Potential of Utilizing Scrap Processed Cheese as a Major Ration Component for Channel Catfish

Calvin J. Haskins
*University of Arkansas at Pine Bluff*

Scott H. Newton
*University of Arkansas at Pine Bluff*

Follow this and additional works at: [http://scholarworks.uark.edu/jaas](http://scholarworks.uark.edu/jaas)

Part of the [Aquaculture and Fisheries Commons](http://scholarworks.uark.edu/jaas)

**Recommended Citation**
Available at: [http://scholarworks.uark.edu/jaas/vol34/iss1/19](http://scholarworks.uark.edu/jaas/vol34/iss1/19)

This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [sociation@uark.edu, ccmiddle@uark.edu](mailto:sociation@uark.edu, ccmiddle@uark.edu).
POTENTIAL OF UTILIZING SCRAP PROCESSED CHEESE AS A MAJOR RATION COMPONENT FOR CHANNEL CATFISH*

CALVIN J. HASKINS and SCOTT H. NEWTON
Department of Agriculture
University of Arkansas at Pine Bluff
Pine Bluff, Arkansas 71601

ABSTRACT

Three cages (0.9 m^3) were stocked with 200 channel catfish, Ictalurus punctatus Rafinesque, fingerlings (73.7 g avg.) in a 1.5 hectare pond. Two cheese rations were formulated and fed to the catfish; the first consisting of cheese, oil, and vitamin C (C + VC) and the second consisting of cheese, cottonseed meal, oil, trace minerals, and vitamins (CC + VM). A commercial trout ration (TC) was used as a control.

High mortalities occurred in the C + VC diet, thus resulting in premature removal of that cage from the study (after 86 days). A sample of 50 fish from the two remaining cages, along with harvest data from the C + VC diet, revealed a 45.6% difference in average fish weight between the C + VC and CC + VM diets, a 93.5% difference between the C + VC diet and TC ration, and a 3.8% difference between the CC + VM diet and TC ration. Final harvest of CC + VM and TC cages was completed after 134 days. Comparisons revealed that a 38.3% difference in average fish weight existed between these two diets. Statistical analysis of data indicated that fish fed the CC + VM diet had a significantly lower percentage dress-out weight and a significantly higher amount of mesenteric fat. This experiment does suggest that cheese scraps, when properly balanced with other essential ingredients, may be utilized as a major component of catfish rations.

INTRODUCTION

Cheese generally has been limited in use to the sport fishing bait industry. Recently, several farming operations in Arkansas have expressed interest in this product because of the relatively low cost and local availability. Scrap cheese, a by-product of the cheese industry, is composed of trimmings and off-color and off-flavor cheeses. Several cheese buyers pass through the catfish region as they supply the bait industry. These same individuals could easily supply many catfish farming operations. With the thrust of feed research for least-cost formulation of diets (Robinette, 1977) cheese scraps are an attractive option.

There is no published information on the use of cheese as a major component of fish rations. However, research is presently being conducted at the Franklin Institute (Pennsylvania) involving cheese as a ration component for channel catfish. Due to a lack of information about cheese use in fish rations, a pilot study was initiated in 1979 utilizing scraps as a food source for caged channel catfish at the University of Arkansas at Pine Bluff (UAPB).

METHODS AND MATERIALS

Three 0.9 m^3 cages as described by Newton and Merkowsky, 1976, were anchored in a 1.5 hectare pond. A 27.3 by 43.2 cm pan with a 11.4 cm high food retaining ring (Vexar-0.32 cm mesh) attached to the edges was suspended by wires in two of the cages with the top of the retaining ring located 10 cm below the surface of the water.

Three rations were utilized during the study. Two cheese diets were especially formulated for two cages of catfish. One consisted of cheese scrap, commercially available vegetable cooking oil, and vitamin C (ascorbic acid) (C + VC) with the percentage of each ingredient (by weight) being 95.75, 4.20, and 0.05, respectively. Ascorbic acid, which is essential for catfish rations (Lovell, 1973) was added to the C + VC diet because cheese has an inadequate amount of this vitamin. Cheese, cottonseed meal, vegetable oil, trace minerals (U.S.P. XIX salt mixture) and a commercial vitamin premix (Mountaire Vitamins, Inc.) constituted the second formulation (CC + VM) with the percentage of each (by weight) being 74.00, 18.25, 4.00, 3.50, and 0.25, respectively. The diet was minimally adjusted (purposefully) so that growth rates could be established on the basis of cheese scraps only. Commercially available vegetable oil was used as a binder for the other ingredients incorporated into the cheese rations. The third cage of catfish was fed a commercially available trout ration (TC) with a caged catfish performance record established in a previous study at UAPB (Newton and Dean, 1978).

Cages were stocked on 21 June, 1979 with 200 channel catfish weighing an average of 73.7 grams. All fish were preconditioned in the cages 11 days (6 feeding days) on the TC ration with the experimental diet tests beginning on 2 July. Average fish weight and water temperature determined the amount of ration fed, and adjustment of quantity was estimated on a weekly basis (based on monthly samples). Cheese diets were mixed once in advance and refrigerated. Each cheese ration was separated into three portions and placed in the feeding pans. All uneaten portions remaining from the preceding day were weighed and recorded. Mortality and water temperatures were monitored daily.

A 5% (minimum) sample of fish from each diet was weighed monthly to estimate average fish gain. After harvest, samples consisting of the first 16 individuals captured were removed for individual body weights and dress-out weights. Mesenteric fat was also weighed to determine if any diet related differences existed. A Student’s t test (Steel and Torrie, 1960) was used to compare differences in means of total fish weight, dress-out weight, dress-out percentage, mesenteric fat, and percent of mesenteric fat of fish fed the C + VC and TC diets. Percent moisture of each ration was determined by placing weighed samples in a Blue M drying oven for 48 hours at 100°C. Samples were removed and weighed to determine percent moisture.
RESULTS AND DISCUSSION

Fish Harvest: Fish on the C + VC diet were harvested prematurely due to high mortalities. After 86 days, fish from the C + VC diet cage were harvested, and 50 fish were weighed from each of the remaining test cages. Figure 1 reveals the average fish weights as determined from monthly sample data. There was a 45.6% difference in average fish gain between the C + VC and CC + VM diets, a 63.5% difference between the C + VC diet and TC ration, and a 32.9% difference between the CC + VM diet and TC ration. Fish fed the C + VC diet initially gained weight, and then lost, as evidenced by final harvest. Food conversion efficiency (FCE) for the C + VC diet was estimated, based on the 86 day data, to be 2.5:1, 3.1:1, and 7.6:1 for the TC ration, CC + VM diet, and C + VC diet, respectively (wet weight basis). Temperature data (Fig. 1) correlated well with growth of the fish on the TC ration and the CC + VM diet. The above data indicated that cheese scraps cannot be used alone as a complete source of nutrition for caged catfish production.

Final Harvest: Harvesting of the remaining two cages of fish was accomplished after 134 days: a 38.3% difference in average fish weight existed between the CC + VM diet and TC ration (Fig. 1). Harvest data was statistically compared, and the results were recorded in Table 1. Since such a large disparity existed between the average mean weight of fish from the two samples, individuals in the same weight class (215–325 g) were selected for statistical comparisons. There was no significant difference in the mean total fish weight of the subsamples from each ration; however, there was a significant difference between means for dress-out percentage, mesenteric fat, and percent of mesenteric fat (Table 1). Page and Andrews (1973) and Lovell (1979) found that diets with high caloric concentrations resulted in decreased consumption. Feeding records and observation indicated that at least some portion of the CC + VM diet remained in the cage for a period of 24 hours 31 of the 81 total feeding days. Lovell et al. (1974) found that body protein percentages were inversely related to body fat content. Results indicated that the high fat content (22.9%) of the CC + VM diet satisfied energy requirements but adversely affected the percent of body protein in the catfish fed that diet (Table 1). High fat content of feed and/or cooling water temperatures may have led to the leveling out of growth of fish on the CC + VM diet (Fig. 1) during the latter part of the study. This study and the results of the above mentioned investigations suggest that scrap cheese may be used as a ration component but in reduced amounts due to the high fat content.

<table>
<thead>
<tr>
<th>DIETS</th>
<th>TOTAL WEIGHT</th>
<th>DRESSED WEIGHT</th>
<th>PERCENTAGE</th>
<th>MESENTERIC FAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>395.0 g</td>
<td>290.5 g</td>
<td>30.28 %</td>
<td>2.89 %</td>
</tr>
<tr>
<td>CC + VM</td>
<td>263.5 g</td>
<td>191.9 g</td>
<td>40.12 %</td>
<td>5.65 %</td>
</tr>
<tr>
<td>TC</td>
<td>227.3 g</td>
<td>140.9 g</td>
<td>61.90 %</td>
<td>2.25 %</td>
</tr>
<tr>
<td>CC + VM</td>
<td>278.8 g</td>
<td>159.8 g</td>
<td>58.10 %</td>
<td>5.59 %</td>
</tr>
</tbody>
</table>

*Means followed by different letters are significantly different at the 0.05 level.

Mortality and Antibiotics: Total survival of catfish at harvest for the C + VC diet fish was 72%, while survival for the TC ration and CC + VM diet fish was 82 and 96%, respectively. Bacterial problems caused mortality in the TC ration and CC + VC diet cages, therefore, an approved antibiotic (Tetracycline Hydrochloride) was incorporated into the feed mixtures. During two reoccurring incidents of bacterial infection, the fish fed the medicated TC ration consumed a small amount on the first feeding days, while fish fed the CC + VM diet immediately consumed all of their medicated ration. Mortalities ceased to occur among the CC + VM diet fish more rapidly than in the TC ration fish. This observation suggests that a cheese-antibiotic mixture might be more readily accepted than the medicated pellets by diseased fish. Diseased fish that can be brought back on feed quickly will recover faster and thus will resume growth more rapidly. Further research on the appeal of cheese as an attractant and as a binding mixture for antibiotics should be conducted.

Ration Preparation: Preparation of cheese diets requires considerable time; however, mixing large batches of ingredients would be more feasible with proper equipment. The size of a commercial catfish operation may be a limiting factor in production of cheese-based rations due to the frequency and necessity of mixing feed batches.

These results indicated that cheese scraps cannot be utilized as a single source of nutrition for caged channel catfish production. Cheese should not be used at the level incorporated in the CC + VM diet because of the high fat content. Fish growth was attained with cheese, so it may be assumed that a relatively high percentage of cheese may be incorporated into a ration designed for channel catfish production. Finally, observations indicated that cheese may be effective as a medium for antibiotics in the treatment of some internal bacterial diseases of catfish.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Tom Brandt of the Fish Hatchery and Development Center, San Marcos, Texas, for his assistance in determining nutrient levels of the diets. Appreciation is also expressed to Dr. Robert Katayama, Department of Agriculture, UAPB, for his assistance with the statistical analyses.
LITERATURE CITED


