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CHARLES H.HARBISON
University of Arkansas atLittleRock, LittleRock, Arkansas

ABSTRACT

Aproof that: for any given polyhedron so shaped that every closed non-self intersecting
broken line composed of edges of the polyhedron divides the surface of the polyhedron into
precisely two disjoint regions each of which is bounded by the closed broken line, v

- e + f=
2, where v is the number of vertices of the polyhedron, e the number of edges and f the
number of faces.

PROOF

Step I- Call the two disjoint regions mentioned in the
theorem complements ofeach other. Visualize the construction
of a duplicate ofthe polyhedron by mentally positioning a set of
edges (line segments) of appropriate lengths to construct a
network of the same size and shape as that network formed by

the edges of the given polyhedron. Call an edge that has been
placed in our construction an in position edge and let an in
position vertex refer to the point ofintersection of two or more
inposition edges. As the construction progresses, let e

= the
number of in position edges, v = the number of in position
vertices and f = the number of faces for which the complete
boundaries are in position. Upon completion of the
construction, v, e and f will certainly take on the values
assigned them in the theorem. Define an incompleted region of
the surface S of the polyhedron being constructed as a region

whose complete boundary is in position but which lacks all of
its interior edges of which there is at least one. Let u equal the
number of incompleted regions as the construction develops -
thus the value ofumay vary. Consider the boundary ofone face
inposition. Now by hypothesis the boundary of this face will
divide the finished surface S of the polyhedron into two regions-

one the in position face and the other the now incompleted
region having the same boundary as this face.

Atthis point vobviously = e, f= 1and u
= 1. Thus v - e +

f= 2-u.

Step II.Choose any incompleted region of our construction,
say D,and place inposition a continuous non-self intersecting
broken line ofinterior edges ofD reaching from a vertex, say P,

on the border ofD to another vertex, call it Q, on the border of

'
Elements of this paper were presented at the Oklahoma-

Arkansas sectional meeting ofthe Mathematical Association of
America, 5 April 1974, on the campus of the University of
Arkansas at LittleRock.

D. This newly added broken line PQ may consist of only one
edge ifitreaches from border to border. Inany event the added
line PQ is tocontact the border ofDat both points P and Q and
nowhere else. Certainly it is possible to add such a line as PQ
since Dby definition lacks allits interior edges of which there is
at least one. Note, too, that adding the line PQ as indicated
never leaves an in position edge dangling from one end. Now
the points P and Qpartition the border ofDinto twoparts. Let
A be one of the regions carved from D and bounded by the
closed non-self intersecting broken line of edges consisting of
the newly added linePQ and one of these parts of the border of
D.Let B designate the region carved from D and bounded by
the closed non-self intersecting broken line ofedges comprised
ofthe linePQ and the part ofthe border of D not bordering A.

By hypothesis A is disjoint from B since B is in the
complement of A. And the part of D not in A is in B since A
and its complement will comprise all of S and no part of D
could have been inD's own complement. Thus the added line
PQ divided Dinto precisely two disjoint regions. Now A is an
incompleted region if it lacks at least one interior edge,
otherwise itis a face with completed boundary since the added
line PQ could not have passed an intervening in place edge.
Similarly wecan conclude the same about B. Note that adding
the line PQ increases e one more than it increases v since the
end points P and Q were already in position. Thus the former
region D has been divided in one of the three following ways:

(a) two faces with completed borders, increasing f by 2,
decreasing u by 1 and adding one more edge than vertices,

(b) two incompleted regions, not changing f, increasing uby
1 and adding one more edge than vertices, or

(c)a face with completed border and an incompleted region,
increasing fby 1, leaving u unchanged and adding one more
edge than vertices. In any case, the relation v-e + f=2-u
continues to hold.

Step III.Repeat step IIa finite number of times, completing
S and reducing u to zero

-
whence v - e + f= 2, and v,e and f

have assumed the values assigned them in the theorem.
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