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GAS CHROMOTOGRAPHIC ANALYSES OF
BIOCRUDE-PRODUCING TREES

ROY Z. GEHRING and BOB D. JOHNSON
Department of Biological Sciences

Arkansas State University
State University, AR 72467

ABSTRACT

Gas chromotographic procedures were used to compare commercial diesel fuel withcyclohexane, ether,
and methanol extracts from various tree species. Standard n-paraffin hydrocarbons ranging from C-10
thru C-34 were used as standards. These analyses indicated that several extracts, notably those from
Juniper virginiana (juniper) and Pinus echinata (pine) trees ofNortheast Arkansas and the Brazilian
tree Copaifera langsdorffii (copaiba), contain numerous hydrocarbon and selected chemical products
which serve as potential renewable biocrude sources.

INTRODUCTION

Photosynthetic plants produce extractable chemicals called biocrude
which can be used directly as petroleum-like chemicals (Buchanan et
al., 1978a; Buchanan et al., 1978b; Calvin, 1977, 1979; Buchanan et
al., 1980; Wang and Huffman, 1981; McLaughlinand Hoffmann, 1982;
Campbell, 1983). Biocrude is the hydrocarbon and hydrocarbon-like
chemical fraction ofplants which may be extracted by organic solvents
and upgraded to liquidfuels and chemical feedstocks (McLaughlinand
-loffmann, 1982). Feedstocks are mixtures ofmaterials, derived from
the source by physical and/or chemical means, whose composition is
controlled tomake specific primary chemicals or fuels (Lipinsky, 1981).
Bxtractable biocrude may contain waxes, terpenoids, resins, phy-
tosterols, latex, terpenes, fats, fatty acids, polyphenolics, phlobaphenes,
oils, and tannins (McLaughlin and Hoffmann, 1982).

Since many of the plant extractives that could serve as potential li-
quid fuels have high carbon numbers and are not combustible at low
emperatures, these fuel stocks could be subjected to catalytic crack-
ng (Wang and Huffman, 1981). Major plant substances that could be
catalytically converted are terpenoids, phenolics (flavonoids, phenols,
and polyphenols) and long chain aliphatics (waxes, triglycerides, fatty
acids) (Adams and McChesney, 1983). Weisz et al. (1979) studied the
mechanism for the conversion of plant extracts rich in hydrocarbons
and/or hydrocarbon-like compounds into low molecular weight fuels.
They found that Mobil's zeolite catalyst could catalyze molecules such
as latex and oils into products comparable to fuel gas. In all cases
studies, there was a high degree ofconversion intobenzene (C-6), toluene
C-7), xylenes (C-8), and other aromatics. Although they could con-
vert various plant materials into high grade liquid fuel, the economic
feasibility of the process was a concern, that was yet to be determined.

Muchof the current interest inbiocrude research seems tobe focused
on identifying the best biocrude producing plants and determining
economic feasibilities. Buchanan et al. (1980) and Adams (1982) sug-
;ested that agricultural production of hydrocarbons would be

economically feasible only ifthe entire plant were harvested and pro-
cessed. This concept wouldinvolve the development ofmulti-use crops
biocrude, fiber, food) with the final choice ofmulti-use plant species
lependent upon survival, growth rate, ease ofobtaining biocrude, pro-
luctivity,and the quality and quantity ofextractibles. Species should

also be evaluated on the need for fertilizer, especially nitrogen.
Bassham (1977) and Calvin (1979) have suggested the development

of biocrude farms or plantations. Calvin (1979) further suggested
leveloping these farms in the arid Southwest. This would put to cultiva-
ion immense areas of unused land unsuitable forconventional crops,
ohnson and Hinman (1980) recommended development ofmarginal
ands forbiocrude farming because they would notcompete with food

and fiber crops. Calvin (1979) identified members of the genus Euphor-
bia and the genus Asclepias as the best hydrocarbon crops for these
and southwestern lands, especially Euphorbia lathyris. Here, entire

plants would be harvested and processed.
This preliminary study utilized gas chromatographic analyses to iden-

tify trees having potential forbiocrude production. Economic feasibility
of biocrude production was not considered.

MATERIALS ANDMETHODS

Copaifera langsdorffii Desf. seeds were obtained from Brazil and
grown in a greenhouse. All other experimental species were collected
from their natural habitat inNortheast Arkansas. Samples consisting
ofyoung stems without leaves were collected from Asimina triloba L.
Dunal (pawpaw), C. langsdorffii (copaiba), Cleditsia tricanthos L.
(thorn), Juniper virginiana L. (juniper or eastern red cedar), Pinus
echinata Mill,(short leaf pine), Rhus copallina var. Latifolia (dwarf
sumac) and Sassafras albidum (Nutt.)Nees. (sassafras). The samples
were oven dried and ground before weighing.

Tissue samples were extracted withether overnight (Fig. 1A).Pigments
and polar materials were removed with Darco G-60 activated charcoal.
Internal standard was added before the extracts were dried under
nitrogen. Separate stem tissue samples were extracted in a Soxhlet ex-
tractor for approximately 12 hours with 150 ml of cyclohexane (Fig.
IB). The cyclohexane extract was transferred to a rotary evaporator
toremove excess cyclohexane. The ground stem tissue, which had been
extracted with cyclohexane, was then extracted with methanol as
previously described for the cyclohexane extraction (Fig. IB). Internal
standard was added to the cyclohexane and methanol extract before
drying. The dried extracts obtained with ether, cyclohexane, and
methanol solvents were stored dryat

-
10°C in vials covered with teflon

tape. Each extract was redissolved in one mlofether before a 4^1 sam-
ple was injected into the chromatograph. A second chromatographic
analysis was run with the methanol extract redissolved in 87. 5%
methanol.

Gas chromatography of extracts was performed using a Perkin-Elmer
Model 3920 B chromatograph with dual flame ionization detectors
(F.I.D.). The chromatograph was equipped with a 6 ft x 0.085 I.D.
stainless steel column packed with 5% silicone SE 30 on 100/120
chromosorb WHP (Alltech Associates, Inc.), The chromatograph was
programmed for an injection temperature of 190°C with an initial
temperature of 125°C (8 min) changing at a rate of 8°C/min with a
final temperature of 290 °C (32 min) and a nitrogen flow rate of 8
ml/min. The chromatograph was attached to a Varian Vista 401 data
system which collected, analyzed, and stored all data.

Standard n-paraffin hydrocarbons (Alltech Associates, Inc.) rang-
ingfrom C-10 to C-34 were used forpreliminary identification and quan-
tification of extracts. N-triacontane (C-30) was the internal standard
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from less than five min to more than 40 min (Fig. 11).
All the cyclohexane extracts of the various tree tissues were similar Figure 2. GLC chromatogram of Figure 3. GLC chromatogram of

n-paraffin hydrocarbon standards. commercial diesel fuel.in that each extract contained several minor components and only one
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Solvent extraction yields for the species analyzed are given in Table
2. The highest yield by ether extraction ofoven dried stem tissue was
obtained from eastern red cedar. Copaiba was a distance second fol-
lowed in decreasing order bypine, pawpaw, sassafras, sumac, and thorn.

Copaiba was not extracted in cyclohexane-methanol. Sassafras gave
the highest yieldin cyclohexane. Sumac gave unexpected high cyclohex-
ane yields equal to red cedar followed bypawpaw. Pine, a species known
tobe highin resin, gave a lower cyclohexane yield than expected. Thorn,
again, gave the lowest cyclohexane extraction yields.

Soxhlet extractions yielded higher extraction concentrations with
methanol than cyclohexane in all species studied. This was consistent
with data reported byErdman and Erdman (1981) and McLaughlinand
Hoffmann (1982). GLC chromatograms of methanol extractives
redissolved in ether indicate much lower yields than when these extracts
are redissolved in 87.5% methanol/water. This is probably due to the
high concentration ofpolar compounds in this fraction with low ether
solubility.Eastern red cedar (juniper)again yielded the greatest quan-
tityofextractives followed indecreasing order bysumac, pine, pawpaw,
sassafras, and thorn.

Table 2. Summary of biocrude extracts 3'11

Soxhlet Extraction

Species extract ether 87.5% methanol

Asimina triloba 1.14 0.15 0.4 6.45

Gleditsia tricanthos 0.12 0.08 0.17 0.12

Juniper virginiana 6.33 0.18 1.25 21.42

Pinus echinata 1.80 0.09 0.56 7.78

Rhus copallina 0.31 0.18 0.42 8.25
(dwarf sumac)

Sassafras albidum 0.87 0.22 0.17 4.87
(sassafras)

a Reported as mg of extract detected by F.I.D. per gram day weight
of stem tissue.

Ether extracts were redissolved inether; cyclohexane soxhlet
extracts were redissolved in ether; and, methanol soxhlet
extracts were redissolved inether or 87.5% methanol.

DISCUSSION

Ether extraction ofoven dried stem tissue was performed bysuspend-
ing dried tissue overnight (12-15 hours) at room temperature without
shaking. Soxhlet extraction was not used because of the high volatility

ofether. F.I.D. analyses of the ether extract gave higher values than
those obtained with cyclohexane possibly due to the higher solubility
parameter of ether (Buchanan et al., 1978b) which permitted extrac-
tionof the polyphenolic fraction. The cyclohexane extraction ofsassafras
was the onlyexception possibly due to the highoil content ofsassafras
(Buchanan et al., 1978a). The higher cyclohexane-nethanol extraction
probably resulted from a high polyphenolic fraction in all species
analyzed which is consistent with data reported by Adams (1982),
McLaughlin and Hoffmann (1982), Adams and McChesney (1983), and

The total cyclohexane-methanol extract was significantly below that
reported by Buchanan et al. (1978a), Erdman and Erdman (1981),

McLaughlin and Hoffmann (1982) and others. Adams and McChesney
(1983) reported a minimum of20 hours ofsoxhlet extraction produced
more than 95% extraction with both cyclohexane and methanol.

Assuming sassafras is a potential biocrude source (Buchanan et al.,

Figure 4. GLC chromatogram of

ether extract of Copaifera
langsdorffii (copaiba) stem tissue.
(Allextracts are redissolved in ether
except those methanol extracts

redissolved in 87.5% methanol.)

Figure 5. GLC chromatogram of

ether extract of Rhus copallina
(dwarf sumac) stem tissue.

Figure 7. GLC chromaiogram of
ether extract ofGleditsia tricanthos
(thorn) stem tissue plus octacosane
and triacontane n-paraffin hydro-
carbons.

Figure 6. GLC chromatogram of (
ether extract ofGleditsia tricanthos i
(thorn) stem tissue. <
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Figure 9. GLC chromatogram of
ether extract of Pinus eehinata
(shortleaf pine) stem tissue.

1978a), allspecies withgreater total cyclohexane-methanol extract could
also be considered as potential sources of biocrude (see Table 2).
Pawpaw, pine, sumac, and eastern red cedar have larger total
cyclohexane-methanol extract values than sassafras.

liguie 12. GLC chromatogram of
cyclohexane extract of Asimina
iriloha (pawpaw) stem tissue.

The cyclohexane extract, containing the oil and hydrocarbon frac-
tions (Buchanan et al., 1978b), is the high energy components of plants
most efficiently converted into burnable liquid fuels and feedstocks
(McLaughlinand Hoffmann, 1982). Adams (1982) reported that the

Figure 8. GLC chromatogram of
ether extract of Asimina iriloba
(pawpaw) stem tissue.

Figure 10. GLC chromatogram of

ether extract ofSassafras albidum
(sassafras) stem tissue.

Figure 11. GLC chromatogram of

ether extract ofJuniper virginiana
(eastern red cedar) stem tissue.

Figure 15. GLC chromatogram of
cyclohexane extract of Pinus
echinata (shortleaf pine) stem tissue.

Figure 13. GLC chromatogram of
cyclohexane extract of Gledilsia
tricanthos (thorn) stem tissue.

Figure 14. GL.C chromatogram ol

cyclohexane extract of Juniper vir-
giniana (eastern red cedar) stem
tissue.
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Eigure 16. GLC chromatogram of
yclohexane extract of Rhus
opallina (dwarf sumac) stem tissue.

Figure 17. GLC chromatogram of

cyclohexane extract of Sassafras
albidum (sassafras) stem tissue.

Figure 18. GLC chromatogram of
methanol extract ofGleditsia trican-
thus (thorn) stem tissue.

Figure 19. GLC chromatogram of

methanol extract of Gleditsia tri-
canthus (thorn) stem tissue
(redissolved in 87.5% methanol).

heat value of the hexane (cyclohexane) extract is comparable to crude
oil. Althoughthe cyclohexane extract has more than 2.2 times the heat
value of the methanol extract (Erdman and Erdman, 1981) the high
quality of methanol extract compensates for its lower heat value.

Plants producing the highest amounts ofbiocrude are latex and resin
producers (McLaughlinand Hoffmann, 1982). Both are composed of
isoprene polymers and represent promising potential fuel sources and
can be readily collected by tapping. Latex has molecular weights rang-

Figure 20. GLC chromatogram of
methanol extract ofAsimina triloba
(pawpaw) stem tissue.

Figure 21. GLC chromatogram of

methanol extract of Asimina triloba
(pawpaw) stem tissue (redissolved in
87.5% methanol).

Figure 22. GLC chromatogram of

methanol extract of Juniper vir-
giniana (eastern red cedar) stem
tissue.

Figure 23. GLC chromatogram of
methanol extract of Juniper vir-
giniana (eastern red cedar) stem

tissue (redissolved in 87.5%
methanol).
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Figure 24. GLC chromatogram of
methanol extract of Pinus echinala
(shortleaf pine) stem tissue.

Figure 26. GLC chromatogram of
methanol extract ofRhits copallina
(dwarf sumac) stem tissue.

Figure 25. GLC chromatogram o
methanol extract of Pinus echinalc
(shortleaf pine) stem tissu<
(redissolved in 87.5% methanol). solved in 87.5% methanol).

ing from 500,000-2,000,000 down to 50,000 or less. The higher molecular
weight latex would be most economically used as natural rubber. The
lower molecular weight range could be catalytically cracked to liquid

fuel (Wang and Huffman, 1981).

,=3p | | Sfu Cp22| | 5| |

Pines represent a major source ofresin readily collected as a volatile
oil called turpentine. Turpentine is highlycombustible and should be
considered an important potential fuel source. Turpentine has a heat
content equivalent to gasoline and butanol (40 gigajoules per metric
ton) and could be used as liquid fuel or mixed with gasoline (Wang
and Huffman, 1981).

Maugh (1979) identified the exudate from Copaifera langsdorffii
Desf. trees as a source of an oil (oleoresin) sap obtained by tapping
that could be used as diesel fuel. Wang and Huffman (1981) estimated
that one acre of 100 C. langsdorffii trees could produce 25 barrels of
exudate per year. This amounts to 1375 gallons (1barrel = 55 gallons)
ofexudate per acre per year, enough to drive27,500 miles per year at

20 miles per gallon.Ifwe assign diesel fuel a cost of$1.10 per gallon,
this represents a monetary value of $1,512.50 per acre per year.

This research represents apreliminary study to determine the feasibility
of using trees as a source ofbiocrude. The development of photosyn-
thetic plants as fuel feedstock has been hindered by the difference in
production when compared with fossil fuels. However, biocrude is
renewable, has flexbilityafforded by crop rotation, and can be genetical-
lyaltered to modify the chemical composition of extractives. These ad-
vantages may be partially offset by the high technology and market
development of the petroleum industry and the seasonal dispersion of
plant resources (Lipinsky, 1981).

Although current interest is focused on whole plants for biocrude
(Buchanan et al., 1978a,b; Calvin, 1979; Erdman and Erdman, 1981;
Adams, 1982; Campbell, 1983) we believe that biocrude-like tree ex-
udates could be a potential alternative. Adams (1982) reported that
harvesting only the exudate would result in a loss of V> of the oil, Vi
of the resin, and 2Aof the latex. We believe these losses could be par-
tiallyoffset by the ecological benefits of trees. Farmers would see a
direct economic benefit from planting trees. Trees could reduce wind
erosion, improve the water table, improve wildlifehabitat, provide shade
for homes and livestock, and serve as a source of liquid fuel, lumber,
pulp, and firewood.

Figure 28. OLC chromatogram of
mclhanol extract of Sassafras
albidum (sassafras) stem tissue.

Figure 29. GLC chromatogram ol
mclhanol extract of Sassafras
albidum (sassafras) stem tissue
(redissolved in 87.5% methanol).
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