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Abstract

Motivated by the evidence of relationships between pitch angle (the tightness of spiral

arm structure in the disk), P , and various indicators of central mass concentration, as well

as the theoretical relationship between halo mass concentration and the density of visible

matter in the central part of the galaxy, we look at a possible relationship between P and

cvir (the virial concentration of the dark matter halo) in N-body simulations of barred, spiral

galaxies. We also look at the evolution of pitch angle over time in higher temporal resolution

than any data currently available in the literature. We find that pitch angle structure is

recurring, the overall distribution staying within a relatively narrow range. We do not find

evidence for a relation between P and cvir.



Acknowledgements

A huge thanks to...

My advisor, Dr. Daniel Kennefick, for mentoring me in two thesis projects towards

both a bachelor’s and master’s degree. Dr. Joel Berrier, for his critical role in getting this

project off the ground and continued support even after leaving Arkansas. My committee,

Dr. Mark Arnold, Dr. Julia Kennefick and Dr. Salvador Barraza-Lopez. Thank you all, for

all the time you’ve invested in me.

Jeff Pummill, Dr. David Chaffin, Dr. Pawel Wolinski and the Arkansas High Perfor-

mance Computing Center (AHPCC), supported in part by the National Science Foundation

(NSF) under grants MRI #0722625, MRI-R2 #0959124 and MRI-R2 #0918970, for the use

of their computing resources and extremely helpful user support. The Extreme Science and

Engineering Discovery Environment (XSEDE), supported by the National Science Founda-

tion under grant ACI-1053575, for providing computing hours (allocation TG-AST140017)

on the Gordon super-computer at the San Diego Supercomputer Center (SDSC), which were

used to perform a second set of simulations that I was not able to use in this work.

Erik Monson, current Physics undergraduate, for his work on measuring a portion of

the pitch angle data presented here, and his huge contribution to 2DFFT Utilities. Matt

Hartley, former Physics undergraduate, for his overall IT support, programming help when

I was just getting started and analysis of early iterations of simulation data that, while

ultimately not used, was helpful in defining this project.

My research group, the Arkansas Galaxy Evolution Survey (AGES), the Physics

Department, the Graduate School and the Arkansas Center for Space and Planetary Sciences

(SPAC) for financial support in attending conferences to present earlier versions of this work,

as well as countless other contributions.

Judy and Bill Schwab, for finding the financial resources for this DREAMer go to

grad school when my immigration status made it impossible to work. William Oliver III,

my undergraduate academic advisor, and his wife, Debbie Oliver, for their optimism and

support, which were a very important part of my time in Fayetteville.

Amanda, Kim, Sara, Doug and everyone else who’s been a much-needed friend

throughout grad school–you are amazing and will go very, very far.

My family: Mom, Diana and Frankc. Los quiero mucho.

Ben, Scruffy and Zwicky. I love you. <3



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Spiral Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Spiral Structure Formation Theories . . . . . . . . . . . . . . . . . . 3
2.1.2 Pitch Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Mass Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Black Holes and Central Mass Concentration . . . . . . . . . . . . . . 16
2.2.2 Pitch Angle and Central Mass Concentration . . . . . . . . . . . . . . 17
2.2.3 Dark Matter Halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 Initial Condition Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Model Galaxy Template . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Format Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Running Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Pitch Angle Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Simulating Observational Data . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Image Preparation for 2DFFT . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Pitch Angles from 2DFFT Output . . . . . . . . . . . . . . . . . . . 39

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Evolution of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 General Spiral Structure . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Pitch Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 Eras of Stable Pitch Angle . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.4 Regions of Stable Pitch Angle . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Pitch Angle vs Virial Concentration . . . . . . . . . . . . . . . . . . . . . . . 58



5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1 Testing Theories and Predictions . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Longevity of Spiral Patterns . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Pitch Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.3 What We Cannot Test . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



List of Figures

Figure 2.1: Grand design spiral with bulge. . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2.2: Grand design spiral with bar. . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2.3: Hubble tuning fork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2.4: Irregular galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2.5: Hubble-de Vaucouleurs tuning fork . . . . . . . . . . . . . . . . . . . . . 5
Figure 2.6: Density wave orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2.7: Flocculent spiral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2.8: Stochastic star formation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2.9: Manifolds and Lagrangian points . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2.10: Pitch angle definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2.11: Examples of pitch angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.12: Example of pitch angle vs radius data . . . . . . . . . . . . . . . . . . . 13
Figure 2.13: Example of rotation curve and decomposition . . . . . . . . . . . . . . . 15
Figure 2.14: MBH vs P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2.15: Fundamental plane of spiral galaxies . . . . . . . . . . . . . . . . . . . . 18
Figure 2.16: Observational Pitch Angle vs Shear . . . . . . . . . . . . . . . . . . . . . 20
Figure 2.17: Simulation Pitch Angle vs Shear . . . . . . . . . . . . . . . . . . . . . . 21
Figure 2.18: Observational cvir vs P . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.1: cvir-Rs-Rvir parameter space . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 3.2: γ-ah-Rs parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.1: Initial Appearance of Spiral Structure . . . . . . . . . . . . . . . . . . . 42
Figure 4.2: Evolution of Spiral Structure - Model a1 . . . . . . . . . . . . . . . . . . 43
Figure 4.3: Observed four-armed spirals. . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 4.4: Example of model evolution . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 4.5: Pitch angle over time - a models . . . . . . . . . . . . . . . . . . . . . . 47
Figure 4.6: Pitch angle over time - b models . . . . . . . . . . . . . . . . . . . . . . 48
Figure 4.7: Pitch angle over time - nfw models . . . . . . . . . . . . . . . . . . . . . 49
Figure 4.8: Pitch angle over time - c models . . . . . . . . . . . . . . . . . . . . . . 50
Figure 4.9: Example of pitch angle distribution - Even modes . . . . . . . . . . . . . 51
Figure 4.10: Example of pitch angle distribution - Odd modes . . . . . . . . . . . . . 52
Figure 4.11: Pitch angle distribution - All models - m = 2 . . . . . . . . . . . . . . . 53
Figure 4.12: Eras of pitch angle stability . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 4.13: Example of stable region evolution . . . . . . . . . . . . . . . . . . . . . 55
Figure 4.14: Stable Regions - a & b Models . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 4.15: Stable Regions - nfw & c Models . . . . . . . . . . . . . . . . . . . . . . 57
Figure 4.16: Pitch Angle vs Virial Concentration . . . . . . . . . . . . . . . . . . . . 60
Figure 4.17: Linear Regression - Pitch Angle vs Virial Concentration . . . . . . . . . 61



List of Tables

Table 3.1: Model galaxy parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 3.2: Model galaxy masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 3.3: Model galaxy particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 3.4: Gadget2 Makefile options . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 3.5: Gadget2 parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 4.1: Pitch angle statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



1 Introduction

The evolution of galaxies is an area of study that has puzzled and fascinated as-

tronomers since they began to put together a model of our own Milky Way galaxy a century

ago. The variety of galactic structure seen in the Universe today poses both an observa-

tional challenge and an opportunity to make new discoveries with ever-improving tools, such

as next-generation telescopes (e.g., the James Webb Space Telescope) and N-body simula-

tions of increasing particle numbers and physical accuracy (made possible as computational

hardware and software evolves).

Spiral galaxies in particular are complex, involving physical processes that operate at

the smallest of scales—for instance, the nucleo-chemistry of star birth and death—and the

large scale—the gravitational interaction of dark matter and global galactic structure. Much

of what we know about galaxies comes from probing the large-scale structures and forces

that form them, but we still have many fundamental questions left unanswered.

Here, we look at one particular aspect of the connection between dark matter and spi-

ral structure. Motivated by the evidence of relationships between pitch angle (the tightness

of spiral arm structure in the disk), P , and various indicators of central mass concentration,

as well as the theoretical relationship between halo mass concentration and the density of

visible matter in the central part of the galaxy, we look at a possible relationship between P

and cvir (the virial concentration of the dark matter halo) in N-body simulations of barred,

spiral galaxies. We also look at the evolution of pitch angle over time in higher temporal

resolution than any data currently available in the literature.

This paper is organized as follows: Chapter 2 contains theoretical background on

spiral structure formation, pitch angle, and dark matter halos. Chapter 3 contains a descrip-

tion of our model galaxies and methodologies. We discuss results in Chapter 4 and their

implications in Chapter 5.
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2 Background

2.1 Spiral Galaxies

Most people know spiral galaxies by the widely-publicized images of grand design

spirals. These galaxies are characterized by the presence of two, symmetric arms, with

either a circular bulge (Figure 2.1) or a linear bar (Figure 2.2) in the middle–or sometimes

a structure with characteristics of both.

Figure 2.1: An example of a grand design spiral galaxy (M81) with a bulge in the cen-
ter. Image from Wikipedia (2014b), credit NASA and the Spitzer Space Telescope (SSC &
Caltech).

In all galaxy types, the arms tend to be brighter and bluer than the rest of a galaxy’s

disk due to the abundance of star-forming regions. This indicates a relatively young stellar

population. The oldest, reddest stars reside in the galactic center (and also in areas of the

disk that are no longer conducive to star formation).

Galaxies also have an interstellar medium composed mostly of gas and dust. A dark

matter halo (which does not emit any sort of radiation and is therefore not directly visible)

encompasses the entire galaxy and extends radially far beyond the visible components.

Grand design spirals are just one of many morphological types. The basic morpholog-

ical categories were famously organized by Edwin Hubble into the “tuning fork” classification

2



Figure 2.2: An example of a grand design spiral galaxy with a bar at the center (NGC 1300).
Image from Wikipedia (2015a), credit NASA, HST & ESA.

scheme (Hubble, 1926; Carroll & Ostlie, 2006). This “fork”, sometimes known as the Hubble

Sequence, is pictured in Figure 2.3. Ellipticals are shown on the “handle” with spirals on

the “prongs”. Spirals are further divided into those with bulges and those with bars. Those

with larger bulges/bars and tighter arms are closer to the handle. Irregular galaxies (such

as the one in Figure 2.4), are usually placed at the end opposite the ellipticals.

Early on, Hubble and others mistakenly identified elliptical galaxies as being the

evolutionary pre-cursors to spiral galaxies (Carroll & Ostlie, 2006, chapter 25). That is,

they thought that ellipticals changed into spiral galaxies over time, diverging into barred

and non-barred populations. This led to the nomenclature we still use today–“early-type”

for elliptical and “late-type” for spiral galaxies.

Today, we know that spiral galaxies formed early on in the history of the Universe.

Other aspects of the tuning fork are also being exposed to scrutiny. Some astronomers con-

tend that the binary bulge/bar paradigm is too simplistic. They argue that the exact shape

and nature of the structure that makes up the center of galaxies exists along a continuum,

with strictly-defined bulges and bars at opposite ends. Work by Gérard de Vaucouleurs,

among others, has resulted in modified tuning fork schemes such as the one in Figure 2.5.

2.1.1 Spiral Structure Formation Theories

Ideally, classifying galaxies should help us understand how they evolve. Modern

classification schemes give some indication of how to divide up galaxies into populations,

but are of little help in understanding the mechanisms that drive galaxy formation. The

topic of galaxy evolution in general has several, fundamental questions that are still open,

3



Figure 2.3: Edwin Hubble’s “tuning fork” for galaxy morphology classification, including
observational images that demonstrate the various types. Image from Wikipedia (2015d),
based off work in Hubble (1926).

Figure 2.4: An example of an irregular galaxy (NGC 1427A). Image from Wikipedia (2015e),
credit AURA, STScI, HST & ESA, NASA.
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Figure 2.5: The de Vaucouleurs-modified tuning fork, with the addition of intermediate
categories between non-barred and barred. Image from Wikipedia (2015c), credit Antonio
Ciccolella.

largely due to the limitations of currently available observational data. So it is perhaps

not surprising that the process(es) of how exactly spiral structure forms is (are) still up for

debate.

Spiral-armed galaxies demonstrate a seemingly paradoxical situation. Since the or-

bital velocity of matter at all radii is roughly the same, stars closer to the center of the

galaxy have higher angular velocities, causing them to “lap” those further out. Without

other mechanisms in place, any feature in the disk would get drawn out into a filament

that would eventually wind tight, erasing the clearly-defined spiral structure that we see in

galactic populations of various ages1.

Since we see plenty of what appear to be long-lived spirals with open structure,

something must be acting against differential rotation. Additionally, the arms contain many

O- and B-type stars, and these last only a few Myr (Smith, 1987), much less than the average

age of a galaxy in the local universe (about 7-8 Gyr, Gallazzi et al. (2005)). So, there

must be something continuously triggering star formation in these regions. The theoretical

1See Animation 2 in Wikipedia (2015b) (or https://upload.wikimedia.org/wikipedia/

commons/9/90/Galaxy_rotation_wind.ogv) for a video example of a galaxy with arms that
tighten over time.
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formulation that explains these observations must also contend with maintaining a global

spiral structure whose size is on the order of tens of kpc.

Lin & Shu (1964, 1966)’s density wave theory is the most influential framework pro-

posed to explain spiral structure. Other theories include development of a swing amplification

model (Goldreich & Lynden-Bell, 1965; Toomre, 1981), stochastic star formation (Gerola &

Seiden, 1978; Seiden & Gerola, 1979) and manifolds (Athanassoula et al., 2009b,a, 2010),

and even a hybrid of swing amplification with transient density waves (Sellwood & Carlberg,

1984; Sellwood, 2011; Sellwood & Carlberg, 2014).

Lin & Shu (1964) first put forth the idea that spiral arms are caused by quasi-stable

density waves propagating throughout the disk. Small, non-axisymmetric perturbations

cause mass over-densities to amplify to the point allowed by the velocity dispersion of stars

and gas (high dispersion tends to smooth out “bumps” in mass distribution). The gravita-

tional field associated with these over-densities causes mass to oscillate radially as it rotates

(Lin & Shu, 1967). Combining this with differential rotation, a spiral density wave emerges

from overlapping orbits (See Figure 2.6). Spirals are essentially standing waves with bound-

aries at the middle and at the edge of the galaxy. As the wave moves through the disk, it

causes nebulous material to collapse, triggering star formation. Arms are not made up of

the same material throughout their entire lifetime. Instead, as stars, gas and dust orbit the

center of the galaxy, they move through the waves2.

The quasi-static density wave theory works well for grand design and other spiral

galaxies with continuous arm structure. However, it has been argued that flocculent galaxies,

with their feathery, fragmented spirals (Figure 2.7), are better explained by stochastic star

formation (Smith, 1987).

Spiral structure formed via stochastic, self-propagating star formation (SSPSF) is the

result of combining high-mass stellar dynamics with differential rotation of the disk (Gerola

& Seiden, 1978; Seiden & Gerola, 1979). When very large stars approach the end of their

lifetime, they may go supernova, sending shock waves through surrounding gas and causing

it to expand at high velocities. Adjacent gas clouds will collapse, triggering the formation

of new stars. The process then repeats, creating a feedback loop of star formation. Since

material that is within these regions but closer to the center of the galaxy orbits with a

2See Animation 3 in Wikipedia (2015b) (or https://upload.wikimedia.org/wikipedia/

commons/b/ba/Galaxy_rotation_wave.ogv) for a video example of a density wave. Note how
the stars move through the wave from the latter’s frame of reference.
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Figure 2.6: Overlapping orbital paths in a galaxy due to density waves. This particular
configuration would give rise to two-armed spiral structure. Image from Wikipedia (2015b).

Figure 2.7: An example of a multi-armed, flocculent spiral galaxy. Image from Wikipedia
(2014a).
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larger angular velocity than material at larger radii, stars and gas are drawn out into a

filamentary, spiral shape (see Figure 2.8). Resulting spiral arms are trailing, meaning that

stars at the tips “trail” behind those with smaller radii. This large-scale spiral structure

rotates “quasi-rigidly” and lasts roughly the lifetime of the galaxy. Since the exact type is

determined early on by the rotation curve of the disk, the evolution of a single galaxy from

one morphological type to another is limited.

Figure 2.8: Evolution of a model flocculent spiral galaxy formed via stochastic, self-
propagating star formation (SSPSF). The numbers represent timesteps, with one timestep
being equal to 15 Myr. Pattern rotation is counter-clockwise. Figure 1 from Seiden & Gerola
(1979).

It’s important to note here that the density wave theory relies on the disk’s gravita-

tional potential to trigger stellar formation in specific locations while the SSPSF theory does

not, by design, predict the exact location of new stars—initial star formation is random. The

manifold theory, however, says nothing about the formation of new stars but does formulate

a mechanism that is dependent on the gravitational field of the disk.

The manifold theory has been most successfully applied to barred galaxies exhibiting

rings or two-armed spiral structure (Athanassoula et al., 2009b,a, 2010). This theory is based

on unstable Langrangian points near the ends of bars (see Figure 2.9), which funnel matter

in chaotic orbits into narrow bundles or tubes called manifolds. Particles must be within

specific energy ranges to fall into the manifolds. If they are, their ultimate fate depends on
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the shape of their manifold, which is governed by bar strength. Stronger bars form spiral

manifolds, transporting material outward from the center of the galaxy. Weaker bars form

tighter spirals or even rings, the latter trapping particles. Note that this is fundamentally

different orbital behavior than that of particles moving according to the density wave theory.

Wave-driven particles move roughly perpendicular to the spiral arm as they pass through,

whereas manifold-driven particles move within the arm. Disk rotation curves play a role as

well: for a given bar strength, falling curves are most likely to result in spirals.

Figure 2.9: Manifolds associated with different types of orbits (left to right, homoclinic,
heteroclinic and escaping) and corresponding Lagrangian points. Green indicates the so-
called stable manifolds (leading to unstable Lagrangian points), red are unstable manifolds
(leading away from unstable Lagrangian points). Panel (c) shows how material may be
funneled from the bar into a spiral arm and to the outer parts of the disk. Figure 1 from
Athanassoula et al. (2009a).

Swing amplification theory is, in part, a response to the density wave theory’s failure

to adequately explain dampening effects (Goldreich & Lynden-Bell, 1965; Toomre, 1981).

Density waves should dissipate fairly quickly, making a standing wave pattern impossible.

Although density waves are observed in Saturn’s rings (which, with Saturn, make up a system

like that of a bulge-dominated galaxy), they are associated with forcing mechanisms provided

by resonances with Saturn’s moons. While outside forces may occasionally generate density

waves in galaxies (e.g., when they experience harassment by other galaxies), we see plenty

of (relatively) isolated galaxies with spiral patterns. The swing amplification theory posits

that differential rotation itself tends to reinforce density waves by swinging them around into

trailing arm patterns. In this view, the patterns are likely to be transient rather than long
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lasting, but should be common and not dependent on outside forces.

Sellwood & Carlberg’s work suggests that spiral arms are driven by the superposition

of multiple density waves, with resulting recurrent (neither transient nor long-lived) spiral

structure. While the conclusions of this work are grounded mostly in simulation results (with

observational data on the longevity of spiral structure inconclusive, see Sellwood (2011) and

references therein), they highlight the difficulty of reaching consensus on a theory.

It may be difficult for any single spiral arm formation theories to account for all the

morphological features seen in late-type galaxies. The truth may lie in differing mechanisms

for different types of galaxies, and perhaps even multiple mechanisms acting in concert in

individual galaxies (Athanassoula et al., 2010). There are specific predictions made by each

of the theories; both observational and simulation data exists that potentially supports all

of these (See Section 2.1.2). For now, we relegate further discussion on data support for the

theories to Chapter 5, where we will focus on the results of this study and how they relate

to existing theories.

Despite these complications, one thing that most of these schemes have in common

is their reliance on the gravitational field in the central part of the galaxy (Berrier et al.

(2013), and references therein). This indicates that we must look carefully at indicators of

central mass concentration, which we will do in detail in Section 2.2. There, we will also

discuss the particulars of density wave theory in regards to mass density.

2.1.2 Pitch Angle

Pitch angle describes the tightness of spiral arms—the tighter the arms, the smaller

the pitch angle.

We use the definition of pitch angle in Figure 2.10. To manually measure the pitch

angle of a spiral arm, one would first draw a circle centered on the middle of a galaxy’s

image. At the point where the arm crosses the circle, two straight lines would be drawn—

one tangent to the arm and one tangent to the circle. The pitch angle is the angle measured

between these two lines.

Pitch angle can vary from −90◦ to +90◦. It is positive if the arms wind clockwise

and negative if they wind counter-clockwise. More tightly wound spiral arms have pitch

angles with smaller absolute values, and looser arms have larger values. As seen in Figure

2.11, when absolute values get closer to zero, spiral arms will more closely resemble a circle.
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Figure 2.10: The definition of pitch angle, indicated by ψ. Image from Whittle.

Increasingly larger absolute values result in arms straightening out into lines that extend

radially from the center of the galaxy.

Since logarithmic spiral arms have the same pitch angle at all radii, one would ex-

pect galaxies with logarithmic arm structure to display the same pitch angle at any radius.

However, images of real and simulated galaxies show that pitch angle tends to decrease with

increasing radius. Other factors affecting measured pitch angle include non-spiral structures

such as bars, clumps or spurs. Bars in particular lead to highly-inflated absolute values.

Davis et al. (2012) outline a method to measure the pitch angle of spiral galaxies.

Their method uses a 2-dimensional Fast Fourier transform (2DFFT) to decompose images of

galaxies into segments of logarithmic spirals, then pieces together pitch angle measurements

from those segments.

The method is akin to signal processing. A radial range of the image (in other words,

an annulus) is chosen, and 2DFFT attempts to find logarithmic spiral structure within that

range, assuming that it will find spirals of a number of arms, m, which are symmetrically

placed about the origin (or center of the galaxy and image). An attempt is made to fit

m = 1, 2, .., 6 arms to the annulus. A pitch angle determination is made based partly on

the “signal strength” of the different modes. The one with the strongest signal, or dominant

mode, should reflect the number of arms seen in the galaxy image.

Since the choice of inner radius for the annulus greatly affects the pitch angle mea-

surement, Davis et al. chose to anchor the outer radius of the annulus to the visible edge of
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Figure 2.11: Two-armed, logarithmic spirals with pitch angles of positive 5◦, 3◦, 60◦ and 85◦.
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the galaxy and iterate through all possible inner radii. This gives a pitch angle measurement

for every annulus, leading to data such as that in Figure 2.12, where one must then choose

a radial range where pitch angle is stable, taking the mean as the value.

Figure 2.12: An example of pitch angle vs radius data (right) from running 2DFFT on an
image of a galaxy (left). Figure 12 from Davis et al. (2012).

Predictions from Theory

The various spiral formation theories make different predictions about the type of

structure we might see in disk. Some forecast looser or tighter spirals in certain situations

and differing longevity of spiral patterns. Therefore, in theory, we can use pitch angle to

distinguish between these frameworks. Although not a main focus of this work, we find it

useful to detail these predictions here as a basis for the discussion of our results in Section

5.1, in particular the question of longevity.

The modal density wave theory, with its standing wave patterns, demands that the

shape of the resulting spiral be determined by the characteristics of the galaxy. Therefore

the pitch angle of the spiral arms should be unchanging over time and should correlate to

the host galaxy’s bulge mass and disk density.

SSPSF (stochastic, self-propagating star formation) calls for quasi-stable spiral struc-

ture long as there is material to replenish star formation (as well as sufficient differential

rotation of the disk).
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The longevity of spiral arms in the manifold theory depends on sufficient material to

populate the arms as well, since bars generally get longer and stronger with time, pushing

the Lagrangian points outward. As long as the radial migration of material along the bars

does not out pace the growth of the arms, spiral patterns will last indefinitely.

In the swing amplification theory, pitch angle (or tightness) of the spiral arms may

change over time, especially as new patterns emerge when older ones disappear.

A recurrent picture, which takes aspects of both density wave and swing amplification

theory, expects spiral structure to re-emerge, which will lead to periodic variation in pitch

angle.
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2.2 Mass Concentration

A relationship between galactic central mass concentration and spiral arm structure

is not necessarily unexpected. The Hubble Sequence, seen in Figures 2.3 and 2.5, shows that

morphological types with larger bulges tend to have tighter spirals, and those with smaller

bulges are inclined towards open arm structure. In other words, increasing the central mass

concentration of a galaxy seems to result in a smaller pitch angle.

However, since spiral arms are not explained solely by differential rotation, the actual

relationship between central mass concentration and pitch angle is not simple. The gravita-

tional potential of a galaxy’s central region does not come from just the roughly spheroidal

bulge, but in the case of weakly- or strongly-barred galaxies, also from non-spherical bar

features. The dark matter halo affects the orbital velocities of the visible matter in a galaxy,

but it is often difficult to separate the halo’s contribution to the rotation curve from that

of the bulge and disk. The self-gravity of the disk components (namely stars and gas) must

also be included in any spiral formation theory.

Figure 2.13: An example of rotation curve data (left) and subsequent decomposition into
various components by mass (right). Figure 13 from Seigar & Berrier (2011).

There is also the matter of the ubiquitous SMBH (super-massive black hole) at the

center of most galaxies. Although SMBH’s have a limited region of influence (the inner 1

kpc or so, they are tied to the global spiral structure by way of the MBH − P (black hole
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mass and pitch angle) relation (Seigar et al., 2008; Berrier et al., 2013; Davis et al., 2014,

2015). The more massive the black hole, the tighter the spiral arms, and vice-versa.

There are two main reasons to expect this particular relationship from existing ob-

servational data: (1) black hole mass is directly related to the gravitational potential at

the center of the galaxy and (2) pitch angle has been shown to correlate to quantities that

measure gravitational potential. Note that, as mentioned in Section 2.1.1, most theories of

spiral arm formation depend on the strength of the gravitational field at the center of the

galaxy.

2.2.1 Black Holes and Central Mass Concentration

It is well-accepted that virtually all disk galaxies contain SMBH’s at their centers.

Measurements of SMBH masses, or MBH , are made through a variety of techniques, most

of which estimate the speed of host galaxy material in the relative vicinity of the black

hole region. In other words, they probe the gravitational potential well of the black hole.

Techniques include reverberation mapping, maser modeling, the Eddington limit, star and

gas dynamics, and other relations (Berrier et al., 2013).

The ability to quantitatively describe the bulge as well led to the establishment of

correlations between MBH and central mass concentration. These include relations to the

velocity dispersion of stars in the bulge (σ; Kormendy & Richstone, 1995; Gebhardt et al.,

2000; Merritt & Ferrarese, 2001; Tremaine et al., 2002, bulge luminosity (Lbulge; Marconi

& Hunt, 2003; Gültekin et al., 2009; McConnell & Ma, 2013), and bulge mass (Mbulge; see

Lbulge references).

In all of these relations, a larger MBH corresponds to a larger number in the other vari-

able as well—in other words, more massive black holes and stronger, gravitational potentials

in the central region tend to appear to be correlated, resulting in higher bulge luminosities

and masses. However, since black holes are also found in bulge-less galaxies (in the clas-

sical sense or otherwise), Seigar et al. (2008), Berrier et al. (2013) and others claim that

bulge mass cannot be the sole factor that influences how black holes form and acquire mass.

The virial concentration of the dark matter halo has been flagged as one of these possible,

additional factors (for more information, see Section 2.2.3).

The sum total of these relationships with MBH led to the expectation and discovery

of two correlations: the black hole mass and pitch angle relation (MBH − P ; Seigar et al.,
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2008; Berrier et al., 2013; Davis et al., 2012, 2014, 2015) and the fundamental plane of spiral

structure, (Davis et al., 2015).

As predicted by various spiral structure formation theories (including modal density

wave theory, see Section 2.1.1), larger black hole masses correlate to tighter spirals. Berrier

et al.’s MBH − P relation (given in Figure 2.14) has comparable scatter to the MBH − σ

relation, and less scatter than the related MBH − n (black hole mass-Sérsic index) relation.

Figure 2.14: The MBH − P relation, showing that larger black hole mass is tied to tighter
spiral arm structure in the host galaxy, and therefore smaller pitch angle. The black line
shows the best fit, with equation at the top. The marker colors and shapes indicate the
different techniques by which black hole masses were obtained. Figure 1 from Berrier et al.
(2013).

2.2.2 Pitch Angle and Central Mass Concentration

Davis et al.’s (2014) fundamental plane simultaneously links two parameters to pitch

angle, namely central stellar bulge mass and the density of neutral, atomic hydrogen gas in

the disk. As seen in Figure 2.15, tighter spiral arms (or smaller pitch angle) indicate larger

stellar mass in the bulge, as well as a higher density in the gas component of the disk. This

is a relation that is expected from density wave theory.
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To augment the discussion on density waves started in Section 2.1.1 as pertains to cen-

tral mass concentration, we can draw an analogy to standing waves on a string, whose speed

of propagation depends on both the density and tension of the string. In a galaxy, the den-

sity of the material and the gravitational field of the central region play these parts (Berrier

et al., 2013). Bulge-dominated galaxies have pitch angles that are inversely-proportional

to the local radial wavenumber (which is dependent on the density and tension mentioned

above). It can be shown that for orbits in an equatorial plane of an axisymmetric potential,

tan(P ) ∝ σo
M

(2.1)

Where P is the absolute value of pitch angle, σo is disk surface density, and M is

mass enclosed within the orbital radius (close to Mbulge) (Berrier et al., 2013).

Furthermore, it can be shown that for a disk with both stellar and gas components,

tan(P ) ∝ σo + Fσ∗
Mbulge

(2.2)

Where P and Mbulge are as in Equation 2.1, σo is the density of gas in the disk, σ∗ is

the density of stars in the disk, and F << 1 (making gas the primary density factor) (Davis

et al., 2015).

Pitch angle has been shown to correlate with other indicators of mass concentration,

notably SMBH mass (MBH , as mentioned above, in Section 2.2.1) and shear rate, or S, with

high shear rate corresponding to small pitch angle. Support for the S − P relation comes

from both observational (Seigar et al., 2005, 2006; Seigar, 2005) and numerical simulation

data (Grand et al., 2012b,a, 2013; Michikoshi & Kokubo, 2014).

Shear relates to differential rotation—as particles at different radii (and with different

angular velocities) rotate about the center, they may cause breaks in the larger structure as

a whole. The relation of shear rates to pitch angle can be partially explained via a modified

version of Jean’s Theorem (Seigar, 2005). In spherical systems, the balance of velocity

dispersion (which is dominant at small scales) and gravity (which is dominant at large

scales) is broken at radii above the Jean’s length. At these larger distances, over-densities

and perturbations will cause gravitational collapse, which can trigger star formation. In flat,

disk-like systems (such as spiral galaxies), there will be a region above the Jean length-proper

where differential rotation prevents gravitational collapse via shear. The faster the rotation,
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Figure 2.16: Shear rate vs. pitch angle for observational data, featuring measurements from
various works, including Seigar et al. (2005, 2006, 2014). Spiral arms tighten with increasing
shear rate. Figure 1 from Seigar et al. (2014).
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Figure 2.17: Shear rate vs. pitch angle (Γ vs. φ) for simulation data from Grand et al.
(2013) (Figure 15). Spiral arms tighten with increasing shear rate. Varying markers and
colors indicate different models.

the higher the average angular velocity, which is directly proportional to shear rate:

S ≡ A

ω
=

1

2

[
1− R

V

dV

dR

]
(2.3)

Where A is the first Oort constant, ω is angular velocity, V is line-of-sight velocity

at radius, R (Seigar, 2005).

Since differential rotation is dependent on the gravitational potential of the central

mass, higher shear rates should correspond to steeper potentials, or to higher concentrations

of central mass. Some parameters that indirectly measure this concentration do indeed

support this supposition. For example, Seigar (2005) has shown that the ratio of far-infrared

to K-band luminosities is proportional to shear, and that smaller pitch angles (corresponding

to higher central mass) show a rough trend with falling rotation curves and vice-versa. Seigar

et al. (2006, 2014) have shown that it is possible, using shear rates inferred from pitch angle,

to derive theoretical velocity curves which match observational data for some galaxies, as

well as to constrain the dark matter halo density profile.

In 2006, Seigar et al. showed from their models that one should expect virial con-

centration of the dark matter halo (cvir) and other central mass concentrations to correlate
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positively with increasing shear rates, and made the prediction that, given the existing S−P
relation, one should therefore see decreasing pitch angle with increasing virial concentration.

In 2014, they followed through with observational data from 16 galaxies which shows a weak

trend between P and cvir (see Figure 2.18). This suggests and would be further strength-

ened by a connection between black hole and dark matter halo evolution, but the evidence

is inconclusive at best and doesn’t support this assertion at worst. Part of the problem is

the difficulty is in decomposing the rotation curves of visible matter in observed galaxies to

obtain that of the halo.

Figure 2.18: A possible trend between cvir vs. pitch angle, showing that tighter spiral arms
may correspond to higher density in the core of the dark matter halo. The trend is weak since
the sample is small and many of the galaxies with pitch angles ≤ 23◦ have unrealistically
high concentrations. Figure 6 from Seigar et al. (2014).

One way to augment the lack of data would be to directly test this assertion via

N-body simulations of galaxies, since virial concentration can be directly set or measured.

This is the aim of our work here. We provide more details on the particulars of dark matter

halos in the next section.
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2.2.3 Dark Matter Halos

Since all galaxies are thought to have a halo component, dark matter ties the evolution

of individual galaxies to the large scale structure and cosmology of the universe. Hierarchical

clustering (which states that amplified density perturbations and gravitational collapse on

local scales lead to small structures that merge to create larger forms at later epochs) is the

foundation for modern halo formation theory. Navarro et al. (1997) find that the density of

halos at their birth (defined as the time at which their constituent parts collapsed) is related

to the density of the universe at that epoch. This in turn strongly affects the resulting halo

mass at equilibrium.

Halo mass distribution in galaxies is usually modeled according to the so-called NFW

profile. This mass density profile is described in a series of papers by Navarro et al. (1995;

1996; 1997). They ran N-body simulations of dark matter halos using a smoothed-particle

hydrodynamics (SPH) code. Navarro et al. found that a universal density profile can be

used to quantify halos of extensive mass and size ranges, all the way from dwarf galaxy halos

to those of galaxy clusters. The NFW profile is given by Equation 2.4 below:

ρ(r) =
ρcritδc

(r/rs)(1 + r/rs)2
(2.4)

where,

ρcrit =
3H2

8πG
(2.5)

and

δc =
200

3

c3

ln(1 + c)− (c/1 + c)
(2.6)

The critical density of the universe, ρcrit, is dependent on both H, the Hubble constant

(which indicates the expansion rate of the universe) and G, the gravitational constant. The

characteristic density of the halo, δc is a function of c, the concentration. The characteristic

radius of the halo is given by rs = r200/c, where r200 indicates the radius inside which the

mean density is 200 times the critical density.

r200 =
3

√
3

4π

M200

200ρcrit
(2.7)
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M200 is the halo mass interior to r200; these two are sometimes used as proxies for

virial mass and radius.

Despite it’s great success in adhering to cosmological theory, the NFW profile comes

with a few caveats. The first problem is in the profile’s behavior at small r. It is too steep,

or “cuspy”, at the center to describe the halos of some observed populations, including

dwarf galaxies. Navarro et al. also report that, in their simulations, NFW halos are also

very efficient at drawing baryons (or visible matter) to the center of the halo potential well,

compacting the resulting disk component to a size that is smaller than that observed in disk

galaxies.

As to the question of interaction between the dark matter halo and the disk, and

in particular how this affects the spiral structure according to the density wave or manifold

theory, etc., we need look at which halo parameters contribute directly to variables known to

correlate with pitch angle. We already have some evidence that cvir (c in the NFW profile)

may be correlated to pitch angle (see above section, 2.2.2).

However, Navarro et al. suggest that, without additional mechanisms in place (such as

supernova feedback and stellar winds) in numerical simulations of galaxies, predictions about

the NFW halo/disk interaction are somewhat ambiguous. For instance, to match observed

rotation curves for disk galaxies (including those that are spiral-armed), it is necessary

to adopt a ratio of disk mass to disk luminosity that is not constant, but increases with

luminosity. So, there is the possibility that the halos of more luminous galaxies do not

contribute to disk velocities in the same way that halos of less luminous galaxies do—this is

not a trivial matter since luminosity is an indicator of disk and bulge mass.

Seigar et al. (2006) indicate that the relative speed at which baryons fall into the halo’s

potential well can be made slower by adiabatic contraction of the halo over the galaxy’s

evolution. This would produce disks that better align with observations, but also results

in larger halo virial concentrations. However, not all galaxies appear to be well-described

by adiabatically-contracted halos with large virial concentrations. This is a problem when

interpreting a possible cvir − P relation.

Other parameters known to correlate with pitch angle have an unclear relationship

with dark matter halos. Treuthardt et al. (2012) cite arguments both for and against an

MBH − cvir relation. Using bar speed as a proxy for halo concentration and pitch angle as

a proxy for black hole mass, they could find no correlation. Specifically, they found that

galaxies with low dark matter concentrations had a wide range of black hole mass.
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At the present, it seems unclear how exactly one would interpret a cvir − P relation

from N-body simulations (or a lack of one) without having additional measurements pertain-

ing to known halo concentration or pitch angle relations and without quantifying the effects

of processes left out of those simulations (such as supernova feedback).
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3 Methods

In order to test the question of whether or not virial concentration (cvir) is correlated

with pitch angle (P ), we ran N-body simmulations of 11 isolated, barred spiral galaxies for

3 Gyr. These models differ mainly in the virial concentration of their initial conditions, with

slight differences in particle mass. We then simulated observational images from the N-body

output and measured their pitch angle over time at regular intervals.

In this chapter, we detail the various steps needed to run the simulations, including

descriptions of the various pieces of software necessary and the data pipeline. We also

describe our method for measuring pitch angle, which is an updated version of Davis et al.’s

(2012).

In Section 3.1, we outline the model and parameters used to set up the initial con-

ditions of the model galaxies. We describe the software and parameters used to evolve the

models in Section 3.2. Section 3.3 details our pitch angle measurement process.

3.1 Initial Condition Set-Up

The first part of running a successful N-body simulation is building the initial condi-

tions, which are then fed into the software that evolves the system according to a particular

physical framework.

3.1.1 Model Galaxy Template

The initial conditions for our simulations were made with the use of GalactICS, a

model of late-type galaxies based on the Milky Way (described in Widrow et al. 2008).

The axisymmetric model has three components—a Sérsic bulge, an exponential disk and a

cuspy dark matter halo. The bulge and disk particles represent the mass of stars (or visible

matter), whereas the halo particles represent the mass that extends past the visible portion

of a galaxy. The model can, in principle, contain gas particles as well, but we omitted these

for the sake of simplicity.

GalactICS was chosen for the ability to change parameters associated with mass

concentration in the dark matter halo, as well as the ability to convert initial condition files
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into a format compatible with the chosen simulation software, Gadget-2 (see Section 3.2),

and output files into the FITS format necessary for the pitch angle measurement process.

Most models of galaxy structure are based on solutions to the collisionless Boltzmann

and Poisson equations for a system initially in equilibrium (Heggie & Hut, 2003). These

models begin with the assumption that the mass of a galaxy can be described by a distribu-

tion function which resides in a 6-dimensional phase space (three position plus three velocity

or momentum coordinates. Such a function gives the probability that a parcel of mass with

position vector r and velocity v (or momentum p) resides in a given volume within the phase

space. In order to describe a multi-component structure (e.g., a galaxy with a bulge, disk

and halo), the function must have a corresponding term for each component. Widrow et al.

(2008) construct a distribution function of the form,

f(E , Lz, Ez) = fd(E , Lz, Ez) + fb(E) + fh(E) (3.1)

Where the subscripts indicate the disk, bulge and halo components respectively. E =

−E is the relative energy, Lz is the angular momentum about the symmetry axis and Ez is

the energy of stellar vertical motion in the disk. Integrating Equation 3.1 over all velocities

gives a density profile of the form,

ρ(R, z,Ψ) = ρd(R, z,Ψ) + ρb(Ψ) + ρh(Ψ) (3.2)

Where R and z are the cylindrical coordinates, Ψ = −Φ is the relative potential

(Φ being the gravitational potential), and ρ(R, z,Ψ) satisfies Poisson’s equation, ∇2Ψ =

−4πGρ(R, z,Ψ). Widrow et al. (2008) use G = 1.

The halo and bulge components start out spherically symmetric, but since the non-

spherical disk is added in, the halo and bulge become axisymmetric at equilibrium. So

GalactICS’s initial conditions are built such that target density profiles, ρ̃i, are approximated

via spherical harmonic expansions.

The target bulge density profile is,

ρ̃b(r) = ρb

(
r

Re

)−p
e−b(r/Re)

1
n (3.3)

Where p = 1 − 0.6097
n

+ 0.05563
n2 and n is the Sérsic index. b is adjusted so that Re is

the radius enclosing half of the bulge mass.
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The target halo density profile is,

ρ̃h(r) =
22−γσ2

h

4πa2
h

C(r : rh, δrh)

( r
ah

)γ(1 + r
ah

)3−γ (3.4)

Where ah is the halo scale length, σh is the velocity scale, and γ is the steepness of

the density profile as r → 0, or the “cuspiness.” C(r : rh, δrh) is a truncation function that

goes from 1→ 0 at r = rh over a width δrh, or

C(r : rh, δrh) =
1

2
erfc

(
r − rh√

2δrh

)
(3.5)

Note that the target halo profile, when given a value of γ = 1, is the same as the

NFW halo profile (Equation 2.4), save for some constants and the truncation function.

Widrow et al. (2008) use a modified version of Kuijken & Dubinski’s (1995) disk

density profile,

ρ̃d(r, z) =
Mde

−r/rd

4πr2
dzd

C(r : Rout, δrd) (3.6)

Where Md is the total disk mass, rd is the disk scale length, Rout is the outer disk

radius, and C(r : Rout, σrd), the disk truncation function, has the same form as the halo

truncation function.

The halo density profile has two parameters in particular, γ and ah, that can be varied

to achieve differing cvir values. They are connected through the following relation:

cvir = Rvir/Rs (3.7)

Where Rvir is the virial radius and Rs is the radius at which the logarithmic slope of

the halo density profile is negative two. For the profile in Equation 3.4, Rs is given by:

Rs = (2− γ)ah (3.8)

3.1.2 Models

In order to vary the mass concentration of the dark matter halo component in Galac-

tICS, one can change the “cuspiness” parameter, γ, and/or the scale radius ah.

To choose values for these two variables, we looked at the parameter space of cvir.
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Model γ ah Rs Min. cvir Max. cvir

a1 0.4 5 8 25.0 65.0

a2 0.4 15 24 8.333 21.67

a3 0.4 25 40 5.0 13.0

b1 0.8 4 4.8 41.67 108.3

b2 0.8 15 18 11.11 28.89

b3 0.8 25 30 6.667 17.33

nfw1 1.0 5 5 40.0 104.0

nfw2 1.0 15 15 13.33 34.67

nfw3 1.0 25 25 8.0 20.8

c1 1.2 5 4 50.0 130.0

c2 1.2 15 12 16.67 43.33

c3 1.2 25 20 10.0 26.0

Table 3.1: Parameters of model galaxies. γ and ah were directly varied in the initial condition
generator, while Rs values come from Equation 3.8. Minimum and maximum values for cvir
come from an Rvir range of 200-520 kpc and Equation 3.7.

According to Widrow et al. (2008)’s models of adiabatically decontracted dark matter halos,

cvir and Rvir have likely values of 5-50 (dimensionless) and 200-520 kpc, respectively. This

gives a range of 4-104 kpc for Rs (see Equation 3.7).

Additionally, Widrow et al. (2008) cite likely values of 0-1.5 (dimensionless) and 0-30

kpc for γ and ah, respectively. These further restrict Rs to 4-45 kpc (see Equation 3.8 and

Figure 3.1).

As can be seen in Figure 3.2, the parameter space of Equation 3.8 shrinks as ah

becomes larger (closer to 30 kpc) and γ becomes smaller (closer to 0). This means that

dark matter halos with these parameter values are not likely, so we avoided those extremes.

We chose γ = 0.4, 0.8, 1.0, 1.2 for model categories a, b, nfw, and c. By varying ah within

each category, we obtained a total of 12 unique parameter combinations that were then fed

into GalactICS (see Table 3.1). All but model nfw3 resulted in numerically viable initial

conditions and were used to evolve isolated spiral galaxies.

Although all 11 models have the same particle numbers (Table 3.3), particle masses

were not exactly the same across all models for any component (Table 3.2).

29



(a) View 1

(b) View 2

(c) View 3

Figure 3.1: The parameter space of Equation 3.7, or cvir = Rvir/Rs.
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(a) View 1

(b) View 2

(c) View 3

Figure 3.2: The parameter space of Equation 3.8, or Rs = (2− γ)ah.
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Model mb md mh Mtot

a1 2.9555× 10−1 3.1639× 10−1 1.9576× 10−1 3.5145× 106

a2 2.9883× 10−1 3.1289× 10−1 3.5817× 10−1 5.9166× 106

a3 2.9972× 10−1 3.1164× 10−1 3.7450× 10−1 6.1567× 106

b1 2.9305× 10−1 3.1722× 10−1 1.6118× 10−1 3.0028× 106

b2 2.9723× 10−1 3.1416× 10−1 3.3167× 10−1 5.5255× 106

b3 2.9860× 10−1 3.1278× 10−1 3.1394× 10−1 5.2608× 106

nfw1 2.9143× 10−1 3.1772× 10−1 1.4669× 10−1 2.7885× 106

nfw2 2.9595× 10−1 3.1502× 10−1 2.5741× 10−1 4.4261× 106

nfw3 2.9744× 10−1 3.1366× 10−1 3.5123× 10−1 5.8146× 106

c1 2.8968× 10−1 3.1831× 10−1 1.8431× 10−1 3.3465× 106

c2 2.9390× 10−1 3.1613× 10−1 2.4452× 10−1 4.2364× 106

c3 2.9559× 10−1 3.1484× 10−1 3.4216× 10−1 5.6816× 106

Table 3.2: Model galaxy masses, all in units of 1× 105 M�. mb, md and mh are the masses of
individual bulge, disk and halo particles, respectively. Mtot gives the total mass, or

∑
i

miNi,

where i = b, d, h and Ni is the number of particles for a given component.

Component Type No. of Particles

Bulge Stellar 279 595

Disk Stellar 1 677 721

Halo Dark Matter 14 819 900

Total 2563 = 16 777 216

Table 3.3: Types and numbers of particles for all models.
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3.1.3 Format Conversions

After initial condition files were generated for all 11 models, they had to be converted

into a format compatible with the Gadget-2 simulation software (Springel, 2005). As an

intermediary between GalactICS and Gadget-2, we used the TIPSY file format1.

GalactICS outputs many files for every set of initial conditions it creates, including

one each for the disk, bulge and halo components. Each component file has mass, position

and velocity information for every particle. Other information produced by the initial con-

dition generator (such as energy, angular momentum, etc.) could potentially be used in the

simulations, but was left out here since it is common practice to feed only mass, position

and velocity (or momentum) data to simulator software.

The first format conversion we did was from GalactICS ASCII (text) to TIPSY ASCII

formatting. Then, we converted from TIPSY ASCII to the standard (binary) TIPSY format.

Finally, we converted to the Gadget-2 binary format.

1TIPSY is a file format that is part of the larger suite of numerical simulation software created by
the N-Body Shop at the University of Washington, including ChaNGa (Jetley et al., 2008; Menon
et al., 2015).
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3.2 Running Simulations

We used the Gadget-2 software (Springel, 2005) to evolve each of our 11 model galaxies

in isolation. Gadget-2 is a TreeSPH code: all matter types (stellar, gas and dark matter) are

treated as particles, gravitational interactions are computed via a hierarchical tree method

that utilizes multipole expansions, and gas interactions with smoothed particle hydrodynam-

ics (SPH)2.

The physical framework of the simulations can be individualized to a certain extent.

For example, one can choose to compute short-range forces directly while approximating long-

range forces (e.g., the TreePM algorithm). One can also set values related to the cosmological

model of the universe. Some of variables are set in the Makefile used in compiling the

program’s executable, others are set in the parameter file for individual simulations. We

selected the same Makefile and parameter options for all simulations to ensure that the only

differences between models were those specified in creating initial conditions (see Section

3.1.2). See Tables 3.4 and 3.5 for Makefile options and parameter values chosen.

Makefile Options

UNEQUALSOFTENINGS

PMGRID = 256

SYNCHRONIZATION

Table 3.4: Some of the Makefile options used to compile the Gadget-2 executable. From top
to bottom: UNEQUALSOFTENINGS is chosen when all particles are not given the same
softening lengths. PMGRID enables the TreePM method and indicates the mesh dimensions
used to calculate the long-range forces. SYNCHRONIZATION is a TreePM-related option.

Softening length, which is akin to a minimum inter-particle distance, is used to avoid

unrealistically large forces on the particles (and therefore sudden and large velocity changes)

in N-body simulations. Stellar particles are usually given a softening length on the order of

10 pc, and dark matter particles on the order of 1 kpc.

However, because of the large number of particles in our models (≈ 10× greater than

other N-body simulations; see Widrow et al. (2008); Grand et al. (2012a, 2013); Michikoshi &

Kokubo (2014)), we found that a more realistic softening length vastly increased the amount

2Note that, since we did not introduce gas particles into our models, our simulations did not make
use of SPH.
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Parameter Value Unit

TimeBegin 0.0 Gyr

TimeMax 3.0 Gyr

TimeBetSnapshot 0.05 Gyr

MaxSizeTimestep 0.01 Gyr

MinSizeTimestep 0.0 Gyr

OmegaLambda 0 critical density (at z = 0)

UnitMass in g 1.9890× 1033 (1 M�)

SofteningHalo 1.0 kpc

SofteningStars 1.0 kpc

SofteningHaloMaxPhys 1.0 kpc

SofteningStarsMaxPhys 1.0 kpc

Table 3.5: Gadget-2 parameters that were changed from their default values or require spe-
cific values for simulations in Newtonian space. Parameter groupings, top to bottom: (1)
TimeBegin, TimeMax and TimeBetSnapshot specify the beginning and end of the simulation
in internal time, as well as the time between consecutive snapshots. MaxSizeTimestep and
MinSizeTimestep indicate the precision of the time integration. (2) ΩΛ, the cosmological
vacuum energy density, must be zero in Newtonian space. (3) We set UnitMass in g, the
internal mass unit, to approximately 1 M�, or 1.9890× 1030 kg. (4) For consistency, max-
imum softening length for each type is set equal to the minimum value. Note that, within
Gadget-2, bulge and disk particles are classified as “Stars” instead of as types “Bulge” and
“Disk”.

35



of computation time necessary to complete an entire simulation. In a series of tests, we saw

that for disk softening lengths of 0.01 kpc to 0.15 kpc, an increase in total particle number

from 3× 106 to 3× 107 resulted in a decrease of simulated time by about a factor of 100.

Therefore, we set the softening length of all particles to 1 kpc.

Another aspect of running simulations is in choosing the appropriate number of cores

to utilize on a parallel computing system. In general, throwing more and more cores at a

computational problem does not decrease the amount of time needed to finish a given number

of computations since, past some optimum number of cores, communication between cores

and work-load imbalance increases at a rate greater than any additional increase in floating

point operations per second. In a second series of tests, we saw that the increase in completed

simulation time between 26 and 27 cores was substantially less than the increase between

25 and 26 . The same held for the difference between 27 and 28. Since the best computing

platform available to us at the time had nodes with 16 cores each, we settled on 64 cores.
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3.3 Pitch Angle Measurement

After evolving our model galaxies, we simulated observational images from our nu-

merical output, then ran this image data through a two-dimensional, fast Fourier transform.

Finally, we selected pitch angle measurements from the transform output for as many modes

as possible in order to fully describe the evolution of pitch angle.

Our approach differs from that of Davis et al. (2012) in that we automate as much

of the process as possible, including systematic pre-selection of pitch angle vs radius stable

regions, as well as precise, digital spiral overlays of images to confirm pitch angle measure-

ments.

3.3.1 Simulating Observational Data

Since the method we used to measure pitch angles was developed for observational

data (Davis et al., 2012), the numerical simulation output can’t be directly used to obtain

pitch angles. Instead, we made mock observational images of our model galaxies by convert-

ing particle mass and position information from Gadget-2 output files to pixel brightness

values in FITS3 images.

We converted the Gadget-2 snapshots to Tipsy binary format, then transformed that

to postscript using an IDL4 script. Note that any script that mocks observational data

(namely luminosity) from particle information makes some assumptions about the mass-to-

light ratio. In this case, we assumed a constant ratio over all radii. It is also possible to

cut off luminosity below or above certain values. For ease of pitch angle measurement, we

simulated images as if seeing the galaxy face-on.

Finally, we can either use a script that calls ImageMagick5 and Ghostscript6 functions

or use GIMP7 to do the final conversion to FITS files.

3The Flexible Image Transport System, or FITS, is a raster-style format commonly used in astron-
omy to store both images and image data. See http://fits.gsfc.nasa.gov/.
4http://www.exelisvis.com/ProductsServices/IDL.aspx
5http://www.imagemagick.org/script/index.php
6http://www.ghostscript.com/
7http://www.gimp.org/
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3.3.2 Image Preparation for 2DFFT

Prior to measuring pitch angles with 2DFFT, the galaxy image must be modified and

converted into a text file for input into 2DFFT.

2DFFT assumes that spirals in the image are “face on” (not inclined) to the viewer,

that the image is square, with the center of the spiral at the center, and that there are no

other structures present in the image (i.e., other galaxies, stars, etc.).

First, one finds the center of the galaxy in the FITS image, and then the outermost

radius. Using the known center and radius, the image is cropped and finally converted into

text format.

All these steps can be done “manually” by typing the appropriate IRAF8 commands

and visually inspecting the image. However, due to the nature of N-body simulations, large

numbers of images can be produced, especially if dumps are made with a frequency meant

to sample at a high temporal resolution, or if multiple simulations are done.

In our case, we had 11 models and 61 snapshots per model, and we also had to

consider multiple modes per image, so it was prohibitive to perform all steps by hand. We

therefore introduce 2DFFT Utilities9, an open-source collection of scripts and tools created

by the author and used to automate and ease various aspects of the 2DFFT data pipeline.

2DFFT Utilities makes use of Python-based packages such as PyRAF10, Astropy11

and other freely-available software tools. 2DFFT Utilities is a work in progress, and in

its current iteration, is focused on the automation of pitch angle measurement for N-body

simulated galaxies. However, it can be used to measure pitch angles for observational images

that are already face-on.

We used 2DFFT Utilites were used to do batch image pre-processing (such as finding

the center and cropping12), as well as to perform various analysis tasks described in Section

3.3.3.

8http://iraf.noao.edu/
92DFFT Utilties and documentation can be found at: https://github.com/AGES-UARK/2dfft_

utils.
10PyRAF is a product of the Space Telescope Science Institute (STScI), which is operated by AURA
for NASA; see http://www.stsci.edu/institute/software_hardware/pyraf.
11See http://www.astropy.org/, or the Astropy paper (Astropy Collaboration et al., 2013).
12Note that while we manually found the radius for all images used in this work, a script to
automatically find radius is in progress. See: https://github.com/AGES-UARK/2dfft_utils/

pull/2.
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3.3.3 Pitch Angles from 2DFFT Output

Once the text files from the FITS images have been run through 2DFFT, one takes

the output (pitch angle vs radius and pmax vs radius) and plots it (see Section 2.1.2). To

make sense of the 2DFFT data, it is necessary to determine which modes dominate a given

galaxy–its not always sufficient to base this on visual inspection of the image. Determining

pitch angle is not trivial, either. Real and realistically-simulated galaxies are not perfectly

logarithmic throughout the disk, so pitch angle changes with radius. Highly-linear features

such as the bar also artificially inflate pitch angle measurements at radii associated with

those features.

To determine pitch angle for a given image, we adhered to the following guidelines:

1. Confirm dominant mode(s) by visually inspecting the image and pmax vs radius data.

2. Find ranges of radius in which pitch angle is relatively stable for each mode of interest.

(a) Select range outside of bar/bulge/central-most region...

(b) ...But select range that is otherwise closest to the center.

(c) Never select pitch angle from the outer 10 % or so radii.

3. Visually confirm pitch angle by overlaying galaxy image with logarithmic spirals.

(a) The overlay should match the galaxy in the same radial range as chosen.

4. If a reasonable pitch angle cannot be chosen for a particular mode/snapshot/galaxy,

don’t force a measurement.

Stable region selection for pitch angle vs radius was semi-automated by a script in

2DFFT Utilities (slope change.py) that selects candidate ranges based on sudden changes in

slope. The user still has to pick the final range, but the boundaries of the ranges themselves

are chosen in a consistent manner that eliminates human error while allowing the user to

adjust how stable regions are defined. For example, the user can exclude danger areas that

are close to the center and edge (which tend to give artificially high or low pitch angles),

minimum region length as a percentage of the outer radius, minimum slope change to mark

the range boundaries, etc.
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A tool to help with visually confirming pitch angle by digitally over-laying images

with spirals is also included in 2DFFT Utilities (overlay-test cmap-scales.py), soon to be

replaced by a GUI version13.

It should be noted that since all of our models developed bars, it was especially

important to define the area of interest for both selecting stable regions and for visually

confirming pitch angle as being the part of the arms that are close to the ends of the bars

(where the arms originate).

Pitch angle error was calculated in a way similar to that of Davis et al. (2012). We

used the formula,

Eφ =

√(
βσ

λ

)2

+ ε2m (3.9)

Where Eφ gives the total error for the chosen pitch angle, φ; β = 0.95rmax−0.2rmax =

0.75rmax is the length of the acceptable radial range from which we can pick pitch angle,

λ = rout − rin is the length of the chosen stable region in the pitch angle vs radius graph,

σ is the standard deviation of the mean pitch angle from the aforementioned stable region,

and εm is the mode error associated with 2DFFT’s discretization of pitch angle. Note that

while we used a hard upper limit of 0.95rmax (unlike Davis et al. (2012), who used 0.9rmax),

we have very few pitch angles taken from stable regions that overlapped with 0.9rrmax or

greater (see Section 4.1.4).

13The GUI version of the overlay, spiral overlay.py, developed by Erik Monson (currently an un-
dergraduate in our research group), is in progress. See: https://github.com/AGES-UARK/2dfft_
utils/pull/1.
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4 Results

After analyzing the output of 11 model galaxies, which varied only in initial halo

mass concentration (and subsequent but insignificant differences in mass), we find that,

while the initial appearance of spiral arm structure and the exact manifestation of this

structure differs between models, the overall evolution of pitch angle follows remarkably

similar trends. Notably, while spiral arms do not last the entirety of the 3 Gyr period of

evolution, this structure is reoccurring, with pitch angle remaining within a relatively narrow

range throughout time. When we compare mean pitch angle to projected values of virial

concentration, we find that a correlation is at best ambiguous.

4.1 Evolution of Models

4.1.1 General Spiral Structure

All models start out with an overall axisymmetric, circular structure resembling an

S0 galaxy (one without any discernible spirals; see Figure 2.5). After taking on an elliptical

shape, the disks start to form spiral structure at the edges, taking anywhere from 0.950 to

1.950 Gyr to produce clearly-defined bars and two distinct arms.

The values of γ and ah have a noticeable effect on the amount of time it takes for

spiral structure to form (Berlanga Medina et al., 2013, 2014, 2015). As γ increases and/or

ah decreases, it takes longer for spiral structure to form.

After initially forming, the spiral structure appears to remain stable for roughly 0.2

Gyr or more (Berlanga Medina et al., 2013, 2014, 2015). It eventually forms rings or polygons

as the tips of the arms become less defined and start to blur into the opposite end of the

bar from which they originated. The spiral structure may also dissipate entirely, leaving the

galaxy dominated by a bar or pseudo-bar, especially in the later snapshots of the simulations.

However, as demonstrated by panels (i), (m) and (p) in Figure 4.2, the spiral structure is

recurring, usually coming back as a two-armed pattern. We see 2-4 periods of recurring

spiral patterns during the total time observed.

The a1, b1, c1, c2, nfw1 and nfw2 models also see short-lived expressions of four-armed

spirals or four-sided polygons, usually around 1.8-2.7 Gyr, and sometimes again around
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(a) View 1 (b) View 2 (c) View 3

(d) View 4 (e) View 5 (f) View 6

Figure 4.1: The initial appearance of spiral structure depends on γ and ah. The larger the
value of γ or the smaller the value of ah, the longer it takes spiral structure to initially
appear.

3 Gyr. Six-sided polygons may occur briefly but rarely, and odd modes never dominate

enough to express three- or five-sided polygons or arms. The dominance of even modes,

and in particular m = 2, is not surprising since the model template, GalactICS, is virtually

guaranteed to produce a strong bar (see Section 3.1.1).

4.1.2 Pitch Angle

Due to some of the limitations and hurdles discussed in Section 3.3, we were not

able to obtain pitch angle measurements for every single snapshot of the 61 total for each

model. As seen in Figure 4.2, the shape of the spiral pattern is sometimes highly irregular,

non-logarithmic, or not spiral at all.

It is difficult to predict a priori which points in time will successfully yield pitch

angles for all models, so we opted to take as many measurements for all modes (except for

m = 1), for as many snapshots as possible.

Taking pitch angle for all modes is important, as it is not always prudent to force a

particular image of a galaxy into one mode category. For example, when one sees two large

spurs that are not as large as the two main arms, the mode cannot be either two or four
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(a) b1 - 2.350 Gyr (b) nfw1 - 2.600 Gyr

(c) c1 - 2.650 Gyr

Figure 4.3: Examples of snapshots in models b1, nfw1, and c1 where four-armed spiral
structure was observed.
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alone. When spurs/arms are not logarithmic or symmetric about the origin as assumed by

2DFFT, one mode cannot sufficiently describe the pattern. At the present time, we do not

have a method for combining pitch angles from various modes to get one, “global” pitch

angle, but nevertheless, we find it instructive to look at more than one mode to get idea of

when a pitch angle measurement is more likely to be trustworthy (e.g., when various modes

agree or have highly-overlapping stable regions in pitch angle vs. radius data).

Since even modes (and in particular m = 2) dominate both the images simulated from

the N-body snapshots and the 2DFFT data, we initially focused on modes m = 2, 4, 6, but

later acquired data for the odd modes after some of the 2DFFT Utilities tools were updated

and pitch angle measurement became more efficient1. As a result, there are subtle (though

largely insignificant) differences in the even and odd mode datasets. For these reasons, we

present the two datasets separately and focus on the m = 2 mode for detailed analysis.

Pitch angle stays remarkably stable over time. As seen in Figures 4.4, all modes

tend to jump around in the first 0.3-0.5 Gyr or so, then go through periodic eras of relative

stability followed by instability. This is not surprising given the overall patterns of evolution

we see in the snapshot images of our model. We do see some decrease in pitch angle over

the eras of stability, with jumping around.

The snapshots with negative pitch angles are instances at which 2DFFT “found”

spiral arms winding in the counter clockwise direction (instead of clockwise, as they do

during most of the evolutionary period). Interestingly, the absolute values of the negative

pitch angles usually remain close to the values of the positive pitch angles.

On the whole, pitch angle does not differ greatly between models. Figures 4.5, 4.6,

4.7 and 4.8 show pitch angle evolution for the a, b, nfw and c group models, respectively.

The m = 2 mode is the most stable overall, showing less variation than all other modes.

In general, smaller modes (which were easier to measure, and have more data points as a

result), show less variation than larger modes, and less error as well. Roughly speaking,

pitch angle absolute values tend to stay between 20◦-30◦, and tend to become larger as mode

values increase.

The distribution of pitch angles over the entire simulation period reflects this, showing

a strong peak for m = 2 for nearly all models. Figure 4.9 shows that as even mode number

1Erik Monson updated some of these tools and took measurements for modes m = 3, 5 using these
updates, while the author took measurements for modes m = 2, 4, 6 using an preliminary version of
2DFFT Utilities. Therefore the odd mode dataset is slightly different from the even mode dataset.
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(a) Even Modes - a1

(b) Odd Modes - a1

Figure 4.4: An example of pitch angle evolution over time (model a1). Since even modes
dominate all models (in particular m = 2 and m = 4 to some extent) and for visual clarity,
we show even and odd modes separately.

46



(a) Even Modes - a1 (b) Odd Modes - a1

(c) Even Modes - a2 (d) Odd Modes - a2

(e) Even Modes - a3 (f) Odd Modes - a3

Figure 4.5: Pitch angle evolution over time for models a1, a2, and a3.
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(a) Even Modes - b1 (b) Odd Modes - b1

(c) Even Modes - b2 (d) Odd Modes - b2

(e) Even Modes - b3 (f) Odd Modes - b3

Figure 4.6: Pitch angle evolution over time for models b1, b2, and b3.
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(a) Even Modes - nfw1 (b) Odd Modes - nfw1

(c) Even Modes - nfw2 (d) Odd Modes - nfw2

Figure 4.7: Pitch angle evolution over time for models nfw1 and nfw2.
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(a) Even Modes - c1 (b) Odd Modes - c1

(c) Even Modes - c2 (d) Odd Modes - c2

(e) Even Modes - c3 (f) Odd Modes - c3

Figure 4.8: Pitch angle evolution over time for models c1, c2, and c3.
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increases, the distribution spreads out and the peak moves to greater pitch angle values.

(a) m=2 (b) m=4

(c) m=6

Figure 4.9: Pitch angle distribution for even modes of model a1. A kernel density estimation
(KDE) is used to approximate the probability distribution function (PDF) of pitch angle,
assuming a normal distribution. Bin width was chosen and PDF fitted automatically using
the distplot function of the Python statistical visualization library, Seaborn (Waskom et al.,
2015).

Odd modes do not necessarily follow the same trend. For a given model, the m = 5

mode does generally have a peak that is shifted to a larger pitch angle than m = 3, but as

Figure 4.10 shows, the distribution is not necessarily flatter. Overall, the m = 2 and m = 4

have much stronger peaks than all other modes (3, 5 and 6), suggesting that 2DFFT was

consistently picking up stronger signals from the former.
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(a) m=3 (b) m=5

Figure 4.10: Pitch angle distribution for odd modes of model a1. The sharp peak for m = 5
is unusually high—all other models have generally flatter distributions.

4.1.3 Eras of Stable Pitch Angle

Since we cannot pick any regular sampling of snapshots and be guaranteed to have

pitch angle measurements for all models and all modes, we decided to try and pick out

periods of time over which pitch angle remained relatively stable in the m = 2 mode for all

models. We only looked at m = 2 since other modes have significantly less measured pitch

angles and exhibit less stability over time. We wanted to find periods of time during which

all the models had overlapping eras of stability in order to compare likely virial concentration

values with pitch angle.

To pick out eras of stability, we adapted our slope change.py tool from 2DFFT Util-

ities (see 3.3.2) to highlight periods of time where pitch angles for consecutive snapshots

did not change by more than a threshold amount, which we varied from 5◦/snapshot to

6◦/snapshot (where 1 snapshot = 0.05 Gyr). The eras of stability had to be at least 3

snapshots long, or 5% of the total 3 Gyr period.

As seen in Figure 4.12, it was not possible to find common eras of stability for all

models that lasted less than 1 Gyr or more. This was due to a combination of missing pitch

angle measurements (for snapshots with highly-irregular or non-logarithmic spiral structure)

as well as periodic instability. The only way to pick out more common eras would be to

accept higher rates of change as stable (larger than 6◦/snapshot). Since the only possible

common eras of stability sample from such a large fraction of the total evolutionary period,

we decided to compare likely virial concentration values to the mean pitch angle over the

52



(a) a1 (b) a2 (c) a3

(d) b1 (e) b2 (f) b3

(g) nfw1 (h) nfw2

(i) c1 (j) c2 (k) c3

Figure 4.11: Pitch angle distribution for m = 2, all models.
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Figure 4.12: Eras of pitch angle stability for m = 2, all models. The threshold for instability
is 6◦/snapshot or 120◦/Gyr.

entire 3 Gyr period instead.

4.1.4 Regions of Stable Pitch Angle

When measuring pitch angle, two of our selection criteria were the location and length

of the stable region in pitch angle vs. radius graphs. We based this on the idea that the stable

region is physically significant—it must not be too small, so that it covers some minimum

radial extent, but it must also not be part of the bar, nor be narrow while laying in the outer

5-10% of the disk.

We looked at the location and size of the stable region with respect to the total disk

radius (rout) for m = 2 at every time for which we measured a viable pitch angle. As the

dominant mode, perhaps it is unsurprising that m = 2 yielded the most viable pitch angle

measurements in all models. Since m = 2 pitch angles cover most of the 3 Gyr simulation

period, we choose this mode to focus on for this aspect of analysis.
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Figure 4.13 shows stable region evolution for one model, a1, and marks the mean

value for the center of all the regions. As seen in Figure ,we found that most of our pitch

angles were covering much the same radial extents over the entire simulation period. This

means that, as the disk grew, making rout larger, the regions with the most stable pitch

angles tended to move away from the center at a proportionate rate.

Figure 4.13: The evolution of the stable region over time for model a1 and mode m = 2.
The blue dots show the centers of the stable regions, and the green vertical line shows the
center mean.

We cannot compare pitch angles across all models for all times, but we can identify

overlapping periods of time during which all models have reasonably reliable pitch angle

measurements. We have done so, and describe these results below.
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4.2 Pitch Angle vs Virial Concentration

Since we were not able to isolate regions of time during which pitch angle was stable

enough to compare across all models, we choose to take the absolute value of every available

pitch angle measurement for mode m = 2, and take means for every model. Then, since

we did not have direct measurements for virial concentration, we took likely Rs values from

Widrow et al. (2008) and used Equations 3.7 and 3.8 to calculate projected cvir. This data

can be found in Table 4.1.

As seen in Figure 4.16, there is a suggestion of a correlation between virial concen-

tration of the dark matter halo and the absolute value of the mean pitch angle over time,

specifically that of larger cvir values corresponding to smaller |P |. However, the projected

values of virial concentration and the measured values of pitch angle lie in a wide range. As

is evident in the linear regression fit of the data (Figure 4.17), the sample size is too small to

make a prediction about the behavior of these two parameters outside the narrow range of

18.5884◦ to 21.9232◦ for absolute pitch angle. The Pearson coefficient of correlation, which

corresponds to high and low correlation at absolute values of one and zero, respectively, is

ambiguous at −0.4900.
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Model |Pmean| |Pmedian| σ|P | Min. cvir Max. cvir

a1 20.9548 21.2073 4.6540 25.0000 65.0000

a2 19.2275 19.6180 5.0712 8.3333 21.6667

a3 21.3375 21.9468 5.6318 5.0000 13.0000

b1 18.6141 19.7759 6.1312 41.6667 108.3333

b2 18.5884 19.6872 5.1841 11.1111 28.8889

b3 21.9232 21.8253 5.2984 6.6667 17.3333

nfw1 19.8652 20.9102 6.4326 40.0000 104.0000

nfw2 20.9770 21.2579 4.8880 13.3333 34.6667

c1 18.7756 19.1808 7.4907 50.0000 130.0000

c2 19.2954 20.4696 5.4082 16.6667 43.3333

c3 19.9811 20.9076 4.8755 10.0000 26.0000

Table 4.1: Pitch angle statistics for all models, m = 2. Mean and median absolute pitch
angles are very close, so we opted to use the means to compare against projected cvir.
Projected minimum and maximum cvir values are calculated using likely values of Rs and
Equations 3.7 and 3.8. See Section 3.1 for more details, and Table 3.1 for corresponding γ
and ah values.
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Figure 4.16: |Pmean| vs projected cvir for m = 2. Data same as 4.1. The midpoint of projected
cvir values is plotted with respect to the y-axis, while the projected range is indicated by
the vertical error bars. Mean values for absolute pitch angles have horizontal error bars
indicating the standard deviation. There is no strong correlation between pitch angle and
virial concentration, but a relationship cannot be ruled out, either.
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Figure 4.17: Same data as and limits as in Figure 4.16, but with a linear regression fit and
marginal distributions, as well as a Pearson correlation coefficient and the two-tailed p-value
for testing non-correlation (the last two computed with SciPy’s stats.pearsonr function).
The linear regression fit suggests a correlation between larger virial concentration and smaller
pitch angle, but the fit is not tight enough to support this conclusion. The Pearson correlation
coefficient gives ambiguous results, and the p-value is not reliable for small sample sizes. The
small sample size is reflected in the marginal distributions for both pitch angle and virial
concentration.
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5 Discussion

5.1 Testing Theories and Predictions

As discussed in Chapter 2, there are several aspects that one could test when trying

to differentiate between theories of spiral structure and the influence of matter concentration

(including dark matter) on the evolution of the disk. It is not within the scope of this work

to test all of them, but there are a few we can comment on per our results.

5.1.1 Longevity of Spiral Patterns

Most spiral structure formation theories predict the longevity of the spiral arms.

Density wave theory posits that spiral structure is stable over time due to the standing

density wave. Stochastic, self-propagating star formation and the manifold theory agree

with longevity of spiral structure as long as there is sufficient material in the disk to power

their respective mechanisms. Swing amplification theory states that spiral arms are short-

lived since they tend to wind down after some time, but only the recurrent picture of swing

amplification/density waves allows for periodic spiral patterns.

Our results find that spiral arms are not long-lived, with visible patterns lasting, on

average, a few hundred Myr. However, they are recurring, which suggests that something

like periodic swing amplification could be responsible for this structure, or that transient

structure is being regenerated.

5.1.2 Pitch Angle

Since swing amplification theory and SSPSF depend on differential rotation, they

predict that pitch angle will get smaller over time due to winding of the spiral arms. Only

the density wave and manifold theories make specific predictions about pitch angle beyond

this–they anticipate specific forms based on other aspects of galactic structure.

Density wave theory predicts that higher levels of central baryonic (not necessarily

dark matter) mass lead to smaller pitch angles, in particular central bulge mass. The density

of gas in the disk also plays a role. The dark matter is a small fraction of the central bulge

mass and (assuming a spherical distribution) should not contribute to the disk density. There
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is ambiguity about the role of dark matter concentration in density wave theory, but some

argue for the same general trend. The manifold theory predicts that stronger bars and falling

(instead of flat or rising) rotation curves lead to stronger spiral arms.

We primarily looked at a possible relationship between dark matter virial concen-

tration and pitch angle, so we did not investigate other aspects of our model galaxies. We

found that a large range of projected virial concentration values produced very little varia-

tion in pitch angle. The fact that the dark matter concentration has, at best, a very weak

correlation with spiral arm pitch angle is compatible with the density wave theory.

We also looked at how pitch angle evolved over time and found that it remained

relatively stable over most of the 3 Gyr period of evolution, in contrast to findings by

Grand et al. (2013); Michikoshi & Kokubo (2014) (although the former did not sample the

simulation time period and the later looked only at localized spiral structure, and did not

evolve an entire galaxy).

5.1.3 What We Cannot Test

Its worthwhile to note what aspects of spiral arm formation we do not purport to

test. We can’t comment on any processes involving gas or star formation since our model

was gravity-only. We did not measure bar strength or other aspects of the central part of

the galaxy which have previously been looked at in conjunction with pitch angle and/or

dark matter concentration. We also cannot discern between the density theory and manifold

theory in terms of particle movement with respect to the arms.

5.2 Summary

Though our results cannot rule out a relationship between virial concentration and

pitch angle, we can take away a few key points about the evolution of spiral structure and

that of barred spiral galaxies in particular. We see transient but reoccurring patterns in the

disk. The spiral arms are both qualitatively and quantitatively similar in each iteration. The

pitch angle distribution in final cvir − |P | data is rather narrow compared to observational

data in the literature. As a result, any linear fit between increasing virial concentration and

decreasing, absolute pitch angle is ambiguous, neither supporting nor rejecting this particular

prediction. These results do not sufficiently test any one theory, but they do support one

that predicts periodic, recurring spiral arms within a relatively narrow range of pitch angles
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over time.
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