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Abstract 

Context: Recommended treatment of exertional heat stroke (EHS) includes whole body cold-

water immersion (CWI); however, remote locations, spatial or monetary restrictions challenge 

CWI feasibility. Thus, the development of a modified, portable CWI method would allow for 

optimal treatment of EHS when restrictions apply. Objective: Determine cooling efficacy of 

modified CWI (tarp assisted cooling with oscillation; TACO) following exertional hyperthermia. 

Design: Randomized, crossover controlled trial. Setting: Environmental chamber (33.4 ± 0.8°C, 

55.7 ± 1.9% relative humidity). Patients or Other Participants: Sixteen (9 males, 7 females) 

volunteers (26 ± 4.7y, 1.76 ± 0.09m, 72.5 ± 9.0kg, 20.7 ± 7.1%body fat) with no history of 

compromised thermoregulation participated. Interventions: Participants completed volitional 

exercise (cycling or treadmill) until a rectal temperature (Tre) ≥39.0°C. Following exercise, 

participants transitioned to a semi-recumbent position on a tarp until Tre reached 38.1°C or until 

15 minutes elapsed during both control (no immersion; CON) and TACO (immersion in 151L of 

2.1 ± 0.8°C water). Main Outcome Measures: Tre, heart rate (HR), and blood pressure (reported 

as mean arterial pressure, MAP), were assessed pre- and post-cooling. Statistical analyses 

included repeated measures ANOVA with appropriate post-hoc t-tests and Bonferroni correction. 

Results: Tre prior to cooling was not different between conditions (CON: 39.27 ± 0.26°C, CWI: 

39.30 ± 0.39°C; P=0.62; ES=-0.09) whilst post-cooling Tre was decreased in TACO (38.10 ± 

0.16°C) compared to CON (38.74 ± 0.38°C, t15=-8.84;P<0.001; ES=2.27). Cooling rate was 

significantly faster during TACO (0.14 ± 0.06°C/min) compared to CON (0.04 ± 0.02°C/min, 

P<0.001; ES=2.21). Decreases in heart rate did not differ between TACO and CON (t15=-

1.81;P=0.09; ES=0.45). MAP was significantly greater post-cooling in TACO (84.2 ± 

6.6mmHg) compared with CON (67.0 ± 9.0mmHg, P<0.001; ES=2.25). Conclusions: TACO 



 
 

provided significantly faster cooling than CON. When monetary or spatial restrictions are 

present, TACO represents an effective alternative to traditional CWI in emergency treatment of 

exertional hyperthermia. 
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I. Introduction 

Brief Background 

 Exertional heat stroke (EHS) is one of the most common causes of sudden death among 

active populations such as athletes or military personnel.  This is especially true during the 

summer months when ambient temperatures and/or humidity are increased.  Once a patient is 

diagnosed with EHS, it is important to cool their core body temperature to below 38.9° C as 

quickly as possible to limit the chance of morbidity and mortality.  The National Athletic 

Trainers’ Association position statement on preventing sudden death in sport states that “cold 

water immersion is the most effective cooling modality for patients with EHS.”
1
  The 

recommended method for cold water immersion (CWI) is circulated ice water immersion up to 

the neck or clavicles in large plastic or metal tubs.  However, for some clinicians, the purchase or 

transport and set up of these tubs is difficult due to monetary or spatial restrictions (trail races, 

small high schools, etc.).   

 The tarp assisted cooling (TACO) method was conceived as a portable and inexpensive 

alternative to CWI tubs.  This method uses a basic plastic tarp as the container for ice water.  The 

patient is placed on the tarp and then the sides are elevated to create a make-shift tub to contain 

ice water.  TACO is known to have been used in the military and during the 2012 Boston 

Marathon to effectively treat EHS victims.  Despite successful anecdotal reports, there have been 

no studies investigating the effectiveness of TACO for reducing hyperthermia, and therefore no 

guidelines for its use in the field have been established. 

Purpose of the Study 

 The purpose of this study is to validate the efficacy of using TACO in the field to reduce 

hyperthermia.  We will have participants exercise to induce increased core temperatures as 
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measured via rectal thermometry and then perform a randomized controlled trial with control and 

cooling conditions.  We will also monitor heart rate, blood pressure and the perceptual measures 

of thermal sensation, perceived thirst, and muscle pain.  The aim of this study is to: 1) confirm 

that TACO cools faster than CON and 2) establish the cooling rate that can be achieved using 

TACO.   

Hypotheses 

 We hypothesize that TACO will cool subjects significantly faster than CON.   

References 

1. Casa DJ, DeMartini JK, Bergeron MF, et al. National athletic trainers' association position 

statement: Exertional heat illnesses. J Athl Train. 2015;50(9):986-1000.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

II. Review of Literature 

Exertional Heat Stroke and Whole Body Cooling 

 The diagnostic criteria for EHS includes a core temperature >40.5°C along with 

alterations in central nervous system function.  This elevation in core temperature during 

exercise occurs because the body’s thermoregulatory system is no longer capable of dissipating 

metabolic heat, either because the body is producing excessive amounts of heat or because there 

is an inhibition of effective heat loss.  Individuals more susceptible to EHS tend to be less 

physically fit, not properly acclimatized to heat, suffering from acute illness, or in a state of 

hypohydration.
2,3

  In order to counteract the effects of EHS, it is important to cool the body to 

38.9°C within 30 minutes of onset.
4
  There are 4 ways for the body to disperse heat: radiation, 

convection, evaporation, and conduction. 

 All heat transfer is dependent upon gradients between the source giving away and the 

source receiving heat.  Heat always travels from an area of high temperature to an area of lower 

temperature.  Radiation is heat transfer through electromagnetic energy in the infrared spectrum 

and does not require physical contact between objects for energy transfer.  Since the human body 

is generally warmer than the surrounding air, the infrared waves are emitted by the body into its 

surroundings.  Convection occurs when heat is transferred to either water or air moving over the 

skin.  The faster that the air or water moves over the skin the more turnover of unheated 

substance there is next to the hot body and the greater amount of heat that can be transferred into 

the surrounding environment.  Water is about 40 times more effective than air at transferring heat 

to or from the body.
5
  Evaporation is the main method of heat transfer that is used by the body in 

high temperatures.  When the body produces sweat, the heat is transferred into the water on our 

skin, which evaporates and removes that heat from the body.  However, if humidity is high, this 
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method becomes less effective since the air is already more saturated with gaseous water.  In this 

case, the sweat will remain on the skin or drip off, which does not affect heat loss and merely 

dehydrates the body.  The last method of heat loss is conduction, which occurs when a hot object 

is physically in contact with a cooler one allowing the heat to transfer.  For the human body in an 

average day, this method makes up only about 1% of the total heat exchange and therefore does 

not noticeably contribute to cooling.
5 

 Using the principles of these types of heat loss, many different strategies for cooling 

patients with EHS have been attempted.  Emergency room methods include using intravenous 

(IV) fluids to both rehydrate and lower core temperature as well as more advanced technological 

methods.  In a 1979 study examining heat casualty victims of an Australian fun run four different 

methods of cooling were used, including three that used administration of room temperature IV 

fluids.
3
  The treatment applied was dependent upon the initial rectal temperature and was either 

ice-wet towel application, ice-wet towel application with IV fluid, cold pack application at the 

neck, axillae, and groin with IV fluid administration, or only IV fluids.  Although there was 

insufficient information to calculate a cooling rate for those patients who received ice-wet towels 

only, the cooling rates for the three other treatments were 0.097°C·min
-1

, 0.089°C·min
-1

, and 

0.076°C·min
-1

 respectively.  A case study by Broessner et al. discusses the use of a machine 

called the Cool Gard 3000 in the treatment of a hyperthermic individual.
6
  By inserting a Foley 

bladder catheter into the left superior vena cava and maintaining the temperature of saline 

flowing through the bladder at 37°C they were able to achieve a maximum cooling rate of 

0.6°C·hour
-1

 (0.01°C·min
-1

).  This is by no means rapid cooling of patients, and the practicality 

of easy field use for either of these methods is non-existent.   
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 By examining the physiology of thermoregulation, many clinicians have attempted 

methods of cooling that focus on convection and evaporation.  The argument for many of these 

methods is that immersing the body in cold water is detrimental to cooling due to 

vasoconstriction of skin blood vessels as well as causing shivering that creates a paradoxical 

increase in core temperature.
7,8,9,10

  Other arguments against CWI is that it can be a shock to the 

cardiac system and is generally uncomfortable for the patient.
7,8,11

  The simplest 

evaporation/convection method includes removing the patient from the sun and allowing a 

breeze to blow across them.  A study where participants were moved to the shade and had a 

breeze provided by a fan at 1.5 mph for continuous airflow resulted in a cooling rate of 

0.11±0.04°C·min
-1

.
12

  Another evaporation technique was studied at the Falmouth Road Race 

and involved exposing patients to ambient air while wrapped in wet towels, which resulted in a 

cooling rate of 0.12±0.02°C·min
-1

.
8
 An analysis done on 52 cases of EHS in the Israeli Defense 

Forces between 1996-2003 showed that their method of moving the victims to the shade and 

continually fanning and dousing them with tepid water produced a cooling rate of 

0.14±0.11°C·min
-1

.
11

  The authors hail this method as a viable field cooling technique which 

does not require excessive amounts of equipment required by some evaporative techniques.  One 

of those equipment intensive techniques uses a system known as the body cooling unit (BCU), 

which consists of a suspended net platform for the patient to lie on while 15°C water is sprayed 

in a fine mist above and below the body.
13

  Warmed air (45-48°C) is trained on the body at 30 

m·min
-1

, which keeps the skin temperature above 30°C in order to maintain “cutaneous 

vasodilation and ensures a high rate of heat-loss from core to skin.”
13

  By analyzing this method 

on 18 cases of EHS, they found an average cooling rate of 0.078°C·min
-1

 with a range of 0.013 

to 0.225°C·min
-1

.  Another attempt at a convenient field method involved the use of a helicopter 



6 
 

to create a downdraft while the patient was continuously doused in 30-32°C water.
9
   In the three 

patients studied, an average cooling rate of 0.104°C·min
-1 

was observed.  Although helicopters 

are not normally available at athletic events, the authors of this case series point out that they are 

easily available in most military settings and that large fans can replace helicopters in other 

cases.  However, for athletic events that are held in remote areas, electricity to power fans is not 

readily available, and the authors mention that this method is only viable in an “appropriately 

warm environment” since the goal is to not cause vasoconstriction of the peripheral vasculature.  

Since EHS does not always occur in warm environments, this method of cooling may not be 

effective in all field cases.   

 Despite the criticisms of evaporative cooling supporters, CWI has become the gold 

standard for treatment of EHS and is recommended by the American College of Sports 

Medicine, NATA and the Korey Stringer Institute.
1,14

  This method is based on conduction as the 

means of heat loss, as well as convection if the water is circulated.  It’s effectiveness as a cooling 

modality may be due to hydrostatic pressure increasing venous return to the heart as well as the 

high temperature gradient between the skin and the water.
8,10,15,16

  Contrary to the belief that 

CWI caused patients to shiver and actually increase their heat production, multiple studies have 

shown that the colder the water is the less likely the patient is to shiver during treatment.
8,10

  

Another study showed that even if subjects started to shiver, the heat produced does not reduce 

the cooling effectiveness of CWI.
16

   

There is a debate on whether cold-water or ice-water immersion is the more effective 

modality.  A study by Clements et al. showed no significant difference in cooling rates between 

cold-water (14.03 ± 0.28°C) and ice-water (5.15 ± 0.20°C) in hyperthermic runners (both 

0.16±0.01°C·min
-1

).
17

  The study by Proulx et al. that tested water at 2, 8, 14, and 20°C showed 
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significant differences in cooling rate between the coldest water temperature and all others 

(0.35±0.14, 0.19±0.07, 0.15±0.06, and 0.19±0.10°C·min
-1

 respectively).
10

  This result was 

supported by Armstrong et al. who found that using ice water at a temperature between 1 and 

3°C resulted in a cooling rate of 0.20±0.02°C·min
-1

.
8
  More recently, a study has been published 

synthesizing 18 years of finish line medical tent patient records at the Falmouth Road Race.  In 

the 274 cases of EHS observed, CWI led to 100% survival and a 0.22±0.11°C·min
-1

 average 

cooling rate.
18

   

Oscillation of the water is important during CWI so that cold water is constantly in 

contact with the skin.  If a patient is allowed to remain stagnant in water, a buffer area forms 

over the surface of their skin that is warmer than surrounding water.  This will have a detrimental 

effect on cooling rate because conduction of heat from the body into the water will be impaired if 

the water becomes a warmer temperature.  By oscillating the water, the principles of convection 

are also applied, enhancing cooling rates.  The differential movement of water over the skin 

provided by the oscillation also acts like a massage.  Massage increases blood flow to an area, 

possibly by stimulating the sympathetic nervous system which results in temporary 

vasodilation.
19

 

Cardiovascular Reaction During Cooling 

 During exercise, heart rate increases directly in proportion to the increase in exercise 

intensity.  This allows for an increase in circulation of blood throughout the body and greater 

flow of oxygen to working muscles.
20

  When immersed in cold water, the body usually reacts in 

a very specific way, often termed “cold shock.”  There is the initial gasp brought on by the cold 

temperature, followed by hyperventilation, tachycardia, and hypertension.
21,22

  Peripheral 

vasoconstriction also occurs in order to limit body heat loss to the surrounding environment.  
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However, it has been shown that CWI post-exercise causes greater decreases in heart rate than 

seen in control trials.
10,23,24

  Another study on joggers showed a trend towards greater decrease in 

heart rate of CWI subjects, but they were not significantly different from controls.
12

  Heart rate 

has also been looked at as an indicator of shivering during CWI.  In the study by Proulx et al., 

subjects showed a progressive decline in heart rate during immersion so any sudden sustained 

increase in heart rate was noted as the onset of the shivering response.
10

 

 Blood pressure reacts similarly to heart rate during exercise, showing an increase in 

systolic blood pressure with increasing intensity.  Diastolic blood pressure tends to remain the 

same.  As mentioned earlier, immersion in cold water without exercising beforehand causes an 

increase in blood pressure.
21, 22  

A systematic review done by Bleakley and Davison found that 

blood pressure normalized after 30 minutes of immersion, and that the drastic cardiovascular 

changes seen with CWI began adapting in most individuals after 3 min.
25  

 

Perceptual Alterations During Cooling 

 Thermal sensation in the human body is perceived by thermoreceptors, many of which 

can be found in the skin.  Therefore, it stands to reason that even with a core temperature 

elevated by exercise, an individual immersed in cold water would perceive themselves as being 

cold.  This was found in a study by DeMartini et al., which showed a significant difference in 

thermal sensation between subjects undergoing CWI to subjects who sat in the sun.
24

   

 Heat stress has been shown to increase thirst sensation compared to cooler 

environments.
26  

However, there has been a paucity of research on post-exercise thirst sensation 

during cooling.  The aforementioned study by DeMartini et al. found no significant differences 

between pre- and post-cooling thirst sensation, which suggests that cooling has no effect on the 

body’s perception of thirst.
24
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 There is abundant research on the effects of CWI on post-exercise muscle soreness for 

the purposes of recovery.  A review by Bleakley et al. came to the conclusion that there was 

some evidence that delayed onset muscle soreness was decreased by CWI.
27  

There has been little 

interest in investigating the use of CWI for the immediate relief of post exercise muscle pain.   

Assumptions 

 Assumptions of this study include honesty on the medical history form regarding 

exclusion criteria, honesty on ratings for perceptual measures, and proper compliance with study 

protocol (i.e. matching food intake on 24-hour diet logs before trials).  

Limitations 

Our participants will consist of a convenience sample of regularly active males and 

females from the Northwest Arkansas area.  Since they are volunteering for exercise, participants 

will likely all be of an average healthy body type and their cooling rates using this modality may 

not be reflective of cooling rates seen in larger individuals such as football linemen.  There will 

be no measurement of the rate of water oscillation between participants which may lead to 

differences in cooling rates. 

Delimitations 

It is unethical to induce EHS in participants; therefore, our cooling rates may not be 

reflective of cooling rates that would be seen in actual patients.   
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III. Methods 

Participants 

 Sixteen participants were recruited from the surrounding community via word of mouth 

and the newswire to voluntarily participate in two exercise/treatment trials in the heat (1 control 

and 1 cold water immersion).  Upon being recruited, participants attended a brief (~30min) 

session covering the informed consent form and details of the study.  During this time 

participants also turned in a medical history form to verify that no exclusionary conditions exist.  

For this study exclusion criteria included: 

1. Previous heat exhaustion or heat stroke within the past 3 months 

2. Current illness or musculoskeletal injury 

3. Hypertension where vigorous exercise is contraindicated 

4. Allergy to cold. 

Once medical clearance and informed consent were obtained, participants who qualified also had 

their body composition assessed via dual energy x-ray absorptiometry (DEXA). Participants 

were then scheduled for 2 separate trials at least 1 week apart to prevent heat acclimation. 

Participants were asked to refrain from alcohol use and exercise for 24 hours, and caffeine use 

for 12 hours prior to each trial. For 24 hours prior to each trial, participants recorded their 

food/fluid intake on a standard diet log.  

Instrumentation  

 Participants were provided with a heart rate strap to wear for the duration of exercise and 

treatment (Polar, Inc., Lake Success, NY, USA).  A blood pressure cuff was placed on the upper 

arm and three ECG electrodes were attached (right and left subclavicular fossa, and right anterior 

abdominal line) to allow for arterial blood pressure to be measured by auscultation of the 
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brachial artery via electrosphygmomanometry (Tango
+
, SunTech, Raleigh, NC, USA).  A rectal 

thermistor with tape marking 12 cm from the tip was provided to each participant.  After 

receiving instructions from a researcher on proper insertion of the thermistor, participants were 

directed to the bathroom in the lab.  Participants were then educated on perceptual measures that 

were repeated throughout exercise and treatment.  These perceptual measures included rate of 

perceived exertion, perceived thirst, thermal sensation, and muscle pain. 

Experimental Design 

 This study was a randomized, crossover controlled trial.  Trials consisted of 2 distinct 

portions: 

1. Exercise in a Hot Environment 

After instrumentation was completed, participants entered an environmental chamber which was 

set at a temperature between 30-35°C and 40-60% relative humidity.  Participants then sat on a 

chair for 10 minutes followed by the collection of baseline values for rectal temperature, blood 

pressure, heart rate, and the perceptual measures.  Immediately following baseline 

measurements, participants had the blood pressure cuff and electrode leads removed and then 

moved to and began exercise on either a cycle or treadmill.  During the first trial, exercise 

intensity was self-selected by participants and recorded by the researcher such that it was 

sufficient to elevate core temperature to at least 39°C.  Rectal temperature and heart rate was 

recorded continuously via computer (LabChart7, ADInstruments, Inc., Colorado Springs, USA) 

at 50Hz during exercise and treatment.  Perceptual measures (thermal perception, rate of 

perceived exertion, and thirst sensation) were taken every 10 minutes.  Exercise was immediately 

ceased if a participant began to experience signs/symptoms of exertional heat illness or their 

temperature reached 41°C.  During exercise, participants were encouraged to consume body 
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temperature water ad libitum.  Consumption was recorded by pre- and post- exercise bottle mass.  

Once participants reached a core temperature of at least 39°C, they ceased exercise and moved to 

the cold water immersion portion of the trial.  The second trial was conducted in a manner such 

that core temperature was elevated to the same level by matching exercise intensity.  The last 

five minutes of exercise were exactly matched between trials in order to avoid differential 

cooling as a result of metabolic heat productions at the cessation of exercise. 

2. Cold Water Immersion Treatment 

 Treatment will be assigned in a randomized counterbalanced crossover design such that 

subjects performed cold water immersion during one trial and control (no immersion) during one 

trial.  Prior to starting the treatment portion, participants were re-instrumented with the blood 

pressure cuff and leads to the electrodes to measure arterial blood pressure.  Re-instrumentation 

time was held to five minutes from end of exercise to start of treatment for each participant.  The 

protocol consisted of a standard tarp with a researcher at each corner and one on each edge. The 

subject laid on the tarp in a semi-recumbent position, followed by the researchers elevating their 

respective corners, forming a “taco” shape.  

 During the cold water immersion trial, 40 gallons of ice water was then poured on and 

around the subject using four 10 gallon water coolers, ensuring the head and upper chest of the 

participant is out of the water and that the water level rose to at least the level of the participant’s 

iliac crest.  Participants remained immersed for 15 minutes or until their core temperature 

returned to 38.3°C (~101°F).  Following immersion, participants exited the tarp, toweled dry, 

and returned to sitting on a chair inside the environmental chamber for at least 30 minutes (to 

monitor for signs of hypothermia and collect physiological and perceptual values).  Participants 
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then exited the chamber to towel completely dry and remove all instrumentation to complete the 

trial. 

 During the control trial, the subject laid on the tarp in the semi-recumbent position inside 

the environmental chamber for 15 minutes with no immersion.  The participants then moved to 

the chair and sat inside the environmental chamber for at least 30 minutes at which time they 

also toweled completely dry and removed their instrumentation to complete the trial.  For both 

treatments, physiological data (rectal temperature and heart rate) was monitored continuously 

during and following treatment.  Blood pressure was taken every 2 minutes during treatment, and 

at 2, 5, 8, 10, 20, and 30 minutes post treatment.  Perceptual measures were taken at the 

beginning and end of treatment, and every 10 minutes post treatment. 

Data Analysis 

 Statistical analysis was completed using IBM SPSS Statistics v23.0 (IBM, Armonk, NY, 

USA).  Analysis was done on data collected pre- and post-treatment for all measures using 

repeated measures ANOVA to assess the effects of treatment between trials.  Cooling rates were 

analyzed using a paired t-test.  An alpha of <0.05 was set a priori and any statistically significant 

values were run through post-hoc analysis with appropriate Bonferroni correction. Effect size 

(ES) was calculated using G*Power Version 3.1.9.2 (Universitat Kiel, Germany). As no 

differences between males and females were identified for any variable, data were combined for 

analyses. Results are presented as means ± standard deviations.   
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Cooling Effectiveness of Modified Cold-Water Immersion Method Following Exercise-

Induced Hyperthermia 

 

ABSTRACT 

Context: Recommended treatment of exertional heat stroke (EHS) includes whole body cold-

water immersion (CWI); however, remote locations, spatial or monetary restrictions challenge 

CWI feasibility. Thus, the development of a modified, portable CWI method would allow for 

optimal treatment of EHS when restrictions apply. Objective: Determine cooling efficacy of 

modified CWI (tarp assisted cooling with oscillation; TACO) following exertional hyperthermia. 

Design: Randomized, crossover controlled trial. Setting: Environmental chamber (33.4 ± 0.8°C, 

55.7 ± 1.9% relative humidity). Patients or Other Participants: Sixteen (9 males, 7 females) 

volunteers (26 ± 4.7y, 1.76 ± 0.09m, 72.5 ± 9.0kg, 20.7 ± 7.1%body fat) with no history of 

compromised thermoregulation participated. Interventions: Participants completed volitional 

exercise (cycling or treadmill) until a rectal temperature (Tre) ≥39.0°C. Following exercise, 

participants transitioned to a semi-recumbent position on a tarp until Tre reached 38.1°C or until 

15 minutes elapsed during both control (no immersion; CON) and TACO (immersion in 151L of 

2.1 ± 0.8°C water). Main Outcome Measures: Tre, heart rate (HR), and blood pressure (reported 

as mean arterial pressure, MAP), were assessed pre- and post-cooling. Statistical analyses 

included repeated measures ANOVA with appropriate post-hoc t-tests and Bonferroni correction. 

Results: Tre prior to cooling was not different between conditions (CON: 39.27 ± 0.26°C, CWI: 

39.30 ± 0.39°C; P=0.62; ES=-0.09) whilst post-cooling Tre was decreased in TACO (38.10 ± 

0.16°C) compared to CON (38.74 ± 0.38°C, t15=-8.84;P<0.001; ES=2.27). Cooling rate was 

significantly faster during TACO (0.14 ± 0.06°C/min) compared to CON (0.04 ± 0.02°C/min, 

P<0.001; ES=2.21). Decreases in heart rate did not differ between TACO and CON (t15=-
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1.81;P=0.09; ES=0.45). MAP was significantly greater post-cooling in TACO (84.2 ± 

6.6mmHg) compared with CON (67.0 ± 9.0mmHg, P<0.001; ES=2.25). Conclusions: TACO 

provided significantly faster cooling than CON. When monetary or spatial restrictions are 

present, TACO represents an effective alternative to traditional CWI in emergency treatment of 

exertional hyperthermia.  

Key Words: tarp-assisted cooling, heat strain, heat illness, exertional heat stroke 

INTRODUCTION 

 Exertional heat stroke (EHS) is one of the most common causes of sudden death among 

athletes and military personnel.
1-4

 Risk increases during summer months when ambient 

temperature and relative humidity are increased.
3
 The addition of protective equipment further 

compromises normal thermoregulation.
5
  Diagnostic criteria of EHS includes a core temperature 

of >40.5°C along with alterations in central nervous system function.
1,6

  Once a patient is 

diagnosed, it is critical that their core body temperature be reduced to below 38.9°C as quickly as 

possible in order to prevent sequelae and limit chances of mortality.
6,7

   

The National Athletic Trainers’ Association recommends whole-body cold-water 

immersion (CWI) as the best method for treating EHS.
6
  CWI is optimized (i.e., faster cooling) 

with colder water temperatures, particularly with continuous water circulation to prevent a 

barrier of warm water from forming adjacent to the patient.
6,8-11

  Oscillating the water provides a 

massaging effect to the skin, which increases vasodilation of the peripheral vasculature.
12

  

Therefore, circulated cold water allows more blood to be cooled at the periphery through 

conduction and convection, and subsequently, transported to the core.  

Cold-water immersion typically requires a large tub filled with water and ice to be on site 

and ready for use during activities.  However, a recent study by Mazerolle et al
13

 found that 
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many athletic trainers do not implement this method due to lack of resources and the lack of time 

in daily workloads to maintain the tub. It is also infeasible to transport these large tubs to certain 

venues, such as military drills and off road races.  Although some also contend that patient 

comfort and cardiovascular stress are compromised with CWI,
12

 it consistently demonstrates 

successful outcomes.
6,8-12,14

   

A recent review of cooling rates for a variety of modalities identified categories for 

cooling rates.
11 

These labeled categories for cooling rates were identified based on how long it 

would take an EHS patient to be cooled appropriately. In order for efficient cooling to take place 

in less than 30 minutes, acceptable whole body cooling must be ≥0.078°C
.
min

-1
.
11

 Typical 

cooling rates for CWI range between 0.129
8
 and 0.350°C

.
min

-1
,
9
 and are known to produce 100% 

survival when used for EHS patients.
14

 In some military and athletic situations, continual rotation 

of ice-soaked towels or sheets have had successful outcomes as an alternative to CWI.
16

 Limited 

evidence to date supports the use of CWI alternatives for the treatment of exercise induced 

hyperthermia. 

The tarp assisted cooling with oscillation (TACO) method was developed to offset 

deterrents to CWI.  This method uses a simple plastic tarp held by staff members as the container 

for cold water while the patient sits or lies in the middle.  TACO is portable and inexpensive 

(<$20), and has been successfully used in the military and during the 2012 Boston Marathon to 

treat EHS victims (C. Troyanos, oral communication, May 2012; M.B. Smith, oral 

communication, June 2011).  Despite anecdotal reports of the TACO methods success, no studies 

have been conducted to determine its effectiveness.  The purpose of this study was to test the 

efficacy of TACO and determine the cooling rate achievable through this method. It was 
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hypothesized that TACO would cool participants at acceptable rates (≥0.078°C
.
min

-1
) following 

exercise hyperthermia.  

METHODS 

Study Design 

 This study was conducted using a randomized, crossover controlled trial. The study 

procedures were approved by the Institutional Review Board. Trials consisted of two distinct 

portions; exercise and treatment. Our exercise protocol was self-paced for the first trial and 

matched for the second, and its purpose was to induce hyperthermia. Our treatment portion was 

used to compare the treatments via separate trials (one with TACO, and one CON). 

Participants 

 Sixteen participants (9 males, 7 females; 26 ± 4.7y, 1.76 ± 0.09m, 72.5 ± 9.0kg, 20.7 ± 

7.1% body fat) were recruited from the surrounding community via word of mouth and 

electronic media to voluntarily participate in two exercise/treatment trials in the heat (1 control; 

CON, and 1 TACO).  Upon being recruited, participants attended a brief (~30min) session 

covering the informed consent form, medical history form, and details of the study.  During this 

time, participants turned in a medical history form to verify that no exclusionary conditions 

existed. Exclusion criteria included previous heat exhaustion or heat stroke within 3 months, 

current illness or musculoskeletal injury, hypertension where vigorous exercise was 

contraindicated, or cold intolerance. 

Once medical clearance and informed consent were obtained, body composition was 

assessed via dual energy x-ray absorptiometry. Participants were then scheduled for 2 separate 

trials held at least 1 week apart to prevent heat acclimation. Participants were asked to refrain 

from alcohol use and exercise for 24 hours, and caffeine use for 12 hours prior to each trial. For 
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24 hours prior to their first trial, participants recorded their food/fluid intake on a standard diet 

log and were instructed to match their intake before their second trial. Prior to instrumentation, 

participants provided a small urine sample to verify euhydration prior to trials. Urine was 

measured via refractometry for specific gravity (Atago, Japan; USG). Participants also provided 

a nude body mass prior to each trial to further support euhydration (model 349KLX, Health-o-

med, McCook, IL). 

Instrumentation  

 Participants were provided with a heart rate (HR) strap to wear for the duration of 

exercise and treatment (Polar, Inc., Lake Success, NY, USA).  A blood pressure cuff was placed 

on the upper arm and three ECG electrodes were attached (right and left subclavicular fossa, and 

right anterior abdominal line) to allow for arterial blood pressure to be measured by auscultation 

of the brachial artery via electrosphygmomanometry (Tango
+
, SunTech, Raleigh, NC, USA).  

Participants inserted a rectal thermistor (Physitemp Instruments, Inc., Clifton, NJ, USA) 15cm 

beyond the anal sphincter for rectal temperature (Tre) measures throughout trials.  Participants 

were educated on perceptual measures [rating of perceived exertion (RPE), thirst and thermal 

sensation, and perceived muscle pain] that were assessed throughout exercise and treatment. 

Exercise Protocol 

After instrumentation, participants entered an environmental chamber [(Can-Trol 

Environmental Systems, Markham, ON) 33.4 ± 0.8°C, 55.7 ± 1.9% relative humidity].  

Participants then sat on a chair for 10 minutes followed by the collection of baseline values for 

Tre, blood pressure, HR, and perceptual measures.  Immediately following baseline 

measurements, the blood pressure cuff and electrode leads were removed and participants moved 

to and began exercise on either a cycle or treadmill.  Lead and cuff removal was completed to 
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remove the connections that may get caught on exercise equipment during the exercise protocol 

for participant safety. During the first trial, exercise intensity, mode and duration was self-

selected by participants and recorded by the research staff such that it was sufficient to elevate 

Tre to at least 39°C. This matched exercise protocol was repeated for the second trial, ensuring a 

match in metabolic heat production during exercise.  Tre and HR were recorded continuously 

throughout exercise and cooling via computer (LabChart7, ADInstruments, Inc., Colorado 

Springs, USA) at 50Hz during exercise and treatment.  Perceptual measures (RPE, thermal 

perception, and thirst sensation) were taken every 10 minutes during exercise.  Exercise was 

immediately ceased if a participant began to experience signs/symptoms of exertional heat illness 

or their temperature reached 41°C.  During exercise, participants were encouraged to consume 

water heated to 38°C ad libitum.  Once participants reached a Tre of at least 39°C, they ceased 

exercise and moved to the cooling portion of the trial.   

Treatment Protocol 

 A standardized transition of five minutes was utilized to simulate effective movement of 

an EHS patient to a treatment area. Participants moved to the treatment area inside the 

environmental chamber and assumed a semi-recumbent position on a standard tarp (8’ x 10’), 

with a researcher holding the corners and edges of the tarp (minimum of 6 people). Prior to 

starting treatment, participants were re-instrumented with the BP cuff and leads, and pre-cooling 

perceptual measures were taken. The researchers elevated their respective corners of the tarp, 

forming a “taco” shape to begin treatment.  

 During TACO, 151L of ice water (2.1 ± 0.8°C) were poured on and around the subject 

using four 37L water coolers, ensuring that the head and upper chest of the participant were out 

of the water. Participants remained immersed for 15 minutes or until their Tre returned to 38.3°C 
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(~101°F).  Following immersion, participants were assisted in exiting the tarp, toweled dry, and 

returned to sitting on a chair inside the environmental chamber for 30 minutes. During this latter 

portion of recovery, HR and Tre were recorded every 10 minutes.  Participants then exited the 

chamber to towel completely dry and remove instrumentation. 

 During the CON trial, the participants remained in the tarp in the semi-recumbent 

position inside the environmental chamber for 15 minutes with no immersion.  The participants 

then moved to the chair and sat inside the environmental chamber for 30 minutes at which time 

they toweled completely dry and removed instrumentation.  For both treatments, physiological 

data (Tre and HR) were monitored continuously during and following treatment.  Blood pressure 

was taken immediately pre- and post-cooling. Perceptual measures were taken at the beginning 

and end of treatment as well. 

Cooling rate was calculated using the equation [(pre-treatment Tre – post-treatment Tre) / 

treatment time]. Blood pressure values were used to calculate mean arterial pressure (MAP) 

using the equation 1/3*Pulse Pressure + Diastolic Blood Pressure.  

Data Analysis 

 Statistical analysis was completed using IBM SPSS Statistics v23.0 (IBM, Armonk, NY, 

USA).  Analysis was done on data collected pre- and post-treatment for all measures using 

repeated measures ANOVA to assess the effects of treatment between trials.  Cooling rates were 

analyzed using a paired t-test.  An alpha of <0.05 was set a priori and any statistically significant 

values were run through post-hoc analysis with appropriate Bonferroni correction. Effect size 

(ES) was calculated using G*Power Version 3.1.9.2 (Universitat Kiel, Germany). As no 

differences between males and females were identified for any variable, data were combined for 

analyses. Results are presented as means ± standard deviations.   
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RESULTS 

 Twenty-four hour diet logs demonstrated no differences between trials (kcal: t15=-0.97; 

P=0.35; ES=0.24, protein: t15=-1.40; P=0.18; ES=0.35, carbohydrates: t15=-0.85; P=0.93; 

ES=0.02, fat: t15=-0.88; P=0.39; ES=0.22; data not shown).  Hydration status was not different 

between trials with either body mass (t15 = 0.03; P=0.98; ES=0.01), or urine osmolality (t15 = -

1.91; P=0.08; ES=0.48). Fluid consumption during exercise was not different between CON 

(0.26 ± 0.29 L) and TACO (0.19 ± 0.26 L; t12=1.73; P=0.11; ES=0.48). 

Tre exhibited an interaction of time and treatment (F1,15 = 50.40, P < 0.001; partial 

η
2
=0.77) as the pre-cooling time was similar for both conditions (CON 39.27 ± 0.26°C, TACO 

39.30 ± 0.39°C: P=0.62; ES=-0.09) but was significantly lower post-cooling during TACO 

(38.10 ± 0.16°C) compared to CON (38.74 ± 0.38°C, P<0.001; ES=2.27).  Cooling rate was 

significantly faster during TACO than CON (t15=-8.84, P<0.001; ES=2.21; Figure 1).   HR was 

not different between conditions (F1,15 = 1.15, P=0.30; partial η
2
=0.07) nor was there an 

interaction (F1,15 = 3.29, P=0.09; partial η
2
=0.18).  However, HR decreased independent of 

treatment (F1,15 = 182.52, P<0.001; partial η
2
=0.92) from pre-cooling (158.8 ± 17 bpm) to end 

cooling (102.2 ± 11 bpm).  Change in heart rate (ΔHR) from pre- to post-cooling was not 

different between TACO (-62 ± 22 bpm) compared to CON (-51 ± 19 bpm; t15 = -1.81, P=0.09; 

ES=0.45). There was an interaction of time and treatment for MAP (F1,13 = 12.51, P=0.004; 

partial η
2
=0.49; Figure 2)  with end-cooling greater in TACO than in CON (P<0.001).   

Thermal sensation exhibited an interaction of time and treatment (F1,13 = 140.17, 

P<0.001; partial η
2
=0.92) with responses lower post-cooling in TACO compared to CON 

(P<0.001; Figure 3).  There was also an interaction of time and treatment for thirst (F1,13 = 19.12, 

P<0.001; partial η
2
=0.60; Figure 3). Muscle pain also had an interaction effect (F1,13 = 14.48, 
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P=0.002; partial η
2
=0.53) and was increased post-cooling in TACO compared to CON (P=0.007; 

Figure 3).  

During post-cooling recovery, there was a significant interaction of time and treatment 

for Tre (F3,42 =5.72; P=0.02; partial η
2
=0.29; Figure 4).  HR during post-cooling recovery was 

lower with TACO than CON regardless of time point (F1,14 = 58.93, P < 0.001; partial η
2
=0.81) 

and was decreased independent of treatment (F3,42 = 16.55, P<0.001; partial η
2
=0.54), with no 

interaction of treatment and time (F3,42 = 2.40, P=0.08; partial η
2
=0.15; Figure 4). 

DISCUSSION 

We found that using TACO for whole body cooling of hyperthermic individuals was 

significantly more effective than CON.  Further, our data establishes that TACO provides a 

cooling rate previously deemed acceptable for the treatment of EHS victims.
10

 This study 

demonstrates decreased body temperature, safe cardiovascular responses, and enhanced 

perceptual outcomes with TACO following exertional hyperthermia. Our data is important for 

athletic trainers working with military and athletic personnel who develop emergency action 

plans that must be executed in remote or restricted areas where traditional CWI with a tub may 

be difficult.  

Though our water temperature (2.1 ± 0.8°C) was comparable to that of the coldest water 

used in other studies, our cooling rate was slightly less than CWI cooling seen elsewhere (up to 

0.35°C·min
-1

).
8
 This difference is likely due to the fact that our participants were only being 

immersed to the iliac crest, whereas the Proulx et al.
8
 participants were immersed in 2°C water 

up to their clavicle.  Even with the limitation that TACO is partial-body CWI, our cooling rate of 
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0.14°C·min
-1

 would allow for safe cooling of EHS victims within a 30 minutes, making this an 

acceptable (>0.078°C·min
-1

) modality for emergency treatment.
10

 

For ethical reasons, we could not allow individuals to reach core temperatures indicative 

of EHS (>40.5°C). Importantly, there is strong evidence that hyperthermic study participants 

cool at similar rates compared to EHS patients when using CWI. A recent example of this point 

is data from 274 EHS patients, who were cooled with CWI following diagnosis at a mean rate of 

0.22 ± 0.11°C·min
-1

.
17

 Cooling rates using CWI for hyperthermic subjects ranges from 0.129 to 

0.35°C·min
-1

.
10

 Cooling rates are similar in the literature between EHS victims and hyperthermic 

research participants.
10,15

  

For field use, TACO has obvious benefits compared to a traditional CWI tub.  Tarps can 

be folded and stored in medical kits with ease, and can cost as little as $15, whereas a stock tank 

costs ~$200.  We found that 151L of ice water was sufficient to submerge participants at least up 

to the iliac crest with little variation in water temperature.  This amount of water was chosen 

during pilot testing due to the fact that most venues have at least 4 coolers of ice water available 

in case of emergency.  For use of this method in the field, we recommend to have at least six 

people to assist holding the tarp since 151L of water weighs ~150kg independent of the patients’ 

body weight.  As with all emergency action plans, it is recommended that medical staff practice 

this method before an actual emergency with all individuals that may be involved in emergency 

procedures at the venue.  We found that standing close to the patient helps maintain water level, 

and allows oscillating the tarp efficient with repeated knee bends to maintain water circulation. 

While we did not quantify the amount of water circulation in the current study, the same 

researchers were used for each trial to ensure consistent oscillation. Furthermore, given our 

acceptable cooling rate, this provided sufficient movement to facilitate cooling.  
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Our cooling rates with TACO are slightly faster than those previously identified with 

constantly rotating towels or sheets for heat illness treatment.
16

 Armstrong et al.
16

 identified a 

mean cooling rate of  0.11°C·min
-1

 in seven EHS patients when continual rotation of ice soaked 

towels was utilized. There are other successful anecdotal reports of constant rotation of ice sheets 

in treating heat casualties in the military. However, this treatment option requires further 

research documentation to be considered evidence-based. One of the advantages of rotating ice-

soaked towels or sheets is that treatment requires less cold water (~38L vs. 151L) in our TACO 

trial. This may increase feasibility in some instances where cold water is in short supply, 

however, it may also be a limiting factor in cooling rate. The more water in contact with the 

patients skin enhances cooling, and the less water utilized in treatment may compromise cooling 

efficiency.
10,12

  Based on our data, TACO is recommended above ice sheet rotations because 

there is evidence to support its use. Future research should investigate and document the efficacy 

of ice sheet rotations.  

Since our participant group consisted of similar body types, it is recommended for future 

studies to use this method on a more heterogeneous sample population to assure effectiveness on 

all body types and to provide the best recommendations for use in the field.  For example, 

previous research has shown that differences in body surface area (BSA) and body surface area 

to lean body mass ratio (BSA/LBM) affect cooling rates for hyperthermic individuals.
9,17

  Since 

CWI relies on conductive and convective heat loss, it follows that a greater BSA allows for more 

contact with the cold water, and therefore a greater amount of heat loss can be achieved.  Even 

though individuals with a larger BSA relative to BMI may have greater adiposity, studies also 

found that adiposity has a limited effect on cooling rate.
17

  



28 
 

Heart rate responses to water immersion following exercise vary from non-significant 

decreases in thermoneutral water to significant decreases in cold water (<16°C).
18,19

  Though our 

ΔHR was not different between CON and TACO, the greater MAP (Figure 2) in TACO post-

cooling indicates a better maintenance of cardiac function during TACO than control.  During 

CON, since the participants were semi-recumbent and not moving for 15 minutes, blood likely 

pooled in the lower extremities and delayed recovery. Furthermore, Kenny et al
20

 demonstrated 

reductions in sweating and skin blood flow while esophageal temperature was still elevated 

following exercise.  These reductions occur due to nonthermal contributions leading to impaired 

heat loss.  As our MAP decreased similarly at the end of treatment, is possible that these 

perturbations in heat loss mechanisms may have led to the slower cooling rates in our CON trial.  

Our perceptual measures provided insight into how our participants felt during cooling.  

Thirst was rated lower post-cooling in TACO, which is likely due to the maintenance of blood 

pressure and circulation during immersion.  Because we used an extreme water temperature, the 

findings of decreased thermal sensation with TACO compared to CON were expected.  Our 

identified increase in muscle pain with cooling may be a result of our participants’ difficulty 

differentiating between muscular and cutaneous pain sensation caused by the water temperature. 

Some of our participants began to shiver during cooling as well, which may have increased 

muscular pain.  

CONCLUSIONS 

The purpose of this study was to examine the cooling effectiveness of TACO following exercise-

induced hyperthermia.  With the resulting cooling rate of 0.14 ± 0.06°C·min
-1

, TACO is an 

acceptable method of reducing an individual’s core temperature in an appropriate amount of time 

for emergency treatment of EHS.  Though CWI in a traditional tub remains the gold standard for 
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EHS treatment, TACO is recommended for use in emergency action plans for remote venues or 

in situations where the purchase, or use, of a CWI tub is not feasible.    
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LEGENDS TO FIGURES 

Figure 1. Cooling rate responses to treatment.  Abbreviation: CON, control, TACO, tarp assisted 

cooling with oscillation. 
a
Indicates significantly greater than CON (t15=-8.84, P<0.001; 

ES=2.21). 

 

Figure 2. A) Heart rate responses pre- and post-treatment for both trials.  B) Mean arterial 

pressure (MAP) measures pre- and post-treatment for both trials. Abbreviation: CON, control, 

TACO, cold-water immersion.  
a
Indicates a significant difference between pre- and post-cooling, 

regardless of trial (P<0.001). 
b
indicates a significant difference between CON and TACO 

(P<0.05). 

 

 

Figure 3. Perceptual measures pre- and post-treatment. 
a
Indicates a significant difference 

between CON and TACO (P < 0.05). 

 

 

Figure 4. A) Heart rate responses during the post-cooling recovery. B) Rectal temperature 

responses during the post-cooling recovery.  
a
Indicates significant difference from CON (P < 
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0.05).  
b
Indicates significant difference from 0 minutes (P < 0.05). 

c
Indicates significant 

difference from 10 minutes (P < 0.05).   
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V. Discussion and Conclusion 

 

 The purpose of this study was to examine the effectiveness of TACO in reducing core 

temperature of individuals experiencing exercise-induced hyperthermia.  The resulting cooling 

rate of 0.14±0.06°C·min
-1 

shows this method is faster than control, and would be acceptable for 

use in cooling victims of EHS in the field.  It is recommended to be included in an emergency 

action plan for venues that have monetary or spatial restrictions.  The 40 gallons of water used in 

this protocol should be easily found at most venues, and it should not be difficult to recruit and 

instruct the required assistants.   Oscillation of the water is an important component of TACO 

and provides many benefits including maintaining blood pressure during cooling and decreasing 

thirst.  These outcomes demonstrate that TACO can be a valuable tool in aiding recovery.   
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