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THE EFFECTS OF GROWTH TEMPERATURES
ON THE FATTY ACID COMPOSITION OF
ISOLATED CHLOROPLASTS FROM TWO SPECIES
DIFFERING IN HEAT SENSITIVITY

ROY Z. GEHRING
Department of Biological Sciences
Arkansas State University
State University, AR 72467

GLENN W. TODD
Department of Botany and Microbiology
Oklahoma State University
Stillwater, OK 74078

ABSTRACT

Lipid analyses of chloroplasts isolated from wheat ( Triticum aestivum L. cv. Arthur) and milo (Sorghum
bicolor cv. Funk's hybrid 522) suggest no major heat effect on lipid class distribution. Assuming milo
is more heat tolerant than wheat and that increased saturated/unsaturated fatty acid values increase ther-
mal stability, changes in sulfoquinovosyldiglyceride (SL) appear to be more important than phospha-
tidylglycerol (PG) in conferring thermal stability to isolated chloroplasts.

INTRODUCTION

Although living organisms have the capacity to grow and maintain
metabolic activity between —2°C and 100°C, individual organisms have
much narrower temperature limits. The limits of temperature at which
different organisms thrive may be related to membrane stability
(Kleinschmidt and McMahon, 1970), Pearcy et al. (1977) cited evidence
identifying photosynthesis as the most thermal sensitive process in
cellular metabolism. Santarius (1975) compared the effects of heat on
four different chloroplast stroma enzymes and found them to be inac-
tivated at much higher temperatures than the photosynthetic process
suggesting that chloroplast membranes are the most thermal sensitive
component of the photosynthetic apparatus agreeing with Daniell et
al. (1969).

The photosynthetic apparatus of many plant species is capable of
physiological acclimation to changes in the prevailing temperatures.
Pearcy (1978) suggested that thermally induced changes in chloroplast
lipids are related to the greater thermal stability of the photosynthetic
apparatus at higher growth temperatures.

High growth temperatures have consistantly been shown to induce
increased saturated/unsaturated fatty acid ratios in lipids (Kleinschmidt
and McMahon, 1970; Pearcy, 1978; Holton et al. 1964). The higher
proportions of saturated fatty acids in lipids could increase thermal
stability of membranes due to higher melting temperatures. Although
all membrane lipids do not exist in the same fluidity state at any given
temperature, the cells are able to function as long as enough of the lipids
maintain the proper level of Nuidity.

Shinitzky and Henkart (1979) suggested that although membrane
fluidity can be affected by changes in lipid composition and
saturated/unsaturated fatty acid ratios, lipid/protein ratios as well as
changes in sterol levels can also be important factors. Chapman et al.
(1983) suggested that the optimum fluidity levels in pea thylakoids is
maintained by the lipid/protein ratios rather than changes in lipid
composition.

Pearcy (1978) stated that if lipids are important in conferring ther-
mal stability to photosynthesis, the mechanism is very complex. Pear-
¢y (1978) further suggested that the theory postulated by Anderson (1975)
identifying the galactolipids monogalactosyldiglyceride (MGDG) and
digalactosyldiglyceride (DGDG) as components of the membrane fluid
bilayer and sulfoquinovosyldiglyceride (SL) and phosphatidylglycerol
(PG) as protein boundary lipids could be significant.

Chen et al. (1982) stated that although high temperature adaptations
have been reported for many noncrop plants, very little information
is available concerning adaptations in crop plants.

Comparisons of electrolyte leakage from heated chloroplasts isolated
from Sorghum bicolor cv. Funks hybrid 522 (milo) and Triticum
aestivum L. cv. Arthur (wheat) grown at 20°C and 31 °C suggest that
milo is more thermotolerant than wheat (unpublished data). The prin-
cipal objective of this study was to compare milo and wheat grown at
20°C and 31°C to ascertain what, if any, correlation exists between
chloroplast lipids and thermotolerance.

MATERIALS AND METHODS

Plant Materials and Growth Conditions.

Seeds of milo (Soerghum bicolor ¢v. Funks hybrid 522) and wheat
(Triticum aestivum L. cv. Arthur) were grown in two Sherer model CEL
37-14 environmental chambers at constant day/night temperatures of
20°C or 31°C programmed for sixteen hours of light and eight hours
of darkness with the light intensity increasing in the moming and decreas-
ing in the evening to simulate normal environmental conditions. Each
growth chamber contained eight 100-watt incandescent bulbs and six-
teen mixed Sylvania soft-white and Gro-lux fluorescent tubes,

Isolation of Chloroplasts.

Chloroplasts were isolated from 5-10 grams of leaf tissue by modifica-
tions of the methods of Leech (1966) and MacKender and Leech (1974).
The deveined leaves were cut into small pieces into a Waring blender
containing 70 milliliters of ice-cold 0.3M sucrose in 67mM Sorensen
phosphate buffer (pH 6.8) and homogenized by turning the blender on
high for 5 seconds then off for 5 seconds. This on-off procedure was
continued for one minute of grinding time.

The homogenate was filtered through one layer of nylon hose which
was squeezed to remove as much crude filtrate as possible from the
macerated leaf tissue. This removed most of the leaf fragments. The
crude filtrate was filtered through eight layers of nylon hose three times
(do not squeeze) to yield the crude chloroplast suspension.

The filtrate was centrifuged at 3000xg for 15 seconds at 4 °C in a Sor-
vall RC2-B superspeed refrigerated centrifuge using a Sorvall 50ml
capacity swinging bucket head. The pellet was collected, resuspended
in 10ml of cold buffer in 0.3M sucrose and layered on top of 10ml of
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phosphate buffer in 0.4M sucrose (pH6.8) and centrifuged at 500xg for
12 minutes. The pellets consisted primarily of intact chloroplasts as deter-
mined under phase contrast microscopy using a Wild Heerbrugg M20
phase microscope under 400x magnification. Intact chloroplasts appear
bright green with bright halos while ruptured chloroplasts appear gray
and lack the halos,

Lipid Extraction and Isolation,

The chloroplast pellet was dried under N, and resuspended in Sml
of methanol. The chloroplasts in methanol suspension were heated under
N at 55°C in a water bath to break the lipids away from the proteins
in the membranes being careful not to let all of the methanol evaporate,
The chloroplasts in methanol suspension were transferred to a 15ml
glass vial and enough chloroform added to make a 2:1 chloroform-
methanol suspension with a total volume of 15ml (MacKender and
Leech, 1974). Vials were oven preheated at 35°C. After 15 minutes,
N; was again bubbled through the suspension and the cap was screwed
down tightly. Vials were left in the oven overnight (about 15 hours).

The suspension was transferred to a test tube and fifteen ml of 2M
KC1 were added and mixed thoroughly by bubbling N, through the
suspension. After standing a short period of time, the suspension
separated into two layers with the chloroform and lipids on the bot-
tom. The upper layer was aspirated and discarded; 2M KC1 was again
added and mixed thoroughly under Ni. The upper layer was aspirated
and discarded. The chloroform suspension remaining was washed twice
with 10ml of distilled water which was aspirated off and discarded.

The chloroform suspension was passed through a column of
anhydrous Na,;SO, to remove all water, collected in a clean, weighed
vial, and dried under N; in a water bath at 35 °C. The vial containing
the lipids plus large quantities of pigments was reweighed. The weight
of the contents was determined by subtracting the weight of the vial.

The lipid-pigment extract was stored in the freezer at —20°C until
analyzed.

Separation of Lipids by Thin Layer Chromatography.

Twenty-five grams of silica gel G (Acc. to Stahl) were mixed with 50ml
of ethanol and water (1:1) to form a homogeneous slurry. Glass TLC
plates (20cm x 20cm) were coated with the silica gel G slurry 250 microns
thick using a Desaga Brinkman spreader. After drying, the plates were
stored in a Brinkman storage cabinet over anhydrous CaSo, until us-
ed. (TLC plates were activated by heating 30 minutes at 110°C just prior
10 use.)

Two dimensional thin layer chromatography was used to separate
the lipid species according to the method of Schweriner and Biale (1973).
The lipid extract was resuspended in 100 ul of chloroform. Twenty
microliters of lipid extract were transferred to the TLC plate, dried under
N; and placed in the developing tank containing chloroform-methanol-
water (65:25:4). Following lipid separation, the plate was removed from
solvent system 1 and dried under N;. The front was measured and the
silica gel scraped off to remove any impurities which could interfere
with the separation of the second solvent system. The plate was rotated
90°C and immersed in acetone-acetic acid-water (100:2:1) which effec-
tively separated the galactolipids and sulfolipids from the phospholipids.
The addition of acetic acid to the acetone helped prevent trailing, the
loss of neutral lipid fatty acids, and contamination by other lipids
(Schwertner and Biale, 1973).

Lipid spots were visualized with iodine and outlined using a clean
scribe before the color faded. Measurements were made and RF values
calculated for each solvent system. The different lipid species were iden-
tified using standards and RF values published by Schwertner and Biale
(1973). The spots were scraped from the plates into clean, oil-free 15
mi vials. Nine lipid classes were separated: phosphatidylserine (PS),
phosphatidylinesitol (P1), phosphatidylcholine (PC), sulfoquino-
vosyldiglyceride (SL), phosphatidylglycerol (PG), phosphatidylethan-
olamine (PE), digalactosyldiglyceride (DGDG), diphosphatidylglycerol
(DPG), and monogalactosyldiglyceride (MGDG).

Transesterfication of Lipids.
Transesterfication of lipid fatty acids was accomplished by adding
0.5ml of 2,2-dimethoxypropane and 0.5ml of 5% HCI in lipopure

methanol (Applied Science Laboratories). After bubbling N, through
the solution, the vials were loosely capped and placed in an oven at
50°C for 10 minutes. N, was again bubbled through the solution. The
mouth of the vial was covered with teflon tape, the cap was screwed
down tight, and the vials incubated overnight in the oven at 50°C (12-15
hours).

Following transesterfication, an equal volume of deionized water was
added followed by 3ml of n-hexane, The mixture was mixed by vigorous-
ly bubbling N; gas through the mixture, The upper hexane layer con-
taining the fatty acid methyl esters was drawn off with a Pasteur pipette
and dried by passing it through an anhydrous Na,SO, column. The ef-
fluent was collected in a clean vial. This procedure was repeated three
times to remove all fatty acid methyl esters from the aqueous layer.
The Na;SO, column was washed with Sml of n-hexane which was also
collected in the vial.

The n-hexane fatty acid mixture was evaporated under N, in a water
bath heated at 45 °C. The farty acid methyl esters were resuspended in
25 pl of carbon disulfide for injection onto the gas chromatograph.
Carbon disulfide gives a smaller peak than hexane and a better base
line with a hydrogen flame detector (Allen and Good, 1971).

Gas Chromatography and Quantitation of Lipids.

The concentrated fatty acid methyl esters were chromatographed on
a Beckman gas liquid chromatograph with a matched pair of 6 foot
x 2 mm ID glass columns containing 15% diethyleneglycol succinate
(DEGS) on chromosorb W (HP) 100/120 mesh. Separation was ac-
complished with a column temperature of 175°C (isothermic), detec-
tor temperature of 250°C, and a helium flow rate of 40 ml/minute.
Sample injections were made using the solveni-flush technique.

The retention time of each methy! ester was determined using stan-
dards obtained from Sigma Chemical Company and data reported by
Allen et al. (1966). The retention time of each fatty acid was calculated
relative to palmitic acid using three runs of each fatty acid methyl ester,

The lipid fatty acids were quantitated by multiplying the peak height
by the peak width at one half peak height. Measured peak areas were
converted to a molar quantity (mole adjusted peak area) by multiply-
ing the peak area by a proportionality factor calculated by dividing the
molecular weight of each fatty acid by the molecular weight of the in-
ternal standard, heptadecanoic acid. The fatty acid composition of each
lipid was expressed as the mole percent of that lipid. The chloroplast
lipids were quantitated by the method of Allen and Good (1971). These
data were compiled from two samples of leaves from each species
analyzed. Lipid analyses were repeated three times per sample.

RESULTS

The fatty acid composition of both wheat (Table 1) and milo (Table
2) chloroplast lipids showed higher ratios of saturated/unsaturated fatty
acids grown at 31 °C in seven of the nine lipids analyzed (Tables 3 and 4).

Palmitic acid (16:0) was the major saturated fatty acid in both milo
and wheat. Significant increases in palmitic acid (16:0) were determin-
ed for PG (+21.4%), PE ( +20.3%) and DPG ( + 16.9%) in wheat while
only SL (+ 14.4%) showed significant increase in milo chloroplasts.
Stearic acid (18:0) did not appear to change significantly with growth
temperature in either species studied. Although increasing at 31°C in
seven of nine wheat lipids analyzed, the increase was significant only
in PG ( + 7.5%), the most abundant chloroplast phospholipid. Stearic
acid (18:0) increased in only four of nine milo lipids analyzed. Minor
increases did occur in MGDG ( + 1.6%) and DGDG (+ 2.7%), the two
most abundant chloroplast lipids.

Monognoic fatty acids (16:1, 18:1) were found in all lipids analyzed
from both wheat and milo. However, the data does not suggest any
significant temperature induced rearrangement of these acids.

Surprisingly, linoleic acid (18:2) was the most abundant fatty acid
isolated from all wheat lipids analyzed at 20 °C. In milo, however, linoleic
acid (18:2) was the second in abundance to palmitic (16:0) in PG, which
was the most abundant phospholipid in both species. Decreases in
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Table 1. Fatty acid distribution in the various lipid species of wheat chloroplasts (mole percent).
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Table 2, Fatty acid distribution in the various lipid species of milo chloroplats (mole percent).
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linoleic acid (18:2) occurred in all wheat chloroplast lipids analyzed ex-
cept SL and DGDG. These increases are more significant on the basis
of total lipids since DGDG is the second most abundant chloroplast
lipid. Linoleic acid (18:2) decreased in seven of nine milo lipids at 31 °C.
The most significant decrease occurred in SL (~11,3%). Significant
increases were observed in milo PE, but this is a very minor chloroplast
lipid.

Contrary to reports by Pearcy (1978), hexadecatrienoic acid (16:3)
was found to be a component of all lipids analyzed in both wheat and
milo. However, growth temperature induced alterations appear minor
and unpredictable in all lipids analyzed from both wheat and milo.

Although linolenic acid (18:3) has been reported as the major
chloroplast lipid fatty acid (Pearcy, 1978; Allen et al., 1966; MacKender
and Leech, 1974), data reported here do not concur. Linolenic acid (18:3)
was lower in concentration than linoleic (18:2) in all lipids analyzed
in both wheat and milo. Contrary to previous reports, both « and
linolenic acid (18:3) were found in all chloroplast lipids isolated from
both milo and wheat.

Twenty carbon fatty acids were found in all chloroplast lipids analyzed
from both plant species. Dienoic and trienoic species 11,14 eicosadienoic
acid (20:2) and 11,14,17 eicosatrienoic acid (20:3) were the major twenty
carbon fatty acids with trace amounts of eicosaenoic acid (20:0).
Temperature induced alterations in these fatty acids were inconsistent.

Monoenoic fatty acids did not appear to be significant markers for
temperature induced lipid alterations. Therefore, measurements of
temperature induced changes in the degree of unsaturation of chloroplast
lipids were based on dienoic and trienoic acids (Tables 3 and 4). Changes
in levels of saturation of MGDG, DGDG, SL, and PG are of major
importance. MGDG and DGDG are the most abundant chloroplast
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lipids while PG and SL are the two most abundant phospholipids (Table
5). PG (—41.8%), DGDG (— 10.7%), and MGDG ( — 3.3%) from wheat
chloroplast registered decreases in the sum of dienoic and trienoic
fatty acids at 31 °C while SL ( + 7.6%) posted a slight increase. Milo,
however, showed decreased levels of unsaturation of fatty acids in all
four of these lipids. The largest drop in unsaturation occurred in SL
(—12.2%) while the smallest drop occurred in PG (— 1.8%) in sharp
contrast to PG unsaturation at 31 °C from wheat.

The role of MGDG and DGDG as the major chloroplast lipids of
both species makes any changes in their concentrations important to
note. MGDG increased slightly in wheat at the higher growth
temperature decreasing slightly in milo, DGDG, however, was altered
in the opposite direction, decreasing slightly in wheat while increasing
by the same amount in milo, The ratios of MGDG/DGDG (Table 5)
at increasing growth temperature also registered inexplicable changes
with growth temperature increasing in wheat at 31 “C while decreasing
in milo.

CONCLUSIONS

Raju et al. (1976) suggested that the lipids of biomembranes may play
a significant role in thermophily. Fatty acid analyses of lipids extracted
from thermophilis fungi (Raju et al., 1976), higher plants (Pearcy, 1978),
and thermophilic alga (Kleinschmidt and McMahon, 1970) suggest that
saturated fatty acids predominate at higher temperatures.
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Table 3. A comparison of saturated to unsaturated fatty acids, percent dienoic fatty acids, percent trienoic fatty acids, and the sums of percent
dienoic and trienoic fatty acids in lipids isolated from wheat grown at 20°C or 31°C.

(x 100) % % (D1 + Tri)

Sag!Unsat6 Dienoic Tglanoico Pogyunsaca

Lipid 20°C 31 C 20°C jlc 20°C j1°¢C 20°C 31°C
Phosphatidylserine 27.6 38.1 317 26.8 27.1 32.5 64.8 59.3
Phosphatidylinositol 23.0 28.2 44,6  36.1 26.5 28.2 71.1  64.3
Phosphatidylcholine 27,1  31.1 38.5 32.2 25.5 30.0 64.0 62.2
Sul foquinovosyldiglyceride 30.4 21.2 35.9 42.6 27.7 28.6 63.6 71.2
Phosphatidylglycerol 14.0 54.7 49.5 23.2 30.7 15.2 B0.2 38.4
Phosphatidylethanolamine 9.1 31.3 48.0 27.8 34.1  27.4 B82.1 55.2
Digalactosyldiglyceride 17.4 30.5 41.7 41,8 32.9 22.1 74.6 63.9
Diphosphatidylglycerol 19.0 46.2 47.8 28.7 2547 25.7 73.5 54.4
Monogalactosyldiglyceride 25,5 23.3 42.6 31,4 22.1 30.0 64.7 61.4

Table 4. A comparison of saturated to unsaturated fatty acids, percent dienoic fatty acids, percent trienoic fatty acids, and the sums of percent
dienoic and trienoic fatty acids in lipids isolated from milo grown at 20°C and 31°C.

(x 100) % % (Di + Tri)

Sat /Unsat. Dienoic Trienoic Polyunsat.
Lipid 20°% 31% 20%  31% 20% 31% 20% 3%
Phosphatidylserine 26.4 47.3 39.9 29.4 29.2 27.9 69.1 57.3
Phosphatidylinositol 32.0 33.0 37.0 35.0 22.3 25.1 59.3 60.1
Phosphatidylcholine 23.2 25.8 45,5 39.5 27.4 26.6 72.9 66.1
Sulfoquinovosyldiglyceride 19.3  139.9 39.8 33.1 32.9 27.4 72.7 60.5
Phosphatidylglycerol 47.4  51.7 29.8 44.9 26.2 9.3 36.0 54.2
Phosphatidylethanolamine 33.9 28.4 32.2 48.1 29.9 16.8 62.1 64.9
Digalactosyldiglyceride 36.1 31.8 44,0 38.8 20,4  20.7 64.4  59.5
Diphosphatidylglycerol 34.6 60.0 34.2 22.6 28.8 25.4 63.0 48.0
Monogalactosyldiglyceride 24,4  31.8 39.8 41.3 26.9 22.7 66.6 64.0

Bowler et al. (1973) postulated that the membrane is the primary
lesion of heat death and that changes in the properties of membranes
during thermal acclimation may be responsible for resistance to heat
stress..

Data reported by Cossins (1976) on the effects of high temperature
on crayfish indicated that thermal acclimation has no effect on the
overall phospholipid class distribution or content agreeing with data
presented here. Further analyses of data led Cossins (1976) to conclude
that the primary event leading to the breakdown of membrane
permeability may not be a breakdown of the bulk membrane lipid bilayer
due to increased Muidity or phase change but rather may be the result
of changes in the specific lipid halos of specific membrane bound en-
zymes thus inactivating these enzymes.

Farkas and Csengeri (1976) suggested that differences in the fatty
acid synthesizing systems would facilitate the production of the necsesary
chain lengths and saturated to unsaturated proportions at a particular
temperature. They expressed confidence that this type of regulation is
sensitive and rapid enough to ensure the proper functioning of cell mem-
branes under changing conditions.

The well-known relationship between phase transition temperatures,
carbon chain length, and double bonds explains why the same lipids
species may have different temperatures for phase transition.

One might postulate that lipid fatty acid rearrangement confers ther-
mal stability by increasing the phase transition temperature due to the
higher melting temperatures of more saturated lipid fatty acid.

The fatty acid rearrangement associated with increased temperatures
were similar to those reported in leaf senescence. Newman et al. (1973)
found that senescence resulted in a decline in linolenic acid (18:3) with
a concomitant relative increase in palmitic acid (16:0).

Tables 3 and 4 support the reported conclusions of Kleinschmidt and
McMahon (1970), Holton et al. (1964), and others, indicating that plants
adjust to higher growth temperatures by increasing the ratio of saturated
to unsaturated fatty acids of their lipids. It is tempting to relate these
changes (o the relative thermal sensitivity of each plant species analyzed.

Wheat appears to adjust the saturated/unsaturated ratio primarily
in PG, DPG, PE and DGDG in decreasing order, while milo adjusts
primarily in DPG, SL, PS and MGDG. Since MGDG, DGDG, and
PG are the most abundant chloroplast lipids, one could assume that
changes in these lipids would be most important in conferring thermal
stability. Bjorkman et al. (1976) included SL with PG as the major lipids
involved in conferring thermal stability due to Anderson’s (1975) theory
identifying PG and SL as the membrane protein boundary lipids (halos)
even though SL is a relatively minor chloroplast component (5-7%).

The difference in the ratio of saturated to unsaturated fatty acids
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Table 5. The lipid composition of wheat and milo chloroplasts grown
at 20°C or 31°C (mole percentage of total lipid).

Wheat Milo

Liptd 20% 311% w% 0%
Phosphacidylserine 1 1 1
Phoasphatidylinoaitol 2 1 ) 2
Fhosphat (dylcholine L] 5 ] 1
Sulfoquinovosyldiglyceride & 3 6 7
Phosphacidylglycerol 10 11 11 10
Phosphatidylethanolamine 1 1 1 1
Digalaceosyldiglyceride 38 26 N 13
Biphosphatidylglycerol 1 | 1 1
Monogalactosyldiglyceride Ll b Lo I8
Ratio of MGDG/NGDG 14t 1.69 1.29 1.15

Tlie results are the means of triplicate analynes.

from isolated wheat and milo chloroplasts grown at 20°C and those
grown at 31 °C showed the expected increases at higher temperatures,
However, all lipid species did not alter their lipid fatty acid equally.
Chloroplast PG isolated from wheat grown at 31 °C showed increased
saturated/unsaturated ratio of more than 40%, while PG isolated from
milo chloroplasts increased less than 4% . Analyses of SL fatty acid from
wheat and milo showed increases of 20% in milo (31 °C) and an unex-
pected decrease of 9% in wheat (31°C).

If, as the evidence suggests, milo is more thermal tolerant than wheat,
then changes in saturated/unsaturated fatty acids of the two proposed
membrane fluid bilayer lipids indicate that SL is more effective than
PG in conferring thermal stability to these membranes. The rise in SL
isolated from milo grown at 31 °C coupled with its significant drop in
unsaturation could also be important. Furthermore, a comparison of
temperature induced changes in dienoic and trienoic fatty acids of PG
and SL in wheat and chloroplast lipids suggests that decreased levels
of trienoic fatty acids in milo, although small, may be more imoprtant
in conferring thermal stability than dienoic fatty acids.

Milo appears to be more heat tolerant because it seems to adjust to
increased temperatures by decreasing the trienoic acid content of both
SL and PG while dienoic fatty acids increase in both SL and PG. Wheat
apparently adapts to higher temperatures by large decreases in the dienoic
content of PG with slight increases in SL. The slight difference ob-
served between the trienoic fatty acids of PG from wheat (- 16%) and
milo ( = 17%) suggests that chloroplast PG would have little effect on
the apparent difference in thermal tolerance of these two plants. These
observations place greater importance on the trienoic acid changes in
wheat and milo chloroplast SL. Although these changes are small in
comparison to PG (—6% in milo and + 1% in wheat), they may be
very important due to the significant decrease observed in milo SL.

The second possibility relating thermal tolerance to the stability of
the membrane fluid bilayer is facilitated by adding the assumption that
Anderson (1975) was correct in identifying galactolipids as the major
lipids of the chloroplast membrane fluid bilayer.

The saturated/unsaturated fatty acids of MGDG show the expected
increase at increased growth temperature in milo (+ 7%) while an unex-
pected decrease occurred in wheat ( —2%). DGDG exhibited changes
in saturated/unsaturated fatty acid ratios just opposite of those of
MGDG with wheat increasing as expected (+ 12%) and milo decreas-
ing (—4%). A comparison of temperature induced changes in wheat
and milo galactolipids indicates a slight downshift in MGDG concen-
tration in milo at 31 °C. This could be important considering its possi-
ble role in the membrane fluid bilayer and the most abundant mem-
brane lipid.

The ratios of MGDG/DGDG further cloud the elucidation of the
relationship of these lipids and membrane stability. Wheat showed in-
creased MGDG/DGDG at increasing temperature while milo showed
decreased ratios with increasing temperature (Table 5).

The possible functions of the other lipids are unknown. All except
PC (5-7%) appear in very small quantities.

Result of these experiments suggest the presence of 20 carbon acy|
groups associated with all chloroplast lipid classes analyzed. This data
is contrary to previous fatty acid analyses of chloroplasts isolated from
corn (Leese and Leech, 1976), Atriplex lentiformis (Pearcy, 1978),
spinach (Allen et al., 1966;, and Allen and Good, 1971), barley (Newman
et al., 1973), Vicia faba (MacKender and Leech, 1974), and others, where
18 carbon acids were the longest reported. Twenty carbon fatty acids
have been reported in numerous lower plants including algae (Jamieson
and Reid, 1976), fungi (Sawicki and Pisano, 1977), and others. Twen-
ty carbon fatty acids have also been isolated from poikilothermic
animals, e.g., crayfish (Cossins, 1976) and carp (Farkas and Csengeri,
1976). Reports of twenty carbon faity acids in Ginkgo biloba leaves
(Gellerman and Schlenk, 1972) was of special interest because of its
position as a primitive gymnosperm.

Data presented in this study agree with results reported by Gawer
et al. (1983) showing linoleic (18:2) as the major lipid fatty acid of tobac-
co cells grown at temperatures ranging from 12°-35°C followed in
decreasing order by palmitic acid (16:0) and linolenic acid (18:3) at most
growth temperatures. Tremolieres and Lepage (1971) reported high
linoleic acid (18:2) concentrations in leaves from dark grown pea
seedlings.

Hitcheock and Nichols (1971) suggested that mineral deficiencies and
low light intensity decrease the concentration of 18:3. The fatty acid
distribution reported in this data may suggest cellular contamination
of isolated chloroplasts.

These data seem to support the conclusion of Bjorkman (1975) con-
ferring major significance to the protein boundary lipids SL and PG in
conferring thermal stability to chloroplast membranes primarily by
decreasing the trienoic acid composition of SL.

Gawer et al. (1983) reported that their data supported that of
Tremolieres et al. (1982) suggesting that no single factor, such as
temperature, can control the ability of a cell to adjust the degree of
unsaturation of its cellular lipids. Genetic factors are also involved. The
importance of genetic differences in temperature adaptation expressed
in modifications of chloroplast lipid fatty acids was also reported by
Horvath et al. (1983).
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