attributes are 

that is leading to superior performance. By investigating less complex ganoid exoskeleton fish 

scale, there is a greater chance for designers to use “biomimicry” or “bioinspiration” for 

synthesizing, designing, and manufacturing superior performing advanced composites. 

2.6 Overall State-of-Knowledge Summary 

Advanced engineered composites have been successfully used in several applications 

with a wide range of materials. However, there are several limitations in the design and 

manufacturing of advanced engineered composites. Advanced composites are susceptible to 

delamination. In particular, civil engineers are in need of multifunctional composite materials 
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that can readily meet a variety of in-service requirements (e.g., mechanical, sensing, or 

repairing). Because of the impending need, designers are probing nature for solutions. By 

investigating the superior performing less complex fish scale, insights may be gained on how to 

best meet the engineer’s needs. 

The literature review has shown extensive research efforts have been performed to 

characterize fish scale. From literature it was found each layer, at the micron scale, has subtle 

variations in the placement of the hard and soft materials. The fish scale is made up of 90 percent 

hard (inorganic minerals) and 10 percent soft (polymer-like organic collagen fibers) by volume. 

However, knowledge is lacking on how nature integrates hard and soft materials at each length 

scale to form a layered composite that is lightweight and has high-strength with good fracture 

toughness but does not delaminate. Additionally, knowledge gaps exist because past researchers 

were limited: (a) equipment technology was not available adding to the difficulty in quantifying 

descriptions, isolating mechanisms which led to interpretations of results being based on 

idealized cartoon illustrations, (b) no characterization standard protocol exists for probing the 

multiscale and the experimental methods used all operate at different wavelengths of energy and 

different physical principles which led to difficulty obtaining coherent descriptions at given 

length scales from disparate data sets, and (c) the researcher did not anticipate the experimental 

results would be used to build, calibrate, and validate computational models which led to some 

of the subtle details of the fish scale being overlooked. Therefore, more comprehensive 

investigations are needed to understand how nature incorporates similar hard and soft materials 

that have been optimized so that a layered delamination resistant composite system may be 

produced.  
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The following Chapter 3 describes the details of experimental techniques employed in 

this current research effort. Also provided in the next chapter is a discussion as to what criteria 

were used to select the experimental methods. The selected methods are thought to provide the 

best opportunity for obtaining the type, variation and integration of materials, and mechanical 

properties that best describe the gar fish scale inherent qualities. 
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CHAPTER 3:  EXPERIMENTAL DESIGN METHODOLOGY 

 

3.1 Formulation of Hypothesis (H) 

The rationale for the experimental program is tied to the problems associated with testing 

the hypothesis. The difficulty with any hypothesis is that it is stated sufficiently precise so that its 

nullification is possible through experiment (Wheeler and Ganji, 2001). Accordingly, the 

hypothesis will be reviewed in some detail before describing the experimental program. 

The hypothesis (H) is the fish scales are effective in resisting cracks, dissipating energy, 

and transferring loads across interfaces because of the grading of the composite layer properties. 

The purpose, of H, is to test if there is a significant difference in the material above, below, or 

between layers. In addition to using the experimental program to test, H, the program must verify 

the following: (a) interfaces exists, and (b) the layers are graded. 

3.2 Purpose of Experiments for Testing Hypothesis (H) 

When deriving basic questions from a reverse engineering approach to ascertain the fish 

scale characteristics, the questions should lead to the selection of experiments that can be used to 

provide evidence and test H. Moreover, the overarching purpose of the experiments is to answer 

the following fundamental questions: 

(a) How are natural nano-composite systems assembled? 

(b) How do the layer thickness and the functionalized gradient properties interact to 

achieve high toughness? 

(c) What are the design principles of natural armor systems? 

(d) How can these design principles be applied to the design of man-made engineered 

composite systems? 
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3.3 Questions Developed from Hypothesis (H) 

A reverse engineering approach is used to test the hypothesis that fish scales are effective 

in resisting cracks, dissipating energy, and transferring loads across interfaces because of the 

grading of the composite layer properties. By using a reverse engineering approach, scientific 

questions can be developed that may be answered with experimental evidence and test H. If the 

primary scientific questions are developed sufficiently, secondary questions will often arise. 

When both the primary and secondary scientific questions can be answered with experimental 

evidence sufficiently, the information can be used to develop scientific theories. 

Scientific theories use many observations and have volumes of experimental evidence 

that can be applied to unrelated facts and new relationships. Also, theories are flexible enough to 

be modified if new data/evidence is introduced. Furthermore, if sufficient evidence has been 

gathered to develop theories, researchers can begin asking tertiary questions such as: (a) are the 

results repeatable, (b) are the results equipment-operator dependent, or (c) are the results 

predictable? Meaning they follow directly from primary and secondary results. If the tertiary 

questions can be answered with sufficient experimental evidence, scientific laws can be 

established. In this current investigation the primary, secondary, scientific, and ancillary 

questions that have been formed from H are as follows: 

3.3.1 Primary Scientific Questions 

(a) The primary question is determining how the chemical and morphological nature of 

the layering and thickness of the interface may affect the mechanical response? 

(b) What is the chemical composition? 

(c) What is the structure? 

(d) Does the structure have layers? 
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(e) Are structural layers identifiable, if so how many? 

(f) Are the structural layers graded? 

(g) To what extent can mechanical measurements, chemical composition, and structural 

morphological measurements be used to understand load transfer across layered 

interfaces and energy dissipation throughout the layers? 

3.3.2 Secondary Scientific Questions 

(a) If the structural layers are graded, to what extent? 

(b) Is the observed morphology the reason for the graded properties in the fish scale? 

(c) Is the measured chemical composition the reason for the graded properties in the 

fish scale? 

(d) Is the chemical composition and morphology interrelated, if so to what extent? 

(e) Is fish scale composite system’s chemical composition and morphological 

hierarchically arranged? 

(f) If there is a hierarchal arrangement, to what extent are the mechanisms 

observable/measurable? 

(g) Does the hierarchal arrangement lead to the development of the graded structure? 

(h) What role does the hierarchal arrangement have in mechanical measurements, to 

what extent? 

3.3.3 Ancillary Questions 

(a) Are there routine analytical and experimental approaches that have been used in the 

past that are relevant to the questions asked, if so, can they readily be applied in this 

research effort? 
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(b) What are the attributes and limitations for the known analytical and experimental 

approaches? 

(c) Are there alternative analytical and experimentally viable approaches if routine 

methods are not available? 

(d) Is there reasonable information found in literature that can be used to compare the 

measured results and/or can help fill identified knowledge gaps? 

(e) Does the design of experiments (DOE) provide sufficient overlap between 

analytical and experimental methods for supplemental comparison of the measured 

phenomena/mechanisms? 

(f) What is a reasonable data collection plan that provides sufficient information? 

(g) Does the DOE and data collection plan provide sufficient evidence to test H? 

(h) In addition to testing H, does the DOE provide contingencies for further 

investigation of new discoveries that have been deemed necessary to address critical 

knowledge gaps? 

(i) What is the return-on-investment (ROI) for conducting additional experiments? Are 

the additional experiments cost effective? Will the additional efforts advance the 

community of practice for experimentation and specimen preparation? Are the 

additional experiments critical for advancing the body of knowledge in 

biomaterials, biomimicry/bioinspired design, and manufacturing? 

3.4 Selection of Experiments for Testing Hypothesis (H) 

3.4.1 Criteria for Selecting Experimental Methods 

Ideally, when selecting experimental methods for biological characterization, 

consideration should be given on how to best mimic in situ conditions which can allow the 



 

 
38 

specimen to remain in a pristine, undamaged, and unaltered state. Often times, the specimens are 

unavoidably damaged during preparation for experimentation. Thus, verification methods must 

be incorporated in experimental program that can help determine sources of uncertainty in the 

specimen, preparation, experimental equipment, and forensic analysis technique. 

The following considerations were used in developing the criteria for selecting 

experimental methods: (a) What is thought to be known about the fish scale? (b) Which methods 

have been used previously to investigate fish scales or other similar biomineralized materials 

along with their attributes? (c) Which methods can be used to identify the fish scale’s hierarchal 

structure? (d) Which methods can be used to speciate the fish scale biochemistry? (e) Which 

methods provide bulk versus local measurements? and (f) Which methods provide overlap, can 

be used to confirm others methods? 

(a) Recall, being discussed in Chapter 2, knowledge of the fish scale formation 

processes is limited. However, past researchers have reported the sub-units of the 

fish scale are made up of apatite crystals and collagen fibers (Chen, Lin, Yang, 

Lopez, Li, Olevsky , and Meyers, 2011; Yang, Chen, McKittrick, and Meyers, 2012; 

Allison, et al. 2013; Yang, Chen, Gludovatz, Zimmermann, Ritchie, and Meyers, 

2013a; and Yang, Gludovatz, Zimmermann, Bale, Ritchie, and Meyers, 2013b). In 

addition, since the sub-units are derived from soluble geological minerals then there 

is a likelihood the minerals themselves have a known structural class in terms of 

crystallographic diffraction, thermal gravimetric signature, x-ray, and electron 

patterns (Yang, Gludovatz, Zimmermann, Bale, Ritchie, and Meyers, 2013b). 

Furthermore, previous research has shown the biomineralized scales to exhibit 

property grading with very little change in composition so the sub-units may also 
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have identifiable packing arrangements, grain shape, grain size distributions, and 

unique grain orientations at interfaces throughout the hierarchal levels (Chen, 

Lin,Yang, Lopez, Li, Olevsky , and Meyers, 2011; Allison, et al. 2013; Yang, Chen, 

Gludovatz, Zimmermann, Ritchie, and Meyers, 2013a; and Yang, Gludovatz, 

Zimmermann, Bale, Ritchie, and Meyers, 2013b). 

(b-f) Table 3.1 lists twenty-eight experimental characterization methods that have been 

commonly used to investigate the structural, chemical, and mechanical attributes of 

fish scales or other similar biomineralized materials (Lee, Novitskaya, Reynante, 

Vasquez, Urbaniak, Takahashi, Woolley, Tombolato, Chen, and McKittrick, 2011; 

Torres, Troncoso, Nakamatsu, Grande, and Gomez, 2008; Tai, Qi, and Ortiz, 2005; 

Bruet, Song, Boyce, and Ortiz, 2008a; Yang, Gludovatz, Zimmermann, Bale, 

Ritchie, and Meyers, 2013b; Garrano, La Rosa, Zhang, Niu, Tay, Majd, and Arola, 

2012; Landis, 1995; Ikoma, Kobayashi, Tanaka, Walsh, and Mann, 2003; Lin, Wei, 

Olevsky, and Meyers, 2011; Song, Reichert, Kallai, Gazit, Wund, Boyce, and Ortiz, 

2010; Chang and Chen, 2013; Liu, Zhang, Li, Miao, and Wu, 2008; Cuy, Mann, 

Livi, Teaford, and Weihs, 2002; Waite, and Broomell, 2012; Bozec, de Groot, 

Odlyha, Nicholls, Nesbitt, Flanagan, and Horton, 2005; Zhang, Niebur, and Ovaret, 

2008; Klosowski, et al., 2015; McNally, Nan, Botton, and Schwarcz, 2013; Rho and 

Pharr, 1999; Bertassoni, and Swain, 2012; and Rodriguez-Florez, Oyen, and 

Shefelbine, 2013). Furthermore, Table 3.1 provides a systematic means to critically 

evaluate experimental methods that may be useful in interpreting the structural, 

chemical, and mechanical processes when descending the hierarchical scales of 

highly complex heterogeneous composite materials.  
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Table 3.1 DOE—Methods used for characterizing fish scale, bone, tooth, and other biomineralized composites. 

Hierarchal Length Scale Measurable Range [>1] mm 

Characterization 

Method 

Purpose 

Phases 
Measurement 

Type Reference  Structural Chemical  Mechanical 

 
Class 
Deter 

Family 
Speciat. 

Class 
Deter. 

Family 
Speciat. 

Class 
Deter. 

Family 
Speciat. Cryst. Prot. 

Cryst.
+  

Prot. Global Local  

Unaided Eye 
Observation in 
Visible Light  No No No No No No No No No Yes No N/A 

Water Absorption 
and Desorption1 No No No No No No No No Yes Yes No (Torres, 2008) 

Drop Tower Impact No No No No No No No No No Yes No (Lee, 2011) 

Uniaxial Compress No No No No No No No No No Yes No (Yang. 2013b) 

Uniaxial Tension No No No No No No No No No Yes No (Garrano, 2012) 
1Measure permeability of bulk structure. 
2Provides structural arrangement of surface and internal structure. 
3Provides structural arrangement and texture of structure surface. 
4Provides structural and chemical content. 
5Provides structural surface texture only. 
6Provides mapping of pore structure in bulk system. 
7Provides high-magnification view of structural orientation of crystal and proteins. 

 

  



 

 

 41 

Table 3.1 DOE—Methods used for characterizing fish scale, bone, tooth, and other biomineralized composites (continued). 

Hierarchal Length Scale Measurable Range [0.001-1] mm 

Characterization 

Method 

Purpose 

Phases 
Measurement 

Type Reference  Structural Chemical Mechanical 

 
Class 
Deter 

Family 
Speciat. 

Class 
Deter. 

Family 
Speciat. 

Class 
Deter. 

Family 
Speciat. Cryst. Prot. 

Cryst 
+  

Prot. Global Local  

μm-XCT2 No No No No No No Yes Yes Yes Yes Yes (Yang. 2013b) 

FTIR Yes No Yes No No No Yes Yes Yes No Yes (Song, 2010) 

Optical Microscopy3 No No No No No No No No No Yes Yes (Song, 2010) 

EMPA Yes No Yes No No No Yes No No No Yes (Cuy, 2002) 

μm-XEDS Yes No Yes No No No Yes No No No Yes (Lin, 2011) 

μm-XRD Yes No Yes No No No Yes No No Yes No (Song, 2010) 

μm-XANES Yes Yes Yes Yes No No Yes No No Yes Yes (Waite, 2012) 

μm-XRF Yes No Yes No No No Yes No No Yes Yes (Waite, 2012) 

TGA4 Yes No Yes No No No Yes No No Yes No (Liu, 2008) 

HR-SEM2 No No No No No No Yes Yes Yes Yes Yes (Yang. 2013b) 

Vickers 
Microindentation No No No No No No No No No Yes No (Bruet, 2008a) 
1Measure permeability of bulk structure. 
2Provides structural arrangement of surface and internal structure. 
3Provides structural arrangement and texture of structure surface. 
4Provides structural and chemical content. 
5Provides structural surface texture only. 
6Provides mapping of pore structure in bulk system. 
7Provides high-magnification view of structural orientation of crystal and proteins. 
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Table 3.1 DOE—Methods used for characterizing fish scale, bone, tooth, and other biomineralized composites (continued). 

Hierarchal Length Scale Measurable Range [0.001-1] mm 

Characterization 

Method 

Purpose 

Phases 
Measurement 

Type Reference  Structural Chemical Mechanical 

 
Class 
Deter 

Family 
Speciat. 

Class 
Deter. 

Family 
Speciat. 

Class 
Deter. 

Family 
Speciat. Cryst. Prot. 

Cryst 
+ 

Prot. Global Local  

Surface Profilometry5 No No No No No No No No No No Yes (Song, 2010) 

Mercury 
Porosimetry6 No No No No No No No No No Yes Yes (Song, 2010) 

SS-NMR Yes Yes Yes Yes No No Yes Yes Yes Yes No (Waite, 2012) 

Raman Spectroscopy Yes Yes Yes Yes No No Yes Yes Yes No Yes (Waite, 2012) 

μm-Uniaxial Comp. No No No No No No No No Yes No Yes (Zhang, 2008) 

Hierarchal Length Scale Measurable Range [0.3-1] μm 

HR-SEM2 No No No No No No Yes Yes Yes Yes Yes (Bruet, 2008a) 

TEM3 No No No No No No Yes Yes Yes Yes Yes 
(Garrano, 
2012) 

1Measure permeability of bulk structure. 
2Provides structural arrangement of surface and internal structure. 
3Provides structural arrangement and texture of structure surface. 
4Provides structural and chemical content. 
5Provides structural surface texture only. 
6Provides mapping of pore structure in bulk system. 
7Provides high-magnification view of structural orientation of crystal and proteins. 
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Table 3.1 DOE—Methods used for characterizing fish scale, bone, tooth, and other biomineralized composites (continued). 

Hierarchal Length Scale Measurable Range [1-300] nm 

Characterization 

Method 

Purpose 

Phases 
Measurement 

Type Reference  Structural Chemical Mechanical 

 
Class 
Deter 

Family 
Speciat. 

Class 
Deter. 

Family 
Speciat. 

Class 
Deter. 

Family 
Speciat. Cryst. Prot. 

Cryst 
+ 

Prot. Global Local  

Nanoindentation No No No No No No No No Yes No Yes (Bruet, 2008a) 

Atomic 
Force Microscopy3 No No No No No No Yes Yes Yes No Yes (Bozec, 2005) 

TEM2 No No No No No No Yes Yes Yes Yes Yes (Garrano, 2012) 

STEM- HAADF7 No No No No No No Yes Yes Yes No Yes (McNally, 2013)

STEM-EELS7 No No No No No No Yes Yes Yes No Yes 
(Klosowski, 
2015) 

1Measure permeability of bulk structure. 
2Provides structural arrangement of surface and internal structure. 
3Provides structural arrangement and texture of structure surface. 
4Provides structural and chemical content. 
5Provides structural surface texture only. 
6Provides mapping of pore structure in bulk system. 
7Provides high-magnification view of structural orientation of crystal and proteins. 
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Below are the critical aspects the experimental methods should address:  

(i) Structural Determination Considerations 

 Usually microscopy techniques are used to elucidate physical features of 

materials. The methods should be able to provide details regarding the geometry in terms of 

weight, density distribution, feature size, orientation, surface texture, pores, pore connectivity, 

position, and assemblage junction points. The following methods that have been successfully 

used to identify the physical features of materials are: (1) unaided eye observation in visible 

light, (2) micro x-ray computed tomography (μm-XCT), (3) optical microscopy, (4) high 

magnification scanning electron microscopy (HR-SEM), (5) transmission electron microscopy 

(TEM), (6) scanning transmission electron microscopy-high angle annular dark field (STEM-

HAADF), (7) atomic force microscopy (AFM), (8) surface profilometry, (9) mercury 

porosimetry, and (10) water absorption and desorption. 

 Spectroscopy methods use analytic techniques to measure diffraction patterns or 

spectral wavelength scattering/absorption of materials. The measures are then compared to 

known standards and used for identifying the structural materials class. The following methods 

that have been successfully used to identify the structural patterns and spectral features of 

materials are: (1) microcomputed synchrotron x-ray diffraction (μm-XRD), (2) microcomputed 

synchrotron x-ray absorption near edge structure (μm-XANES), (3) fourier transform infrared 

spectroscopy (FTIR), (4) raman spectroscopy, (5) thermal gravimetric analysis (TGA), and 

(6) solid-state nuclear magnetic resonance (SS-NMR). 

(ii) Chemical Determination Considerations 

 Typically analytical spectroscopy techniques are used to discern elemental 

composition of materials. The spectroscopy methods should be capable of identifying between 
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minerals/metals elemental composition. In addition, the experimental methods should be able to 

spatially resolve, using either stand-alone spectroscopy methods or can be coupled with 

microscopy, techniques to map the elemental distribution. The following methods that have been 

successfully used to identify the chemical/elemental composition of materials are: 

(1) microcomputed x-ray energy-dispersive spectroscopy (μm-XEDS), (2) Electron microprobe 

analyzer (EMPA), (3) microcomputed synchrotron x-ray fluorescence (μm-XRF), and 

(4) scanning transmission electron microscopy- Electron Energy Loss Spectroscopy (STEM-

EELS). 

 The experimental methods should also be capable of deciphering between 

inorganics/organics, classify/speciate family and classes of chemical compounds and molecules. 

The following methods provide overlap/confirmation and can be used to determine structural 

characteristics and also speciate the compounds and molecules in the system: (1) microcomputed 

synchrotron x-ray diffraction (μm-XRD), (2) microcomputed synchrotron x-ray absorption near 

edge structure (μm-XANES), (3) fourier transform infrared spectroscopy (FTIR), (4) raman 

spectroscopy, (5) thermal gravimetric analysis (TGA), (6) solid-state nuclear magnetic resonance 

(SS-NMR). 

(iii) Mechanical Property Determination Considerations 

 Experimental mechanical methods should be capable of providing a profile 

analysis of strength, toughness, and hardness that is representative of the structural composition. 

The methods should consider the effects of bulk irregular geometrical shape, local property 

grading, and antistrophic structural reinforcement. The following mechanical methods have been 

used to measure materials response, when externally loaded: (1) Vickers microindentation, 

(2) micropillar uniaxial compression (μm-UC), and (3) nanoindentation. 
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 In addition, the experimental measures should provide the means for spatially 

correlated spectroscopy and microscopy methods that help resolve the structural characteristics 

and chemical composition. The following mechanical method that has been successfully used to 

map mechanical response to structural characteristics and chemical composition is 

nanoindentation. 

 Experimental mechanical methods should also consider measurements that can 

lead to the design and manufacturing of materials. Often the mechanical experiments that 

consider both analysis and design for manufacturing purposes provides an index for the average 

measured bulk response. Useful mechanical measurement techniques are: (1) drop tower impact 

(DTI), (2) uniaxial compression (UC), and (3) uniaxial tension (UT). 

3.4.2 Down Selection of Experimental Methods for Testing Hypothesis (H) 

The previous section outlined the criteria for selecting experimental methods for meeting 

the requirements for testing H. The selection criteria were applied to Table 3.1. Upon applying 

the criteria, some of the experimental characterization methods were reclassified as contingent 

supplemental methods while others were completely removed from the DOE plan. 

Experimental methods that have been either designated as contingent supplemental 

methods or eliminated from the DOE plan are provided below. 

(a) Raman spectroscopy has been designated as contingent supplemental structural/ 

chemical speciation methods. Raman spectroscopy or data sets of similar structural 

and chemical characteristics will be employed only if FTIR cannot adequately 

identify the constituents in the fish scale. 

(b) The following mechanical characterization methods eliminated from the DOE plan 

were: DTI, UC, μm-UC, and UT. The methods were eliminated because they only 



 

 
47 

will provide an indexed average of bulk mechanical response. Furthermore, sample 

preparation would require removal of materials to meet the appropriate geometrical 

aspect ratio standards. Altering the inherent geometry of the specimen will provide 

mechanical results that would not be representative of the fish scale and negates the 

beneficial attributes gained from the composite structure. 

Also eliminated from the DOE plan was the Vickers microindentation. Since the 

specimen has a non-uniform thickness, applying uniform external loading is not possible without 

major modification to the experimental specimen mounting procedure. Along with procedure 

modification, finite element analysis (FEA) will need to be conducted to understand the non-

linear mechanical response caused by the non-uniform loading distribution. Moreover, to 

effectively obtain useful information from FEA the exact specimen geometry, material property 

identification/distribution, indenter geometry, and appropriate material model selected must be 

known while simultaneously accounting for the numerical instabilities/inaccuracies due to mesh 

development. 

Additionally considered, when conducting forensic analysis for post failure mechanism 

identification, there is not a reasonable method to section the specimen without causing further 

damage. Consequently, sectioning the specimen for the forensic investigation will more than 

likely mask the damage caused by external loading. Thus, the mechanical characterization 

methods that were eliminated from the DOE plan are less likely to provide sufficient information 

of how the structural arrangement and chemical composition affect the mechanical response or 

insight to what is attributing to the fish scale delamination resistance. 

(c) The remaining experimental methods that were removed from the DOE plan are 

surface profilometry, AFM, mercury porosimetry, water absorption, and desorption 
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measurements. Additionally, eliminated from the DOE were the topographical 

measurements obtained from surface profilometry and AFM, which are redundant 

measurements that can be obtained from HR-SEM and TEM. Unlike HR-SEM and 

TEM, surface profilometry and AFM cannot be readily coupled to other 

characterization methods used for structural/chemical class identification and 

family speciation. 

In regard to water absorption/desorption methods, they will only provide information for 

bulk density. The measurements cannot quantify solid and pore volume fractions nor provide 

information regarding the pore geometry and size distribution for the structure. Unlike the water 

absorption/desorption characterization technique, mercury porosimetry measurements do well in 

spatially resolving pore geometry and pore size distribution for surface pores. Surface pores are 

voids that occur on the external face of the structure, have limited penetration depth, but do not 

proliferate through the entire structure. Unfortunately, the mercury porosimetry method lacks the 

capability to identify internal pores and pore connectivity. Pore connectivity identification is 

used to quantify the permeability of the structure. If surface pores, internal pores, and/or 

connected pores are present in the structure neither pore measurement methods can adequately 

describe the functional role they play in transporting fluids for growth, energy dissipation, 

structural and mechanical property grading in the biomineralized fish scale composite. 

3.5 Relevance of Selected Experimental Methods for Characterizing Materials Hierarchies 

The remaining experiments are thought to be the best suited for testing H. Additionally 

considered, when combined, the remaining methods can be used to provide information at 

descending levels of the fish scale’s hierarchy. The selection of experimental methods to 

ascertain what’s structurally, chemically, and mechanically relevant for the discovery/ 
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identification of mechanisms necessary for hypothesis testing is forever challenging. Still 

problematic will be the interpretation of results obtained from the physical measurements. To 

reduce the variability in data interpretation the experiments were conducted in dry state. As 

shown in Figure 3.1, an illustration I developed shows when descending hierarchical length 

scales from high to low of highly complex heterogeneous composite materials, the uncertainty of 

results increases. The uncertainty is attributed to increasing unknown variables effecting 

measurements of chemical, structural, and mechanical process. Therefore, the interpretation of 

results from individual experiments can become very subjective. The selected experiments have 

been combined in such a way that they can provide empirical evidence and for the most part 

eliminate subjectivity. Empirical evidence will lead to conclusions that are objectively 

determined. 

 

Figure 3.1 Illustration of increasing uncertainty due to increasing unknown variables 
effecting measurements of chemical, structural and mechanical process when 

descending hierarchical scales of highly complex heterogeneous 
composite materials. 
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3.6 Description of Experimental Methods Used for Testing Hypothesis (H) 

The experimental methods commissioned by this research provide a systematic top down 

approach, which can be used to probe the length scales. Most of the techniques are either based 

on visible light, infrared, electron, or x-ray diffraction/absorbance. As shown in Figure 3.2, when 

the electromagnetic spectral wavelength decreases, the wavelength’s signal frequency increases 

(The Electromagnetic Spectrum, 2015). The increase in signal frequency increases heat 

generation (Callister Jr., and Rethwisch, 2008; Kim, 2013; Coates, 2000; Gunther, 2013; 

Willimott, 2011; Leng, 2008; Williams, and Carter, 2009; and Henderson, Neuville, and Downs, 

2014). 

 

Figure 3.2 Illustration of electromagnetic spectral wavelength ranges 
(The Electromagnetic Spectrum, 2015). 

As a result, careful/detailed specimen preparation methods are used to minimize heat 

damage, caused by x-rays and electrons, such as mineral recrystallization and excessive cracking 

due to drying (Kim, 2013; Coates, 2000; Gunther, 2013; Willimott, 2011; Leng, 2008; Williams, 
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and Carter, 2009; and Henderson, Neuville, and Downs, 2014). Furthermore, careful specimen 

preparation helps minimize the variables when making observations along the various length 

scales. Provided below is a summary description of methods and sample preparation techniques. 

3.7 Summary of Experimental Methods 

3.7.1 Unaided Eye Observations (Measurements Taken at Length Scale [>1] mm): 

Unaided eye observations can provide a sense of the specimen’s size, shape, and texture. 

Specimens are viewed in visible light without the aid of a microscope. The eye observations are 

useful for deciding which length scale based experimental measurements and required specimen 

preparation techniques may be useful for characterizing the fish scale. 

3.7.2 Nanoindentation (Measurements Taken at Length Scale [1-1000] nm): 

Nanoindentation is a mechanical characterization method that can be used to measure the 

near surface local average elastic modulus and hardness of biological materials (Oyen, 2011; 

Cuy, Mann, Livi, Teaford, and Weihs, 2002; Waite, and Broomell, 2012; Balooch, Marshall, 

Marshall, Warren, Asif, and Balooch, 2004; Rho, and Pharr, 1999; Tai, Qi, and Ortiz, 2005; 

Pharr, Strader, and Oliver, 2009; Pharr, Herbert, and Gao, 2010; and Rho, Zioupos, Currey, and 

Pharr, 2002). Nanoindentation is used to map the mechanical properties across the fish scale and 

observe the evolution of mechanical properties across the interface. The experimental protocol 

uses dynamic indentation during the test to characterize the evolution of mechanical properties as 

the indenter tip penetrates into the surface of the sample; the indentation technique is further 

described in Oliver and Pharr’s pioneering work (Oliver and Pharr, 1992; Oliver Pharr, 2004). 

3.7.3 Thermo-Gravimetric Analysis (TGA) (Measurements Taken at Length Scale [N/A]): 

Thermo-gravimetric analysis (TGA) uses heat to force reactions and physical changes in 

materials. The experimental method provides quantitative measurement of mass change in 
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materials associated with transition and thermal degradation. The measurements allow rapid and 

precise determination of weight losses due to moisture or loss of crystal water. TGA records 

change in mass from dehydration, decomposition, and oxidation of a sample with time and 

temperature. Characteristic thermo-gravimetric curves are given for specific materials and 

chemical compounds due to unique sequence from physicochemical reactions occurring over 

specific temperature ranges and heating rates (Leng, 2008). 

3.7.4 Optical Microscopy (Measurements Taken at Length Scale [1-1000] μm): 

The optical microscope uses visible light and a system of lenses to magnify images of 

small samples. Since microscope optics are static, different magnification objective lens are used 

to focus at different focal depths. In addition, visible light-sensitive cameras are usually used to 

capture the image from the optical microscope; however, the image’s resolution is limited to the 

wavelength of visible light (Leng, 2008). 

3.7.5 Solid-State Nuclear Magnetic Resonance (SS-NMR) Spectroscopy (Measurements Taken 
at Length Scale [1-1000] μm): 

The Solid-State Nuclear Magnetic Resonance (SS-NMR) spectroscopy method can be 

used to identify/speciate the organic chemical-structural phases in fish scales. SS-NMR 

spectroscopy is used to determine the resonance frequency that causes the nuclear spin state in 

solid media. In solid media with little or no mobility (e.g., crystals, powders, large membrane 

vesicles, molecular aggregates), anisotropic interactions have a substantial influence on the 

nuclear spin state. In this context “nuclear spin” is defined as the magnetic state of the nuclei 

when the electromagnetic radiation is absorbed and re-emitted. The technique works by inducing 

the alignment of nuclear spins. Nuclear spin alignment is achieved by placing the specimen in a 

strong homogenous magnetic field and then exciting the chemical structure’s nucleus by using 
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computer-controlled resonance frequency (RF) manipulation (Gunther, 2013; Henderson, 

Neuville, and Downs, 2014). 

3.7.6 Raman Spectroscopy (Measurements Taken at Length Scale [1-1000] μm): 

Raman spectroscopy uses a laser beam to irradiate a spot on the specimen. The scattered 

radiation produced by the Raman provides information about the molecular vibrational and 

rotational energies. The energies depend on the particular atoms or ions that comprise the 

molecule, the chemical bonds connecting them, the symmetry of their molecule structure, and the 

physico-chemical environment where they reside. The analytical technique is often used to 

identify/speciate either mineral or organic phases in materials (Coates, 2000; Leng, 2008; and 

Henderson, Neuville, and Downs, 2014). 

3.7.7 Fourier Transform Infrared Spectroscopy (FTIR) (Measurements Taken at Length Scale 
[1-1000] μm): 

Fourier Transform Infrared Spectroscopy (FTIR), sometimes complementary to Raman 

spectroscopy, is an analytical technique often used to identify/speciate either mineral or organic 

phases in materials. It provides information about the chemical bonding and molecular structure. 

The operating principle for FTIR is based on the fact that bonds and groups of bonds vibrate at 

characteristic frequencies; that are slightly higher than what’s typically used in Raman 

spectroscopy. A molecule that is exposed to infrared rays absorbs infrared energy at frequencies 

that are characteristic to that molecule. During FTIR analysis, a spot on the specimen is 

subjected to a modulated IR beam. The specimen’s transmittance and reflectance of the infrared 

rays at different frequencies is translated into an IR absorption plot consisting of reverse peaks. 

The resulting FTIR spectral pattern is then analyzed and matched with known signatures of 

identified materials in the FTIR library. The FTIR measurements can be used to identify 
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unknown materials present in a specimen when coupled with EMPA (Cuy, Mann, Livi, Teaford, 

and Weihs, 2002; Coates, 2000, Leng, 2008; and Henderson, Neuville, and Downs, 2014). 

3.7.8 High Resolution Scanning Electron Microscopy (HR-SEM) (Measurements Taken at 
Length Scale [1-1000] μm): 

High Resolution Scanning Electron Microscopy (HR-SEM) uses an electron probe that is 

scanned across the sample producing secondary and back-scattered electrons that can be detected 

and recorded as an image. The penetration depth is generally less than one micron, so the images 

produced are of the sample surface. The backscattering of electrons increases with increasing 

atomic number so that imaging with this method can produce images of heavier elements (Leng, 

2008). 

3.7.9 Microcomputed X-ray Energy-Dispersive Spectroscopy (µm-XEDS) (Measurements 
Taken at Length Scale [1-1000] μm): 

Microcomputed X-ray Energy-Dispersive Spectroscopy (µm-XEDS) makes use of the 

X-ray spectrum emitted by a solid sample bombarded with a focused beam of electrons to obtain 

a chemical analysis. Mapping is most commonly used to produce 2D elemental distribution 

images within a sample. Images are collected from x-ray intensities that are measured by 

counting photons. Commonly µm-XEDS devices are coupled to either HR-SEM or TEM 

equipment. Usually, in conjunction with microscopy investigation, µm-XEDS is conducted to 

measure the individual elements in the material at the micron scale. The individual elemental 

distribution maps can be used for both quantitative/qualitative assessments if calibrated with 

material control standards (Nieto and Livi, 2013). 

3.7.10 Electron Microprobe Analyzer (EMPA) (Measurements Taken at Length Scale 
[1-1000] μm): 

Electron Microprobe Analyzer (EMPA) is an analytical technique often used to 

identify/speciate elemental constituents. EMPA can provide information to the degree of 
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impurity with respect to chemical composition of single particles. When coupled with TEM, 

spatial mapping of elements is possible. EMPA can also be used to examine the inorganic/ 

organic interface and determine chemical variation from the micron to nanometer scale (Cuy, 

Mann, Livi, Teaford, and Weihs, 2002). 

3.7.11 Transmission Electron Microscopy (TEM) (Measurements Taken at Length Scale 
[1-1000] nm): 

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of 

electrons is transmitted through a thin specimen. Generally a specimen must be thinner than one 

micron to obtain a useful image. TEM provides information through the thickness of an electron-

transparent specimen (Leng 2008; Williams and Carter, 2009; Henderson, Neuville, and Downs, 

2014; and Nieto and Livi, 2013). 

3.7.12 Scanning Transmission Electron Microscopy (STEM) (Measurements Taken at Length 
Scale [1-1000] nm): 

Scanning transmission electron microscopy (STEM) is a type of TEM. In TEM electron 

beam is spread to image thin sections. However, for STEM the electron beam is focused into a 

narrow spot, which is scanned over the specimen in a raster pattern. The rastering of the beam 

across the sample makes STEM suitable for coupling spectroscopy and microscopy analysis 

techniques, such as EELS, and HAADF. The EELS and HAADF spectral signals can be obtained 

simultaneously, allowing direct correlation of image and quantitative data. When a hi-angle 

detector is used with STEM, it is possible to form atomic magnification images where the 

contrast is directly related to the elemental atomic number (z-contrast image). STEM has been 

used to image biological materials using dark-field microscopy. Dark-field microscopy is used to 

show high contrast images in heterogeneous biological samples without requiring staining (Leng 
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2008; Williams and Carter, 2009; Henderson, Neuville, and Downs, 2014; and Nieto and Livi, 

2013). 

3.7.13 Electron Energy Loss Spectroscopy (EELS) (Measurements Taken at Length Scale 
[1-1000] nm): 

Electron energy loss spectroscopy (EELS) is a technique that provides elemental 

information on a nanometer scale when coupled with STEM. The energy of the incident 

electrons is altered as they pass through the sample. These energy loss spectra can be 

characterized using EELS to provide elemental identification. Because EELS provides improved 

spatial magnification (down to 1 nm), the energy magnification (<1 eV for EELS) technique is 

capable of measuring lower atomic number elements (e.g., H, O, Na, Mg, P, Ca). In addition, the 

low-angle inelastically scattered electrons used in EELS compliments the high-angle scattered 

electrons in HAADF images by allowing both signals to be acquired simultaneously (Leng 2008; 

Henderson, Neuville, and Downs, 2014; and Nieto and Livi, 2013). 

3.7.14 High-Angle Annular Dark-Field (HAADF) (Measurements Taken at Length Scale 
[1-1000] nm): 

High-Angle Annular Dark-Field (HAADF) is used to show atomic number contrast for 

high scattering angles of the electrons. The purpose of measurement is to determine local 

thickness of a specimen. When STEM is combined with both EELS and HAADF the scattered 

electrons can be used to discern structural and elemental composition from discrete spectral 

interfaces at the lowest nanometer scale, such as those measured in hydroxyapatite + collagen 

boundaries (Leng, 2008; Nieto and Livi, 2013; and Carlino, and Grillo, 2006).  

3.7 15 Micro X-ray Computed Tomography (μm-XCT) (Measurements Taken at Length Scale 
[1-1000] μm): 

Micro X-ray Computed Tomography (μm-XCT) is a nondestructive technique that uses 

x-ray spectra to visualize the interior of objects. The μm-XCT scans can be used to resolve fine 
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cross-sectional details. The thin two-dimensional scans are reconstructed using computed 

tomography, to form three-dimensional volumes. With the μm-XCT, reconstructed volumes can 

be imaged with a voxel magnification down to micron range (Song, Reichert, Kallai, Gazit, 

Wund, Boyce, and Ortiz, 2010; Allison, et al. 2013; Allison, et al. 2014; Yang, Gludovatz, 

Zimmermann, Bale, Ritchie, and Meyers, 2013b; and Chang and Chen, 2013). 

3.7 16 Synchrotron X-ray Methods (μm-XRD/μm-XANES/μm-XRF-CT) (Measurements 
Taken at Length Scale [1-1000] μm): 

The next three experimental methods involve the use of x-rays. As opposed to using 

bench top spectroscopy techniques exclusively, synchrotron x-ray methods were also included. 

Since Synchrotron uses much stronger energy to produce x-rays, the methods can be used to 

identify and sufficiently spatially map structural and elemental composition that could not 

otherwise be obtained from µm-XEDS, and EMPA. Additionally, by combining Synchrotron 

x-ray with the µm-XEDS and EMPA spectroscopy methods, most of the periodic elements that 

are common to biomineralized composites may be measured. Thus the differing energy range 

levels for each complimentary technique provides some overlapping information that can be used 

for confirmation. 

Synchrotron X-rays are electromagnetic radiation that is emitted when charged particles 

are accelerated radially. Synchrotron radiation is produced when accelerated electrons pass 

radially through magnetic fields. The radiation has a characteristic polarization and the 

frequencies generated can range over the entire electromagnetic spectrum. As a result of the wide 

range electromagnetic spectrum a variety of synchrotron x-ray measurements can be made. The 

current research used microcomputed x-ray diffraction (μm-XRD), absorption near edge 

structure (μm-XANES), and florescence (μm-XRF) synchrotron based methods to determine the 

structural and elemental composition for the fish scale (Willmott, 2011; Kennedy, et al., 2012). 
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Synchrotron µm-X-ray Diffraction, µm-XANES, and µm-X-ray Fluorescence Mapping 

using µm-CT experiments were conducted on Beamlines X2B, X26A and X27A at the National 

Synchrotron Light Source at Brookhaven National Lab (NSLS) in Upton, NY. X-ray 

microprobes for the beamlines are designed to provide elemental distribution and speciation 

information for heterogeneous solid samples. The beamlines are powerful because they couple a 

number of analytical techniques thus providing information about complex samples that cannot 

be achieved using any other tool. 

µm-XRF mapping is most commonly used to produce 2D elemental distribution images 

within a sample. Images are collected from many angles by rotating the specimen through small, 

evenly spaced, angular increments between 0 and 180 degrees. The number of images needed is 

proportional to the width of the specimen. These individual 2D images are then reconstructed 

into a 3D image. A magnification of [3~5] microns is achievable. Elemental correlations and 

changes in sample composition on the micron scale can be monitored using µm-XRF. Once the 

elemental composition of the sample is determined, µm-XANES and µm-XRD are collected on 

the same specimen to aid in identifying any major compounds present within the material. 

µm-XRD is not element specific and provides information about any crystalline or well 

structured compounds within a sample. µm-XRD is excellent at identifying minerals (e.g., 

carbonates, phosphates, silicates) within a completed matrix on a micron-level scale. The 

techniques were used to monitor changes in chemical or mineral composition moving across the 

cross section of the scale (>10 micron step intervals). Because the sections within the fish scale 

differ in chemical composition, the transition boundary between these sections could be 

monitored using these tools. 
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µm-XANES is an element specific technique which provides chemical information about 

oxidation state and the environment surrounding the element (how and to what it is bound, and 

how tightly it is bound). µm-XANES was used to identify Ca compounds within the gar scales. 

Changes in Ca complexion from the outermost layer to the inner boney section of the scale were 

monitored. 

3.8 Summary of Sample Preparation Methods 

3.8.1 Animal Care Guidelines and Specimen Preservation: 

Prior to conducting any studies using animals, regardless whether the subjects are living 

or deceased, permission must be granted by the appropriate wildlife and safety management 

authority. Permission was obtained by providing written animal care guidelines to the proper 

authority. In addition, researchers were provided fish scale specimens used in this current 

investigation by the U.S. Army Engineer Research and Development Center (ERDC). As a 

result, the University of Arkansas granted written permission based on the specimens being 

provided by ERDC researchers from ERDC’s ongoing in-house research efforts. The research 

conducted in this dissertation is secondary to ERDC’s, and ERDC provided federal government 

approved animal care guidelines listed under #EL-6009-2011-5. The ERDC’s approved animal 

care guidelines encompass the National Institutes of Health (NIH) Guide for Care and Use of 

Laboratory Animals. For further detailed information please contact ERDC. The ERDC provided 

specimens that were immersed in a phosphate-buffered saline (PBS) solution. The PBS solution 

was used to maintain the fish scale’s full hydration state during storage. 

3.8.2 Initial Sample Preparation: 

The ERDC provided scales they dissected from the middle region of the alligator gar fish 

and with its epidermis skin layer intact, Figure 3.3. After procurement, scales were further  
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Figure 3.3 Freshly cleaned scales dissected from middle 
region of alligator gar fish. 

sectioned into individual fish scales. Next, the epidermis soft tissue layer was removed using a 

razor blade. The scales were then sonicated in deionized water to remove any remaining soft 

tissue particles and mucus. The cleaned scales, shown in Figure 3.3, were then placed in fresh 

PBS to prevent cross contamination and stored for future specimen preparation and 

characterization. The details are provided below for methods used to prepare specimen for 

experimental characterization, unless further explained, in Chapter 4 during data analysis and 

presentation of experimental results. 

3.8.3 Unaided Eye Observations, Optical Microscope, and HR-SEM Sample Preparation: 

Since the purpose of the unaided eye observations and optical microscope were to 

provide a sense of the specimen’s size, shape, and texture, no further sample preparation was 

needed after the scales were freshly cleaned. 
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3.8.4 Cross-Sectional Analysis Using Optical Microscope, Nanoindentation and FTIR Sample 
Preparation: 

Individual fish scales were mounted in 38-mm inner diameter molds. The stiff medium 

optically transparent epoxy, product name EPO-TEK™ 301-2, which consists of a 

two-component resin and hardener, was used to mount the sample. The samples were allowed to 

cure in ambient conditions at an average temperature [25±5]°C. The samples were de-molded 

after they had cured for a minimum of 72 hours. To expose the interior fish scale layer(s) for 

experimental characterization and to meet the recommended specimen height by equipment 

vendor a, Buehler Isomet ™ 2000 model cut-off precision diamond bladed, saw cut was made 

across the short axis “A” at near the midline of the sample, Figure 3.4. 

 

Figure 3.4 Cross-section of µm-XCT images of alligator gar scale depicting the 
short-axis “A” transverse section examined in this study by optical microscope, 

nanoindentation and FTIR techniques (Images courtesy of the U.S. Army’s 
Engineer Research and Development Center (ERDC)-Geotechnical and 

Structures Laboratory (GSL) located in Vicksburg, Mississippi). 

After cutting, the sample was sonicated in water for 15 minutes to remove any loose 

fragments and residual traces of cutting lubricant. The specimens were manually polished, with 

slight modification of the procedure described in textbook reference Materials Characterization: 
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Introduction to Microscopic and Spectroscopic Methods by Leng, on a Buehler Handimet ™ I 

Strip Grinder, sequential from coarse to fine by using #240, 320, 400, and 800-silicone carbide 

grit paper (Leng, 2008). In all grinding steps water was used as the lubricant. Before proceeding 

to the next smaller size grit, the sample was placed under a microscope to determine if scratches 

were all unidirectional. Unidirectional scratches were achieved by rotating the specimen 

clockwise one-quarter turn after every 50 forward hand strokes until four-quarter rotations have 

been completed. Following the 800-silicone carbide grit polishing, fine polishing using 1- and 

0.03-micron Alumina water based suspensions on a Buehler Ecomett ™ II mechanical rotating 

polisher was conducted. The samples cross-sections were polished until the uniform 

unidirectional scratch width was less than 3 nanometers. Finally, the specimens were oven dried 

at 25 degrees Celsius for 24 hours. The samples were dehydrated to ensure consistent 

measurements were taken. 

3.8.5 µm-XCT Sample Preparation: 

Specimens were initially cleaned and dried as described above in Section 3.8.2. After 

cleaning the specimens were mounted to a holder using standard double-sided tape. No further 

preparation was needed. 

3.8.6 Cross-Sectional Analysis Using TEM, STEM, EELS, HAADF, μm-XEDS and EMPA, 
Sample Preparation: 

First follow the same sample preparation methods explained in the “Cross-Sectional 

Analysis Using Optical Microscope, Nanoindentation and FTIR Techniques” Section 3.8.4, with 

the exception that the specimens were mounted in a 25-mm inner diameter mold. The purpose 

for using a smaller specimen is to minimize outgassing effects, caused by the excited electrons 

heating the epoxy and/or biological materials. Excessive outgassing can cause distortions when 

electron based measurements are taken. After the specimens have been oven dried, the specimens 
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were then ion milled, using a PIPS ™ II - Precision Ion Polishing System, at cryo-temperature. 

Ion milling was used to cut the short-axis “A” transverse slices of whole specimens that are each 

[~10-nm] uniformly thick. Finally, to minimize ion charging, overheating, and recrystallization, 

the samples are carbon coated. 

3.8.7 FIB Sample Preparation: 

Focused ion beam prepared specimens can provide serial thin x-sections [~ 10 – 30 nm] 

for site-specific μm-CT images that can better resolve geometrical features at the surface, near 

surface. Specimens were initially cleaned and dried as previously described. Since every 

specimen reacts differently during the local milling, there is no specific guidance for preparing 

FIB specimens. The suggested practice used was the application of a palladium surface coating 

to minimize ion charging, overheating, and recrystallization. Also used was a “wedge” sectioning 

technique (Nalla, Porter, Daraio, Minor, Radmilovic, Stach, Tomsia, Ritchie, 2005; Jantou, 

Turmaine, West, Horton, and McComb, 2009; Grandfield, McNally, Palmquist, Botton, 

Thomsen, and Engqvist, 2010; Grandfield, and Engqvist, 2012; McNally, Schwarcz, Botton, and 

Aresnault, 2012; Resnikov, Natalie, Shahar, Weiner, 2014; and Kizilyaprak, Daraspe, and 

Humbel, 2014).  

3.8.8 TGA Sample Preparation: 

Freshly cleaned scales are oven dried at 25 degrees Celsius for 24 hours. Wire cutters 

were then used to cut the whole fish scale into smaller pieces. The smaller pieces were placed 

into several weigh pans. The weigh pans were filled until each had a minimum weight of 50 mg. 

The weight average of the pans was used to determine the overall TGA value. The temperature 

range used was [35 to 1550] degrees Celsius with a heating rate of 10-degrees Celsius/minute as 

recommended by Liao, Lin, Chen, and Sun 1999). 
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3.8.9 SS-NMR Spectroscopy Sample Preparation: 

Freshly cleaned scales are oven dried at 25-degrees Celsius for 24-hours. Individual 

specimens were prepared by using a mortar and pestle to pulverize them into powder form. 

Approximately 50 mg by weight of powder was then packed into a 4-mm zirconium rotor. For 

the fish scales, analysis was conducted via solid-state 400 MHz NMR and spun at what is termed 

the “magic angle” within the magnetic field at speeds ranging from 5-12 kHz to eliminate 

spectral artifacts such as spinning side bands (How To Make A NMR Sample, 2015). 

3.8.10 Synchrotron X-ray Methods (μm-XRD/μm-XANES/μm-XRF-CT) Sample Preparation: 

Freshly cleaned scales are oven dried at 25-degrees Celsius for 24-hours. Synchrotron 

x-ray analysis samples were prepared by slicing serial thin cut sections from whole intact scales 

using a diamond tip knife attached to an ultramicrotome device. The cut sections were each 

approximately [3-5-µm] thick. Each serial section was mounted on separate Mylar™ films. 

3.9 Overall Experimental Design Methodology Summary 

The experimental design methodology was developed to provide a systematic top down 

approach, which can be used to probe the length scales. The outcome of the primary questions 

raised from the hypothesis (H) may lead to the development of secondary and ancillary questions 

as research progresses. The questions will be addressed based on the predefined research scope 

previously discussed in Chapter 1 and DOE strategy outlined earlier in Chapter 3. 

The experimental characterization starts with the largest length scale as knowledge is 

learned but further questions may be raised. Shown in Figure 3.5, are locations probed and the 

experimental techniques used to examine the fish scale’s hierarchy. As the successive length 

scales are examined some research questions are answered while additionally others are raised. 

The process stated above will continue until the lowest measurable length scale has been  
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Figure 3.5 Locations probed and the experimental techniques 
used to examine the fish scales hierarchy. 

examined. The individual data sets will be analyzed first based on the discrete length scales and 

then assembled. When combining the experiments, they can fill knowledge gaps that may not be 

possible from individual experiments alone. In addition, some of the experiments provided 

overlap and serve as confirmation for the others. The combined experiments used to characterize 

each length scales will ultimately lead to the identification of mechanisms. The identification of 

mechanisms will also lead to new discoveries that inherently describe the attribute that governs 

the fish scale hierarchy mechanical response as a function of chemical composition and 

structural arrangement. 
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After resolving the data relevance the experiments will be used to test the hypothesis (H). 

If the hypothesis is true, then an appropriate DOE methodology has been established by this 

overall research effort. In addition to testing (H), the research findings will be used to establish a 

suggested framework and requirements for incorporating bioinspired design. The attributes of 

alligator gar’s biomineralized exoskeleton fish scales can be used to develop nature inspired 

advanced superior performing composite prototypes. Chapters 4 and 5 will present and discuss 

results to address questions developed from hypothesis (H). Recommendations will also include 

pertinent concepts that have been identified because of this research effort. Also provided will be 

a recommended strategy for manufacturing and prototyping model systems. 

  



 

 
67 

CHAPTER 4:  RESULTS 

 

Presented in Chapter 4 are the experimental results that are used to discuss the questions 

developed from hypothesis (H). The presentation of results begins with the largest length scale 

and continues until the lowest measurable length scale has been explained. After the individual 

results have been discussed, they will be assembled to determine what may be the attribute(s) 

that govern the fish scale hierarchy mechanical response as a function of chemical composition 

and structural arrangement. 

Where possible, two weight classes for the alligator gar fish were examined. Since the 

exact ages of the fish could not readily be determined by the ERDC researchers, acquired scales 

are classified by fish weight. The first set of alligator gar fish scales were procured from one fish 

that fell in the weight range of [1 to 30 pounds]. The second set of alligator gar fish scales were 

procured from one fish that fell in the weight range of [31 to 70 pounds]. The scales used in this 

study were obtained from alligator small and medium fish that weighed 2.5 and 38 pounds, 

respectively. Both sets of scales were harvested from the middle region of the fish scale’s body 

as illustrated in Figure 3.3. The purpose for examining two-distinct fish weight classes was to 

infer how the mechanical, structural, and chemical properties evolve as the fish grows. 

4.1 Investigation of Length Scale [>1] mm 

Unaided Eye Observations. The fish scales were first visually inspected using unaided 

eye observations. Shown in Figure 4.1 are whole small and medium unpolished biomineralized 

fish scales. From observation the scales have long and short axis. The scales’ shape appears to 

have subtle curvature around its perimeter that converges at the vertices to form sharp points 

similar to arrowheads. The curved perimeter of the scales is thinner on the edge and overlap  
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Figure 4.1 Whole biomineralized small and 
medium alligator gar fish scales.  

when connected to other scales with sharper fibers as previously described in Chapter 2 and 

shown in Figure 2.6. 

The small scale seems to grow more in the long axis direction. In addition, the small scale 

looks and feels smooth on top while the bottom side of the scale seems to have a depression 

containing pits on the surface, Figure 4.2. The bottom side of the scale is nearest the face that is 

attached to the fish’s body. As the small scale grows to the medium size, the top surface appears 

and feels as if there is a crown forming or a subtle ledge near its center. Yet, the pitted area 

remains present as the fish scale grows. The exact purpose and function of the depressed pitted 

area is not known; however, the depressed region is somewhat concave. One possibility why 

nature maintains the aspect ratio throughout the growth process for the concave geometry is the 

scales can form fit the fish’s body shape assisting with insulation and maneuverability through 

water, similar to a deep-sea diver wearing a wet suit (Bartol, Gharib, Weihs, Webb, Hove, and 

Gordon, 2003). The questions raised from unaided eye observations were (a) what are the fine 

details of the surface textures when viewed at the next lower length scale, and (b) does the 

surface texture percolate outward from the scales’ internal structure. 

Medium Scales 

Small Scales
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Figure 4.2 Medium size biomineralized fish scale with concave depression 
containing pits on the bottom side of the alligator gar scale. 

4.2 Investigation of Length Scale [1-1000] μm 

4.2.1 HR-SEM Observations 

To investigate the questions (a) and (b) raised during the investigation of length scale 

[>1] mm, further observations were made at the [1-1000] μm length scale. Only the medium 

scale surface topology was investigated, using a JOEL™ HR-SEM, since the geometry and 

textures were more pronounced than the small scale when inspected by the naked eye in visible 

light. The HR-SEM images were able to show surface details at higher magnification. In 

Figure 4.3, the top of the medium alligator gar scale at one-millimeter magnification clearly 

shows a non-smooth and non-level surface. The specimen appears to have at least two distinct  
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Figure 4.3 Top surface of medium size gar fish scale at one-millimeter 
magnification using HR-SEM backscatter mode. 

texture regions, as highlighted by the dotted lines, along the surface. The backscattered gray-

scale surface image indicates that at least two regions that have differing material densities. 

There is a smoother surface for Region 2 when compared to Region 1. However, the surface of 

Region 2 shows a gradual surface textural transition from Region 1 to Region 2. 

Also observed in Region 1 are circular features that are uniform in size inside the black 

circles. On the outer edge of the circle features is a crack propagating linearly. Similarly, the 

specimen has two cracks running parallel near the edges of the circular feature in Region 1. The 

specimen has yet to be loaded or polished so the cracking may be due to shrinking caused by 
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drying. In addition, the cracks are consistently appearing near the edges of the circular 

formations as if there is a zone of discontinuity for the material. 

Region 2 has a smoother topology that is more or less defect free and sloping/ 

transitioning downward and away from Region 1. Unlike Region 1, the surfaces of Region 2 do 

not show cracks. Further examination of the surface is needed to understand the details of 

cracking occurring near the circular feature. 

To further investigate the fine details of the circular feature, finer HR-SEM images were 

taken at the higher magnifications of 100 microns in Figure 4.4 and 10 microns, shown in 

Figures 4.5 and 4.6. Shown in Figure 4.4 is the top surface of medium size gar fish scale at 

100-micron magnification. There are several features that are observed at the finer magnification. 

For instance, when viewing the surface Regions 1 and 2 at their interface, barbs are propagating 

out of the surface. The barbs are equally spaced and hook over toward the Region 1 direction. 

Another important discovery illustrated in Figure 4.4 is the barbs are hollow. 

At the 10-micron magnification the hollow barbs appear to be transport channels that are 

self-contained and serve some unknown function, Figure 4.5. On the surface of the fish scale are 

bumps/pores similar to the human skin which hair fibers grow from. Here the fibers may have 

been used to attach the soft tissue to the surface. Furthermore, what appeared as circles at the 

1-millimeter range there are actually remnants of the hollow barb’s base. The researcher believes 

these are only remnants left because during cleaning the scales’ surface most of the barbs were 

unknowingly scraped off. 

In Figure 4.6, also at the 10-micron magnification, are surface damage sites for the areas 

where the barbs were scraped off. Notice the barb channel area has become detached from the  
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Figure 4.4 Top surface of medium size gar fish scale at 100-micron 
magnification using HR-SEM backscatter mode. 

surrounding materials. The surrounding area has cracked. Crack paths seem to follow along the 

detached area and surface imperfections. 

The unanswered question (b) raised during the investigation of length scale [>1] mm of 

whether the surface texture percolates outward from the scales internal structure is still unknown 

and cannot be answered from surface observations alone. The additional questions now raised 

during the investigation of length scale [0.001-1] mm are: (c) Do the layers exist through the 

thickness of the fish scale? (d) Do the hollow barbs observed at the surface extend through the 

entire thickness of the fish scales’ internal structure? 
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Figure 4.5. Top surface of medium size gar fish scale at 10-micron 
magnification showing damage site around hollow barb base 

using HR-SEM backscatter mode. 

To be able to determine if the internal structure contributes to the surface layering, 

texturing, and cracking, both fractured and polished cross sections surface were imaged using 

HR-SEM. The fish scale specimen was fractured by using two-sets of needle nose pliers to apply 

sufficient manual force to break the specimen. The direction of the applied force was selected 

based on previous literature that showed hardness decreased with depth along with collagen fiber 

content increased with depth across the short axis (Allison, et al. 2013). Therefore, to better 

capture images that contain fibers that may be pulled out during fracture, the concave external  
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Figure 4.6 Top surface of medium size gar fish scale at 10-micron 
magnification showing crack paths tied to surface imperfections 

using HR-SEM backscatter mode. 

forces were applied upward (weakest direction) using the needle nose pliers as shown in 

Figure 4.7. 

After breaking the fish scale, the fracture surface images were taken. Figure 4.8 shows 

the overall facture surface at one-millimeter in the HR-SEM. There are two distinct layers 

identified by backscattered gray-scale in the cross section. The answer to question (c), formed by 

the hypothesis is yes, layers do exist. Likewise, the layers are present through the thickness of 

the fish scale. Additionally, Layer 1 is a lighter gray than the darker gray shown in Layer 2. The 

lighter gray image is an indication Layer 1 has a higher material density than Layer 2. Similarly  
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Figure 4.7 Schematic of applied force and 
direction used to fracture fish 

scale specimen. 

    

Figure 4.8 Overall facture surface at one-millimeter magnification 
using HR-SEM backscatter mode. 
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the gray scale fracture surface appears to correspond to the gray scale surface images seen in 

Figure 4.3. Also, in Figure 4.8, the backscattered image shows Layer 2 is much thicker than 

Layer 1. Layer 2’s fracture surface starts at the edge of the inner surface and stops at the dotted 

red line. Layer 1 is the shown to be inside the red dotted line and does not have a uniform 

thickness. Within Layer 1, the layer is thinnest near the center of the outer surface and 

progressively becomes thicker at the edges of the outer surface. 

Next, the inner layer fracture surfaces were investigated for Layer 1, Layer Interface 

(ITZ), and Layer 2 at finer magnifications. The blue, yellow, and green dotted boxes, in 

Figure 4.8, identify investigated sites. The blue, yellow, and green dotted boxes represent 100-, 

10-, and 1-micron magnification levels, respectively. 

At 100-micron magnification, Figure 4.9 enhances the linear cracking found in the ITZ. 

The linear (parent) crack path, outlined by the yellow dashed line, in the ITZ seems to be 

continuous along the interface of Layers 1 and 2. Since there does not appear to be branch (child) 

cracking emanating from the linear (parent) crack, then cracking does not seem to be related to 

mechanically interface shearing. Instead the parent crack is likely occurring due to 

environmental dehydration, leading to debonding of the layers. Debonding is an indication of a 

change in structural arrangement and/or chemical composition. 

When observing the fractured cross-sectioned barb damage site at a 50-micron 

magnification, displayed in Figure 4.10, for the surface damaged areas in Figure 4.6 and 

Figure 4.9 at one millimeter and 100-microns, respectively, the higher fidelity image provides no 

evidence the barb is embedded or does a hollow region exist directly below the surface of 

Layer 1. Nor do cracks seem to penetrate far below the surface. Also shown by the fracture 

surface for Layer 1 side of interface is a texture that appears to be dense/compact with very few  
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Figure 4.9 Cross-section for fracture surface at a 100-micron magnification 
using HR-SEM backscatter mode. 

pores. At 10-microns, Figure 4.11, the fracture surface for Layer 1 side of interface illustrates a 

roughened, unleveled surface texture. At the even more refined 1-micron magnification, 

Figure 4.12 displays the fracture pattern, lineated by the red-dotted arrows, for the roughened 

topology. 

Immediately adjacent to the ITZ is Layer 2, Figure 4.13, illustrating the fracture surface 

that does not appear to be densely compact as found in Layer 1. The pore volume increased when 

approaching the innermost edge of the fish scale. In addition, the surface contains several 

identifiable pore structures that are visible at the 100-micron magnification. The image shows 

there are several pore sites having a varying distribution of sizes. Additionally, some of the pore 
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Figure 4.10 Cross-section of the barb damage site at a 50-micron 
magnification using HR-SEM backscatter mode for Layer 1.  

sites seem to be connected. Also shown was that connected pore sites can form pore channel 

structures. Upon further investigation, at the 1-micron range, the pore channel was found to have 

a fibrous interior, Figure 4.14. 

The innermost edge of the fish scale was next examined. Shown in Figure 4.14, is a 

vastly different structural arrangement than what was observed in Layer 1 and the ITZ. At 

10-micron magnification the image shows a loosely compacted surface, Figure 4.15. 

Furthermore, the pullout of fibers shows they were previously embedded in the loosely 

compacted solid phase prior to fracturing the surface. At the finer 1-micron magnification,  
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Figure 4.11 Cross-section for roughened fracture surface at a 10-micron 
magnification using HR-SEM backscatter mode for Layer 1.  

Figure 4.16, elucidate the hierarchical fibrous structure. Collections of individual fibrils are 

woven to form individual fiber strands. The individual fiber strands become entwined to form 

fibrous bundles. By observation, the solid fractions appear to be individual minerals that are 

much smaller than individual fibers.  

So far the research has presented and discussed the structure for the fish scales’ fracture 

surface. Next, HR-SEM will be used to elucidate the structural details for both the small and 

medium polished cross sections. There are distinct differences and similarities for the two fish 

scale sizes, shown in Figure 4.17, at 200-micron magnification. 
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Figure 4.12 Cross-section showing surface, delineated by red-dotted 
arrows, at 1-micron magnification using HR-SEM backscatter mode 

for Layer 1’s roughened fracture surface.  

There are few differences in the small and medium scales. However as the fish grow, the 

scale seems to be prone to more defects/damage. The HR-SEM image for the medium scale 

shows cavities (also known as tubules or canals), outlined by the red dotted circles, and is present 

near the center of the scale. Also observed was outermost dense-layer fractured and flaking 

occurred. Further analysis will be the discussed later in Chapter 4 that helps determine if the 

differences in the two scales are caused by a change in chemical, structural, and/or mechanical 

properties. 



 

 
81 

 

Figure 4.13 Cross-section of fracture surface immediately adjacent to ITZ, 
using HR-SEM backscatter mode, at 100-micron magnification.  

The fish both have dense exterior layer thickness, which appear to grow proportionally 

with the underlying layer. The outer layer does not extend to the edge of the scale. Furthermore, 

the layer is thicker at the edge and gradually becomes thinner toward the center of the layer. At 

the center of the dense layer there is a noticeable depression. The exterior layer appears to 

provide little to no coverage for the underlying layer at the depression zone. The dense layer is 

connected to the underlying layer by what seems to be a saw tooth geometrical interlocking 

interface. In addition, the interface seems to be mainly bonded by mechanical means, rather than 

chemically, because of saw tooth geometries, Figure 4.17. Since saw tooth geometries are used to  
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Figure 4.14 Cross-section of fracture surface showing a fibrous interior for the 
pore channel, using HR-SEM backscatter mode, at 1-micron magnification.  

secure the layers’ interfaces, the layers are not discreetly bonded like layers in engineered 

laminates. Within the saw tooth regions the material overlaps and is embedded at various depths 

within each layer to form periodic “repeating” bonded connections. The saw tooth connections 

perhaps provide enhanced shear resistance at the interface when the full hydration state is 

maintained and helps inhibit debonding. Evidence for mechanically bonding is shown in the 

medium fish scale. At the interface for the medium fish scale there is some indication shrinkage 

cracking has occurred. More than likely, shrinkage cracking was caused by sample preparation. 

The image for the medium fish scale shows the two layers have separated, however, they 

maintain the saw tooth shape at the junction sites.  
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Figure 4.15 Cross-section of inner fracture surface elucidating mineral-fiber 
structure, using HR-SEM backscatter mode, at 10-micron magnification. 

As illustrated in Figure 4.18, for the small and medium scales, the enhanced image 

highlights linear cracks occur through the short axis for dense layer. The lateral spacing between 

the cracks seems to be directly proportional to the change in thickness. In the images as the layer 

thickens the lateral spacing between cracks widens. 

Figure 4.17, also shows repeating contrasting gray-scale concentric rings occurring 

throughout the scale. The highlighted layers, in Figure 4.19, show contrasting rings tend to 

follow the contours of the scale. Upon zooming into the denser outer layer, Figure 4.20, the 

image shows an increase in contrast. Each sub-layer has a bright bottom and darker top. Each  



 

 
84 

 

Figure 4.16 Cross-section of inner fracture surface elucidating mineral-fiber 
structure, using HR-SEM backscatter mode, at 1-micron magnification.  

 

Figure 4.17 Cross-section for small and medium polished fish scale surfaces 
at a 200-micron magnification using HR-SEM backscatter mode. 
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Figure 4.18 Enhanced HR-SEM backscatter image at 200-micron 
magnification, for small and medium scales, highlighting linear 

cracks occurring through the short axis for dense layer. 

 

Figure 4.19 Enhanced HR-SEM backscatter image at 500-microns magnification, for small fish, 
highlighting the gray-scale concentric rings occurring throughout scales layers. 
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Figure 4.20 Enhanced HR-SEM backscatter image at 200-micron magnification, for small 
fish, highlighting the gray-scale sub-layers occurring within the denser outer layer. 

sub-layer grades from a dense underside to a less dense upper layer. Each sub-layer ends in a 

rasp shape. 

The contrast in the image indicates there is high likelihood that density is changing within 

the layers. The contrasts revealed by HR-SEM enhanced backscatter image for the medium fish 

scale, shown in Figure 4.21, indicates within the ITZ (yellow dashed lines) at the center top of 

scale is the oldest. Both layers become less dense (younger) further away from top center.  

The significance of gray scale contrasting provides more evidence the density likely 

changes with age. The change in density and the repeating contours provides an indication the 

scale’s composition and structure may be evolving with growth. To obtain greater knowledge of  
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Figure 4.21 Enhanced HR-SEM backscatter gray-scale image, at 200-microns, 
highlighting the growth initiation and direction for 

the medium fish scale layers. 

how the scales are evolving during growth further optical microscopy, μm-XCT, structural, and 

chemical analysis was conducted at the micron level. 

The questions that arose with no definitive answers: (e) Why does the lateral spacing 

between cracks widen as the layer becomes thicker (No Answer)? (f) Also what may be the 

reason for linear cracking occurring within the layer of what appears to be like materials (Stress 

Release Due To Drying)? Both of these questions are addressed in the next sections. 

4.2.2 Optical Microscopy Observation 

A Carl-Zeiss Imager Z1m ™ optical light microscope was used to measure average layer 

thickness for the small and medium size scales. Shown in Figure 4.22, is the average thickness in 

the small fish scale for Layer 1 and Layer 2, which are 44.87 and 287.59 microns, respectively. 

Additionally in Figure 4.23, is the average thickness in the medium fish scale for Layer 1 and 

Layer 2, which are 1575.40 and 11804.40 microns, respectively. The nominal ratio for Layer 1 

Thickness-to-Total Scale Thickness for the small and medium fish scales are13.3 and 

15.6 percent, respectively. The ratio was used to show how the individual layers for the fish scale 

tend to grow. As the fish scale grows, the ratio indicates the layer thicknesses remain constant. 
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Figure 4.22. Optical microscopy image showing the average layer 
thickness for small fish scale. 

 

Figure 4.23 Optical microscopy image showing the average layer 
thickness for medium fish scale. 
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4.2.3 μm-XCT Observations 

Displayed in Figure 4.24 is the μm-XCT image for a medium-size fish scale. The 

reconstructed three-dimensional image volume for the whole intact scale provides  

 

Figure 4.24 Reconstructed 3-D volume μm-XCT 
image for a medium-size whole intact fish scale. 
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verification there exists a dense outer Layer 1 which does not fully cover the underlying Layer 2. 

Inside the dotted red line shows the scale does not have a uniform thickness indicated by concave 

sloping surface occurring toward the center. 

The reconstructed three-dimensional scale was digitally sliced at the bottom of Layer 1 

near the interface, Figure 4.25, to show ridges that were formed. The ridges are analogues to the 

grooves seen in Tupperware™ storage container lids. The grooves point in opposite directions 

going down and outward, indicated by the red dotted arrows, from the scales’ center. The 

sawtooth rasps observed in HR-SEM and optical microscope cross-section images, for 

Figures 4.17, 4.22, and 4.23, are formed from the ridges. The μm-XCT image also confirms the 

interface uses geometry to form a mechanical bond when anchoring Layer 1 to the underlying 

Layer 2. At the center of the scale, indicated by the blue interior, is the hollow area. The hollow 

 

Figure 4.25 Reconstructed fish scale image from 3-D μm-XCT volume at the 
bottom of Layer 1 near the interface, where ridges are formed. 
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area corresponds to the pitted area previously discussed for Figure 4.2 and the non-uniform 

thickness seen in the μm-XCT image for Figure 4.25. Still uncertain is reason for cracking, crack 

spacing, and how the ridges form. Perhaps the ridges represent growth rings as individual sub-

layers, which were previously discussed in HR-SEM cross-section image, Figure 4.19. 

So far the results have discussed how the structural layers are assembled geometrically at 

micron level. The remaining sections will discuss the use of analytical techniques for identifying 

the chemical composition and elemental distribution that are measured at the [1-1000] μm length 

scale. The information was used to determine what are components that make up the fish scale’s 

structure. 

4.2.4 Synchrotron X-ray Analysis (μm-XRF- CT/μm-XANES/μm-XRD) 

Synchrotron μm-XRF-CT, μm-XRD, and μm-XANES microprobe analysis was 

conducted to determine the elemental distribution and provide speciation information for 

heterogeneous solid fish scale. The analysis was performed at beamline X26A, X27A, and X2B 

at the National Synchrotron Light Source at Brookhaven National Laboratory in Upton, NY. At 

the time of this research beamline X27A was the only synchrotron x-ray energy source in the 

USA calibrated uniquely for the x-ray properties of calcium. Previously, researchers have shown 

calcium, by percent dry weight, is one of the main elements that are responsible for the degree of 

mineralization in bone, tooth, and even fish scales (Currey, 1999; Mann, 2001; Ochsner, 2011; 

Olszta, Cheng, Jee, Kumar, Kim, Kaufman, Douglas, and Gower, 2007; Fratzl, Fratzl-Zelman, 

Klaushofer, Vogl, and Koller, 1991; Boskey, 1991; Boskey, 2007; Canton and Tucker, 2009; Sahi 

and Schoonen, 2006; Jantou-Morris, Horton, and McComb, 2010; Schonborner, Meunier,. and 

Castanet, 1981; Weiner, Veis, Beniash, Arad, Dillion, Sabsay, and Siddiqui, 1999; Ratner, 

Hoffman, Schoen, and Lemons, 2013; Shapiro, Byers, Glorieux, and Sponseller, 2014). 
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Two-dimensional elemental distribution images were produced from the five-micron 

thick serial sliced scale sections for the small and medium fish only, using μm-XCT mapping. 

The beam size on the sample was approximately 7 µm × 10 µm using Rh-coated Kirkpatrick-

Baez focusing optics. X-rays were selected using a water-cooled channel-cut Si (111) 

monochromator. Changes in elemental compositions for the serial sections were monitored using 

µm-XRF and correlations were made between elemental composition and location. Once the 

elemental composition was determined, the same specimens were then analyzed, using 

μm-XANES and μm-XRD analytical techniques to aid in identifying any major compounds 

present within the biomineralized fish scale. 

The µm-XRF data were collected at energies either 4100 electron volt (eV), 11000 eV, or 

13000 eV using a four-channel Silicon drift detector. To maximize the detection for the light 

element of calcium µm-XRF data was collected at 4100 eV. The same sample was scanned a 

second time at a higher energy (11000 or 13000 eV) to collect data on the trace elements present 

in the samples. For the current investigation bio/geo chemistry trace element interpretations were 

used. Specifically, to be considered a trace element for a given energy range, a chemical element 

has an average concentration which is less than 1000 parts per million (ppm) of a material’s 

composition and is usually measured in counts per arbitrary unit (Albarede, 2003; Reinhardt, 

2001; Rakovanm Luo, and Borkiewicz, 2008). Each individual atomic count represents a single 

x-ray photon entering the energy detector (Faust, Johnston, and Reed, 1998; Levinson, Berry, 

Johnston, Osborne, and Pack, 2001; Leng 2008; Willmott, 2011). 

The µm-XRF multi channel analyzer plot (MCA), shown in Figure 4.26, for elements 

that fluoresce in the [3,000 -10,000] eV energy range. The energy peaks were used to identify the 

periodic elements. Each element has known x-ray properties. The x-ray properties were  
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Figure 4.26 Synchrotron µm-XRF multi channel analyzer plot showing 
periodic elements that fluoresce in the [3000 -10000] eV energy 

range, for the small fish scale. 

identifying using Lawrence Berkeley National Laboratory’s website that provides a 

downloadable PDF document titled “X-RAY DATA BOOKLET” that contains information for 

all elements (X-RAY DATA BOOKLET, 2015). The “Ka” and “Kb” are shell emission lines in 

electron volts that were compared to those listed in the x-ray properties of elements found in the 

“X-RAY DATA BOOKLET.”  

The MCA-plot identified calcium and zinc as the main elements found in the small fish 

scale. The trace elements found were iron and manganese. Observed in Figure 4.27 are the 

μm-XCT elemental two-dimensional distribution maps for Ca and Zn. The warmer colors 

(red/yellow) indicate areas of higher concentration. The Ca and Zn distribution appear in the 

concentric ring as sub-layers throughout the scale. The darker yellow area on Ca map indicates 

an increase in Ca concentration. When comparing the light white region to the synchrotron 

µm-XCT two-dimensional density map, Figure 4.28, to the yellow region in the µm-XRF  
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Figure 4.27 Synchrotron μm-XCT 2-D elemental distribution 
maps for Ca and Zn for the small fish scale. 

calcium maps, Figure 4.27, the area is most likely the densest for the fish scale. Since the 

medium scale was much denser, the ultramicrotomy technique caused crinkling of the specimen 

during preparation. The µm-XRF measurements and maps obtained from the damaged specimens 

provided results that were inconclusive, Figure 4.29. 

The µm-XANES spectroscopy was next collected for both the small and medium 

biomineralized scale for mineral speciation. The beamline was calibrated to 4,038 eV for calcium 

µm-XANES/XRF analysis and to 9,659 eV for Zinc µm-XANES/XRF analysis using standard 

metal compounds (X-RAY DATA BOOKLET, 2015). µm-XANES data was processed using a 

combination of the X27A data software and Athena software packages. 

In Figure 4.30, µm-XANES spectroscopy is used to compare the collected experimental 

fish scale data to known Ca-standards for energy absorbance. Calcium µm-XANES was used as 
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Figure 4.28 Synchrotron μm-XCT 2-D density map 
for the small fish scale. 

 

Figure 4.29 Synchrotron μm-XCT 2-D elemental distribution maps 
for Ca and Zn for the medium fish scale. 
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Figure 4.30. Synchrotron μm-XANES spectroscopy plots for comparing the 
collected experimental fish scale data to known Ca-standards. 

a fingerprinting technique to determine the form of Ca in the fish scale. On the left are 

µm-XANES scans of only Ca-standards—notice the differences between these compounds—this 

is critical when looking at µm-XANES plots. On the right are µm-XANES collected on a larger 

and smaller fish scale—note the similar structure—indicating that there is little difference in 

Ca-speciation between the scales as they age. 

The energy absorbance spectra, in Figure 4.31, are nearly identical to the bio-apatite 

(mouse bone) minerals as opposed to the pure inorganic Ca-minerals. The comparison further 

indicated that Alligator gar fish scale is composed of a biogenic- Ca-Phosphate mineral. 

Additionally, the amorphous Ca-phosphate mineral is a better fit than the pure apatite; therefore, 

the inorganic portion of the scale may be composed of amorphous Ca-phosphate. 

When comparing fish scale µm-XANES data to known bio-apatite (mouse bone) and 

Zn-standards, Figure 4.32, an interesting trend was observed for the Zn. Zinc is distributed  
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Figure 4.31 Synchrotron μm-XANES spectroscopy plots for comparing the 
collected experimental fish scale data to known apatite and 

bio-apatite (mouse bone) standards. 

throughout the fish scale—it appeared to correlate closely with the Ca levels. The Zn XANES 

also indicates that the Zn in the Alligator Gar scale is much more closely related to Zn found in 

bio-minerals than pure inorganic phases. Chemistry suggests that Zn could replace Ca in the 

Ca-phosphate structure (Mucalo, 2015). The role Zn plays in biomineralized bio-apatite is not 

well understood. 

After completing Synchrotron μm-XANES measurements the µm-XRD data was 

collected at 0.7093λ with aluminum oxide (α-Al2O3) and silver behenate (AgC22H43O2) as 

calibration standards. Data was fit using Fit2D ™ and Match! ™ software packages. Once 

collected the µm-XRD spectra for the fish scale was compared to four-mineral types: 

Hydroxylapatite-(Carbonate), Apatite-Human Dental, Apatite-(F), and Apatite-(MnF). Provided 

in Figure 4.33, are the crystallographic structures along with calculated stoichiometry for the 

relative quantities of reactants and products in chemical reacted apatite minerals used for  
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Figure 4.32 Synchrotron μm-XANES spectroscopy 
plots for comparing the collected experimental fish 

scale data to known bio-apatite (mouse 
bone) and Zn-standards. 

comparison (Wilson, Elliot, and Dowker, Rietveld, 1999; Fleet, Liu, and King, 2004; Hughes, 

Cameron, and Crowley,1989; and Hughes, Cameron, and Crowley, 1991). As an aside, usually 

present in all matter is carbon but is difficult to measure so the reacted oxidation state is normally 

assumed in stoichiometric calculations. 
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Figure 4.33 Crystallographic structures and calculated stoichiometry for apatite minerals 
used in fish scale XRD comparisons (Wilson, Elliot, and Dowker, Rietveld, 1999; 

Fleet, Liu, and King, 2004; Hughes, Cameron, and Crowley,1989; and 
Hughes, Cameron, and Crowley, 1991). 

The mineral phase speciation for the small fish scale structure was proven to be an apatite 

based mineral, Figure 4.34. In general, there were no discernible differences for the varying 

apatite structures shown by the comparison. Equally, the apatite minerals with elemental 

substitutions (Carbonate, Ca, F, and Mn) retain a similar pattern. Meanwhile, the µm-XRD 

crystallographic comparison with other apatites illuminated the P and F periodic elements in the 

fish scale structure. Recall, µm-XRF mapped the presence of Ca, Zn, Mn, and Fe elements. Since 

synchrotron x-ray experimental methods could be coupled, they were able to show distribution 

and speciation for major and trace elements for the fish scale structure. Data were not collected  
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Figure 4.34 Synchrotron μm-XRD spectra for the small fish scale compared 
to several known varying apatite crystallographic structures. 

for the medium fish scale because µm-XRD experiment showed there was very little variation in 

apatite structures. 

4.2.5 TGA 

Phase changes and decomposition of apatite structure was studied by means of thermal 

gravimetric analysis. The TGA experimental technique measures total mineral and organic 

contents, including carbonated mineral and non-collagenous proteins, providing additional 

insight into bulk composition. Thermal response depends on the heating rate, amount of sample, 

and phase purity (Haines, 1995; Bigi, Cojazzi, Panzavolta, Ripamonti, Roveri, Romanello, Noris 

Suarez, and Moro, 1997; Bahrololoom, Javidi, Javadpour, and Ma, 2002; and Markovic, Fowler, 

and Tung, 2008). 
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Prior to TGA, the fish scales were wiped with filter paper to absorb the excess water on 

the scale surface. The experiment was conducted for both the small and medium scales. The 

initial mass for the small and medium fish scales were 55.3 and 46.3 milligrams, respectively. 

The samples were heated in alumina (Al2O3) crucibles. Using a Netzch™ system the scanning 

temperature range was from 35 to 1550°C with a heating rate of 10°K /min, balance flow of 

20 mL/min and a sample flow of 50 mL/min of ultra-purity N2. 

The results for TGA, shown in Figure 4.35, indicate there are three thermally identifiable 

processes. Water (free and physi-sorbed) loss due to evaporation occurs between [35 -250]°C. 

Calcination of the carbonated hydroxyapatite biomineral phase resulting from thermal 

decomposition and subsequent loss of chemically-bound H2O (2HPO4
-2

 → P2O7
-4 + H2O (gas)) 

and CO2 (P2O7
-4 + CO3

-2 → 2PO4
-3 + CO2 (gas)) occurs between 250-1000°C. During calcination, 

the decomposition of collagen and combustion of the residual organic components occurs 

between [250 - 450]°C, and removal of carbonate ions from the inorganic phase between [450 

and 1000]°C.  

The assumption made from µm-XRD crystallographic comparison was that the chemical 

composition of the fish scale structure produces a carbonated bio-apatite structure (B-Ap); thus 

the decomposition beyond 1000°C is uncertain. The uncertainty is due to lacking full knowledge 

of the starting composition. Earlier discussed, trace elements measured at a given energy state 

depend on their measurable molar concentrations being below 1000-ppm; therefore all elements 

in the structure may not be detectable. 

Previous research has described carbonate is liable in apatite-based minerals and can be 

substituted with cations and anions (Tonsuaadu, Gross, Pluduma, and Veiderma, 2012). 

Depending on the element type and molar concentration used to modify the atomic structure, the 
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Figure 4.35 Thermal gravimetric analysis for the small 
and medium fish scales. 

carbonate may either produce apatites that range from thermally unstable to highly stable 

molecules. Ion exchange has been explained to occur more freely in calcium-based bio-apatites 

with Al, Si, Cl, Na, Mg, Zn, P, Mn, F, Fe, and K periodic elements (Fleet, 2015; Liou, Chen, Lee, 

and Bow, 2004; Mathew and Takagi, 2001; and Young, 1974). Also provided in this dissertation 

is evidence, obtained from TGA, that can be used to postulate how calcium carbonate allows 

nature to substitute elements based on availability and can evolve as needed to maintain a stable 

biomineralized structure. 

Additionally, TGA was able to support the assumption made for the carbonate presence, 

because of the reported temperature range for mass loss, so the difference in the small and 
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medium fish scale results can be elucidated. For biological materials that have composite layers 

with graded calcium concentrations that cause a density distribution, the rate of calcination will 

vary. As shown in teeth, which are akin to fish scales, there exists an outer denser layer with 

higher calcium concentrations than the underlying layer (Nieto and Livi, 2013). Unlike the teeth, 

but similar to bone, the fish scale layers become denser with growth/age thereby requiring 

elevated temperatures to calcine the medium scales when compared with the small scales. 

4.2.6 SS-NMR Analysis 

Solid-state nuclear magnetic resonance was used to investigate the organic phase 

contained in the biomineralized fish scale structure. The organic phase is the proteinaceous 

fibrous components that are assembled from amino acid groups. The molecular structure for the 

amino acid group is defined by bond length, angles, and orientation of atoms. The resonant 

frequency for atoms can be used to identify/speciate the bound elemental constituents in the 

organic carbonate phase. 

For heterogeneous structures, SS-NMR results are inherently anisotropic. The measured 

peaks are often broad, with substantial overlap among the different carbon functional groups. To 

overcome the ambiguous overlapping for the carbon groups, “selective” Cross-Polarization (CP) 

techniques were used to dephase some groups over others. The following five SS-NMR one-

dimensional cross-polarization techniques, “(a)-(e),” were used to amplify the carbon 

compounds: (a) Total Carbon Speciation (CP-TOSS) can be used to determine the carbon group 

type, (b) Dipolar De-phasing (CP-DD) can be used to identify “unprotonated” and “mobile” 

carbon segments, such as quaternary carbons and rotating CH3 groups respectively, (c) Chemical 

Shift Anisotropy (CP-CSA) can be used to search specifically for sp3-orbital-hybridized carbons, 

(d) Dipolar De-phasing Difference (CP-DDD) can be used to find explicitly the protonated 
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carbons, and (e) Carbon-Hybridized (CP-CH) can be used to select only sp2-orbital-hybridized 

carbon groups while de-phasing all other groups. 

The SS-NMR experiment was performed on the small fish scale only. The results from 

TGA showed both fish small and medium scales had similar organic thermal decomposition 

rates; therefore the chemical structure does not drastically change with age. The results from the 

one-dimensional SS-NMR spectra, shown in Figure 4.36, provide the biopolymeric composition 

for the small-mineralized fish scales. 

The cross-polarization diagnostic examination of carbon nuclei, within the complex fish 

scale structure, shows strong evidence for carboxyl (COOH) groups within the samples, 

indicating the presence of organic acids. The spectra greater than 150 ppm were truncated due to 

substantial carbon overlapping. However, not shown at 172 ppm, a strong/narrow peak occurs 

which suggests the proteinaceous materials are formed from amino acids. Below 150-ppm 

CP-TOSS spectra resembles collagen. Also seen is a strong absorbance at 24 and16 ppm 

indicating alkyl-bearing (nonpolar) fatty acids.  

The CP-DD pulse spectra cannot efficiently dephase the “mobile” CH3 groups within the 

samples. Yet, peaks at approximately 75 ppm suggest the carbon is associated with the hydroxy-

proline amino acid group. Identical peaks appear as quaternary carbons and sp3 quaternary 

carbons; however, the latter is scaled differently in plots labeled CP-DD. The CP-CH selection 

technique emphasizes absorbance between 40 and 70 ppm, indicating highly substituted 

sp3-hybridized carbons with only one hydrogen atom. The relatively high chemical shift 

(>40 ppm) suggests that the substituents (single and double bonds) are largely oxygen, not 

nitrogen, to carbon. 
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Figure 4.36 SS-NMR 1-D spectra showing the biopolymeric 
composition for the mineralized small fish scale. 
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The widths of the absorbance bands suggest the organic material is relatively non-

crystalline. There are a wide variety of organic molecule types, combination of amino acid 

residues, polysaccharides, and fatty acids. No aromatic compounds were found. However, the 

SS-NMR instrument could not produce a sufficiently higher resonant frequency so uncertainty 

lies whether any aromatic-bearing amino acids are present. Knowing the type of amino acids 

could specify the collagen type. Higher resonance frequencies are needed to better detect the 

presence of aromatic carbons, which usually can be seen at approximately 120 ppm. But because 

the hydroxyl-proline amino acid group could be identified, it is likely Type-I collagen is present 

in the fish scale. 

4.2.7 FTIR Analysis 

The FTIR analysis was used to further investigate the inorganic/organic molecular phase 

compounds. The mechanical behavior for carbonated bioapatites containing mineralized collagen 

fibers is a function of the atomic inter/intra atomic bonds strength for the (Chang, and Tanaka, 

2002). The vibrational frequencies, produced by FTIR, excite the atomic bonds and were used to 

identify/speciate the different phase compounds. Spectral FTIR analysis, also, provided spatially 

resolved information concerning the chemical and structural composition of the fish scale. 

The FTIR spectra for bioapatites are very complex, so researchers mainly focus on the 

phosphate, carbonate, and collagen bands (Grunenwald, Keyser, Sautereau, Crubezy, Ludes, and 

Drouet, 2014). Usually, the spectra from the amide functional groups are used to specify collagen 

types. Supplemental to the phosphate, carbonate, and collagen bands; the vibrational spectra for 

hydrocarbons (CHX) and hydroxide (OH-) compound classes are sometimes measured as well. 

A Nicolet 6700 ™ FT-IR spectrometer interfaced with Continuum FTIR microscope 

equipped with a single bounce Attenuated Total Reflectance (ATR) attachment was used to 
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collect FTIR spectra for the polished fish scale cross-section. The ATR attachment included a 

germanium (Ge) internal reflection element (IRE), and mid-range spectra were collected between 

[750-4000]-cm-1 with 4-cm-1 magnification, and averaging 512 scans. Using the same 

justification provided during the SS-NMR results presentation in Section 4.2.5 on TGA only the 

small fish scale was examined. Spectra was collected on the outer layer and the less dense 

internal layer of the small fish scale, at seven line-scan locations, to determine differences 

between and within the layers. 

The FTIR results, in Figure 4.37, for the small fish scale were compared to published 

research. Previous researchers compared ATR-FTIR spectra for the three reference materials of 

cortical bone, hydroxyapatite, and Type-I collagen (Figueiredo, 2015). The pertinent chemical 

and structural details used for comparison were extracted from the [750-1800]-cm-1 spectral 

range, inside the red dotted rectangular box. The FTIR spectra for the fish scales’ outer 

[Locations 1 through 5] and inner [Locations 6 and 7] layers identify the main functional groups 

present as amide, carboxylic, phosphate and carbonyl. Specifically, a strong absorbance band at 

~1000 cm-1 signifies phosphate (PO4) stretching was occurring in both layers of the fish scale 

spectra. Also, distinctive absorption bands characteristic of carbonate substitution for phosphate 

in apatite were present at ~870, ~1420, and ~1450 cm-1 in both layers. The spectra of inner layer 

of the fish scales showed peaks at ~1660, ~1520, ~1225 cm-1 which denotes amide I, II, and III 

absorption bands common to Type-I collagen. 

When comparing the compounds for fish scale to the three reference materials the ATR-

FTIR spectra most closely resembles as an analogue to either the cortical bone or Type-I collagen 

structures. Generally speaking all spectra beyond 1800 cm-1, for fish scale, were nearly identical 

to cortical bone. Interestingly, the spectra collected in this study, not only differ between the two  
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Figure 4.37 FTIR results for the small fish scale compared to that of cortical 
bone, hydroxyapatite, and Type-I collagen reference materials. 
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layers, but within the individual layers. Limited conclusions can be drawn for the quantity of 

individual compounds within different layers of the fish scale from FTIR data. However, the 

results suggest the carbonate (CO3) present in the two-layers might differ either in chemical 

composition or in concentration that depending on location within the fish scale. Moreover, the 

carbonate phase might either be highly mineralized or amorphous and liable for anion 

substitution at lower degrees of mineralization (Chang, and Tanaka, 2002). 

Also detected in both layers were the amide peaks, which are associated with Type-I 

collagen. The peaks were shown to be much less prominent in the denser outer layer than the 

inner layer. Yet, the spectra at locations 1 and 4 appear different than other spectra in the denser 

layer. The cause for the differences are uncertain but could be attributed to morphology changes 

in the structure. A review of locations 1 and 4, in Figure 4.37, indicated the measurements were 

taken at the layers interface. Shown during the SEM investigation separation at the interface, 

caused by fracture or shrinkage, can occur exposing fibrous collagen. Recall, the FTIR analysis 

was conducted on fully de-hydrated specimens, the hydration dependent collagen rich inner layer 

may have contracted, thus exposing the separated collagen fibers at the layer interface leading to 

the differing spectral measurements. 

4.2.8 μm-XEDS and EMPA 

The μm-XEDS and EMPA were used to identify the lighter periodic elements, by molar 

concentration (M), which could not be measured from Synchrotron X-ray, TGA, SS-NMR, and 

FTIR experiments. First, μm-XEDS data was collected to identify the bulk composition followed 

by EMPA, which was used for spatially correlating elemental distribution. The information 

gathered was used to assist with estimating the stoichiometric composition in the fish scale’s 

structure. Typically, the electron signal for the micro-probe is calibrated to mineral standards. 
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The mineral standards were selected based on the likely compositional elements for 

carbonated bioapatites (Fleet, 2015; Iyengar, 1999). The premise for using known mineral 

standards with EMPA is two-fold (Russ, 1984; Marinenko, 1991; Reed, 1996; Sanchez-Quevedo, 

Nieto-Albano, Garacia, Gomez de Ferraris, and Campos, 1998; and Goldstein, Newbury, Joy, 

Lyman, Etchling, Lifshin, Sawyer, and Michael, 2007). Firstly, the mineral standards are used to 

identify unknown elements for a substance. Secondly, the standards are used to determine if there 

are impurities present in embedded inorganic-organic bound phases, based on electron signal loss 

that may not be straightforwardly measured directly (e.g., carbonates and phosphates). The 

minerals standards used were Albite, Zaby Enstatite, and Chlorapatite. Collectively the mineral 

standards represent known molar concentrations for periodic elements of aluminum (Al), 

calcium (Ca), chlorine (Cl), chromium (Cr), fluorine (F), iron (Fe), potassium (K), magnesium 

(Mg), manganese (Mn), sodium (Na), oxygen (O), phosphorous (P), silicon (Si), and titanium 

(Ti). Notice elements of carbon (C), hydrogen (H), and nitrogen (N) are not represented. The C, 

H, and N elements are essential for maintaining life in organic matter, because of oxidation or 

storage states, accurate measurements tend to be difficult to achieve and not taken. 

The mineral standards discussed above were used to calibrate a JOEL 8600™ 

microprobe, interfaced with Philips EM 420™ TEM, and equipped with an Oxford™ EDS 

detector. To detect the elements in the biomineralized fish scale structure, 15-keV at 40x-

magnification was used. Both the small and medium fish scales were investigated using EMPA. 

Three line scans per polished fish scale cross-section were collected to spatially resolve 

elemental composition. Each location in the line scan had a 20-μm diameter spot size. 

Prior to conducting line scans the entire fish scale’s cross-section was mapped to identify 

any periodic elements that are common for most biomineralized structures. The elemental 
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compositional μm-XEDS maps for the gray-scale backscattered small fish scale image are shown 

in Figure 4.38. The individual elemental maps, for Al, Ca, C, Cl, Mg, N, O, P, Si, Na, Sr, S, and 

Zn, are interpreted as the lighter colors are the highest concentration areas while the darker 

shaded colors being the least concentrated areas for the same color bands. The maps show 

periodic elements of C, N, Si, Sr, S, and Zn were not detectable. However, the trace elements that 

could be detected were Al, Cl, and P. The element of aluminum may be an artifact caused by the 

alumina suspension remnants used during polishing. Higher Cl concentrations are in the less 

dense layer whereas the concentrations for P elements are observed in the densest upper layer. 

The major electron signals of Ca, Mg, Na, and O elements were detected. The highest 

concentrations of Ca and Na were identified in the densest upper layer compared to the highest 

concentrations of Mg and O in the less dense lower layer. 

In addition to mapping the individual elements, EMPA was used to measure the atomic 

percent of molar concentrations. The atomic unit for each element was based on electron 

energies that could be sufficiently measured in the medium fish scale’s cross-section by line 

scans and are shown in Figure 4.39. The combined results from Synchrotron X-ray, TGA, 

SS-NMR, FTIR, μm-XEDS and EMPA indicate the fish scale structure is a carbonated bioapatite 

that contain periodic elements of Al, C, Ca, Cl, Fe, H, Mg, Mn, N, Na, O, P, and Zn. The 

experiments delineated the elements contributing to the fish scales’ structural formation, now the 

overall chemical compound can be estimated. The measured units can be used to determine the 

first approximated stoichiometric relationship for the assumed molecular formulation of 

Ca(10-x)[]x[(PO4)(6–x) (CO3)x](OH)(2–x)[]x (Tonsuaadu, Gross, Pluduma, and Veiderma, 2012; 

Wopenka, and Pasteris, 2005). To allow for equation balancing the carbon oxidation state is fixed 
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Figure 4.38 μm-XEDS elemental distribution maps for 
small fish scale’s cross-section. 
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Figure 4.39 EMPA line scan elemental maps for medium 
fish scale’s cross-section. 

with a 2+ charge. The shortcoming for the assumption is directly determining what atomic units 

are bound to both inorganic and organic phases is not trivial. 

Plotted from the line scans, in Figure 4.39, are calculated mineral formulae for the 

inorganic hydroxyapatite (HAp) reported as atoms per formula unit at the bottom. On the top, in 

red, is plotted a first approximation of the collagen content, which is estimated by subtracting the 
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sum of the inorganic oxides from one hundred percent. Because line scans were able to confirm 

the layer elemental concentrations the structural layers can be identified by layer names as 

defined by previous researchers (Yang, Chen, McKittrick, and Meyers, 2012; Yang, Chen, 

Gludovatz, Zimmermann, Ritchie, and Meyers, 2013a; Yang, Gludovatz, Zimmermann, Bale, 

Ritchie, and Meyers, 2013b). The denser outer layer is known as ganoine while the inner less 

dense layer is bone. The three traverse scans across the scale are each somewhat different. The 

commonalities are: the ganoine is higher in Na, lower in Mg and collagen, and has a lower Ca/P 

ratio than the bone regions. The Ca/P ratio in the ganoine layer range was [1.55 -1.66] while in 

the bone layer [1.55 -1.90]. 

Of the three calculated mineral formulae Ca/P ratio is the most informative. The ratio is 

used to determine the degree of mineralization. In the extracellular matrix the mineralized tissues 

contain phosphorus, which is highly anionic and hence has the ability to bind to calcium. As a 

result, the strength and density for the biomineralized structure depends on the degree of binding 

for calcium in the presence of the phosphorus (Boskey, 1991; Shapiro, Byers, Glorieux, and 

Sponseller, 2014; Fleet, 2015; Chang and Tanaka, 2002; Grunenwald, Keyser, Sautereau, 

Crubezy, Ludes, and Drouet, 2014). The ideal calcium-to-phosphorus ratio for the standard 

geological apatite is 1.67. When Ca/P ratios are less than 1.67, usually the mineralization is 

decreasing whereas for higher ratios mineralization is increasing (Fleet, 2105). In bio-

applications the Ca/P ratio is typically used as a diagnostic parameter to evaluate health of 

vertebrate or determination for biosynthesis stability/compatibility (Boskey, 1991; Shapiro, 

Byers, Glorieux, and Sponseller, 2014; Mucalo, 2015; Fleet, 2015). For the fish scale 

investigation the Ca/P ratio was used to interpret the biomineralization process and identify the 

difficult to measure supplementary carbonate phase. Carbonate ions are found to substitute 
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anions in biological apatites. The carbonates can substitutes ions for OH- (type A carbonate) and 

PO4
3- (type B carbonate), which can possibly be quantified by the Ca/P ratio. 

Focusing on the ITZ that corresponds to just under the ganoine where the structure is 

densest, as shown earlier in Figure 4.21, the HAp and collagen there are highly oriented and 

densely packed. Further away from the ganoine, beyond the transition zone, the estimated 

collagen (Est. Col.) content increases and the overall Ca/P ratio increases. However, as the 

microprobe samples bands of bright intensity, in general, the collagen and Mg content drop while 

the Ca/P and Na increase. 

Remember, until now all experimental evidence has shown the densest layer is in the 

ganoine regions, so why does Bone HAp + Collagen have a higher Ca/P? The following reasons 

are provided: (a) CO3
-2 substitutes for PO4

-3 in HAp. CO3
-2 could be increasing away from the 

Ganoine interface, lowering P, raising Ca/P. The substitution is consistent with other reported 

findings that young HAp has more CO3
-2 than mature HAp (Fleet, Liu, and King, 2004; 

Tonsuaadu, Gross, Pluduma, and Veiderma, 2012; Fleet, 2015; Figueiredo, 2015). (b) The level 

of carbonation is also known to increase with the maturity of the HAp, see TGA result in 

Figure 4.35, so more vacancies in P is expected to occur further away from the (higher 

mineralized) ganoine, with aging vacancies decreases. 

Apatite compounds are often nonstoichiometric due to the presence of vacancies in 

calcium and hydroxide sites. Still unknown are the effects of CO3
-2 and vacancy content on the 

physical/mechanical properties of HAp versus collagen. The presence of carbonation ions can 

clearly influence crystallization processes. The ions may also provide stabilization for the 

collagen embedded inside the apatite crystalline structure. Furthermore, the phosphates are 

related to mineral crystallinity as well. An increase in the mineral crystallinity is indicative of an 
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increase in mineral size and/or decrease in the non-stoichiometric substitutions (Boskey, 1991; 

Fleet, Liu, and King, 2004; Bigi, Cojazzi, Panzavolta, Ripamonti, Roveri, Romanello, Noris 

Suarez, and Moro, 1997; Bahrololoom, Javidi, Javadpour, and Ma, 2009; Grunenwald, Keyser, 

Sautereau, Crubezy, Ludes, and Drouet, 2014; and Figueriredo, 2015). To better understand the 

effects that chemistry has on the fish scale’s crystalline structure and mechanical properties, 

further analysis was conducted at the nanometer length scale using TEM, STEM-HAADF, 

STEM-EELS, and nanoindentation. 

4.3 Investigation of Length Scale [1-1000] nm 

4.3.1 TEM Observations 

To this point the discussion of results, for the current research effort, have illuminated 

pertinent information with respect to the fish scale’s chemical content and structure at both the 

millimeter and micron length scale. However, information is lacking for the description of the 

biomineralized structure at the nanometer length scale. Therefore, TEM will be used to better 

clarify the structural details for the individual biomineralized collagen-HAp units for the 

composite system. 

The fish scales have been shown to be an extremely complex biological system in itself 

with anticipated complexity increasing when exploring the lower nanometer length scale. As a 

result only the medium fish scale’s cross-section was investigated. The thought process for only 

selecting the medium fish scale for exploration was based on the required detailed investigative 

efforts to probe the nanometer scale that are very extensive along with specimen preparation 

being quite rigorous. So the main objective set forth was to use TEM efficiently to examine the 

fish scale, specifically at the nanometer range, to define geometries for subunits of collagen and 

HAp. Contingent to TEM and as continuation of the main objective, STEM based experiments 
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are better suited to identify the assemblages and chemistry for the combined subunits of the 

layered system if there is greater disparity. Ultimately, the medium fish scale is thought to offer 

the greatest disparity because of its size and age, which were used to interpret formation 

processes for the layers when both STEM and TEM experimental results are combined. 

Shown in Figure 4.40 is an electron image produced using the Philips EM 420 ™ TEM 

instrument. The specimen was prepared using the FIB sectioning technique from an osmium 

tetroxide (OsO4) stained fish scales’ cross-section. Staining was used to irradiate the collagen 

(soft tissue) fibers within the biomineralized scale. The image indicates there are three distinctly 

different layers. From top to bottom is the highly-mineralized-densely-packed ganoine, densely 

woven ganoine-bone interface, and loosely woven bone layers. 

 

Figure 4.40 TEM image prepared using FIB sectioning 
technique from an osmium tetroxide stained 

medium fish scale’s cross-section.  

At the finer 5-µm magnification, in Figure 4.41, is a TEM montage image showing the 

ITZ for the ganoine and bone layers. To highlight the stained collagen fibers, the contrast for 

each layer was set independently. The contrasting identifies the packing arrangement for the 

collagen fibers. The darker region, from staining, indicates the highest packing density occurs in 

the ganoine for the collagen. Also from contrasting at 1-µm magnification, in Figure 4.42, there  
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Figure 4.41 TEM montage image showing the ITZ for the ganoine 
and bone layers from a stained medium fish scale’s 

cross-section at the finer 5-µm magnification.  

 

Figure 4.42 TEM montage image showing the collagen packing 
density gradient for a medium fish scale layers from the 

stained cross-section at 1-µm magnification. 
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seems to be a packing density gradient and shows collagen packing decreasing when progressing 

from the highly mineralized ganoine, through the densely woven ITZ, into the loosely woven 

bone layers. Collagen fibers have 67-nm periodicity subunits within the chain and are 

approximately 70-nm in diameter with an unidentifiable total length. Additionally, in 

Figure 4.41, the dark ITZ region inside the yellow dashed box was investigated at a much finer 

magnification. When viewing the ITZ at the 200-nm magnification, Figure 4.43, the collagen 

appears to bridge the interface and penetrate both layers. 

 

Figure 4.43 TEM image showing the highly ordered collagen 
arrangement in the ITZ at the finer 200-mm magnification.  

The collagen arrangement is highly ordered at the ganoine-bone interface. Yet, illustrated 

by Figure 4.44, the collagen arrangement much further into the bone layer seems to be more 

chaotically ordered. Further away from the ganoine, the bone become less dense, more open and  
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Figure 4.44 TEM image showing the chaotic ordered collagen arrangement 
in the bone layer at the finer 200-mm magnification. 

having collagen-HAp composite fibrils that are more twisted. After zooming into the rectangular 

dashed sections there are randomly woven patterns visible. Inside the woven patterns there are 

tubules (cavities) that are lined with amorphous materials. The tubules may be related to cavities 

and canals discussed earlier in Figures 4.14 and 4.17. 
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To better identify the HAp crystals, unstained specimen were cryo-milled from fish 

scales’ cross-section. The scales were cold-treated with a hydrazine inorganic compound. The 

hydrazine treatment was used to chemically remove the collagenous (proteins) bound materials 

(Bigi, Cojazzi, Panzavolta, Ripamonti, Roveri, Romanello, Noris Suarez, and Moro, 1997). 

Before further TEM analysis was performed, FTIR experiments were conducted to verify the 

HAp crystalline atomic structure was not altered. Shown in Figure 4.45, are FTIR spectra 

measured in both the ganoine and bone layers for untreated and hydrazine treated fish scales. 

When comparing untreated to hydrazine-treated ganoine and bone layers for fish scale show, 

there are no appreciable differences in FTIR spectra. Therefore, the hydrazine inorganic 

compound did not affect the HAp crystalline atomic structure. 

The de-collagenized HAp structure has differing crystal sizes. The HAp platelets in 

Figure 4.46 appear to show larger non-uniform sizes are present in the ganoine layer and they 

tend to be ovals with smooth outlines. In the bone layer the platelets have irregular outlines and 

are linked together to form a porous film structure. The primary bone HAp particles have a 

narrower size distribution. The average HAp oval sheets have dimensions that are approximately 

[20-?] × [60 – 200] × 5 nm. The sheets have irregular rolling “cornflake-like” topologies. As 

previously stated, researchers believe the crystalline size/maturity is a function of the degree on 

mineralization, which is controlled by the distribution of carbonate concentration (Fleet, Liu, and 

King, 2004; Fleet, 2015; Mathew, and Takagi, 2001; Grunenwald, Keyser, Sautereau, Crubezy, 

Ludes, and Drouet, 2014; and Figueriredo, 2015). Now that TEM has successfully identified the 

individual subunits for collagen and HAp crystals the combined parts will be investigated using 

STEM techniques. 
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Figure 4.45 FTIR spectra comparing untreated/hydrazine- 
treated ganoine and bone layers for gar fish scale.  
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Figure 4.46 TEM image comparing de-collagenized hydrazine-treated 
HAp crystals in ganoine and bone layers for gar fish scale. 

4.3.2 STEM-HAADF-EELS 

One of the challenges of probing the biomineralized fish scale structure is the ability to 

identify the embedded mineral and fiber compositions at the nanometer scale. Moreover, when 

using TEM the HAp crystals do not readily diffract when combined with the collagen because 

the crystal thickness (5-nm) for the individual crystals are 14 orders of magnitude smaller than 

collagen. Because the subunits for collagen and HAp interfaces are difficult to delineate, the 

combined STEM-HAADF-EELS experimental techniques are helpful at lower nanometer range 

for probing biomineralized chemical composition and structural arrangement for the fish scale. 

Scanning transmission electron microscopy (STEM), when combined with high angle 

annular dark-field can produce images from contrasting intensities that correlate with the mean 

atomic number (Z) for known periodic elements. Typically electron energy-loss spectroscopy 

(EELS) data is simultaneously collected with STEM-HAADF. The addition of EELS allows the 
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investigation of the chemical state and electron density at the nanoscale. The combined 

experiments uses the secondary electron signatures to identify the periodic elements, based on 

their mean atomic number, which provide contrast for structures that have opaque interfaces 

when imaged. 

The current STEM investigation used a FEI CM 300™ FEG equipped with Gatan 200 

EELS™, Oxford™ EDS, and HAADF detectors. The CM 300™ instrument has a 300 keV 

atomic magnification with a field emission gun capable of point-to-point characterization of 

material at the nanoscale (<0.2 nm). The instrument is also equipped with a high current probe 

capable of extremely high-magnification (~1 nm) chemical analyses. 

The STEM-HAADF-EELS study was conducted at the highest magnification. Shown in 

Figure 4.47, is the correlated STEM-HAADF-EELS image of the medium fish scale’s bone layer. 

The bright contrasting intensity means there is high occurrence for mean atomic number. In this 

case the mean atomic number is used to identify HAp are inside collagen and also align along the 

collagen long axis. The gap and overlap banding have very sharp boundaries. HAp crystals run 

vertically, but not exactly parallel with the collagen fibers, and cut through both the GAP and 

OVERLAP bands. On the right are STEM (K and L3,2) Electron Energy-Loss Spectroscopy Maps 

of C, O, P and Ca. Here, the light bands correspond to Ca-rich, C-poor GAP bands, while the 

dark band is C-rich OVERLAP band. The STEM imaging contrast is the opposite of 

conventional TEM images of bone layers. Even though Ca is greater in the GAP band, there are 

immense amounts of Ca in the OVERLAP bands and also lots of C in the GAP band. So Ca is 

not simply limited to the GAP-band of collagen. In fact, the majority of Ca may be in HAp 

platelets that are larger than the GAP or OVERLAP bands. Additionally, the ordering for GAP 

and OVERLAP banding for collagen is unique to Type-I Collagen (Nudelman, Pieterse, George,  
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Figure 4.47 STEM-HAADF-EELS image of the medium 
fish scale’s bone layer. 

Bomans, Friedrich, Brylka, Hilbers, de With, and Sommerdijk, 2010; Jantou-Morris, Horton, and 

McComb, 2010; McNally, Schwarcz, H. P., Botton, and Aresnault, 2012; McNally, Nan, Botton, 

and Schwarcz, 2013). Inferred from the STEM-HAADF-EELS analysis, the calcium 

concentrations are embedded in collagen. The concentration of calcium is not all part of the HAp 

mineral phase, some are contributing to the collagen phase but even more contributes to the 

carbonate phase. 

4.3.3 Nanoindentation Mechanical Analysis 

Thus far Chapter 4 has been dedicated to discussing the hierarchical description of the 

chemical composition and structural assemblage. Nanoindentation experiments were used to 

provide further details of how the biomineralized ganoine and bone layers respond to external 
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loading. Additionally, the experimental measurement was used to interpret how collagen fiber 

and HAp mineral structural phases contribute to the fish scales mechanical strengthening. 

Analysis of nano-indentation experiments assumes the measured response is that of a 

linear homogenous or near homogenous material system (Constantinides, Ravi Chandran, Ulm, 

and Van Vliet, 2006). The assumption permits interpretation of physical measurement using 

classical continuum mechanics based on elasticity, plasticity, and/or viscoelasticity, all three of 

which assume material parameters do not depend on specimen size (Ostojic and McPherson, 

1987). For heterogeneous materials this assumption breaks down, especially when the material is 

composed of discrete components that are large compared to the size of the probe. For example, 

most materials exhibit size-dependent phenomena in the length scale range of 1–10 nm due to 

surface energy effects that become increasingly appreciable due to the large surface-to-volume 

ratios available at the nanoscale (Maranganti, and Sharma, 2007). The practical application of 

classical continuum mechanics assumes the length scale over which deformation varies is much 

larger than the discrete size of the particles. Further, the assumption of size-invariant properties 

for discrete and heterogeneous systems breaks down when the experiments are analyzed using 

the equations for homogeneous material in conjunction with averaged material parameters 

(Brandstatter, 1963; Pethica, and Oliver, 1989). Properties so determined depend on specimen 

size unless there is a large separation between specimen size and the size of material 

components. Moreover, such materials display scale dependent features such as wave dispersion, 

force chains, and finite sizes of shear bands and fractures whereas continuum mechanics tells us 

wave velocities should be independent of wave length and force chains, shear bands, and 

fractures should have zero size. Accordingly, the governing equations for homogenized discrete 

and heterogeneous systems must be based on non-local stress-strain relationships, which impart a 
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characteristic scale not available using the locality assumption of classical continuum mechanics. 

Such relationships are essential for proper modeling of material damage and softening. However, 

the relationships have yet to be sufficiently developed by the community of practice. 

Biological materials cannot be considered homogenous due to their hierarchical structure. 

The key issue is the difference (or scale separation) between the discrete components and domain 

size. Here the discrete components are minerals and fibers with separation of length scale for the 

domain being attributed to the much larger radius of curvature for the indenter probe used to 

conduct the indentation experiment (Rettler, Hoeppener, Sigusch, and Schubert, 2013). Since the 

minerals and fibers are much smaller than the probe size, further considerations are needed when 

interpreting the mechanical response from nanoindentation measurements. Specifically, for 

biomineralized composite materials that have bound compliant soft (fibers) fixed inside rigid 

(mineral) nano phases, capturing the energy dissipative response is difficult. Therefore, it is 

important to understand the suitability of experimental techniques used to capture the discrete 

elastic and viscous properties for highly heterogeneous material systems. For the fish scale, the 

instrumented nanoindentation (INI) techniques were selected as the most appropriate technique 

that could best capture the effects of the hierarchical structure. 

The primary advantages of the INI technique are the ability to characterize small volumes 

of material and measure properties with high spatial resolution. However, characterizing small 

volumes of materials creates a conflict when attempting to capture the heterogeneity attributes 

for the fish scale. That is, to get meaningful properties, we need to average over some 

representative volume, but doing so masks the mechanical property attributes gained from the 

local material variation. The viscoelastic properties are of critical importance in the fish scales’ 

structure because they can describe how the bone layer stores energy (storage modulus), like a 
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spring, and how the internal network of collagen fibers uses friction to convert mechanical 

energy into heat (loss modulus)–the energy that is lost/dissipated through heat generation. 

The (INI) experiments were carried out using strain-rate-displacement controlled, 

dynamic indention measurements. Strain-rate controlled, dynamic indention measurements are 

sensitive to small deformations (less than one-micron). To correctly capture the small 

deformations, a two-step process was carried out during the experiment for the small and 

medium dehydrated fish scales. During polishing, the specimen’s surface is typically and 

unavoidably work hardened. The work-hardened layer is roughly one third to one-half the size of 

the particle size used for polishing. As a result, the measured elastic modulus could reflect the 

value of the work hardened layer, or the underlying substrate or some combination thereof thus 

giving a false reading. Moreover, the false reading can give a false sense of layering. So the first 

step for conducting INI experiments is to determine what is the minimum displacement needed 

to penetrate the work hardened polished surface. 

The experiments were conducted using a Nanomechanics iNano™ nanoindenter with the 

setup parameters listed in Table 4.1. A Berkovich grid indented array was used to map the fish 

scales’ cross-section, Figure 4.48. The converged penetration depth determined in Step 1 was 

extracted from the elastic modulus-penetration depth and hardness-penetration depth plots for the 

small and medium scales, in Figures 4.49 and 4.50, respectively. The mechanical properties show 

excellent convergence in the ganoine and bone regions by 300 nm of surface penetration. 

Next, for Step 2 the data for mechanical properties in each experiment were analyzed 

over the penetration range from [500 - 800] nm and used spatially resolved line plots and surface 

maps to report the measured mechanical properties. Using the dynamic indentation technique 

allowed for the continuous acquisition of hardness and elastic modulus as the tip penetrated  
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Table 4.1 Nanoindentation setup parameters for determining minimum 
penetration depth, modulus, and hardness. 

Input Parameter Value 

Tip Geometry (Angle/Curvature) Berkovich (142.3°/~150 nm) 

Tip Material Type Diamond 

Indentation Strain Rate  0.2 s-1 

Maximum Indention Depth, (DMax) 1-μm 

Spacing Between Indents, 10x(DMax) 10-μm 

Poisson’s Ratio, (ν) 0.35 

Penetration Range for Averaging Results [500-800]-μm 

 

 

Figure 4.48 Berkovich indented array for mapping 
the fish scales the cross-section. 
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Figure 4.49 Nanoindentation elastic modulus-penetration depth 
and hardness-penetration depth plots for the 

small dehydrated fish scale. 
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Figure 4.50 Nanoindentation elastic modulus-penetration depth 
and hardness-penetration depth plots for the 

medium dehydrated fish scale. 

through the surface of the sample. An array totaling 1680 and 3600 indents with a 10-μm spacing 

between indents were used to map the small and medium fish scale’s cross-sections, respectively. 

Shown in Figures 4.51 and 4.52, are the measured elastic moduli and hardness for both the small 

and medium scales. Also, illustrated in Figures 4.51 and 4.52, are snapshots showing how the 

mechanical properties transitions across the ganoine-bone interface. 
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Figure 4.51 Nanoindentation elastic modulus for dehydrated 
small and medium fish scale. 
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Figure 4.52 Nanoindentation hardness for dehydrated 
small and medium fish scale. 
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Both elastic moduli and hardness have property gradients occurring through the ITZ from 

[0.11 – 0.25] and [0.02 – 0.23] normalized distances, with respect to layer thickness, for the 

small and medium fish scales, separately. In the outset of each line plot, the median properties 

for small and medium scales are shown using blue diamonds and red circles, respectively. Each 

data point represents the average measured mechanical property positioned equidistant from the 

interface. The corresponding colored dashed line represented by two standard deviations (2σ) 

show the upper and lower bound for the orthogonal property grading. Meaning the upper and 

lower lines are respectively twice the standard deviations from the mean making the zone 

between four standard deviations. The surface plots better show three-dimensional variation for 

the local maxima and minima results. 

In the line plots elastic modulus in the ganoine layer for the medium scale shows a 

continuous decrease as the interface is approached with the maximum measured elastic modulus 

occurring at the outer edge of the ganoine layer. Whereas, the small scale shows an increase in 

elastic modulus as the interface is approached, with the maximum elastic modulus in the bone 

layer occurring at the interface. The hardness shows the same trend as compared to the elastic 

modulus for both fish scale sizes. 

Noticeably the ganoine layer has elastic moduli ranging from [60-66] GPa in the small 

scale compared to [98-80] GPa in the medium scale; while both scales’ bone layer have an 

average elastic modulus of 18 GPa. Similarly, the ganoine layer have hardness values ranging 

from [3.0-3.4] GPa in the small scale compared to [3.6-4.0] GPa in the medium scale; while both 

scales’ bone layer have an average elastic modulus of 0.5 GPa. For comparison purposes, shown 

in Chapter 1 by Figure 1.3, the elastic modulus for the fish scale’s ganoine layer closely resemble 

human tooth enamel while the bone layer has comparable modulus as human bone. As a 
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reminder, the tooth has a fixed 2-layer structure with harder outer protective enamel layer 

covering a less dense softer dentin layer. While the bone has a more woven medium compact 

structure containing osteon gap zones that are used for constant bone remolding throughout life. 

Continuing with the indentation analysis both fish scale sizes have comparable slopes 

occurring in the ITZ with average elastic modulus changing from [60-18] GPa in the small scale 

compared to [80-16] GPa. However, the average hardness shows much less change ranging from 

[3.4-0.5] GPa in the small scale compared to [3.6-0.5] GPa. Even more interesting, both the 

medium and small scales show similar mechanical properties in the bone layer over the same 

distance from the interface, suggesting that size and age of the scale does not influence the size 

of the transition zone in the bone layer. Yet in the ganoine layer an increase in the elastic 

modulus is observed for the medium scale with an additional steady increase in elastic modulus 

as the outer edge of the scale is approached. The overall findings, from modulus and hardness, 

indicate the fish scale grows from the bone-ganoine interface as the fish grows and the scale 

becomes more mineralized and denser/stronger in the ganoine layer while the bone layer 

maintains a consistent lower modulus and hardness. 

Recall, from the analytical chemical speciation and structural characterization the bone 

layer is much less compact, than at the interface and ganoine layers, leading to the much lower 

elastic modulus and hardness. In addition, the bone layer has a collagen rich, chaotic, randomly 

ordered structure. To better capture the heterogeneity effects collagen has on viscoelastic 

response in the ganoine and bone layer, dynamic mechanical measures were also taken during 

the INI experiments for elastic modulus and hardness. The current study used the phase lag 

(tan Φ), determined using dynamic mechanical analysis (DMA), to map the viscoelastic response 
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for the corresponding indenter locations for both the small and medium fish scales in 

Figures 4.51 and 4.52. 

To note the calculated values of E’ and E” can be affected by the uncertainties in 

accuracy for the measured the contact area, especially at lower indentation depth where full 

contact may not have been established. However, the Berkovich indenter tips usually maintain 

full contact for at least the “unhydrated case” allowing for an accurately determined contact area 

(Sneddon, 1965; Rho, Zioupos, Currey, and Pharr, 2002; Swadener, George, and Pharr, 2002; 

Bei, George, Hay, and Pharr, 2005; Fischer-Cripps, 2006; Pharr, Strader, and Oliver, 2009; Pharr, 

Herbert, and Gao, 2010; and Randall, Vandamme, and Ulm, 2011). Thus the dynamic INI 

experimental technique is ideally suited for measuring the viscoelastic effect of the indented 

materials at shallow depths (Oliver, and Pharr, 1992; Hay and Pharr, 2000; VanLandingham, 

2003; Oliver, and Pharr, 2004; Golovin, 2008; Pharr, Strader, and Oliver, 2009; Hay, 2009; Ryou, 

Romberg, Pashley, Tay, and Arola, 2012; and Sun, Ling, Wang, Chen, Zhang, Tong, and Wang, 

2014). 

Viscoelastic materials are commonly characterized by their E’ and E” moduli where the 

former represents the stored energy or the elastic response, and the latter corresponds to the 

amount of energy dissipated or the viscous response, as well as their ratio – the loss tangent is 

calculated as the ratio of loss to storage. During the dynamic INI experiment as the indenter tip 

penetrates the specimen, illustrated in Figure 4.53, a harmonic force oscillation is applied to the 

tip, which generates an oscillatory harmonic displacement response at the same frequency of 

force application. A phase locked harmonic oscillating force is applied to measure the frequency 

specific harmonic displacement response, and determine the phase angle (Φ)—also termed the 

phase lag—between the two harmonic signals, Figure 4.54. The phase locked harmonic  
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Figure 4.53 Illustration of indenter tip penetrating 
a specimen (Pharr and Strader, 2009). 

 

Figure 4.54 Phase lag (tan Φ) determined from storage and loss modulus 
for viscoelastic behaving materials (Hay and Crawford, 2011). 
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oscillation allows the harmonic displacement to be in phase with the applied harmonic force 

causing an instantaneous displacement response due to the external force application. As 

damping is introduced into the sample, through the viscoelastic collagen fibers, the displacement 

response starts to lag behind the force application. The lag is measured through the phase angle 

separation between the harmonic force application and the frequency specific displacement 

response. To isolate the response of the sample, the instrument is modeled as a force, damped 

oscillator with a modified Voigt model to capture the viscoelastic behavior (Wright, Maloney, 

and Nix, 2007; Herbert, Oliver, and Pharr, 2008; Jager, and Lackner, 2008; and Hay and 

Crawford, 2011). 

The schematic viscoelastic model used when conducting the INI experiment is a modified 

Voigt solid model, having a spring in series with a spring and dashpot that are in parallel and 

connected in parallel with a simple spring with an adjacent parallel dashpot, illustrated by 

Figure 4.55 (Golovin, 2008). Where in the Voigt model denoting the mass (m), contact stiffness 

(S), contact damping, (DS), machine damping (Dm), finite stiffness (kf), and spring stiffness (ks), 

as shown in Wright, Maloney, and Nix (2007). The models’ configuration allows for 

determination of the energy dissipative behavior for differing storage and loss modulus 

relaxation times as a function of tan(ϕ). 

Assuming (1) the instrument can be modeled as a forced, damped oscillator that is limited 

to one-degree of freedom, (2) the contact measurements must be made in the linear viscoelastic 

regime of the sample, and (3) measurements are only performed under conditions of steady-state 

harmonic motion linear viscoelastic behavior, then the phase lag (tan Φ) for the sinusoidal  
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Figure 4.55 Illustration of modified Voigt 
model used for dynamic instrumented 

indentation analysis (Wright, 
Maloney, and Nix, 2007). 

phases, show in Figure 4.54, can be computed from the data using the following the calculations 

(Herbert, Oliver, and Pharr, 2008): 

ܵ ൌ
଴ܨ
݄଴
	cos߮						ሺ1ሻ, 

߱ܥ ൌ
଴ܨ
݄଴
	sin߮												ሺ2ሻ, and	 

ఠܥ
ܵ
ൌ tan߮											ሺ3ሻ, 

where F0 is the harmonic force amplitude, h0 is the harmonic displacement amplitude, and ϕ is 

the phase angle between the two harmonic signals. To isolate the response of the sample, the 

instrument is modeled as a force, damped oscillator. 
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To better elucidate the instantaneous dampening response in the dynamic INI experiment, 

a single frequency in the lower quasi-static frequency range of 5-Hz was used as opposed to 

traditionally conducting a full frequency sweep for DMA. Although, the biomineralized fish 

scale has complex highly heterogeneous structure conducting the INI-DMA experiment at a 

single frequency is sufficient and a novel approach to use the measured tan ϕ parameter to show 

energy dissipative response. Shown in Figure 4.56, is the calculated phase angle both the small 

and medium scales. 

 

 

Figure 4.56 Nanoindentation phase angle, tan (ϕ), for storage and 
loss modulus for small and medium dehydrated fish scale. 
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Like, the previously measured mechanical properties, the phase angle gradients are 

occurring through the ITZ from [0.20 to 0.40] and [0.10 to 0.40] normalized distances, with 

respect to layer thickness, for the small and medium fish scales, separately. In the outset of each 

line plot, the median properties for small and medium scales are shown using blue diamonds and 

red circles, comparatively. Each data point represents the average calculated. The corresponding 

colored dashed lines represented by two standard deviations (2σ) show the upper and lower 

bound for the orthogonal phase angle parameter grading. Meaning the upper and lower lines are 

respectively twice the standard deviations from the mean making the zone between four standard 

deviations. The (tan Φ) value is interpreted as the higher the value the more energy dissipative at 

the local indention site and vice versa. The surface plots better show three-dimensional variation 

for the local maxima and minima results. 

The line plots in the ganoine layer for the medium scale shows a near constant but much 

lower (tan Φ) away from the interface; whereas, the small-scale plots show lower (tan Φ) that 

have large variations in the ganoine layer when crossing the interface. Shown in the surface 

plots, for the bone layer the average phase angle is comparable for both scale sizes with the 

difference being the medium scale has a wider variation nearer to the interface. Distinctively the 

ganoine layer has a phase angle ranging from [0.75-3.5+]° in the small scale compared to [0.75-

0.80]° in the medium scale. But in the bone layer the small and medium scales consistently have 

much higher phase angles with ranges of [2.30-2.40]° and [2.25-2.50]°, comparably. 

The medium fish scale has a sharp slope occurring in the ITZ with average phase angle 

changing from [0.75-2.00]° unlike the small fish scale which has more of a gradual slope with 

the same phase angle values. The phase angles for the medium and small scales show an 

interesting trend in the bone layer over the same distance from the interface. The trend tends to 
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show as the fish scale grows; the bone layer for the medium scale becomes more energy 

dissipative with a higher variation than the small scale in the bone layer. Unlike in the ganoine 

layer for the medium scale there is much lower energy dissipative behavior observed with the 

minimal variation. For the small scale in the ganoine layer the dampening behavior is fairly 

inconsistent and changing. The trends also suggest the ITZ is the key and heavily influences the 

maturation of the layers. With aging the ganoine layer becomes more mineralized, shown by the 

sharper phase angle gradient thus being denser/stiffer whereas the bone layer becomes more 

porous/compliant. There is much greater variation in the energy dissipative behavior than 

suggested by the measured elastic and hardness properties, suggesting the material in the ITZ is 

not as discrete as the measured mechanical properties might indicate. This difference is marked 

by an increased energy response occurring on the bone side immediately adjacent to the 

interface. Evidently the difference grows with age. Thus, the geometrically connected saw tooth 

structured interface, combined with the additional energy dissipative/damping effect, might 

minimize stress localization and delamination in the ITZ. When the layers are combined, the 

outer ganoine layer achieves high strength and is possibly used as a protective layer whereas the 

interior layer achieves high toughness, a combination that produces an advanced high 

performance composite material provided delamination is resisted. Understanding delamination 

resistance allows the development of better composites. 

While there remains a level of uncertainty for identifying all contributors to the energy 

dissipative/damping behavior in the fish scale, the phase angle results indicate the loosest 

compact biomineralized region in the fish scale exhibits much higher energy dissipative 

potential. The higher dampening behavior is unique to the bone layer and is more than likely 

attributed to the loosely packed chaotically ordered collagen fibers. The loosely packed bone 
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layer identified throughout the hierarchal chemical/structural analysis appears to mostly use 

collagen fiber bundles to introduce anisotropic reinforcement at the nanoscale. The nanoscale 

collagen fiber reinforcement seems to dampen/dissipate energy at the largest length scale for the 

composite when loaded externally. 

4.4 Summary of Findings 

A systematic detailed approach was used to identify controlling mechanisms by 

discovering the scale-dependent fish scale structure that governs its mechanical response as a 

function of chemical composition and hierarchal structural arrangement. The fish scale was 

found to be a robust advanced composite, having a simple elemental composition. Subtle 

differences in chemical processes appear to form the fish scale’s layered structure while using 

elements that remain relatively uniform throughout the scale. Within the fish scales the structural 

hierarchy takes on several morphological arrangements that are not obvious from individual 

microscopy techniques (Optical, HR-SEM, or TEM) when used alone. Innovative experimental 

and data analysis techniques were employed for interpreting the relationship between these 

chemically based differences with differences in mechanical response. A novel application of 

nano-scale engineering measurements was used to isolate and better understand the extremely 

complex contributions for the assembled structural components and their subunits. For better 

clarity the scientific and engineering results presented in Chapter 4 will be discussed in greater 

detail in Chapter 5. Also addressed in Chapter 5 are the specific questions raised by the 

hypothesis, insight provided for the biological design principles, and suggested methodologies 

for developing bioinspired engineered composite designs that exhibit advanced high-

performance. 
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CHAPTER 5:  DISCUSSION 

 

The results discussed in Chapter 4 provided sufficient evidence to test the hypothesis (H). 

The hypothesis (H) stated was the fish scales are effective in resisting cracks, dissipating energy, 

and transferring loads across interfaces because of the grading of the composite layer properties. 

The hypothesis is found to be consistent with the data and from the comprehensive experimental 

investigation the results verified the following: (a) interfaces exist and (b) the layers are graded. 

The test of, H, there is a significant difference in the material above, below, or between layers 

and the difference in material arrangement is the reason for the fish scale’s attributes. To further 

expand on how the results were used to test and prove the hypothesis to be true a discussion 

addressing the overall research objective is provided for the remainder of Chapter 5.  

The overall objective was to use experimentation to provide insight on what are the 

inherent chemical, structural, and mechanical attributes of bio-engineered fish scale composites 

found in the alligator gar’s exoskeleton. Experiments were used to determine (a) how is the 

natural composite system assembled, (b) how do the layer thickness and the functionalized 

gradient properties interact to achieve high toughness, (c) what are the design principles of 

natural armor systems, and (d) how can these design principles be applied to the design of man-

made engineered composite systems. The pertinent information gathered helped provide the 

necessary details to allow an adequate assessment of the biomineralized fish scale attributes as a 

superior performing advanced composite.  
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5.1 Discussion 

5.1.1 Natural Composite System Assembly  

The fish scale’s composite system is assembled using periodic elements most often found 

in nature. The fish scale uses eight elements to develop, maintain, and evolve its structure. The 

elements of carbon, phosphorus, oxygen, nitrogen, and hydrogen are used to form the amide, 

phosphate, and carbonate chemical groups. The carbonate compound controls the degree of 

mineralization by substituting with magnesium and sodium. Finally, calcium is the primary 

element used to mineralize the bio-structure.  

The fish scale was observed to use at least 3-levels of length scale hierarchy to form its 

structure. The biomineralized composite uses the chemical groups to form the two structural sub-

units of bioapatite (B-Ap crystals) and Type I-Collagen (fibrils) phases at the nanoscale. 

Although the geometric dimensions of the collagen are 14-order of magnitudes larger than the 

bioapatite crystals, by volume the crystals occupy at least 90-percent of the fish scale’s space. 

Furthermore, at the nanoscale, the collagen and B-Ap crystals are not attached by their surfaces. 

Rather the crystal subunits are embedded, at sharp angles, along the collagen fiber strands length.  

At the micron level the collagen bundles + B-Ap crystals (C/B-Ap) form a distinctive 

two-layered system that is connected by what is described as sawtooth geometrically structured 

interface. The outermost layer for the fish scale is called ganoine while the inner layer called 

bone. The ganoine layer does not provide full coverage over the bone layer. Additionally, as the 

layers grow the ratio of their thicknesses remain relatively constant. As an aside, the current 

research effort has provided never before shown proof that collagen does not tend to appear as 

ridged/stiff rods at any length scale as reported by many previous researchers (Bruet, Song, 

Boyce, and Ortiz, 2008a; Bruet, 2008b; Chen, Lin, Yang, Lopez, Li, Olevsky, and Meyers, 2011; 



 

 
146 

Allison, et al. 2013; Yang, Gludovatz, Zimmermann, Bale, Ritchie, and Meyers, 2013b; and Han, 

Wang, Song, Boyce, and Ortiz, 2011). In fact collagen fibers were shown to possess degrees of 

freedom that allow for bending, stretching, and twisting and therefore cannot be appropriately 

described as having a rigid needle structure. What has been interpreted as the needle-like 

collagen strands are actually the hidden fine nanometer cornflake-structured B-Ap crystals 

passing through the banded collagen bundles. As a result, when conducting morphological 

studies using HR-SEM at the micron scale, the magnification is too coarse and the results are 

easily misinterpreted. However, at the nanometer length scale, with the use of TEM and STEM-

HAADF-EELS, the true morphology was uncovered.  

Finally, at the millimeter length scale the fish scales have long and short axis. The scale’s 

shape appears to have subtle curvature around its perimeter that converges at the vertices to form 

sharp points similar to arrowheads. The layer thickness seems to lead to its overall shape. Also, 

the curved perimeter of the scales is thinner on the edge and overlap when connected to other 

scales.  

5.1.2 Functionalized Gradient Properties  

Overall the fish scale structure uses the same limited mineralogical constituents 

throughout the structure. The mineralogical constituents are used to form the two structural sub-

units of bioapatite (B-Ap crystals) and Type I-Collagen (fibrils) in the two-layered structure. 

Independently the collagen fibers and hydroxyapatite minerals phases are weak. However, the 

ganoine and bone layers uniquely use the subunits, along with the controlling the collagen fibers 

and hydroxyapatite volume fractions, combined with optimizing morphological arrangements 

materials within in its structural hierarchy to functionally grade the properties. Additionally, the 

geometrically connected saw tooth structured interface, combined with the additional viscous 
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damping effect, might minimize stress localization and delamination in the ITZ. When the layers 

are combined, the outer much thinner ganoine layer achieves high strength and is possibly used 

as a protective layer whereas the interior’s much thicker layer achieves high toughness, a 

combination that produces an advanced high performance composite material provided 

delamination is resisted and the system is fully hydrated. The fish scale structure has the likeness 

of a steel plate attached to a bed of springs with varying spring stiffnesses. 

5.1.3 Design Principles of Natural Armor Systems  

This investigation has made new discoveries of mechanisms that can inherently describe 

the attributes that govern the fish scale hierarchy mechanical response as a function of chemical 

composition and structural arrangement. The design principles of natural armor system are as 

follows:  

(a) The structure of the biomineralized fish scale composite has both short and long 

range order. The ganoine layer is highly ordered. Densely compact the layer contains an 

abundance of B-Ap minerals and very little collagen fibrous material leading to the layer’s high 

strength. This ordered structure is in contrast with the bone layer, which is chaotically ordered, 

loosely compact, and containing an abundance of collagen with similar volumes of B-Ap 

minerals, leading to the layers with high toughness.  

(b) The structure grows from the ganoine-bone curved saw-tooth geometrically 

structured interface outwards. The ganoine-bone interface is the oldest of the layers, therefore 

has shown to be the densest region in the fish scale structure. Because of geometrically 

mechanical interlocking and similar material densities, a less discrete (graded) interface exists 

which might provide durability and delamination resistance.  



 

 
148 

(c) The fish scale structure uses the same limited mineralogical constituents throughout 

the structure. Since the fish scale uses limited constituents, the selected materials tend to be 

indigenous and are routinely abundant in nature. Consequently, the same limited mineralogical 

constituents allow for chemical, structural compatibility, and may evolve when queued by 

external stressors. 

(d) The fish scale creatively uses the minimal components of collagen fibers and 

bioapatite minerals materials to efficiently optimize the structural composite. Remember the fish 

scale’s structure is efficiently produced at ambient conditions using minimal material types. 

Nature focuses mainly on making use of the structural hierarchy to optimize the geometric 

arrangement, the volume fractions, and grading of properties for the components during the 

growth processes. The resulting structure ultimately dictates the mechanical response at the 

system level.  

As a result of the aforementioned design principles for the natural armor fish scale 

system, a high-performance advanced composite structure is formed. The simple two phases are 

used to form a very robust complex hierarchal functionally property-graded composite structure. 

The exoskeleton fish scale is very attractive to the design community because layered composite 

possesses the attributes of being lightweight, high-strength, high-stiffness, and energy absorbent/ 

dissipative. In addition the fish scale appears to be delamination resistant when fully hydrated. 

5.1.4 Application of Bio-Inspired Design for Designing Man-made Engineered Composite 
Systems 

Shown in Figure 5.1, is the illustration I develop for an effective application of the 

biological design principles to design man-made engineered composites is made possible by the 

evolving additive manufacturing technology, in concert with a computational test bed for 

optimizing material properties for the structural design.  
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Figure 5.1 Illustration of how research findings can make use of modeling and rapid 
prototyping methods to better understand mechanisms that 

transfers stress across interfaces. 

The results in Chapter 4 showed the fish scale is highly detailed due to the complex 

biological formation processes at the lower nanometer range. Because the formation processes 

are not well understood attempting to incorporate the intricate details from the nano to millimeter 

length scale in manufacturing is not feasible at present. However, building the layered system, 

observed at the micron scale, with the structured interface, which included property grading, is 

an ideal controllable approach when employing additive manufacturing technologies. 

Additive manufacturing technologies such as three-dimensional (3-D) printing allows the 

flexibility to “control the manufacturing process” down to tens of microns. Another advantage 
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of 3-D printer bench scale designs can be rapidly prototyped in less than one day unlike 

subtractive (traditional) manufacturing process that require retooling and resetting dyes each 

time designs are changed. Also worth mentioning is laminated composite, the current industry 

standard, are design/manufactured to at best to include orthotropic reinforcement. The current 

3-D printing technologies also accommodate the use of a variety of multiple materials (e.g., 

polymers and plastics) that have variance in mechanical properties, allowing for the design/ 

manufacturing anisotropic strengthened composites beyond simple composite designs. 

Specifically, 3-D printing could be used as means to manufacture a scaled up geometric 

model for the fish scale, using the principles of similitude and dimensional analysis, to isolate 

and study the role the layer thickness and structured interface plays in transferring load across 

the layers for a single material type. Also, by using a computational test bed, the structural design 

can first be optimized for the irregular geometry.  

As a first approximation of the averaged mechanical properties using finite element 

modeling may be sufficient when optimizing single material type in a one-controllable structural 

parameter design. However, finite element modeling (FEM) is not adequate to discern the four 

attributes of functionally graded properties found in the fish scale: varied multilayered thickness, 

anisotropic reinforcement structures, heterogeneous material system and a structured saw-tooth 

interface. Each attribute is a discrete feature having its own length scale and to some extent 

interacts in an imbricated structure that is difficult to capture in an averaged representative 

volume as required by a continuum approach such as FEM. A more appropriate modeling 

technique for optimizing the multi-structural parameters, using the computational test bed, is the 

discrete element method (DEM) to ascertain the relevance of each structural parameter 

describing fish scale.  
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As discussed in Chapter 4 in the nanoindentation results Section 4.3.3, the local variation 

of properties are often masked with averaging techniques derived from continuum mechanics, 

which are primarily used to determine constitutive relationships for the global stress and strains 

in FEM. Although DEM uses similar phenomenological relationships to define interactions, the 

method is based on discrete systems rather than discrete approximations to continuous partial 

differential equations. In DEM, as in the actual material, incompatible degrees of freedom acting 

at multiple scales can interact, whereby it is possible to analyze particle-scale deformation, 

stress, rotations and couples that develop within locally grouped particle. Additionally, DEM can 

be used to identify the internal connectivity of the systems using coordination number to 

determine where force chains are likely to occur before shear banding percolates to the surface as 

an observable defect. Therefore the discreteness of DEM allows for a thorough sensitivity 

analysis to determine which discrete combinations of structural design parameters have the most 

effect over the mechanical response.  

The optimization process using DEM and 3-D printing as complimentary tools can be 

further used to reduce the composite’s weight while maintaining the same strength-to-weight 

ratio. The materials can be varied in 3-D printing to match the microstructures designed using 

DEM. The caveat is the materials used should be chemically compatible to minimize the 

debonding.  

Additionally, civil engineers are interested in incorporating multifunctional materials. 

During the manufacturing process electronic materials could be used in 3-D printing of the 

structure. For instance biopolymers, carbon nanotubes, or graphene sheets could be used in the 

design as a self-sensing material and used as a means to self-report undesired detrimental 

deterioration cause by the environment or external loading conditions. 
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5.2 Summary of Discussion 

The research findings support the hypothesis that the favorable mechanical properties of 

fish scale is enabled by graded layer structures existing over a range of length scales. The 

biomineralized fish scale composite is complex and hierarchically structured. Nature does not 

design structures rather it designs for functionality using whatever materials are indigenous to 

the geographical location. In the fish scale, nature appears to have focused on optimizing the 

geometry of the structure to serve some unknown function. From a design perspective, nature 

created a composite structure that seems to be resilient and can evolve on as needed basis, to 

tailor its structure to obtain the most favorable mechanical attributes. There are only two 

individual structural components that are used in the biological composite.  

The lessons learned from the current investigation are thought to be transferable to other 

biomineralized composites and also valid for the bioinspired design of man-made engineered 

composites. Furthermore, the bioinspired design space can make use of the emerging 3-D 

printing additive manufacturing technologies along with using computational test bed with DEM 

modeling as a proving ground to optimize both the structure and materials. The future is also 

promising for adding multifunctionality by adding electronic materials to the design space for 

self-monitoring and self-reporting on structural health. In the next chapter, Chapter 6, the major 

conclusions discovered and innovation that has been produced from this compressive research 

effort will be explained. 
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CHAPTER 6:  SUMMARY/CONCLUSIONS/FUTURE WORK 

 

6.1 Summary 

The focus of this study was to learn how nature integrates hard and soft materials at each 

length scale to form a layered composite that is lightweight, has high-strength with good fracture 

toughness but does not delaminate. Previous research conducted by others had suggested that 

from the nano-to-millimeter length scale the individual components of the fish scale are glued 

rather than being integrated to form layers in the composite. My research provided a detailed 

description, using novel experiments, to explain how hard and soft materials are mixed and 

integrated at each length to form a layered structure. In addition, my research provided details on 

how the hard and soft materials have been optimized by volume fractions, spatial proximity, and 

directional placement within the layers. Furthermore, the material variations were compared to 

mechanical properties of modulus, hardness, and, for the first time, energy dissipation was used 

to explain why fish scale has high strength, good toughness, and may not delaminate. 

6.2 Contributions/Conclusions 

The research contributions from my work for the first time provided from experimental 

measurements the following conclusions of how the fish scale has high-strength, good toughness, 

and may be delamination resistant when individual hard (inorganic minerals) and soft (polymer-

like organic collagen fibers) materials are used:  

(a) The combination of hard (inorganic minerals) and soft (polymer-like organic 

collagen fibers) materials are integrated instead of being glued at nano length scale. At the 

micron scale for the two-layered composite materials, the outer dental enamel (hard) layered 

interface uses a saw tooth geometrical shaped joint to connect to the inner bone (hard open-like 
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foam) layer. At the millimeter scale the material and mechanical properties are gradually graded 

through the thickness, away from the enamel-bone saw tooth connected interface, for 

approximately 150 microns into each individual layer.  

(b) Within each layer, at the micron scale, there are subtle variations in the spatial 

proximity, and directional placement of the hard and soft materials. However, the outer enamel 

(hard) layer has 90 percent hard (inorganic minerals), 10 percent soft (polymer-like organic 

collagen fibers) by volume and the materials in the layer are densely packed. Whereas, the inner 

bone (hard open-like foam) layer contains 60 percent hard (inorganic minerals) and 40 percent 

soft (polymer-like organic collagen fibers) by volume, and materials in the layer are loosely 

packed. 

(c) My research developed a new experimental technique that was used to map the 

local viscoelastic (energy dissipative) response, attributed to the mixing/integrating of hard 

(inorganic minerals) and soft (polymer-like organic collagen fibers) volume fractions, within the 

layers at the nano length scale. The instrumented nanoindentation-dynamic mechanical analysis 

experimental method was modified and was used to show variation due to change in material 

volume fractions and local placement of materials within the layers. For the outer enamel (hard) 

layer there was minimal variation of the local viscoelastic property and there was minimal 

viscoelastic contribution provided by the soft (polymer-like organic collagen fibers) within the 

layer. For the inner bone (hard open-like foam) layer there was major variation of the local 

viscoelastic property and there was major viscoelastic contribution provided by the soft 

(polymer-like organic collagen fibers) within layer. 

(d) If fully hydrated, the fish scales may resist cracks and delamination because of how 

the hard and soft materials are mixed/integrated within the layers from the nano-to-micro length 
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scales, along with the way the two layers grade the properties away from the interface at the 

millimeter scale. Evidently, the fish scale has optimized the hard (inorganic minerals) and soft 

(polymer like organic collagen fibers) material volume fractions, variations within the layers, and 

uses gradual layer property transitions to reduce the local stresses that lead to delamination and 

crack formation caused by impact/penetration. 

6.3 Future Work 

The current research identified the main materials in the two-layered composite as hard 

(inorganic minerals) and soft (polymer-like organic fibers). The materials are integrated at the 

nano scale and are likely to contribute to the superior delamination resistance. The two integrated 

materials and the layers should be modeled using the discrete element method to rank which 

aspects are most important:  

(a) How do gradual transitions between layers that contain the same components, but 

with different concentrations and textures of these components, distribute load, and increase 

desired physical properties?  

(b) Is the geometric saw tooth joint at the micron scale the best design to connect the 

two layers?  

(c) How can the variations in material volume fraction, layer thickness, or layer density 

be optimized and possibly lead to the creation of stronger, lighter, tougher, more delamination 

resistant composite systems? 
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