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COMPUTER PATTERN RECOGNITION
OF ACTION POTENTIALS

RONALD S. REMMEL*
Department of Physiology and Biophysics

University of Arkansas for Medical Sciences
4301 W. Markham Street

Little Rock, Arkansas 72205

ABSTRACT

A general method ofpattern recognition was applied to the problem of recognizing extracellularly-recorded
neuronal action potentials in the presence ofnoise and other pulses. A PDP1 1/23 performed the calcula-
tions. There were four stages: 1.) A bandpass filter attenuated noises; 2.) the data input program
digitized the signal every 55 If the signal exceeded a threshold, 12 samples of the signal and the
time were written onto the disk; 3.) the pulse discriminating program recognized an action potential by
fitting the 12 points with this function:

v(t) = (a + bt + ct2) exp(-t/T).

For each pulse the computer determined values of the parameters giving the best fit through use of the
least squares technique. For acceptance, the total pulse height and the position of the zeroes of v(t)
must fall within limits; 4.) occasionally a pulse may be missed or an extra one recorded. The computer
displayed the complete pulse train and the operator moved a cursor to insert or delete pulses.

INTRODUCTION

Signals inthe nervous system are transmitted along axons as pulses
of electricity called action potentials. Ifa microelectrode is inserted
inside a neuronal cell body or axon, a resting potential ofabout -60
mV is measured with respect to the extracellular fluid. The resting poten-
tial is a thermodynamic consequence of the fact that the intracellular
potassium concentration is much HIGHER than outside. Incontrast,

the intracellular sodium concentration is much LOWER than outside.
These concentrations are maintained by the cell's sodium-potassium
pump.

An action potential is a positive-going pulse of about 100 mV
amplitude and about 0.5 msec duration superimposed upon the resting
level (Ganong, 1981). The rising phase ofan action potential occurs
when membrane channels selectively permeable to sodium ions open
and sodium ions rush into the cell. This inrush ofpositive charges causes
the membrane potential to go positive. The failing phase is caused by
the sodium channels closing and potassium channels opening. The
outflow ofpotassium ions leaves a net negative charge inside, causing
the membrane potential toreturn to its negative resting potential. This
voltage wave propagates rapidly down the axon at speeds up to 120
m/sec with no attenuation inamplitude. Action potentials are usually
initiated byexcitatory synapses. Standard textbooks give further details
(Ganong, 1981).

An intracellular recording ofaction potentials is difficult to obtain
in the alert, behaving animal because the microelectrode is easily
jarred out of the cell. Itis easier torecord action potentials extracellularly
by inserting a microelectrode into the brain to within 50 of aneuronal
cell body. The pulses are 'v 1mV in amplitude and generally negative-
positive biphasic waves. The negative phase is caused by sodium ions
moving away from the microelectrode into the cell. The positive phase
is caused by potassium ions moving out of the cell towards the
microelectrode.

Typicallythe height ofrecorded action potentials is only 3-20 times
the noise level of30 /tV. This noise is caused by the thermal motion
of charges in the electrode and amplifier. The usual method to
distinguish between neuronal pulses and noise is to use an electronic
circuit called a discriminator, which gives an output pulse only when

?Present address: Biomedical Engineering Department, Boston Univer-
sity, 110 Cummington St., Boston, Mass. 02215.

the signal exceeds a preset voltage. However, sometimes a large noise
transient is mistaken for an action potential.

We present a new method for distinguishing between action poten-

tials ofinterest and noise and background units. The method has four
stages: I.) an analog bandpass filter attenuates the noise; 2.) the com-
puter writes onto disk 12 digitized samples ofeach pulse; 3.) offline
the computer fits this function to the 12 points:

v(t) = (a + bt + ct2) exp(-t/r).

This function was chosen because it has a biphasic shape which is very
similar to that ofan extracellularly recorded action potential. The pulse
is rejected ifits height or ifthe shape ofv(t) deviates beyond limits;
4.)another computer program allows editing the data filefor apparently
missing or extra pulses. More details have been presented in another
publication (Remmel, 1983).

MATERIALS ANDMETHODS

Action potentials were recorded extracellularly with glass micro-
pipettes in the pons of alert cats making eye movements (Remmel and
Skinner, 1981). We recorded the neuronal signal in direct mode on a
TEAC A-2340SX high-fidelity tape recorder for computer analysis at

a later time. The computer belongs to the NSF EPSCOR Program
(Neuroscience Component) and is a D.E.C. PDP1 1/23 (MINC-11) with
the following equipment:

128 KByte ofMOS-FET memory (only 64 KByte used)
dual RL01 disks (5 MByte each)
ADV11-A analog-to-digital converter (A/D)
KEF11-AA floating point processor
VT105 graphics terminal
Nicolet Zeta plotter

The bandpass filter
Electrode and amplifier noise, amajor source ofspurious pulses, is

attenuated by the analog bandpass filter(Fig. la). Component values
were selected to optimize the pulse height relative to white noise (equal
noise energy at all frequencies). The filterpasses 300-3000 hZ (Fig.lb);
the pulse (Fig. lc), although attenuated to 40%, is qualitatively
unchanged.

The data input program
This MACRO-11 program digitizes data in real time and stores it

on the disk for later analysis. The operator types in the trigger level,
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Iich
is set low but not so low that the computer is inundated with

illnoise pulses. The A/D converter samples the signal every 55 /isec.
he sample exceeds the trigger level, more samples are taken until
are accumulated, including the one preceding the trigger. We call
se samples y,(\ = 1 to 12). The 12 samples and the time of the pulse
written onto disk. One disk can hold about 30 min. of data.

The pulse discriminating program
This FORTRAN program reads a disk file, rejects bad pulses, and

writes only the time of accepted pulses back onto the disk. The follow-
ing function is fit to the 12 voltage samples for each pulse by the least
squares technique:

v(t) = (a + bt + ct!) exp(-t/r).

The polynomial is an inverted parabola (one maximum and two zeroes);

the exponential causes a decay at long times and produces aminimum
(Fig. 2a). This function thus has an ideal shape for describing action
potentials. The operator chooses one r givinggood fits forgood pulses,
the computer then calculates a, band c by the least squares technique,
that is, by minimizingS:

S = E (y, - v(t,))J,

where t, = 0 /isec, t2
= 55 etc.

For acceptance, the locations of the zeroes of v(t) must fall within
the limits specified by the operator. The height of the pulse also must

fallwithin limits. Summary statistics printed at the end show the number
ofaccepted and rejected pulses and histograms of the pulse heights and
of the two zeroes. This program takes 80 msec/pulse.

The pulse insertion-deletion program
Sometimes a pulse is missed or an extra one recorded. Thisprogram

displays a graph of the instantaneous interspike frequency (ISF, which
equals I/At, where At is the time between two pulses). Ifthe neuron
fires at a steady rate, the missing or extra pulses are easily seen on this
graph. The operator moves a cursor to point to the location ofthe defect
and the computer inserts or deletes pulses.

Figure 2. Curves fit to the 12 voltage measurements (55 /tsec apart) for
pulses from an abducens interneuron (unit98.98). The function fit to

the points is described in the text. A-B: Acceptable pulses. C-H:
Rejected pulses. The following are the reasons for rejection: The
second zero of the fitted function is too far to the right in C and D
and too far to the left in E and F.In G the pulse height is too small.
No zeroes occurred in H.Figure 1. A bandpass filter for action potentials (A). The unity-gain

amplifier (National type LF355H) functions to drive subsequent
circuits. The filter has sharp cut-off at high frequencies (Bode plot, B)
in order to attenuate electrode and amplifier noise. The filter blocks
D.C. and attenuates low frequencies such as 60Hz. For a biphasic pulse

St into the filter (C), a computer program numerically solved the
ferential equations to give the output pulse shape. It is attenuated
40% but otherwise little changed.
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RESULTS

The operator can view on the graphics terminal the 12 voltage samples
and the fitted function v(t) for accepted and/or rejected pulses (Fig.
2). For this neuron, the threshold was set to -32 The t was set
to 150 ftsec, a value givinggood fits. The reasons for rejecting pulses
C-H are given in the caption. For accepted pulses (A,B)the fittedcurve
showed littlevariation in shape from pulse to pulse. The most sensitive
measure of shape was found to be the time difference between the two

zeroes on the abscissa, which was 243 ± 17 fisec (av. and std. dev. for
27,147 good pulses for the neuron ofFig. 2). The 17 /isec standard devia-
tionis much less than the 55 jisec between samples, implying that the
computer had "interpolated" between points. For this neuron the total
pulse height (difference between the maximum and minimum) was 165
± 44 jiVon the average for good pulses and fluctuated during the
recording because the microelectrode moved relative to the cell. Thus
although the pulse height fluctuated, the zeroes varied little.

DISCUSSION

Pattern recognition involves determining how similar the pattern of
measured points is to amodel pattern. Let us call those points (X;,y>)
for n points. Ageneral procedure is to describe the model pattern by

a mathematical function v(x,a,b,...), which may have one or more
adjustable parameters a,b,... . This function is fit to the points by the
least squares method, i.e., the following function is minimized by
adjusting a,b,...:

S = Z (y;
- v(x,,a,b,...)) 2

(The least squares method is nearly identical to the chi-square method,

the latter simplyhaving statistical weights multiplying each term.) The
minimization in our case involves solving 3X3 matrix equations, for
which a subroutine is available. Ifthe fit is bad (sum ofsquares large)

or ifthe parameters deviate beyond prescribed limits, the event is
rejected

—
it's not like the pattern. Ihave previously used this method

for testing whether millions of particle reactions detected in a high-energy
physics experiment were consistent with a reaction in which a positive
kaon decayed into three charged pions (Ford et al., 1972).

My method fits 12 points with a 4-parameter function. More details
of the pulse shape can be fitby the template method ofProchazka and
Kornhuber (1973), which is a least squares method. The contour-fitted
amplitude window used byKent (197 1) tests complex waveforms without
much computer times, but does no smoothing as is done by this least
squares method. Other methods extract features of the pulse from the
digitized points. For instance, the methods of Mishelevich (1970) and
of Vibert and Costa (1979) calculate the maximum and minimum
amplitudes, the time between the maximum and the subsequent zero
crossing, and the time between the maximum and the minimum. These
methods provide no smoothing nor interpolation of points.

My method employs a least-squares fit of a 4-parameter functionhaving a biphasic shape which is very similar to that ofan action poten
tial. Pattern recognition is accomplished as follows: An action potential
is represented as a point in a 4-dimensional space; those points falling
outside of a certain volume in that space are rejected as being unlike
the pattern. This method ofpattern recognition is widely applicable
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