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HOW WE LOOK: STUDIES OF
OCULOMOTOR-SYSTEM NEURAL CONNECTIONS

R. S. REMMELandR. D. SKINNER
Department of Physiology and Biophysics and

Department of Anatomy
University of Arkansas forMedical Sciences

Little Rock, Arkansas 72205

ABSTRACT

The neural connections of the reticular formation (RF) withthe vestibular nuclei (8V)and the
ascending medial longitudinal fasciculus (MLF) were studied, because many neurons in these
structures carry eye-movement and head-movement (vestibular) signals and are only one or
two synaptic connections removed from eye motorneurons. We used stimulating electrodes
placed in specific brainstem structures and a single-neuron recording microelectrode in
anesthetized or decerebrate cats. Connections were determined when the neurons were
excited either forwards (orthodromically) or backwards (antidromically) by a shock. Four
classes of neurons were studied. One neuronal class in the pontine RF projects axons into the
ascending ipsilateral MLF;these axons terminate in the midbrain. Some of these cells receive
excitation from both vestibular nerves and are probably involved in the vestibulo-ocular reflex.
Another class of RF neurons projects to either the ipsilateral or the contralateral 8V. A third
class located amidst lateral-rectus motorneurons in the Vlthnucleus projects into the contra-
lateral ascending MLF and excites medial-rectus motorneurons for the contralateral eye so
that the two eyes move horizontally in the same direction. Afourth class located in and just be-
neath the 8V receives monosynaptic input from the vestibular nerve and projects into the con-
tralateral MLF. The possible roles for these neurons in controlling eye movements are dis-
cussed.

Abbreviations: MLF: medial longitudinal fasciculus; RF: reticular formation; 3: oculo-
motor (Illrdcranial nerve) nucleus; 4: trochlear (IVth cranial nerve) nucleus; 6: abducens
(Vlthcranial nerve) nucleus; 8V: vestibular nuclear complex of the VHIthcranial nerve.

INTRODUCTION

The oculomotor system is one of nature's most sophisticated con-
trol systems. Itfunctions in the fixation of gaze upon visual objects
and in the maintenance of steady retinal images during head and
target movements. It thus beautifully complements and augments the
capabilities of the visual system. There are five types of eye move-
ments: fast, tracking, convergence upon near objects, image stabil-
ization during movements of the visual surroundings, and image
stabilization during head movements (vestibulo-ocular reflexes). We
mainly will discuss the anatomical substrates for the last type, image
stabilization during head movements. Motorneurons from the Vlth
cranial nerve nucleus (Fig. 1) control the lateral rectus muscle of the
eye, motorneurons from the IVthnucleus control the superior rectus
muscle, and motorneurons from the Illrdnucleus control the other
four extraocular muscles. Head rotations about all three axes of rota-
tion are sensed by the semicircular canals, and head linear move-
ments in all the three dimensions by the macula and saccule; the
canals, macula and saccule are contained within the labyrinth (vesti-

bule) of the inner ear. The vestibular signals travel along the VHIth
nerve to the 8V,a complex of four major and several minor clusters
of neurons. The simplest pathway of a vestibulo-ocular reflex in-
volves only one intemeuron whose cell body is in the 8V. There are
several projection varieties of this interneuron: ipsilateral or
contralateral. excitatory or inhibitory axons to the Illrd. IVth and
Vlthnuclei (Brodal, 1974; Cohen. 1974): some of these axons ascend
within the fiber bundle called the MLF. Thus many MLF fibers origi-
nate in 8V. These pathways are important but insufficient by them-
selves to produce the complete vestibulo-ocular reflex. Additional
neurons, some studied by the authors, are located in nearby parts of
the brainstem (in the divisions called the midbrain. pons and
medulla; Fig. 1) and in certain other structures. Some neurons lo-
cated inthe medial RF (the core of the brainstem) beneath the Illrd.
IVth,Vlthand Vlllthcranial nerve nuclei are active only a few milli-
seconds preceding fast eye movements. Damage to this part of the
RF willparalyze horizontal eye movements. Our electrophysiological

experiments were done to characterize the types and interconnec
tions ofsuch neurons.

These experiments were conducted with livingcats and measured
the electrical responses ofneurons and their interconnections, which
are called synapses. (Anatomical techniques usually do not deter-
mine interconnections.) The neuronal action potential is an electrical
pulse of about +100 mVamplitude and 0.5 msec duration which is
actively propagated from the cell body down the axon to the termi-
nal(s) without attenuation at a speed of0.2 to 120 m/sec, depending

Figure 1. Aview of the cat brainstem from the back with the cere-
bellum removed. The spinal cord is to the left. The motorneurons to
the eye muscles originate in cranial nuclei III. IVand VI.The Vlllth
nerve connects the labyrinth to the vestibular nuclei (8V). Abbrevia-
tions and the neuronal types A-K are described in the text. Asterisks
indicate locations ofstimulating electrodes.
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on the size and type ofaxon. The longest axons exceed lm, although
the ones studied in these experiments are only approximately 1 cm
long.The nervous system transmits information over axons as a series
ofaction potentials.

MATERIALS AND METHODS

The action potential was detected as a weak —0.05 to —2 mV
pulse by an extracellularly-located microelectrode placed within 0.1
mm of the cell body. (Because axons produce miniscule extracellular
pulses, they are normally undetectable.) An electrical shock to the
axon initiated an action potential, which traveled antidromically
(backwards) to the cell body, where it was detected by the recording
microelectrode. An antidromic pulse always occurred with the same
time delay following the shock, because axons conduct at a fixed
velocity; the antidromic pulse always occurred at and above the
threshold shock strength (the all-or-none rule). The antidromic
neurons which were detected followed four shocks at 300 to 1600
shocks/sec (synapses will not usually operate this rapidly). These
antidromicity tests proved that the detected cell body projected its
axon near the stimulating electrode.

Synapses between neurons were detected by electrically stimulat-
ing the presynaptic neurons to produce action potentials in them.
These action potentials traveled toward (orthodromically) to the
axon terminals, which then released aneurotransmitter chemical into
the synaptic cleft. The chemical diffused across the cleft, bound with
receptor molecules in the membrance of the postsynaptic neuron,

and opened ionic channels. The subsequent flowof ions excited (or,
forsome synapses, inhibited) an action potential, which was detected
by the micropipette (recording electrode). Because of fluctuations in
the amount of transmitter released, a post-synaptic action potential
sometimes did not occur or occurred at various latencies (e.g., be-
tween 0.5 and 3 msec); a synaptically-excited pulse thus easily could
be distinguished from the constant-latency antidromic pulse.

Cats were used because they are inexpensive but still make rela-
tively human-like eye movements. In some experiments the cat was
anesthetized with pentobarbital. Because this anesthetic depresses
synaptic activity, in other experiments an unanesthetized, decere-
brated cat was used (short-acting ether anesthesia was used before
decerebration). Although this unconscious cat did not make eye
movements, neurons could be excited either antidromically or ortho-
dromically to determine connections. The animal's life functions
were maintained for the 12-24 hr experiments. After removal of part
of the top of the skull and the cerebellum, the brainstem was exposed
(the view was similar to that of Fig. 1) so that the electrodes could be
inserted visually with micromanipulators. Stimulating electrodes
were thin wires, insulated except for the tips. Electrode and neuronal
locations were verified after experiments through histological pro-
cedures. The referenced papers give further details of methods.

Action potentials were recorded by a glass micropipette with a 10
Mm tip diameter and filled with electrically-conductive 4 M NaCl
solution. A wire inserted into the micropipette connected it to an
amplifier. Signals were displayed upon an oscilloscope and photo-
graphed, as shown in our referenced papers. Shocks of 0.1 msec
duration and < 50 jiAstrength were given to the MLF at 1mm poster-
ior to the IVth nucleus, where many types ofMLFaxons pass. The 50

tshock was strong enough to initiate an antidromic action potential
most MLFaxons, but in few surrounding axons. The action poten-
1traveled antidromically to the cell body, where it was detected by
¦' micropipette. Inother experiments antidromic action potentials

were excited by shocks to the 8V. Invarious experiments stimulating
electrodes also were placed into the labyrinth to excite the Vlllth
nerve for testing orthodromic inputs.

1. Reticulo-MLF neurons (type A in Fig. 1) have cell bodies
(circle)located in the medial pointine RP and project an axon (line)
into the contralateral ascending MLF (Remmel et al., 1978). They
also have been observed in anatomical studies (Graybiel, 1977;
Cohen, 1974), which indicate that the axons terminate in the mid-
brain. They might function to coordinate horizontal and vertical eye
movements. Most reticulo-MLF neurons receive excitatory (+)
synaptic inputs from vestibulo-reticular neurons from both sides
(types B and C), whichinturn receive excitatory synaptic inputs from
VHIth-nerve fibers (types D and E; Remmel et al., 1979b). Thus a
functional VHIth nerve-vestibular nucleus (synapse), reticular
(synapse), MLF pathway appears to exist. Additional interneurons
also might contribute. This pathway might transmit head-movement
information to the midbrain for controllingeye movements.

2. Reiiculo-vesilbular neurons were observed by shocking the 8V
to antidromically excite RF cells (Remmel et al., 1977). They come in
(at least) three kinds which are crossed (type F) oruncrossed (type G)
from the medulla or uncrossed from the pons (type H). Anatomists
(Hoddevik et al., 1974) also have observed them. These neurons
might transmit eye- or body-movement signals from the RF to the
8V, where such signals have been detected.

3. Abducens interneurons (typeI)with cell bodies amidst Vlth-
nucleus (abducens) motorneurons project their axons up the opposite
MLF to terminate upon medial-rectus motorneurons in the Illrd
nucleus (Remmel et al., 1978). These neurons, first clearly demon-
strated anatomically (Graybiel and Hartwieg, 1974), carry signals
similar to those of lateral-rectus motorneurons and excite medial-
rectus motorneurons for the opposite eye (Baker and Berthoz, 1977)
tomove the two eyes horizontally.

4. Reticular neurons receiving excitatory monosynaptlc Input
from the VIHthnerve and projecting an axon up the opposite MLF
(type J) were detected for about 1 mm beneath the traditional
anatomical boundary of the vestibular nuclei. Some of them receive
monosynaptic excitatory input from VHIth-nerve neurons (type K).
Because these "RF" cells appeared very similar to the 8V cells im-
mediately above them, the vestibular nuclei seem to be effectively
larger than previously thought.

DISCUSSION

These studies demonstrated several new types of brainstem
neurons and synaptic interconnections. Itis impossible here to dis-
cuss the many other important neurons and interconnections de-
scribed by others during the last decade (see Baker and Berthoz,
1977; Brodal, 1974; Cohen, 1974). Neuron by neuron and synapse by
synapse, the amazing brain is being understood. Experiments are in
preparation to record the behavior of the above neurons during eye
movements in alert cats. Although almost all types of neuronal be-
haviors which the bioengineer might expect to findalready have been
observed in alert monkeys and cats (Baker and Berthoz, 1977;
Cohen, 1974), unfortunately these behaviorally-defined neurons
cannot usuallybe matched with the anatomically-defined types. The
puzzle's pieces cannot yet be assembled, but the major outlines of the
picture of the oculomotor system will become apparent during the
next decades.
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