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ABSTRACT 

 

Methane emissions from the oil and gas (O&G) supply chain reduce potential climate benefits of natural 

gas as a replacement for other fossil fuels that emit more carbon dioxide per energy produced. O&G 

facilities have skewed emission rate distributions with a small fraction of sites contributing the majority of 

emissions. Knowledge of the identity and cause of these high emission facilities, referred to as super-

emitters or fat-tail sources, is critical for reducing supply chain emissions. This dissertation addresses the 

quantification of super-emitter emissions, assessment of their prevalence and relationship to site 

characteristics, and mitigation with continuous leak detection systems. Chapter 1 summarizes the state of 

the knowledge of O&G methane emissions. Chapter 2 constructs a spatially-resolved emission inventory 

to estimate total and O&G methane emissions in the Barnett Shale as part of a coordinated research 

campaign using multiple top-down and bottom-up methods to quantify emissions. The emission inventory 

accounts for super-emitters with two-phase Monte Carlo simulations that combine site measurements 

collected with two approaches:  unbiased sampling and targeted sampling of super-emitters. More 

comprehensive activity data and the inclusion of super-emitters, which account for 19% of O&G 

emissions, produces a emission inventory that is not statistically different than top-down regional 

emission estimates. Chapter 3 describes a helicopter-based survey of over 8,000 well pads in seven 

basins with infrared optical gas imaging to assess high emission sources. Four percent of sites are 

observed to have high emissions with over 90% of observed sources from tanks. The occurrence of high 

emissions is weakly correlated to site parameters and the best statistical model explains only 14% of 

variance, which demonstrates that the occurrence of super-emitters is primarily stochastic. Chapter 4 

presents a Gaussian dispersion model for optimizing the placement of continuous leak detection systems 

at three example well pads. The model demonstrates that large leaks can be detected quickly with first 

generation systems. Continuous leak detection can be used in the near future to cost-effectively mitigate 

methane emissions from O&G super-emitters. 
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INTRODUCTION 

Emissions of methane, a short-lived climate pollutant and the primary constituent of natural gas, can 

diminish or delay climate benefits of substituting natural gas for other fossil fuels. Numerous studies have 

found that oil and gas (O&G) facilities have highly skewed emission rate distributions with a small number 

of facilities responsible for the majority of total emissions. The lack of knowledge about these high 

emission facilities, often referred to as super-emitters, has contributed to uncertainty in the quantification 

of O&G supply chain emissions and hindered the formulation of effective policies for reducing emissions. 

This dissertation is divided into four chapters focused on O&G super-emitters. Chapter 1 summarizes the 

state of the knowledge on methane emissions from the O&G supply chain. Chapter 2 quantifies super-

emitters to more accurately estimate regional O&G methane emissions. Chapter 3 assesses the 

prevalence and relationship of super-emitters to site characteristics to determine if their occurrence can 

be predicted. Chapter 4 describes a dispersion model used to assess the performance of continuous leak 

detection systems for mitigating super-emitter emissions. 

Chapter 1, Methane emissions from the natural gas supply chain, presents background information on the 

importance of methane emissions to climate change and the various sources of methane from the O&G 

supply chain.  A literature review describes the state of knowledge prior to unconventional development 

and summarizes several recent research studies. The chapter introduces the concept of super-emitters 

and their importance in reducing supply chain emissions. 

Chapter 2, Constructing a spatially resolved methane emission inventory for the Barnett Shale Region, 

addresses the observed discrepancy between top-down and bottom-up estimates of O&G methane 

emissions. The chapter describes the development a detailed emission inventory that integrates spatially-

referenced activity data with emission factors based on recent measurement data from a coordinated 

research campaign in the Barnett Shale that used multiple top-down and bottom-up approaches to 

quantify methane emissions. Site measurements were collected by other research teams with two types 

of sampling approaches:  unbiased and high-biased sampling. Unbiased sampling is necessary to 

characterize the lower and middle portions of site emission rate distributions, but typically will 

underestimate average emissions of the population since a relatively small sample size is unlikely to 
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include super-emitters from the upper portion of the distribution. Targeted sampling of high emission sites 

can quantify emissions from super-emitters but will overestimate emissions if they are overrepresented in 

emission factors. Therefore, two-phase Monte Carlo simulations are used to blend unbiased and high-

biased measurements into single emission factors for well pads, small processing plants, large 

processing plants, and compressor stations. The emission inventory is compared to top-down 

measurements of regional emissions and alternative bottom-up estimates based on the U.S. EPA 

Greenhouse Gas Inventory and Greenhouse Gas Reporting Program. 

Chapter 3, Aerial surveys of elevated hydrocarbon emissions from oil and gas production sites, evaluates 

the prevalence of super-emitters at well pads across the U.S. and attempts to predict their occurrence 

with statistical models. Over 8,000 well pads in seven basins are selected by stratified random sampling 

to produce a sample covering over 1% of U.S. active wells and the diversity of production types. A 

professional leak detection firm is contracted to survey these sites with a helicopter-based infrared 

camera that makes large hydrocarbon emission sources visible. The survey detection limit is estimated 

with a controlled release and aircraft-based quantification of methane emissions at a subset of surveyed 

sites. A national well database is used to determine the well count, well age, gas production, oil 

production, water production, and percent energy from oil at surveyed sites. Single parameter and multi-

parameter generalized linear models using basin, site, and operator parameters are evaluated to explain 

the variance in observed high emissions. Finally, a tank flashing analysis is performed to assess if the 

observed prevalence can be explained by potential or controlled tank flashing emissions. 

Chapter 4, Site-level Gaussian dispersion model to optimize the deployment of continuous methane 

sensors, describes a model programmed by the author in the open source language R to assess the 

performance of continuous leak detection systems at O&G sites. The model uses Gaussian dispersion 

equations, local meteorological data, and the location of potential emission sources to estimate the 

methane concentration enhancement caused by individual sources at multiple receptors. Based on 

sensor detection limits in resolving concentration enhancements from background, the model calculates 

the average and 95
th
 percentile hours to detect different emission rates by both point and open-path 

sensors deployed at various receptors. The model is used to assess the performance of sensors with 
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three different detection limits for detecting large and small emission rates at three example well pads in 

the Eagle Ford, Fayetteville, and Bakken Shale. The results provide information on the ideal locations to 

deploy sensors to most quickly detect emissions. 
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CHAPTER 1 

Methane emissions from the natural gas supply chain 

Reprinted from Environmental and Health Issues in Unconventional Oil and Gas Development, Edited by 

Debra A. Kaden and Tracie L. Rose, David R. Lyon (Chapter Author), Chapter 3: Methane Emissions 

from the Natural Gas Supply Chain, Pages 33-48, Copyright 2016, with permission from Elsevier. 

 

Introduction 

Natural gas production in the United States increased 36% between 2005 and 2014, primarily due to the 

development of shale gas resources with horizontal drilling and hydraulic fracturing (EIA 2015). Increased 

gas supply led to lower gas prices in the U.S., which contributed to a 21% decrease in coal-fired 

electricity generation over this time period (EIA 2015). The replacement of coal with natural gas for 

electricity generation has long-term climate benefits since natural gas combustion produces less carbon 

dioxide (CO2) per unit of energy generated than coal. However, methane (CH4), the primary constituent of 

natural gas, is a powerful greenhouse gas with 120 times the radiative forcing of CO2 on a mass basis 

(IPCC 2013). Methane has an effective atmospheric lifetime of approximately 12 years while a large 

portion of CO2 emissions persists in the atmosphere for much longer. Therefore, the climate impact of 

methane is greater in the short-term with a 20-year global warming potential (GWP) of 84- and a 100-year 

GWP of 25; with the inclusion of climate-carbon feedbacks, GWP values increase to 86 and 32, 

respectively (IPCC 2013).  

Alvarez et al. (2012) developed the concept of technology warming potential to compare the relative 

climate impacts over time of different technologies. The climate impacts of natural gas-fueled 

technologies are dependent on methane emissions across the natural gas supply chain. As shown in 

Figure 1, replacement of a coal-fired power plant with a gas-fired plant will have immediate climate 

benefits if the supply chain methane emissions are less than 2.7% of produced natural gas (Alvarez et al. 

2012; updated with IPCC 2013). At higher gas leak rates, switching from more carbon-intensive fossil 

fuels to gas will be worse for the climate in the near term due to the short-term climate impacts of 
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methane. Although CO2 emission reductions are necessary for long-term mitigation, reducing emissions 

of short-lived climate pollutants, such as methane, has the advantage of potentially delaying climate 

system tipping points and allowing more time for adaptation (Shoemaker et al. 2013). Consequently, it is 

critical to quantify and mitigate methane emissions from the natural gas supply chain to minimize its 

climate impacts and assure that gas displacement of other fossil fuels has immediate climate benefits. 

Emission Sources 

Methane emissions occur across the entire natural gas supply chain. The production sector includes the 

short-term development of new wells and the long-term operation of producing wells. Since many 

unconventional wells co-produce oil and natural gas, this chapter will consider oil and gas production as a 

single sector, but focus on natural gas in downstream sectors. The gathering sector is a system of 

pipelines and compressor stations that transports gas from well pads to processing plants or transmission 

pipelines. The processing sector includes plants that treat gas to pipeline-quality standards, which can 

include removal of water, CO2, hydrogen sulfide, and natural gas liquids (heavier hydrocarbons, such as 

ethane). Some produced gas is close to pipeline-quality standards and may bypass the processing sector 

and instead undergo minor treatment, such as dehydration, in the production or gathering sectors. The 

transmission and storage sector is a system of high-pressure pipelines and compressor stations that 

transports gas from gathering systems and processing plants to high-demand customers such as power 

plants and local distribution city gates. This sector also includes underground and liquefied natural gas 

(LNG) storage facilities that store gas for periods of higher demand. Finally, the local distribution sector is 

a system of pipelines and metering and regulating stations that delivers gas from city gates to customers, 

such as commercial and residential buildings.  

Methane emissions from the natural gas supply chain can be grouped by three basic source 

classifications:  vented emissions, fugitive emissions, and incomplete combustion emissions. Vented 

emissions are intentional releases related to normal operations or safety procedures. Fugitive emissions 

are unintentional releases from equipment leaks and malfunctioning equipment. Incomplete combustion 

emissions are fuel slippage in exhaust of natural gas combustion sources. 
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Natural gas-powered pneumatic controllers are the largest source of vented emissions in the U.S. These 

devices use the energy of pressurized gas to power equipment controlling process variables such as 

liquid level and temperature (Simpson 2014). Depending on their design, pneumatic controllers emit gas 

continuously or intermittently during normal operation. Similarly, pneumatic pumps use pressurized gas to 

power chemical injection or glycol pumps. 

Intentional release of gas for safety or convenience is another large source of vented emissions. 

Blowdowns occur when equipment is depressurized prior to maintenance or to alleviate over-

pressurization. Associated gas venting is the release of gas produced by oil wells that lack a connection 

to gas gathering systems. Some wells accumulate liquids in the wellbore that inhibit gas production; these 

wells may be temporarily vented to atmosphere to unload liquids, which also emits methane. 

Well completions are a vented emission source specific to unconventional development. After a well is 

hydraulically fractured, excess fluid and proppant must be cleared from the wellbore. In the earlier years 

of unconventional development, completions were vented to the atmosphere, which released methane in 

flowback gas. As of January 2015, a United States Environmental Protection Agency (U.S. EPA) rule 

requires almost all hydraulically-fractured gas wells, but not oil wells, to use reduced emission 

completions to capture completion flowback gas for sales instead of venting the gas to the atmosphere ; a 

proposed rule would extend this requirement to oil wells (40 CFR Part 60 Subpart OOOO). 

Hydrocarbon and produced water storage tanks have vented emissions referred to as flashing losses, 

working losses, and breathing losses. After fluid flows from a high-pressure separator to an atmospheric 

pressure tank, entrained gas is emitted as flashing losses. Working losses occur from displacement of 

vapors when a tank is filled. Breathing losses are caused by changes in ambient temperature or pressure. 

Similar to storage tank flashing, glycol dehydrators can emit methane entrained in wet glycol through the 

vent that releases water vapor. Tank emissions can be controlled with flares or vapor recovery units that 

combust or capture these losses. 

Equipment leaks are fugitive emissions from poorly sealed or damaged components that are designed to 

have zero emissions, such as connectors and pipelines. Fugitive emissions can also occur from 
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components that are expected to have some leakage — for instance, the vents of reciprocating 

compressor rod packing seals. Although these sources are designed to vent some gas during normal 

operation, their emission rates can increase with equipment wear. Malfunctions of venting sources or 

control equipment can cause fugitive emissions. For example, a malfunctioning pneumatic controller can 

emit beyond its designed rate, or tank emissions can bypass a flare if the tank hatch is open. 

Incomplete combustion emissions occur from engines, flares, or other equipment such as heaters that 

combust natural gas. Reciprocating compressor engines normally emit a greater portion of their fuel 

throughput than centrifugal compressors (EPA 1995). Natural gas flares are often assumed to combust 

98% of gas, but a recent study reported >99.8% methane combustion efficiency for 11 flares in North 

Dakota and Pennsylvania (Caulton et al. 2014). 

State of Knowledge Prior to Unconventional Development 

The U.S. EPA annually publishes two sources with methane emission estimates from the U.S. natural gas 

supply chain:  the U.S. Greenhouse Gas Inventory (GHGI; EPA 2015a) and the Greenhouse Gas 

Reporting Program (GHGRP; EPA 2015b). Both these sources rely heavily on data collected during a 

comprehensive study in the early 1990s by the U.S. EPA and the Gas Research Institute that estimated 

1992 U.S. natural gas supply chain methane emissions were equivalent to 1.4±0.5% of gross natural gas 

production (Harrison et al. 1996).  

The GHGI is an annual report that includes estimates of U.S. annual greenhouse gas emissions by 

source category from 1990 to two years prior of the publication year; it is published in fulfillment of the 

U.S.’s commitments under the United Nations Framework Convention on Climate Change. Emissions are 

reported at the national level for natural gas systems and petroleum systems except for the gas 

production sector, which is reported at the regional level. The GHGI estimates activity factors (equipment 

and facility counts) based on a combination of recent data, such as well counts, and assumptions, such 

as the number of pneumatic controllers per well, based on Harrison et al. (1996) and other studies. For 

most source categories, potential emissions are estimated by multiplying activity factors by emission 

factors (average emissions per equipment or site) based on Harrison et al. (1996) and other studies. Net 
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emissions are calculated by subtracting estimated emission reductions, which are due to regulations and 

the voluntary U.S. EPA Natural Gas STAR program, from potential emissions. Each year, U.S. EPA 

updates the GHGI methodology and recalculates annual emissions back to 1990.  

The GHGI has undergone several methodological changes in recent years that greatly changed 

estimates of natural gas systems methane emissions. Most recent year emission estimates increased 

from 4.6 teragrams (Tg) methane in the 2010 GHGI to 10.5 Tg in the 2011 GHGI, primarily due to the 

addition of a source category for hydraulically fractured well completions and a methodological change 

resulting in increased emission estimates from liquids unloading. The 2013 GHGI emission estimate was 

reduced to 6.9 Tg due to another revision in liquids unloading methodology. A revised methodology for 

hydraulically fractured well completions reduced the 2014 GHGI estimate to 6.2 Tg. The 2015 GHGI 

estimates 2013 emissions from natural gas systems are 6.3 Tg with an additional 1.0 Tg from petroleum 

systems production. Assuming a supply chain average gas composition of 90% methane, 7.3 Tg methane 

is equivalent to 1.4% of gross natural gas production.  

The GHGRP is a mandatory reporting program for U.S. facilities with annual GHG emissions ≥25,000 

metric tons carbon dioxide equivalents (CO2e). Petroleum and natural gas facilities report under Subpart 

W, which includes onshore petroleum and gas production, offshore petroleum and gas production, gas 

processing, gas transmission, underground gas storage, LNG storage, LNG import/export, and gas local 

distribution (40 CFR Part 98). These facilities also report incomplete combustion emissions under Subpart 

C (40 CFR Part 98) Gas gathering and boosting facilities report under Subpart W but the U.S. EPA has 

amended the rule to also require reporting under Subpart W beginning in 2016. Facilities are defined at 

the site-level except for onshore production, which are defined as a company’s entire well pad assets in a 

basin, and local distribution, which are defined as a company’s statewide distribution assets. Since 2011, 

reporters have been required to report annual emissions by source category and associated data at 

levels of detail varying by source and sector. Emissions must be estimated using methods prescribed by 

the rule for each source category, which includes direct measurements, engineering equations, and 

emission factors. Similar to the GHGI, GHGRP emission factors are based primarily on Harrison et al. 
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(1996). The GHGRP should not be viewed as a comprehensive inventory since it only includes facilities 

above the reporting threshold and excludes the gathering sector and some emission sources. 

Recent Studies 

Research on natural gas supply chain methane emissions has resurged over the last several years due to 

concern regarding the climate impacts of increased natural gas development, particularly since a 2011 

paper estimated that shale gas has a 3.6 – 7.9% leak rate (Howarth, Santoro, & Ingraffea 2011). U.S. 

EPA GHGI and GHGRP emission estimates depend on data from Harrison et al. (1996) and other studies 

collected prior to the growth in unconventional oil and gas (O&G) development. Numerous recent studies 

have investigated whether unconventional development or other changes in operational practices have 

increased or decreased methane emissions, including a series of sixteen studies sponsored by 

Environmental Defense Fund. Research can be divided into two categories based on their methodological 

approaches:  top-down studies that use atmospheric measurements of well-mixed air to estimate 

emissions at a regional or larger scale, and bottom-up studies that measure emissions at the component 

or site-level and sometimes extrapolate emissions to a regional or national scale using activity and 

emission factors. Bottom-up studies are summarized by sector below, followed by top-down studies of 

total O&G emissions. 

Production 

Allen et al. (2013) used direct measurements to quantify emissions from equipment leaks, pneumatic 

controllers, and pneumatic pumps at 150 onshore production sites, 27 well completion flowbacks, 4 well 

workovers, and 9 liquid unloading wells located across the U.S. Compared to GHGI estimates, emissions 

were higher for pneumatic controllers and equipment leaks, but lower for well completions. Two-thirds of 

well completions sent flowback gas to a sales line or flare, which controlled 99% of potential emissions. 

This demonstrates that well completion flowbacks, the main difference between conventional and 

unconventional production, can be effectively controlled with existing technologies.  

Two follow up studies to Allen et al. (2013) measured emissions from 107 liquid unloading wells and 377 

pneumatic controllers (Allen et al. 2015a, Allen et al. 2015b). Liquids unloading emissions were similar to 
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the most recent GHGI estimates with the highest emissions from wells with more than 100 annual 

unloading events. Pneumatic controllers had 17% higher average emissions per device than the GHGI, 

and the average number of controllers per well was 2.7 compared to 1.0 in the GHGI, which indicates that 

the GHGI underestimates their national emissions by up to a factor of 3. A small number of controllers, 

many that were malfunctioning, had emission rates exceeding 6 standard cubic feet per hour (scfh). 

These devices comprised 19% of the population but accounted for 95% of emissions. 

Allen et al. (2013) estimated emissions from the U.S. natural gas production sector by scaling up 

measured sources using national activity factors and assuming GHGI estimates were accurate for 

unmeasured sources. National emission estimates were updated in the follow up studies (Allen et al. 

2015a, Allen et al. 2015b) using 2012 activity factors and new pneumatic controller and liquids unloading 

data. Production sector 2012 emissions were estimated to be 2,185 gigagrams (Gg) methane, equivalent 

to 0.49% of gross gas production. The upper bound emission estimate was 2,815 Gg due to uncertainty 

in the pneumatic controller and liquids unloading emissions. In comparison, GHGI and GHGRP 2012 

production emissions are 1,992 Gg and 2,200 Gg, respectively; the GHGI and Allen et al. estimates are 

for natural gas only, while the GHGRP includes oil and gas production. 

Brantley et al. (2014) applied U.S. EPA Other Test Method (OTM) 33A, a mobile sampling method using 

point source Gaussian dispersion modeling, to estimate emissions at 210 production sites in the Barnett, 

Denver-Julesburg, Pinedale, and Eagle Ford basins. Emission rates were log-normally distributed and 

had a weak positive correlation (R
2
 = 0.083) with gas production. Compared to Allen et al. (2013) and a 

study in the Barnett Shale (ERG 2011), emission rate geometric means were about twice as high in 

Brantley et al. (2014), which may be due to the exclusion of tank flashing emissions in these other studies 

or the bias of mobile sampling towards higher emitting sites with detectable downwind plumes. 

Gathering & Processing 

A recent study measured site-level emissions at 114 U.S. gathering facilities and 16 processing plants 

using the dual tracer correlation method (Roscioli et al. 2015, Mitchell et al. 2015). Gathering facility 

emissions were positively skewed with 12% of sites contributing 50% of emissions. Infrared camera 
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surveys revealed that 20% of gathering sites had venting tanks and four times the average emissions of 

sites without substantial venting. Processing plants had higher average emission rates than gathering 

facilities (170 vs. 55 kg methane h
-1

) but lower emissions proportional to gas throughput (0.075% vs. 

0.2%). For both facility types, throughput was positively correlated with absolute emissions and negatively 

correlated with throughput-normalized emissions.  

Marchese et al. (2015) estimated emissions from the U.S. gathering and processing sectors using Monte 

Carlo simulations incorporating facility counts and emissions data from Mitchell et al. (2015). The number 

of U.S. processing plants (606) is obtainable from national databases, but there is no comprehensive, 

national list of gathering facilities. The authors estimated the number of gathering facilities, 4,549 (+921/-

703), by comparing state permit databases to lists obtained from study industry participants. Gathering 

and processing (G&P) sector 2012 emissions were estimated to be 2,421 (+245/-237) Gg methane 

compared to 1,296 Gg in the 2014 GHGI and 180 Gg in the 2013 GHGRP. Processing sector emissions 

were estimated to be 546 Gg, lower than the GHGI (892 Gg), but higher than the GHGRP (179 Gg). 

Since the GHGI includes gathering within the production sector, the authors used industry participant 

facility equipment counts to allocate GHGI emissions between production and gathering. The study 

estimate of gathering sector emissions (1,875 Gg) is almost 5 times the GHGI estimate (404 Gg) and 

several orders of magnitude higher than the GHGRP (0.5 Gg), which excluded vented and fugitive 

emissions from gathering facility reporting requirements. G&P sector emissions are equivalent to 

0.47±0.05% of gas production. 

Transmission & Storage 

Subramanian et al. (2015) quantified methane emissions at 45 transmission and storage (T&S) sector 

compressor stations using component-level direct measurements and the site-level dual tracer correlation 

method. Study onsite estimates used infrared camera surveys to identify emitting sources followed by 

quantification with high-flow samplers; incomplete combustion emissions were estimated with U.S. EPA 

AP-42 emission factors (EPA 1995). The average tracer flux emission rate was 80 kg methane h
-1

. Similar 

to the G&P sector, T&S sites had a skewed emission rate distribution with 50% of emissions from 10% of 

sites. The two highest emitting sites, which were defined as super-emitters, had much higher site-level 
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emissions based on the tracer correlation method than aggregate measured component-level emissions. 

This discrepancy was caused by the presence of leaking compressor isolation valves that could not be 

accurately quantified with component-level measurements. For the 25 sites exceeding the GHGRP 

reporting threshold, study onsite emissions were 1.8 times higher than emissions estimated using 

prescribed GHGRP methods. This difference is due to GHGRP methodologies that exclude certain 

sources (e.g., reciprocating compressor rod-packing vents in pressurized, standby mode) and require use 

of inaccurate emission factors, including an incomplete combustion factor that is over 500 times lower 

than the AP-42 factor for reciprocating compressors. 

Emissions from the U.S. T&S sector were estimated in Zimmerle et al. (2015) with Monte Carlo 

simulations that integrated emissions data from Subramanian et al. (2015), detailed facility data from 

study industry participants, and GHGRP data. National emission estimates for 2012 were 1,503 (+750/-

283) Gg methane compared to GHGI and GHGRP estimates of 2,071 and 200 Gg methane, respectively. 

In contrast to the GHGI, Zimmerle et al. (2015) estimated that there are fewer T&S stations in the U.S. 

and the compressors at these sites have a greater proportion of lower emitting dry seal centrifugal 

compressors. T&S sector emissions are equivalent to 0.35% (+0.10/-0.07%) of T&S sector throughput. 

Local Distribution 

Lamb et al. (2015) measured methane emissions at 230 pipeline leaks and 229 metering and regulating 

(M&R) stations at 13 U.S. local distribution systems. Sites were randomly selected from lists of pipeline 

leaks and M&R stations in representative areas provided by study industry participants. High-flow 

samplers were used to directly measure M&R components and in tandem with surface enclosures to 

measure underground pipeline leaks. There was an extremely skewed emission rate distribution for 

pipeline leaks with 1.3% of leaks contributing 50% of total emissions. Compared to Harrison et al. (1996), 

which is the basis of the GHGI emission factors, both pipeline leaks and M&R stations had lower average 

emission rates. Nine M&R stations were measured in both Lamb et al. (2015) and Harrison et al. (1996), 

eight of which had lower emissions in the more recent study. Lamb et al. (2015) estimated 2011 U.S. 

local distribution emissions using the new measurement data. Emission factors were developed for 

pipeline mains and services by pipeline material and M&R stations by operating pressure, and then 
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multiplied by GHGI activity factors. GHGI emission estimates were used for customer meter and upset 

emissions. Local distribution 2011 emissions were estimated to be 393 Gg methane (95% upper 

confidence limit = 854 Gg), compared to 1,329 and 640 Gg in the GHGI and GHGRP respectively. In 

contrast to the GHGI, study estimates were about 3 times lower for pipeline leaks and 13 times lower for 

M&R stations. The substantially lower emissions were attributed to pipeline replacement, leak surveys, 

and station upgrades and maintenance since the 1990s. 

Top-down Studies 

Many recent studies have used aircraft, tower, or satellite-based measurements to estimate total methane 

emissions in regions with O&G production and/or natural gas distribution (Petron et al. 2012, Townsend-

Small et al. 2012, Jeong et al. 2013, Karion et al. 2013, Miller et al. 2013, Kort et al. 2014, Petron et al. 

2014, Wecht et al. 2014, Peischl et al. 2015). Some of these studies have estimated the fraction of 

emissions from O&G sources using source apportionment approaches including stable isotope and 

hydrocarbon ratios, or by subtracting bottom-up estimates of other sources (Townsend-Small et al. 2012, 

Petron et al. 2014). There is large variability among basins in top-down estimates of methane emissions 

as a percentage of gas production. For example, aircraft mass balance studies have reported leak rates 

of 0.18 - 0.41% in the Marcellus, 1.0 - 2.1% in the Haynesville, 1.0 - 2.8% in the Fayetteville, 2.6 – 5.6% 

in the Denver-Julesburg, and 6.2 – 11.7% in the Uintah (Peischl et al. 2015, Petron et al. 2014, Karion et 

al. 2013).  

Top-down estimates of total and O&G methane emissions often have been higher than bottom-up 

estimates. Miller et al. (2013) analyzed methane observations with an atmospheric transport model and 

geostatistical inverse modeling to estimate U.S. emissions. Anthropogenic emission estimates were 1.5 

and 1.7 times higher than the GHGI and the Emissions Database for Global Atmospheric Research 

(EDGAR; JCR/PBL 2011), respectively; O&G emissions in the south-central U.S. were estimated to be 

2.3 – 7.5 times higher than EDGAR. A review of research studies found that top-down estimates typically 

exceed bottom-up estimates; the authors estimate U.S. methane emissions are 1.25 – 1.75 times higher 

than GHGI estimates (Brandt et al. 2014). The authors propose four hypotheses that may account for 

underestimation by O&G emission inventories: 1) bottom-up data are no longer representative of current 
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technologies and practices, 2) bottom-up datasets have small sample size and possible sampling bias, 3) 

skewed emission distributions result in sampled data with lower average emission rates than the 

population, and 4) inaccurate activity factors. 

In October 2013, a coordinated research campaign in the Barnett Shale used simultaneous top-down and 

bottom-up approaches to quantify methane emissions from the O&G supply chain (Harriss et al. 2015). 

Bottom-up data included direct component measurements of T&S stations (Johnson et al. 2015) and local 

distribution M&R stations (Lamb et al. 2015). Aircraft- and vehicle-based approaches were used to 

quantify site-level emissions at O&G well pads, compressor stations, processing plants, and landfills by 

analyzing downwind plumes with the mass balance approach (Lavoie et al. 2015, Nathan et al. 2015), 

Gaussian dispersion modeling (Lan et al. 2015,  Yacovitch et al. 2015), or mobile flux plane method 

(Rella et al. 2015). Regional methane emissions were estimated using the top-down, aircraft-based mass 

balance approach during 8 flights (Karion et al. 2015). Source apportionment data included carbon and 

hydrogen stable isotope and hydrocarbon ratios of canister air samples from different source types 

(Townsend-Small et al. 2015) and continuous ethane-to-methane ratios measured on the mass balance 

aircraft (Smith et al. 2015). Top-down estimates of total methane emissions were 76±13 Mg h
-1

 with 

60±11 Mg h
-1

 from fossil sources (Karion et al. 2015, Smith et al. 2015). Lyon et al. (2015) used data from 

the campaign and other sources to construct a spatially-resolved methane emission inventory; bottom-up 

estimates of total and O&G methane emissions were 72.3 (+10.1/-8.9) Mg h
-1

 and 46.2 (+8.2/-6.2) Mg h
-1

, 

respectively. This bottom-up estimate of O&G emissions was 1.5, 2.7, and 4.3 times higher than 

alternative estimates based on the GHGI, GHGRP, and EDGAR, respectively, primarily due to the 

inclusion of high-emission sites and more complete activity factors, particularly for gathering stations. 

Top-down and bottom-up estimates of the Barnett region natural gas supply chain leak rate (1.3 – 1.9% 

and 1.0 – 1.4%, respectively) are not significantly different. Zavala-Araiza et al. (2015) used well pad data 

from the campaign to introduce the concept of functional superemitters defined by emissions proportional 

to gas production. Functional superemitters comprised 15% of sites and contributed 77% of total 

production site emissions in the Barnett region.  

Remaining Uncertainties 
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Compared to the GHGI, bottom-up studies have reported similar emissions for production and T&S (Allen 

et al. 2015a, Zimmerle et al. 2015), higher emissions for gathering (Marchese et al. 2015), and lower 

emissions for processing and local distribution (Marchese et al. 2015, Lamb et al. 2015). A forthcoming 

study will integrate recent data sources to estimate the magnitude and uncertainty of U.S. natural gas 

supply chain emissions. There are several sources of remaining uncertainty that may affect these 

emission estimates. 

Positively skewed emission rate distributions are common to many types of O&G facilities and 

components. As shown in Figure 2, a relatively small number of high emission sites, sometimes referred 

to as superemitters, contribute a large fraction of emissions. Recent studies have used statistical methods 

to quantify the uncertainty associated with skewed distributions; for example, the upper confidence limit of 

U.S. local distribution emissions was over twice the central estimate mainly due to the majority of 

measured pipeline emissions coming from a very small number of leaks (Lamb et al. 2015). Additional 

research on the prevalence, magnitude, and causes of super-emitters may reduce the uncertainty 

associated with sampling skewed distributions.  

Activity factors for some equipment and facilities are poorly known. Allen et al. (2015a) reported that the 

average number of pneumatic controllers per well was 2.7 times higher than GHGI estimates. The 

number of gathering facilities is especially uncertain since these sites are subject to less reporting 

requirements. Marchese et al. (2015) improved estimates of U.S. gathering facility counts but their lower 

and upper bound estimates still vary by a factor of 1.4. More comprehensive reporting of activity factors is 

critical for reducing uncertainty in bottom-up emission estimates. 

Several emission sources that were not measured by recent studies continue to have uncertainty 

associated with their previous emission estimates. Production sector storage tanks and compressors 

were not measured fully by Allen et al. (2013). Other studies have indicated that high emission well pads 

and gathering stations are often associated with tank venting (Brantley et al. 2014, Mitchell et al. 2015.), 

which supports the need for additional data on tank emissions. Gathering pipelines are not known to have 

any published emissions data. The GHGI uses data from Harrison et al. (1996) that was based on local 

distribution main leaks to estimate gathering pipeline emissions; Marchese et al. (2015) used the GHGI 
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data in their updated estimate of gathering sector emissions. Gathering pipelines, which are less 

regulated than either transmission or local distribution pipelines, are potentially a large emission source 

that should be a focus of future research.  

Emissions may also be associated with natural gas end use past the customer meter, such as leaks at 

power plants and incomplete combustion by residential gas furnaces. A top-down study estimated Boston 

region emissions are 2.7±0.6% of gas throughput compared to a bottom-up estimate of 1.1% (McKain et 

al. 2014); the authors hypothesize that the gap may be partially due to end use emissions. A forthcoming 

study will report emissions data from natural gas vehicles and fueling stations (Clark et al., in review). 

Source apportionment methods such as stable isotope ratios cannot distinguish methane emissions from 

the natural gas supply chain and other fossil sources. Emissions from abandoned O&G wells and 

geologic seepage may be responsible for some of the gap between top-down and bottom-up estimates 

(Brandt et al. 2014). There are approximately 3 million abandoned and inactive wells in the U.S., but their 

emissions currently are not included in the GHGI. A recent study of 19 abandoned wells in Pennsylvania 

reported a highly skewed distribution with an average emission rate of 11 g methane h
-1

 (Kang et al. 

2014). Due to the large number of abandoned wells, emission rates of this magnitude could result in 

substantial emissions, but there is high uncertainty because of the small sample size and limited 

geographic scope of the study. A recent study report emissions from over 100 abandoned wells in four 

states (Townsend-Small et al. 2016). Geologic microseepage in hydrocarbon-prone basins is estimated to 

emit 10 Tg methane yr
-1

 globally (Etiope & Klusman 2010). Seepage likely contributes a portion of top-

down estimates of fossil methane emissions, but the high variability and lack of data from most regions 

precludes a reasonable estimate without further research. 

Summary 

Natural gas has climate benefits compared to more carbon-intensive fossil fuels, but these benefits may 

be reduced or delayed by methane emissions across the supply chain. U.S. EPA’s 2015 GHGI estimate 

of U.S. natural gas system and petroleum system emissions is 7.3 Tg methane, equivalent to 1.4% of 

gross gas production. Much of the underlying data of the U.S. EPA GHGI are based on a 1990s study 
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(Harrison et al. 1996) and therefore may not be representative of technological and operational changes 

associated with unconventional O&G development. Numerous recent studies have used top-down and 

bottom-up approaches to quantify O&G methane emissions. Bottom-up studies have estimated that 

supply chain emissions are roughly in line with GHGI estimates, but with higher or lower emissions from 

some equipment and sectors. Several top-down studies have reported higher emissions than GHGI 

estimates, which suggests bottom-up estimates may have remaining uncertainty, particularly from poorly 

characterized sources, such as storage tanks and gathering pipelines. 

U.S. natural gas supply chain methane emissions are likely of a magnitude such that coal-to-gas 

switching for electricity generation will result in immediate climate benefits, although regional variability in 

emission rates may cause gas from some basins to be worse for the climate in the short-term. However, 

methane emissions may be high enough that there is short-term climate damage from other technology 

conversions, such as diesel-to-gas for heavy-duty vehicles, which require lower supply chain loss rates 

(Camuzeaux et al. 2015). Regardless of the current emission rate, the climate benefits of natural gas 

relative to more carbon-intensive fossil fuels can be increased by reducing methane emissions. 

Fortunately, emissions can be effectively controlled with technologies such as reduced emission 

completions (Allen et al. 2013). U.S. oil and gas industry methane emissions can be reduced by 40% at a 

cost of less than $0.01 per thousand cubic feet of produced natural gas (ICF 2014). Several studies have 

indicated that the majority of emissions come from a small number of sources, many of which are 

malfunctioning or have otherwise avoidable emissions, but the identity of these sources can be 

unpredictable. Therefore, comprehensive and frequent leak detection and repair programs to identify and 

mitigate these sources are critical for reducing emissions.  
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Figure 1. The short-term climate impacts of natural gas supply chain methane emissions can delay the 
climate benefits of switching from more carbon-intensive fossil fuels to natural gas. The years until net 
climate benefits are achieved for three technology conversions (coal-to-gas for electricity, gasoline-to-gas 
for light-duty vehicles, diesel-to-gas for heavy-duty vehicles) is shown as a function of supply chain 
natural gas leak rate. For each technology, leak rates at or below the intercept ensure immediate climate 
benefits (e.g., 0.8% for heavy-duty natural gas vehicles). 
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Figure 2. Emission rate distributions from four source types are plotted as the percent of sites in 

ascending order of emission rate versus the percent of total emissions from sites at or below that rank. 

For example, the lowest emitting 50% of well pads contribute 1% of total emissions from measured sites, 

while the highest emitting 10% contribute 69% of total emissions. Data are from four recent studies (Rella 

et al. 2015; Subramanian et al. 2015; Mitchell et al. 2015; Lamb et al. 2015). 
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CHAPTER 2  

Constructing a spatially resolved methane emission inventory for the Barnett Shale region 
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Abstract 

Methane emissions from the oil and gas industry (O&G) and other sources in the Barnett Shale region 

were estimated by constructing a spatially resolved emission inventory. Eighteen source categories were 

estimated using multiple datasets, including new empirical measurements at regional O&G sites and a 

national study of gathering and processing facilities. Spatially-referenced activity data were compiled from 

federal and state databases and combined with O&G facility emission factors calculated using Monte 

Carlo simulations that account for high emission sites representing the very upper portion, or fat-tail, in 

the observed emissions distributions. Total methane emissions in the 25-county Barnett Shale region in 

October 2013 were estimated to be 72,300 (63,400—82,400) kg CH4 hr
-1

. O&G emissions
 
were estimated 

to be 46,200 (40,000—54,100) kg CH4 hr
-1

 with 19% of emissions from fat-tail sites representing less than 

2% of sites. Our estimate of O&G emissions in the Barnett Shale region was higher than alternative 

inventories based on the United States Environmental Protection Agency (EPA) Greenhouse Gas 

Inventory, EPA Greenhouse Gas Reporting Program, and Emissions Database for Global Atmospheric 

Research by factors of 1.5, 2.7, and 4.3, respectively. Gathering compressor stations, which accounted 

for 40% of O&G emissions in our inventory, had the largest difference from emission estimates based on 

EPA data sources. Our inventory’s higher O&G emission estimate was due primarily to its more 

comprehensive activity factors and inclusion of emissions from fat-tail sites. 

 

 



 

26 
 

Introduction 

Fossil fuel substitutions resulting from the recent growth of natural gas production have the potential to 

immediately reduce CO2 emissions and long-term climate impacts, but emissions of methane from the 

natural gas supply chain may also increase short-term climate impacts.
1
 Several recent studies have 

used different methodologies to estimate the magnitude of oil and gas industry (O&G) methane 

emissions.
2–6

 Top-down approaches, which quantify emissions from a region using atmospheric 

measurements of well mixed air, have inferred higher O&G methane emissions than bottom-up 

approaches, which estimate regional emissions by constructing inventories based on activity factors and 

emission factors.
7,8

 Reported differences may result in part from top-down studies incorrectly attributing 

emissions to O&G sources or sampling during times when short-term events are occurring at a different 

rate than predicted by inventories. Additionally, bottom-up studies may underestimate emissions due to 

incomplete activity factors or emission factors based on measurements that exclude the fat-tail of a 

skewed emission rate distribution — relatively rare sources that contribute a large fraction of total 

emissions. Coordinated top-down and bottom-up measurements are needed to reconcile the two 

methods and more accurately estimate methane emissions.
8,9

 Development of a detailed emission 

inventory composed of both more complete activity factors and more representative emission factors is a 

critical step in top-down/bottom-up reconciliation. 

 

The Barnett Shale of north-central Texas was the first shale basin to be developed for natural gas with a 

combination of horizontal drilling and hydraulic fracturing. Development peaked in 2008 with over 4,000 

drilling permits issued, then declined to less than 1,000 issued permits 2013.
10

 Barnett Shale production 

peaked at 5.7 billion cubic feet (Bcf) natural gas day
-1

 in 2012 and 28 thousand barrels (Mbbl) day
-1

 

hydrocarbon liquids (oil and natural gas condensate) in 2011
10

, but the basin is expected to remain a 

major contributor to U.S. natural gas production through 2030
11

. A mature field is ideal for investigating 

long-term methane emissions from O&G sites in the production phase but provides fewer opportunities to 

observe emission events from well development activities, which can be challenging to characterize due 

to their short duration and spatiotemporal heterogeneity
12

.  
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The Barnett Shale region contains most of the Dallas-Fort Worth-Arlington Metropolitan Statistical Area, 

which has a population over 6.5 million and includes many urban methane sources such as landfills. The 

region also includes extensive rural land use and over one million cattle. O&G air pollution sources in the 

region have been extensively studied; for example, a criteria and hazardous air pollutant emission 

inventory was developed by the Texas Commission on Environmental Quality (TCEQ)
13

 and field 

measurements of pollutant emissions, including methane, were commissioned by the City of Fort Worth
14

.  

 

During the two week period of October 16—30, 2013, ten research teams performed multi-scale 

measurements in the Barnett Shale region to quantify methane emissions from O&G and other sources 

including landfills (the Barnett Coordinated Campaign). This paper uses bottom-up measurements from 

the Barnett Coordinated Campaign and other available data to construct a spatially resolved methane 

emission inventory (4 km x 4 km grid cells) for the 25-county Barnett Shale region defined by the Texas 

Railroad Commission
10

. Natural gas production site emission estimates were characterized in Zavala-

Araiza et al.
15

 Our bottom-up emission estimates were compared to alternative emission inventories we 

developed from commonly cited sources:  the United States Environmental Protection Agency (EPA) 

Greenhouse Gas Reporting Program (GHGRP)
16

, EPA United States Greenhouse Gas Inventory 

(GHGI)
17

, and the Emissions Database for Global Atmospheric Research v4.2 (EDGAR)
18

. These 

inventories have been shown to produce lower methane emissions rates than top-down studies regionally 

and nationally
4,7,8,19

. The top-down estimates made as part of the Barnett Coordinated Campaign and an 

additional two week period in March 2013 included the core production area of the Barnett Shale, but did 

not include all of the 25-county area of this inventory.
20,21

 The gridded inventory constructed for this paper 

can be used to estimate emissions in other spatial domains in the Barnett region including areas 

measured by top-down methods. 

 

Methods and Data 

A spatially resolved methane emissions inventory for the 25-county Barnett Shale region was constructed 

using a combination of bottom-up approaches to estimate emissions from O&G and other sources. 

Emissions from O&G facilities (production sites, compressor stations, and processing plants) were 
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estimated with emission factors calculated using Monte Carlo simulations, which account for the 

uncertainty associated with the variability of measured site emission rates
22

. Other emission sources were 

estimated using data from the GHGRP, GHGI, and published literature. Activity factors were spatially 

referenced to estimate emissions within grid cells, similar to the approach used in Jeong et al.
23

 The 4 km 

x 4 km grid cells conform to the Comprehensive Air Quality Model Texas domain with extensions.
24

 

Emissions are grouped into three classes:  O&G (active well to customer meter), other thermogenic (fossil 

sources not included in GHGI natural gas and petroleum systems), and biogenic. Emissions are reported 

as central estimates with 95
th
 percent confidence intervals; total and category subtotal uncertainties are 

estimated by quadrature summation of the uncertainties in each source category.  

 

Activity factors 

The number and location of O&G and other methane-emitting facilities were compiled from multiple state 

and federal databases. Facilities with annual greenhouse gas emissions of ≥25,000 metric tons carbon 

dioxide equivalents (CO2e) are required to submit annual emissions to the GHGRP.
16

 These sites were 

classified as gas transmission, gas processing, gas gathering, landfills, or other industrial sites based on 

the GHGRP subpart under which they report. Additional O&G sources were identified using two datasets 

from the Texas Commission on Environmental Quality (TCEQ):  the 2009 Barnett Shale Area Special 

Inventory (BSASI)
13

 and the air permit database
25

. These sites were classified based on equipment type 

and facility name. Compressor stations were classified as gathering (upstream of processing) or 

transmission (downstream of processing) based on their proximity to gathering and transmission 

pipelines. O&G well locations were obtained from DI Desktop
26

 and clustered into production sites as 

described in Zavala-Araiza et al.
15

 Google Earth imagery was used to quality control reported spatial 

coordinates, manually locate sites without reported coordinates, and remove duplicate and 

decommissioned sites. The Supporting Information (SI) includes additional details on the compilation and 

classification of activity factors (section SI1), a map (Figure SI1) and spreadsheet with facility locations. 

 

Monte Carlo simulations of O&G emissions 
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For each O&G facility type, emission factors with a 95
th
 percent confidence interval were calculated with 

Monte Carlo simulations that drew from facility-specific emission rate distributions assembled from 

measurements made during the Barnett Coordinated Campaign
27–28

 and a recent national study on 

methane emissions from gathering and processing facilities
31

. Two emission rate distributions were used 

for each Monte Carlo simulation. The first emission rate distribution, defined as the “sampled distribution”, 

was constructed from data collected by unbiased sampling of the Barnett region or the national 

population. Due to the positively skewed emission rate distribution of many O&G facility types
3,28,31

, the 

mean emission rate of a random sample may underestimate the average emission rate of the entire 

population if the sample size is insufficient to fully capture the highest end, or fat-tail, of the distribution. 

Figure 1 compares the sampled distributions by facility type to emission rates observed during the Barnett 

Coordinated Campaign using sampling methods biased towards higher emission sites. 
27,29,30

 These other 

Barnett datasets include measurements exceeding the maximum of the sampled distributions, which 

indicates unbiased sampling did not fully capture the fat-tail. To account for the effect of these high-

emitting sites, we constructed a second emission rate distribution, defined as the “fat-tail site distribution”, 

from data representing sites with emission rates exceeding the maximum value in the unbiased, sampled 

distribution of each facility type. A two-step Monte Carlo simulation was performed with the first step 

drawing from the sampled distribution and the second step drawing from the fat-tail site distribution. For 

each facility type, the probability of drawing from the fat-tail distribution was a best estimate based on the 

number of observed fat-tail sites compared to the total sites in the region. We ran sensitivity tests using a 

range of probabilities (0—5%) to test the effect of this assumption. Each Monte Carlo simulation included 

10,000 iterations of random selection with replacement from one of the two emission rate distributions for 

every facility in the 25-county region. The 95
th
 percent confidence interval of regional emission estimates 

was determined by the 2.5
th
 percentile and 97.5

th
 percentile of the 10,000 iterations. Facility-specific 

emission factors were calculated for each facility type by dividing the regional emission estimates by the 

number of facilities in the region (Figure SI2 illustrates the method). Spatially resolved O&G facility 

emissions were estimated by applying the emission factors to the spatially-referenced activity data. 

 Compressor station emissions were estimated with two-phase Monte Carlo simulations drawing from site 

emission rate distributions constructed using data from a national study of gathering and processing 
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facilities(Mitchell et al.)
30

 and the Barnett Coordinated Campaign
27,29,30

. Gathering stations comprised over 

90% of the compressor stations in the region. Transmission stations and storage facilities were treated 

identically to gathering compressor stations since they have similar equipment and installed engine 

horsepower. The sampled distribution was constructed using a national dataset of 100 gathering stations 

with compression or a combination of compression and dehydration equipment with site emissions 

ranging from of 0 to 700 kg CH4 hr
-1

 and averaging 55 kg CH4 hr
-1

.
30

 The fat-tail site distribution included 

four gathering sites measured during the campaign ranging from 1,360 to 2,120 kg CH4 hr
-1

.
27,29,30

 The 

probability to draw from the fat-tail site distribution was set at 1%, which is equivalent to 2 to 3 

compressor stations in the Barnett region with fat-tail emission rates at any moment in time. This 

probability was chosen based on the observation of four fat-tail sites over a 15-day period out of a 

population of 276 facilities. Multiple simulations were run with the probability of selecting from the fat-tail 

site distribution ranging from 0 to 5% to test the sensitivity of the outcome to the 1% assumption. 

 

Processing plant emissions were estimated following a similar approach as compressor stations. Monte 

Carlo simulations drew from two sets of site emission rate distributions constructed using data from 

Mitchell et al.
31

 for the unbiased sample distribution and the Barnett Coordinated Campaign
29,30

 for the fat-

tail site distribution. Because of the wide variation in processing plant size and complexity, processing 

plants were subdivided into two classes:   large if they reported to the GHGRP or small if they did not. 

The average installed horsepower of Barnett plants (large = 21,000 HP, small = 8,000 HP) supports this 

division. The sampled distribution for large processing plants was constructed from a national dataset of 

16 processing plants with site emissions ranging from 4 to 600 kg CH4 hr
-1

 and averaging 170 kg CH4 hr
-

1
.
31

 The sampled distribution for small processing plants was constructed from a national dataset of nine 

gathering stations containing a combination of compression, dehydration, and treatment (C/D/T) 

equipment with site emissions ranging from 7 to 240 kg CH4 hr
-1

 and averaging 78 kg CH4 hr
-1

.
31

 Although 

C/D/T sites were not defined as processing plants by Mitchell et al., they have similarities to small plants 

including gas treatment and comparable installed horsepower (5000 HP).
31

 Five processing plants 

measured during the campaign were used in the fat-tail distributions .
29,30

 For large plants, the fat-tail 

distribution used two measurements exceeding the sampled distribution (750 and 1,720 kg CH4 hr
-1

). For 
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small plants, the fat-tail distribution used three measurements exceeding the sampled distribution (320, 

390, and 490 kg CH4 hr
-1

). The two higher values in the large plant fat-tail distribution were not used for 

small plants because they would require unreasonably high leak rates for these smaller throughput 

facilities. The probability of selecting from the fat-tail site distributions was set at 2%, which is equivalent 

to a single processing plant in the region with a fat-tail emission rate at any one moment. Multiple 

simulations were run with the probability of selecting from the fat-tail site distributions ranging from 0 to 

5% to test the sensitivity of the outcome to the 2% assumption. 

 

Production site emissions were estimated using a more complex approach that defined fat-tail sites based 

on proportional loss rates (methane emitted relative to methane produced). The method is briefly 

described below with additional details in the SI (section S2); the full method and results are found in 

Zavala-Araiza et al.
15

 Activity factors were based on estimated O&G production site counts. Emission 

factors were derived with Monte Carlo simulations drawing from site emission rate distributions 

constructed using data from 226 sites measured during the Barnett Coordinated Campaign.
27–29

 Activity 

and measurement data were divided into cohorts based on gas production and production-normalized 

emissions. As described in Zavala-Araiza et al.
15

, the sites with the highest proportional loss rates were 

defined as γ-sites; a fat-tail probability of 0.25% for γ-sites was chosen and a sensitivity analysis was 

performed to test the effect of differing probabilities on estimated emissions. Zavala-Araiza et al.
15

 reports 

emissions only for gas-producing sites. For this paper, gas-producing site emissions were divided into 

gas sites and oil sites based on the well type reported in DI Desktop
26

.  In addition, emissions from oil 

sites with no gas production were estimated using an emission factor of 5.14 x 10
-3

 kg CH4 hr
-1

 well
-1

 

based on the Petroleum Systems stripper well emission factor in the GHGI.
17

  

 

Other O&G sources 

Production site emissions estimated with the Monte Carlo simulations only included emissions during the 

operation phase. Additional emissions can occur episodically during drilling, completion flowback, or 

maintenance activities. Completion flowback emissions, which occur when a well is vented after hydraulic 

fracturing to prepare for routine production, were estimated for 73 individual well completions that 
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occurred during the Barnett Coordinated Campaign based on well locations and completion start dates 

from DI Desktop
26

. In summary, emissions were estimated based on initial gas production with an 

assumption that gas wells, but not oil wells, controlled emissions due to federal regulations
32

. The 

average of the daily completion emission estimates during the campaign was used as the central 

estimate and the minimum and maximum daily estimates were used as the lower and upper bound 

estimates. The detailed methods are described in SI Section SI3. 

 

Gathering and transmission pipeline emissions were estimated from pipeline mileage and per mile 

emission factors. GIS shapefiles of gathering and transmission pipelines from DI Desktop
26

 were joined 

with the grid to determine the miles of transmission and gathering pipelines in each grid cell. Emissions 

were estimated using the GHGI emission factors from the production and transmission & storage 

sectors.
17

 Gathering pipelines used an emission factor of 4.7 x 10
-2

 kg CH4 hr
-1

 mile
-1

 based on 

Midcontinent production sector emission factors for pipeline leaks, pipeline blowdowns, and mishaps. 

Transmission pipelines used an emission factor of 7.1 x 10
-2

 kg CH4 hr
-1

 mile
-1 

based on transmission and 

storage sector emission factors for pipeline leaks and pipeline venting. Uncertainty was based on EPA’s 

uncertainty estimate (+30%/-19%) for GHGI Natural Gas Systems.
17

 

 

Natural gas distribution emissions were estimated using data from a recent national study of methane 

emissions from local distribution pipelines and metering and regulating (M&R) stations (Lamb et al.). 
33

 In 

summary, activity factors were based on data reported by Atmos Energy, which is the utility serving the 

vast majority of customers in the Barnett region. Emissions from sources not measured in Lamb et al.
33

 

were estimated using GHGI national emissions
17

 prorated by activity factors. The detailed methods are 

described in SI Section SI4. The upper confidence limit uncertainty (+71%) was based on the emission 

factor uncertainties of Lamb et al.
33

; for the lower confidence limit, EPA’s uncertainty estimate (-19%) for 

GHGI Natural Gas Systems
17

 was used since Lamb et al. only reports upper confidence limits.  

 

Other thermogenic sources 
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Abandoned well emissions were estimated using well counts and a per well emission factor. The 

locations of inactive and plugged and abandoned wells in the Barnett region were obtained from DI 

Desktop.
26

 For the subset of wells without coordinates, activity data were aggregated by county. The 

emission factor and uncertainty is based on the observed average emission rate of nine abandoned wells 

in the Marcellus Shale, 1.1 x 10
-2

 (+100%/-50%) kg CH4 hr
-1

 well
-1

.
34

  

 

Emissions from other industrial sources reporting to the GHGRP were based on reported 2013 

emissions.
16

 Annual emissions were converted to kg CH4 hr
-1

 by assuming a constant emission rate. 

Uncertainty for industrial source emissions was assumed to be +138%/-58%, which is the uncertainty of 

the combustion emission factor used to estimate GHGRP emissions.
35

 

 

Residential and commercial end use emissions from leaks past the meter and incomplete combustion of 

natural gas by heaters and appliances were estimated using October 2013 gas deliveries to residential 

and commercial customers.  Barnett gas consumption was estimated by prorating statewide monthly gas 

deliveries
36

 by 2010 population
37

.
 
For the central estimate, it was assumed that 0.16% of delivered gas 

was emitted, which is based on measurements of five California residences.
38

  For the lower bound, a 

leak rate of 0.028% was based on the GHGI emission factor for residential and commercial stationary 

combustion.
17

 For the upper bound, a leak rate of 1.6% was based on a Boston study that reported 2.7% 

of delivered gas was emitted – a state emission inventory estimated emissions from other sources in the 

Boston region were equivalent to 1.1% of delivered gas, so this leak rate assumes that the remainder of 

emissions in that study were due to residential and commercial end use.
 39

 

 

Methane emissions from gasoline and diesel onroad vehicle were based on county-level annual 

emissions reported in the 2011 National Emissions Inventory.
40

 These emissions were estimated by the 

EPA using the MOVES2010b model.
41

 No data were found on the uncertainty of these emission 

estimates so uncertainty was conservatively excluded. 
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Natural gas vehicle emissions were estimated at the county-level based on the volume of natural gas 

delivered as vehicle fuel in October 2013 and assumed leak rates. The state-wide fuel delivery (210 

MMscf)
36

 was prorated by county-level vehicle miles traveled.
42

 Emissions were assumed to equal 1% of 

fuel delivered with an uncertainty bound of 0.5—5%. This assumption is highly uncertain but has minor 

impact on the overall inventory due to the low usage of natural gas vehicles. 

 

Geologic seepage emissions were estimated using a per area emission factor of 0.0184 kg CH4 hr
-1

 km
-2

, 

which is based on a global average net flux of 4.42 mg CH4 day
-1

 m
-2

 for microseepage and an 

assumption of 90% methanotrophic consumption.
43

 This source category is highly uncertain but no data 

were found to quantify the uncertainty; therefore, uncertainty was conservatively excluded. 

 

Biogenic sources 

Emissions from landfills reporting to the GHGRP were based on reported 2013 emissions.
16

 Annual 

emissions were converted to kg CH4 hr
-1

 by assuming a constant emission rate. We identified 712 

additional landfills by querying TCEQ municipal solid waste permit data.
44

 Based on the EPA estimate 

that 82% of landfill emissions are from facilities reporting to the GHGRP
45

, emissions from the non-

reporting landfills were estimated by allocating 18% of GHGRP landfill emissions evenly among the 712 

facilities. Uncertainty was based on EPA’s uncertainty estimate (+49%/-56%) for GHGI landfills.
17

 This 

uncertainty does not account for potential temporal variability in landfill emissions due to factors such as 

changing atmospheric pressure. 

 

Livestock emissions from cattle manure management and enteric fermentation were estimated using 

activity data from the United States Department of Agriculture (USDA) and TCEQ and emission factors 

from the GHGI. Confined animal feeding operation (CAFO) locations and head counts of beef cattle, 

milking dairy cattle, and non-milking dairy cattle were obtained from the TCEQ water quality general 

permit database.
46

 County-level 2013 head counts of beef cattle, dairy cattle, and unspecified cattle were 

obtained from the USDA National Agricultural Statistics Service database.
47

 Unspecified cattle were 

assumed to be beef cattle. Dairy and beef cattle populations were further classified into detailed animal 
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types by assuming the same proportion as the Texas 2012 cattle population used in the GHGI.
17

 USDA 

county-level head counts were adjusted downward to account for the CAFO population in each county, 

which were treated separately as point sources. Enteric fermentation and manure management emission 

factors for beef cattle and dairy cattle animal types were derived from the GHGI Texas activity data and 

emissions.
17

 Livestock methane emissions were estimated by multiplying the animal type head counts 

and the GHGI animal type emission factors for enteric fermentation and manure management. Livestock 

emission uncertainty was based on the Intergovernmental Panel on Climate Change Tier 2 methodology 

uncertainty (±20%)
48

, which is similar to the approach used in the GHGI
17

. 

 

Domestic wastewater treatment emissions were estimated from GHGI 2013 national emissions.
17

 

Population data from the 2010 US Census were used to prorate national emissions.
37

 Population was 

spatially allocated  based on census tract population data.
49

 Uncertainty was based on EPA’s uncertainty 

estimate (+2%/-39%) for GHGI Wastewater Treatment.
17

 

 

Other potential methane sources in the region (e.g., reservoirs, wetlands, abandoned coal mines) were 

assumed to have negligible emissions. 

 

Spatially resolved emission inventory 

Emissions data included sources with three levels of spatial resolution. GHGRP facilities, O&G facilities, 

landfills, and CAFOs were referenced to a specific latitude/longitude. Population-based and area-based 

emission estimates of natural gas distribution, wastewater treatment, residential and commercial end use, 

and geologic seepage were attributed to 4 km x 4 km grid cells based on the fractional area and 

population of each cell. Vehicle and a subset of abandoned well and livestock emissions were estimated 

at the county level with emissions spatially distributed across the grid proportional to the fraction of county 

land area in each cell. In addition to generating a gridded emission inventory by source category, 

emissions were estimated for the 25-county Barnett Shale region based on the spatial intersection of the 

grid cells and county boundaries.  
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Alternative emission inventory estimates 

Alternative O&G emission inventories were constructed using data from GHGRP, GHGI, and EDGAR. 

Emission data were scaled to account for the different spatial domains as described briefly below. The 

GHGRP inventory was based solely on 2013 reported emissions from regional O&G point sources and 

onshore production basins, which only includes facilities meeting the 25,000 metric ton CO2e reporting 

threshold.
16

 The GHGI inventory was based on 2013 national emissions from Natural Gas Systems and 

Petroleum Systems
17

 with individual source categories prorated by the ratio of Barnett region and national 

parameters such as gas production and transmission pipeline miles. The EDGAR inventory was based on 

EDGAR v4.2 2010 emissions from the gas production/distribution and oil production/refineries sectors.
19

 

Emissions were converted from 0.1° x 0.1° cells to the 25-county region using the spatial intersection of 

the cells and county boundaries. EDGAR 2010 emissions were extrapolated to 2013 using the 2013/2010 

ratio of Barnett region gas and oil production from DI Desktop
26

. A detailed description of the methods 

used to construct each methane emission inventory for the 25-county Barnett Shale region in October 

2013 is included in SI Section SI5. 

 

Results and Discussion 

Barnett region emission estimates 

Estimated total emissions in the 25-county Barnett Shale region for October 2013 are 72,300 kg CH4 hr
-1

 

(95
th
 percent confidence interval = 63,400 – 82,400 kg CH4 hr

-1
). O&G sources are estimated to emit 

46,200 (40,000 – 54,100) kg CH4 hr
-1

, or 64% (52 –78%) of total emissions (Table 1). Thermogenic 

sources, which include additional emissions from abandoned well, natural gas end use, and geologic 

seepage, are 48,400 (42,100 – 56,400) kg CH4 hr
-1

, or 67% (55 – 81%) of total emissions. Gathering 

compressor stations and active well pads are the largest emission sources, contributing 26% and 25% of 

total emissions, respectively. Livestock and landfills are the largest biogenic emission sources, 

contributing about 16% each. A core region of eight counties responsible for 94% of gas production and 

43% of oil production contributes 67%, 77%, and 75% of the total, O&G, and thermogenic emissions, 

respectively, in the Barnett region (Figure 2).  
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Fat-tail sites contribute 19% (14 – 26%) of O&G emissions and 12% (9 – 15%) of total emissions in our 

reported inventory estimate, which assumes fat-tail emission rates at 0.25% of production sites
15

, 2% of 

processing plants, and 1% of compressor stations. At these probabilities, there would be approximately 

50 production sites, 1 processing plant, and 2 to 3 compressor station with fat-tail emission rates 

somewhere in the Barnett region at any moment in time. The research teams were able to identify and 

measure these sites despite their limited numbers in a large region by utilizing specific sampling 

strategies (e.g., aircraft-based surveys targeting sites with high methane enhancements
30

). O&G site 

emission factors are dependent on the selected fat-tail site probability (Figure SI3). If the probability of fat-

tail sites were reduced by half, O&G emissions would decrease by 8%, while at double the probability, 

O&G emissions would increase by 16%. Additional sensitivity analyses for production site emissions are 

reported in Zavala-Araiza et al.
15

 

 

Fat-tail sites do not necessarily have persistently high emissions, but may represent short-term emission 

events caused by maintenance activities or malfunctions. For production sites, fat-tail γ-sites included 

emission rates up to 287 kg CH4 hr
-1

, approximately six times higher than the maximum emission rate 

observed using unbiased sampling.
27–29

 An effort to identify high emitting sites in the Marcellus Shale 

region observed average emissions of 850 kg CH4 hr
-1

 at seven multi-well sites in the drilling phase, 

which the authors attributed to the conveyance of methane from overlying coal formations through the 

wellbore.
6
 The high emission rates observed during the Barnett Coordinated Campaign do not appear to 

be related to drilling or hydraulic fracturing due to the infrequent occurrence of these activities during the 

campaign, but they may be caused by major malfunctions at production sites (e.g., stuck separator dump 

valve).
15

 Another possibility is that measurements occurred during maintenance events such as venting to 

unload liquids accumulated in the wellbore. The median emission rate of unloading event from 107 wells 

in a nationwide study was equivalent to 257 kg CH4 hr
-1

, similar to our fat-tail production site emission 

rates.
50

 Based on the low number of unloading events reported to the GHGRP in the Barnett region
16

, 

emissions associated with liquids unloading are unlikely to be a major emission source in this case, but 

may be substantial in regions with frequent unloading events such as the San Juan Basin. 
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For compressor stations and processing plants, the maximum fat-tail emission rates were 2,040 and 

1,720 kg CH4 hr
-1

, respectively. These emission rates are higher than the maximum annual average 2013 

facility emissions reported to the GHGRP for transmission (520 kg CH4 hr
-1

) and processing (1,050 kg 

CH4 hr
-1

).
16

 However, the GHGRP reports almost 2,400 unique blowdown (emptying or depressurizing a 

gas-filled vessel) events nationally exceeding 1,000 kg CH4 total emissions in 2013, including over 800 

events exceeding 10,000 kg CH4.
16

 Since the typical duration of these events range from minutes to 

hours, short-term blowdown events could cause fat-tail magnitude emission rates observed at 

compressor stations and processing plants during the Barnett Coordinated Campaign, but the probability 

of their observation is likely low. Additionally, GHGRP protocols may not capture high emissions from 

some malfunctions. For example, a recent national study of 45 transmission and storage compressor 

stations found two sites with emissions up to 1,000 kg hr
-1

 likely caused by leaking isolation valves; the 

GHGRP-compliant on-site surveys reported emissions 2-3 orders of magnitude lower.
51  

 

 

For our study, we define fat-tail sites as those with emission rates above the sampled distribution, but this 

does not indicate that they are the only high emission sites. The sampled distributions are positively 

skewed and include sites with high emission rates, some of which had substantial tank venting due to 

equipment issues.
31

 Consequently, there is a larger population of sites than the fat-tail sites in our 

analysis that contribute a large fraction of regional emissions and have avoidable, excess emissions.
15

 

 

Barnett Shale O&G wells produced 5.6 Bcf day
-1

 natural gas and 54.5 Mbl oil and condensate day
-1

 in 

October 2013.
26

 Assuming a constant production rate and weighted average gas composition of 88.5% 

methane by volume, our O&G emission estimate is equivalent to 1.2% (1.0  – 1.4%) of gas production.  If 

oil production site emissions (4% of O&G total) are excluded, then the natural gas leak rate decreases to 

1.1% (1.0% – 1.3%). Allocating emissions between natural gas and hydrocarbon liquids on an energy 

basis according to the methods of Zavala-Araiza et al.
52

 attributes 95% of emissions to natural gas, 

resulting in a similar adjusted leak rate. 

 

Comparing inventories 
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The O&G emission inventory reported here for the Barnett region is a factor of 1.5 (1.3 – 1.7) greater than 

the emissions estimated from GHGI 2013 national emissions (46,200 versus 31,000 kg CH4 hr
-1

; Table 3). 

This difference is similar to the ratio of ~1.5 between top-down and GHGI estimates of total US methane 

emissions reported in Miller et al.
7
 and Brandt et al.

8
 Comparing the inventory reported here to an 

estimate based on GHGRP 2013 emissions (17,000 kg CH4 hr
-1

) yields a factor of 2.7 (2.4 – 3.2) higher 

emissions from our inventory, comparable to the ratio of 2.5 between aircraft-based mass balance and 

GHGRP estimates of methane emissions from O&G activities in the Denver-Julesburg basin.
4
 Comparing 

our inventory to an estimate derived from EDGAR 2010 emissions (10,800 kg CH4 hr
-1

) yields a factor of 

4.3 (3.7 – 5.0) higher emissions from our inventory, similar to the ratio of 4.9±2.6 between O&G emission 

estimates for the south-central US based on atmospheric data versus EDGAR v4.2.
7
  

 

Production sector emissions based on GHGI and GHGRP emissions are 31% and 21% lower than our 

estimate, respectively. Comparing the underlying activity factors and emission factors allows for a more 

detailed assessment of the inventories (Table 3). GHGI and GHGRP site emission factors are not directly 

reported in these data sources, but derived by dividing total emissions by the number of sites. For the 

production sector, our activity and emission factors are converted from a per site basis to a per well basis 

using a factor of 1.4 wells site
-1

 based on the 25-county average. Compared to our estimates for 

production sites excluding completions, the GHGI activity and emission factors are 11% and 17% lower, 

respectively. The GHGI emission factor may be lower because the data underlying the GHGI, which is 

from a 1990s study
53

, is not representative of current operational practices. The GHGRP has a 59% lower 

activity factor and 94% higher emission factor than our estimate. The GHGRP emissions and activity 

factor are expected to be lower since the data only include facilities meeting the 25,000 metric tons CO2e 

reporting threshold. The higher GHGRP emission factor could be due to either reporting facility wells 

having higher emissions than the regional average or an overestimation of reported emissions caused by 

GHGRP methods. Our well pad emission factor (0.87 kg hr
-1

) is between the geometric means of 

Midcontinent region (0.54 kg hr
-1

) and Barnett well pads (1.19 kg hr
-1

) from two recent studies
2,3

, 

supporting the consistency of our estimates.
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The largest difference among this work and other inventories is for the gathering sector; the GHGI and 

GHGRP emissions estimates are a factor of 7.3 and 4,900 lower than our estimate, respectively. Since 

the GHGI groups gathering within the production sector, we disaggregated emissions by assuming all 

compressor and pipeline emissions are associated with the gathering sector. The GHGI activity factor for 

gathering stations, which only includes large stations, greatly underestimates the number of facilities in 

the Barnett region.  An alternative GHGI station activity factor  can be estimated from the GHGI 

production sector compressor engine activity factor by assuming 3.1 compressors per station based on 

the average from Mitchell et al.
31

 This alternative activity factor is three times higher than our facility 

count, which is probably because the study used to develop the GHGI compressor engine activity factors 

grouped together production site wellhead compressors and gathering station compressors
53

. Using this 

high GHGI activity factor, the GHGI emission factor is still 42 times lower than our emission factor. The 

GHGRP gathering station activity factor and emission factor are 4.8 and over 1,200 times lower than our 

factors, respectively. GHGRP Subpart W currently exempts gathering stations from reporting vented and 

fugitive methane emissions.
54

 Therefore, GHGRP data only includes gathering facilities reporting 

combustion emissions under Subpart C .
55

 Reporters are required to use a default methane emission 

factor based on natural gas turbines, which is known to be at least two orders of magnitude too low for 

reciprocating engines used by the vast majority of gathering stations.
56

  

 

For the processing sector, GHGI emissions are 58% higher than our estimate. The GHGI emission factor 

is within 10% of our average processing plant emission factor; therefore, the higher emissions are caused 

primarily by a 45% higher activity factor. GHGRP emissions are a factor of 6.9 lower than our estimate – 

some of this difference is due to 16 of 38 plants that are not required to report to GHGRP, but the largest 

difference is from the emission factors. The average reported emissions of GHGRP processing plants is a 

factor of 5.5 lower than our large processing plant emission factor, which may be due to the exclusion of 

certain emission sources (e.g., tanks) from GHGRP reporting requirements.
54

  

 

For the transmission and storage sector, the inventory comparisons have similar trends as processing. 

GHGI emissions are 50% higher than our estimate. The GHGI transmission and storage compressor 
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station activity factor and emission factor (excluding pipeline emissions) are 47% and 43% higher than 

our factors, respectively. GHGRP emissions are a factor of 6.0 lower than our estimate, which primarily is 

due to about 70% of facilities not being required to report to the GHGRP. The average reported emissions 

of GHGRP facilities is 15% lower than our emission factor, which may be due to the exclusion of certain 

compressor engine operating mode emissions from GHGRP reporting requirements
54

. Our compressor 

station emission factor is within 10% of the value used for California compressor stations in Jeong et al.
23

 

The average emissions of five compressor stations and storage facilities measured during the Barnett 

Coordinated Campaign with on-site, leak and loss audits was 19 kg CH4 hr
-1

 .
57

 This value is a factor of 

3.8 lower than our emission factor, but within 30% of the median value of our compressor station sampled 

distribution, which demonstrates how emissions could be underestimated if an emission factor is based 

on a small sample size of a skewed distribution. 

 

For the distribution sector, our emission estimates are a factor of 4.7 and 1.5 lower than the GHGI and 

GHGRP estimates, respectively.  This is due to our study using emission factors from a recent national 

study that reported emissions from pipelines and M&R stations have decreased since the 1990s when a 

previous study collected measurements used to develop the GHGI and GHGRP emission factors.
53

  

 

Our detailed, spatially explicit methane emission inventory for the Barnett Shale region illustrates the 

limitations of relying on commonly used data sources such as GHGI and GHGRP to estimate regional 

emissions. The GHGI Natural Gas Systems section relies primarily on national emission factors 

developed in the 1990s to estimate natural gas industry emissions
53

 and may not reflect regional 

differences or recent changes in emission profiles. The GHGRP only includes emissions from facilities 

meeting a reporting threshold and excludes most emissions from the gathering sector and certain 

emission sources; therefore, it is inherently an underestimate of emissions and should not be viewed as a 

complete emission inventory.  EPA has recently made changes to improve the completeness of the GHGI 

and GHGRP and has proposed adding gathering facilities to the GHGRP
58

.  
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Our methane inventory estimates higher emissions than other inventories predominantly due to two 

reasons: more complete, region-specific activity factors and the inclusion of emissions from fat-tail sites. 

Our comprehensive search of multiple data sources revealed a substantially higher count of O&G 

facilities than was contained in any single data source, particularly with regards to gathering compressor 

stations. Relatively rare, high emitting fat-tail sites such as those observed during the Barnett Coordinated 

Campaign were estimated to contribute 19% of regional O&G emissions. Our estimate of total methane 

emissions from the 25-county Barnett Shale region, 72,300 (63,400—82,400) kg CH4 hr
-1

, is not 

statistically significantly different from a top-down, aircraft-based estimate from the Barnett Coordinated 

Campaign
21

, 76,000±13,000 kg CH4 hr
-1

, which quantified emissions in areas intermediate to the 8-county 

core production area and 25-county region. The bottom-up estimate of thermogenic emissions from O&G 

and other fossil sources, 48,400 (42,100—56,400) kg CH4 hr
-1

, is within the uncertainty bounds of the top-

down estimate, 60,000±11,000 kg CH4 hr
-1

, of fossil emissions determined from source apportionment 

based on airborne ethane observations during the campaign.
20,21

 Future studies comparing top-down and 

bottom-up emission estimates should assure that emission inventories rely on comprehensive activity 

factors and contemporary emission factors that account for the highest emitting sites. Such efforts are 

likely to results in better agreement between top-down and bottom-up methods than previously has been 

reported.  
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Figure 1. Sampled emission rate distributions by O&G sector with superimposed values of Barnett 

Coordinated campaign measurements.  The blue lines are the cumulative distribution functions of 

sampled distributions used in Monte Carlo simulations, which include production site measurements 

made using unbiased sampling during the campaign
28

 and a national dataset of gathering stations and 

processing plants
31

. The vertical lines are emission rates of sites measured during the Barnett Campaign 

using sampling biased towards high emission sites.
27,29,30

 The values exceeding the maximum of the 

sampled distributions are used as fat-tail site distributions in the Monte Carlo simulations.  
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Table 1. Activity factors, methane emissions, and percent of emissions from fat-tail sites by source 

category for the 25-county Barnett Shale region. Numbers in parentheses are the 95
th
 confidence interval. 

Estimates assumes a 0.25% fat-tail probability for production sites
15

, 1% fat-tail probability for compressor 

stations, and 2% fat-tail probability for processing plants.  

Source Activity Factor Emissions (kg CH4 hr
-1

) Contribution 
from Fat-tail sites 

(%) 

Gas Production Sites 15,044 well pads 16,400 (15,400 - 17,300) 11% (8 – 13%) 
 Oil Production Sites 5,842 well pads 1,800 (1,700 - 1,900) 

Well Completions 38 gas wells 
36 oil wells 

150 (30 - 290)  

Gathering Compressor 
Stations 

259 facilities 
 

18,700 (12,900 – 26,000) 33% (14 – 51%) 

Gathering Pipelines 20,100 miles 940 (760 - 1,200)  

Processing Plants 22 large plants 
16 small plants 

5,500 (3,700 - 8,100) 11% (4 – 21%) 

Transmission & Storage 
Compressor Stations 

17 facilities 1,600 (850 – 1,700) 33% (14 – 51%) 

Transmission Pipelines 3,300 miles 230 (190 - 300)  

Local Distribution 5,730,000 people 920 (750 – 1,600)  

O&G Subtotal  46,200 (40,000 - 54,100) 19% (14 – 26%) 

Abandoned Wells 57,600 wells 630 (320 - 1,300)  

Residential & 
Commercial End Use 

5.6 MMcf/hr gas 
delivered 

160 (30 – 1,600)  

Industrial Facilities 56 facilities 60 (30 - 110)  

Onroad Vehicles 
(Natural Gas) 

0.3 MMcf/hr gas 
delivered 

14 (7 – 68)  

Onroad Vehicles 
(Gasoline & Diesel) 

65 billion vehicle miles 
traveled/yr 

150  

Geological Seepage 57,900 km
2
 1,100  

Thermogenic Subtotal  48,400 (42,100 – 56,400) 18% (14 – 26%) 

Landfills 21 GHGRP landfills 
712 other landfills 

11,300 (5,000 - 16,900)  

Livestock 980,00 beef cattle 
190,00 dairy cattle 

11,300 (9,500 - 14,300)  

Wastewater Treatment 5,730,000 people 760 (560 - 670)  

Biogenic Subtotal  24,000 (17,200 – 30,100)  

 

Emissions Total  72,300 (63,400 - 82,400) 12% (9 – 15%) 

 

% O&G  64% (52 – 78%)  

%Thermogenic  67% (55 – 81%)  

%Biogenic  33% (23 – 43%)  
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Figure 2. Spatially resolved methane emissions of the Barnett Shale region showing total, thermogenic, 

and biogenic emissions in 4 km x 4 km grid cells. Total emissions are reported in Table 2. The purple line 

is the boundary of the 25-county Barnett Shale region and the blue line is the boundary of the 8-county 

core production area.   
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Table 2. A comparison of the 25-county Barnett region O&G methane emission inventories from this 

paper to alternative inventories constructed from GHGI, GHGRP, and EDGAR.
16-19

 

 October 2013 Emissions (kg CH4 hr
-1

) 

Sector Lyon et al. (95
th
 percent CI) GHGI GHGRP EDGAR 

Production  18,400 (17,100 – 19,500) 12,700 14,550 
 

Gathering 19,600 (13,700 – 27,200) 2,700 4 
 

Processing 5,500 (3,700 – 8,100) 8,700 800 
 

Transmission & 
Storage 

1,800 (1,300 – 2,500) 2,700 300 
 

Local Distribution 920 (750 – 1,600) 4,300 1,350 
 

Total O&G 46,200 (40,000 – 54,100) 31,000 17,000 10,800 

 

 

Table 3. A comparison of activity factors (AF) and emissions factors (EF) for the 25-county Barnett region 
from this paper, GHGI, and GHGRP. GHGI factors are derived from national emissions and activity 
factors prorated by production, gas processed, and pipeline miles.

17
 GHGRP factors are counts and 

average 2013 emissions of reporting facilities in the Barnett region.
16 

 

  Lyon et al. GHGI GHGRP 

 
Active Oil and Gas 

wells (excludes 
completions) 

AF 
20,900 well pads 

39,000 wells 
 

34,800 wells 
 

15,900 wells** 

EF 

0.87 (0.82 – 0.92) kg CH4 hr
-1

 pad
-

1
 

0.47 (0.44 – 0.49) kg CH4 hr
-1

 well
-

1
 

 
0.35 kg CH4 hr

-1
 

well
-1

 

 
0.91 kg CH4 hr

-

1
 well

-1
 

Gathering Stations 
(excludes pipelines) 

AF 259 stations 
1 large station 

782 total stations* 
54 stations 

EF 72 (50 – 100) kg CH4 hr
-1

 1.7 kg CH4 hr
-1

*
 0.06 kg CH4 hr

-

1
 

 
 

Processing Plants 

AF 
38 plants 

(16 small & 22 large) 
55 plants 22 plants 

EF 

average: 145 (84 – 231) kg CH4 hr
-

1
 

small: 84 (45 – 133) kg CH4 hr
-1

 
large: 190(112 – 301) kg CH4 hr

-1
 

159 kg CH4 hr
-1

 36 kg CH4 hr
-1

 

Transmission & 
Storage  Stations 

(excludes pipelines) 

AF 17 stations 25 stations 5 stations 

EF 72 (50 – 100) kg CH4 hr
-1

 103 kg CH4 hr
-1

 61 kg CH4 hr
-1

 

*GHGI only includes station counts for large gathering compressor stations. An alternative estimate of 

total station counts is based on the number of compressor engines. The emission factor is based on this 

alternative AF. **GHGRP data does not include well counts. Activity data was estimated from the county-

level well counts reported in DI Desktop for GHGRP reporting operators. 
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CHAPTER 2 APPENDIX 

 

S1. Activity factor estimation methods 

The number and location of O&G and other methane-emitting facilities were compiled from multiple state 

and federal databases. Facilities with annual greenhouse gas emissions of ≥25,000 metric tons carbon 

dioxide equivalents (CO2e) are required to submit data including site location to the United Stations 

Environmental Protection Agency (EPA) Greenhouse Gas Reporting Program (GHGRP)
1
. Point source 

facilities reporting methane emissions in 2013 were classified into source categories based on which 

subpart they report under:  natural gas transmission (Subpart W-NGTC)
2
, natural gas processing 

(Subpart W-PROC)
2
, landfills (Subpart HH)

3
, and other industrial (all other subparts). Natural gas 

gathering facilities currently are exempt from GHGRP Subpart W but report stationary combustion 

emissions (Subpart C)
4
 if they meet the reporting threshold. Facilities reporting for stationary combustion 

only were classified as natural gas gathering if the facility name and North American Industrial 

Classification System code suggested it was an O&G facility (211111-Crude petroleum and natural gas 

extraction, 211112-Natural gas liquid extraction, and 486210-Pipeline transportation of natural gas); 

otherwise, they were classified as non-O&G industrial sources.  

 

Additional O&G sources were identified based on data from the Texas Commission on Environmental 

Quality (TCEQ) 2009 Barnett Shale Area Special Inventory (BSASI)
5
 and air permit database

6
. TCEQ 

required all companies with upstream and midstream facilities either producing or handling gas from the 

Barnett Shale in 2009 to submit data including site location and an equipment census .
5
 The BSASI data 

was filtered to exclude well pads by removing all upstream facilities and the subset of midstream facilities 

without engines. The midstream facilities with engines were classified as a compressor station, storage 

facility, or processing plant based on the facility name. In general, facilities with names including “station”, 

“compression”, or “CS” were classified as compressor stations; “processing” or “plant” as processing 

plants; and “storage” as storage facilities. A list of facilities with TCEQ engine permits compiled in 2014 by 

ICF International for Clean Air Task Force was used to identify facilities not included in the BSASI. 

Additionally, the TCEQ permit database was queried to identify facilities with O&G general permits 
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missing from the other databases.
6
 The additional permitted facilities were classified into site types based 

on name using a similar approach as the BSASI facilities. The coordinates of these facilities were 

determined by using Google Earth to match the driving directions provided by the TCEQ permit data to a 

facility visible in satellite imagery. For most of the region, Google Earth imagery was from April 2013 or 

October 2013. 

 

Compressor stations not reporting to the GHGRP were classified as gathering or transmission based on 

their proximity to gathering and transmission pipelines. GIS shapefiles of gathering and transmission 

pipelines were obtained from DI Desktop.
7
 ArcGIS (Esri) was used to create a 1.5 km buffer around the 

natural gas transmission pipelines. All the compressor stations outside the buffer were classified as 

gathering. For compressors stations that were inside the buffer, a manual classification scheme was 

performed, using Google Earth imagery in conjunction with natural gas gathering and transmission 

pipeline maps. This method minimizes misclassification as transmission of facilities near transmission 

pipelines with no connection to the facility, but there remains some uncertainty in the classification. 

 

The multiple databases included several instances of facilities with similar names and different locations 

or different names and similar locations. Facility locations were quality controlled to remove duplicate 

facilities and correct inaccurate coordinates by checking Google Earth imagery. Contiguous facilities were 

considered individual sites if they were operated by different companies and/or divided by a fence line. 

Facilities were also excluded if Google Earth imagery indicated they were decommissioned (e.g., all 

engines had been removed).   

 

Emissions from O&G production were calculated at the production site level, since that is the spatial scale 

at which measurements were made. DI Desktop, a commercial database of well data compiled from state 

regulatory agencies, was used to obtain the coordinates of O&G wells in the Barnett region with 

production in October 2013.
7
  Individual wells were grouped into production sites by aggregating wells 

within a 100 m radius into a single site as described in Zavala-Araiza et al.
8
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S2. Production site Monte Carlo simulation methods 

Production site emissions were estimated using a more complex approach that defined fat-tail sites based 

on based on proportional loss rates (methane emitted relative to methane produced). The method is 

briefly described below and in detail in Zavala-Araiza et al.
8
 Activity factors were based on estimated 

O&G production site counts. Emission factors were derived with Monte Carlo simulations drawing from 

site emission rate distributions constructed using data from the Barnett Coordinated Campaign. Rella et 

al.
9
 reports emissions from 186 production sites that were selected from sites less than 150 meters 

upwind of public roads in nine Barnett counties. Additional emission estimates of 40 production sites 

selected by targeted sampling were reported in Lan et al.
10

 and Yacovitch et al.
11

 Activity and 

measurement data were classified into four cohorts based on gas production. Production site emissions 

as a percentage of gas production were calculated using production data from DI Desktop
7
. Production 

site measurements were further classified into three categories based on their percentile of production-

normalized emissions specific to each production class:  alpha (α) sites (0—85 percentile), beta (β) sites 

(≥85 percentile), and gamma (γ) sites (≥ maximum value of Rella et al. dataset). As described in Zavala-

Araiza et al., a fat-tail probability of γ-sites of 0.25% was chosen and a sensitivity analysis was performed 

to test the effect of differing probabilities on estimated emissions. Zavala-Araiza et al. reports emissions 

only for gas-producing sites. For this paper, gas-producing site emissions were divided into gas sites and 

oil sites based on the well type reported in DI Desktop.  In addition, emissions from oil sites with no gas 

production were estimated using a methane emission factor of 5.14 x 10
-3

 kg CH4 hr
-1

 well
-1

 based on the 

Petroleum Systems stripper well emission factor in the GHGI.
12

 

  

S3.  Well completion emission estimation methods 

Completion flowback emissions, which occur when a well is vented after hydraulic fracturing to prepare 

for routine production, were estimated for individual well completions based on data obtained from DI 

Desktop.
7
 For 73 wells in the region with reported completion dates from October 14—30, 2013, data 

were compiled including well type (gas or oil), latitude/longitude, and an estimate of initial gas production 

based on average daily production during the second month of production. Potential completion flowback 

emissions were assumed to equal initial production adjusted by an assumed gas composition of 78.8% 
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methane. Well completions were assumed to emit at a constant rate for 3 days, which is a conservatively 

low estimate based on the 85-hour average completion flowback duration reported in Allen et al.
13

 In 

comparison, O’Sullivan and Paltsev assumed potential completion emissions increase linearly from zero 

to initial production over a 9 day period
14

; our approach results in about twice the average emission rate 

but half the total emissions of these alternative assumptions. At the time of the campaign, gas wells were 

required by the EPA New Source Performance Standard Subpart OOOO to control completion emissions 

by flaring or sending gas to sales.
15

 Therefore, gas well completions were assumed to be controlled with 

98% control efficiency. This high control efficiency is supported by Allen et al., who determined actual 

emissions of completion flowbacks with control or capture were 1% of potential emissions. 
13

 Oil wells, 

which are not required to control or capture gas, were assumed to be uncontrolled and emit 100% of 

potential emissions. Emissions were aggregated on a daily basis for all ongoing completion events. The 

average of the daily emission estimates during the Barnett Coordinated campaign was used as the 

central estimate for the emission inventory. The minimum and maximum daily estimates were used as the 

lower and upper bound estimates. 

 

S4. Local distribution emission estimation methods 

Natural gas distribution emissions were estimated using data from a recent national study of methane 

emissions from local distribution pipelines and metering and regulating (M&R) stations (Lamb et al.).
16

 

Activity factors were based on 2013 data reported by Atmos Energy Corporation, the utility serving the 

vast majority of customers in the Barnett region.  Atmos Mid-Texas distribution main pipeline miles, 

number of services by type, and number of leaks repaired were obtained from the Pipeline and 

Hazardous Materials Safety Administration.
17

 Emissions were estimated using the national average 

equivalent leak ratio (1.6 leaks per leaks repaired) and type-specific main and service emission factors 

from Lamb et al.
16

  Atmos Texas activity factors for above ground metering stations and transfer stations 

were obtained from the GHGRP.
1
 M&R activity factors were disaggregated by type by assuming that 

above ground metering stations were distributed in the same proportion as national activity factors from 

the EPA Greenhouse Gas Inventory (GHGI), the ratio of below ground to above ground stations was the 

same as the GHGI, and all transfer stations were M&R stations with > 300 pound per square inch (psi) 
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pressure.
12

  Emissions were estimated using type-specific station emission factors from Lamb et al.
16

 

Since the Atmos Mid-Texas and Atmos Texas regions are larger than the 25-county Barnett Shale region, 

emissions were multiplied by the ratio of customer meters in the Barnett region to the Atmos service 

areas.  The number of customer meters in Atmos service areas and major cities were obtained from the 

Texas Railroad Commission
18,20

; meters in the Barnett region were estimated by scaling up the number of 

Atmos residential customer meters in the cities of Dallas and Fort Worth
18

 by population
19

 and the ratio of 

commercial and industrial to residential meters in the Atmos Mid-Texas service area
20

. Emissions from 

customer meters and maintenance/upsets, which are not measured in Lamb et al., were estimated using 

GHGI national emissions prorated by customer meters and pipeline miles, respectively
12

.  The upper 

confidence limit uncertainty (+71%) was based on the emission factor uncertainties of Lamb et al.
16

;  for 

the lower confidence limit, EPA’s uncertainty estimate (-19%) for GHGI Natural Gas Systems was used 

since Lamb et al. only reports upper confidence limits.
12

 

 

S5. Alternative emission inventory methods 

The GHGI based emission inventory was constructed by prorating 2013 national net emissions by source 

category from the GHGI Natural Gas Systems and Petroleum Systems sectors.
12

 Natural gas production 

emissions were prorated by the ratio of Barnett region and national 2013 gas production.
7,21

 Natural gas 

gathering is grouped within the natural gas production sector in the GHGI.
12

 We assigned pipeline leaks, 

pipeline blowdowns, gas engines, small reciprocating compressors, large reciprocating compressors, 

compressor starts, and compressor blowdowns to the gathering sector. Natural gas gathering emissions 

were prorated by 2013 gas production.
 7,21

  Natural gas processing emissions were prorated by 2013 gas 

processed, which was estimated by adjusting the Texas fraction of national gas processed
22

 by the 

fraction of Texas gas production in the Barnett region
7
. Natural gas transmission and storage emissions 

were prorated by 2013 transmission pipeline miles.
23

 Natural gas distribution emissions were prorated by 

2013 gas delivered to customers excluding electric power, which was estimated by adjusting the Texas 

fraction of national gas delivered
19

 by the fraction of Texas population in the Barnett region
19

. Petroleum 

Systems production emissions were prorated by the ratio of Barnett region and national 2013 oil 

production.
7,24
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The GHGRP based inventory was constructed by aggregating GHGRP reported 2013 emissions from 

facilities in the 25-county Barnett region.
1
 The classification of GHGRP facilities is described in section 

S1. For all facilities except onshore oil and gas production and natural gas distribution, quality assured 

facility latitude/longitude was used to determine which sites were in the Barnett region; several of the 

reported locations were inaccurate and corrected as described in section S1. GHGRP local distribution 

facilities are defined as a company’s statewide operations. Reported emissions from Atmos Energy 

Corporation – Texas, the utility serving the vast majority of the Barnett region, were adjusted by the 

estimated fraction (0.542) of their statewide customer meters in the Barnett region (described in section 

S4.) GHGRP onshore production facilities are defined as all of a company’s production sites in a geologic 

basin. The Barnett region is comprised of five basins including three that extend outside the Barnett. 

County-level 2013 gas and oil production were used to determine the fraction of energy production in 

each basin contained in the 25-county Barnett region:  350 – South Oklahoma Belt (0.143), 400 – 

Ouachita Folded Belt (0.549), 415 – Strawn Basin (1.0), 420 – Fort Worth Syncline (1.0), and 425 – Bend 

Arch (0.854).
7
 Emissions from well completions and workovers, atmospheric tanks, and well venting for 

liquids unloading are reported at the county-level; for these sources, emissions were included only from 

the Barnett region counties. Emissions from all other sources, which are reported at the basin-level, were 

adjusted by the fraction of basin energy production in the Barnett region. 
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Figure SI1.  A map of spatially referenced activity factors of major methane sources in the Barnett Shale 
region. Facilities are color-coded by type (red = compressor station, blue = processing, yellow = landfill, 
green = confined animal feeding operation). The orange line is the boundary of the 25-county region. The 
blue line is the boundary of the 8-county core production area. 
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Figure SI2. Illustration of Monte Carlo simulation methods
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Figure SI3. Sensitivity of O&G facility emission factors to the Monte Carlo simulation probabilities of 

selecting from the fat-tail site distribution of Barnett Campaign measurements that exceed the maximum 

emission rate of the sampled distribution based on a national dataset of gathering stations and 

processing plants. The red line is the central estimate and the blue area is the 95
th
 percent confidence 

interval. 
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S7. Excel file (es506359c_si_002.xlsx) with O&G facility locations, Monte Carlo emission rate 

distributions, local distribution emission calculations, and GHGI and GHGRP alternative inventory 

calculations 

Lyon et al_SI_S7.xlsx includes 12 worksheets described below. 

Worksheet Description 

S7-1 location of well pads used in Production site Monte Carlo simulations of Zavala-
Araiza et al. 

S7-2 location of compressor stations and processing plants used in O&G facility Monte 
Carlo simulations 

S7-3 sampled and fat-tail distributions used in small processing plant, large processing 
plant, and compressor station Monte Carlo simulations 

S7-4 comparison of GHG Inventory and GHG Reporting Program based O&G 
emissions by sector 

S7-5 EPA 2013 GHG Inventory emissions by source 

S7-6 data used to prorate GHG Inventory national emissions to Barnett Shale region 

S7-7 GHGRP O&G production facility emissions for sources reported at county-level 

S7-8 GHGRP O&G production facility emissions for sources reported at basin-level 

S7-9 GHGRP O&G production emissions adjusted to Barnett Shale region 

S7-10 GHGRP emissions from facilities reporting at site-level 

S7-11 calculation of GHGI-based activity factors and emission factors for the Barnett 
Shale region 

S7-12 calculation of local distribution emissions 
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CHAPTER 3 

Aerial surveys of elevated hydrocarbon emissions from oil and gas production sites 
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Abstract 

Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to 

total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these 

emissions may be missing from most bottom-up emission inventories. We performed helicopter-based 

infrared camera surveys of more than 8,000 O&G well pads in seven U.S. basins to assess the 

prevalence and distribution of high-emitting hydrocarbon sources (detection threshold ~1–3 g s
-1

) . The 

proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder 

River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more 

frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p<0.0001, 
2
 

test). However, statistical models using basin and well pad characteristics explained 14% or less of the 

variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of 

high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and 

hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most 

basins exceed those expected if emissions were effectively captured and controlled, demonstrating that 

tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for 

reducing methane and VOC emissions. 
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Introduction 

Hydrocarbon emissions from oil and gas (O&G) facilities pose multiple risks to the environment and 

human health. Methane, the primary constituent of natural gas, is a short-lived greenhouse gas with 28 —

34 and 84 — 86 times the cumulative radiative forcing of carbon dioxide on a mass basis over 100 years 

and 20 years, respectively.
1
 Burning natural gas instead of other fossil fuels may increase net radiative 

forcing for some time, even if carbon dioxide emissions decline, depending on the loss rate of methane 

across the O&G supply chain.
2
  O&G hydrocarbon emissions also include volatile organic compounds 

(VOCs), which are defined by the United States Environmental Protection Agency (U.S. EPA) as 

photochemically reactive organic compounds excluding methane and ethane. VOCs contribute to regional 

ozone formation and have been linked to elevated ozone levels in several O&G producing regions.
3,4

 

Certain VOCs such as benzene are toxic and may be connected to increased risk of cancer and 

respiratory disease in some areas with O&G development.
5,6

   

Hydrocarbons (HC) can be emitted from vented, fugitive, or combustion sources. Vented HC emissions 

are intentional releases of natural gas from blowdowns (releasing gas to depressurize equipment for 

maintenance or safety) or sources that emit as part of routine operations such as pneumatic controllers. 

Fugitive HC emissions are unplanned releases from equipment leaks or malfunctioning equipment. 

Combustion HC emissions include uncombusted hydrocarbons in the exhaust of combustion sources 

such as compressor engines and flares. HC emissions can also occur from storage tanks for oil, natural 

gas condensate, and produced water. Tanks can be the source of both vented emissions, such as 

flashing losses when liquids are dumped from high-pressure separators to atmospheric pressure tanks, 

and fugitive emissions caused by malfunctioning separators or control devices. Unlike emissions of raw 

natural gas, which are primarily composed of methane, oil and condensate tank flashing emissions tend 

to be dominated by heavier alkanes such as propane and butane.
7
 

Recent studies have used two broad approaches to estimate methane or VOC emissions:  top-down 

methods that quantify emissions at the regional or larger scale at one or more points in time, and bottom-

up methods that use activity data and emission factors to scale up component- or facility-level 

measurements to generate emission inventories. Generally, top-down estimates of methane emissions 
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have been greater than bottom-up estimates.
8,9

 In the Barnett Shale, a coordinated campaign with 

simultaneous top-down and bottom-up methods was able to reconcile aircraft mass balance estimates of 

regional O&G methane emissions with a custom emission inventory based on local and national facility-

level measurements.
10,11

 Compared to traditional bottom-up inventories, the coordinated campaign 

inventories estimated higher emissions due to more comprehensive activity data and the inclusion of high 

emission ‘super-emitter’ sites in the development of emission factors.
11,12

  

Many types of O&G facilities have highly skewed emission distributions with a small fraction of sites 

contributing the majority of emissions.
13–17

 These high emission facilities, often referred to as 

superemitters, may include some sites with persistent emissions and others with intermittent episodes of 

large releases.
18

 High emission rates are likely due to both fugitive emissions caused by malfunctions and 

vented emissions such as tank flashing or blowdowns. The identification and mitigation of high emission 

sites is critical to reducing regional emissions since these facilities contribute a large portion of total O&G 

emissions.
18,19

 If the identity of these sites can be predicted, then it would be effective to focus mitigation 

efforts on sites with characteristics most often associated with high emissions. However, if the occurrence 

of high emissions is stochastic, then the only viable mitigation solution would be frequent or continuous 

monitoring of all sites in order to quickly identify and mitigate those with excess emissions. 

A common method to detect HC leaks at O&G facilities is optical gas imaging, which has been proposed 

by U.S. EPA as a regulatory requirement for new and modified sources.
20

 Since methane and other HC 

emissions are invisible to the naked eye, infrared (IR) cameras are used to visualize HC plumes .
21

 IR 

cameras cannot differentiate individual HC species nor quantify emissions under field conditions, but their 

ability to identify the exact location of an emission source is highly valuable for mitigation. A skilled 

technician on the ground can use an IR camera to quickly survey thousands of components at an O&G 

facility for leaks.
22

 Helicopter-based IR camera surveys have been used by operators and regulatory 

agencies to inspect large numbers of sites for high emission rate sources that may indicate equipment 

issues or noncompliance with environmental regulations.
23

 

In this study, we use data collected during helicopter-based IR camera optical gas imaging surveys of 

more than 8,000 O&G well pads to assess the prevalence and distribution of high-emitting HC sources in 
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seven U.S. O&G basins. Survey data were analyzed to determine patterns and statistical relationships of 

observed emissions with well pad and operator parameters. In turn, observed frequencies of high 

emission sources were compared to predicted frequencies of observable tank flashing emissions with and 

without controls to assess if detected emission sources indicate the presence of malfunctioning emission 

control systems. 

Methods 

Survey areas were selected by stratified random sampling in seven U.S. O&G basins accounting for 33% 

and 39% of U.S. oil and gas production, respectively:  Bakken (North Dakota/Montana), Barnett (north 

central Texas), Eagle Ford (south Texas), Fayetteville (Arkansas), Marcellus (Appalachian Basin), 

Powder River (Wyoming/Montana), and Uintah (Utah). Sub-regions in each basin were selected based on 

their suitability for helicopter surveys (<1,500 meters above sea level, unrestricted airspace) and 

subdivided into 10 x 10 km grid cells. Due to their large size, sub-regions in the Bakken, Marcellus, and 

Powder River were centered on areas with active drilling in northwest North Dakota, southwest 

Pennsylvania, and eastern Wyoming, respectively. Data on well pad characteristics for each of these sub-

regions were obtained for wells with an active status from the production database Drillinginfo, which 

contains data compiled and cleaned from state databases.
24

 

One or two defining characteristics were identified for each region that best characterized the 

heterogeneity of the basin’s O&G production and could be the basis for stratified sampling. The selected 

strata were gas-oil ratio (GOR) in produced fluids (Barnett and Uintah), well age (Bakken), a combination 

of well age and GOR (Marcellus), and well type of oil, gas, or coal-bed gas (Powder River). These strata 

were chosen to reflect the distinguishing characteristics in each region (e.g., GOR does not vary greatly in 

the Bakken, so no meaningful stratification is possible along that dimension). Parameter thresholds 

separating strata were selected independently for each basin to divide grid cells into two or three 

quantiles of average parameter values. After assigning grids to strata based on their average parameters, 

a list of grids in each stratum was randomly selected for survey. In two basins this design was not 

followed. In the Fayetteville, a single 20 x 20 km area was selected due to limited survey time and 

homogenous production across the basin (dry gas without oil). In the Eagle Ford, two unstratified 40 x 15 
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km survey areas that each covered the basin’s broad range in GOR were selected to facilitate efficient 

measurements by additional research aircraft. A map of surveyed basins is shown in Figure S1.  

Survey area boundaries were provided to a professional firm with extensive experience performing leak 

detection surveys of O&G sites from a helicopter using optical gas imaging (Leak Surveys, Inc.).
25

 Flights 

occurred from June to October 2014 using an R44 helicopter. The survey team identified O&G well pads, 

compressor stations, and small gas processing plants in the survey areas; for this paper, only data from 

active well pads are included in the analysis. Camera operators used a FLIR GasFindIR infrared camera 

to visually survey sites for detectable hydrocarbon plumes at an elevation of approximately 50 m above 

ground level. At each site with detected emissions, the survey team reported the site’s latitude/longitude 

and the number and equipment type of each observed emission source. Additionally, an IR video was 

recorded at each site with detected emissions, typically by circling the site and focusing on observed 

emission sources for 20 to 80 seconds. Videos were reviewed by the lead author to verify the number and 

type of detected sources.  

Two independent methods were used to estimate the minimum detection limit of optical gas imaging with 

an IR camera deployed from the survey helicopter. First, an operator in the Fayetteville performed a 

controlled release of dry natural gas (97% CH4) from a pipeline pig receiver at a midstream facility while 

being observed by the helicopter survey team from a typical survey position during cloudy conditions. A 

variable orifice was used to release natural gas at three rates. These rates were quantified by the bagging 

method at ~3, 8, and 27 g s
-1

, respectively. The helicopter survey team recorded observable plumes from 

all three controlled release tests with the lowest release rate producing only faint images that appeared to 

represent the detection threshold under test conditions. Second, an aircraft with a methane analyzer used 

the atmospheric budget method to quantify methane emissions at 19 well pads and compressor stations 

within one hour of detection by the helicopter survey team (See SI for methodological details). Measured 

site emission rates ranged from 1 to 24 g CH4 s
-1

 with 84% of central estimates above 3 g CH4 s
-1

 (Table 

S1). Additionally, the helicopter survey team qualitatively ranked the size of emission sources based on 

the apparent size and density of plumes, but there was no correlation between the qualitative magnitude 

of emission sources estimated from experienced camera operators and the quantified methane emission 
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rates; potential reasons are discussed in the SI. Variability in the IR camera’s sensitivity to different 

hydrocarbons (HC) is expected to impact the detection limit.  The GasFindIR camera can detect at least 

20 different HCs with differing functionality and has the highest sensitivity to alkanes;  the reported 

minimum detectable emission rate under controlled conditions is 2 – 4 times lower for propane than 

methane under controlled conditions.
21

 While there may be differences in the ratio of minimum detectable 

emissions rates in the field compared to controlled conditions, a ratio of 3 was chosen as representative 

of the increased sensitivity of the camera to higher molecular weight HCs. Therefore, the helicopter 

survey detection limit was assumed to be ~3 g HC s
-1

 for dry gas sources with emissions composed 

primarily of methane and ~1 g HC s
-1

 for sources such as tanks with emissions composed primarily of 

higher HCs such as propane. The detection limit of the IR camera is also affected by wind speed. We 

assessed the average wind speed during surveys based on hourly data during daytime hours from local 

weather stations. Average wind speed ranged from 2.7 m s
-1

 in the Uintah to 6.4 m s
-1

 in the Powder 

River (Table S2). Based on the power law relationship between wind speed and detection limit reported in 

Benson et al., the difference in wind speed would cause the average detection limit to be 3 – 4 times 

higher in the Powder River compared to the Uintah.
21

 Therefore, variability in wind speed contributes 

uncertainty to the detection limit of a similar magnitude as variable gas composition. 

Because survey results were reported for unique well pads rather than by individual well (i.e., many sites 

had multiple wells), the latitude/longitude of individual wells in surveyed areas were used to aggregate 

wells into pads by spatially joining all active wells within a 50 meter buffer distance.
18

 For each pad, well-

level data were used to determine the operator, well production type (oil, gas, oil & gas, coal bed 

methane), well drill type (vertical, horizontal, directional), number of wells, pad age (months since initial 

production of newest well), gas production, hydrocarbon liquid production, and water production.
24

 

Hydrocarbon liquid production includes both crude oil and natural gas condensate; for this analysis, the 

term “oil” is used to refer to all hydrocarbon liquids. Water production data were not available for 

individual wells in the Fayetteville or Marcellus basins. Parameters were specific to the same survey 

month for all basins except the Marcellus, for which only annual and semiannual data were available for 

conventional and unconventional wells, respectively. In addition to pad-specific parameters, operator-

specific parameters were calculated for each basin based on operators’ full population of wells in each 
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basin. Surveyed sites with detected emissions were matched to individual pads in the survey area using 

the reported latitude/longitude as well as Google Earth imagery. 

The helicopter-based team surveyed 8,220 well pads located throughout an area of 6,750 km
2
. Average 

well pad characteristics by basin and strata are summarized in Table S3. The average number of wells 

per pad ranged from 1.1 in the Uintah to 2.7 in the Fayetteville. Well pads were newest in the Fayetteville 

(average age of newest well on each pad of 4.1 years) and oldest in the Barnett (13.4 years). Average 

gas production ranged from 65 Mcf pad
-1

 day
-1

 in the Uintah to 1,438 Mcf pad
-1

 day
-1

 in the Fayetteville. 

Average oil production ranged from 0 bbl pad
-1

 day
-1

 in the Fayetteville to 312 bbl pad
-1

 day
-1

 in the Eagle 

Ford. For the basins with oil production, GOR was lowest in the Bakken (1.2 Mcf bbl
-1

) and highest in the 

Marcellus (153 Mcf bbl
-1

). To assess the representativeness of surveyed sites, we compared these 

parameters between surveyed sites and the total population of active wells in each basin in 2014 (Table 

S4). For almost all parameters, surveyed sites had statistically different distributions than the entire basin 

(Kolmogorov-Smirnov p > 0.05) but the percent difference for most values was <25% from the basin 

mean and almost always within 50%. In all basins, surveyed wells were younger than the full population; 

in the Bakken, Barnett, Eagle Ford, Marcellus, and Powder River, surveyed wells had higher gas 

production and/or oil production than the basin average. These slight biases likely resulted from selecting 

sub-regions with active drilling to include young sites in our survey areas. Overall, our sampled strata 

account for the full range of diversity within and across basins and are appropriate for assessing patterns 

in high emissions. 

Pearson’s correlation coefficients (r) were used to assess correlation between the presence (non-detect = 

0, detect = 1) or number of detected emissions by source type and pad or operator parameters. Binomial 

generalized linear models (GLM), also known as logistic regression models, were used to predict the 

probability of detected emissions at a well pad (Pdetect) from site and operator parameters. Analysis of 

variance models and Tukey’s Honest Significance Difference test were used to assess significant 

differences in Pdetect among basins, strata, well type, and drill type. Poisson GLMs were used to predict 

the number of detected sources by emission type at each pad. For the full dataset and individual basins, 

several single parameter and multi-parameter GLMs were evaluated based on their simplicity, Akaike 
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Information Criteria, Pearson’s r, and Hosmer-Lemeshow goodness of fit between observed and 

predicted values to select models meaningful for explaining the effects of parameters on emissions. An 

alpha level of 0.05 was used to determine statistical significance in all tests. For statistical analyses, 

percent energy from oil was used as a surrogate for GOR since it has a discrete range and is more 

normally distributed; this metric was calculated from oil and gas production using an assumed energy 

content of 5.8 MMBtu bbl
-1

 for oil and 1.05 MMBtu Mcf
-1

 for natural gas.
26

 

Results & Discussion 

A total of 494 unique high emissions sources at 327 well pads were detected by the helicopter survey 

team out of 8,220 surveyed well pads in seven basins. The percentage of total well pads with detected 

HC emissions (Pdetect) was 4% but ranged from 1% in the Powder River to 14% in the Bakken (Table 1). 

There were statistically significantly differences in Pdetect by basin with the Bakken higher than all other 

basins (see Table 1 for full pair-wise comparisons). Emissions were more often observed in oil-producing 

areas with an average Pdetect of 13% in the Bakken and low gas-to-oil ratio strata of mixed production 

basins (p<0.0001, 
2
 test). For example, in the Barnett, 21% of well pads in the low GOR strata showed 

detectable emissions compared to <1% of sites in the high GOR strata (Table 1). There were also 

significant differences in Pdetect by well production type (oil & gas > oil > gas > coal bed methane) and well 

drill type (horizontal > directional and vertical).  

Tank hatches and tank vents were the most common source type of detected emissions, comprising 92% 

of observed sources (Table 1). The remaining 8% of detected emission sources were dehydrators, 

separators, trucks unloading oil from tanks, and unlit or malfunctioning flares. Detected emission sources 

represent individual release points with HC emission rates exceeding the survey’s estimated detection 

limit of approximately 3 g s
-1

 for CH4 or 1 g s
-1

 for heavier HC. Given this detection limit, no emissions 

were observed from equipment leaks, pneumatic controllers, or chemical injection pumps, consistent with 

two recent studies that observed a maximum emission rate of 1.5 CH4 g s
-1

 at over 1,000 such measured 

sources.
27,28
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There are several factors that may account for differences among basins in Pdetect including operational 

practices, emission control regulations, and the mix of produced hydrocarbons. The effect of weather 

conditions on the detection limit may also have impacted the frequency of observed emissions. In 

particular, the higher average wind speed in the Powder River may have contributed to the low frequency 

of observations.  

Statistical analyses 

There were statistically significant but relatively weak positive correlations between detection and 

numerous well pad parameters:  well count, gas production, oil production, water production, and percent 

energy from oil (Table 2; r = 0.06 to 0.20). Detection was negatively correlated with well age (r = -0.12), 

meaning that newer wells were more likely to have detected emissions. The average Pdetect by decile of 

analyzed pad parameters is shown in Figure 1. One binomial generalized linear model, GLM A4, 

predicted detection that was not significantly different than observed (Hosmer-Lemeshow > 0.05); this 

multi-parameter model used basin, the numerical pad parameters well count, well age, gas production, oil 

production, and percent energy from oil, and the interactions of basin with each numerical parameter, to 

explain 14% of the variance in Pdetect (r
2 
= 0.14). Three other multi-parameter GLMs had observed and 

predicted detections that were statistically different and explained 3 to 8% of the variance: A1, using basin 

only; A2, using numerical parameters only; and A3, using basin and the numerical parameters but not 

their interactions (Table S5, r
2
 = 0.03, 0.07, & 0.08, respectively). The increase in predictive power 

indicates that the effect of well pad numerical parameters on Pdetect varies by basin. For example, in the 

Marcellus, Powder River, Barnett, and Uintah basins, which have a mix of produced hydrocarbons with a 

wide range of GOR, there was a significant positive effect of percent energy from oil on predicted Pdetect, 

while there was no significant effect of this parameter in the basins with more homogenous production.  

The most predictive GLM, A4, only explained 14% of the variance, which indicates that the presence of 

high emissions was primarily stochastic or driven by operational characteristics not included in this 

analysis. Therefore, statistical models have limited utility for predicting the occurrence of individual high 

emission sources. However, the relatively weak, statistically significant correlation of several parameters 

with Pdetect does provide some insights into factors affecting the likelihood of high emissions. To assess 



 

74 
 

the effects of well pad characteristics on detection, we evaluated single parameter GLMs for the full 

dataset and individual basins (Table S6). For the full dataset, the GLMs with the best fit between 

observed and predicted detection were based on well age (r
2
 = 0.04), oil production (r

2
 = 0.03), and 

percent energy from oil (r
2
 = 0.03). The relative strength of the effects of parameters on the likelihood of 

detection can be assessed by the ratio of GLM predicted Pdetect at the 97.5
th
 and 2.5

th
 percentile of 

parameter distributions. For example, predicted probability of detection for a pad at the 97.5
th
 percentile of 

well count (Pdetect = 0.11; 5 wells per pad) is 3.2 times higher than for a pad at the 2.5
th
 percentile (Pdetect = 

0.03; 1 well per pad). For individual basins, single parameter GLMs with statistically significant fits had the 

same directional effects as the full dataset but varied in their relative strength. The best fit GLMs were 

based on well count in the Bakken and Marcellus, well age in the Powder River and Uintah, and oil 

production in the Barnett and Eagle Ford. In the Fayetteville, no single parameter GLM had a statistically 

significant fit. Detailed parameters for GLM A4 and single parameter GLMs are reported in Tables S16 & 

S17.  

Other studies have reported a weak positive correlation between gas production and methane 

emissions.
13,28,29

 In a prior study of the Barnett Shale, the top 7% of well pads by gas production were 

estimated to contribute 29% of total methane emissions; this was attributed to higher absolute emissions 

yet lower proportional loss rates of produced gas at high production sites.
18

 The positive correlation 

between oil production and emission detection may be related to a higher frequency of tank flashing with 

increased oil production. Brantley et al. reported that oil production was negatively correlated with 

methane emissions as part of a multivariate linear regression model, which the authors attributed to lower 

methane content relative to heavier HCs in gas from oil producing wells.
13

 In this study, the opposite 

effect would be expected since the IR camera detects all HCs with higher sensitivity to heavier HCs. The 

positive relationship between the number of wells per pad and Pdetect may be due to greater complexity 

and potential emission sources at multi-well pads. The negative effect of well pad age, the parameter with 

the strongest predictive power, is likely related to the inverse relationship between well age and oil and 

gas production, although all parameters remain significant in multi-parameter GLMs. Pads with a well in 

its first two months of production had over five times the frequency of detected emissions than older pads 

(p < 0.001). Due to the steep decline in production rates of unconventional wells with age, equipment and 
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control devices may be undersized for handling this period of maximum production. Although older sites 

would be expected to have a greater likelihood of malfunctions caused by equipment wear, young sites 

may have initial issues caused by poor setup that have yet to be detected and repaired. 

Similar statistical analyses were performed for basin-specific operator characteristics — there were 

several statistically significant but weak correlations between Pdetect and these parameters  (Table 2) with 

the strongest positive and negative correlations for an operator’s regional percent energy from oil (r = 

0.17) and regional well count (r = -0.11). Binomial GLMs predicting Pdetect from operator parameters are 

described in the SI. Relationships between the number of detected emissions by source type and well 

pad or operator characteristics were also evaluated (Table 2). For tank vents and hatches, the number of 

detected sources at a pad was most strongly correlated with oil production (r = 0.24 and 0.19). For non-

tank sources, correlations were weaker (r = -0.06 to 0.06). Poisson GLMs predicting the number of 

detected sources by type from pad parameters are described in the SI.  

Potential causes of observed emissions 

High-emitting sources detected by the survey team may have been caused by both malfunctions and 

normal operations. For non-tank sources, IR videos provide evidence that most sources were the result of 

malfunctions or intentional releases. There were fourteen observations of malfunctioning flares that were 

unlit or operating with poor combustion efficiency. Emissions were detected from the pressure relief 

valves of four separators; although these pressure relief valves may have been functioning properly for 

safety purposes, the overpressurization that triggered their release indicates abnormal operations. Eight 

emission sources were observed from vents associated with trucks unloading oil from tanks, which may 

be intentional to relieve pressure of gas that is released as oil is pumped into trucks. Fifteen dehydrators 

were observed to have HC emissions, primarily from still vents that remove water vapor from the water-

saturated glycol solution. Based on pad gas production and HC emission factors, no more than three of 

these dehydrators would be expected to have still vent emissions close to the 1 g s
-1

 detection limit.
30

 

Therefore, most observed emissions from dehydrators were likely the result of abnormal operations that 

allowed excess HC to slip through the vent. In addition to the IR videos of individual sources, the very 
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weak fit between observed and predicted emissions suggests that non-tank emission sources are 

strongly driven by stochastic processes such as malfunctions. 

Attributing tank vent and hatch emissions to malfunctions or normal operations is more difficult due to the 

many potential causes of tank emissions. As part of normal operations, uncontrolled tanks emit HCs from 

working, breathing, and flashing losses. Tank working and breathing losses generally are expected to be 

less than 1 g HC s
-1

, but emissions in excess of this rate can occur from tank flashing after a separator 

dumps liquids into a tank.
13,31

 As discussed below, the emission rate and frequency of tank flashing 

emissions can be predicted based on parameters including oil production. 

Another routine cause of tank emissions is when wells are vented to unload liquids accumulated in the 

wellbore, which also releases gas. Emissions from well unloadings can be very large — the average 

emission rate of over 100 measured unloading events was 111 g CH4 s
-1

.
32

 U.S. EPA Greenhouse Gas 

Reporting Program (GHGRP) data were used to estimate the percentage of wells expected to be venting 

at any one time in surveyed basins.
33

 Assuming the duration of unloading events was one hour, 0.24% 

and 0.15% of wells in the Fayetteville (Arkoma) and Uintah basins would have been venting due to liquids 

unloading at any one time, respectively; all other surveyed basins are predicted to have had less than 

0.1% of wells venting from unloading. Therefore, liquids unloading events likely could be detected by the 

helicopter survey but only can explain a small fraction of observed tank sources.  

Finally, abnormal emissions can occur if a separator dump valve fails to properly close and allows 

produced gas to flow through the tank instead of the sales line. These sources can have very large 

emission rates — theoretically up to a well’s entire gas production if the valve is stuck fully open. In 2014, 

operators reported over 7,000 malfunctioning dump valves to the U.S. EPA GHGRP.
33

 Based on the 

reported number of hydrocarbon tanks, approximately 5% of GHGRP tanks were associated with stuck 

dump valves. Operators do not report the duration of stuck dump valves, but a median duration of 7 days 

can be back calculated from other GHGRP data. Consequently, less than 0.1% of tanks are expected to 

have emissions from stuck dump valves at any one time. 

Influence of flashing emissions by basin 
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To determine if flashing could account for the observed Pdetect of tank emission sources, potential HC 

emissions from tank flashing were estimated for surveyed well pads. Flash emission rates per unit of 

liquids production vary by parameters such as separator pressure and API gravity (a measure of HC 

liquid density). Since these values were not known for individual sites, basin-level data were obtained 

from the U.S. EPA O&G Emission Estimation Tool 2014 version 1, which includes a compilation of best 

available data from several sources including state regulatory agencies.
34

 The tool provides separate 

emission factors for produced water, condensate, and crude oil (Table S11). For hydrocarbon liquids, a 

weighted average emission factor was derived from basin-level oil and condensate production. If tanks at 

a well pad are manifolded together with a common vent, then flash emissions will occur when any well’s 

separator dumps to the tank battery. Therefore, site-level production was used as a conservatively high 

estimate of flashing emissions. The temporal variability of flash emissions depends on the frequency and 

duration of separator dumps and duration of subsequent flash gas venting. Brantley et al. reported that a 

tank at a Denver-Julesburg well pad producing 29 bbl d
-1

 condensate flashed ten times in twenty minutes; 

the duration of flash events in the study ranged from 30 – 120 seconds.
31

 This indicates that although 

individual flash events are short-lived, some sites may have near continuous tank flashing emissions due 

to frequent venting from separator dumps. To estimate the percentage of sites expected to have flash 

emissions ≥ 1 g HC s
-1

 detection limit at any one time, the frequency and emission rate of flash emissions 

were calculated using two sets of assumptions:  continuous emissions at a constant rate or intermittent 

emissions at the detection limit. Both these estimates use the same daily average emission rate but serve 

as lower and upper bounds for the fraction of sites with concurrent emissions at or above the detection 

limit. The effects of these assumptions were tested with a sensitivity analysis including alternative 

emission factors and a 3 g HC s
-1

 detection limit (Tables S12-S15). In all basins, the range of predicted 

frequencies of sites with uncontrolled tank flashing emissions ≥ 1 g HC s
-1

 included or exceeded observed 

frequencies (Figure 2; Fayetteville was excluded due to lack of reported liquids production). This indicates 

that tank flashing could explain observed emissions in the absence of tank emission control devices.  

There are several state and federal regulations that require some oil and condensate storage tanks to 

control VOC emissions, including in North Dakota, Pennsylvania, Utah, and Wyoming.
35,36

 For example, 

during the time of the survey, U.S. EPA New Source Performance Standard Subpart OOOO required all 
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tanks that began construction after April 12, 2013 and had a potential to emit ≥ 6 tons per year VOC to 

install control devices with at least 95% control effectiveness within 60 days of initial production.
37

 Tank 

emission control devices include flares, combustors (enclosed flares), and vapor recovery units. The 

improper design, construction, or maintenance of tank control devices can reduce the capture or control 

efficiency of tank control devices.
38

 Combustion devices can fail to ignite or have poor combustion 

efficiency, which causes HC emissions from the combustor stack. Emissions may not be fully captured if 

control systems are undersized or if condensed liquids in vent lines restrict the flow of gas, which can 

lead to tank overpressurization that triggers the release of gas from a pressure relief valve or tank hatch. 

Additionally, tank hatches that are left open accidentally or improperly sealed can allow some portion of 

vented flash gas to circumvent control devices. To determine if the frequency of observed tank emissions 

indicates failure of tank control systems, we estimated the percentage of sites expected to be equipped 

with tank controls by applying basin-level control data from the U.S. EPA O&G Emission Estimation Tool 

(Table S11).
34 

For every surveyed well pad, potential emissions from oil, condensate, and water flashing 

were estimated with basin-level emission factors. Well pads were ranked by potential emissions and then 

controls were assumed to be equipped at a fraction of sites equal to the percentage of tanks with flares 

reported in the tool (28 – 86%). Emissions were assumed to be controlled at the reported basin-level 

capture efficiency (100%) and control efficiency (91 – 98%).
34

 If these assumptions were true, then no 

emissions should be observed from hatches or vents of controlled tanks since all emissions are captured 

by the control device, but emissions could be observed exiting control devices if uncombusted HC in flare 

exhaust exceeds the detection limit. 

In the Barnett, Powder River, Marcellus, and Uintah Basins, the observed frequency of well pads with 

detected tank emissions exceeded the maximum predicted frequency based on controlled tank flashing 

emissions, while in the Bakken the observed frequency was lower than expected (Figure 2). U.S. EPA 

recently issued a compliance alert that reports inspectors frequently observe emissions from tank hatches 

and pressure relief valves.
38

 After an inspection of almost a hundred tanks in Colorado found numerous 

instances of ineffective control systems caused by design issues such as undersized control devices, an 

O&G operator entered a consent decree with U.S. EPA and the State of Colorado to evaluate and 

improve their control systems.
39

 In the Bakken and Barnett, we inspected Google Earth imagery to assess 
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the presence of tank control devices at well pads with observed tank emissions — 86% and 56% of well 

pads with extant imagery, respectively, had apparent control devices. This study’s observation that tank 

hatches and vents were the origin of the majority of detected large emission sources, even at controlled 

sites, suggests that the U.S. EPA O&G Emission Estimation Tool’s assumption of 100% capture 

efficiency is inaccurate and incomplete capture of emissions by tank control systems is a widespread 

issue.  

Policy implications 

There are several strategies for reducing emissions from tanks, such as installing vapor recovery towers 

or stabilizers to reduce the vapor pressure of liquids entering tanks, properly sizing control equipment, 

and maintaining pressure relief valves and tank hatches to prevent leaks. Since this study found a higher 

frequency of detected emissions at sites within the first few months of production, controlling tank 

emissions as soon as a site enters production could reduce overall emissions. U.S. EPA New Source 

Performance Standard Subpart OOOO allows the installation of control devices to be delayed up to 60 

days after startup, despite this being a period of maximum production,  especially for unconventional 

wells characterized by rapid production decline.
37

 The use of properly sized control devices as soon as 

production is initiated would address a substantial source of emissions. For example, the average Bakken 

site produces oil about twice the rate in the first two months as it does during the rest of the first year of 

production.
24

 Given the evidence reported in this study that the frequency of observed tank emissions is 

greater than what would be expected if control systems were functioning effectively, it is clear that  

identifying anomalous emissions through regular or continuous monitoring of hydrocarbon emissions 

and/or equipment status, such as leak detection and repair programs, would be an effective strategy to 

reduce emissions.  

Currently, U.S. EPA estimates total annual emissions from all oil and gas production sources of 3.1 Tg 

VOC and 2.9 Tg CH4 with 0.6 Tg CH4 yr
-1

 attributed to oil and condensate tanks.
40,41

 The qualitative 

nature of the IR survey data precludes an accurate estimate of hydrocarbon or methane emissions, but 

with knowledge of the detection limit of the technology deployed our observations can be used to 

estimate a lower bound for tank emissions. Our observation of more than 450 detected tank sources with 
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emission rates ≥ 1 g HC s
-1

 represent at least 450 g HC s
-1

 (a more likely estimate is ~1,575 g HC s
-1

 

based on the median aircraft quantified well pad emission rate of 3.5 g CH4 s
-1

). While these emissions 

likely include both intermittent and continuous sources, the assumption of a relatively constant emission 

rate across a large number of sites is robust and yields an emission rate of at least 14.2 Gg HC yr
-1

. Since 

our observations were limited to summer/fall and daylight hours, we were not able to assess how annual 

average prevalence may be affected by seasonal or diurnal trends such as higher tank breathing losses 

during warmer conditions. The 8,220 surveyed well pads include 1.1%, 3.7%, and 4.5% of U.S. active 

wells, gas production, and oil production, respectively. There is uncertainty in scaling up emissions from 

our sample given that the representativeness of surveyed wells to the U.S. national population of O&G 

wells has not been assessed and there are only weak correlations between the prevalence of high 

emissions and these parameters. However, scaling up by the best fit parameter, oil production, yields a 

minimum national HC emission rate of 0.32 Tg yr
-1 

from high emission tank sources. This national 

emission estimate of tank emissions represents a lower bound for high-emitting tanks and excludes 

common, lower emission rate sources such as tank working and breathing losses. This study provides 

evidence that the cause of some observed emissions is anomalous conditions rather than routine, 

intermittent tank flashing. U.S. EPA may be underestimating emissions from O&G tanks by 

overestimating control effectiveness and failing to comprehensively include abnormal, high emission 

sources. It is reasonable to assume that tanks are a major contributor to the gap between top-down and 

bottom-up estimates of O&G CH4 emissions reported by several studies, as well as to the fat-tail 

emissions observed in a previous study of the Barnett that closed the gap.
11

 

Even though this study found statistically significant correlations between the presence of detected 

emissions and several well pad and operator parameters, these relationships were weak and GLM 

models were able to explain less than 15% of the variance. This low degree of predictability indicates that 

these large emission sources are primarily stochastic and the frequent and widespread inspection of sites 

to identify and repair high emission sources is critical to reducing emissions. In addition to helicopter-

based IR surveys, continuous site-based and mobile leak detection systems may be valuable for quickly 

identifying these large sources.
13,14,42,43,44

 Tank vents and hatches account for the vast majority of high 

emission sources detected at well pads across the U.S. Although routine tank flashing may be 
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responsible for some of these emission sources, there is evidence that substantial emissions are caused 

by abnormal conditions such as ineffective tank control systems. Installing tank control devices on 

existing sources combined with maintenance and monitoring to assure control systems are operating 

effectively would be an important step for reducing emissions of methane and VOCs. Tanks and other 

high emission sources are an important contributor to total hydrocarbon emissions from oil and gas well 

pads and offer a promising opportunity to reduce emissions, but further reductions targeting the 

numerous emission sources that are individually smaller but collectively large will also be necessary to 

minimize the health and climate impacts of oil and gas production. 
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Table 1. Infrared camera survey results by basin and strata. For the percentage of pads with detected 
emissions (Pdetect), letters indicate statistically significant differences among strata within each basin (a—
c) and among basins (w—z) as determined by Analysis of Variance models and Tukey’s HSD (p < 0.05). 
For example, within the Barnett, Pdetect in the Low GOR strata is statistically different than the High GOR 
and Medium GOR strata; the overall Barnett Pdetect is statistically different than overall Pdetect of the 
Bakken, Marcellus, Powder River, and Uintah.  

Basin Strata 

Detected Sources 
Well Pads with 

Detected Sources 

Number 
% Tank 

Vents 

% Tank 

Hatches 

% Other 

Sources 
Number % of pads 

Bakken 

Young 109 9% 83% 7% 57 14.9%
a
 

Old 61 10% 85% 5% 37 12.4%
a
 

All surveyed 170 9% 84% 6% 94 13.8%
w
 

Barnett 

High GOR 10 60% 50% 0% 7 0.7%
a
 

Medium GOR 9 22% 67% 11% 6 1.4%
a
 

Low GOR 60 55% 40% 3% 46 20.6%
b
 

All surveyed 79 52% 44% 4% 59 3.5%
y
 

Eagle Ford 

East 70 61% 34% 3% 29 11.0%
a
 

West 1 0% 100% 0% 1 0.3%
b
 

All surveyed 71 61% 35% 3% 30 5.4%
xy

 

Fayetteville All surveyed 24 17% 83% 0% 13 4.4%
xyz

 

Marcellus 

High GOR, Younger 

Age 

17 76% 12% 12% 13 1.4%
a
 

High GOR, Older 

Age 

0 
   

0 0.0%
b
 

Low GOR 15 13% 87% 0% 11 10.7%
c
 

All surveyed 32 47% 47% 6% 24 1.2%
z
 

Powder 

River 

Coal Bed Methane 0 
   

0 0.0%
a
 

Oil/CBM mix 0 
   

0 0.0%
a
 

Oil 18 44% 39% 22% 15 11.2%
b
 

All surveyed 18 44% 39% 22% 15 1.0%
z
 

Uintah 

High GOR 3 67% 0% 33% 3 2.2%
a
 

Medium GOR 59 75% 5% 20% 52 6.3%
ab

 

Low GOR 38 63% 21% 16% 37 8.8%
b
 

All surveyed 100 70% 11% 19% 92 6.6%
x
 

All Basins 
 

494 40% 52% 8% 327 4.0% 
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Table 2. Correlation of well pad and operator parameters with Pdetect (the detection of emissions at a site; 
non-detect = 0, detect = 1) or the number of detected sources by type. Well pad parameters represent the 
individual site. Operator parameters represent all regional well pads operated by the same company as 
each surveyed site. Reported values are Pearson correlation coefficients (r) that are significantly different 
than zero (p < 0.05). 

Parameters Pdetect 
Total 

Sources 
Tank 
Vents 

Tank 
Hatches 

Non-
Tank 

Sources 

well pad 
parameters 

well count 0.15 0.16 0.15 0.10  

well age -0.12 -0.10 -0.08 -0.07 -0.03 

gas production 0.12 0.11 0.15 0.04  

oil production 0.20 0.28 0.24 0.19  

water production 0.06 0.06 0.04 0.06  

% energy from oil 0.19 0.16 0.10 0.12 0.06 

operator 
regional 

parameters 

well count -0.11 -0.09 -0.06 -0.06 -0.05 

gas production -0.05 -0.03 -0.03  -0.04 

oil production 0.09 0.10 0.06 0.08  

water production -0.06 -0.06 -0.04 -0.03 -0.06 

% energy from oil 0.17 0.14 0.08 0.12 0.06 
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Figure 1. Percentage of well pads with detected emissions by deciles of well pad parameters:  a) Well 

Count (wells per pad), b) Well Age (months since initial production of newest well), c) Gas Production 

(Mcf/day), d) Oil Production (bbl/day), e) Water Production (bbl/day), and f) % Energy from Oil. The 

median values of each decile are displayed on the x-axes. 
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Figure 2. Comparison of the observed and predicted frequencies of well pads with detected tank 
hydrocarbon emissions assuming an observation threshold of 1 g s

-1
 and basin-level data from the EPA 

O&G Estimation Tool. Two sets of predicted estimates are provided: red bars reflect predicted 
frequencies based on potential emissions without controls; green bars reflect the application of controls to 
the highest emitting tanks (see text for details). Predicted frequencies are shown as a range reflecting 
different temporal profiles of tank flashing emissions. For several basins and strata, observed frequencies 
are lower than frequencies predicted without controls but higher than predicted with controls. For 
example, the combined Uintah observation of 5.8% is within the range predicted for potential emissions 
but greater than the maximum of 1.5% predicted if all tank control systems were functioning effectively. 
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CHAPTER 3 APPENDIX 

Contents:  

1. Supporting text, 17 tables, and 2 figures  

2. Excel file with calculations used in tank flashing analysis (Tank_flashing_analysis.xlsx) 

3. List of surveyed sites by latitude/longitude (surveyed_well_pads.xlsx) 

4. Site-level parameter data for well pads in the surveyed areas and basins (Lyon_et_al_data.xlsx) 

5. ZIP file with 8 infrared videos and description of observed sources (Example_IR_videos) 

 

Aircraft Quantification of CH4 Emissions 

Methane emissions at five Eagle Ford and fourteen Bakken well pads and compressor stations were 

quantified with the aircraft-based atmospheric budget method at sites within one hour of emission 

detection by the helicopter survey team. A Mooney TLS fixed-wing aircraft equipped with a Picarro Cavity 

Ring-Down Spectrometer methane analyzer was used to measure horizontal and vertical gradients in 

methane concentration around the target sites. The maximum vertical transport of emissions was 

determined by flying progressively higher until the concentration gradient was no longer observed. Wind 

speed and direction were measured in real time from the aircraft with horizontal gradients estimated using 

a least squares linear optimization.
1
 Methane emission rates and uncertainty were quantified with the 

atmospheric budget method (Table S1).
2
 

Qualitative Ranking of Detected Emissions 

The helicopter survey team reported the apparent magnitude of detected hydrocarbon (HC) emission 

sources based on a subjective evaluation of the visually observed plume size, density, and velocity on the 

infrared camera (qualitative ranking of small, medium, large). Methane emission rates estimated with the 

aircraft-based atmospheric budget method did not correlate with the number of sources or qualitative size 

categorization by the helicopter survey team (small, medium, and large sites were weighted 1, 2, and 3, 
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respectively for correlation analysis, r = 0.01). Therefore, the qualitative rankings were excluded from the 

statistical analyses. Sites that had emission sources qualitatively classified as large but relatively low 

quantified CH4 emission rates may have had plumes too close to the ground for the aircraft to fully 

capture for the atmospheric budget method, or may have been composed primarily of non-methane HCs 

(which the aircraft did not quantify). The inability to classify infrared videos into meaningful qualitative 

emission rate categories also may be due to variable effects of wind dispersion on plume size or temporal 

variation in emission rates between the time of helicopter surveys and aircraft-based quantification.
3,4 

 

Statistical Analyses of Operator Characteristics 

For basin-specific operator characteristics, detection was statistically significantly correlated with a well 

pad’s operator’s regional well count, gas production, oil production, water production, and percent energy 

from oil, but these correlations were weaker than those between Pdetect and well pad parameters (Table 

2). The strongest negative correlation was with operator regional well count (r = -0.11) and strongest 

positive correlation was with the operator percent energy from oil (r = 0.17). Two binomial GLMs based on 

operator parameters predicted detection that was not statistically significant different than observed 

detection (Table S5). GLM B1, a single parameter model based on operator as a categorical parameter, 

had a similar fit as GLM B5, a multi-parameter model based on basin, operator numerical parameters, 

and the interaction of basin with numerical parameters (r
2
 = 0.10). The single parameter binomial GLMs 

with the best fit between observed and predicted detection were models based on an operator’s regional 

percent energy from oil (r
2
 = 0.03), which had a positive relationship with detection, and regional well 

count (r
2
 = 0.01), which had an inverse relationship (Table S6). 

Operators with less than 100 pads in a region on average had detected emissions at 7% of sites 

compared to 4% for larger operators (p = 0.008). Smaller operators may have had more frequent large 

emission sources because they have less capital to invest in equipment, staff, or practices for mitigating 

emissions, such as leak detection and repair programs. The effect of an operator’s percent energy from 

oil may also be related to operational practices – if an operator has a greater focus on oil production, then 

they may be less incentivized to implement mitigation practices that capture more gas for sale. Different 

operational practices likely explain the over 30 times greater frequency of detected emissions in the Eagle 
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Ford eastern survey area compared to the western area, which were similar in average pad parameters. 

In the western area, half the well pads were operated by a company that typically pipes unseparated oil 

and gas to central gathering facilities.
5
 In contrast, most pads in the eastern area were operated by 

companies that typically separate and store oil at the pad. The survey team observed tank emissions at 

four gathering facilities operated by the main company in the western area, which indicates that use of 

offsite tanks may only move some emissions to downstream locations, but it is likely that this operational 

practice leads to an overall decrease in supply chain emissions since highly effective controls such as 

vapor recovery towers would be more cost-effective at large centralized facilities. 

Statistical Analyses of Number of Detected Emissions by Source Type 

The number of detected emission sources per pad by source type had the same directional correlations 

as Pdetect with pad and operator parameters (Table 2). Although many correlations were statistically 

significant, none were strong (r ≤ 0.28), again demonstrating the dominance of random processes. The 

number of detected sources from both tank vents and tank hatches was most strongly correlated with pad 

oil production (r = 0.24 and 0.19, respectively). Compared to tank sources, non-tank emission sources 

had almost no relationship with well pad parameters – the strongest correlation was with percent energy 

from oil (r = 0.06). Several multi-parameter Poisson GLMs based on basin and the well pad numerical 

parameters well age, well count, gas production, oil production, and percent energy from oil predicted a 

number of observed sources that was not significantly different than observed (Table S7). GLM C1, 

based on all numerical parameters, was significant for non-tank sources (r
2
 = 0.01). GLM C2, based on 

basin and numerical parameters, was significant for tank vents (r
2
 = 0.03). GLM C3, based on basin, 

numerical parameters, and the interaction of basin with each numerical parameter was significant for all 

source types with the strongest correlation for total sources (r
2
 = 0.07). Single parameter Poisson GLMs 

predicting the number of sources by type based on well pad parameters were used to evaluate the effects 

of parameters (Table S8). The best fit between observed and predicted values were based on models 

with well age or oil production for tank vents (r
2
 = 0.02), oil production for tank hatches (r

2
 = 0.02), and 

percent energy from oil for non-tank sources (r
2
 = 0.002).  
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Table S1. Site methane fluxes estimated by the aircraft atmospheric budget method at well pads and 
compressor stations within one hour of emission source detection by the helicopter-based IR camera 
survey team and the number and qualitative description of the magnitude of these sources by the survey 
team.  

Basin Video 
ID 

Site Type Aircraft CH4 
flux estimate 

(g/s) 

Helicopter IR 
detected 
sources 

Eagle 
Ford 

eagle88 compressor 
station 

24±16 1 small 

Bakken bak04 compressor 
station 

23±3 2 medium, 4 
small 

Bakken bak21 compressor 
station 

20±5 6 big 

Bakken bak28 well pad 18±4 1 medium 

Bakken bak45 compressor 
station 

17±2 1 big 

Eagle 
Ford 

eagle82 compressor 
station 

14±8 1 big, 2 small 

Eagle 
Ford 

eagle46 compressor 
station 

14±34 3 big 

Eagle 
Ford 

eagle39 compressor 
station 

13±20 4 medium 

Bakken bak64 well pad 9±3 8 big 

Bakken bak08 compressor 
station 

5±2 2 big 

Bakken bak49 compressor 
station 

5±2 2 big 

Eagle 
Ford 

eagle58 compressor 
station 

5±3 1 big 

Bakken bak51 compressor 
station 

4±1 4 big 

Bakken bak58 well pad 4±1 4 medium 

Bakken bak25 well pad 3±1 4 big 

Bakken bak56 well pad 3±1 7 big 

Bakken bak55 compressor 
station 

2±1 2 big 

Bakken bak53 compressor 
station 

2±1 2 medium 

Bakken bak59 well pad 1±1 1 big 
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Table S2. Average hourly meteorological conditions from 8:00 AM to 6:00 PM during survey days at local 
weather stations (< 100 km from surveyed wells). Data were obtained from the Iowa Environmental 
Mesonet archive of METAR airport weather observations.

6
 

Basin 
Weathe
r Station 

Temp 
(⁰C) 

Wind 
Speed (m 

s
-1

) 

% hours by cloud cover class 

Clear Few Scattered Broken 
Overcas

t 

Uintah VEL 26.3 2.7 72% 17% 6% 4% 1% 

Bakken ISN 15.2 3.9 60% 9% 7% 9% 15% 

Fayetteville LRF 26.7 3.1 26% 38% 15% 15% 5% 

Eagle Ford SKF 27.6 4.8 7% 35% 31% 25% 3% 

Barnett DFW 24.7 4.5 2% 67% 17% 15% 0% 

Powder 
River 

CPR 22.6 6.4 44% 25% 17% 10% 4% 

Marcellus PIT 21.4 3.9 3% 45% 41% 10% 2% 
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Table S3. Average characteristics of well pads in surveyed areas by basin and strata 

Basin Strata 

Survey
ed 

Area 
(km

2
) 

Survey
ed 

Pads 

Wells 
per 
Pad 

Well 
Age 
(yrs) 

Gas 
Produ
ction 
(Mcf 
pad

-1
 

day
-1

) 

Oil 
Produ
ction 
(bbl 
pad

-1
 

day
-1

) 

Water 
Product
ion (bbl 

pad
-1

 
day

-1
) 

Area 
GOR 
(Mcf 
bbl

-1
) 

Bakken 

Young 600 383 1.5 3 296 246 132 1.2 

Old 600 299 1.4 7 313 295 163 1.1 

All 
surveyed 

1,200 682 1.5 5 303 267 145 1.1 

Barnett 

High GOR 300 1,028 1.6 11 390 0 33 
13,35

2 

Medium 
GOR 

300 444 1.3 22 197 2 38 125 

Low GOR 300 223 1.9 8 441 16 266 27 

All 
surveyed 

900 1,695 1.5 13 346 3 65 136 

Eagle Ford 

East 600 264 2.2 5 1,014 411 144 2.5 

West 600 287 2.0 6 553 238 117 2.3 

All 
surveyed 

1,200 551 2.1 5 774 321 130 2.4 

Fayetteville 
All 

surveyed 
400 295 2.7 4 1,438 0 NA NA 

Marcellus 

High 
GOR, 

Younger 
Age 

800 920 1.3 9 936 0 

NA 

4,866 

High 
GOR, 

Older Age 
300 1,042 1.0 14 34 0 

14,35
8 

Low GOR 400 103 3.4 6 2,719 73 37 

All 
surveyed 

1,500 2,065 1.3 11 570 4 153 

Powder 
River 

Coal Bed 
Methane 

300 708 1.0 5 202 0 99 4,768 

Oil/CBM 
mix 

300 701 1.0 8 142 3 51 49 

Oil 300 134 1.1 13 112 79 67 1 

All 
surveyed 

900 1,543 1.1 7 167 8 74 20 

Uintah 

High GOR 100 138 1.1 11 157 2 11 82 

Medium 
GOR 

300 831 1.1 13 69 3 24 25 

Low GOR 250 420 1.2 4 28 18 16 2 

All 
surveyed 

650 1,389 1.1 10 65 7 20 9 

All Basins 
 

6,750 8,220 1.4 9 385 48 72 8 
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Table S4. A comparison of average well pad parameters of surveyed sites to the total population of each 
basin. Asterisks indicate parameters for which the distributions of surveyed and basin sites are not 
statistically different (Kolmogorov-Smirnov p > 0.05). The basin populations include all active wells with 
2014 production. For the Marcellus, the basin population was limited to Appalachian basin wells in 
Pennsylvania. 

Basin Strata 
Wells 

per Pad 

Well 
Age 
(yrs) 

Gas 
Productio

n (Mcf 
pad

-1
 day

-

1
) 

Oil 
Productio
n (bbl pad

-

1
 day

-1
) 

Water 
Productio
n (bbl pad

-

1
 day

-1
) 

% 
Energy 
from Oil 

Bakken 

Young 1.5 3 296 246 132 82% 

Old 1.4 7 313 295 163 83% 

All surveyed 1.5 5 303 267 145 83% 

Basin 1.4* 10 260 225 245 83% 

Barnett 

High GOR 1.6 11 390 0.03 33 0% 

Medium GOR 1.3 22 197 2 38 2% 

Low GOR 1.9 8 441 16 266 35% 

All surveyed 1.5 13 346 3 65 5% 

Basin 1.9 19 273 3 114 22% 

Eagle Ford 

East 2.2 5 1,014 411 144 63% 

West 2 6 553 238 117 63% 

All surveyed 2.1 5 774 321 130 63% 

Basin 1.9 8 857 222 211 55% 

Fayettevill
e 

All surveyed 2.7 4 1,438 0 
NA 

0% 

Basin 2.3 5 1,409 0 0% 

Marcellus 

High GOR, 
Younger Age 

1.3 9 936 0.2 

NA 

2% 

High GOR, Older 
Age 

1.0 14 34 0 0% 

Low GOR 3.4 6 2,719 73 12% 

All surveyed 1.3 11 570 4 2% 

Basin (PA only) 1.1 15 251 0.4 12% 

Powder 
River 

Coal Bed Methane 1.0 5 202 0.04 99 1% 

Oil/CBM mix 1.0 8 142 3 51 7% 

Oil 1.1 13 112 79 67 53% 

All surveyed 1.1 7 167 8 74 8% 

Basin 1.1* 15 87 16 97 34% 

Uintah 

High GOR 1.1 11 157 2 11 4% 

Medium GOR 1.1 13 69 3 24 21% 

Low GOR 1.2 4 28 18 16 79% 

All surveyed 1.1 10 65 7 20 37% 

Basin 1.3 10 166 14 47 31% 
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Table S5. A comparison of binomial generalized linear models predicting the detection of emissions for 

the full dataset from basin and numerical pad parameters. For GLM A4, there is no significant difference 

between observed and predicted values (Hosmer-Lemeshow p > 0.05). 

Mode
l 

Parameters AIC 
GLM 
fit (r) 

Hosmer-
Lemeshow 

(p) 

A1 basin 2520 0.18 2.2E-16 

A2 
well age + well count + gas production + oil production +  % 
energy from oil  

2344 0.26 3.8E-09 

A3 
basin + well age + well count + gas production + oil 
production + % energy from oil  

2260 0.29 6.4E-04 

A4 

basin + well age + well count + gas production + oil 
production + % energy from oil + basin*well age + basin*well 
count + basin*gas production + basin*oil production + 
basin*% energy from oil 

2105 0.37 0.21 

 

Table S6. Effects of well pad parameters on emission detection probability for the full dataset and 
individual basins. For each basin, the top value is the Pearson correlation coefficient (r) between 
observed and fitted values based on single parameter binomial GLMs. Asterisks indicate that a GLM is 
statistically significant (p < 0.05). The bottom value is the ratio of predicted detection probability at the 
97.5

th
 and 2.5

th
 percentiles of the parameters value in each basin. For parameters with negative effects, 

the inverse ratios are shown and indicated by parentheses. 

  
Well 

Count 
Well Age 

Gas 
Productio

n 

Oil 
Productio

n 

Water 
Productio

n 

% Energy 
from Oil 

Bakken 
0.22* 0.11* 0.21* 0.19* 0.08* 0.03 

2.4 (6.9) 2.6 2.6 1.6 (1.4) 

Barnett 
0.05* 0.26* 0.12* 0.45* 0.01 0.17* 

2.4 (4.4E+3) 3 5.9 1.1 7.1 

Eagle 
Ford 

0.1* 0.12* 0.31* 0.36* 0.12* 0.00 

2.7 (1.1E+5) 4.5 4.9 2.7 (1.1) 

Fayettevill
e 

0.07 0.02 0.00 
NA NA NA 

2.8 (1.4) 1.0 

Marcellus 
0.38* 0.31* 0.27* 0.02* 

NA 
0.05* 

12 (6.2E+7) 1.9 1.3 1.7 

Powder 
River 

0.03* 0.26* 0.05* 0.07* 0.01 0.19* 

2.8 (2.6E+11) 3.4 1.1 1.5 45 

Uintah 
0.02 0.15* 0.04 0.12* 0.02 0.08* 

1.2 (61) 1.4 2.6 1.3 2.1 

All 
Basins 

0.12* 0.20* 0.09* 0.17* 0.02* 0.17* 

3.2 (1.1E+3) 1.3 1.9 1.1 6.0 
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Table S7. A comparison of binomial generalized linear models predicting the detection of emissions for 
the full dataset from operator or numerical operator parameters. For GLMs B1 and B5, there are no 
significant differences between observed and predicted values (Hosmer-Lemeshow p > 0.05). 

Model Parameters AIC 
GLM 
fit (r) 

Hosmer-
Lemeshow 

(p) 

B1 operator (categorical) 
257

8 
0.31 1 

B2 basin + operator (categorical)  
255

4 
0.31 5.9E-03 

B3 
operator well count + operator gas production + operator oil 
production + operator % energy from oil 

252
6 

0.18 3.6E-11 

B4 
basin +  operator well count + operator gas production + 
operator oil production + operator % energy from oil 

246
0 

0.20 9.2E-07 

B5 
basin + operator well count + operator gas production + 
operator oil production + operator % energy from oil + basin 
interactions with numerical parameters 

223
8 

0.31 0.28 

 

Table S8. Effects of operator regional parameters on emission detection probability at their well pads for 
the full dataset and individual basins. For each basin, the top value is the Pearson correlation coefficient 
(r) between observed and fitted values based on single parameter binomial generalized linear models. 
Asterisks indicate that a GLM is statistically significant. The bottom value is the ratio of predicted 
detection probability at the 97.5

th
 and 2.5

th
 percentiles of the parameters value in each basin. For 

parameters with negative effects, the inverse ratios are shown and indicated by parentheses. 

 
Operator 

Well Count 

Operator 
Gas 

Production 

Operator Oil 
Production 

Operator 
Water 

Production 

Operator % 
Energy from 

Oil 

Bakken 
0.15* 0.13* 0.14* 0.15* 0.00 

(3.5) (3.0) (3.5) (3.7) (1.0) 

Barnett 
0.13* 0.13* 0.29* 0.24* 0.11* 

(8.4) (8.2) 11 9.1 2.6 

Eagle Ford 
0.02 0.07 0.04 0.01 0.01 

(1.3) 2.4 2.0 (1.2) (1.3) 

Fayetteville 
0.08 0.08 

NA NA NA 
2.7 2.7 

Marcellus 
0.09* 0.11* 0.08* 

NA 
0.04 

12 11 3.9 3.0 

Power 
River 

0.13* 0.13* 0.13* 0.14* 0.18* 

(86) (280) 25 (470) 101 

Uintah 
0.06* 0.09* 0.03 0.08* 0.05* 

(3.1) (8.3) 1.3 (4.6) 1.6 

All Basins 
0.11* 0.05* 0.07* 0.09* 0.16* 

(8.1) (2.3) 2.9 (3.7) 5.4 
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Table S9. Comparison of Poisson generalized linear models predicting the number of detected emission 

sources by type for the full dataset. There are no significant differences between observed and predicted 

values for total sources based on GLM C3, for tank vents based on GLMs C2 and C1, for tank hatches 

based on GLM C3, and forother sources based on GLMs C1 and C3 (Hosmer-Lemeshow p > 0.05). 

Model Parameters Source type AIC 
GLM fit 

(r) 

Hosmer-
Lemeshow 

(p) 

C1 

well count + well age + 
gas production + oil 

production +  % energy 
from oil + operator pad 

count 

total sources 3350 0.23 2.2E-13 

tank vents 1645 0.21 1.1E-7 

tank hatches 2056 0.22 2.2E-7 

other sources 492 0.15 0.11 

C2 

basin + well age + well 
count + gas production + 
oil production + % energy 

from oil + operator pad 
count 

total sources 3253 0.26 1.0E-6 

tank vents 1557 0.18 0.05 

tank hatches 1893 0.24 0.04 

other sources 483 0.15 0.03 

C3 

basin interactions + basin 
+ well age + well count + 

gas production + oil 
production + % energy 
from oil + operator pad 

count 

total sources 3026 0.27 0.15 

tank vents 1484 0.24 0.12 

tank hatches 1761 0.21 0.64 

other sources 491 0.15 
0.46 

 

Table S10. Effects of well pad parameters on predicted number of detected emissions by source type for 

the full dataset. For each source type, the top value is the Pearson correlation coefficient (r) between 

observed and fitted values based on single parameter Poisson generalized linear models. Asterisks 

indicate that a GLM is statistically significant. The bottom value is the ratio of predicted number of 

detected sources at the 97.5
th
 and 2.5

th
 percentiles of the parameters values. For parameters with 

negative effects, the inverse ratios are shown and indicated by parentheses. 

All Basins 
well 

count 
well age 

gas 
productio

n 

oil 
productio

n 

water 
productio

n 

% energy 
from oil 

total sources 
0.08* 0.19* 0.04* 0.14* 0.01* 0.14* 

3.7 (9.2E+3) 1.2 1.4 1.1 8.6 

tank vents 
0.08* 0.15* 0.07* 0.15* 0.01* 0.09* 

4.0 (2.9E+3) 1.2 1.4 1.1 6.0 

tank hatches 
0.04* 0.15* 0.01* 0.09* 0.01* 0.10* 

3.7 (1.1E+5) 1.2 1.4 1.1 12 

other sources 
0.00 0.04* 0.01 0.00 0.02 0.05* 

1.1 (31) 1.1 (1.0) (5.8) 6.4 
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Table S11. Tank emission factors, prevalence of controls, capture efficiency, and control efficiency for 
surveyed basins used in tank flashing analysis. Data are based on the EPA O&G Emission Estimation 
Tool 2014 Version 1.

7
 

Basin 

Flashing Emission Factor (g HC bbl
-1)

 
% HC 

liquids 
tanks with 

flare 

% 
capture 
efficienc

y 

% 
control 

efficienc
y 

Produc
ed 

Water 
Oil 

Condensa
te 

HC 
liquids 

(weighted 
average) 

Fayetteville 53 1,545 4,666 1,617 NA 100% 98% 

Bakken 64 3,459 12,894 3,460 83% 100% 91% 

Powder 
River 

60 916 277,381 999 86% 100% 97% 

Uintah 60 1,652 7,909 1,800 37% 100% 98% 

Marcellus 60 797 8,342 1,263 62% 100% 97% 

Eagle Ford 60 795 9,831 817 78% 100% 98% 

Barnett 60 795 8,722 959 28% 100% 98% 
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Table S12. Sensitivity analysis of predicted percentage of well pads with potential hydrocarbon (HC) 
emissions above 1 g HC s

-1
. Emissions are calculated separately for produced water, HC liquids, and the 

combination of water and HCs using basin-level emission factors (EF) from the EPA O&G Estimation Tool 
2014 version 1. Three different emission factors (EF) are used HC liquids: oil, condensate, and a 
weighted EF based on basin-level oil and condensate production. For each emission estimate, the % of 
sites with emissions above the threshold is calculated based on two temporal profiles: continuous 
emissions at a constant emission rate (con.) and intermittent emissions at the threshold rate (int.). 

 

con. int. con. int. con. int. con. int. con. int.

Young 11.4% 2.7% 10.4% 87.0% 95.4% 86.0% 94.1% 97.7% 98.4% 87.0% 95.4%

Old 12.8% 1.0% 8.9% 95.6% 98.2% 95.6% 98.1% 98.7% 99.4% 95.6% 98.2%

Combined 12.2% 1.8% 9.5% 91.8% 97.0% 91.3% 96.4% 98.2% 98.9% 91.8% 97.0%

High GOR 0.7% 0.1% 1.3% 0.1% 1.4% 0.0% 0.0% 0.0% 0.3% 0.1% 1.4%

Medium GOR 1.4% 0.9% 2.3% 1.1% 3.5% 0.2% 1.4% 2.3% 8.4% 1.1% 3.5%

Low GOR 19.3% 2.7% 9.8% 7.6% 24.4% 1.8% 13.3% 31.8% 50.9% 7.6% 24.4%

Combined 3.3% 0.6% 2.7% 1.4% 4.9% 0.3% 2.1% 4.8% 9.1% 1.4% 4.9%

East 10.6% 1.9% 9.1% 56.4% 72.6% 55.7% 71.4% 86.7% 89.1% 56.4% 72.6%

West 0.3% 0.7% 7.9% 43.6% 62.8% 42.9% 60.6% 81.2% 85.2% 43.6% 62.8%

Combined 5.3% 1.3% 8.5% 49.7% 67.5% 49.0% 65.8% 83.8% 87.1% 49.7% 67.5%

Young High GOR 10.7% 0.0% 1.8% 37.9% 51.8% 26.2% 43.9% 64.1% 70.5% 37.9% 51.8%

Old High GOR 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Low GOR 1.3% 0.0% 0.6% 0.0% 0.9% 0.0% 0.2% 0.4% 0.8% 0.0% 0.9%

Combined 1.1% 0.0% 0.4% 1.9% 3.0% 1.3% 2.3% 3.4% 3.9% 1.9% 3.0%

CBM 0.0% 0.0% 6.8% 0.0% 6.9% 0.0% 0.0% 0.7% 0.7% 0.0% 6.9%

Oil/CBM 0.0% 0.0% 3.5% 0.7% 5.0% 0.7% 1.6% 8.3% 8.3% 0.7% 5.0%

Oil 9.0% 0.7% 4.5% 12.7% 24.1% 11.9% 21.4% 67.9% 68.6% 12.7% 24.1%

Combined 0.8% 0.1% 5.1% 1.4% 7.5% 1.4% 2.6% 10.0% 10.0% 1.4% 7.5%

High GOR 1.4% 0.0% 0.7% 0.0% 4.7% 0.0% 3.7% 5.1% 10.5% 0.0% 4.7%

Medium GOR 4.8% 0.0% 1.7% 0.2% 7.3% 0.1% 5.2% 7.5% 20.3% 0.2% 7.3%

Low GOR 7.4% 0.0% 1.1% 6.9% 35.6% 4.8% 32.3% 54.3% 75.1% 6.9% 35.6%

Combined 5.3% 0.0% 1.4% 2.2% 15.6% 1.5% 13.2% 21.4% 35.9% 2.2% 15.6%

ObservedStrataBasin

% of sites with potential tank emissions > 1 g HC s-1

water
HC liquids 

(weighted HC EF)
HC liquids (oil EF)

HC liquids 

(condensate EF)

total liquids 

(weighted HC EF)

Bakken

Barnett

Eagle Ford

Marcellus

Powder River

Uintah
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Table S13. Sensitivity analysis of predicted percentage of well pads with controlled hydrocarbon (HC) 
emissions above 1 g HC s

-1
. Emissions are calculated separately for produced water, HC liquids, and the 

combination of water and HCs using basin-level emission factors (EF) from the EPA O&G Estimation Tool 
2014 version 1. Three different emission factors (EF) are used HC liquids: oil, condensate, and a 
weighted EF based on basin-level oil and condensate production. Controlled emissions are estimated by 
applying capture efficiency and control efficiency to a subset of highest emitting tanks based on basin-
level control data from the EPA O&G Estimation Tool. For each emission estimate, the % of sites with 
emissions above the threshold is calculated based on two temporal profiles: continuous emissions at a 
constant emission rate (con.) and intermittent emissions at the threshold rate (int.).  

 

con. int. con. int. con. int. con. int.

Young 11.4% 33.1% 60.9% 33.1% 60.8% 76.3% 92.9% 34.1% 62.4%

Old 12.8% 29.2% 58.0% 29.2% 58.0% 75.2% 94.3% 29.5% 58.3%

Combined 12.2% 30.9% 59.2% 30.9% 59.2% 75.7% 93.7% 31.5% 60.1%

High GOR 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.2%

Medium GOR 1.4% 0.0% 0.1% 0.0% 0.1% 0.0% 0.7% 0.0% 0.2%

Low GOR 19.3% 0.0% 0.4% 0.0% 0.3% 0.0% 3.7% 0.0% 0.8%

Combined 3.3% 0.0% 0.1% 0.0% 0.1% 0.0% 0.7% 0.0% 0.3%

East 10.6% 0.4% 8.6% 0.4% 8.4% 28.0% 51.2% 0.4% 8.9%

West 0.3% 0.3% 5.7% 0.3% 5.5% 23.0% 44.7% 0.3% 6.1%

Combined 5.3% 0.4% 7.1% 0.4% 6.9% 25.4% 47.8% 0.4% 7.4%

Young High GOR 10.7% 0.0% 3.1% 0.0% 1.9% 2.9% 19.6% 0.0% 3.1%

Old High GOR 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Low GOR 1.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%

Combined 1.1% 0.0% 0.2% 0.0% 0.1% 0.1% 1.0% 0.0% 0.2%

CBM 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.4% 0.0% 0.2%

Oil/CBM 0.0% 0.0% 0.1% 0.0% 0.1% 3.6% 5.8% 0.0% 0.2%

Oil 9.0% 0.0% 2.9% 0.0% 2.6% 33.6% 46.5% 0.0% 3.0%

Combined 0.8% 0.0% 0.3% 0.0% 0.3% 4.6% 6.9% 0.0% 0.5%

High GOR 1.4% 0.0% 0.9% 0.0% 0.8% 0.0% 3.9% 0.0% 1.5%

Medium GOR 4.8% 0.0% 1.1% 0.0% 1.0% 0.0% 4.8% 0.0% 1.4%

Low GOR 7.4% 0.0% 1.8% 0.0% 1.7% 0.0% 8.1% 0.0% 1.9%

Combined 5.3% 0.0% 1.3% 0.0% 1.2% 0.0% 5.7% 0.0% 1.5%

Marcellus

Powder River

Uintah

% of sites with controlled tank emissions > 1 g HC s-1

HC liquids 

(weighted HC EF)
HC liquids (oil EF)

HC liquids 

(condensate EF)

total liquids 

(weighted HC EF)

Basin Strata Observed

Bakken

Barnett

Eagle Ford
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Table S14. Sensitivity analysis of predicted percentage of well pads with potential hydrocarbon (HC) 
emissions above 3 g HC s

-1
. Emissions are calculated separately for produced water, HC liquids, and the 

combination of water and HCs using basin-level emission factors (EF) from the EPA O&G Estimation Tool 
2014 version 1. Three different emission factors (EF) are used HC liquids: oil, condensate, and a 
weighted EF based on basin-level oil and condensate production. For each emission estimate, the % of 
sites with emissions above the threshold is calculated based on two temporal profiles: continuous 
emissions at a constant emission rate (con.) and intermittent emissions at the threshold rate (int.). 

 

con. int. con. int. con. int. con. int. con. int.

Young 11.4% 0.0% 4.0% 52.5% 77.2% 51.8% 76.2% 89.6% 95.8% 52.5% 77.2%

Old 12.8% 0.0% 3.3% 63.2% 87.2% 62.4% 86.9% 97.4% 98.4% 63.2% 87.2%

Combined 12.2% 0.0% 3.6% 58.5% 82.8% 57.8% 82.2% 94.0% 97.3% 58.5% 82.8%

High GOR 0.7% 0.1% 0.5% 0.1% 0.5% 0.0% 0.0% 0.0% 0.1% 0.1% 0.5%

Medium GOR 1.4% 0.0% 0.9% 0.0% 1.5% 0.0% 0.5% 0.9% 3.9% 0.0% 1.5%

Low GOR 19.3% 0.9% 4.3% 1.3% 10.1% 0.4% 4.9% 16.6% 31.7% 1.3% 10.1%

Combined 3.3% 0.2% 1.1% 0.2% 2.0% 0.1% 0.8% 2.4% 5.3% 0.2% 2.0%

East 10.6% 0.0% 3.3% 30.3% 52.2% 29.9% 50.8% 83.0% 86.4% 30.3% 52.2%

West 0.3% 0.0% 2.7% 23.0% 41.5% 20.9% 40.0% 73.5% 78.8% 23.0% 41.5%

Combined 5.3% 0.0% 3.0% 26.5% 46.6% 25.2% 45.2% 78.0% 82.5% 26.5% 46.6%

Young High GOR 10.7% 0.0% 0.6% 9.7% 31.3% 2.9% 21.2% 50.5% 61.6% 9.7% 31.3%

Old High GOR 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Low GOR 1.3% 0.0% 0.2% 0.0% 0.3% 0.0% 0.1% 0.2% 0.5% 0.0% 0.3%

Combined 1.1% 0.0% 0.1% 0.5% 1.7% 0.1% 1.1% 2.6% 3.3% 0.5% 1.7%

CBM 0.0% 0.0% 2.3% 0.0% 2.3% 0.0% 0.0% 0.6% 0.7% 0.0% 2.3%

Oil/CBM 0.0% 0.0% 1.2% 0.3% 2.0% 0.3% 0.9% 8.0% 8.3% 0.3% 2.0%

Oil 9.0% 0.0% 1.5% 6.0% 13.8% 6.0% 12.4% 64.9% 66.4% 6.0% 13.8%

Combined 0.8% 0.0% 1.7% 0.6% 3.2% 0.6% 1.5% 9.5% 9.8% 0.6% 3.2%

High GOR 1.4% 0.0% 0.2% 0.0% 1.6% 0.0% 1.2% 1.4% 5.5% 0.0% 1.6%

Medium GOR 4.8% 0.0% 0.6% 0.0% 2.5% 0.0% 1.7% 0.4% 8.1% 0.0% 2.5%

Low GOR 7.4% 0.0% 0.4% 0.0% 13.0% 0.0% 11.6% 15.5% 45.8% 0.0% 13.0%

Combined 5.3% 0.0% 0.5% 0.0% 5.5% 0.0% 4.7% 5.0% 19.3% 0.0% 5.5%

% of sites with potential tank emissions > 3 g HC s-1

water
HC liquids 

(weighted HC EF)
HC liquids (oil EF)

HC liquids 

(condensate EF)

total liquids 

(weighted HC EF)

Marcellus

Powder River

Uintah

Basin Strata Observed

Bakken

Barnett

Eagle Ford
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Table S15. Sensitivity analysis of predicted percentage of well pads with controlled hydrocarbon (HC) 
emissions above 3 g HC s

-1
. Emissions are calculated separately for produced water, HC liquids, and the 

combination of water and HCs using basin-level emission factors (EF) from the EPA O&G Estimation Tool 
2014 version 1. Three different emission factors (EF) are used HC liquids: oil, condensate, and a 
weighted EF based on basin-level oil and condensate production. Controlled emissions are estimated by 
applying capture efficiency and control efficiency to a subset of highest emitting tanks based on basin-
level control data from the EPA O&G Estimation Tool. For each emission estimate, the % of sites with 
emissions above the threshold is calculated based on two temporal profiles: continuous emissions at a 
constant emission rate (con.) and intermittent emissions at the threshold rate (int.). 

 

 

  

con. int. con. int. con. int. con. int.

Young 11.4% 9.0% 31.1% 9.0% 31.1% 38.1% 67.0% 9.0% 31.8%

Old 12.8% 6.5% 28.8% 6.5% 28.8% 35.2% 64.1% 6.8% 29.1%

Combined 12.2% 7.6% 29.8% 7.6% 29.8% 36.5% 65.4% 7.8% 30.3%

High GOR 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%

Medium GOR 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1%

Low GOR 19.3% 0.0% 0.1% 0.0% 0.1% 0.0% 1.2% 0.0% 0.3%

Combined 3.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1%

East 10.6% 0.0% 2.9% 0.0% 2.9% 7.6% 27.2% 0.0% 3.0%

West 0.3% 0.0% 1.9% 0.0% 1.9% 3.8% 20.6% 0.0% 2.1%

Combined 5.3% 0.0% 2.4% 0.0% 2.3% 5.6% 23.8% 0.0% 2.5%

Young High GOR 10.7% 0.0% 1.0% 0.0% 0.6% 0.0% 6.8% 0.0% 1.0%

Old High GOR 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Low GOR 1.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Combined 1.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.3% 0.0% 0.1%

CBM 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1%

Oil/CBM 0.0% 0.0% 0.0% 0.0% 0.0% 1.3% 3.1% 0.0% 0.1%

Oil 9.0% 0.0% 1.0% 0.0% 0.9% 22.4% 34.0% 0.0% 1.0%

Combined 0.8% 0.0% 0.1% 0.0% 0.1% 2.5% 4.4% 0.0% 0.2%

High GOR 1.4% 0.0% 0.3% 0.0% 0.3% 0.0% 1.3% 0.0% 0.5%

Medium GOR 4.8% 0.0% 0.4% 0.0% 0.3% 0.0% 1.6% 0.0% 0.5%

Low GOR 7.4% 0.0% 0.6% 0.0% 0.6% 0.0% 2.7% 0.0% 0.6%

Combined 5.3% 0.0% 0.4% 0.0% 0.4% 0.0% 1.9% 0.0% 0.5%

% of sites with controlled tank emissions > 3 g HC s-1

HC liquids 

(weighted HC EF)
HC liquids (oil EF)

HC liquids 

(condensate EF)

total liquids 

(weighted HC EF)

Bakken

Barnett

Eagle Ford

Marcellus

Powder River

Uintah

Basin Strata Observed
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Table S16. Summary of single parameter binomial generalized linear models predicting detection of 
hydrocarbon emissions based on well pad or operator regional parameters:  GLM intercept and 
coefficient, Akaike Information Criterion, Pearson correlation (r) and significance (p) of fit between 
observed and predicted detection, Hosmer-Lemeshow goodness of fit (p > 0.05 indicates observed and 
predicted detection and not statistically different), and the ratio of predicted detection at the 97.5

th
 and 

2.5
th
 percentile of parameter values.  

Dataset 
GLM 

Parameter 

GLM 
interce

pt 

GLM 
coefficien

t 
AIC 

GLM fit 
(r) 

GLM fit 
(p) 

Hosmer-
Lemesho

w (p) 

97.5th / 
2.5th 
ratio 

All 
Basins 

Pad Well 
Count 

-3.741 3.39E-01 2651 0.123 3.3E-24 1.0E+00 3.2E+00 

All 
Basins 

Pad Well 
Age 

-2.012 
-1.65E-

02 
2530 0.205 1.4E-50 0.0E+00 8.9E-04 

All 
Basins 

Pad Gas 
Production 

-3.250 1.06E-04 2709 0.092 2.1E-11 0.0E+00 1.3E+00 

All 
Basins 

Pad Oil 
Production 

-3.323 1.39E-03 2629 0.174 5.4E-29 0.0E+00 1.9E+00 

All 
Basins 

Pad Water 
Production 

-2.977 2.30E-04 2305 0.018 5.5E-03 1.1E-13 1.1E+00 

All 
Basins 

Pad % 
Energy 
from Oil 

-3.910 
2.08E+0

0 
2520 0.168 1.1E-52 2.0E-04 6.0E+00 

All 
Basins 

Operator 
Well Count 

-2.553 
-3.76E-

04 
2646 0.108 2.6E-25 3.6E-13 1.2E-01 

All 
Basins 

Operator 
Gas 

Production 
-2.978 

-6.29E-
07 

2730 0.054 1.3E-06 0.0E+00 4.3E-01 

All 
Basins 

Operator 
Oil 

Production 
-3.360 8.12E-06 2706 0.067 6.3E-12 0.0E+00 2.9E+00 

All 
Basins 

Operator 
Water 

Production 
-2.648 

-3.51E-
06 

2287 0.087 3.2E-07 2.8E-13 2.7E-01 

All 
Basins 

Operator 
% Energy 
From Oil 

-3.944 
2.20E+0

0 
2560 0.164 6.6E-44 0.0E+00 5.4E+00 

Fayettevi
lle 

Pad Well 
Count 

-3.587 1.73E-01 109 0.074 2.2E-01 1.0E+00 2.8E+00 

Fayettevi
lle 

Pad Well 
Age 

-2.887 
-3.98E-

03 
110 0.020 7.3E-01 3.1E-01 7.3E-01 

Fayettevi
lle 

Pad Gas 
Production 

-3.080 2.43E-06 111 0.001 9.9E-01 2.8E-01 1.0E+00 

Fayettevi
lle 

Operator 
Well Count 

-4.223 4.27E-04 108 0.082 1.3E-01 NaN 2.7E+00 

Fayettevi
lle 

Operator 
Gas 

Production 
-4.107 6.25E-07 108 0.083 1.3E-01 NaN 2.7E+00 

Barnett 
Pad Well 

Count 
-3.871 3.14E-01 504 0.055 4.9E-04 1.0E+00 2.4E+00 

Barnett 
Pad Well 

Age 
-1.975 

-1.34E-
02 

471 0.258 1.8E-11 0.0E+00 2.3E-04 

Barnett 
Pad Gas 

Production 
-3.616 6.04E-04 498 0.117 2.6E-05 1.0E-01 3.0E+00 

Barnett Pad Oil -3.903 7.30E-02 387 0.445 7.1E-30 7.7E-04 5.9E+00 
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Production 

Barnett 
Pad Water 
Production 

-3.340 1.47E-04 514 0.014 1.5E-01 1.4E-12 1.1E+00 

Barnett 
Pad % 
Energy 
from Oil 

-3.669 
2.71E+0

0 
470 0.173 1.2E-11 9.1E-01 7.1E+00 

Barnett 
Operator 

Well Count 
-2.327 

-3.83E-
04 

472 0.132 3.7E-11 2.9E-05 1.2E-01 

Barnett 
Operator 

Gas 
Production 

-2.328 
-1.57E-

06 
471 0.132 2.1E-11 NaN 1.2E-01 

Barnett 
Operator 

Oil 
Production 

-4.429 2.41E-04 446 0.288 6.2E-17 7.2E-11 1.1E+01 

Barnett 
Operator 

Water 
Production 

-4.583 6.54E-06 487 0.238 5.9E-08 0.0E+00 9.1E+00 

Barnett 
Operator 
% Energy 
From Oil 

-3.608 
2.64E+0

0 
494 0.114 2.2E-06 NaN 2.6E+00 

Eagle 
Ford 

Pad Well 
Count 

-3.300 1.81E-01 231 0.099 1.7E-02 1.0E+00 2.7E+00 

Eagle 
Ford 

Pad Well 
Age 

-2.247 
-2.15E-

02 
228 0.125 2.8E-03 1.3E-01 9.0E-06 

Eagle 
Ford 

Pad Gas 
Production 

-3.376 4.07E-04 209 0.313 1.4E-07 6.5E-01 4.5E+00 

Eagle 
Ford 

Pad Oil 
Production 

-3.402 9.93E-04 205 0.361 1.7E-08 4.7E-01 4.9E+00 

Eagle 
Ford 

Pad Water 
Production 

-3.061 1.07E-03 230 0.118 8.4E-03 6.9E-01 2.7E+00 

Eagle 
Ford 

Pad % 
Energy 
from Oil 

-2.819 
-5.56E-

02 
237 0.003 9.3E-01 1.9E-02 9.5E-01 

Eagle 
Ford 

Operator 
Well Count 

-2.764 
-1.59E-

04 
237 0.015 7.1E-01 0.0E+00 7.8E-01 

Eagle 
Ford 

Operator 
Gas 

Production 
-3.418 2.19E-06 234 0.068 8.2E-02 2.8E-07 2.4E+00 

Eagle 
Ford 

Operator 
Oil 

Production 
-3.148 3.18E-06 236 0.044 2.4E-01 0.0E+00 2.0E+00 

Eagle 
Ford 

Operator 
Water 

Production 
-2.823 

-7.30E-
07 

237 0.013 7.7E-01 0.0E+00 8.2E-01 

Eagle 
Ford 

Operator 
% Energy 
From Oil 

-2.599 
-4.02E-

01 
237 0.015 6.8E-01 1.3E-09 7.5E-01 

Bakken 
Pad Well 

Count 
-2.630 4.86E-01 523 0.223 1.2E-07 1.0E+00 2.4E+00 

Bakken 
Pad Well 

Age 
-1.577 

-5.59E-
03 

544 0.111 1.1E-02 2.7E-01 1.4E-01 

Bakken 
Pad Gas 

Production 
-2.109 7.18E-04 526 0.211 6.1E-07 8.8E-02 2.6E+00 

Bakken 
Pad Oil 

Production 
-2.122 8.57E-04 528 0.195 1.9E-06 2.7E-01 2.6E+00 
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Bakken 
Pad Water 
Production 

-1.927 5.50E-04 546 0.079 3.2E-02 4.5E-02 1.6E+00 

Bakken 
Pad % 
Energy 
from Oil 

-1.015 
-9.96E-

01 
550 0.031 3.0E-01 4.1E-01 7.4E-01 

Bakken 
Operator 

Well Count 
-1.183 

-1.08E-
03 

534 0.155 4.3E-05 4.3E-01 2.8E-01 

Bakken 
Operator 

Gas 
Production 

-1.267 
-6.74E-

06 
538 0.132 2.5E-04 3.7E-01 3.4E-01 

Bakken 
Operator 

Oil 
Production 

-1.150 
-9.65E-

06 
535 0.144 6.0E-05 9.9E-01 2.8E-01 

Bakken 
Operator 

Water 
Production 

-1.283 
-1.02E-

05 
534 0.150 3.3E-05 7.8E-01 2.7E-01 

Bakken 
Operator 
% Energy 
From Oil 

-1.662 
-2.06E-

01 
551 0.003 9.5E-01 4.9E-03 9.8E-01 

Marcellu
s 

Pad Well 
Count 

-6.080 6.73E-01 182 0.376 7.3E-20 1.0E+00 1.2E+01 

Marcellu
s 

Pad Well 
Age 

-0.901 
-5.76E-

02 
176 0.307 3.0E-21 3.7E-03 1.6E-08 

Marcellu
s 

Pad Gas 
Production 

-4.774 1.20E-04 226 0.270 2.8E-10 8.8E-05 1.9E+00 

Marcellu
s 

Pad Oil 
Production 

-4.509 7.11E-03 261 0.016 3.9E-02 1.0E+00 1.3E+00 

Marcellu
s 

Pad % 
Energy 
from Oil 

-4.559 
2.66E+0

0 
259 0.055 8.4E-03 7.0E-01 1.7E+00 

Marcellu
s 

Operator 
Well Count 

-6.166 4.55E-04 254 0.089 7.8E-04 6.9E-04 1.2E+01 

Marcellu
s 

Operator 
Gas 

Production 
-5.922 2.76E-06 229 0.109 1.4E-09 2.2E-01 1.1E+01 

Marcellu
s 

Operator 
Oil 

Production 
-4.971 1.39E-04 255 0.077 1.2E-03 1.2E-03 3.9E+00 

Marcellu
s 

Operator 
% Energy 
From Oil 

-4.689 
5.73E+0

0 
262 0.038 6.2E-02 3.3E-01 3.0E+00 

Uintah 
Pad Well 

Count 
-2.926 2.44E-01 680 0.024 2.1E-01 1.0E+00 1.2E+00 

Uintah 
Pad Well 

Age 
-1.858 

-9.06E-
03 

649 0.152 1.5E-08 1.0E-03 1.6E-02 

Uintah 
Pad Gas 

Production 
-2.723 1.01E-03 678 0.042 5.8E-02 7.3E-01 1.4E+00 

Uintah 
Pad Oil 

Production 
-2.878 2.41E-02 664 0.124 3.8E-05 4.8E-05 2.6E+00 

Uintah 
Pad Water 
Production 

-2.677 1.39E-03 681 0.016 4.4E-01 2.7E-03 1.3E+00 

Uintah 
Pad % 
Energy 
from Oil 

-3.006 8.22E-01 671 0.083 1.2E-03 1.5E-01 2.1E+00 

Uintah Operator -2.159 -4.33E- 673 0.064 4.5E-03 NaN 3.2E-01 
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Well Count 04 

Uintah 
Operator 

Gas 
Production 

-2.306 
-3.74E-

06 
664 0.092 3.1E-05 8.5E-01 1.2E-01 

Uintah 
Operator 

Oil 
Production 

-2.741 1.09E-05 680 0.029 2.9E-01 NaN 1.3E+00 

Uintah 
Operator 

Water 
Production 

-2.059 
-2.25E-

05 
669 0.082 3.7E-04 2.7E-01 2.2E-01 

Uintah 
Operator 
% Energy 
From Oil 

-2.903 6.41E-01 677 0.052 4.9E-02 NaN 1.6E+00 

Powder 
River 

Pad Well 
Count 

-5.817 
1.06E+0

0 
169 0.034 3.9E-02 1.0E+00 2.8E+00 

Powder 
River 

Pad Well 
Age 

-1.624 
-7.76E-

02 
127 0.263 1.3E-11 0.0E+00 3.8E-12 

Powder 
River 

Pad Gas 
Production 

-5.056 1.99E-03 168 0.053 2.2E-02 3.5E-01 3.4E+00 

Powder 
River 

Pad Oil 
Production 

-4.779 3.02E-03 158 0.069 1.5E-04 2.0E-08 1.1E+00 

Powder 
River 

Pad Water 
Production 

-4.701 9.33E-04 173 0.009 5.8E-01 7.6E-01 1.5E+00 

Powder 
River 

Pad % 
Energy 
from Oil 

-6.340 
4.37E+0

0 
123 0.193 1.4E-12 9.4E-01 4.5E+01 

Powder 
River 

Operator 
Well Count 

-2.700 
-2.04E-

03 
144 0.126 6.1E-08 NaN 1.2E-02 

Powder 
River 

Operator 
Gas 

Production 
-2.985 

-2.01E-
05 

142 0.129 2.3E-08 7.5E-02 3.6E-03 

Powder 
River 

Operator 
Oil 

Production 
-6.505 3.18E-04 150 0.128 1.3E-06 8.5E-01 2.5E+01 

Powder 
River 

Operator 
Water 

Production 
-2.951 

-2.96E-
05 

140 0.135 1.1E-08 2.9E-02 2.1E-03 

Powder 
River 

Operator 
% Energy 
From Oil 

-7.839 
7.46E+0

0 
124 0.184 3.4E-12 NaN 1.0E+02 
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Table S17. Binomial generalized linear model A4 coefficients, standard errors, and p values for model 

terms and interactions. Model terms are summarized in Table S5 

 Coefficients Standard Error p value 

basin (Bakken) -1.61E+00 9.45E-01 0.089 

basin (Barnett) -3.56E+00 4.05E-01 <2E-16 

basin (Eagle Ford) -2.18E+00 7.33E-01 0.003 

basin (Fayetteville) -3.54E+00 1.27E+00 0.005 

basin (Marcellus) -2.94E+00 7.91E-01 0.000 

basin (Powder River) -4.79E+00 1.46E+00 0.001 

basin (Uintah) -2.35E+00 3.34E-01 0.000 

well count 2.99E-01 1.26E-01 0.018 

well age -1.67E-03 2.05E-03 0.417 

gas production 2.48E-04 2.97E-04 0.404 

oil production 1.44E-04 3.88E-04 0.711 

percent energy from oil -9.56E-01 1.08E+00 0.377 

Barnett: well count -2.59E-01 2.20E-01 0.240 

Eagle Ford: well count -6.76E-01 2.44E-01 0.006 

Fayetteville: well count 5.12E-02 2.41E-01 0.832 

Marcellus: well count 1.78E-01 1.70E-01 0.293 

Powder River: well count -1.85E+00 9.17E-01 0.044 

Uintah: well count -5.12E-01 2.47E-01 0.038 

Barnett: well age -2.35E-03 2.81E-03 0.403 

Eagle Ford: well age -7.79E-03 8.75E-03 0.373 

Fayetteville: well age -1.46E-04 1.75E-02 0.993 

Marcellus: well age -4.07E-02 1.21E-02 0.001 

Powder River: well age -2.42E-02 9.80E-03 0.014 

Uintah: well age -4.32E-03 2.74E-03 0.116 

Barnett: gas production -2.35E-04 4.15E-04 0.571 

Eagle Ford: gas production -8.23E-05 3.36E-04 0.807 

Fayetteville: gas production -5.84E-04 4.45E-04 0.190 

Marcellus: gas production -2.80E-04 2.99E-04 0.348 

Powder River: gas production 2.06E-03 9.66E-04 0.033 

Uintah: gas production 9.64E-04 6.71E-04 0.151 

Barnett: oil production 5.11E-02 9.98E-03 0.000 

Eagle Ford: oil production 1.11E-03 6.36E-04 0.080 

Fayetteville: oil production NA NA NA 

Marcellus: oil production -1.08E-02 5.30E-03 0.042 

Powder River: oil production 3.66E-06 1.48E-03 0.998 

Uintah: oil production 9.19E-03 6.70E-03 0.170 

Barnett: percent energy from oil 2.67E+00 1.24E+00 0.032 

Eagle Ford: percent energy from 
oil 

2.86E-01 1.46E+00 0.844 

Fayetteville: percent energy from 
oil 

NA NA NA 

Marcellus: percent energy from oil 3.81E+00 1.58E+00 0.016 

Powder River: percent energy from 
oil 

8.08E+00 1.70E+00 0.000 

Uintah: percent energy from oil 1.66E+00 1.14E+00 0.145 
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Figure S1. Areas including surveyed grid cells in seven basins:  1) Bakken, 2) Barnett, 3) Eagle Ford, 4) 
Fayetteville, 5) Marcellus, 6) Powder River, and 7) Uintah. Locations of individual surveyed pads are 
provided in the SI file “surveyed_well_pads.csv”. Base imagery is from Google Earth (Map data: SIO, 
NOAA, U.S. Navy, NGA, GEBCO; © 2016 Google; Image Landsat, US Dept of State Geographer) 
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Figure S2. Percentage of well pads with detected emissions by deciles of operator parameters:  a) 
Regional Well Count, b) Regional Gas Production (Mcf/day), c) Regional Oil Production (bbl/day), d) 
Regional Water Production (bbl/day), and e) Regional % Energy from Oil. The median values of each 
decile are displayed on the x-axes. 
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CHAPTER 4 

Site-level Gaussian dispersion model to optimize the deployment of continuous methane sensors 

 

Introduction 

Methane emissions from the oil and gas (O&G) supply chain are dominated by a relatively small fraction 

of facilities with high emission rates.
1–3

 In Lyon et al. (2015) and Zavala-Araiza et al. (2016), accounting 

for super-emitters contributed to the reconciliation of top-down and bottom-up estimates of methane 

emissions in the Barnett Shale.
4,5

 Although the term “super-emitter” typically refers to facility-level 

emissions, components also have highly skewed emission rate distributions.  In both a national study of 

150 natural gas well pads and a local study of 375 well pads in Fort Worth, TX, the top 20% of equipment 

leaks contributed over 80% of total emissions.
1,6

 Vented sources such as pneumatic controllers and tanks 

that emit during normal operation may also have skewed distributions caused by malfunctioning devices. 

For example, Allen et al. (2015) report that 19% of 377 measured pneumatic controllers were responsible 

for 95% total emissions.
7
 Facilities with high emissions may have a small number of components causing 

the vast majority of their emissions. The two transmission and storage facilities classified as super-

emitters in Subramanian et al. (2015) had leaking compressor isolation valves with extremely high 

emission rates.
3
 In a national study of 114 gathering stations, the 20% of sites with substantial tank 

venting had on average four times the emission rate of facilities without observed venting.
2
 Based on a 

helicopter-based infrared camera survey of over 8,000 well pads, Lyon et al. (2016) found that over 90% 

of high emission sources were from storage tanks and some of these sites had ineffective tank control 

systems.
8
 These high emission sources had weak relationships with site characteristics and the best 

statistical model could only 14% of the variance; therefore, frequent monitoring of all sites is required to 

quickly detect the occurrence of super-emitters.
8
 

The rapid identification and mitigation of equipment leaks and malfunctioning equipment with high 

emission rates is critical to reducing emissions.  Traditional leak detection methods such as Method 21 

(measuring methane concentrations directly at individual components) and optical gas imaging (OGI) are 

rarely used more frequently than monthly at well pads due to the high labor and travel cost of sending 
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staff to widely distributed sites. The United States Environmental Protection Agency (US EPA) has 

proposed a rule that would require new sites to be inspected with OGI semi-annually initially with a 

change to quarterly or annually if the number of leaks is higher than 3% or lower than 1%, respectively.
9
  

OGI performed on the ground by a skilled technician is highly effective and can typically detect leaks of 

60 g hr
-1

 or larger.
10

  Due to the skewed distribution of emission rates, a leak detection and repair (LDAR) 

program that has a higher detection limit for identifying leaks but faster detection and repair time may lead 

to greater emission reductions than OGI.  Based on the leak distribution from Allen et al. (2014)
1
, an 

LDAR program with a 60 g hr
-1

 detection limit and semi-annual frequency to identify and repair leaks 

would reduce annual emissions by 49%, while an alternative program with a 1000 g hr
-1

 detection limit but 

weekly frequency would reduce emissions by 53%. 

The key to cost-effectively enhancing the ability of LDAR programs to reduce emissions is to increase 

inspection frequency while minimizing labor costs by targeting staff deployment to high emission sites. 

One option is to develop LDAR programs that utilize mobile or aerial surveys to inspect multiple sites 

without requiring staff to visit individual sites. A recent paper proposed a method for using work trucks 

with methane sensors coupled with inversion dispersion modeling to efficiently survey large numbers of 

sites.
11

 Several companies offer OGI from helicopters of fixed-wing aircraft to detect large leaks.
12,13

  

Other companies are developing leak detection systems deployed on unmanned aerial vehicles.
14,15

 

Satellite remote sensing has also been used to quantify O&G methane emissions, but the resolution of 

existing satellites is insufficient for site-level measurements.
16

   Another option for frequent LDAR is to 

deploy low-cost, continuous sensors at O&G sites.  A previous study has used dispersion modeling at the 

field-level to demonstrate the cost-effectiveness of several alternative LDAR programs including 

unmanned aerial vehicles and continuous sensors. 
17

 The study estimated that LDAR programs with a 

positive net present value from recovered gas could mitigate 80% of leaks and their cost-effectiveness 

could be improved by targeting the largest leaks.
17

   

Existing commercially available methane analyzers are either too expensive or not sensitive enough to be 

used for continuous monitoring of O&G sites. There are two ongoing technology development programs 

that are working to accelerate the availability of low cost monitors.  The United States Department of 
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Energy Advanced Research Projects Agency – Energy (ARPA-E) MONITOR program has funded eleven 

companies developing low-cost technologies to detect O&G methane leaks.
18

  The goal of the program is 

to “detect and measure methane leaks as small as 1 ton per year from a site 10 m x 10 m area with a 

certainty that would allow 90% reduction in methane loss for an annual site cost of $3,000.”
18

  This 

includes detecting emissions ≥ 6 standard cubic feet per hour (114 g hr
-1

), locating the leak to within 1 m, 

and quantifying the leak within 20% error. The ARPA-E technologies are primarily in early stages of 

development and likely will not be ready for commercialization until after the program concludes in 2018.  

Environmental Defense Fund has sponsored another program, the Methane Detectors Challenge (MDC), 

which is designed to catalyze the development of first generation low-cost continuous leak detection 

systems.
19

  The MDC goal is to detect a 150 scfh leak (2,880 g hr
-1

) for less than $1,000 per site.  The 

system is not required to quantify or locate the leak, but should be able to distinguish onsite leaks from 

either offsite sources or onsite vented sources such as pneumatic controllers.  Systems must be able to 

operate with minimal maintenance under diverse environmental conditions including temperatures from -

20 to 135⁰ F. Two MDC technologies performed sufficiently well during two phases of laboratory and 

outdoor testing to advance to pilot deployments at partner company sites, which are expected to 

commence in summer 2016. Both technologies utilize tunable-diode lasers that are methane-specific:  the 

first, manufactured by Quanta3, is an enclosed system that measures methane concentration at a point, 

while the second, manufactured by Dalian Actech, employs an open path configuration to measure the 

path-averaged concentration between the laser and a retro-reflector.  

For this work, I have developed a leak dispersion model that simulates O&G sites to optimize the 

deployment of point and open path monitors by estimating the time between detection based on site 

layout, emission rates, sensor detection limit, and local meteorological data.  Model results will assist 

operators participating in the MDC to deploy point and open path systems in positions that will most 

quickly detect leaks.  The model also demonstrates the relationship of sensor detection limits in 

concentration enhancement to source emission rates, which can guide improvements of leak detection 

systems for identifying smaller leaks. This chapter describes the model, sensitivity of detection to source-

receptor orientation and distance based on three sets of meteorological data, and results of model runs 

based on three O&G well pads. 
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Methods 

Methane emissions are simulated with a custom Gaussian dispersion model programmed by the author in 

the open source language R.
20

 Gaussian dispersion assumes a constant emission rate, an infinite plume, 

negligible downwind dispersion, no wind shear, non-reactive pollutants, and constant meteorological 

conditions during the modeled period.
21

 Although O&G emission may violate some assumptions of 

Gaussian dispersion, the model is valuable as a first approximation of concentration enhancements at 

multiple receptors from potential component-level emission sources.   

O&G sites are defined by a Cartesian coordinate system with the origin at a site corner. The x-axis and y-

axis either are oriented east and north, respectively, or the degrees offset from this orientation are 

reported.  All potential emission sources are included in a comma-separated value file (sources.csv) 

including source identification code (source.id), x, y, and z coordinates in meters from the origin (source.x, 

source.y, and source.z), and source type category such as equipment leak or pneumatic controller 

(source.type).  Potential locations for point sensors are included in a separate file (receptors.csv) 

including receptor identification code (receptor.id), x, y, and z coordinates in meters from the origin 

(receptor.x, receptor.y, and receptor.z). Potential locations for open path sensors are included in the 

same file by defining a group of point receptors with a separate path identification code (path.id); in the 

current build of the model, the receptors must be evenly spaced for accurate estimation of path-averaged 

concentration.  Meteorological data are includes as a file (met.csv) with ten years of hourly wind speed in 

m s
-1

 (u), wind direction in degrees (v), stability class as A, B, C, D, E, or F (stab); the data are identified 

with a sequential number from the start of the time series (hour.id). An additional file (Caraway.csv) 

includes power law variables by stability class used to estimate dispersion parameters. Prior to running 

the model, the user sets methane emission rates for each source type in standard cubic feet per hour 

(scfh), three leak detection thresholds in parts per million (ppm) above background, and the minimum 

wind speed for which concentrations are calculated. 

The model uses ten years of hourly meteorological data based on airport weather observations (METAR). 

In a separate spreadsheet model, Pasquill stability classes are estimated using a modified version of 

Turner (1969) based on wind speed, solar radiation, and cloudiness.
22,23,21

  Solar zenith angles are 
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calculated based on time and latitude/longitude using a publically available spreadsheet calculator.
24

 

 Solar radiation values are grouped into three categories (slight, moderate, strong) based on solar angle 

class (0–15⁰, 15–35⁰, 35–60⁰, >60⁰) adjusted by cloud cover class (≤50%, >50% and ≥7000 ft ceiling, 

>50% and <7000 ft ceiling).  For daytime hours, stability class is based on wind speed class (<2, 2–3, 3–

5, 5–6, >6 m s
-1

) and solar radiation class. For nighttime hours, stability class is based on wind speed 

class and cloud cover class.  Intermediate stability classes are replaced with the most stable class (e.g., A 

for A-B); a stability class of F was used for low wind speed, nighttime conditions.  Missing data are 

replaced with the closest available values from preceding or following hours. 

The model’s initial step is to calculate for each source the hourly concentration enhancement of methane 

in ppm above background at every point receptor for every hour of meteorological data. First, downwind 

and crosswind distance of each receptor from a source is calculated based on their Cartesian coordinates 

and wind direction using equations 1 and 2. If site axes are not oriented north/east, then hourly wind 

direction is adjusted by the degrees offset. Second, horizontal and vertical plume dispersion coefficients 

(σy, σz) are calculated using equations 3 and 4 based on downwind distance and Caraway’s power law 

exponents for the stability class.
21

 Methane concentration (g m
-3

) is calculated using the Gaussian 

dispersion equation (equation 5) based on wind speed, σy, and σz and a source type-specific emission 

rate, then converted to ppm assuming conditions of 1 atmosphere and 25⁰ C (1 g m
-3

 = 1,527 ppm). 

Emission rates are reported in standard cubic feet per hour (scfh), the most commonly used unit by US 

operators (1 scfh = 19.2 g hr
-1

). If hourly wind speed is below the set threshold, then the concentration is 

set as not available to avoid the high uncertainty of the Gaussian dispersion equation and simulate the 

likely restriction of sensor alarms during low wind speed conditions when emissions can pool near 

sources. 

Equations 1 & 2 

𝑑𝑤 = (−(𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟. 𝑥 − 𝑠𝑜𝑢𝑟𝑐𝑒. 𝑥) ∗ sin (𝑣 ∗
𝜋

180
)) − ((𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟. 𝑦 − 𝑠𝑜𝑢𝑟𝑐𝑒. 𝑦 ∗ cos⁡(𝑣 ∗ 𝜋/180)) 

𝑐𝑤 = (⁡(𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟. 𝑥 − 𝑠𝑜𝑢𝑟𝑐𝑒. 𝑥) ∗ cos (𝑣 ∗
𝜋

180
)) − ((𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟. 𝑦 − 𝑠𝑜𝑢𝑟𝑐𝑒. 𝑦 ∗ 𝑠𝑖𝑛⁡(𝑣 ∗ 𝜋/180)) 
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where,  

dw = downwind distance of receptor from source (m) 

cw = crosswind distance of receptor from source (m) 

receptor.x, receptor.y = Cartesian coordinates of receptor in meters 

source.x, source.y = Cartesian coordinates of source in meters 

v = wind direction (⁰) 

Equation 3 & 4 

σ𝑧 = a ∗ 𝑑𝑤𝑏 

σ𝑦 = c ∗ 𝑑𝑤𝑑  

where, 

σz = vertical plume dispersion coefficient (m) 

σy = horizontal plume dispersion coefficient (m) 

dw = downwind distance of receptor from source (m) 

a, b, c, d = constants specific to each stability class (A, B, C, D, E, F) 

Equation 5 

𝐶 =⁡
𝑄

2𝜋 ∗ 𝑢 ∗ σ𝑦 ∗ σ𝑧
∗ 𝑒

−
𝑐𝑤2

2σ𝑦
2
∗ (𝑒

−
(𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟.𝑧⁡−⁡𝑠𝑜𝑢𝑟𝑐𝑒.𝑧)2

2σ𝑧
2

+ 𝑒
−
(𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟.𝑧+⁡𝑠𝑜𝑢𝑟𝑐𝑒.𝑧)2

2σ𝑧
2

)⁡ 

where, 

C = concentration (g m
-3

) 

u = wind speed (m s
-1

) 
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σz = vertical plume dispersion coefficient (m) 

σy = horizontal plume dispersion coefficient (m) 

cw = crosswind distance of receptor from source (m) 

receptor.z = receptor height relative to Cartesian coordinate system origin (m) 

source.z = source height relative to Cartesian coordinate system origin (m) 

 

After calculating hourly concentration enhancement at each receptor caused by a single source’s 

emissions, the model flags which hours are above three set detection limits. Next, the model calculates 

the fraction of hours in which emissions at the set rate and detection limits would be detected, the 

average number of hours between detection during the ten years of meteorological data, and the 95
th
 

percentile hours between detection. For open path receptors, the model first calculates the average 

hourly concentration by path to estimate the path-averaged concentrations, and then applies the same 

steps to determine the hours between detection. Once the model calculates the results for each source, 

the best receptor location is selected based on the lowest median value of individual sources’ average 

hours between detection.  This represents the average time expected to identify an emission source after 

it starts based on the site layout and local meteorological data. Site-level performance can be based on 

either all sources or the subset of equipment leak sources depending on if the system is also intended to 

detect emissions from vented sources. For the best receptor locations, average hours between detection 

are compared for each source to determine which sources have the shortest and longest detection time. 

Model Runs 

The model was run for three example sites in different oil and gas basins:  the Eagle Ford Shale (south 

Texas), Fayetteville Shale (north-central Arkansas, and Bakken Shale (west North Dakota).  

Meteorological data were based on January 1, 2006 to December 31, 2015 hourly data at the Lackland 

Airforce Base (SFK), Little Rock Airforce Base (LRF), and Sloulin Field International Airport (ISN) for the 

Eagle Ford, Fayetteville, and Bakken, respectively.
25

 The minimum wind speed was set at 0.2 m s
-1

. For 
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all scenarios, the primary leak detection system sensitivity was set at 0.5 ppm above background and 

alternative limits were set at 0.1 ppm and 1 ppm.  For open path sensors, the detection limit is the path-

averaged concentration enhancement. These values are based on developers’ initial estimates of 

detection limits for the two MDC leak detection systems.  

Sensitivity 

For all three sets of meteorological data, the model was run using a source and receptor setup designed 

to test the sensitivity of detection to orientation, distance, and relative height of the receptor from the 

sources. The site has a single source located at the origin and a series of receptors oriented along 

sixteen 22.5⁰ spaced radial lines located from 1 to 1000 m from the source.  At 10 and 100 m distance, 

receptors are located from -5 to 5 m height at 1 meter intervals. 

Eagle Ford Shale 

Statoil gas well pad Neller Gas Unit 1 located in Karnes County, TX (28.874⁰, -97.730⁰) was selected for 

the first example site. This site is offset from a north orientation by 67⁰; the site origin is defined as the 

fence line northwest corner with the x- and y-axes oriented 157⁰ and 67⁰, respectively.  The site fence line 

is 138 m along the x-axis and 158 m along the y-axis. Based on Google Earth imagery, the site includes 2 

wellheads, 2 separators, 1 meter, three pneumatic controllers, and approximately 72 connectors 

(locations estimated at 3 m intervals along aboveground pipelines).  Cartesian coordinates were 

estimated based on Google Earth imagery (Figures 1 & 2).  Sources were assumed to be at a height of 1 

m with the exception of separators, which had three leak points at 1, 2, 3 m heights. Receptors were 

modeled at 2 m intervals along the fence line plus an interior line parallel to the y-axis at a 10 m distance 

from the closest source. All receptors were at a height of 1 m. Paths were defined as the north, east, 

south, and west fence lines (name corresponding the offset adjusted orientation) and interior path. For the 

first model run, emissions were modeled for all sources at 150 scfh. For the second model run, emissions 

were modeled for leak sources at 6 scfh. 
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Figure 3. Eagle Ford shale well pad used for model scenarios. Imagery is from Google Earth. 
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Figure 4. Eagle Ford shale well pad source (black) and receptor (red) locations used for model scenarios. 

Pneumatic controllers are highlighted in green. Path names are shown in purple. 
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Fayetteville 

Southwestern Energy gas well pad Hutchins 09-13 located in Van Buren County, AR (35.409⁰, -92.369⁰) 

was selected for the second example site. The site origin is defined as the fence line southwest corner 

with the x- and y-axes oriented east and north, respectively.  The site fence line is 200 m along the x-axis 

and 180 m along the y-axis. The site includes five wellheads, five chemical injection pumps, five 

separators, five meters, three produced water tanks, and approximately 41 connectors (locations 

estimated at 3 m intervals along aboveground pipelines).  Cartesian coordinates were estimated based 

on Google Earth imagery and operator-provided information (Figures 3 & 4).  Most sources were 

assumed to be at a height of 1 – 1.5 m.  For separators, three leak points were modeled at 0.5, 1.5, and 

2.5 m. For tanks, emissions were modeled from hatches at 6 m height. Receptors were modeled at 2 m 

intervals along the fence line plus at 10 m intervals along two interior lines parallel to the x-axis at a 

distance of 6 and 16 m from the closest source. All receptors were at a height of 1 m. Paths were defined 

as the north, east, south, and west fence lines and two interior paths. For the first model run, emissions 

were modeled for all sources at 150 scfh. For the second model run, emissions were modeled for leak 

sources at 6 scfh. 
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Figure 5. Fayetteville shale well pad used for model scenarios. Imagery is from Google Earth. 
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Figure 6. Fayetteville shale well pad source (black) and receptor (red) locations used for model 
scenarios. Vented sources are highlighted in green, purple, and blue for pneumatic controllers, chemical 
injection pumps, and produced water tanks, respectively. Path names are shown in purple. 
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Bakken 

Statoil oil well pad Lippert 1-12 1-H located in Williams County, ND (48.110, -103.746) was selected for 

the third example site. The site origin is defined as the fence line southwest corner with the x- and y-axes 

oriented east and north, respectively.  The site fence line is 116 m along the x-axis and 136 m along the 

y-axis. Based on Google Earth imagery, the site includes one pump jack, one separator, one pneumatic 

controller, one heater, one produced water tank, twelve oil tanks, and approximately 18 connectors 

(locations estimated at 3 m intervals along aboveground pipelines).  Cartesian coordinates were 

estimated based on Google Earth imagery (Figures 5 & 6).  Most sources were assumed to be at a height 

of 1 m.  For separators, three leak points were modeled at 2, 4, and 6 m. For tanks, emissions were 

modeled from hatches at 6 m height. Receptors were modeled at 2 m intervals along the fence line at 

heights of both 1 m and 5 m. Paths were defined as the north, east, south, and west fence lines at the two 

different heights. For the first model run, emissions were modeled for all sources at 150 scfh. For the 

second model run, emissions were modeled for leak sources at 6 scfh and vented emissions at 4.9, 4.4, 

and 83 scfh for pneumatic controllers, produced water tanks, and oil tanks, respectively.   
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Figure 7. Bakken shale well pad used for model scenarios. Imagery is from Google Earth. 
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Figure 8. Bakken shale well pad source (black) and receptor (red) locations used for model scenarios. 
Vented sources are highlighted in green, blue, and orange for pneumatic controllers, produced water 
tanks, and oil tanks, respectively. Path names are shown in purple. 
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Results & Discussion 

Sensitivity Analysis 

For the Eagle Ford Shale, wind direction is most commonly from the south-southeast with other directions 

between 0 - 180⁰ also common; winds from directions >180⁰ to <360⁰ only occur 15% of the time (Figure 

7). Therefore, time between detection is highly sensitive to the relative orientation of the sensor and 

receptor. At 1 m distance between a 150 scfh source and a 0.5 ppm detection limit sensor, average time 

between detection ranges from 3 hours if the receptor is north-northwest of the source to 30 hours if it is 

east (Figure 8). The range increases from 4 hours (NNW) to 50 hours (E) at 10 meters, 11 hours (NW) to 

290 hours (E) at 100 meters, and 39 hours (NNW) to 1,478 hours (NE) at 200 meters. The effect of 

orientation is even greater on the 95
th
 percentile highest time between detection (Figure S1); for example, 

at 10 meters distance the range is from 13 hours (NW) to 269 hours (ENE). At 10 m distance, average 

time between detection was highly sensitive to relative height differences of the source and receptor 

(Figure 9).  The average detection time of all orientations was 18, 22, 47, and 190 hours at 0, 1, 2, and 3 

m relative height difference, respectively; at 4 m difference, emissions were never detected from most 

orientations.  At 100 m distance, average detection time was much less sensitive to relative height 

difference; the average of all orientations was 86, 90, 97, 106, 133, and 176 hours at 0, 1, 2, 3, 4, and 5 

m relative height difference, respectively (Figure S2). 

For the Fayetteville and Bakken Shale, wind direction was more variable (Figures S3 and S4).  

Accordingly, average time between detection was both faster and less affected by orientation than the 

Eagle Ford.  At 100 m distance, average detection time was 37 and 47 hours in the Fayetteville and 

Bakken, respectively, compared to 86 hours in the Eagle Ford. The orientations with the minimum and 

maximum time varied by a ratio of 3 and 4 in the Fayetteville and Bakken, respectively, compared to 27 in 

the Eagle Ford. Full sensitivity results for the Fayetteville and Bakken are shown in Figures S5 – S12. 
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Figure 7. Eagle Ford Shale meteorological data: Wind rose of Lackland Airforce Base (SFK)  
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Figure 8. Eagle Ford Shale meteorological data:  Sensitivity of average hours between detection of a 150 

scfh leak with a 0.5 ppm detection limit based on orientation and distance of receptor from source 
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Figure 9. Eagle Ford Shale meteorological data:  Sensitivity of average hours between detection of a 150 
scfh leak with a 0.5 ppm detection limit based on orientation and relative height distance between a 
source and a receptor at 10 m distance 
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Eagle Ford Shale Well Pad 

For the Eagle Ford well pad, average time between detection of a 150 scfh emission source with a 0.5 

ppm detection limit point sensor ranges from 3 to 550 hours for every source and receptor combination 

(Figure S13). Site-level performance, defined as the median of all sources’ detection time, ranges from 12 

to 221 hours with the best receptors located on paths W and I1 near the origin (Figure 10; the site is 

offset 67⁰ from N so the y-axis is oriented ENE).  The receptor with the lowest median source detection 

time, R366, has a site-level performance of 12 average hours between detection (95
th
 percentile = 58 

hours).  At this receptor, a sensor can detect emissions most quickly from source C67, a connector near 

path S, with an average detection time of 5 hours, and least quickly from S2C, a 3 m high separator leak 

point at the opposite side of the site, with an average detection time of 48 hours (Figure 11). Receptor 

R366 is close to equipment and therefore may not be suitable if a sensor is not intrinsically safe; receptor 

R282 on the fence line path W performs nearly as well at a safe distance from the nearest equipment.  

For an open-path sensor, average time between detection of a 150 scfh leak with a 0.5 ppm detection 

limit sensor ranges from 2 to 200 hours for every source and path combination (Figure S14). The path 

with the best site-level performance (E) has an average time of 5 hours between detection (Figure 12). 

For individual sources, performance at path E is roughly opposite as receptor R366: C26, a connector 

near path E, has the quickest time to detection (3 hours), and C72, a connector near path S, has the 

longest time (23 hours).  The good performance of path E seems counterintuitive since individual 

receptors along the path performed poorly, but can be explained by the relative orientation of the majority 

of sources. Due to the site offset, winds from the NW to NE blow emissions from the separators and most 

connectors less than 20 m downwind to path E, which results in high path-average concentration.   In 

contrast, during more common SE winds, most sources are more than 50 m downwind of path I2 and 

therefore the path-average concentration is less likely to be above the detection limit. 

For a 6 scfh emissions from equipment leaks, performance is poor with a 0.5 ppm detection limit sensor 

(Figure S15). The receptor with the best site-level performance, R82, has a median source detection time 

of 157 hours and shortest time of 48 hours for source C47, but never detects emissions from source S2C 

(Figure S16).  The best path (E) is even worse with a median source average time of over 6,000 hours 
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and inability to detect emissions from source S2C. None of the evaluated receptor points or paths at this 

site was able to detect 6 scfh leaks with a 0.5 ppm sensor from all sources.  However, if a sensor has a 

0.1 ppm detection limit, then performance detecting 6 scfh leaks is greatly improved (Figure S17). A point 

sensor at receptor R82 has a median source average detection time of 66 hours with the longest time of 

421 hours for source S2C (Figure 13).  An open-path sensor with a 0.1 ppm detection limit has better site-

level performance than a point sensor with a source median of 24 hours, but requires about 200 hours 

longer for the worst source (Figure 14). 
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Table 1. Eagle Ford well pad:  Average and 95
th
 percentile hours between detection of either a 150 scfh 

emission rate from all sources or a 6 scfh emission rate from equipment leak sources.  Values are shown 
for three sensor detection limits of resolution of enhancement from background. Site-level best receptor 
or path locations and hours between detection are determined by the median of individual sources’ time 
between detection. ND = no detection during 10 years of meteorological data. 

 average and 95th percentile hours between 
detection for three sensor detection limits 

0.5 ppm 0.1 ppm 1 ppm 

mean 95th mean 95th mean 95th 

150 
scfh all 
source

s 

best receptor for all sources (R366) 12 58 8 32 18 88 

best source for receptor R366 (C67) 5 21 5 21 6 23 

worst source for receptor R366 (S2C) 48 210 18 92 78 296 

best fence line receptor for all sources 
(R282) 

12 59 6 25 22 101 

best source for receptor R282 (C35) 7 25 5 20 24 110 

worst source for receptor R282 (S2C) 39 169 12 59 142 534 

best path for all sources (E) 5 18 4 13 9 37 

best source for path E (C26) 3 11 3 10 4 16 

worst source for path E (C72) 23 116 13 59 29 148 

6 scfh 
leaks 
only 

best receptor for all sources (R82) 157 628 66 277 526 1,331 

best source for receptor R82 (C47) 48 213 25 126 99 443 

worst source for receptor R82 (S2C) ND ND 421 1,765 ND ND 

best path for all sources (E) 6,085 16,48
6 

24 118 ND ND 

best source for path E (C12) 254 573 10 44 1,247 2,675 

worst source for path E (S2C) ND ND 627 1,523 ND ND 
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Figure 10. Eagle Ford well pad:  Site-level average hours between detection of a 150 scfh emission rate 
with a 0.5 ppm detection limit point sensor for every receptor. Site-level metrics are based on the median 
of individual sources’ average hours. Colors show the quantile of hours between detection (1st, 2.5th, 5th, 
10th, 25th, 50th, & 75th percentiles). 
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Figure 11. Eagle Ford well pad:  Average hours between detection of a 150 scfh emission rate from 
individual sources with a 0.5 ppm detection limit point sensor located at the best receptor (R366, 
highlighted in red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 

percentiles). 
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Figure 12. Eagle Ford well pad:  Average hours between detection of a 150 scfh emission rate from 
individual sources with a 0.5 ppm detection limit open path sensor deployed across the best path (E1, 
highlighted in red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 

percentiles). 
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Figure 13. Eagle Ford well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources with a 0.1 ppm detection limit point sensor at the best receptor (R82, highlighted 
in red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles). 
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Figure 14. Eagle Ford well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources with a 0.1 ppm detection limit open path sensor deployed across the best path 
(E1, highlighted in red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 

percentiles). 
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Fayetteville Shale Well Pad 

For the Fayetteville site, average time between detection of a 150 scfh emission source with a 0.5 ppm 

detection limit point sensor ranges from 8 to 401 hours for every source and receptor combination (Figure 

S19). Site-level detection time is quickest at receptors located on paths I1, I2, and W southwest of most 

sources (Figure 15). The best location for a point sensor is R432 on path I1, which has a median source 

average detection time of 12 hours and a longest time of 28 hours for tank hatch source TH3 (Figure 16). 

An alternative location for a non-intrinsically safe sensor, R355 on the west fence line, has a slightly 

higher detection time of 14 hours (Figure S20).  For an open-path sensor with a 0.5 ppm detection limit, 

average detection time ranged from 3 to 346 hours for every source and path combination (Figure S21). 

Path I1 has the quick median source detection time of 4 hours but requires over 4 times as long as a 

point sensor at R432 to detect emissions from the worst source TH3. 

Compared to the Eagle Ford site, a 0.5 ppm detection limit sensor has better performance detecting 6 

scfh leaks at the Fayetteville site.  There are several receptors on the west side of paths I1 and I2 where 

a point sensor can detect emissions with an average time of less than 100 hours (Figure S22).  The best 

point receptor, R433, has a median source detection time of 64 hours with the longest time of 434 hours 

for source C25 (Figure 18). An alternative point R344 along the west fence line that is suitable for a non-

intrinsically safe sensor has good site-level performance but very rarely can detect emissions from the 

worse source C26 (Figure S23). A 0.5 ppm open path sensor deployed across the best path, I1, has 

poorer performance than the point sensors with a median source detection time of 227 hours (Figure 

S24).  Sensors with 0.1 ppm detection limits have excellent performance detecting 6 scfh equipment 

leaks (Figure S25). The best location, R433, has a median source detection time of 21 hours and only 29 

hours for the worst source (Figure S26) with a 0.1 ppm point sensor; alternative location R344 has poorer 

performance but still can detect all sources within 100 hours (Figure S27).  A 0.1 ppm detection limit open 

path monitor deployed across path I1 can detect 6 scfh leaks within a median source time of 14 hours 

and a longest source time of 41 hours (Figure S28). 
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Table 2. Fayetteville well pad:  Average and 95
th
 percentile hours between detection of either a 150 scfh 

emission rate from all sources or a 6 scfh emission rate from equipment leak sources.  Values are shown 
for three sensor detection limits of resolution of enhancement from background. Site-level best receptor 
or path locations and hours between detection are determined by the median of individual sources’ time 
between detection. ND = no detection during 10 years of meteorological data. 

 

average and 95th percentile hours between 
detection for three sensor detection limits 

0.5 ppm 0.1 ppm 1 ppm 

mean 95th mean 95th mean 95th 

150 
scfh all 
sources 

best receptor for all sources (R432) 12 67 10 51 14 81 

best source for receptor R432 (M3) 8 43 7 40 8 45 

worst source for receptor R432 (TH3) 28 136 19 95 46 199 

best fence line receptor for all sources 
(R355) 

14 81 10 58 21 114 

best source for receptor R355 (M2) 10 56 9 48 11 63 

worst source for receptor R355 (TH2) 37 169 16 88 91 434 

best path for all sources (I1) 4 16 3 11 7 27 

best source for path I1 (C26) 3 12 3 10 5 19 

worst source for path I1 (TH3) 127 509 9 45 632 2,039 

6 scfh 
leaks 
only 

best receptor for all sources (R433) 64 289 21 113 102 445 

best source for receptor R433 (M5) 15 78 11 55 21 111 

worst source for receptor R433 (C25) 434 1,535 29 145 
12,40

8 
21,30

6 

best fence line receptor for all sources 
(R344) 

93 415 49 242 224 677 

best source for receptor R344 (S1A) 42 211 14 78 60 286 

worst source for receptor R344 (C10) 
22,40

4 
33,02

2 
92 404 ND ND 

best path for all sources (I1) 227 781 14 67 2,822 5,939 

best source for path I1 (M1) 57 237 8 33 153 579 

worst source for path I1 (W3) 
11,07

3 
37,38

7 
41 176 ND ND 
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Figure 15. Fayetteville well pad:  Site-level average hours between detection of a 150 scfh emission rate 
with a 0.5 ppm detection limit point sensor for every receptor. Site-level metrics are based on the median 
of individual sources’ average hours. Colors show the quantiles of time between detection (1st, 2.5

th
, 5

th
, 

10
th
, 25

th
, 50

th
, & 75

th
 percentiles). 
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Figure 16. Fayetteville well pad:  Average hours between detection of a 150 scfh emission rate from 
individual sources with a 0.5 ppm detection limit point sensor located at the best receptor (R432, 
highlighted in red) Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 

percentiles). 
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Figure 17. Fayetteville well pad:  Average hours between detection of a 150 scfh emission rate from 
individual sources with a 0.5 ppm detection limit open path sensor deployed across the best path (I1, 
highlighted in red) Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 

percentiles). 
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Figure 18. Fayetteville well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources with a 0.5 ppm detection limit point sensor located at the best receptor (R433, 
highlighted in red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 

percentiles). 
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Bakken Shale Well Pad 

For the Bakken site, average time between detection of a 150 scfh emission source with a 0.5 ppm 

detection limit point sensor ranges from 9 to 1,490 hours for every source and receptor combination 

(Figure S29). Since the Bakken site has a high diversity of source heights including twelve tanks modeled 

at 6 m height, best point and path locations were compared for receptors at 1 m and 5 m height. At 1 m 

height, the best receptors for point sensors are in the central section of the east fence line (Figure 19), 

while at 5 m height the best receptors are at the northern section of the east fence line and eastern 

section of the south fence line (Figure S30). The best individual receptor, R1M96, is at 1 m height and 

has a median source average detection of 11 hours and a worse source detection time of 219 hours for 

source SEP1C, a 6 m high separator leak (Figure 20). In contrast, the best receptor at 5 m height 

(R5M50), has a longer median source average detection of 20 hours but only 48 hours for the worst 

source (Figure 21). Therefore, higher sensor deployment is more appropriate for this site since it better 

covers all sources with only minor reduction in median detection time.  For an open-path sensor with a 

0.5 ppm detection limit, average time between detection ranges from 2 to 8,467 hours for every source 

and path combination (Figure S31). Similar to point sensors, the height of the path involves a tradeoff of 

the median source and worst source detection time. An open-path sensor deployed along the eastern 

fence line at 1 m height (E1) has a median source detection time of 3 hours with an average time of 8,467 

hours for the worst source (Figure 22), while a sensor deployed at 5 m height (E5) has a median source 

and worst source detection of 48 and 298 hours, respectively (Figure S32). 

For equipment leaks, receptor locations at 1 m height are most appropriate since the vast majority of leak 

sources are at 1 m height.  The receptor with the lowest median source detection time of a 6 scfh leak 

(R1M100) has good detection times for point sensors with either a 0.5 ppm detection limit (44 hours) or 

0.1 ppm detection limit (14 hours), but never detects emissions from source SEP1C (Figure S33). There 

are no individual receptors that a 0.5 ppm sensor can detect 6 scfh emissions from all leak sources, but 

for a 0.1 ppm detection limit receptor R1M251 has the shortest worst source detection time of 845 hours; 

the source median time for this receptor is 190 hours (Figure 23). No evaluated paths can detect 6 scfh 

leaks with a 0.5 ppm detection limit open path sensor.  For a 0.1 ppm detection limit open path sensor, 
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the eastern fence line (E1) has a median source detection time of 11 hours but emissions are never 

detected from source SEP1C (Figure S34). 

Due to the large number of tanks on this site, emissions were also evaluated from tank venting to 

determine how often enhancement from normal venting emissions would exceed 0.1 ppm. Based on an 

uncontrolled tank venting emission factor of 83 scfh, emissions would cause enhancement ≥0.1 ppm 

every 16 – 21 hours at R1M96 (Figure 24), 36 – 178 hours at R5M50 (Figure S32), and 15 – 401 hours at 

path E (Figure S33). These estimates are based on average emission rates, while in reality tank flashing 

emissions may be intermittent with higher rates during 30 – 120 second periods following separator 

dumps. Since tank flashing emissions regularly will cause enhancements ≥0.1 ppm, a system designed to 

detect equipment leaks based on 0.1 ppm enhancement will have false alarms if it cannot distinguish 

vented emissions. One solution to this issue is for sensors employ algorithms that evaluate the 

concentration time series. If concentration increases periodically during steady winds, then it is likely from 

an intermittent source such as tank flashing rather than a fugitive leak with a steady emission rate. 
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Table 3. Bakken well pad:  Average and 95
th
 percentile hours between detection of either a 150 scfh 

emission rate from all sources or a 6 scfh emission rate from equipment leak sources.  Values are shown 

for three sensor detection limits of resolution of enhancement from background. Site-level best receptor 

or path locations and hours between detection are determined by the median of individual sources’ time 

between detection. ND = no detection during 10 years of meteorological data. 

 

average and 95th percentile hours between     
detection for three sensor detection limits 

0.5 ppm 0.1 ppm 1 ppm 

mean 95th mean 95th mean 95th 

150 scfh 
all 

sources 

best receptor  at 1 m height for all sources 
(R1M96) 

11 62 10 53 13 73 

best source for receptor R1M96 (C6) 9 51 8 43 12 65 

worst source for receptor R1M96 (SEP1C) 219 966 57 247 2,240 7,490 

best receptor  at 5 m height for all sources 
(R5M50) 

20 100 13 70 48 198 

best source for receptor R5M50 (TH7) 11 59 9 51 13 69 

worst source for receptor R5M50 (PWTH1) 48 197 16 82 367 1,197 

best path at 1 m height for all sources (E1) 3 13 2 7 9 39 

best source for path E1 (C7) 2 7 2 6 4 15 

worst source for path E1 (PWTH1) 8,467 
27,73

3 
8 44 ND ND 

best path at 5 m height for all sources (E5) 48 187 6 27 769 3,161 

best source for path E5 (TH12) 5 20 2 7 12 57 

worst source for path E5 (PJ1) 298 1,530 5 22 ND ND 

6 scfh 
leaks 
only 

best receptor for all sources (R1M100) 44 200 14 73 80 323 

best source for R1M100 (C11) 33 153 12 60 62 281 

worst source for R1M100 (SEP1C) ND ND ND ND ND ND 

receptor with least worst source for all 
sources (R1M251) 

ND ND 190 727 ND ND 

best source for R1M251 (PJ1) 222 748 92 386 ND ND 

worst source for R1M251 (C7) ND ND 845 2,039 ND ND 

best path for all sources (E1) ND ND 11 47 ND ND 

best source for path E1 (C12) ND ND 10 45 ND ND 

worst source for path E1 (SEP1B, SEP1C) ND ND ND ND ND ND 
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Figure 19. Bakken well pad:  Site-level average hours between detection of a 150 scfh emission rate with 
a 0.5 ppm detection limit point sensor for every receptor. Site-level metrics are based on the median of 
individual sources’ average hours. Colors show the quantile of hours between detection (1st, 2.5th, 5th, 
10th, 25th, 50th, & 75th percentiles). 
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Figure 20. Bakken well pad:  Average hours between detection of a 150 scfh emission rate from 
individual sources with a 0.5 ppm detection limit point sensor located at the best receptor at 1 m height 
(R1M96, highlighted in red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 

90
th
 percentiles). 
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Figure 21. Bakken well pad:  Average hours between detection of a 150 scfh emission rate from 
individual sources with a 0.5 ppm detection limit point sensor located at the best receptor at 5 m height 
(R5M50, highlighted in red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 

90
th
 percentiles). 
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Figure 292. Bakken well pad:  Average hours between detection of a 150 scfh emission rate from 
individual sources with a 0.5 ppm detection limit open path sensor deployed across the best path at 1 m 
(E1, highlighted in red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 

percentiles). 
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Figure 23. Bakken well pad:  Average hours between detection of a 6 scfh leak from individual equipment 
leak sources with a 0.1 ppm detection limit point sensor located at the receptor with the lowest average 
hours between detection for the equipment leak source with the highest time between detection. Colors 
show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles). 
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Figure 24. Bakken well pad:  Average hours between enhancement ≥ 0.1 ppm from normal emissions of 
individual vented sources with a sensor located at the receptor with the lowest median of individual 
equipment leak sources’ average hours between detection (R1M100, highlighted in red). Colors show the 
quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles). 
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Summary 

For the three well pads modeled by the Gaussian dispersion model, there are locations where point or 

open path sensors with a 0.5 ppm detection limit can detect 150 scfh emissions from most sources on 

average in less than 12 hours for most sources and within 48 hours for all sources based on local 

meteorological data. The 95
th
 percentile time between detection, which accounts for periods of persisting 

unfavorable meteorological conditions, is only a few days for most sources with a maximum of 8 days for 

the worst source at the Bakken site. This suggests that the MDC leak detection systems will be able to 

quickly detect large leaks at most sites with only a single sensor.  The detection time for 6 scfh leaks was 

poorer for 0.5 ppm detection limit sensors – in the Eagle Ford and Bakken sites, there were no evaluated 

receptors where all sources could be detected.  In the Fayetteville, there was a receptor where a 0.5 ppm 

point sensor could detect most emissions within 3 days and the worst source within 18 days, which is 

adequate performance for detecting small leaks considering that they typically would only be identified 

within 6 months if sites were inspected semi-annually.  Improving the detection limit to 0.1 ppm results in 

substantially improved performance for detecting 6 scfh leaks with most sources detected within a few 

days, but at the Bakken and Eagle Ford sites there are some sources that have long average detection 

time up to 35 days even at the best receptor locations. This is caused by some sources having either a 

long distance or large relative height difference from any receptor.  At these sites, it may be necessary to 

employ multiple sensors to detect small emissions from all sources. 

This dispersion model provides a first approximation of concentration enhancements based on Gaussian 

dispersion, but actual concentrations are harder to predict. First, the background concentration can vary 

radically depending on the stability class and local emission sources.  In particular, there can be very high 

background methane concentrations during stable conditions in areas with many sources. For example, 

during the Barnett Shale campaign, background concentrations of 25 ppm compared to the global 

average of 1.8 ppm were observed in the nighttime when a descending atmospheric boundary layer 

compressed regional emissions from the previous day into a thin layer near the ground. Background 

emissions may also be affected by upwind offsite sources such as landfills or other O&G facilities.  

Therefore, it is critical that leak detection systems determine the concentration enhancement relative to a 
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dynamic background. This can be accomplished by evaluating the concentration time series, such as 

gradually increasing concentration during the nighttime that indicates boundary layer compression.  

Evaluating concentration in relationship to wind direction is also useful for determining if enhancement is 

caused by a discrete source rather than an increasing background, since the concentration should only 

vary by wind direction if it is from a source.  The relationship of concentration and wind direction can also 

indicate if emissions are from onsite since the response of an offsite source to changing wind direction 

would be weaker than an onsite source. 

One limitation of the model is that is relies on hourly meteorological data to calculate the detection time.  

Intra-hourly variation in wind direction would cause the model to be conservatively high in detection time 

since shifting winds would result in less time on average between conditions favorable for detection. 

Another limitation is the model does not account for either plume buoyancy or equipment downwash 

effects.  If the buoyancy of a plume is known, then the model could be updated to account for buoyancy 

by modifying the vertical dispersion coefficient.  This is feasible for vented sources from stacks since 

buoyancy could be estimated based on temperature and pressure, but impractical for equipment leaks 

since pressurized gas could escape with varying buoyancy  depending on the leak point’s orientation to 

the ground.  The effect of equipment downwash would require more advanced dispersion modeling such 

as computational fluid dynamics. Typically, downwash would cause sensors to be less sensitive to 

relative height difference from a source.  For example, emissions from tank hatches have been observed 

to turbulently mix down the sides of a tank, which leads to emissions being more quickly dispersed to 

ground-level. 

Several improvements to the model are planned both prior to the MDC pilot deployments and after the 

leak detection systems start collecting data.  First, the model will be updated to determine the combined 

performance of multiple networked sensors. For every modeled hour of meteorological data, detection will 

be assessed based on the measured enhancement at two or more receptors. If detecting small leaks with 

two 0.5 ppm detection limit sensors is substantially better than a single sensor, then multiple sensors may 

be more cost-effective than investing in detection limit improvements. Second, scenarios will be modeled 

with large offsite sources to assess how the relationship of wind direction and concentration can used to 
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distinguish offsite and onsite sources. Finally, measured concentration data from sensors at MDC pilot 

sites will be compared to modeled concentrations using higher frequency meteorological data.  The 

comparison will provide information on how much dispersion deviates from Gaussian behavior and help 

evaluate observed concentrations in context of a site’s potential emission sources.  A critical step to 

reducing false alarms will be to determine the pattern of concentration enhancement from vented sources 

to distinguish normal emissions from leaks.   

Continuous leak detection of methane emissions at O&G sites is an emerging technology with enormous 

potential to reduce emissions.  Although the remaining challenges are great, this work has demonstrated 

that first generation leak detection systems will be able to quickly detect large leaks that are responsible 

for a large fraction of emissions.  Modest improvements to detection limits will allow these systems to 

detect much smaller leaks and support the rapid mitigation of fugitive emissions.  In the near future, cost-

effective, continuous leak detection systems will be the foundation of leak detection and repair programs 

to reduce the climate impacts of the oil and gas industry. 
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CHAPTER 4 APPENDIX 

 

Figure S1. Eagle Ford Shale meteorological data:  Sensitivity of 95
th
 percentile hours between detection 

of a 150 scfh leak with a 0.5 ppm detection limit based on orientation and distance of receptor from 
source 
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Figure S2. Eagle Ford Shale meteorological data:  Sensitivity of average hours between detection of a 
150 scfh leak with a 0.5 ppm detection limit based on orientation and relative height distance between a 
source and a receptor at 100 m distance 
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Figure S3. Fayetteville Shale meteorological data:  Wind rose of Little Rock Air Force Base (LRF) 

meteorological data 
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Figure S4. Bakken Shale meteorological data: Wind rose of Sloulin Field International Airport (ISN) 

meteorological data 
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Figure S5. Fayetteville Shale meteorological data:   Sensitivity of average hours between detection of a 

150 scfh leak with a 0.5 ppm detection limit based on orientation and distance of receptor from source 
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Figure S6. Fayetteville Shale meteorological data:  Sensitivity of 95
th
 percentile hours between detection 

of a 150 scfh leak with a 0.5 ppm detection limit based on orientation and distance of receptor from 
source 
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Figure S7. Fayetteville Shale meteorological data:  Sensitivity of average hours between detection of a 
150 scfh leak with a 0.5 ppm detection limit based on orientation and relative height distance between a 
source and a receptor at 10 m distance 
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Figure S8. Fayetteville Shale meteorological data:   Sensitivity of average hours between detection of a 
150 scfh leak with a 0.5 ppm detection limit based on orientation and relative height distance between a 
source and a receptor at 100 m distance 
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Figure S9. Bakken Shale meteorological data: Sensitivity of average hours between detection of a 150 

scfh leak with a 0.5 ppm detection limit based on orientation and distance of receptor from source 
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Figure S10. Bakken Shale meteorological data: Sensitivity of 95
th
 percentile hours between detection of a 

150 scfh leak with a 0.5 ppm detection limit based on orientation and distance of receptor from source 
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Figure S11. Bakken Shale meteorological data: Sensitivity of average hours between detection of a 150 
scfh leak with a 0.5 ppm detection limit based on orientation and relative height distance between a 
source and a receptor at 10 m distance 

 



 

173 
 

Figure S12. Bakken Shale meteorological data:  Sensitivity of average hours between detection of a 150 
scfh leak with a 0.5 ppm detection limit based on orientation and relative height distance between a 
source and a receptor at 100 m distance 
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Figure S13. Eagle Ford well pad:  Cumulative distribution function of hours between detection of a 150 
scfh emission rate with a 0.5 ppm detection limit point sensor for every source-receptor combination (blue 
= average, green = 95

th
 percentile) and the best receptor R366 (orange = average, red = 95

th
 percentile) 
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Figure S14. Eagle Ford well pad:  Cumulative distribution function of hours between detection of a 150 
scfh emission rate with a 0.5 ppm detection limit open path sensor for every source-path combination 
(blue = average, green = 95

th
 percentile) and the best path E1 (orange = average, red = 95

th
 percentile)
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Figure S15. Eagle Ford well pad:  Site-level average hours between detection of a 6 scfh leak from 
individual equipment leak sources with a 0.5 ppm detection limit point sensor for every receptor (1st, 
2.5th, 5th, 10th, 25th, 50th, & 75th percentiles). Site-level metrics are based on the median of individual 
sources’ average hours. 
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Figure S16. Eagle Ford well pad:  Site-level average hours between detection of a 6 scfh leak from 
individual equipment leak sources with a 0.1 ppm detection limit point sensor for every receptor (1st, 
2.5th, 5th, 10th, 25th, 50th, & 75th percentiles). Site-level metrics are based on the median of individual 
sources’ average hours. 
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Figure S17. Eagle Ford well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles)with a 0.5 ppm detection limit point sensor 

at the best receptor (R82, highlighted in red). 
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Figure S18. Eagle Ford well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles)with a 0.5 ppm detection limit open path 

sensor deployed across path E1 (highlighted in red). 
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Figure S19. Fayetteville well pad:  Cumulative distribution function of hours between detection of a 150 
scfh emission rate with a 0.5 ppm detection limit point sensor for every source-receptor combination (blue 
= average, green = 95

th
 percentile) and the best receptor R366 (orange = average, red = 95

th
 percentile) 
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Figure S20. Fayetteville well pad:  Average hours between detection of a 150 scfh emission rate from 
individual sources (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles) with a 0.5 ppm detection limit point sensor 

located at the best receptor located at the fence line (R355, highlighted in red) 
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Figure S21. Fayetteville well pad:  Cumulative distribution function of hours between detection of a 150 
scfh emission rate with a 0.5 ppm detection limit open path sensor for every source-path combination 
(blue = average, green = 95

th
 percentile) and the best path I2 (orange = average, red = 95

th
 percentile) 
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Figure S22. Fayetteville well pad:  Site-level average hours between detection of a 6 scfh leak from 
individual equipment leak sources with a 0.5 ppm detection limit point sensor for every receptor (1st, 
2.5th, 5th, 10th, 25th, 50th, & 75th percentiles). Site-level metrics are based on the median of individual 
sources’ average hours. 
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Figure S23. Fayetteville well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles)with a 0.5 ppm detection limit point sensor 

located at the best receptor located on the fence line (R344, highlighted in red). 
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Figure S24. Fayetteville well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles)with a 0.5 ppm detection limit open path 

sensor deployed across the best path (I1, highlighted in red). 
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Figure S25. Fayetteville well pad:  Site-level average hours between detection of a 6 scfh leak from 
individual equipment leak sources with a 0.1 ppm detection limit point sensor for every receptor (1st, 
2.5th, 5th, 10th, 25th, 50th, & 75th percentiles). Site-level metrics are based on the median of individual 
sources’ average hours. 

 



 

187 
 

Figure S26. Fayetteville well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources with a 0.1 ppm detection limit point sensor located at the best receptor (R433, 
highlighted in red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 

percentiles). 
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Figure S27. Fayetteville well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles)with a 0.1 ppm detection limit point sensor 

located at the best receptor located on the fence line (R344, highlighted in red). 
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Figure S28. Fayetteville well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources with a 0.1 ppm detection limit open path sensor deployed across the best path 
(I1, highlighted in red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 

percentiles). 
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Figure S29. Bakken well pad:  Cumulative distribution function of hours between detection of a 150 scfh 
emission rate with a 0.5 ppm detection limit point sensor for every source-receptor combination (blue = 
average, green = 95

th
 percentile) and the best receptor R1M96 (orange = average, red = 95

th
 percentile) 
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Figure S30. Bakken well pad:  Site-level average hours between detection of a 150 scfh emission rate 
with a 0.5 ppm detection limit point sensor for every receptor at 5 m height (1st, 2.5th, 5th, 10th, 25th, 
50th, & 75th percentiles). Site-level metrics are based on the median of individual sources’ average hours 
between detection. 
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Figure S31. Bakken well pad:  Cumulative distribution function of hours between detection of a 150 scfh 
emission rate with a 0.5 ppm detection limit open path sensor for every source-path combination (blue = 
average, green = 95

th
 percentile) and the best path E1 (orange = average, red = 95

th
 percentile) 
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Figure S32. Bakken well pad:  Average hours between detection of a 150 scfh emission rate from 
individual sources (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles) with a 0.5 ppm detection limit open path sensor 

deployed across the best path at 5 m (E5, highlighted in red)  
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Figure S33. Bakken well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles) with a 0.1 ppm detection limit point 

sensor located at the receptor R1M100 (highlighted in red).This receptor had the lowest median of 
individual equipment leak sources’ average hours  between detection. 
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Figure S34. Bakken well pad:  Average hours between detection of a 6 scfh leak from individual 
equipment leak sources with a 0.1 ppm detection limit open path sensor deployed across the path the 
lowest median of individual equipment leak sources’ average hours between detection (E1, highlighted in 
red). Colors show the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles). 
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Figure S35. Bakken well pad:  Average hours between enhancement ≥ 0.1 ppm from normal emissions 
of individual vented sources (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles) with a sensor located at the receptor 

R1M251 (highlighted in red).This receptor had the lowest average hours between detection for the 
equipment leak source with the highest  time between detection. 
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Figure S36. Bakken well pad:  Average hours between enhancement ≥ 0.1 ppm from normal emissions 
of individual vented sources with an open path sensor deployed across path the lowest median of 
individual equipment leak sources’ average hours between detection (E1, highlighted in red). Colors show 
the quantiles of time between detection (10

th
, 25

th
, 50

th
, 75

th
, & 90

th
 percentiles). 
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CONCLUSION 

Methane super-emitters in the oil and gas (O&G) supply chain have been evaluated in three chapters that 

address the quantification, assessment, and mitigation of emissions. Together, these chapters 

demonstrate the substantial contribution of super-emitters to total supply chain emissions, the 

stochasticity of their occurrence, and their potential mitigation with continuous leak detection systems. 

Chapter 1, Methane emissions from the natural gas supply chain, summarizes the state of the knowledge 

of O&G methane emissions.  Several recent studies have measured methane emissions from facilities 

and components across the supply chain. Most of these studies have found highly skewed emission rate 

distributions with a small number of sites or components responsible for the majority of emissions. Top-

down measurements of regional emissions typically have found higher emissions that bottom-up 

estimates, which may be due to exclusion of super-emitters in most emission inventories. 

Chapter 2, Constructing a spatially resolved methane emission inventory for the Barnett Shale Region, 

integrated data from a coordinated research campaign in the Barnett Shale and a national study of 

gathering and processing facilities to estimate gridded, source-specific methane emissions in the Barnett 

Shale region of north-central Texas. Spatially-referenced activity data such as the location of individual 

facilities was based on multiple databases. A comprehensive count of gathering stations was higher than 

reported in any single source. Super-emitter emissions from well pads, small processing plants, large 

processing plants, and compressor stations were accounted for by developing facility emission factors 

with two-phase Monte Carlo simulations that blend together measurement data collected using both 

unbiased sampling and targeted sampling of high emission facilities. The emission inventory estimated 

that October 2013 emissions from the 25-county Barnett Shale region were 72,300 (63,400 – 82,400) kg 

CH4 hr
-1

 from total sources and 46,200 (40,000 – 54,100) kg CH4 hr
-1

 from O&G sources. Super-emitters, 

which include less than 2% of sites, are responsible for 19% of O&G emissions. Compared to alternative 

inventories based on the U.S. EPA Greenhouse Gas Inventory, U.S. EPA Greenhouse Gas Reporting 

Program, and Emissions Database for Global Atmospheric Research, the custom emission inventory was 

higher by factors of 1.5, 2.7, and 4.3, respectively. The higher estimate was due to the inventory utilizing 

both more accurate activity data and emission factors that account for super-emitters. In contrast to 
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several previous studies, the custom inventory’s bottom-up emission estimate was not significantly 

different than top-down estimates of regional O&G methane emissions. 

Chapter 3, Aerial surveys of elevated hydrocarbon emissions from oil and gas production sites, analyzed 

the results of a helicopter-based infrared camera survey of over 8,000 well pads in seven basins to 

identify sources with high hydrocarbon emissions (including methane). Based on a controlled release and 

aircraft-based quantification of methane emissions at a subset of sites, the survey detection limit was 

estimated to be 1 – 3 g hydrocarbon s
-1

, which is at the very high end of well pad component emissions 

observed in other studies. Four percent of sites were observed to have high emissions with the 

prevalence ranging from 1% in the Powder River to 14% in the Bakken. The occurrence of observed 

emissions had several statistically significant but weak correlations to site parameters such as oil 

production, but the most predictive multi-parameter model only explained 14% of the variance. This 

indicates that the occurrence of high emissions is mainly stochastic and therefore frequent monitoring of 

all sites is required to quickly detect super-emitters. Tank vents and hatches were the source of over 90% 

of observed emissions. To determine if tank flashing could explain the observed prevalence of high 

emissions, a tank flashing analysis was performed to estimate the number of sites expected to have 

emissions above the detection limit at any one time. For most basins, observed frequencies were higher 

than expected from tank flashing emissions if tank emission control systems had been functioning 

effectively. This finding was supported by the observation of tank hatch emissions at sites with control 

devices, which indicates control systems have poor capture efficiency. Therefore, tanks are a good target 

for mitigating emissions but the proper design, maintenance, and inspection of control systems is 

necessary to assure that emissions are reduced effectively. 

Chapter 4, Site-level Gaussian dispersion model to optimize the deployment of continuous methane 

sensors, evaluated the ability of continuous leak detection systems to detect methane emissions at O&G 

well pads with point or open path sensors. Three example well pads in the Eagle Ford, Fayetteville, and 

Bakken Shale were modeled using their equipment layout and local meteorological data. Gaussian 

dispersion equations were used to estimate hourly concentration enhancement from individual sources at 

multiple receptors based on ten years of meteorological data. The model calculated the average and 95
th
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percentile detection time of two emission rates (6 and 150 standard cubic feet per hour) using sensors 

with three detection limits (0.5, 0.1, and 1 ppm CH4 enhancement above background). At all three sites, 

there were optimum locations for both point and open path sensors with a 0.5 ppm detection limit to 

detect 150 scfh leaks within a few days. This performance level is consistent with the initial goals of the 

Methane Detectors Challenge, which will deploy first generation leak detection systems at pilot sites in 

2016. The detection of 6 scfh leaks was poor for 0.5 ppm detection limit sensors but substantially 

improved for 0.1 ppm detection limit sensors. Accordingly, first generation continuous leak detection 

systems are expected to quickly detect super-emitters. Modest improvements to their detection limit will 

allow systems to also rapidly detect smaller equipment leaks. Continuous leak detection systems are a 

promising emerging technology for cost-effectively mitigating O&G methane emissions. 

Outlook 

Super-emitters are an important contributor to O&G methane emissions and therefore their rapid 

identification and mitigation is critical for reducing the climate impact of natural gas. The discrepancy 

between top-down and bottom-up emission estimates reported by previous studies appears to be partially 

caused by the exclusion of super-emitters from emission inventories. As a follow-up to the work in 

Chapter 1, I co-authored a manuscript that revised the Barnett Shale gridded inventory with an improved 

approach to account for super-emitters.
1
 Rather than using two-phase Monte Carlo simulations to draw 

from two separate distributions with set super-emitter probabilities, the new approach combines unbiased 

and high-biased measurements into single log-normal distributions with statistical estimators. The 

updated O&G emission estimate is 28% higher than the estimate presented in Chapter 1 and within 10% 

of the top-down estimate. The difference from the earlier estimate is mainly due to a higher production 

site emission factor with even greater contribution from super-emitters – the top 2% of sites were 

estimated to be responsible for 50% of emissions. Ongoing research is evaluating what fraction of 

production site emissions can be attributed to component-level emissions. It is likely that a substantial 

portion of the emissions from the highest emitting sites cannot be explained by normally functioning 

components. Based on the insights of Chapter 2, most of these super-emitter sites probably have 

abnormally high tank emissions, which could be caused by separator malfunctions or ineffective tank 
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control systems. Future research should quantify methane emissions from tank super-emitters in basins 

where top-down emission estimates exceed bottom-up estimates to determine if these sources account 

for the gap. 

Future regulations and voluntary initiatives to reduce O&G methane emissions must account for super-

emitters and the stochasticity of their occurrence. Although super-emitters cannot be predicted, there 

likely are practices that can reduce their frequency. In particular, proper design and maintenance of 

facilities including control device could limit malfunctions that lead to abnormally high emissions. Once 

super-emitters do occur, their rapid detection and repair is crucial for minimizing emissions. Similar to 

many large industrial facilities, O&G facilities should utilize process monitoring to continuously assess 

equipment status so that operators are immediately aware of malfunctions or ongoing issues likely to 

cause future equipment failure. Many production sites already have systems that measure oil and gas 

production rates and transmit the data to operators. These systems could be upgraded to monitor and 

transmit information from equipment often associated with high emissions, such as contact sensors that 

indicate when a tank hatch is open. Finally, continuous leak detection systems are emerging as a cost-

effective tool for quickly identifying the occurrence of methane emissions, particularly from large leaks. 

These steps can be a part of comprehensive efforts to reduce methane emissions from both super-

emitters and widespread, smaller sources in the O&G supply chain to minimize climate impacts. 
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