
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2016

Hardware Trojan Detection via Golden Reference Library Matching Hardware Trojan Detection via Golden Reference Library Matching

Lucas Weaver
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Hardware Systems Commons, and the Information Security Commons

Citation Citation
Weaver, L. (2016). Hardware Trojan Detection via Golden Reference Library Matching. Graduate Theses
and Dissertations Retrieved from https://scholarworks.uark.edu/etd/1460

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.uark.edu%2Fetd%2F1460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fetd%2F1460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/1460?utm_source=scholarworks.uark.edu%2Fetd%2F1460&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Hardware Trojan Detection via Golden Reference Library Matching

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Engineering

by

Lucas Weaver
John Brown University

Bachelor of Science in Engineering, 2014

May 2016
University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Dr. Jia Di
Thesis Director

________________________________ ________________________________
Dr. James Parkerson Dr. Dale Thompson
Committee Member Committee Member

ABSTRACT

Due to the proliferation of hardware Trojans in third party Intellectual Property (IP)

designs, the issue of hardware security has risen to the forefront of computer engineering.

Because of the miniscule size yet devastating effects of hardware Trojans, few detection methods

have been presented that adequately address this problem facing the hardware industry. One

such method with the ability to detect hardware Trojans is Structural Checking. This

methodology analyzes a soft IP at the register-transfer level to discover malicious inclusions. An

extension of this methodology is presented that expands the list of signal functionalities, termed

assets, in addition to introducing a methodology for matching soft IPs to a functionality category,

termed Golden Reference Library Matching. Trojan detection methods are introduced that

utilize the results of Golden Reference Library Matching as well as internal characteristics of the

IP. This methodology is verified using benchmarks developed by a trusted third party.

ACKNOWLEDGEMENTS

Many thanks to my advisor, Dr. Jia Di, for his advising on this research. Thanks to Dr.

Di’s entire lab for everyone’s support and mentorship. Particular thanks to Thao Le for her

guidance in this research. Thanks also to my remaining committee members, Dr. James

Parkerson and Dr. Dale Thompson, for their support of this research.

DEDICATION

To Dad, Mom, Syd, Eli and of course Dublin.

To Dad for giving me the heart and mind of an engineer and to Mom for everything else.

TABLE OF CONTENTS

1. INTRODUCTION.. 1

1.1 MOTIVATION .. 1

1.2 OBJECTIVE.. 2

1.3 APPROACH.. 2

1.4 THESIS ORGANIZATION .. 3

2. BACKGROUND... 4

2.1 INTRODUCTION... 4

2.2 HARDWARE TROJAN CATEGORIZATION... 4

2.3 HARDWARE TROJAN DETECTION SURVEY... 5

3. METHODOLOGY... 9

3.1 INTRODUCTION... 9

3.2 ASSETS.. 10

3.2.1 INTERNAL ASSETS ... 10

3.2.2 EXTERNAL ASSETS .. 12

3.2.3 ASSET ASSIGNMENT.. 15

3.2.4 ASSET FILTERING .. 16

3.2.5 ASSET OPTIMIZATION.. 17

3.2.6 ASSET PATTERN .. 19

3.2.7. ASSET PATTERN FUNCTIONALITY.. 21

3.3 GOLDEN REFERENCE LIBRARY .. 22

3.3.1 GOLDEN REFERENCE LIBRARY CREATION AND CHARACTERISTICS .. 22

3.3.2 GOLDEN REFERENCE LIBRARY MATCHING .. 24

3.3.2.1 GRL MATCHING ALGORITHM.. 25

3.3.2.2 GRL PARTIAL MATCHING ALGORITHM... 27

3.3.2.3 FUNCTIONALITY CONSIDERATIONS ... 30

3.3.2.4 FINAL MATCHING... 31

3.3.3 GOLDEN REFERENCE LIBRARY RESULTS.. 32

3.4 TROJAN DETECTION ALGORITHMS .. 33

3.4.1 ASSET PATTERN ALGORITHMS.. 34

3.4.2 FUNCTIONALITY ASSIGNMENT ALGORITHMS... 36

3.4.2.1 BLACKLISTED FUNCTIONALITIES ... 37

3.4.2.2 SUSPICIOUS CONNECTIONS .. 38

3.4.2.3 FUNCTIONALITY DETECTION WITH ASSET PATTERN RECOGNITION ... 39

3.4.3 RTL CHARACTERISTICS .. 39

3.4.4 TROJAN DETECTION REPORT .. 43

3.5 GUI IMPLEMENTATION .. 44

4. RESULTS.. 48

4.1 INTRODUCTION... 48

4.2 GRL MATCHING... 48

4.2.1 ASSET PATTERN WEIGHTING .. 48

4.2.2 GRL MATCHING EXAMPLE ... 51

4.3 TROJAN DETECTION ... 53

4.3.1 TRUST-HUB BENCHMARKS ... 54

4.3.2 ADDITIONAL TROJAN EXAMPLES.. 59

4.3.3 TROJAN-INFESTED CRYPTO CORE EXAMPLE.. 63

4.3.4 TROJAN-INFESTED MICROCONTROLLER ... 66

4.4 ANALYSIS ... 71

5. CONCLUSION... 76

5.1 SUMMARY... 76

5.2 FUTURE WORK ... 76

REFERENCES .. 78

LIST OF FIGURES

Figure 1: System Diagram ... 9	

Figure 2: Asset Optimization Diagram.. 19	

Figure 3: SPI Module Asset Pattern... 21	

Figure 4: SPI Module Asset Pattern with Delimiters... 24	

Figure 5: Golden Reference Library Matching High-Level Diagram ... 25	

Figure 6: Golden Reference Library Match File.. 33	

Figure 7: Trojan Detection High-Level Diagram .. 34	

Figure 8: Trojan Detection Report... 43	

Figure 9: Trojan Detection Report with Driving Signals... 44	

Figure 10: GUI Home Screen .. 45	

Figure 11: External Asset Assignment Dialog Box... 46	

Figure 12: First ALU Port Signals ... 49	

Figure 13: Second ALU Port Signals... 49	

Figure 14: UART I/O Port Signals .. 51	

Figure 15: UART Asset Pattern... 52	

Figure 16: Encryption Unit Key Leak VHDL Example .. 54	

Figure 17: Encryption Unit Denial of Service VHDL Example.. 55	

Figure 18: Time Bomb Counter VHDL Example.. 56	

Figure 19: Encryption Unit Denial of Service VHDL Example.. 56	

Figure 20: Counter Instance in Interrupt Unit.. 61	

Figure 21: Interrupt Unit Denial of Service Attack ... 61	

Figure 22: Trigger Assignment Attack .. 62	

Figure 23: Crypto Core Port Signals.. 64	

Figure 24: AES Time Bomb Trigger ... 64	

Figure 25: AES Time Bomb Key Leakage .. 65	

Figure 26: Microcontroller Primary Port Signals .. 67	

Figure 27: ALU Denial of Service... 68	

Figure 28: Trojan-free Memory FSM.. 69	

Figure 29: Trojan-infested Memory FSM.. 69	

Figure 30: UART Trojan Attack.. 70	

Figure 31: Trojan Shift Register Port Map .. 71	

Figure 32: VHDL Concurrent Statements ... 73	

LIST OF TABLES

TABLE 1: Internal Assets.. 10	

TABLE 2: Data Assets... 12	

TABLE 3: Timing Assets .. 12	

TABLE 4: System Control Assets ... 13	

TABLE 5: Specific System Control Assets ... 13	

TABLE 6: Miscellaneous Assets ... 14	

TABLE 7: Types of Asset Patterns.. 20	

TABLE 8: Functionalities.. 21	

TABLE 9: Asset Pattern Delimiters .. 23	

TABLE 10: General Asset Trace Matching Examples.. 26	

TABLE 11: Partial Matching Asset Categories... 28	

TABLE 12: Partial Asset Trace Matching Examples .. 29	

TABLE 13: Asset Pattern Characteristic Weighting ... 32	

TABLE 14: Blacklist Functionalities... 37	

TABLE 15: UART Asset Assignment... 52	

TABLE 16: Microcontroller Asset Assignment .. 67	

 1

1. INTRODUCTION

1.1 Motivation

Many semiconductor manufacturers in today’s world utilize the availability of third party

IPs rather than create an entire system in-house. This scenario poses a threat to the system’s

security as third party IPs are vulnerable to the inclusion of hardware Trojans. Hardware Trojans

take the form of unwanted or malicious logic included within a hardware design. The insertion

of hardware Trojans allows the attacker to potentially gain possession of valuable information,

such as encryption keys, or prevent the correct operation of the design by a denial of service

attack. Hardware Trojans are often nearly impossible to detect during the testing and verification

process, as they are triggered by a very specific set of circumstances that only the attacker

knows.

The subject of hardware Trojan detection is an emerging field with few viable solutions

currently in place. The methodologies that have proven to be more successful involve side-

channel signal analysis in order to determine whether additional logic has been added to the

design. However, a hardware Trojan inserted to a design has the potential to be as small as only

a few logic gates and therefore cannot always be revealed through such analysis. Therefore, a

more thorough examination of the design is required to reveal the inclusion of hardware Trojans.

Previous work published in [10] has been performed in the area of Structural Checking,

and this research seeks to extend its capabilities. This method of analyzing soft IPs involves the

parsing of a design at the register-transfer level in order to create a representation of the internal

structure of the unknown IPs. Then, inclusions of malicious logic are identified by comparing

the internal structure of the unknown design to trusted designs as well as examining the internal

structure for suspicious connections. This strategy for detecting hardware Trojans has more

 2

advantages than other methodologies currently in use for multiple reasons. First of all, by

analyzing the design and detecting Trojans at the register-transfer level, the Trojan threats can be

prevented early in the manufacture process. This allows the semiconductor companies to reduce

the considerable amount of time and testing costs involved in the Trojan detection method using

side-channel signal analysis. Additionally, by parsing the internal structure of a design, the

Structural Checking methodology can detect smaller inclusions of malicious logic that the side-

channel signal analysis cannot.

1.2 Objective

The objective of this research is to significantly increase the number of assets used to

represent the role of a signal to provide differences among designs, as well as to create a

matching methodology where an unknown design matches to a trusted design from a Golden

Reference Library. In addition, for scalability, a hardware Trojan detection methodology is

developed by using the matching methodology and the characteristics of a soft IP as a specific

set of benchmarks.

1.3 Approach

Hardware designs, written in VHDL, are represented in the form of a collection of assets

used to describe the role of signals. External assets are manually assigned to primary port

signals of the design while internal assets are automatically assigned to signals immediately after

the parsing of the VHDL design. Following asset assignment, assets are filtered throughout the

designs along connections between signals. The result of the filtering process is a collection of

assets assigned to each signal, which combine to form an asset pattern. Asset patterns effectively

describe the characteristics of those designs, thus they can be used to compare to similar types of

designs.

 3

The representations of designs in terms of an asset pattern are collected and utilized in the

form of a Golden Reference Library (GRL). The GRL is composed of the asset patterns of

trusted designs that have been assigned a functionality. The asset patterns of unknown designs

are compared against the asset patterns of trusted designs in the GRL in order to determine the

functionality for the unknown design. Following the functionality assignment to an unknown

design, the unknown design is analyzed for hardware Trojans. The methodology of hardware

Trojan detection leverages multiple aspects to determine whether a Trojan is included in the

design. The asset pattern, the functionality matching and the characteristics of the register-

transfer level (RTL) code are all utilized in the identification of hardware Trojans.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses background

information regarding hardware Trojans along with similar research performed in the area of

hardware Trojan detection. Chapter 3 presents the unique methodology of hardware Trojan

detection, which is the thrust of the thesis. Chapter 4 summarizes the results of this methodology

of Trojan detection and provides analysis for the testing results. Finally, chapter 5 summarizes

the entire thesis in the form of a conclusion as well as provides potential areas of future work.

 4

2. BACKGROUND

2.1 Introduction

Hardware Trojans must first be evaluated prior to an in-depth analysis of hardware

Trojan detection via the Structural Checking methodology. Specifically, an introduction to the

concept and classification of hardware Trojans is presented in order to understand the threat

model for the Structural Checking methodology. Additionally, existing Trojan detection

methodologies are evaluated in addition to show how the Structural Checking methodology

advances the capability of hardware Trojan detection.

2.2 Hardware Trojan Categorization

Before surveying strategies of hardware Trojan detection, the concept of hardware

Trojans needs to be explained. As [1] notes, “hardware Trojans are modifications to original

circuitry inserted by adversaries to exploit hardware or to use hardware mechanisms to gain

access to data or software running on the chip.” As noted previously, many semiconductor

companies rely on untrusted third party IPs. Therefore, even if they can ensure the trust of

circuitry developed in-house, the third party IPs included in the final design are susceptible to

Trojan insertion.

Characteristics exhibited by hardware Trojans allow for clear organization of hardware

Trojans. The three main categories of hardware Trojans as identified by [1] and [15] are

physical, activation, and action. The first category, physical, is broken down into multiple

subcategories, some of which are self-explanatory. The first subcategory describes the type of

Trojan, whether it involved gates added to the design or if gates were modified. The remaining

categories are self-explanatory and consist of the size, distribution and structure of the hardware

Trojan [15].

 5

The second major category, activation, is also described as the trigger for the hardware

Trojan. This category is further divided into externally-activated and internally-activated

Trojans. In the case of externally-activated Trojans, the adversary alone knows a very specific

input sequence resulting in the Trojan activation. Internally-activated Trojans are manifested in

multiple, self-explanatory forms, such as always-on and condition-based [15].

The final major category, action, is also described as the payload of the hardware Trojan

[15]. The malicious characteristics exhibited by the payloads of Trojans are further divided into

three categories—modify-function, modify-specification, and transmit-information [15]. The first

subcategory, modify-function, consists of attacks focused on augmenting the logic of the circuit

in order to change its intended behavior. The modify-specification subcategory describes attacks

intended to adjust certain properties of the circuit, such as clock frequency. The final

subcategory, transmit-information, involves attacks focused on leaking important information to

an attacker.

The Structural Checking methodology analyzes designs at the RTL and therefore is

limited to certain types of hardware Trojans. Specifically, detecting Trojans in the physical

characteristics subcategory is outside the scope of the Structural Checking methodology.

Therefore, the hardware Trojans detected by the Structural Checking methodology are Trojans

found at the RTL within the action and activation categories.

2.3 Hardware Trojan Detection Survey

Many Trojan detection methods have been proposed in previous research. The

methodologies proposed range from Trojan activation techniques to side-channel analysis. This

section gives a brief overview of the major Trojan detection methods.

 6

A major technique utilized in the detection of hardware Trojans involves the analysis of

side-channel characteristics of the circuit. Two of the major side-channel characteristics of a

circuit to be analyzed in the detection of hardware Trojans are power consumption and current.

A foundational work in the development of power analysis for the purposes of hardware Trojan

detection is presented in [17]. By establishing a power signature for a particular type of circuit,

the researchers found that hardware Trojans could be detected by identifying significant

deviations from the power signature. The research performed in [20] similarly focused on side-

channel characteristics, but limited the analysis to the current in isolated portions of the circuit.

An additional side-channel characteristic measured the register-to-register path delay. The

research performed in [18] establishes a technique for using the path delay measurement to

verify the absence of a hardware Trojan. All of these methodologies achieved success in

identifying larger hardware Trojans, but found difficulty in detecting smaller Trojans.

Another prominent methodology of Trojan detection involves the integration of sensors

to available space of a design layout. The research performed by [2] proposes the sensors

measuring the delays as a form of “self-authentication” to ensure that a design is Trojan-free.

This is very similar to the research performed by [3] using sensors to measure the variability of

path delays, although this research does not explicitly discuss using the on-chip sensors to detect

hardware Trojans. Measurements performed by a ring oscillator network measuring power

consumption on-chip coupled with statistical analysis allow the researchers in [4] to identify

malicious inclusions to hardware designs. The methodologies of using on-chip monitors yield

positive results in identifying specific types of Trojans, such as Trojans described by their

physical characteristics.

 7

An additional strategy of Trojan detection involves the purposeful activation of hardware

Trojans. By performing various activation techniques, one can find the designs with Trojan

inclusions by observing the Trojan payload. The researchers in [12] employ a probabilistic

approach to Trojan activation through applying randomized test sequences to activate hardware

Trojans. Another strategy of Trojan activation, as presented in [21], analyzes the circuit to

determine nets that are rarely activated and in turn using test vectors that activate those same

nets. A final strategy of Trojan activation found in [14] involves narrowing down the area of

potential Trojan inclusion to a specific region and testing that region thoroughly for Trojans.

While each of these methodologies achieved reasonable success, the strategy of Trojan activation

has limitations since Trojans often require a very unique and complex activation sequence.

Another category of Trojan detection involves providing greater trust to third party IPs.

The first of these methodologies, presented in [5], utilize functional vectors to remove trusted

signals from consideration in order to isolate Trojans to a specific region of the design. The

researchers in [6] employ an assortment of methodologies to identify hardware Trojans in third

party IPs, such as formal verification and sequential ATPG. Finally, the research performed in

[7] proposes a Design-for-Trojan-Test methodology that reduces the likelihood of Trojan

insertion by making potential Trojan trigger sequences difficult to implement. While the

research presented in this category yielded positive results, there are limitations to the number

and size of Trojans that they can detect.

Additional methodologies focus on the security of third party IPs from a software

analysis perspective rather than from a testing and verification perspective. The research

performed by [8] compares functionally similar IP blocks to determine if malicious logic is

present. The procedure by which this methodology compares the two IP blocks borrows from

 8

the concept of loop unrolling in order to represent the internal logic states of both designs.

Another methodology presented in [9] uses statistical analysis to assign values to signals based

on their vulnerability to Trojan insertion. The vulnerability values are determined by the level of

weight assigned to a statement as well as the observability of the statement. In doing so, a value

for the level of trust of an entire IP block can be determined. While the research performed by

both parties produce positive initial results, more advances must occur for these to be viable

options for hardware Trojan detection.

As discussed previously, the methodology of hardware Trojan detection employed in this

thesis is derived from the methodology of Structural Checking as originally presented in [19].

Previous work had been done in the area of modeling hardware threats in [16] and subsequently

incorporated into the Structural Checking methodology presented in [19]. Research performed

in [10] advanced the Structural Checking methodology through the creation of a software tool

performing VHDL parsing and expression analysis as well as an initial conceptualization of

hardware Trojan detection from a Structural Checking perspective. This research advances the

Structural Checking methodology further to include a more robust collection of assets, a Golden

Reference Library for functionality matching and hardware Trojan detection capability.

 9

3. METHODOLOGY

3.1 Introduction

The Trojan detection methodology presented in this research is derived from the

Structural Checking methodology developed in [10]. This methodology analyzes hardware

designs at the register-transfer level (RTL) in order to determine the presence of hardware

Trojans in the form of malicious logic. A high-level system diagram for this methodology can

be found in Figure 1 below.

Figure 1: System Diagram

The design in question, written in VHDL, is first parsed in order to create a hierarchical

structure of the data paths within the design. The VHDL parser was available as an open-source

parser [22] and has been developed and implemented in a previous project as noted in [10].

Next, the primary port signals of the design are assigned assets, which denote the role of the

signal within the design. The collection of assets assigned to primary port signals was greatly

increased from the amount of assets found in the previous Structural Checking project. The

assigned assets are filtered throughout the circuit through direct connections of the primary

inputs and primary outputs determined by the VHDL parsing. Depending on the assets and their

locations, the design is categorized based on its functionality by comparing it to trusted RTL

designs in a Golden Reference Library (GRL). The GRL feature for categorizing designs was a

completely new innovation added to the Structural Checking project. Finally, potential hardware

Trojans within the design are identified by analyzing the results of the GRL categorization as

well as characteristics of the RTL code. The Trojan detection process was also a new addition to

 10

the project from the previous Structural Checking methodology. This entire methodology has

been implemented and tested in the form of a graphical user interface that allows users to analyze

a potentially malicious design for hardware Trojans. The tool produces output reports that

present the results of hardware Trojan detection for user readability.

3.2 Assets

The concept of an asset was previously introduced in [10]. As [10] explains, an asset

describes the purpose of a signal within a design. This concept is a foundation of Trojan

detection, as it allows for signals to be represented in terms of a collection of assets. A signal’s

collection of assets will become important in later sections when dealing with Trojan detection.

Assets can be divided into two broad categories. The first category is termed internal

assets. Primary port signals and internal signals both receive internal assets via automatic

assignments. These assets are termed internal due to the fact that they refer to the way the

signals are internally used within a system. The other category of assets is termed external

assets. External assets are manually assigned to the primary port signals of a design.

3.2.1 Internal Assets

The first category of assets, internal assets, includes a set of assets that are automatically

assigned to all signals within the designs. The assignment of internal assets occurs following the

parsing of the RTL code by first looping through the code and searching for all logical

expressions. The signals used in each logical expression are then identified and assigned an

internal asset based on the role that it plays within the expression. Table 1 below shows a list of

the 16 internal assets that have been developed along with a description of each asset.

TABLE 1: Internal Assets
Asset Description

PROCESS_SENSITIVE Assigned to a signal contained within a process
sensitivity list.

 11

TABLE 1: Internal Assets (Cont.)
Asset Description

PROCESS_OPERATION_SENSITIVE Assigned to a signal being modified within a process
statement.

CONDITIONAL_DRIVING Assigned to a signal contained within a conditional
statement.

CONDITIONAL_DRIVEN Assigned to a signal being modified within a
conditional statement.

CONCURRENT_DRIVING Assigned to a signal driving another signal via a
concurrent statement.

CONCURRENT_DRIVEN Assigned to a signal being driven by another signal
via a concurrent statement.

CC_OPERATION_OR Assigned to a signal being driven by a concurrent
statement performing an OR operation.

CC_OPERATION_AND Assigned to a signal being driven by a concurrent
statement performing an AND operation.

CC_OPERATION_XOR Assigned to a signal being driven by a concurrent
statement performing an XOR operation.

CC_OPERATION_NOR Assigned to a signal being driven by a concurrent
statement performing a NOR operation.

CC_OPERATION_NAND Assigned to a signal being driven by a concurrent
statement performing a NAND operation.

CC_OPERATION_XNOR Assigned to a signal being driven by a concurrent
statement performing an XNOR operation.

CC_OPERATION_NOT Assigned to a signal being driven by a concurrent
statement performing a NOT operation.

CC_OPERATION_A_ADD Assigned to a signal being driven by a concurrent
statement performing an addition operation.

CC_OPERATION_MULT Assigned to a signal being driven by a concurrent
statement performing a multiplication operation.

CC_OPERATION_SENSITIVE Assigned to a signal being driven by a concurrent
statement using another type of logic than the types
previously listed.

The assets above can be broken down into three categories. The first category deals with

assets assigned to signals used in process statements. Certain internal assets are assigned to

signals based on whether the signal appears in a process sensitivity list or whether it is used

inside the process itself. The second category deals with assets assigned to signals used in

conditional statements. Similarly to the assets dealing with process statements, conditional

assets can be assigned to signals found within a conditional statement or to signals being

 12

modified within a conditional statement. Finally, numerous assets are assigned to signals being

used within concurrent statements. These assets are assigned based on the logic used within the

concurrent statement. As a signal can be used in multiple types of expressions in RTL code,

multiple internal assets can be assigned to a signal.

3.2.2 External Assets

The second category of assets is external assets, and these assets are manually assigned to

primary port signals. As opposed to internal assets that describe how a signal is used internally

in the RTL code, external assets describe how a primary port signal is used. There are a total of

51 external assets that are distributed among several broad categories.

The first category contains assets describing data signals. Table 2 below shows the assets

within this category along with the definition of the specific asset.

TABLE 2: Data Assets
Asset Description

DATA_COMPUTATIONAL Assigned to data signals within ALUs, adder, multipliers, etc.
DATA_MEMORY Assigned to data signals being stored in memory.
DATA_PERIPHERAL Assigned to data signals being used by peripheral units.
DATA_COMMUNICATION Assigned to data signals being used for communication

purposes by communication units.
DATA_ENCRYPTION Assigned to data signals being used being encrypted by

encryption units.
DATA_SENSITIVE This is the most general of the data assets and can be assigned

to signals containing data that does not fit any other category.

The second category consists of assets related to the timing of a system. Table 3 below

shows the assets within this category along with the definition of the specific asset.

TABLE 3: Timing Assets
Asset Description

SYSTEM_TIMING Assigned to the primary clock signal.
SUBSYSTEM_TIMING Assigned to a subsystem clock signal.
STATUS Assigned to a signal indicating the status of the system.
DONE Assigned to a signal indicating that an operation is finished.
HOLD Assigned to a signal indicating to hold an operation.
READY Assigned to a signal indicating that an operation is ready.

 13

TABLE 3: Timing Assets (Cont.)
Asset Description

BUSY Assigned to a signal indicating that an operation is busy.
COUNT Assigned to a signal used as a counter.
WAIT Assigned to a signal indicating that an operation must wait.
TIMER_CONTROL Assigned to a signal controlling a timer.
CLOCK_CONTROL Assigned to a signal controlling the primary or subsystem clock.

The next category involves assets assigned to signals used for system control. Table 4

below shows the assets within this category along with the definition of the specific asset.

TABLE 4: System Control Assets
Asset Description

SET Assigned to a signal used to set a value.
RESET Assigned to a signal used to reset a value.
READ Assigned to a signal used to perform a read operation.
WRITE Assigned to a signal used to perform a write operation.
SELECT Assigned to a signal used to perform a select operation.
EXECUTE Assigned to a signal indicating that an operation is to be executed.
LOAD Assigned to a signal indicating that a value is to be loaded.
MODE Assigned to a signal indicating the mode of an operation.
ENABLE Assigned to a signal used to perform an enable operation.
HANDSHAKING Assigned to a signal used in communication by way of a

handshaking operation.
SHIFT Assigned to a signal indicating that a shift operation is to occur.
INSTRUCTION Assigned to a signal used as an instruction. This is the most general

form of this asset and should only be used when a more specific
asset does not describe the signal.

SYSTEM_CONTROL Assigned to a signal that is used in system control. This is the most
general system control asset and should only be used when a more
specific asset does not describe the signal.

The next category of assets is a subset of the previous category of system control assets.

These assets are specific to a certain type of subsystem. Table 5 below shows the assets within

this category along with the definition of the specific asset.

TABLE 5: Specific System Control Assets
Asset Description

MEMORY_OP Assigned to a signal used to perform an operation within
a memory subsystem.

DATA_OP Assigned to a signal used to perform an operation within
a subsystem dealing with data.

 14

TABLE 5: Specific System Control Assets (Cont.)
Asset Description

INTERRUPT_OP Assigned to a signal used to perform an operation within
an interrupt unit subsystem.

PROGRAM_COUNTER_OP Assigned to a signal used to perform an operation within
a program counter.

INTERRUPT_CONTROL Assigned to a signal used as system control within an
interrupt unit subsystem.

PERIPHERAL_CONTROL Assigned to a signal used as system control within a
peripheral subsystem.

REGISTER_FILE_CONTROL Assigned to a signal used as system control within a
register file subsystem.

COMMUNICATION_CONTROL Assigned to a signal used as system control within a
communication subsystem.

COMMUNICATION_PROTOCOL Assigned to a signal used to handle a protocol within a
communication subsystem.

COMMUNICATION_STATUS Assigned to a signal indicating the status of an operation
within a communication subsystem.

INTERRUPT Assigned to a signal used to handle an interrupt requests.

The final category of assets is simply a miscellaneous category. These assets do not

clearly fit into any one category and are therefore grouped together in the miscellaneous

category. Table 6 below shows the assets within this category along with the definition of the

specific asset.

TABLE 6: Miscellaneous Assets
Asset Description

CRITICAL Assigned to an asset that could lead to harm if an attacker gained
possession of it.

COMPONENT Assigned to an asset that refers to another component of a
system.

ADDRESS_SENSITIVE Assigned to an asset that describes the address used in a memory
subsystem.

CONSTANT Assigned to a signal that describes a value to be used as a
constant.

KEY Assigned to a signal used as an encryption key in an encryption
unit.

REGISTER Assigned to a signal used to handle data to be used in a register
file subsystem.

PROGRAM_COUNTER Assigned to a signal used as the value being manipulated within
a program counter.

ERROR_HANDLING Assigned to a signal that performs error handling.
EXCEPTION_HANDLING Assigned to a signal that performs error handling.

 15

TABLE 6: Miscellaneous Assets (Cont.)
Asset Description

STATE Assigned to a signal that tracks the state of system.

3.2.3 Asset Assignment

As mentioned in the previous section, users assign external assets to the primary port

signals of a design. This requires the user to understand how the signal of a design is used in the

system. Oftentimes, the choice of external asset is very simple, as there is a direct correlation

between the external asset to be assigned and the signal it is assigned to. However, there are

cases in which the user must deduce the external asset to be used based on the closest match to

the functionality of the signal. Therefore, several rules should be considered when assigning

assets.

First of all, the most important rule in assigning external assets is that the most specific

asset appropriately describing the signal should be assigned. As the descriptions of the assets in

the previous section show, there are certain assets that are general in nature, such as

DATA_SENSITIVE and SYSTEM_CONTROL. These assets should only be assigned in the case

that no other assets best describe the functionality of a signal. For instance, when considering

the assignment of an asset to a data signal in an ALU, the more specific external asset

DATA_COMPUTATIONAL should be used rather than the general DATA_SENSITIVE asset.

Additionally, if there is not an exact asset describing a signal’s role within the system but there is

an asset functionally similar to the signal under consideration, then that asset should be assigned.

For example, when considering the asset assignment of a clear signal, the functionally similar

asset, RESET, should be assigned to the clear signal.

The second rule to consider when assigning assets involves the number of assets assigned

to a signal. Primary port signals can have multiple assets assigned to the same signal in the case

 16

the signal cannot be appropriately described by a single asset. For example, a signal may be

used to perform read/write operations. In that case, both the READ and WRITE assets should be

assigned to the signal in order to appropriately describe its functionality. However, the ideal

scenario is that a single asset can be assigned that appropriately describes the functionality of

that signal. This is especially important when considering the first rule above stating that the

most specific asset to describe a signal should be used. For example, if a signal is a data signal

within a communication unit, only the DATA_COMMUNICATION asset should be assigned,

rather than additionally assigning another data asset that may only partially describe the

functionality of the signal.

The final rule to consider when assigning assets involves asset assignment for system

specific assets. This rule is similar to the first in that it requires a user to assign the most specific

asset possible to describe a signal. More specifically, this rule involves assigning assets specific

to a type of system if the functionality of the system is known. For example, if an asset is used

as an instruction within an ALU, the general INSTRUCTION asset should not be assigned.

Instead, the more system-specific asset DATA_OP should be assigned. Even in the case that an

asset describes the functionality of the signal, the system specific asset should be used. For

example, if a read signal is being analyzed in memory unit, the MEMORY_OP asset should be

chosen rather than the READ asset. The assignment of system-specific assets aids in the future

step of functionality matching.

3.2.4 Asset Filtering

Following the VHDL parsing and assignment of assets, the next step in the process is to

filter the assets throughout the circuit. This involves passing the assets previously assigned to

the primary port signals to lower level signals based on the internal connections of the circuit.

 17

For example, if a primary input port signal directly drives an internal signal via a concurrent

statement, the internal signal would receive the assets assigned to the input signal. Filtering

occurs both from input to output and vice versa, meaning that assets can be passed from input to

output and from output to input. This process is repeated recursively until every connection

within the circuit has been reached. At this point, every signal within the circuit has been

populated with assets that describe all possible functionalities of the signal. The information

necessary to filter the assets is collected during the VHDL parsing. The development of the

methodology and implementation of asset filtering was previously described by [10].

3.2.5 Asset Optimization

An additional step following the filtering of assets through the circuit, termed asset

optimization, occurs in order to ensure a precise asset pattern. Asset optimization involves the

analysis of each individual port signal’s external and internal assets to ensure that there are no

redundant assets. As past analysis of asset filtering has shown, asset patterns for large designs

can be extremely large, resulting in every signal essentially having the exact same asset pattern.

Asset optimization corrects this issue by removing filtered assets that do not actually contribute

to the functionality of the circuit.

Asset optimization is only performed on the primary port signals of the circuit that have

been assigned assets. The internal assets of these signals are then analyzed to determine if the

signal in question is driving another signal or being driven by a signal. Certain assets are

removed based on whether the signal is driving another signal or being driven by another signal.

In the case of the signal being driven by another signal and the original signal contains a data

asset, the system control assets relevant to data operations are removed. For example, if a data

signal assigned a DATA_MEMORY asset has received a MEMORY_OP asset during the filtering

 18

process, the MEMORY_OP asset is removed from the collection of assets assigned to the data

signal. Conversely, in the case that a signal is driving another signal and the original signal

contains a system control asset, the data assets relevant to the system control operations are

removed. For example, if a system control signal assigned a MEMORY_OP asset has received a

DATA_MEMORY asset during the filtering process, the DATA_MEMORY asset is removed from

the collection of assets assigned to the system control signal. This process allows the true

functionality of the signal to represented with assets rather than allowing the filtered assets to

distort the functionality of the signal.

There are also certain optimizations that are performed regardless of whether the signal is

driving or being driven by another signal. As mentioned previously there are certain assets that

are very general in nature, such as DATA_SENSITIVE and SYSTEM_CONTROL. In the case

where one of these assets is present and other more specific assets are present, the general assets

are removed. For example, in the case that a signal is assigned a DATA_COMPUTATIONAL

asset and a DATA_SENSITIVE asset is filtered to the signal, the DATA_SENSITIVE asset will be

removed from the signal’s collection of assets. However, it is important to note that only filtered

assets can be removed through optimization while the assigned assets are permanent. The entire

process of asset optimization is illustrated in Figure 2 below.

 19

Figure 2: Asset Optimization Diagram	

3.2.6 Asset Pattern

The results of the filtering and optimizing of assets is termed an asset pattern. Asset

patterns describe the system in terms of a collection of internal and external assets that have been

filtered throughout the circuit. This is accomplished by listing the internal and external assets

that have been assigned to individual signals. The collection of assets assigned to a specific

signal is termed an asset trace. The collection of asset traces forms an asset pattern for a system.

Asset traces originate from the external assets that are manually assigned to a signal and

the internal assets that are automatically assigned to a signal. Once the assets have been filtered

throughout the circuit, each individual signal contains a collection of assets that have been

assigned initially as well as assets that have been filtered to the signal. Each asset within the

asset trace is unique. This means that the asset traces do not repeat assets even in the case that an

asset has been both assigned and filtered to the signal. Additionally, each signal has both an

external asset trace as well as an internal asset trace. An example of an external asset trace found

in a communication unit can be seen below:

[DATA_COMMUNICATION, COMMUNICATION_PROTOCOL]

An example of an internal asset trace can be seen below:

 20

[CONDITIONAL_DRIVEN, PROCESS_SENSITIVE, CONDITIONAL_DRIVING]

Both of these examples show the list of external and internal assets that were both assigned and

filtered to a signal.

Asset traces are grouped into six separate categories based on the type of assets being

assigned and the type of signals the assets are being assigned to. The two types of assets are

internal and external, while the types of signals that the assets are being assigned to are primary

input/output signals and internal signals. Therefore, the categories can be seen in Table 7 below:

TABLE 7: Types of Asset Patterns
Asset Pattern Type Description

input port signal external asset pattern Collection of external asset traces assigned to top
level input port signals

output port signal external asset pattern Collection of external asset traces assigned to top
level output port signals

internal signal external asset pattern Collection of external asset traces assigned to
internal signals

input port signal internal asset pattern Collection of internal asset traces assigned to top
level input port signals

output port signal internal asset pattern Collection of internal asset traces assigned to top
level output port signals

internal signal internal asset pattern Collection of internal asset traces assigned to
internal port signals

The combination of these six sets of asset traces forms the asset pattern of a single circuit.

The asset pattern represents the unique combination of assets that are used to describe a circuit

design. An example of an asset pattern of a SPI module can be seen below in Figure 3.

 21

Figure 3: SPI Module Asset Pattern

As is indicated in this asset pattern, many of the assets are related to communication. It

could then be inferred that the circuit described by this asset pattern belongs to the category of

communication without the previous knowledge that it is a SPI module. This fact will be used in

future sections to match asset patterns to functionalities.

3.2.7. Asset Pattern Functionality

Following the creation of an asset pattern for a system, a functionality is assigned to the

design. As the name implies, the functionality assignment is intended to effectively describe the

purpose of the design. Table 8 below lists the types of functionalities that the design could be

assigned to.

TABLE 8: Functionalities
Functionality Description

SHIFT_REGISTER Assigned to a circuit being used to shift data in and out.
INTERRUPT_UNIT Assigned to a circuit handling interrupt requests.
COMMUNICATION Assigned to a circuit handling communication.
ENCRYPTION_UNIT Assigned to a circuit being used to encrypt or decrypt data.

[SYSTEM_TIMING]
[PROCESS_SENSITIVE, CONDITIONAL_DRIVING]
[RESET]
[COMMUNICATION_CONTROL]
[CONDITIONAL_DRIVING]
[READ, WRITE]
[ADDRESS_SENSITIVE]
[DATA_COMMUNICATION, COMMUNICATION_PROTOCOL]
[DATA_COMMUNICATION]
[CONDITIONAL_DRIVEN]
[INTERRUPT]
[SUBSYSTEM_TIMING]
[CONCURRENT_DRIVEN]
[COMMUNICATION_PROTOCOL, DATA_COMMUNICATION]
[COMMUNICATION_CONTROL]
[COMMUNICATION_PROTOCOL]
[PROCESS_SENSITIVE, CONDITIONAL_DRIVING, CONDITIONAL_DRIVEN]
[COMMUNICATION_PROTOCOL, DATA_COMMUNICATION]

 22

TABLE 8: Functionalities (Cont.)
Functionality Description

COMPUTATIONAL Assigned to a circuit being used to manipulate data, such as an
ALU, adder or multiplier

TIMING Assigned to a circuit responsible for controlling the timing of a
system.

CONTROL_GENERATION Assigned to a circuit used to handle system control.
REGISTER_FILE Assigned to a circuit used to store data
PERIPHERAL Assigned to a circuit handling peripherals other than

communication.
DECODER_ENCODER Assigned to a circuit used to encode or decode data.

As the list indicates, many functionalities have direct correlations to assets that were

presented previously. This was intentional, as this aids in determining the functionality of a

particular design.

3.3 Golden Reference Library

The asset patterns generated by asset assignment and filtering are essential in the analysis

of unknown designs. A Golden Reference Library (GRL) is formed by obtaining asset patterns

from trusted IPs that in turn can be used to compare against unknown IPs to determine their level

of trust. The GRL contains files with characteristics of the individual designs that have been

deemed to be trusted. The unknown design is then compared to the GRL designs and assigned a

functionality based on the closest GRL design match. The resulting data is outputted in user-

readable format.

3.3.1 Golden Reference Library Creation and Characteristics

The Golden Reference Library was created by first obtaining trusted designs for each

type of functionality. The asset pattern for each of the trusted designs are generated and added to

the GRL to be used as the golden references. Due to the fact that these are the basis of matching

unknown designs, a sufficient amount of trusted designs for each category must be chosen in

order to guarantee that an unknown design could match sufficiently to a trusted design or else be

 23

deemed untrusted. Obtaining designs for the GRL is an ongoing process as more trusted designs

can always be added to represent more types of designs. However, the designs currently present

in the GRL are sufficient to match many unknown designs.

The trusted designs were obtained through numerous sources. The main source of

designs was the website OpenCores [13], an open-source repository for hardware designs. Many

of their trusted designs were incorporated into the GRL. The remaining trusted designs were

either collected from additional online repositories or were simply created during the course of

the project. One potential issue that arose when creating the GRL is that there are numerous

ways to implement designs of a specific category, and it is impossible to find and implement all

possible designs. However, this issue is addressed by the addition of assets specific to a

functionality as well as allowing the GRL to be constantly updated with new designs. The

specific assets allow designs to be matched with functionalities closely related to those assets.

GRL files contain several important characteristics used in the matching process. The

main information used in this process is the complete asset pattern for that design. In order for

the asset pattern to be parsed by the tool, certain delimiters were used to identify the specific

portions of the asset pattern. The delimiters for each type of asset pattern can be seen in Table 9

below.

TABLE 9: Asset Pattern Delimiters
Asset Pattern Type Delimiter

input port signal external asset pattern >
output port signal external asset pattern <
internal signal external asset pattern /
input port signal internal asset pattern >*
output port signal internal asset pattern <*
internal signal internal asset pattern /*

As the table shows, the addition of the symbol ‘*’ indicates that an asset pattern is an

internal asset pattern, while the absence of that symbol indicates that it is an external asset

 24

pattern. An example asset pattern with delimiters inserted can be seen in Figure 4 below. This

figure is the same asset pattern as the SPI module from before with delimiters.

Figure 4: SPI Module Asset Pattern with Delimiters

The asset patterns generated by the asset filtering process are stored in files termed GRL

files with a “.grl” extension. Each GRL file is stored under the Golden Reference Library

directory. This directory is located such that it is easily found in order to be used later in the

GRL matching process. If additional trusted designs were generated by the asset filtering

process, the associated GRL file could simply be added to this directory.

3.3.2 Golden Reference Library Matching

The creation of the Golden Reference Library is used as the basis for matching unknown

designs to a functionality. Functionality matching is necessary for determining the level of trust

to be assigned to the unknown design. Therefore, a matching methodology was developed that

allows the unknown design to be matched to a known design in the GRL. The asset patterns of

the trusted designs found within GRL files provided a characteristic to be used for comparison

>[SYSTEM_TIMING]
>*[PROCESS_SENSITIVE, CONDITIONAL_DRIVING]
>[RESET]
>[COMMUNICATION_CONTROL]
>*[CONDITIONAL_DRIVING]
>[READ, WRITE]
>[ADDRESS_SENSITIVE]
>[DATA_COMMUNICATION, COMMUNICATION_PROTOCOL]
<[DATA_COMMUNICATION]
<*[CONDITIONAL_DRIVEN]
<[INTERRUPT]
<[SUBSYSTEM_TIMING]
<*[CONCURRENT_DRIVEN]
<[COMMUNICATION_PROTOCOL, DATA_COMMUNICATION]
<[COMMUNICATION_CONTROL]
<[COMMUNICATION_PROTOCOL]
/*[PROCESS_SENSITIVE, CONDITIONAL_DRIVING, CONDITIONAL_DRIVEN]
/[COMMUNICATION_PROTOCOL, DATA_COMMUNICATION]

 25

between the unknown designs and the trusted designs. However, many factors of the asset

patterns must be analyzed in order to create an algorithm for matching. This section discusses

the various characteristics of the GRL matching algorithm along with examples of how portions

of unknown designs would be matched to trusted designs in the GRL.

3.3.2.1 GRL Matching Algorithm

As discussed in previous sections, the asset pattern generated by asset filtering contains

six separate characteristics based on the type of signal (input and output port signals and internal

signals) and the type of asset (internal and external). Therefore, during the matching of asset

patterns, each characteristic is analyzed and matched to a potential design. As Figure 5 below

indicates, the beginning of the matching process is to loop through each entry of the GRL in

order to compare the characteristics of each GRL entry to the unknown design. Each

characteristic is analyzed individually and assigned a percentage match that is then used to

determine the total match.

Figure 5: Golden Reference Library Matching High-Level Diagram

The match percentage of each individual characteristic is contained in a hash map using

the name of the GRL entry as the key and the match percentage as the value. There are six hash

maps as there are six characteristics used in the matching process. The values are obtained while

looping through the GRL entries and comparing the individual asset pattern characteristics of the

GRL entry to the unknown design. The matching of the individual characteristics is essentially

 26

an intersection of sets in order to determine the percentage of assets contained within the

unknown design with respect to each GRL entry.

While looping through the GRL entries, the individual asset traces of the asset pattern

characteristics are taken individually and compared to the asset traces of the same asset pattern

characteristics of the unknown design. For example, the first asset pattern characteristic of the

GRL entry, the input port signal external asset pattern, is broken up into individual asset traces

and compared to the input port signal external asset traces of the unknown designs. Each asset

trace is looped through individually in order to find the largest match between asset traces. The

largest match is found by finding the intersection of the two asset traces (many examples are

given below for clarification). Once the largest match is assigned to the individual asset traces,

they are added together and divided by the total number of asset traces in order to find the asset

pattern percentage match. This is summarized in the Equation 1 below.

 (Eq. 1)

In order to clarify the matching process, several examples have been given in Table 10.

These examples show how each asset trace of an unknown design matches to an asset trace of a

GRL entry.

TABLE 10: General Asset Trace Matching Examples
Case Unknown Design Asset Traces GRL Entry Asset Traces Match

1 DATA_MEMORY, CRITICAL DATA_ MEMORY,
CRITICAL 100%

2 DATA_ MEMORY, CRITICAL SYSTEM_CONTROL 0%

3 DATA_ MEMORY, CRITICAL
DATA_ MEMORY,

CRITICAL,
SYSTEM_CONTROL

67%

4 DATA_ MEMORY,
SYSTEM_CONTROL

DATA_ MEMORY,
SYSTEM_TIMING 50%

 27

Case 1 in Table 10 gives the simple scenario that both asset traces are identical. In this

case, the match is clearly 100%. Case 2 is also a simple example showing that the match will be

0% when the asset traces have no intersection. Case 3 shows the scenario in which the two asset

traces intersect on two assets; however, the GRL entry contains a third asset not found in the

unknown design asset trace, causing the final match to be 67%. Finally, Case 4 considers the

scenario in which one asset is shared while the other asset is different. This case yields a 50%

asset trace match. If these asset traces where combined to form an asset pattern for a specific

asset pattern characteristic, the final match for that characteristic could be easily determined by

averaging the percentages listed. Therefore, the asset pattern characteristic match would be

54.25%.

In certain instances, one of the characteristics of a design may be empty. For example, if

a design does not contain internal signals, then there will be no assets assigned to internal signals

and those asset pattern characteristics will be empty. In the case that both the GRL entry and the

unknown design both have the same characteristic as empty, the hash map containing the match

percentages is marked with a -1 value indicating that this characteristic will be left out of the

final matching.

3.3.2.2 GRL Partial Matching Algorithm

In order to gain a more precise indication of the match between asset traces, an algorithm

for partially matching asset traces was developed. This algorithm takes into account the fact that

there is occasional overlap among assets and therefore there must be a way to assign a

percentage match to these assets greater than zero. For example, when matching the

DATA_SENSITIVE asset to the DATA_COMPUTATIONAL asset using the normal intersection

set matching, the result would be a 0% match. However, due to the fact that these assets are

 28

similar in nature, the matching percentage should be greater than 0%. This is the problem

addressed by the partial matching algorithm.

The partial matching algorithm is implemented during the matching of asset traces.

Using general intersection set matching, the assets are analyzed and assigned a value by

determining whether or not the assets found within one set matches the assets found in the other

set. Instead, partial matching runs each individual asset through a method that analyzes the asset

to determine if it is part of a subset of similar assets. The set of similar assets are then searched

for within the asset trace intended for matching to determine whether or not any are found. In

the case that another asset that is similar in nature to the asset in question is found in the other

asset trace, a 50% match is assigned for that individual asset. This 50% match is then factored in

with the remaining assets that are a part of the asset trace.

The partial matching algorithm uses certain subsets of assets to determine whether or not

an asset should receive a partial match. These subsets of assets can be found in Table 11 below.

TABLE 11: Partial Matching Asset Categories
SYSTEM_CONTROL DATA_SENSITIVE INSTRUCTION STATUS
SELECT DATA_

ENCRYPTION
DATA_OP READY

READ DATA_
COMMUNICATION

MEMORY_OP DONE

WRITE DATA_
COMPUTATIONAL

PROGRAM_
COUNTER_OP

HOLD

INSTRUCTION DATA_MEMORY INTERRUPT_OP STATUS

MODE DATA_PERIPHERAL BUSY
SET WAIT
RESET
ENABLE
EXECUTE
HANDSHAKING
LOAD

 29

TABLE 11: Partial Matching Asset Categories (Cont.)
SYSTEM_CONTROL DATA_SENSITIVE INSTRUCTION STATUS
SHIFT
INTERRUPT_
CONTROL

PERIPHERAL_
CONTROL

REGISTER_FILE_
CONTROL

COMMUNICATION_
CONTROL

CLOCK_CONTROL
TIMER_CONTROL

As the table shows, there are four categories of assets that can be partially matched. The

four categories are represented by the assets listed in the top row of each column. The partial

matching algorithm consists of first identifying whether one of the assets listed in the top row is

contained within either the GRL entry asset trace or the unknown design asset trace. If one of

the assets is found in either asset trace, the other asset trace is parsed for one of the assets in the

column of the original asset found. If one of those assets is found, a 50% match is assigned for

this set of assets.

In order to clarify the partial matching algorithm, several examples are shown in Table 12

below, listing the two asset traces along with a partial match percentage.

TABLE 12: Partial Asset Trace Matching Examples
Case Unknown Design Asset Traces GRL Entry Asset Traces Match

1 DATA_MEMORY DATA_ SENSITIVE 50%

2 DATA_ MEMORY, DATA_
SENSITIVE DATA_ SENSITIVE 50%

3 DATA_ MEMORY DATA_COMPUTATIONAL 0%
4 ENABLE, SET SET, SYSTEM_CONTROL 75%
5 RESET SET, SYSTEM_CONTROL 25%

Case 1 provides the simple example of two assets that can be partially matched at 50%.

The matching scenario in Case 2 shows that the two DATA_ SENSITIVE assets are matched at

 30

100%; however, since the unknown design contains an additional asset, DATA_ MEMORY, the

final match is 50%. It is important to note with this example that since the DATA_SENSITIVE

asset in the GRL entry was matched with the DATA_SENSITIVE asset in the unknown design, it

could not be partially matched with the DATA_MEMORY asset. Case 3 shows that even though

the two assets are data assets, they are not partially matched. For a partial match to occur, one of

the assets had to be a DATA_SENSITIVE asset. Case 4 describes a scenario in which the SET

assets are matched at 100% while the ENABLE and SYSTEM_CONTROL assets are matched at

50%, resulting in a final match of 75%. Finally, Case 5 describes a scenario in which the

SYSTEM_CONTROL asset is partially matched to the RESET asset at 50%. Since the GRL entry

has one additional asset, the final match is 25%.

3.3.2.3 Functionality Considerations

In addition to the partial asset matching, an algorithm that considers the functionality of

the GRL entries was developed in order to take advantage of the precise nature of many of the

assets. The external assets of the unknown design can give an indication as to what functionality

that design may be. By searching for the functionality-specific assets assigned to the unknown

design, the algorithm takes into consideration the GRL entries with that same functionality and

weights them greater than the entries without that functionality assignment.

As mentioned, this aids in the final matching of the unknown design to a functionality.

During the analysis of individual asset pattern characteristics, the algorithm recognizes whether

or not one of these assets is contained within the asset pattern characteristic. In the case that a

functionality-specific asset is present, all of the GRL entries with the corresponding functionality

are given a weight of 1.5 in order to give these entries precedence. Therefore, the match

percentage for only that characteristic will be multiplied by 1.5. For example, in the case that the

 31

input port signal external asset pattern contains a DATA_ENCRYPTION asset, the match

percentage for the input port signal external asset pattern of all GRL entries of functionality type

encryption unit are multiplied by 1.5. However, the other asset pattern characteristics do not

necessarily receive the multiplier unless other functionality-specific assets are also contained in

those characteristics.

3.3.2.4 Final Matching

Once each individual asset pattern characteristic hash map has been filled with values

representing the individual asset pattern matches, the final asset pattern match for each GRL

entry can be determined. Each individual asset pattern characteristic is taken into account during

the final asset pattern match; however, not all of the asset pattern characteristics are weighted

equally. There are several reasons for this. The most important reason is that certain designs can

be implemented in several different ways. For example, the internal implementation of one ALU

may be completely different from that of another ALU even though they accomplish the same

purposes. However, both of the ALUs will have similar I/O port signal external assets.

Therefore, the I/O port signal external assets should be weighted higher than the internal

characteristics of the design, including the internal signal assets. An additional reason for having

larger weight for I/O port signal external assets is that the internal assets of multiples designs are

similar to each other even if the designs have different functionalities.

Now that it has been established that not all asset pattern characteristics should be

weighted the same, the next question to address is the amount of weight that each characteristic

should be given. After performing extensive testing in order to determine the proper weight, the

values seen in Table 13 below were finalized.

 32

TABLE 13: Asset Pattern Characteristic Weighting
Asset Pattern Characteristic Weight
input port signal external asset pattern 3×
output port signal external asset pattern 3×
internal signal external asset pattern 1×
input port signal internal asset pattern 1×
output port signal internal asset pattern 1×
internal signal internal asset pattern 1×

As the table shows, the port signal external asset patterns receive the largest weight, three

times larger than any other characteristic (the weighting of the asset pattern characteristics and

the testing results will be discussed further in subsequent sections). Once each individual asset

characteristic values have been determined, the above weighting is applied to each characteristic,

producing the final match value for each GRL entry to the unknown design. As mentioned

previously, certain designs do not contain every asset pattern characteristic. Therefore, during

the final matching these characteristics are simply omitted and the remaining characteristics are

used to match an unknown design to the GRL entry.

3.3.3 Golden Reference Library Results

Following the generation of matching values of a GRL entry to an unknown design, an

output file is generated containing the results of the matching analysis. This file contains the

match percentage along with the average match for each functionality. An example of the output

file can be seen in Figure 6 below.

 33

Figure 6: Golden Reference Library Match File

The first line of this file gives the name of the unknown design being analyzed, which in

this case is i2c_master. The second line gives the best GRL entry match, which in this case is

another i2c unit matching at 92.5%. This line also gives the matching percentage for each asset

pattern characteristic. The remaining lines list the average percentage match among all

functionalities with respect to the unknown design. As one would expect, the communication

functionality has the largest percentage match at 62%. Additional information can be added to

this file at the user’s discretion, such as the match value for every GRL entry.

3.4 Trojan Detection Algorithms

The final and most important component of analyzing unknown designs is the process of

Trojan detection. Several methodologies are employed in the detection of hardware Trojans.

First, the results of asset filtering are utilized in order to identify suspicious asset patterns. Asset

filtering can reveal suspicious connections between signals within the design and therefore is

essential in the identification of hardware Trojans. Another methodology by which hardware

Trojans may be identified consists of utilizing the functionality matching accomplished by the

Golden Reference Library in order to match an untrusted design to a blacklisted design.

Functionality matching also provides the opportunity of identifying suspicious connections

 i2c_master
Best Match: i2c : 92.5 (75.0, 100.0, 100.0, 100.0, 100.0, 100.0)
Communication Match: 62
Computational Match: 26
Decoder/Encoder Match: 27
Interrupt Unit Match: 50
Control Generation Match: 13
Peripheral Match: 3
Register File Match: 17
Encryption Unit Match: 20
Shift Register Match: 17
Timing Match: 20

 34

among otherwise trusted instances. Finally, characteristics of the RTL code itself are analyzed in

order to detect specific hardware Trojans embedded within the logic of the circuit.

In order to implement the methodologies of Trojan detection, the entire design is parsed

and each signal is analyzed individually by applying certain heuristics for determining the

presence of a Trojan. A diagram of this process can be seen below in Figure 7.

	

Figure 7: Trojan Detection High-Level Diagram

Of course not all possible hardware Trojans are intended to be detected using these

methodologies, as new hardware Trojans are constantly being developed. However, since the

implementation of these methodologies was done in modular fashion, additional Trojan detection

methods may be added in the future with relative ease. The hardware Trojan designs used as the

basis of these methodologies can be found on Trust-Hub’s website [11].

3.4.1 Asset Pattern Algorithms

The first of the methodologies of Trojan detection, asset pattern recognition, consists of

evaluating the external and internal asset traces assigned to an individual signal. The internal

and external asset traces are used in conjunction to determine whether or not the signal is being

affected by a hardware Trojan. For instance, the external asset trace of a signal can be analyzed

to determine the external assets that have been filtered to a signal. In certain cases, a Trojan can

be identified by simply identifying that an external asset has been filtered to the signal, exposing

a suspicious connection between internal signals. Additionally, the internal asset trace assigned

 35

to a signal can be useful in identifying suspicious driving assets by determining the internal logic

affecting that signal.

The first type of Trojan detected using asset pattern recognition involves the analysis of

signals dealing with the timing of a design. One type of attack on a timing signal consists of a

SET or RESET asset being filtered to a signal that had been originally assigned a SYSTEM_

TIMING or SUBSYSTEM_TIMING asset. This scenario is an example of a denial of service

attack against a timing signal of a design, as the set or reset signal could disable the timing of the

circuit. This attack is detected by analyzing the asset traces of the timing signals and searching

for filtered assets such as SET and RESET.

Additional Trojan detection methods involving asset pattern recognition identify

malicious logic being implemented within encryption units. The first method involves

identifying the modification of an encryption unit key by an attacker. The benchmarks

developed by Trust-Hub specifically address this potential Trojan [11]. If an attacker were able

to modify the encryption key, then the he or she would be able to decrypt any message being

encrypted by the encryption unit. This attack is identified by detecting the internal asset trace

assigned to a signal with a KEY external asset. If the internal asset trace contains any assets

indicating that the signal has been modified, such as a CONCURRENT_DRIVEN asset, the signal

is known to have been modified. Therefore, the signal containing these assets is flagged as

malicious. Another attack involving encryption units consists of the encryption key being leaked

to the output. In this scenario, an attacker could gain access to the key of the encryption unit by

using a certain trigger sequence. This type of attack is detected by analyzing the output port

signal external asset pattern to determine if a KEY asset has been filtered to any of the outputs. If

this scenario has occurred, the signal that has received a KEY asset is flagged as malicious.

 36

Another asset pattern algorithm involves the analysis of signals containing CRITICAL

assets. Since CRITICAL assets are intended for signals that are to be protected from leaking

information to attackers, these signals are extremely important to protect. Therefore, one of the

Trojan detection methods checks the outputs of all circuits to see if a CRITICAL asset has been

passed to it. If this is the case, then that output is marked as susceptible to critical information

leakage. A similar Trojan detection method analyzes the input and output signals of a top-level

design. For each of these signals, this method checks the assigned assets and compares them to

the filtered assets. In the case that the set of filtered assets are not contained within the set of

tagged assets, it is possible that a suspicious connection has been made with one of the signals in

question. In this case, the signal is marked as suspicious and presented to the user for further

inspection.

The final Trojan detection method pertaining to the analysis of asset patterns involves

analyzing the primary port signals of the unknown design. This method checks the assets that

have been assigned to the primary signals and compares them to the filtered assets of the same

signal. Due to the fact that malicious logic could be inserted into the unknown design,

unexpected assets could be filtered to the primary signals. In the case that the filtered assets are

not contained within the set of assets that have been assigned to the signal, the port signal is

marked as being connected to malicious logic within the unknown design.

3.4.2 Functionality Assignment Algorithms

The next set of Trojan detection algorithms consists of analyzing the functionality

assigned to a design during GRL matching. Functionality assignment can be leveraged in

several ways in order to detect the inclusion of a hardware Trojan. First, the process of GRL

functionality matching can reveal that a design has been compromised by Trojans by matching

 37

the design to a blacklisted functionality. Additionally, functionality assignment can reveal

suspicious connections between instances that otherwise would seem harmless. Finally, the

functionality assignment, coupled with asset pattern recognition, can reveal information leakages

in large designs.

3.4.2.1 Blacklisted Functionalities

The first category of functionality algorithms used to detect Trojans incorporates a

blacklist of Trojan-infested designs. The use of a blacklist to detect Trojans is a natural

extension of the Golden Reference matching presented previously. Rather than matching an

unknown design to a trusted design that is a part of the whitelisted GRL, the Golden Reference

matching analyzes the unknown design to determine if it matches to a blacklisted functionality.

The blacklist contains designs that are known to contain Trojans. Therefore, if an unknown

design matches to a design containing Trojans rather than a trusted design, the unknown design

is labeled as suspicious. The blacklisted designs were accumulated by creating asset patterns

from the Trojan-infested examples developed by Trust-Hub [11].

A list of the blacklist functionalities can be seen in Table 14 below. As the table

indicates, several of the blacklisted functionalities are similar to the whitelisted functionalities

noted previously. Therefore, the blacklisted functionalities are necessary to detect small

differences in implementation between legitimate designs and Trojan-infested designs.

TABLE 14: Blacklist Functionalities
Functionality Description

TROJAN_ENCRYPTION_UNIT Assigned to Trojan-infested encryption units leaking
TROJAN_TRIGGER Assigned to Trojan triggers designed to initiate Trojan

attacks in other entities
TROJAN_SHIFT_REGISTER Assigned to Trojan-infested shift registers
TROJAN_COMMUNICATION Assigned to Trojan-infested communication units

 38

3.4.2.2 Suspicious Connections

Another aspect of functionality detection that can be utilized to detect Trojans is the

identification of suspicious connections between instances. After first assigning functionalities

to unknown entities and sub-entities of a design, the connections between the instances of the

entities can be analyzed to determine whether or not a Trojan is present. Occasionally, an

instance found in a legitimate design can be used as a trigger to leak information.

Several suspicious types of connections are specifically searched for during the Trojan

detection process. The first two involve suspicious connections involving an encryption unit.

Certain instances within an encryption unit can allow information leakage if an activation

sequence is coded. The first of these connections involves the use of a shift register to leak data

from the encryption unit. This scenario has been implemented in one of Trust-Hub’s

benchmarks. Another connection that allows information leakage from an encryption unit

involves a counter instance being used as a trigger.

Another functionality that is susceptible to this type of attack is the register file. Since

the register file stores data, an attacker may seek to gain access to the data via a hardware Trojan.

Lower level connections of a register file could be used as a trigger to gain access to this data.

Similarly to the encryption unit Trojan detection methods, the register file entities are searched to

uncover possible lower level connections with shift register or counter functionalities. In all of

these cases, the malicious connection is identified by first starting with the top-level entity of an

analyzed design and recursively searching for all connections between entities of the design. If a

higher level entity, such as the encryption unit or register file, contains a lower-level connection

between entities that could serve as a trigger, such as a counter or a shift register, then the lower-

level entity is marked as malicious and presented to the user for inspection.

 39

3.4.2.3 Functionality Detection with Asset Pattern Recognition

The final category of functionality-based Trojan detection methods involves the

additional information of the asset pattern in order to identify Trojans. This additional

information assists in the detection of information leakages as it allows for identification of

specific assets found within suspicious functionalities. Due to the fact that the external assets

were developed and intended for specific functionalities, if one of the specific assets was found

outside of the designated functionality, malicious connections between instances could be

present in the RTL code. One of the Trojan detection methods of this category involves the

leakage of an encryption unit key. If an encryption key were found outside of an encryption unit,

there would be a strong indication that an attacker is trying to obtain the key and decrypt

messages from the encryption unit. Additionally, other types of assets are verified to be

contained only within designated functionalities in order to guarantee that there are no suspicious

connections between instances. By analyzing the individual signals of a design and comparing

them to the functionality of that design, these types of attacks can be recognized and reported.

For example, another Trojan detection method within this category consists of the analysis of

interrupts being found outside interrupt units. Interrupt signals found within certain

functionalities, such as TIMING and CONTROL_GENERATION, could be used to disrupt the

control of the design by a malicious attacker. The attacker could send a false interrupt to trigger

an unwanted state. Therefore, if an interrupt is filtered to an entity that typically does not

process interrupts, the interrupt signal is marked as being malicious.

3.4.3 RTL Characteristics

The final category of Trojan detection algorithms consists of parsing the RTL code to

discover malicious logic inserted by attackers. Oftentimes such logic will consist of various

 40

Trojan triggers, such as time bomb counters or finite state machines. These triggers initiate the

leakage of data or denial of service. After recognizing potential triggers during the parsing of the

RTL code, certain algorithms are applied to the signal in question in order to determine its

legitimacy. These algorithms also consist of analyzing the external and internal asset trace

assigned to the signal.

The first category of Trojans detected using RTL code consists of denial of service

attacks. Denial of service attacks are extremely prevalent in hardware against such signals as

clocks and interrupts and result in a portion of the circuit becoming unavailable due to malicious

logic. Detecting denial of service attacks involves the analysis of individual signal assignments.

A common scenario in which a signal is the subject of a denial of service attack consists of the

attacker substituting a Trojan signal for the actual signal. Consequently, the intended signal does

not have an internal asset pattern as it is a floating signal in the design and the Trojan signal is

taking its place. Therefore, denied signals can be recognized by identifying the internal asset

trace for internal assets. If there are no internal assets indicating that the signal drives or is

driven by another signal, then that signal is being denied and is marked as such. Additional

denial of service attacks can be applied to encryption keys. Attackers could potentially modify

the encryption key and could use a different key known only to them. This is detected by

analyzing the encryption key signal and determining whether it has been modified.

Another category of Trojans detected using RTL code involves time bomb counters.

Time bomb counters are used as a trigger for many types of Trojan attacks, such as information

leakage or denial of service. The signals used to implement time bomb counters can be

identified by examining the structure of the RTL code. Each signal is parsed to determine

whether it serves as a counter within the design. If so, additional verifications are applied to

 41

determine whether the signal is being used as a Trojan trigger. This is accomplished by checking

the internal asset trace of the signal to determine whether it conditionally drives another signal.

If this is the case, the signal is marked as a potential time bomb counter and the signal that is

triggered by the counter is marked as a susceptible to a time bomb counter. A separate Trojan

detection method related to time bomb counters also performs a verification to determine

whether the signals being conditionally driven by the counter is connected to the output. While

the previous time bomb counter detection method targets all types of Trojan attacks, this

detection method specifically targets information leakage attacks that result in a suspicious

driving assignment to an output signal. If the time bomb counter is conditionally driving an

output, the counter is marked as a trigger for an information leakage attack and the susceptible

signals are also noted. Trust-Hub provides several examples dealing with time bomb counters,

and these were used for testing this methodology.

An additional category of Trojan detection methods involving RTL code consists of finite

state machine detection. Trojans can be implemented by attackers in the form of a finite state

machine (FSM) with an unwanted state that is only entered in rare conditions. The result of the

trigger condition can be information leakage or denial of service. The first detection method

involving an FSM examines the conditional signal used to determine the state of an FSM. The

number of states in the FSM is also examined to determine if it matches the number of cases

possible based on the size of the conditional signal. In the case that there is not an OTHERS state

listed, a Trojan could be implemented in the RTL code by having an unwanted state that would

typically be sent to the OTHERS state. Therefore, the FSM is marked as suspicious.

Additionally, the FSM is checked to guarantee that every possible state is accounted for as

defined by the size of the conditional signal. In the case that there are fewer states than the

 42

signal allows, the FSM is marked as suspicious. This is due to the fact that an attacker could

gain access to the gate-level netlist and insert an additional state to perform an unwanted task.

These FSM detection methods are used as warnings against potentially malicious logic being

implemented by an attacker and indicate to the user that the FSM should be verified as secure.

Several more Trojan detection methods involve analysis of RTL code. First, the

assignment statements of individual signals are checked for trigger sequences. For example, an

assignment such as “X <= Y(0) AND Y(1) AND Y(2)” is a potential Trojan activation sequence

for the signal X as it only goes high in the case that the Y vector reaches the value “111.” This

type of signal assignment could be a Trojan trigger sequence implementing a denial of service or

information leakage attack. However, additional criteria must be met in order to mark the

assignment as suspicious. The signal X must also be triggering a process or driving a conditional

statement. This can easily be verified by analyzing the internal asset trace assigned to the

potential trigger signal. If the signal X contains an internal asset indicating that it triggers

another signal, the signal assignment of X is marked as suspicious. Additionally, any other

signal being driven by X is marked as susceptible to a Trojan attack.

One final Trojan detection method using RTL code involves the detection of extra

circuitry added to a design. An attacker often inserts extra circuitry in order to increase the

payload and/or perform unnecessary switching activities. Several examples provided by Trust-

Hub implement attacks of this nature. While not every scenario of adding circuitry can be

detected by this methodology, the examples provided by Trust-Hub have been tested and

detected. In Trust-Hub’s examples, an entire instance is being used as additional circuitry within

a design. However, the instance used as additional logic does not contain outputs as it only

performs unnecessary switching. Therefore, the detection method analyzes the instances to

 43

determine if output signals are present. If no outputs are present, the instance is marked as an

addition of malicious logic.

3.4.4 Trojan Detection Report

After performing all Trojan detection methods, a list of Trojans is compiled and

presented in user-readable format. An example of a portion of a Trojan detection report can be

found in Figure 8 below.

Figure 8: Trojan Detection Report

The Trojan detection report contains specific information about each Trojan present in

the design. In this example, the top of the report lists the name of the entity being analyzed,

RSACypher. This entity is a Trojan-infested encryption unit implementing the RSA algorithm.

A portion of the report shown lists two different Trojans present in the design, KEY_LEAK and

ENCRYPTION_UNIT_LEAK. In addition to the Trojan type, the output report also lists the

entity, instance and signal that are being affected by the Trojan. In this example, both Trojans

Trojan Information for:
 RSACypher:

Type of Trojan found: KEY_LEAK
Entity:
 RSACypher
Instance:
 Top_Level_Instance
Signal:
 inExp

Type of Trojan found: ENCRYPTION_UNIT_LEAK
Entity:
 RSACypher
Instance:
 Top_Level_Instance
Signal:
 cypher

 44

are being applied to the RSACypher entity. In some cases, additional information is added to the

output report. An example of this can be seen in Figure 9 below.

Figure 9: Trojan Detection Report with Driving Signals

In this example, a time bomb counter has been detected by the methodology. Therefore,

the output report notes the signals that contribute to the implementation of the Trojan. As the

report indicates, the TIMER signal is used as the time bomb counter to leak the SECRETKey.

Therefore, the Trojan detection report also lists the “Driving Signal” used to leak the

SECRETKey signal for the user to know which signal is being affected by the time bomb

counter. In this case, multiple Trojans are present in the same design.

3.5 GUI Implementation

The entire methodology of hardware Trojan detection is implemented using a Java-based

GUI. This tool allows a user to easily navigate to a VHDL file to be analyzed for Trojans. The

main GUI home screen can be seen below in Figure 10.

Type of Trojan found: TIME_BOMB_COUNTER
Entity:
 input_output
Instance:
 Top_Level_Instance
Signal:
 TIMER

Type of Trojan found: TIME_BOMB_SIGNAL
Entity:
 input_output
Instance:
 Top_Level_Instance
Signal:
 SECRETKey
Driving Signal:
 TIMER(15)

 45

Figure 10: GUI Home Screen

The left side of the screen indicates the steps that must be initiated by the user in order to

perform the methodology while the right side keeps a log of the entire process. Each individual

step is fairly self-explanatory. The colored dots next to the step indicate the status of each step.

A green dot indicates that the process has been finished, a yellow dot indicates that the step is

ready to be initiated and a red dot means that previous steps must be completed before the step

can be initiated. Step 1 allows the user to browse to the top-level file and parse the VHDL code.

In the screenshot of the GUI shown above, this step has already been initiated and logged on the

right side of the screen. The second step allows the user to assign external assets to the primary

 46

port signals of the chosen design. The external assets can either be assigned manually or

imported from an asset assignment file (the third step is used to assign specific internal assets for

another project). After assets have been assigned, the fourth step initiates both asset filtering and

GRL matching. At this point, the output report giving the results of GRL matching is generated.

The final step in the process is to analyze the design for Trojans. The results of the Trojan

detection are also written to a file for the user to examine.

During the second step of the tool, the user has the option of assigning assets manually.

If this option is chosen, the dialog box found in Figure 11 appears.

Figure 11: External Asset Assignment Dialog Box

As the screenshot shows, the user has the option of choosing any primary I/O port signal

from the list on the left side of the screen. On the right side of the screen, the user has the option

of assigning an asset to the selected signal with the “Assign Asset” button. If this button is

 47

selected, an additional dialog box appears giving the entire list of assets for the user to choose

from. Additionally, the user could remove an asset that was accidentally assigned with the

“Remove Asset” button. Once all assets are assigned the user has the option to save the asset

assignments to a “.asset” file for future usage. Finally, a log is shown at the bottom of the dialog

box to allow the user to track the assets that have been assigned.

Several output reports are generated while using the tool. Following the fourth step in the

process, the percentage match file is generated along with a GRL file for each entity and sub-

entity of the design being run. Both of these files are in the “OutputFiles” directory, which is in

the same location of the tool. The other generated file is the Trojan detection report, which can

be found in the “TrojanFiles” directory in the same location as the tool.

 48

4. RESULTS

4.1 Introduction

The individual portions of the Trojan detection methodology were tested and analyzed

concurrently with their development. The majority of the testing focused on collecting results of

the GRL matching and Trojan detection methods and guaranteeing that they performed as

expected. The Trust-Hub benchmarks were instrumental for the testing of the individual Trojan

detection methods. After ensuring the correctness of these methods, they were tested on larger

designs to ensure that they could detect multiple Trojans in the same large design.

4.2 GRL Matching

The Golden Reference Library methodology for matching unknown designs to entries in

the GRL required significant testing in order to ensure that the matching produced correct

results. The first step in testing the matching was to optimize the matching specifications,

particularly with regard to the weighting of the asset pattern characteristics of the design. Once

the matching methodology was finalized, many unknown designs were tested by matching to a

GRL entry. An example is given to show the process by which an unknown design is matched to

a GRL entry along with the results of the matching.

4.2.1 Asset Pattern Weighting

The weighting of the individual asset pattern characteristics was discussed in detail in the

methodology section. As noted, the external asset patterns of the input and output port signals

were given precedence over all other asset patterns by multiplying their match value by three.

This value was obtained through two guiding principles as well as trial and error.

The first principle in establishing a weighting value for each asset pattern characteristic is that

port signals are the most important in determining the functionality of an unknown design.

 49

While the internal implementation of a functionality type can vary, the port signals often share

the same characteristics. For example, Figure 12 below shows the port signals of an ALU. As

the list of port signals show, there are two input data vectors and one output data vector.

Additionally, the design contains an operation signal as well as a carry out and a flag. For

comparison, Figure 13 shows the port signals of a different ALU.

Figure 12: First ALU Port Signals

Figure 13: Second ALU Port Signals

As the port signals of the second design show, there are many similarities between the

two ALUs. Each ALU contains an operation signal as well as two data input vectors and a result

output vector. If the specific assets of DATA_COMPUTATIONAL and DATA_OP are assigned

to these signals, the port signal asset pattern matches will be nearly identical. However, the

internal logic of the ALU designs consists of vastly different implementations resulting in

completely different internal asset patterns. If the internal asset patterns of the designs were

weighted the same as the port signal asset patterns, the close match of the port signal asset

entity ALU_VHDL is
 port
 (
 Nibble1, Nibble2 : in std_logic_vector(3 downto 0);
 Operation : in std_logic_vector(2 downto 0);
 Carry_Out : out std_logic;
 Flag : out std_logic;
 Result : out std_logic_vector(3 downto 0)
);
end entity ALU_VHDL;

entity simple_alu is
port(Clk : in std_logic; --clock signal
 A,B : in signed(7 downto 0); --input operands
 Op : in unsigned(2 downto 0); --Operation to be performed
 R : out signed(7 downto 0) --output of ALU
);
end simple_alu;

 50

patterns would cancel with the poor match of the internal asset patterns. Therefore, it would not

indicate that each design belongs to the same category. Thus, the weighting for the port signal

asset patterns should be greater than the internal asset patterns.

After establishing that the port signal asset patterns should be given greater weights than

the internal asset patterns, the next question is how much weight they should be given. Based on

the previous principle, there is no identifiable limit to the weight given to a port signal.

Therefore, the second principle gives guidance to an approximate limit for the weight of port

signals. The second principle states that the internal asset patterns reveal the inclusion of

malicious logic, and therefore must also carry weight in order to match to blacklist designs

containing Trojans.

The testing of values for the weight of the individual characteristics consisted of trial and

error with multiple weighting values. After implementing multiple weighting values, the two

options that resulted in the best matches were between two and three as the weight factor to the

port signal asset patterns. The two options were compared by running the same design through

the matching process using both values and comparing the results. Rather than only comparing

the value of the closest matched design, the average match value for entire functionality

categories were examined. In this way, the improvement of using certain values as a weight

factor was easier to determine. After further comparison between these two options, the

weighting value of three produced the closest match. Noticeable improvement was seen across

multiple types of designs in the desired functionality category. More importantly, the average

match values for the categories other than the matched functionality were significantly lower

with the weight value of three than that of two.

 51

4.2.2 GRL Matching Example

The following example proves the effectiveness of the GRL matching methodology as

well as illustrating the process of matching an unknown design to a GRL entry. As mentioned in

the methodology section, an unknown design is analyzed first through the parsing process

followed by asset assignment and filtering to produce an asset pattern. The unknown design

chosen to illustrate the matching methodology is a basic UART communication module. The

primary I/O signals of the design can be seen in Figure 14 below.

Figure 14: UART I/O Port Signals

Following the parsing process, assets were assigned to each port signal. The assignment

of the assets was fairly straightforward. The assigned assets are in Table 15 below. After

filtering the assets throughout the circuit, the asset pattern found in Figure 15 was produced.

Due to the specificity of the assets, the majority of the assets assigned to this design are directly

involved in the process of communication. Therefore, during the matching phase of the

methodology, the communication functionalities should theoretically have the highest match

value.

entity uart is
port (
 clk: in std_logic;
 reset: in std_logic;
 rx_data: out std_logic_vector(7 downto 0);
 rx_enable: out std_logic;
 tx_data: in std_logic_vector(7 downto 0);
 tx_enable: in std_logic;
 tx_ready: out std_logic;
 rx: in std_logic;
 tx: out std_logic
);
end uart;

 52

TABLE 15: UART Asset Assignment
Signal Asset

clk SYSTEM_TIMING
reset RESET
rx_data DATA_COMMUNICATION
rx_enable COMMUNICATION_CONTROL
tx_data DATA_COMMUNICATION
tx_enable COMMUNICATION_CONTROL
tx_ready COMMUNICATION_STATUS
rx COMMUNICATION_CONTROL
tx COMMUNICATION_CONTROL

Figure 15: UART Asset Pattern

The matching process iteratively compared the asset patterns of GRL entries to the asset

pattern of the UART design. As expected, the communication functionalities matched as closely

as the unknown design. In fact, the top five closest matches have communication functionalities

and matched with a value of 80% or greater. The GRL entry with the closest match is an

interesting case study for understanding the matching process. All of the asset pattern

characteristics dealing with external assets (input port signal, output port signal and internal

>[SYSTEM_TIMING]
>*[PROCESS_SENSITIVE, CONDITIONAL_DRIVING]
>[RESET]
<[DATA_COMMUNICATION]
>[DATA_COMMUNICATION]
>*[PROCESS_SENSITIVE]
>[COMMUNICATION_CONTROL]
<[COMMUNICATION_STATUS]
<[COMMUNICATION_CONTROL]
/*[PROCESS_SENSITIVE, CONDITIONAL_DRIVEN]
/*[CONDITIONAL_DRIVEN]
/*[CONDITIONAL_DRIVEN, CONDITIONAL_DRIVING]
/[DATA_COMMUNICATION]
/[COMMUNICATION_CONTROL]
/*[CONDITIONAL_DRIVEN, PROCESS_OPERATION_SENSITIVE]
/*[CONDITIONAL_DRIVING]
/[COMMUNICATION_STATUS]
/*[PROCESS_SENSITIVE, CONDITIONAL_DRIVEN, CONDITIONAL_DRIVING]
/*[CONDITIONAL_DRIVEN, CONDITIONAL_DRIVING,
PROCESS_OPERATION_SENSITIVE]

 53

signal) received a 100% match. This occurs because of the specific assets and the functionality

multiplier.

However, the internal signals have a variety of matching values. The internal asset

pattern of the input signals matched at 75%, the internal asset pattern of the output signals

matched at 0%, and the internal asset pattern of the internal signals matched at 78%. The 0%

match for the internal asset pattern characteristic of the output signals illustrates an important

point in understanding the matching algorithm and the weighting of the asset pattern

characteristics. Although the remaining asset pattern characteristics have a high percentage

match, the internal asset pattern of the output port signals has a 0% match because the two

designs were coded differently in HDL. While the output signals of the basic UART entity

assigns values to the primary outputs inside a process block, the design matched with the UART

design uses concurrent statements and conditional statements to assign values to its outputs.

Therefore, even though the functionality of the designs is clearly the same, the internal asset

patterns are greatly different. As a result, the weighting of the asset pattern characteristics

heavily favors the external asset pattern characteristics. After the weighting of the asset pattern

characteristics is applied, the final match is 85%, which gives a fairly certain indication that the

functionality of the design is the communication functionality as was expected.

4.3 Trojan Detection

Thorough testing of the Trojan detection strategies presented in the methodology section

required designs with Trojans inserted. The Trust-Hub benchmarks [11] were used as a basis to

perform unit testing of individual Trojan detection methods. These benchmarks focused on

encryption units and communication units containing Trojans performing information leakage or

denial of service attacks. In addition to the benchmarks created by Trust-Hub, several custom

 54

benchmarks were developed in order to test the remaining Trojan detection methods that could

not be tested with the examples provided by Trust-Hub. After verifying the functionality of each

Trojan detection method through unit testing, large designs with multiple Trojans inserted were

used to further test the Trojan detection methods and guarantee that all Trojans in the design

could be detected. The first of the large designs was a crypto core developed by Trust-Hub with

Trojans already inserted. The second was an open-source microcontroller that had several

custom Trojans that were inserted into the previously Trojan-free design.

4.3.1 Trust-Hub Benchmarks

The Trust-Hub benchmarks provide a useful tool for the unit testing of Trojan detection

methods. While not all of the Trust-Hub benchmarks are useful as they only contain gate-level

netlists, a significant portion contain the RTL code required to test the Trojan detection methods

of this methodology. Along with a Trojan-infested design, Trust-Hub includes a design without

the Trojan included so that the two designs can be compared. Some of the benchmarks were

written in Verilog rather than VHDL. By using the XHDL tool [22], the Verilog designs could

be converted into VHDL in order to be useful for testing.

The first category of the Trust-Hub benchmarks consists of four RSA encryption units

each containing a different type of Trojan. The first of these benchmarks, called BasicRSA-

T100, leaks the encryption key when a specific plaintext string is entered. The Trojan-infested

portion of the design can be seen in Figure 16 below.

Figure 16: Encryption Unit Key Leak VHDL Example

if indata = x"44444444" then
 cypher <= key; -- Trojan leaks the private key through cypher output bus
else
 cypher <= tempout; -- set output value
end if;

 55

As the VHDL code shows, the key leaks when the string “44444444” is entered. Using

traditional testing methods, this scenario is very difficult to discover, as it is a very rare

condition. However, by performing asset assignment and filtering, the asset pattern of the

ciphertext output is shown to contain a KEY asset. Therefore, the Trojan detection method

designed to detect encryption unit leaks identifies the Trojan in this design.

This benchmark also serves as a unit test for another Trojan detection method. Since the

Trojan is inserted into the design, the encryption key, which is assigned the external asset KEY,

is directly driving the ciphertext, which is assigned the external asset DATA_ENCRYPTION.

Therefore, the Trojan detection method ensuring that the filtered assets are contained within the

tagged assets identifies that a suspicious connection occurs between the encryption key and the

ciphertext. The ciphertext output’s asset trace contains a KEY external asset due to filtering

while the encryption key receives a DATA_ENCRYPTION asset. Therefore, both of the signals

are noted to be vulnerable to attacks.

The next RSA Trojan benchmark, BasicRSA-T200, contains a denial of service attack

against the encryption key. Similar to the previous Trojan, the attack is triggered by a specific

input sequence of plaintext. The Trojan-infested portion of the design can be seen in Figure 17

below.

Figure 17: Encryption Unit Denial of Service VHDL Example

As the VHDL code shows, the signal trojanKey is assigned a value when a certain string

of plaintext is inserted. This signal is then used as the encryption key for the BasicRSA-T200,

Trojan: process (indata) is
begin
 if indata = x"01fa0301" then
 trojanKey <= x"00000001";
 end if;
end process Trojan;

 56

while the original key is being denied. As in the previous example, it is nearly impossible to test

the scenario in which the specific string of plaintext is inserted, resulting in the denial of service

attack. However, the Trojan detection method identifying denial of service attacks detect this

attack by identifying the internal asset pattern of the original encryption key. Since the original

key signal is replaced by the trojanKey signal, its internal asset pattern is empty, indicating the

presence of a denial of service attack against the encryption unit key.

Another RSA benchmark, BasicRSA-T300, has a similar payload to BasicRSA-T100 in

that it leaks the encryption key. However, it is triggered by a time bomb counter rather than a

specific plaintext string. The time bomb counter process can be seen in Figure 18 below.

Additionally, the payload causing the leakage of the encryption key can be seen in Figure 19

below.

Figure 18: Time Bomb Counter VHDL Example

Figure 19: Encryption Unit Denial of Service VHDL Example

As the two portions of the design show, the time bomb counter will increment on the

rising edge of the ds signal. After incrementing twice, it will leak the encryption key. Two

separate Trojan detection methods identify this attack. First, the same Trojan detection method

TrojanTrigger: process (ds, reset) is
begin
 if reset='1' then
 TrojanCounter <= x"00000000";
 elsif rising_edge(ds) then
 TrojanCounter <= TrojanCounter + 1;
 end if;
end process TrojanTrigger;

if TrojanCounter = x"00000002" then
 cypher <= key;
else
 cypher <= tempout;
end if;

 57

used to identify the Trojan in BasicRSA-T100 detects the leak by identifying the asset pattern of

the output. Second, the Trojan detection method designed to identify time bomb counters detects

the attack by first identifying the fact that TrojanCounter is a counter. After identifying this fact,

the detection method recognizes that it is contained within a conditional statement used to leak

information. Therefore, the TrojanCounter signal is identified as a time bomb counter used as a

trigger for information leakage.

The final RSA benchmark, BasicRSA-T400, contains the same trigger as the BasicRSA-

T300 benchmark as it uses a time bomb counter. Additionally, the payload of this Trojan is the

same as BasicRSA-T200 as it results in a denial of service attack. Therefore, the detection

methods used for detection in the previous attacks are used to identify the Trojan in this

benchmark.

The next set of Trust-Hub benchmarks consists of several AES encryption units

containing various types of Trojans. These designs are much larger than the RSA examples and

contain several Trojans for each individual example. One particular example in this set of

benchmarks is a large crypto core, which is analyzed for numerous Trojans. However, other

benchmarks in this category are analyzed for Trojans in order to test the detection methods.

Many of the designs in this category contained the same type of Trojans, so not all designs in this

category will be discussed.

The first Trojan attack found in this set of benchmarks consists of the encryption key

being leaked to an instance that is not for encryption. By doing so, the encryption key is leaked

through a shift register acting as a leakage circuit. This attack is found in AES-T600 and AES-

T2000. By identifying the instance inside the encryption unit is a shift register and the

 58

encryption has been leaked to it, the circuit is marked as susceptible to an attack leaking the

encryption unit key.

Another Trojan attack found in AES-T600 and AES-T2000 as well as AES-T1800

implement a Trojan intended to drain the battery of the circuit by adding unnecessary circuitry.

The shift register in the previous discussion and in AES-T1800 is the instance used as extra

circuitry. This is detected by noting that there are no outputs found in the instance, as it is being

used only to perform unnecessary computations designed to drain the battery of the circuit. The

Trojan detection method utilizing functionality matching also is used to recognize this Trojan, as

it detects shift registers being contained within encryption units. Therefore, multiple detection

methods are used to identify the same Trojan.

The final major category of Trust-Hub benchmarks consists of the RS232 UART

communication units. The designs consist of a top-level entity with a transmitter instance and a

receiver instance. Several Trojans implemented in this category are identified using previously

discussed Trojan detection methods. However, there are a few new Trojans within this category

that are detected with additional Trojan detection methods.

Several designs in the RS232 category—namely RS232-T600, RS232-T700, and RS232-

T900—contain malicious FSMs used to activate a Trojan. After a certain sequence is inputted to

the communication unit, it reaches a state that causes the output information to be modified. The

Trojan detection methods pertaining to FSMs are utilized to detect Trojans in these designs. As

the methodology section mentioned, the Trojan FSM detection methods indicate the possibility

of a Trojan and require user interaction for verification. The fact that an input sequence is used

to trigger a specific state could potentially be legitimate. However, in this particular case, once

 59

the user has been notified of a potential Trojan present, it can be easily verified that the FSM is

being used as a Trojan.

An additional method of Trojan detection utilized in this category of benchmarks is the

matching of blacklisted designs. Due to the fact that these designs use an FSM to implement

Trojan triggers, the internal asset patterns of the Trojan-infested design are significantly different

than the internal asset patterns of the Trojan-free version. Therefore, the GRL matching

algorithm matches the unknown design to a blacklisted functionality when analyzing other

designs with a similar Trojan trigger.

4.3.2 Additional Trojan Examples

After performing unit tests with the Trust-Hub benchmarks for the relevant Trojan

detection methods, the remaining Trojan detection methods were tested by producing designs

containing the corresponding Trojans. The first of the remaining Trojan detection methods

tested is the Trojan resetting the timing signal of the design. This is a simple example to test, as

an internal clock signal assignment was modified to include a reset signal. A sample assignment

statement can be seen below.

Internal_Clock <= Clock AND Reset;

In this scenario, the internal clock is clearly reset rather than being directly driven by the clock

port signal. Therefore, anything driven by the internal clock will experience a denial of service

attack. This attack is detected by analyzing the external asset trace of the timing signals of the

design. In this scenario, the asset trace of the timing signals also contains a filtered RESET asset.

Therefore, the timing signal with a RESET in its asset trace is noted as being vulnerable to a

Trojan. In addition to the clock-reset Trojan detection method, another Trojan detection method

can be used to identify this attack. This Trojan detection method deals more generally with

 60

denial of service attacks to timing signals by analyzing the internal asset trace of the timing

signals. The denial of service attacks are detected by identifying internal assets indicating that

the signal has been modified, such as CONCURRENT_DRIVEN, CONDITIONAL_DRIVEN and

PROCESS_OPERATION_SENSITIVE. In this example, the timing signal’s internal asset trace

contains a CONCURRENT_DRIVEN asset due to the concurrent assignment statement.

Therefore, the signal is also flagged as being vulnerable to a timing denial of service attack.

The Trojans related to suspicious entities contained within register files were tested by

creating connections to malicious instances in a previously secure register file. The first type of

Trojan tested is a counter instance inside a register file. After creating a connection in the

register file, the design was run through the tool, resulting in correct functionality matches for

the register file and the counter. Following the matching of the functionalities, the Trojan

detection method identifies that a TIMING instance is found in a REGISTER_FILE top-level

entity. Therefore, the TIMING instance is correctly flagged as a Trojan. Next, a malicious shift

register was inserted in the register file. Following the same process, both entities are correctly

matched using the GRL. The Trojan detection method consequently flags the shift register as a

suspicious connection, correctly identifying the inserted Trojan.

The next set of Trojan detection methods tested involved attacks on interrupt units. The

first of these attacks involved an interrupt signal being leaked to another component of the

design, resulting in a number of possible failures in the circuit. The unit test that was developed

to test this detection method involved a counter instance being found within an interrupt unit.

The port mapping of this instance can be seen in Figure 20 below.

 61

Figure 20: Counter Instance in Interrupt Unit

When a specific interrupt signal arrives to the interrupt unit, it triggers the counter,

eventually resulting in a denial of service attack against the interrupt unit. However, this same

detection method is valid for detecting other types of attacks to the design. The detection

method identifies an interrupt was sent to a TIMING instance and therefore flags the signal that is

sent to the instance.

Another Trojan detection method deals more generally with denial of service attacks

against interrupt units. In the unit test for this method, the input interrupt signal is being denied

as a result of a Trojan signal being used in its place. The Trojan signal is preset to a value, as the

line below shows.

signal trojanInterrupt : std_logic := '0';

The trojanInterrupt signal is then used in place of the intended interrupt signal. A portion of the

VHDL code can be seen below in Figure 21.

Figure 21: Interrupt Unit Denial of Service Attack

As this example shows, the value of the interrupt signal is preset and not modified,

resulting in a denial of service attack. This attack is detected by analyzing the internal asset

trojanCounter: counter
Port Map(C => CLK_I,
 CLR => IR(0),
 Q => tjCounter);

if(trojanInterrupt = '1') then
 int_pt <= pt(0);
 INTR_O <= '1';
 next_s <= tx_int_info_priority;
elsif(trojanInterrupt = '1') then
 int_pt <= pt(1);
 INTR_O <= '1';
 next_s <= tx_int_info_priority;
end if;

 62

pattern of the denied interrupt signal and identifying as not being used in the design. Therefore,

the interrupt signal is flagged as being denied, meaning that another signal has taken its place.

The next Trojan detection method tested involved the identification of Trojan triggers in

the form of concurrent assignment statements. These statements are suspicious as they are

involved in activating a signal under a rare circumstance. Because of the limitations of testing,

these rare conditions are often untested, ultimately resulting in the activation of the Trojan by an

attacker. A portion of the example designed to test the Trojan detection method can be seen

below in Figure 22.

Figure 22: Trigger Assignment Attack

As this portion of the code shows, the signal b is triggered only when the A vector

reaches its terminal value. As a result, b goes high and the out_data is set to ‘0’. In this

scenario, trigger assignments have the ability to leak information through outputs or cause denial

of service attacks. Therefore, the assignment of b is marked as malicious and presented to the

user.

The next Trojan detection method to be tested involved the leakage of any signals

assigned a CRITICAL output. Users assign CRITICAL assets to signals that should be kept

secure, such as an encryption key or other sensitive data. Therefore, this Trojan detection

method was tested by assigning a CRITICAL asset to an encryption key that was leaked through

an output. Many of the Trust-Hub designs implement this type of Trojan and were therefore

used to test this method. The method detects the information leak by analyzing the asset pattern

b <= A(3) AND A(2) AND A(1) AND A(0);
if (b='1') then
 out_data <= '0';
else
 out_data <= in_data;
end if;

 63

of the output signals. Since the signal with the CRITICAL asset directly drives an output signal,

the output signal contains a filtered CRITICAL asset. Therefore, the output signal is marked as

being susceptible to a leakage of critical information.

4.3.3 Trojan-Infested Crypto Core Example

In order to demonstrate how the Trojan detection methods extend to larger designs,

multiple larger designs were analyzed for Trojans. The first large design example involved the

analysis of a crypto core found in the Trust-Hub benchmarks. Specifically, the design is an AES

core called AES-T600 in the Trust-Hub benchmark. This design contained multiple Trojans

intended to leak the encryption key. Additional Trojans were also added to the design in order to

demonstrate the abilities of multiple Trojan detection algorithms. There were a total of 11 lower

level entities in the design. Although typically negligible, the filtering time for this design took

significantly longer as it was a larger design using many rounds of encryption. The total parse

time took 6 seconds, the total filtering time took 5 minutes and 41 seconds and the Trojan

detection time was negligible. This process was performed on an Apple MacBook Pro with a 2.4

GHz Intel Core 2 Duo processor and 16 GB of RAM.

The first step in analyzing the design was to assign external assets to the primary port

signals. The port signals for the design can be seen in Figure 23. The asset assignment for the

listed port signals was fairly self-explanatory. The clk signal was assigned a SYSTEM_TIMING

external asset, the rst signal was assigned a RESET asset, the in signal was assigned a

DATA_ENCRYPTION asset, the key signal was assigned a KEY asset and the out signal was

assigned a DATA_ENCRYPTION asset.

 64

Figure 23: Crypto Core Port Signals

Following asset assignment, the assets of the design were filtered throughout the circuit

in order to obtain an asset pattern for the design. The asset pattern was then used in the

functionality matching for the individual entities of the design. The functionality of the top-level

design was correctly matched to an encryption unit. Therefore, the multiple encryption unit

Trojan detection algorithms were used to identify Trojans.

The list of Trojans that were previously inserted into the design began with a time bomb

counter inserted in the final round of encryption. The trigger for this attack can be seen in Figure

24 below. As the figure shows, the Trojan counter increments on the rising edge of the clock.

The counter is used to trigger an information leakage in the final round of encryption. The

payload of the attack is a leakage of the encryption key through the ciphertext output. Therefore,

by knowing the point at which the Trojan counter causes leakage, an attacker can observe the

output of the encryption unit and obtain the key. The information leakage portion of the VHDL

code can be seen in Figure 25 below.

Figure 24: AES Time Bomb Trigger

ENTITY top IS
 PORT (
 clk : IN STD_LOGIC;
 rst : IN STD_LOGIC;
 in : IN STD_LOGIC_VECTOR(127 DOWNTO 0);
 key : IN STD_LOGIC_VECTOR(127 DOWNTO 0);
 out : OUT STD_LOGIC_VECTOR(127 DOWNTO 0)
);
END ENTITY top;

TrojanTrigger: process (clk) is
 begin
 if rising_edge(clk) then
 TrojanCounter <= TrojanCounter + 1;
 end if;
 end process TrojanTrigger;

 65

Figure 25: AES Time Bomb Key Leakage

As the portion of code shows, the encryption key is leaked through the output once the

counter reaches the value of “44444444”. This attack is detected by first applying the algorithm

for identifying time bomb counters. By identifying a counter was used in conjunction with a

leakage of information, the TrojanCounter signal is flagged as a trigger for an information

leakage attack while the state_out signal is flagged as the output port signal used to leak the

information. Additionally, this attack is also identified by applying the algorithm of detecting

encryption keys leaking directly to an output. By identifying the asset traces of both the

state_out signal and the key_in signal, the Trojan attack is detected by recognizing the direct

driving assignment between these two signals and that an encryption key could directly leak

through an output port signal.

The next attack found in the AES core involved a Trojan shift register. The concept of a

Trojan shift register was previously addressed when discussing the Trust-Hub benchmarks. The

Trojan shift register is used as additional logic performing a shift operation on the encryption

key. In doing so, it allows attackers to perform power analysis side-channel attack on this

portion of the circuit and thus obtain the value of the encryption key. It is initially triggered by a

time bomb counter incrementing up to a certain value before performing the attack. This attack

is detected in multiple ways. First, since the entity does not contain any outputs, it is

immediately flagged as an inclusion of additional logic. Second, the attack is identified as a

PROCESS (clk)
 BEGIN
 IF (clk'EVENT AND clk = '1') THEN
 state_out <= (z0 & z1 & z2 & z3);
 ELSIF (TrojanCounter = x"44444444") THEN
 state_out <= key_in;
 END IF;
 END PROCESS;

 66

Trojan shift register through the functionality matching. Finally, the trigger for the attack is

identified as a time bomb counter through the time bomb counter Trojan detection method.

Through the combination of all these Trojan detection methods, the evidence indicates that the

entity in question is malicious.

4.3.4 Trojan-Infested Microcontroller

The final large design intended to test Trojan detection methods involves a

microcontroller with Trojans inserted. This example is different than the previous example in

that the Trojans were not inserted by Trust-Hub or another third party. Instead, the Trojan-free

version of this design was obtained through OpenCores [13] then the Trojans were personally

inserted in various positions throughout the design. This was intended to show the capability of

the Trojan detection methods of finding Trojans in a large design. The design chosen from

OpenCores to be evaluated was termed c16, which is an open-source 16-bit microcontroller. The

design has 19 lower level entities, such as a register file, an ALU, and a communication unit.

This design was chosen due to the fact that it was already written in VHDL and required minimal

modifications to be parsed by the tool. The total parse time for the design was 18 seconds, the

filtering time was 11 seconds and the Trojan detection time was negligible.

Following the parsing process of the design, assets were assigned to the primary port

signals. Since the design was significantly larger than the unit tests, it was imperative to assign

correct assets to the signals in order to adequately represent the functionality of the signal. This

is needed because the signal is filtered throughout a much larger design; and, if the signal is

assigned to an incorrect asset then that asset propagates throughout a much larger space than if

the design was smaller. The port signals of the microcontroller can be seen in Figure 26 below.

 67

Additionally, the asset assignment of the primary port signals from Figure 26 can be seen in

Table 16 below.

Figure 26: Microcontroller Primary Port Signals

TABLE 16: Microcontroller Asset Assignment
Signal Asset

CLK40 SYSTEM_TIMING
SWITCH DATA_PERIPHERAL
SER_IN DATA_COMMUNICATION
SER_OUT DATA_COMMUNICATION
TEMP_SPO DATA_PERIPHERAL
TEMP_SPI DATA_PERIPHERAL
CLK_OUT SYSTEM_TIMING
LED DATA_PERIPHERAL
ENABLE_N ENABLE
DEACTIVATE_N STATUS
TEMP_CE PERIPHERAL_CONTROL
TEMP_SCLK SUBSYSTEM_TIMING
SEG1 DATA_PERIPHERAL
SEG2 DATA_PERIPHERAL

entity board_cpu is
PORT (CLK40 : in STD_LOGIC;
 SWITCH : in STD_LOGIC_VECTOR (9 downto 0);
 SER_IN : in STD_LOGIC;
 SER_OUT : out STD_LOGIC;
 TEMP_SPO : in STD_LOGIC;
 TEMP_SPI : out STD_LOGIC;
 CLK_OUT : out STD_LOGIC;
 LED : out STD_LOGIC_VECTOR (7 downto 0);
 ENABLE_N : out STD_LOGIC;
 DEACTIVATE_N : out STD_LOGIC;
 TEMP_CE : out STD_LOGIC;
 TEMP_SCLK : out STD_LOGIC;
 SEG1 : out STD_LOGIC_VECTOR (7 downto 0);
 SEG2 : out STD_LOGIC_VECTOR (7 downto 0);
 XM_ADR : out STD_LOGIC_VECTOR(15 downto 0);
 XM_CE_N : out STD_LOGIC;
 XM_OE_N : out STD_LOGIC;
 XM_WE_N : in STD_LOGIC;
 XM_DIO : in STD_LOGIC_VECTOR(7 downto 0)
);
end board_cpu;

 68

TABLE 16: Microcontroller Asset Assignment (Cont.)
Signal Asset

XM_ADR ADDRESS_SENSITIVE
XM_CE_N ENABLE
XM_OE_N ENABLE
XM_WE_N COMMUNICATION_CONTROL
XM_DIO DATA_COMMUNICATION

The first of the Trojans inserted in the design is a denial of service attack found in the

ALU. The attack targets the ALU instruction signal used to determine which operation is to be

performed. By controlling the instruction signal, an attacker has the ability to control which

operation is to be performed by the ALU, therefore rendering it useless. The Trojan was inserted

as an additional signal, called ALU_OP_Trojan, that could be pre-programmed by an attacker

while the original ALU instruction signal was denied. A portion of the FSM controlled by the

Trojan signal can be seen in Figure 27 below.

Figure 27: ALU Denial of Service

With the Trojan signal controlling the FSM, the outputs from the ALU are untrusted.

This attack was detecting by identifying that the original ALU instruction signal, called

case ALU_OP_Trojan is
 when ALU_MD_FIN => -- mult/div
 if (QP_NEG = '0') then
 ZZ <= PROD_REM(15 downto 0);
 else
 ZZ <= X"0000" - PROD_REM(15 downto 0);
 end if;

 when others => -- modulo
 if (RM_NEG = '0') then
 ZZ <= PROD_REM(31 downto 16);
 else
 ZZ <= X"0000" - PROD_REM(31 downto 16);
 end if;
end case;

 69

ALU_OP, was being denied since the design was being controlled by a Trojan instruction signal.

Therefore, the original ALU instruction signal was flagged as a part of a denial of service attack.

The next attack involved the insertion of a malicious state to an FSM contained within

the memory component of the design. The Trojan-free FSM typically contains an “OTHERS”

state that handles remaining states that are not listed. The Trojan-free version of the FSM can be

seen in Figure 28 below.

Figure 28: Trojan-free Memory FSM

As the example shows, when the LADR signal has a value of “0001”, the OUT_1 signal is

assigned to the RDAT output signal. When the LADR has any other value, the OUT_0 signal is

assigned to the RDAT output signal. However, the inserted Trojan results in the modification of

the default value for the FSM. The Trojan-infested version of the FSM can be seen in Figure 29

below.

Figure 29: Trojan-infested Memory FSM

As the Trojan-infested version shows, the “OTHERS” case has been removed and

replaced with a state occurring when the LADR value is “0010”. When this state is reached, an

incorrect value is assigned to the RDAT signal. Additionally, any case other than the two listed

will not result in a change in the value of the RDAT output. Therefore, this attack has modified

the output data that is assigned to the RDAT signal. This attack was detected using the FSM

case LADR is
 when "0001" => RDAT <= OUT_1;
 when others => RDAT <= OUT_0;
end case;

case LADR is
 when "0001" => RDAT <= OUT_1;
 when "0010" => RDAT <= trojanOut;
end case;

 70

Trojan detection methods. First, because the case statement does not contain an “OTHERS”

state and not all states are listed, it is flagged as susceptible to the insertion of a Trojan as a

malicious state. Additionally, it is marked as susceptible to a gate-level Trojan inserted since not

all states are accounted for. Therefore, this attack was detected by identifying the missing states

in the FSM.

The next attack was inserted inside the UART communication unit resulting in a

transmission of incorrect data. The attack was triggered by a counter signal that counted on the

rising edge of the clock. The transmission of serial data was disrupted when the Trojan counter

reached a certain value. The Trojan payload occurred when the most significant bit of the Trojan

counter is equal to zero. The VHDL code can be seen in Figure 30 below.

Figure 30: UART Trojan Attack

This scenario only occurs when the most significant bit of the Trojan counter goes high,

and therefore it takes a significant amount of time to occur. This scenario is also very time

consuming to test, thus it is rarely caught through functional testing. However, the time bomb

counter Trojan detection method identifies the inclusion of the time bomb counter and

subsequently identifies any signals triggered by the counter signal. Therefore, both the time

bomb counter signal and the serial out signal are flagged as a part of a Trojan attack.

The final Trojan inserted into the microcontroller is another instance of additional logic

in the form of a shift register. The shift register was similar to the one presented in the previous

example of the crypto core. Even though this example was previously tested, it was important to

if TrojanCounter(31) = '1' then
 SER_OUT <= "1";
else
 SER_OUT <= BUF(0);
end if;

 71

test it in a larger design in order to guarantee the identification of the malicious logic when there

were significantly more entities to analyze. The shift register was inserted in the data core entity

of the design and was intended to leak data from memory to an attacker. The port mapping of

the Trojan shift register can be seen in Figure 31 below.

Figure 31: Trojan Shift Register Port Map

As the VHDL code shows, the RDAT signal of the data core was leaked to the shift

register and therefore leaked to an attacker. The Trojan shift register’s internal characteristics

are the same as the previous example’s shift register’s characteristics. The shift register entity

does not contain an output and was used as additional logic designed to leak the input

information. The Trojan shift register was detected using the same algorithms as before. It was

analyzed and found to contain no outputs, and therefore was marked as additional logic that

could be utilized by a malicious attacker to leak information.

4.4 Analysis

As the previous sections noted, the Golden Reference Library matching as well as the

Trojan detection methods produced successful results. The matching methodology was

subjected to numerous rounds of testing to determine its ability to match an unknown design to a

functionality successfully. Before specific assets were developed, the matching results were

occasionally incorrect when dealing with general assets. However, after incorporating the

specific assets, the matching methodology was successful in matching an unknown design to a

functionality. Additionally, the output report of the percentage match gives the user an

--Trojan Shift Register
ShiftRegister: TSC
Port Map(clk => CLK_I,
 rst => CLR,
 data_leak => RDAT,
 Tj_Trig => tjTrigger);

 72

indication of the other designs that matched closely in the case of an outlier as well as presenting

the user with the average match of a functionality. These provide the user with additional

information that can assist in the evaluation of an unknown design. Overall, the matching

methodology is very successful in evaluating unknown designs due to the specificity of asset

assignment and the large GRL used in comparison.

Additionally, the Trojan detection portion of the project successfully analyzes unknown

designs for potential Trojans. As the previous sections have described, the Trust-Hub

benchmarks were the major source of verification for the Trojan detection methods. After

implementing Trojan detection methods for all the Trojans found in the benchmarks, additional

test vehicles were developed to illustrate the effectiveness of the remaining Trojan detection

methods. Finally, the Trojan detection methods were tested using large designs to ensure that

Trojans could still be identified. During all of the testing phases, the Trojan detection methods

successfully identified the entire set of Trojans. Therefore, the false negative rate for the Trojan

detection methods was 0%.

A limitation of the matching methodology involves matching a large design with many

level of hierarchy. Large designs incorporate internal signals mapped to lower level instances

and the internal signals do not receive external assets during the asset assignment phase.

Therefore, as the internal signals are connected to lower levels of the hierarchy, the asset pattern

of the lower level entities includes the assets of signals that were not assigned an external asset.

Additionally, the asset assignment at the top level of a design often requires more general assets

since the signal at the top level is mapped to multiple lower level entities. The result of these

issues is that the functionality assignment of the lowest level entities is not as accurate as entities

higher in the hierarchy of the design.

 73

Although the Trojan detection methodology accurately identifies the Trojans with a false

negative rate of zero, the Trojan detection methods consist of a non-zero false positive rate. The

ultimate goal of the Trojan detection methods was to produce a false negative rate of zero and in

that respect the Trojan detection methods were successful. In order to allow a false negative rate

of zero, the false positive rate was non-zero. However, the false positive rate is not a significant

hindrance in determining the location of Trojans. Additionally, the false positive rate for the

Trojan detection varied among the individual Trojan detection methods. The overall final false

positive rate for all Trojan detection methods is 4.4%.

Of the set of Trojan detection method false positives, certain false positives were to be

expected and are due to the nature of the Trojan detection methods. First of all, the limitations of

the parser cause occasional false positives to occur in Trojan detection methods involving the use

of internal assets. Certain VHDL syntax cannot be recognized by the parser in order to assign

appropriate internal assets to the signal. For example, the use of the “when” keyword in a

concurrent statement cannot be recognized by the parser. An example of this type of VHDL

statement can be seen in Figure 32 below.

Figure 32: VHDL Concurrent Statements

In the statement above, the WR signal ideally should receive a conditionally driving asset

since it is used to determine the outputs WR_0 and WR_1. However, the parser does not

recognize signals found in the condition of the “when” statement resulting in no internal assets

assigned to the WR signal. Therefore, detection methods that involve analyzing the internal

assets of a signal, such as the denial of service methods, are susceptible to attacks involving the

“when” statements that are not identified by the parser. Since the priority of the Trojan detection

WR_0 <= '1' when (WR = '1' and ADR(15 downto 12) = "0000") else '0';
WR_1 <= '1' when (WR = '1' and ADR(15 downto 12) = "0001") else '0';

 74

process was to ensure a zero false negative rate, the Trojan detection methods assumed a worst-

case scenario. The result is that the false negative rate is indeed zero, but the false positive rate

incurs a penalty.

Additionally, some Trojan detection methods incur a larger false positive rate because of

how the detection method is implemented. Some of the Trojan detection methods are treated as

warnings against possible malicious intentions by attackers rather than certainties of a Trojan

insertion. For example, one of the FSM Trojan detection methods identifies FSMs that are

vulnerable to Trojan insertion at the gate level. Even if no attack occurs at the gate level, this

Trojan detection method identifies the potential for a Trojan to be inserted. The driving

objective behind these Trojan detection methods, as has been stated frequently, is identifying all

Trojans in the design. Therefore, some of the Trojan detection methods, such as the FSM

method mentioned, present the user with the possibility that a Trojan could have been inserted.

The Trojan detection report allows the user to quickly identify the locations of the potential

Trojans and determine the validity of the detection method.

Determining the false positive rate of the Trojan detection methods requires finding all

false positives within the sample space then dividing this number by the sum of the false

positives and the true negatives. The true negatives are the cases when the Trojan detection

methods correctly identified the absence of a Trojan. There was a range of false positive rates

found among the Trojan detection methods. Some Trojan detection methods received a 0% false

positive rate as no false positives had been detected. The highest false positive rate found among

the Trojan detection method was the time bomb counter detection method, which received a 20%

false positive rate. While this number is high, the Trojan detection method was designed to

identify all Trojans, necessitating the presence of false positives. Additionally, this Trojan

 75

detection method, along with other detection methods that have a high false positive rate, would

require analyzing the intention for a signal, which is very difficult to perform. Consequently, the

false positive rates for these types of Trojans are higher than others that are more distinctly

malicious. Therefore, for the Trojans with higher false positive rates, the user is required to

analyze the design further to determine whether a Trojan has actually been inserted. When all of

the false positive rates were averaged together, the previously presented value of 4.4% was

determined as the overall false positive rate.

 76

5. CONCLUSION

5.1 Summary

The objectives presented at the outset were successfully attained throughout the course of

the project. The number of assets was significantly increased in order to provide greater

diversity to asset patterns. Furthermore, a Golden Reference Library and functionality matching

methodology were created, allowing an unknown design to be analyzed and matched to a known

design. Finally, hardware Trojan detection methods were introduced to the Structural Checking

methodology by utilizing the Golden Reference Library matching as well as analyzing internal

characteristics of a hardware design. Each of these key objectives was implemented and

thoroughly tested.

This project provides significant progress in the area of hardware Trojan detection,

specifically with regard to the Structural Checking methodology. Within the larger realm of

hardware Trojan detection, this methodology detects very small hardware Trojans, a limitation of

many other hardware Trojan detection methods. Additionally, by using this methodology,

hardware Trojans are detected pre-fabrication, saving IC design companies the significant cost of

testing for hardware Trojans. With respect to the Structural Checking methodology, this project

has increased the capabilities of asset assignment as well as introduced the implementation of the

completely new features of a Golden Reference Library and hardware Trojan detection.

5.2 Future Work

Several steps can be taken in order to further improve the Structural Checking

methodology. First, as more trusted designs are analyzed, the asset patterns associated with

these designs can be added to the GRL. This allows for the matching methodology to be more

robust as more designs are added. Additionally, as more Trojan attacks are discovered,

 77

corresponding Trojan detection methods can be developed to identify these attacks.

Additionally, the Trojan detection methods currently being used can be modified to further

reduce the false positive rate associated with each method. Finally, additional steps can be taken

to better match lower level entities of large designs to a functionality.

 78

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, "A Survey of Hardware Trojan Taxonomy and
Detection," Design & Test, IEEE, vol. PP, pp. 1-1, 2013.

[2] A. Davoodi, Min Li and M. Tehranipoor, "A Sensor-Assisted Self-Authentication

Framework for Hardware Trojan Detection," Design & Test, IEEE, vol. 30, pp. 74-82, 2013.

[3] F. Saqib, D. Ismari, C. Lamech and J. Plusquellic, "Within-Die Delay Variation

Measurement and Power Transient Analysis Using REBEL," Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 23, pp. 776-780, 2015.

[4] Xuehui Zhang and M. Tehranipoor, "RON: An on-chip ring oscillator network for

hardware trojan detection," in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2011, 2011, pp. 1-6.

[5] M. Banga and M. S. Hsiao, "Trusted RTL: Trojan Detection Methodology in Pre-Silicon

Designs," in 2010 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), 2010.

[6] X. Zang and M. Tehranipoor, "Case Study: Detecting Hardware Trojans in Third-Party

Digital IP Cores," in Hardware-Oriented Security and Trust (HOST), 2011 IEEE
International Symposium on, San Diego, CA, 2011.

[7] Y. Jin, N. Kupp and Y. Makris, "DFTT: Design for Trojan Test," in Electronics, Circuits,

and Systems (ICECS), 2010 17th IEEE International Conference on, Athens, 2010.

[8] T. Reece and W. H. Robinson, "Detection of Hardware Trojans in Third-Party Intellectual

Property Using Untrusted Modules," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 3, pp. 357-366, March 2016.

[9] H. Salmani and M. Tehranipoor, "Analyzing circuit vulnerability to hardware trojan

insertion at the behavioral level," in Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2013 IEEE International Symposium on, 2013, pp. 190-
195.

[10] J. Yust, M. Hinds and J. Di, "Structural Checking: Detecting Malicious Logic without a

Golden Reference," Journal of Computational Intelligence and Electronic Systems, vol. 1,
no. 2, p. 169177, 2012.

[11] https://www.trust-hub.org/resources/benchmarks.

[12] S. Jha and S. K. Jha, "Randomization Based Probabilistic Approach to Detect Trojan

Circuits," High Assurance Systems Engineering Symposium, 2008. HASE 2008. 11th IEEE,
Nanjing, 2008, pp. 117-124.

 79

[13] http://www.opencores.org.

[14] M. Banga and M. S. Hsiao, "A region based approach for the identification of hardware

Trojans," Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE International
Workshop on, Anaheim, CA, 2008, pp. 40-47.

[15] Xiaoxiao Wang, M. Tehranipoor and J. Plusquellic, "Detecting malicious inclusions in

secure hardware: Challenges and solutions," Hardware-Oriented Security and Trust, 2008.
HOST 2008. IEEE International Workshop on, Anaheim, CA, 2008, pp. 15-19.

[16] J. Di and S. Smith, "A Hardware Threat Modeling Concept for Trustable Integrated

Circuits," Region 5 Technical Conference, 2007 IEEE, Fayetteville, AR, 2007, pp. 354-357.

[17] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi and B. Sunar, "Trojan Detection using

IC Fingerprinting," Security and Privacy, 2007. SP '07. IEEE Symposium on, Berkeley, CA,
2007, pp. 296-310.

[18] Jie Li and J. Lach, "At-speed delay characterization for IC authentication and Trojan

Horse detection," Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE
International Workshop on, Anaheim, CA, 2008, pp. 8-14.

[19] S. C. Smith and J. Di, "Detecting Malicious Logic Through Structural Checking," Region

5 Technical Conference, 2007 IEEE, Fayetteville, AR, 2007, pp. 217-222.

[20] X. Wang, H. Salmani, M. Tehranipoor and J. Plusquellic, "Hardware Trojan Detection

and Isolation Using Current Integration and Localized Current Analysis," Defect and Fault
Tolerance of VLSI Systems, 2008. DFTVS '08. IEEE International Symposium on, Boston,
MA, 2008, pp. 87-95.

[21] F. Wolff, C. Papachristou, S. Bhunia and R. S. Chakraborty, "Towards Trojan-Free

Trusted ICs: Problem Analysis and Detection Scheme," Design, Automation and Test in
Europe, 2008. DATE '08, Munich, 2008, pp. 1362-1365.

[22] http://www.x-tekcorp.com/xhdl.html

	Hardware Trojan Detection via Golden Reference Library Matching
	Citation

	Microsoft Word - Thesis_Lucas_Weaver_rev3.docx

