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ABSTRACT 

Rapid advance in sequencing technology has led to genome-wide analysis of genetic and 

epigenetic features simultaneously, making it possible to understand the biological mechanisms 

underlying cancer initiation and progression. However, how to identify important prognostic 

features poses a great challenge for both statistical modeling and computing. In this thesis, a 

network-based approach is applied to the Cancer Genome Atlas (TCGA) ovarian cancer data to 

identify important genes related to the overall survival of ovarian cancer patients. In the first 

step, a stepwise correlation-based selector is used to reduce the dimensionality of TCGA data, by 

filtering out a large number of unrelated genes. Second, we employ the graphical lasso to 

construct a sparse gene-gene co-expression network. The undirected network allows us to 

classify genes into groups based on gene-gene interaction. We fit a cox proportional hazard 

model with a sparse group lasso penalty for further variable selection and identify 232 genes, 

which are prognostic for ovarian cancer survival. Of these 232 genes, many were reported to be 

associated with cancer initiation or progression in the literature. The Kaplan-Meier curves based 

on the identified genes show clear separation among different groups of patients based on 

different gene expression levels.   
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1.  INTRODUCTION  

Ovarian cancer is one of the most common gynecologic cancers, ranking fifth as the 

cause for cancer-related deaths among women in the United States. According to The American 

Cancer Society, it is estimated that about 22, 280 women will receive a new diagnosis of ovarian 

cancer and about 14, 240 women will die from it in 2016. About 70% of most deaths occur in 

patients with advanced-stage, high-grade serous ovarian cancer.  

The standard treatment for these patients is usually surgery, followed by platinum-taxane 

chemotherapy. Platinum-resistant cancer often recurs within six months in about 25% of patients 

and there is an overall five-year survival probability of 31%. Approximately 13% of high-grade 

serous ovarian cancer can be attributed to germline mutations in BRCA1 and BRCA2 and a 

smaller percentage can be accounted for by other germline mutations (The Cancer Genome Atlas 

Research Network [8]).  

Due to the rapid advances in next-generation sequencing technology, it is now possible to 

simultaneougly perform genome-wide analysis of genetic and epigenetic features (Zhang et al. 

[47]). The Cancer Genome Atlas (TCGA) project provides the most extensive genomic data 

resource for more than 30 types of cancers (http://cancergenome.nih.gov/). For instance, the 

ovarian cancer data from the TCGA contain both clinical and molecular profiles from 586 tumor 

samples. The clinical profile includes records on recurrence, survival, and treatment resistance. 

The molecular profile includes copy number variation (CNV), DNA methylation, exon 

expression, gene expression (microarray), gene expression (RNA-seq), genotype (SNP), 

MicroRNA expression (microarray), MicroRNA-seq, protein expression, and somatic mutation. 
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These high-dimensionality datasets have motivated the study of molecular mechanisms of cancer 

through computational approaches.  

     A crucial step in the construction of a regression model when there are tens of 

thousands of features present in the dataset is feature selection. The purpose of feature selection 

is to select a subset of the original features so that the feature space is optimally reduced based 

on a certain evaluation criterion. As the years progress, the dimensionality of data keeps 

increasing in both the number of instances as well as the number of features in various 

applications. This high-dimensionality leads to problems such as scalability and learning 

performance of many machine learning algorithms. For instance, high-dimensional data such as a 

gene expression dataset with hundreds or thousands of genes can have large amount of irrelevant 

and redundant features which may significantly reduce the performance of machine learning 

algorithms. Through feature selection, we are able to remove irrelevant or redundant features 

which increases computational efficiency and estimation accuracy. 

  Feature selection algorithms are divided into two categories which include the filter 

model and the wrapper model. Using the filter model, certain features are selected based on 

general characteristics of the training data without the use of any learning algorithm. On the 

other hand, the wrapper model uses the performance of a predetermined learning algorithm to 

evaluate and select the features. The wrapper model has a superior learning performance than the 

filter model since it selects features which are more suited to the predetermined learning 

algorithm; however, it tends to be more computationally expensive than the filer model. So, the 

filter model is often preferred due to its computational efficiency when dealing with a large 

number of features.  
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Zhang et al. [49] proposed a novel stepwise correlation-based selector (SCBS) which 

imitates the hierarchy of the Bayesian network model for feature selection. This approach was 

applied to the TCGA ovarian cancer data and several interesting results were obtained which 

provided insight on the genetic/epigenetic mechanisms of ovarian cancer.   

In this paper, we identify biomarkers which play a crucial role in the overall survival of 

the ovarian cancer patients. The data we are going to analyze is the ovarian cancer data, which 

was retrieved from the TCGA portal. The ovarian cancer data from TCGA includes 586 samples 

with gene expression profiles containing level 3 UNC Agilent G4502A_07 microarrays. The data 

contains gene expression level for 17,814 genes. Due to the high-dimensionality of the data, we 

use the stepwise correlation-based selector (SCBS) proposed by Zhang et al. [49] and select a 

subset of 603 genes from the 17, 814 genes. With these 603 genes, we will construct an 

undirected network using the graphical lasso model proposed by Friedman et al. [11]. This will 

allow for the identification of gene clusters, which will be used in fitting a cox proportional 

hazard model using a sparse group lasso penalty (Friedman et al. [12]).  

The rest of paper is organized as follows: in Chapter 2, we provide some background 

information through the revision of papers based on the sparse inverse covariance estimation 

with the graphical lasso and sparse group lasso. In Chapter 3, we study statistical methods such 

as the stepwise correlation-based selector, graphical lasso, cox proportional hazard model with 

sparse group lasso penalty, and Kaplan-Meier curves. In Chapter 4, we interpret the results 

obtained from the analysis. Conclusions are given in Chapter 5. 
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2.  BACKGROUND/LITERATURE REVIEW 

2.1  Sparse inverse covariance estimation with the graphical lasso 

Several authors have proposed the method of 𝑙1 (lasso) regularization as a form of 

estimating sparse undirected graphical models. The underlying assumption for this basic model 

is that the observations follow a multivariate Gaussian distribution with mean 𝜇 and covariance 

matrix Σ. Given other variables, variables 𝑖 and 𝑗 are said to be conditionally independent if the 

𝑖𝑗𝑡ℎcomponent of Σ−1 is zero. For this reason, an 𝑙1 penalty is imposed when estimating Σ−1 

under sparsity assumption.  

Different methods for the optimization of the exact log-likelihood have been proposed by 

several researchers (Yuan and Lin [46]; Banerjee et al. [3]; Friedman et al. [11]). Given 𝑛 

multivariate normal observations of dimension 𝑝, with mean 𝜇 and covariance matrix Σ, we want 

to maximize the penalized log-likelihood 

 

 l(Θ) = log |Θ| − 𝑡𝑟(𝑆Θ) − 𝜆‖Θ‖1 ( 2.1.1) 

 

where 𝑆 represents the sample covariance matrix, Θ = Σ−1, and ‖Θ‖1 = ∑ |Θij|𝑖,𝑗 . 

 According to Banerjee et al. [3], the maximization of equation (2.1.1) is equivalent to 

solving the dual problem  

 

 min
𝛽

{
1

2
‖𝑊11

1
2 𝛽 − 𝑊11

−
1
2𝑠12‖

2

+ 𝜆‖𝛽‖1} ( 2.1.2) 
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where  

 𝑊 = [
𝑊11 𝑤12

𝑤12
𝑇 𝑤22

] ( 2.1.3) 

 𝑆 = [
𝑆11 𝑠12

𝑠12
𝑇 𝑠22

] ( 2.1.4) 

 

 Suppose we let 𝛽 = 𝑊11
−1𝑤12, then the problem becomes much easier due to the 

equivalence between (2.1.1) and (2.1.2). This lasso problem can be solved using a coordinate 

descent procedure. Friedman et al. [13] developed a simple algorithm known as the graphical 

lasso, which is extremely fast. This algorithm is able to solve a 1000-node problem within a 

minute and is 3000 times faster than other competing algorithms. The graphical lasso algorithm 

can be implemented as follows: 

  

Since the graphical lasso algorithm is simple and fast in estimating a sparse inverse 

covariance matrix using the 𝑙1 penalty, it should aid in the application of sparse inverse 

covariance procedures involving large datasets, which contain thousands of parameters.  

Step 3

Continue until 𝑊 converges. 

Step 2

Solve the lasso problem in (2.1.2) and estimate  𝛽. Replace 𝑤12 = 𝑊11
 𝛽.

Step 1

Compute 𝑊 = 𝑆 + 𝜆𝐼
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2.2  A sparse-group lasso 

For problems where there are grouped covariates, which can have sparse effects on a 

group as well as within group level, a regularized model for linear regression is introduced with 

𝑙1 and 𝑙2 penalties. Let us begin by examining the usual linear regression model. We have a 

dataset which consists of an 𝑛 response vector 𝑦, and an 𝑛 by 𝑝 matrix of features, 𝑋. In recent 

times, we have been presented with applications in which 𝑝 ≫ 𝑛. For such applications, standard 

regression fails. To overcome this problem, Tibshirani [41] developed the lasso approach, which 

regularizes the problem by bounding the 𝑙1 norm of the solution. The lasso approach minimizes  

 

 
1

2
‖𝑦 − 𝑋𝛽‖2 + 𝜆‖𝛽‖1 ( 2.2.1) 

 

and computes a solution with a small number of nonzero entries in 𝛽. Suppose our data contains 

predictor variables which are divided into 𝑚 different groups. An example of this is gene 

expression data which may contain groups for gene pathways or factor level indicators in 

categorical data.  

The objective is to find a solution which uses only a few of the groups, in addition to 

achieving sparsity in 𝛽. To solve this problem, Yuan and Lin [46] proposed the group lasso 

criterion. The problem is as follows 

 

 min
𝛽

1

2
‖𝑦 − ∑ 𝑋(𝑙)𝛽(𝑙)

𝑚

𝑙=1

‖

2

+ 𝜆 ∑ √𝑝𝑙‖𝛽(𝑙)‖

𝑚

𝑙=1

 ( 2.2.2) 
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where 𝑋(𝑙) is a submatrix of 𝑋 with columns corresponding to the predictors in group 𝑙, 𝛽(𝑙) is 

the coefficient vector corresponding to that group and 𝑝𝑙 is the length of 𝛽(𝑙). The magnitude of 

the tuning parameter 𝜆 determines the sparsity of the solution. Note that if each group size is 1, 

the result is a regular lasso solution.  

 The group lasso model yields a sparse set of groups; however, the presence of a group in 

the model results in all nonzero coefficients in the group. Suppose we want to achieve both 

sparsity of groups and within each group. To do this, we use the sparse group lasso, which uses 

the formula  

 

 min
𝛽

1

2𝑛
‖𝑦 − ∑ 𝑋(𝑙)𝛽(𝑙)

𝑚

𝑙=1

‖

2

+ (1 − 𝛼)𝜆 ∑ √𝑝𝑙‖𝛽(𝑙)‖ + 𝛼

𝑚

𝑙=1

𝜆‖𝛽‖1 ( 2.2.1) 

 

where 𝛼 ∈ [0,1]. The mixing parameter, 𝛼, is a convex combination of the lasso and group lasso 

penalties since 𝛼 = 0 produces a group lasso fit and  𝛼 = 1 produces a lasso fit.  

 The sparse group lasso model is often used for regression problems involving categorical 

predictors. For predictors with a large number of levels, many of the levels for the predictors 

included are sometimes not very informative so the sparse group lasso accounts for this by 

replacing the coefficients with zero for many levels even in the nonzero groups. The sparse 

group lasso is sometimes useful for analyzing gene expression data as it is able to find interesting 

pathways from which driving genes are selected. In addition, the model also reduces the 

estimated effects of driving genes within a group toward one another (Simon et al. [34]).  

 For comparison purposes, all three models (sparse group lasso, group lasso, and lasso) 

were applied on two real data examples involving gene expression data, the colitis data and 
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breast cancer data. In the colitis data, the lasso outperformed the group lasso and the sparse 

group lasso while in the breast cancer data, the sparse group lasso outperformed the lasso and 

group lasso. The difference in these results is due to the fact that group information in the cancer 

data is critical for classification and the grouping provides us with insights into the biological 

mechanisms while the group information in the colitis data simply increases model variance. 

Although the sparse group lasso may not be applicable to all grouped data, it can sometimes be 

useful as in the case of the cancer data.       
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3.  METHODOLOGY 

3.1  Feature Selection 

As the years progress, the dimensionality of data keeps increasing in both the number of 

instances as well as the number of features in various applications. This high-dimensionality 

leads to problems such as scalability and learning performance of many machine learning 

algorithms. For instance, high-dimensional data such as the TCGA ovarian cancer data with 

17,814 genes can have a large number of irrelevant and redundant genes, which may 

significantly reduce the performance of machine learning algorithms. As the dimensionality of a 

dataset increases, there is an increasing difficulty in proving the result statistically significant due 

to the sparsity of the meaningful data in the dataset in question. With an increase in 

dimensionality also comes an increase in computational cost which is usually exponentially. To 

overcome this problem we use feature selection methods to reduce the number of features in 

consideration.  

Feature selection is a very essential requirement when dealing with high-dimensional 

data so that data overfitting is avoided and further analysis is possible. Feature selection 

algorithms are divided into two categories which include the filter model and the wrapper model. 

Using the filter model, certain features are selected based on general characteristics of the 

training data without the use of any learning algorithm. On the other hand, the wrapper model 

uses the performance of a predetermined learning algorithm to evaluate and select the features. 

The wrapper model has a superior learning performance than the filter model since it selects 

features which are more suited to the predetermined learning algorithm; however, it tends to be 
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more computationally expensive than the filer model. So, the filter model is often preferred due 

to its computational efficiency when dealing with a large number of features.  

In this paper, the feature selection method that is applied to the TCGA ovarian cancer 

data is a stepwise correlation-based selector (SCBS). The underlying assumption we make from 

a biological perspective is that cancer phenotype is directly associated with gene expression. The 

17,814 genes from our TCGA ovarian cancer data are fed into the stepwise correlation-based 

selector (SCBS) and the selection process begins. We begin by computing the correlation 

between the genes and survival time. At this step, we detect those genes which are significantly 

correlated with survival time and these genes are selected to be a part of our subset. In the next 

step, we select those genes which are correlated with the genes that were selected in the first 

step. We continue in this manner of progressively selecting genes that correlate with the selected 

genes until a subset with the desired number of genes is obtained. Using this stepwise 

correlation-based selector, we select 603 genes from the total 17,814 genes. The SCBS algorithm 

can be implemented as follows: 

 

 

Step 1

Compute the 
correlation 

coefficients between 
the current node 𝑋𝑖

and all the other 
nodes. 

Keep the 𝑘 highest 
correlated nodes with 

𝑋𝑖 for additional 
filtering. 

Step 2

Compute the 𝑝-value 
of the correlation 

coefficient for each of 
the 𝑘 nodes selected in 

step 1. 

If the 𝑝-value is 
significant under the 
Benjamini-Hochberg 

procedure with 
𝐹𝐷𝑅 ≤ 0.05, the node 

is selected.    

Step 3

Repeat step 1 and 2 
until 𝑝 nodes are 

selected.   
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The correlation coefficients are computed using Pearson’s correlation method. To perform the 

hypothesis test, the correlations are transformed using Fisher’s z-transformation, which is a 

function of 𝑟 whose sampling distribution of the transformed value is close to normal. Fisher’s z-

transformation is given by 

 

 𝑍 =
1

2
ln (

1 + 𝑟

1 − 𝑟
) ( 3.2.1) 

 

where 𝑟 is the sample correlation, 𝑍 is the transformed value of 𝑟, and ln is the natural logarithm. 

Using the fact that 𝑍 approximately follows a standard normal distribution, 𝑍~𝑁(0,1), we 

compute the p-values of the correlation coefficients. Note that in the implementation of the 

SCBS algorithm, 𝑘 is set to four. The value of 𝑘 is selected based on previous studies which 

suggest that 𝑘 should be four, five, or six. A small value of 𝑘 fails to capture weakly connected 

nodes and a large value of 𝑘 tends to capture more false positives.  

 When compared to single-round filtering methods, the stepwise correlation-based selector 

appears to be more effective in selecting those with features, which are associated with the 

phenotype-related pathways but are indirectly associated with the cancer phenotype. To better 

understand this, let us consider the following scenario. Assume there is a casual relationship such 

as 𝐴 → 𝐵 → 𝐶𝑎𝑛𝑐𝑒𝑟. Although there is a strong correlation between 𝐴 and 𝐵 or 𝐵 and cancer, 

the correlation between 𝐴 and cancer could decay significantly to the extent of being 

undetectable.          
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3.2  Graphical Lasso 

Recently, the estimation of the inverse covariance in a high-dimensional setting where 

the number of features 𝑝 is greater than the number of observations 𝑛 has gained much interest. 

Even more so, the estimation of a sparse inverse covariance matrix has gained more spotlight. 

This is because it involves the estimation of the inverse covariance matrix which has some 

elements equal to zero. For instance, in an 𝑛 × 𝑝 data matrix 𝑋 with independent rows which are 

distributed 𝑁(0, Σ), a zero in an off-diagonal element of Σ−1 would be due to a pair of variables 

which are conditionally independent. To this end, if we assume a multivariate Gaussian 

distribution then we can estimate a graphical model for the data using the estimation of the 

sparse inverse covariate matrix.  

In the graphical model, each node represents a feature and the edge between the 

corresponding pair of nodes represents the nonzero off-diagonal element in the inverse 

covariance matrix. Usually, Σ−1 is estimated by maximizing the log-likelihood of the data. Using 

the Gaussian model, we can represent the log-likelihood as  

 

 log det Σ−1 − 𝑡𝑟(SΣ−1) ( 3.2.2) 

 

where 𝑆 =
𝑋𝑇𝑋

𝑛
 is the estimated covariance matrix of the data. Let Θ = Σ−1. Then we can 

denote the maximum likelihood estimate of (3.2.2 ) by Θ̂ = 𝑆−1. Generally, this estimate does 

not contain any elements equal to zero. In addition, having more features than observations in 

our data, that is, 𝑝 ≫ 𝑛, will produce an 𝑆 which is singular so we would not be able to compute 

the maximum likelihood estimate.  
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Yuan and Lin [46] proposed an alternative to this, which involves maximizing the 

penalized log-likelihood over nonnegative definite matrices Θ, instead of simply maximizing the 

log-likelihood. The penalized log-likelihood is 

 

 log det Θ − 𝑡𝑟(𝑆Θ) − 𝜆‖Θ‖1 ( 3.2.3) 

 

where 𝜆 is a nonnegative tuning parameter. This problem is referred to as the graphical lasso 

(Friedman, Hastie, and Tibshirani [11]).  

There are two main advantages of using a penalized log-likelihood rather than the simple 

log-likelihood. First, regardless if 𝑆 is singular, the solution will always be positive definite for 

all 𝜆 > 0. Second, for a sufficiently large 𝜆, the estimated Θ̂ will be sparse because of the lasso-

type penalty, which has been applied to the elements of Θ (Tibshirani [41]).   

In order for the solution to the graphical lasso problem to be block diagonal with blocks 

𝐶1, 𝐶2, … , 𝐶𝐾, that is, for a set of nodes to form a connected component in the graphical model, a 

necessary and sufficient condition is required. The condition is that |𝑆𝑖𝑖′| ≤ 𝜆 for all 𝑖 ∈ 𝐶𝑘, 𝑖′ ∈

𝐶𝑘′, 𝑘 ≠ 𝑘′. This condition was discovered by Mazumder and Hastie [26] and can be 

implemented prior to solving equation (3.2.3) so that large computational gain is achieved.  

The R package for graphical lasso with version glasso1.7 uses the above condition to 

estimate a sparse inverse covariance matrix using a lasso (𝑙1) penalty. The general idea behind 

the algorithm implemented in this package is that for a specified value of the tuning parameter, if 

the solution to the graphical lasso problem will be block diagonal, then the graphical lasso 

algorithm is applied to each block separately. Using a block diagonal screening decreases 

computation time significantly.  
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The covariance matrix, 𝑆, which is a symmetric 𝑝 × 𝑝 matrix is computed from our 𝑛 × 𝑝 

data matrix 𝑋. Note that 𝑛 is the number of samples at risk of death which is 296 and 𝑝 is the 

number of genes which is 603. The glasso function is applied to the covariance matrix 𝑆 and the 

value of lambda, the regularization parameter for lasso is set equal to 0.1. A smaller value of 𝜆 is 

always preferred to a larger value of 𝜆. This is due to the fact a smaller value of 𝜆 yields less 

sparse Θ which fits the data well while a larger value of 𝜆 yields a sparser Θ which fits the data 

less well.       

The output from the glasso function includes: 𝑤 which is the estimated covariance 

matrix, 𝑤𝑖 which is the estimated inverse covariance matrix, 𝑙𝑜𝑔𝑙𝑖𝑘 which is the value of the 

maximized log-likelihood penalty, 𝑑𝑒𝑙 which is the change in the parameter value at 

convergence, 𝑛𝑖𝑡𝑒𝑟 which is the number of iterations of the outer loop used by the algorithm, 

𝑎𝑝𝑝𝑟𝑜𝑥, and 𝑒𝑟𝑟𝑓𝑙𝑎𝑔.  

Butts et al. [6] developed the network package in R, which provides a general framework 

for encoding complex relational structures composed of a vertex set along with a combination of 

edges. The tools in this package allow us to create, access, and modify network class objects 

which facilitate the representation of more complex structures from adjacency matrices. In 

addition, it also allows us to efficiently handle large sparse networks.   

Let 𝐺 denote a network, a relational structure on a given vertex set (𝑉) and an edge, such 

that 𝑇 is the “tail set” of the edge and 𝐻 is the corresponding “head set” belonging to the ordered 

pair (𝑇, 𝐻) with the property that 𝑇, 𝐻 ⊆ 𝑉(𝐺). The cardinality of the vertex set and 

corresponding edge set are denoted by |𝑉(𝐺)| = 𝑛 and |𝐸(𝐺)| = 𝑚, respectively. In an 
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undirected network, the head and tail sets of an edge are interchangeable, meaning that 𝑖 is 

adjacent to 𝑗 if there exists an edge such that 𝑖 ∈ 𝑇, 𝑗 ∈ 𝐻 or 𝑖 ∈ 𝐻, 𝑗 ∈ 𝑇.  

Using the inverse covariance matrix 𝑤𝑖 which was previously estimated using the glasso 

function, we construct our adjacency matrix. The network function uses the adjacency matrix to 

create an undirected network object. The object is plotted and a two-dimensional plot of the 

undirected network is obtained.  

 

3.3  Cox proportional hazard model with sparse group lasso penalty 

The advantage of using sparse group lasso over lasso and group lasso is that it generates a 

solution, which is both between and within group sparsity. Using the SGL package in R, which 

was developed by Simon et al. [35], we fit a cox proportional hazard model via a penalized 

maximum likelihood, which is a combination of a lasso and group lasso regularization. This 

package contains four functions, two of which we use; cvSGL and SGL. The cvSGL function is 

used to fit and cross-validate a cox model via the penalized maximum likelihood.  

The arguments specified in the function are: data, index, type, nlam, nfold, and alpha. 

The argument ‘data’ is a list which consists of an 𝑛 × 𝑝 input matrix 𝑋, an 𝑛-vector time which 

corresponds failure/censor times, and an 𝑛-vector status which indicates failure (1) or censoring 

(0). In our case, 𝑋 is a 568 × 603 matrix with gene expression levels with 𝑛 being the total 

number of samples, and 𝑝 being the number of genes selected using SCBS. The argument 

‘index’ is a 𝑝-vector which indicates group membership of each covariate. To construct the index 

vector, we use the estimated inverse covariance matrix 𝑤𝑖 generated using the glasso function 

since this was used for the estimation of the undirected network in the network function. All 
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genes belonging to the cluster (Σ𝑖𝑗
−1 ≠ 0) are assigned to group 1 and those genes not belonging 

to the cluster (Σ𝑖𝑗
−1 = 0) are each assigned a different group number. Type corresponds to the 

model type; in our case, the cox model. The argument ‘nlam’ corresponds to the number of 

lambdas to use in the regularization path which we set equal 10 and ‘nfold’ corresponds to the 

number of folds of the cross-validation loop which is set equal to 5. The mixing parameter, 𝛼, 

determines how much weight should be given to either the lasso or group lasso regression.  In 

our case, we set the mixing parameter, alpha equal to 0.95 which indicates that more weight is 

given to the lasso than the group lasso. Note that choosing a value of 𝛼 which is close to 1 

eliminates any degeneracies and problematic behavior caused by extreme correlations.  

The cvSGL function runs a total of (𝑛𝑓𝑜𝑙𝑑 + 1) times. In the first run, the sequence of 

lambda is generated. The cross-validated error rate and its standard deviation are computed in the 

consecutive runs. The output values of the cvSGL function include: lldiff which is an nlam 

vector of cross-validated log-likelihoods, llSD which is an nlam vector of approximated standard 

deviations of lldiff, lambdas which is a list of the values of lambda used in the regularization 

path, type which is the response type, and fit which is a model fit object created.  

The sparse group penalty model can be extended to other models. The two most common 

cases in which this model is implemented include logistic regression and the cox model for 

survival data. In a cox regression model, the data is a covariate matrix, 𝑋, which is divided into 

sub-matrices based on the groups, an 𝑛-vector 𝑦 which contains failure censoring times, and an 

𝑛-vector 𝛿 which indicates failure or censoring for each observation. Note that 𝛿𝑖 = 1 indicates 

that observation 𝑖 failed and 𝛿𝑖 = 0 indicates the observation 𝑖 was censored. Under this model, 

the sparse group lasso is expressed by 
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𝛽 = arg min
𝛽

1

𝑛
[log (∑ (∑ exp(𝑥𝑗

𝑇𝛽) − 𝑥𝑖
𝑇𝛽

𝑗∈𝑅𝑖

)

𝑖∈𝐷

)] + (1 − 𝛼)𝜆 ∑ √𝑝𝑙‖𝛽(𝑙)‖ + 𝛼𝜆‖𝛽‖1

𝑚

𝑙=1

 ( 3.3.1) 

 

where 𝐷 is the set of failure indices, and 𝑅𝑖 is the set of indices, 𝑗, such that we have 𝑦𝑗 ≥ 𝑦𝑖 

which denotes those patients still at risk at failure time 𝑖. 

 

3.4  Kaplan-Meier Curves  

In 1958, Edward L. Kaplan and Paul Meier developed a way of dealing with incomplete 

observations and as a result, Kaplan-Meier curves and estimates of survival data have become 

useful in dealing with differing survival times such as times-to-event in which some of the 

subjects do not continue in the study. Time-to-event can be defined as a clinical duration variable 

for each subject in the study. It may begin at the point in time when the subject becomes a part of 

a study or when the subject begins receiving treatement and ends when the subject reaches the 

event of interest or is censored from the study.  

Kaplan-Meier survival analysis requires three variables for each of the subjects in the 

study. These variables include the survival time (time-to-death), their status at the end of the 

study (event occurrence or censored), and the group they belong to. Censoring occurs when the 

total survival time for a subject cannot be correctly determined due to reasons such as the subject 

dropping out from the study or the subject survives until the end of the study (Rich et al. [30]).  

 The Kaplan-Meier estimate is the simplest way of estimating a population survival curve 

from a sample as it allows us to compute the survival over time regardless of the difficulties 
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associated with subjects or situations. In estimating the survival curve, we compute the 

probabilities of the occurrence of an event at a certain point of time and multiply these 

successive probabilities by any previously computed probabilities to get the final estimate. The 

Kaplan-Meier estimator of the survival function at time 𝑡 is  

 

 𝑆 (𝑡) = ∏
𝑛𝑖 − 𝑑𝑖

𝑛𝑖
𝑡(𝑖)≤𝑡

 ( 3.4.1) 

 

where 𝑛𝑖 denotes the number at risk of dying at 𝑡(𝑖) and 𝑑𝑖 denotes the observed number of 

deaths. Note that  𝑆 (𝑡) = 1 if 𝑡 < 𝑡(1). The survival probability is calculated by dividing the 

number of subjects surviving by the number of patients at risk. Subjects at risk do not include 

subjects who have died, dropped out of the study, or have been censored (Goel et al. [18]).  

The cox proportional hazard model is useful in identifying variables, which may be of 

prognostic importance. In theory, the number of variables which can be included in the cox 

model are infinite. For a regression model with 𝑘-variables, the hazard function is  

 

 ℎ(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝛽) = ℎ0(𝑡) exp(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘) ( 3.4.2) 

 

where ℎ0(𝑡) is the baseline hazard function, 𝛽0 is the intercept, and 𝛽1, 𝛽2 , … , 𝛽𝑘 are the 

corresponding regression coefficients estimated in the modelling process. 
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We can express the above equation as a log-hazard function in the form 

 

 ln [
ℎ(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝛽)

ℎ0(𝑡)
] = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 ( 3.4.3) 

 

Although it is possible to include an infinite number of variables in the model, there are 

practical constraints in the estimation of the regression coefficients. For this reason, the number 

of variables included in the model cannot be greater than the number of events available for the 

analysis.  

To calculate the confidence interval (CI), 𝑆 (𝑡) is transformed using a scale which 

approximately follows a Normal distribution. This is commonly achieved using a logarithmic 

transformation of 𝑆 (𝑡). Using this transformed scale, the endpoints of a 100(1 − 𝛼) percent 

confidence interval for the log-log survival function are given by the expression 

 

 
ln [− ln (𝑆 (𝑡))] ± 𝑧1−𝛼/2𝑆�̂� {ln [− ln (𝑆 (𝑡))]} 

( 3.4.5) 

 

where 𝑧1−𝛼/2 is the upper 𝛼/2 percentile of the standard normal distribution.  

Taking the antilog of the lower and upper values of the CI in (3.4.5) allows us to return to 

the untransformed scale. The lower and upper endpoints of the confidence interval for the 

survival function are, respectively 

 

 exp[− exp( �̂�𝑢 )]    and    exp[− exp( �̂�𝑙 )] ( 3.4.6) 
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Note that since 𝑆 (𝑡) always has values ranging from 0 to 1, the CI computed with (3.4.6) will 

always be in the range of 0 to 1.   

When interpreting K-M curves, we look for gaps in these curves in a horizontal or 

vertical direction. A horizontal gap indicates that a particular group took longer to experience a 

certain fraction of deaths. A vertical gap indicates that at a specific point in time, a particular 

group had a greater fraction of subjects surviving. The Kaplan-Meier survival analysis is a 

convenient method of estimating survival times as it allows us to use the information from 

subjects who are censored up to the time when they are censored (Machin et al. [24]).  
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4.  RESULTS AND DISCUSSION  

4.1  Results  

Using the ‘data matrix’ tool available in TGCA data portal, the data was extracted. This 

data set contains the expression values of 17,814 genes. Table 4.1.1 presents a summary of 

TCGA ovarian cancer data, which includes the data types we incorporated in the analysis and the 

number of available cases for each data type.  

 

Data type Platform Cases 

Gene expression Agilent G4502A_07 583 

Clinical information N/A 585 

Table 4.1.1. Summary of TCGA ovarian cancer data. 

 

Using the stepwise correlation-based selector (SCBS) approach for feature selection, a 

subset of 603 genes was selected from the total 17,814 genes. The sparse inverse covariance 

matrix was estimated using the blockwise coordinate descent algorithm for penalized maximum 

likelihood estimation which is employed in the glasso package in R. The undirected network was 

constructed using the network package in R. The predicted network contains 589 nodes within 

the cluster and the remaining 14 nodes are not connected.  
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Figure 4.1.1. Undirected network generated using the graphical lasso algorithm with a 

regularization parameter 𝛌 = 𝟎. 𝟏. 
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 We applied the cox proportional hazard model with sparse group lasso penalty to fit a 

survival model to our data. The 603 gene expression levels for all 568 samples along with the 

clinical information for these samples were fed into the sparse group lasso (SGL) algorithm 

which is implemented in R. The survival time is given in days and it is defined as the time 

between diagnosis and death. The death risk (status) is treated as a binary variable which 

represent failure as 1 and censoring as 0. The index for all 603 genes contains the group 

membership of genes. The 589 genes which are in the same cluster are assigned to group 1 and 

the remaining 14 genes which do not belong to the cluster are each assigned to a different group 

from group 2 to group 15.  

A cox proportional hazard model is fit to the data using 10 lambdas in the regularization 

path and 5 folds for the cross-validation loop. Using the log-likelihoods along with the lambda 

values used in the regularization path from the output, we construct a plot.  

 

Number Lambda Log likelihood 

1 0.003507721 2149.039 

2 0.002514584 2220.560 

3 0.001802633 2362.001 

4 0.001292256 2613.528 

5 0.000926381 3013.686 

6 0.000664096 3694.887 

7 0.000476071 4995.810 

8 0.000341282 8315.698 

9 0.000244655 14627.111 

10 0.000175386 25431.210 

Table 4.1.2. Lambda values with their corresponding log-likelihood computed by cv.SGL.   
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Figure 4.1.2. Plot of the log-likelihoods against their corresponding lambda values. 

 

 A common method for selecting the tuning parameter 𝜆 is to use cross-validation to select 

the optimal 𝜆 (Sun et al. [39]; Wasserman and Roeder [42]; Sofer et al. [37]). The problem with 

using the cross-validation method is that it yields large number of false positives in the sparse 

network problem (Fu and Zhou [14]). A method which has shown to be more effective in 

indentifying the optimal 𝜆 is the “change point” method. The “change point” method uses the 

change in the log likelihood for different values of 𝜆. Based on this method, the optimal 𝜆 

corresponds to the change point at which increasing 𝜆 does not yield a significant decrease in the 

log likelihood value. The optimal lambda selected is lambda 7 with a value of 𝜆=0.000476071. 
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 Using the optimal 𝜆 that was selected, we fit a cox proportional hazard model with a 

combination of lasso and group lasso regularization. The input matrix, survival time, status and 

index all remain the same as what was used in the cv.SGL function. The difference in using the 

SGL function is that the optimal 𝜆, lambda 7, is used in fitting the cox model to the data. The 

mixing parameter, 𝛼, is set equal to 0.95. The beta cofficients for all 603 genes were estimated 

using the cox model in the SGL function. After fitting the regression model to the data, those 

genes for which the null hypothesis (𝐻0: 𝛽𝑖 = 0) is rejected, are kept in the model and are 

termed prognostic. The remaining genes which are not statistically different from zero are 

removed from the model and are not considered prognostic for the outcome.  

 The total number of genes with nonzero beta coefficients is 232 genes. Using the gene 

expression level for these 232 genes along with their estimated beta coefficients, we will 

compute the survival rate for all 568 samples. The survival estimates are computed by  

 

 𝑆𝑖 = 𝛽0 + 𝛽1𝑔1𝑖 + 𝛽2𝑔2𝑖 + ⋯ + 𝛽232𝑔232𝑖 ( 4.1.1) 

 

where 𝛽1, 𝛽2 , … , 𝛽232 are the corresponding regression coefficients estimated in the modelling 

process and 𝑖 is the index for the sample where 𝑖 = 1, 2, … , 568. 

After computing these survival estimates, we will sort these estimates in ascending order. 

We evenly divide the survival estimates into 2 groups where group 1 includes the first 284 

estimates and group 2 includes the remaining 284 estimates. Similarly, we divide the survival 

estimates into 3 groups while sorted in ascending order. The survival package in R allows us to 

construct survival curves from a fitted cox model using the survfit function. Kaplan-Meier curves 
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will be plotted using the survival time and status for the 2 groups (low risk and high risk). The 

procedure is also repeated for the case of 3 groups (low risk, medium risk, and high risk). 

 

 

Figure 4.1.3. Kaplan-Meier curves with 95% confidence intervals for low and high-risk groups. 
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Figure 4.1.4. Kaplan-Meier curves with 95% confidence intervals for low, medium, and high-

risk groups. 
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4.2  Discussion 

The K-M estimates of the survival curves are given by the graph of 𝑆(𝑡) against time in 

days in figures 4.1.3 and 4.1.4. 𝑆(𝑡) begins at 1, where all patients in the study are alive, since 

𝑆(0) = 1 and then progressively decline towards 0 where all patients have died with time. Since 

the estimated survival curve remains at a plateau between successive patient death times, the 

graph of 𝑆(𝑡) is plotted as a step function. At each time of death, there is an instantaneous drop 

to a new level. The graph only attains a value of 0 if the patient with the longest observed 

survival time dies. In the event that the patient is still alive, the K-M curve has a plateau which 

begins at the time of the last death and continues until the censored survival time of this longest 

surviving patient. The censored survival times are marked on the curve with bold vertical lines 

cutting the curve.  

 Since we are estimating the difference between 2 groups and 3 groups depending on the 

potential risk, it is useful to calculate confidence intervals (CI) for the estimates. The survival 

estimates were partitioned into 2 and 3 groups based on low risk and high risk and low risk, 

medium risk, and high risk, respectively. The corresponding survival curves were estimated 

using the samples that fall into these groups. As a measure of the reliability of the estimates at 

key points along the K-M survival curves, we computed the 95% CI for 𝑆(𝑡) at time 𝑡.  

The survival curves show a better outcome for low risk patients than the high risk 

patients in figure 4.1.3. As expected, the survival curves indicate a gradient of survival 

differences between the two groups. Since the K-M curves for the different risk groups are 

adequately separated, these groups can be used for prognosis. It can be noted from figure 4.1.4 

that even though there is a clear difference between low, medium, and high risk groups, the 
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separation between the three groups is not as pronounced as that of figure 4.1.3. For instance, the 

medium and high risk groups have ‘shrunk’ closer to each other while the low risk group appears 

to have a relatively similar prognosis.   

From the 232 genes which were termed prognostic for ovarian cancer survival, we found 

10 of those genes which are directly related to cancer. Protein ubiquitination (CCNB1IP1) is 

important for many cellular processes as it is able to regulate protein degradation and signal 

mechanisms. Alterations of the ubiquitination mechanism have become evident in human 

cancers. Levels of UB ligases have been found to be significantly correlated with relevant 

prognostic factors as well as with the clinical outcome (Confalonieri et al. [7]). CDK5RAP2 is 

necessary for spindle checkpoint function (Zhang et al. [51]). The expression of COL2A1 has 

also shown useful in predicting tumor recurrence in high-grade serous ovarian cancer (Ganapathi 

et al. [16]). COL8A1 in hepatocarcinoma cells has shown to be correlated with increased tumor 

cell proliferation (Ma et al. [23]). Over-expression of EIF6 has shown to increase the motility 

and invasiveness of cancer cells by controlling the expression of a critical subset of membrane-

bound proteins (Pinzaglia et al. [28]). GATA6 promotes colon cancer cell invasion through the 

regulation of urokinase plasminogen activator (uPA) gene expression. It contributes to colorectal 

tumorigenesis and tumor invasion (Belaguli et al. [4]). Splice variants (SVs) of receptors for the 

growth hormone-releasing hormone (GHRH) have been detected in several human cancers and 

cancer cell lines. Antagonists of GHRH have shown to inhibit growth of various human cancers 

(Garcia-Fernandez et al. [15]). The expression of interferon regulatory factor-1 (IRF-1) is a 

nuclear transcription factor which mediates interferon and other cytokine effects. IRF-1 appears 

to have antitumor activity in vitro and in vivo in cancer cells (Kim et al. [20]). The expression 

NLRX1 acts as a potential tumor suppressor through the regulation of the TNF-α induced 
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apoptosis (cell death) and metabolism in cancer cells (Singh et al. [36]). The expression level of 

presenilin 1 (PSEN1) has shown to be negatively correlated with chemoresistance. A minor 

interference of the RNA mediated repression in the PSEN1 gene has shown to suppress cell 

apoptosis, the multi-chemoresistance of bladder cancer (Deng et al. [10]). 

 

Gene 

Symbol 
Gene Name Resource 

CCNB1IP1 

Cyclin B1 Interacting 

Protein 1 , E3 Ubiquitin 

Protein Ligase 

http://www.ncbi.nlm.nih.gov/pubmed/19543318 

CDK5RAP2 

CDK5 Regulatory 

Subunit Associated 

Protein 2 

http://www.ncbi.nlm.nih.gov/pubmed/19282672 

COL2A1 
Collagen, Type II, Alpha 

1 
http://www.ncbi.nlm.nih.gov/pubmed/26311224 

COL8A1 
Collagen, Type VIII, 

Alpha 1 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3

501407 

EIF6 
Eukaryotic Translation 

Initiation Factor 6 

http://bmccancer.biomedcentral.com/articles/10.1

186/s12885-015-1106-3 

GATA6 GATA Binding Protein 6 http://www.ncbi.nlm.nih.gov/pubmed/21076612 

GHRH 
Growth Hormone 

Releasing Hormone 
http://www.ncbi.nlm.nih.gov/pubmed/12602901 

IRF1 
Interferon Regulatory 

Factor 1 

http://www.nature.com/onc/journal/v23/n5/full/1

207023a.html 

NLRX1 NLR Family Member X1 http://www.ncbi.nlm.nih.gov/pubmed/25639646 

PSEN1 Presenilin 1 http://www.ncbi.nlm.nih.gov/pubmed/25542424 

Table 4.2.1. Ten cancer-related genes, which were found to be prognostic for ovarian cancer 

survival, based on the cox proportional hazard model with sparse group lasso penalty.  
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Gene Symbol Function 

CCNB1IP1 Functions in progression of the cell cycle through G(2)/M 

CDK5RAP2 Potential regulator of CDK5 activity via its interaction with CDK5R1 

COL2A1 Essential for the normal embryonic development of the skeleton, for linear 

growth and for the ability of cartilage to resist compressive forces 

COL8A1 Necessary for migration and proliferation of vascular smooth muscle cells 

and thus, has a potential role in the maintenance of vessel wall integrity and 

structure 

EIF6 Binds to the 60S ribosomal subunit and prevents its association with the 40S 

ribosomal subunit to form the 80S initiation complex in the cytoplasm. 

GATA6 Transcriptional activator that regulates SEMA3C and PLXNA2 

GHRH essential for normal expansion of the somatotrope lineage during pituitary 

development 

IRF1 Plays roles in the immune response, regulating apoptosis, DNA damage and 

tumor suppression 

NLRX1 Participates in antiviral signaling. Acts as a negative regulator of MAVS-

mediated antiviral responses, through the inhibition of the virus-induced 

RLH (RIG-like helicase)-MAVS interaction 

PSEN1 Plays a role in intracellular signaling and gene expression or in linking 

chromatin to the nuclear membrane 

Table 4.2.1. Functions of the ten cancer-related genes, which were found to be prognostic for 

ovarian cancer survival, based on the cox proportional hazard model with sparse group lasso 

penalty. 

 

  Based on the presence of these ten cancer-related genes in our cox proportional hazard 

model for cancer survival, we have shown that ovarian cancer shares common genes with other 

cancer types due to the pathological similarity. These findings suggest that certain genes could 

play essential and common roles across different cancer types.  
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5.  CONCLUSIONS 

5.1  Summary 

The stepwise correlation-based selector was used in selecting relevant genes for ovarian 

cancer survival. Out of the 17,814 genes, a subset of 603 genes was selected using SCBS. These 

603 genes were then used to estimate the sparse inverse covariance matrix through the graphical 

lasso algorithm and an undirected network of these genes was constructed. Genes belonging to 

the same cluster were assigned to the same group and genes outside of the cluster were each 

assigned a different group number. A cox proportional hazard model with sparse group lasso 

penalty was fit to our data. The model determined 232 genes which are prognostic in cancer 

survival. Survival estimates were calculated using the gene expression levels and the estimated 

beta coefficients for these 232 genes. Based on these estimates, we divided the samples into 2 

and 3 groups based on low risk, medium risk, and high risk. The K-M curves for the different 

risk groups were adequately separated which may suggest that these groups can be used for 

prognosis. Of these 232 genes, many were reported to be associated with cancer initiation or 

progression in the literature. Based on these findings it appears that certain genes share common 

roles across different types of cancer.   
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5.2  Future Work 

In this paper, we considered gene expression levels as prognostic biomarkers in ovarian 

cancer survival. Although the results presented here have demonstrated the effectiveness of 

identifying biomarkers important in cancer survival, it could be further developed in a number of 

ways. Future extensions to this research could include: incorporation of more genomic profiles, 

use of Bayesian network modeling, extension of the graphical lasso model for nonparanormal 

distribution, use of cross-validation to select an optimal value for the mixing parameter (𝛼), and 

using a smaller value for the regularization parameter, 𝜆, along with community detection to 

partition the network structure into more clusters.   

Carcinogenesis involves multi-level dysregulations, which include genomics, DNA 

methylomics, and transcriptomics (An et al. [1]). With recent advances in rapid high-throughput 

genetic and genomic analysis, we are now able to identify a plethora of alterations which can 

possibly serve as new cancer biomarkers. Each distinct data type such as copy number variations, 

gene and microRNAs expression, CpG island methylation provides us with a different, 

somewhat independent, and complementary view of the entire genome (Sokolova et al. [38]). To 

understand a gene function, it is necessary to analyze more than one single type of data. For us to 

be able to uncover the intricate underlying mechanisms, we must go beyond simply 

understanding one molecular level of cancer.  
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Data type Platform Cases 

Gene expression Agilent 244K 583 (8 organ-specific controls) 

Somatic mutation Agilent 415K 587 (8 organ-specific controls) 

DNA methylation Illumina 27K 592 (8 organ-specific controls)  

Copy number variation Agilent 1M 587 (8 organ-specific controls) 

Clinical information N/A 585 

Table 5.2.1. Summary of TCGA ovarian cancer data including data types, platform, and the 

number of available cases. 

 

Bayesian network (BN) is a probabilistic model consisting of a directed acyclic graph 

(DAG) and an underlying joint probability distribution which uses the prior probability in the 

prediction of dependent variables. With the use of Bayesian network, we are able to model a 

multidimensional probability distribution in a sparse way while at the same time searching for 

independency relations in the data. Compared to the undirected network model, directed 

networks models such as the Bayesian network are more informative since we are able to 

visualize the influences and relations of genes as well as describe hidden dependencies among 

genes. Bayesian network is of great interest in bioinformatics since the probabilistic inference 

provides a passage for clinical decision making through the intuitive encapsulation of causal 

links, which exist between diagnostic and prognostic factors (Gevaert et al. [17]; Sesen et al. 

[32]).  

The Gaussian graphical model is the standard parametric model used for continuous data; 

however, its distributional assumptions are generally unrealistic. For real-valued data in high-

dimensional situations, the estimation of sparse undirected graphs relies heavily of the 

assumption of normality. Assuming normality is not always realistic, especially in a practical 

setting. Both the nonparanormal and Gaussian graphical models can be used in graph estimation 

and construction; however, they yield different graphs over a wide range of regularization 

parameters, which suggests the possibility of having different biological conclusions (Lafferty et 
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al. [21]). Fitting a high-dimensional nonparanormal model can also be achieved using the 

graphical lasso approach and is no more computationally difficult than estimating a multivariate 

Gaussian model.  

Cross-validation is often performed to aid in model selection through the choice of an 

optimal value of a penalty parameter. To select the optimal parameter value, a 10-fold cross-

validation (CV) is commonly used. The optimal parameter value is that value for which the 10-

fold cross-validated penalized (partial) log-likelihood deviance of the model is minimal (Sill et 

al. [33]). In this research, the change point method was used to select the optimal value of the 

regularization parameter, 𝜆; however, the mixing parameter 𝛼 was set to 0.95. Since we want to 

achieve both sparsity between and within groups, using cross-validation to select an optimal 

value of the mixing parameter 𝛼 will be more useful (Ritter [31]).  

Community structure is the division of networks into communities (clusters), which are 

densely connected among their members, and sparsely connected with the rest of the network 

(Pizzuti [29]). It is an interesting property to investigate as it can reveal abundant hidden 

information about complex networks, which cannot be not easily detected by simple observation 

(Liu et al. [22]). One of the main problems in network and data sciences is community detection 

(Abbe [1]). Detecting communities within a network can provide useful insights on the general 

structure of the network so that we may further understand specific gene functions in these 

complex biological networks. Common algorithms used for community detection include 

Infomap, LPA, Fastgreedy and Walktrap. In this research, using a smaller value for the 

regularization parameter, 𝜆, would yield a network with more clusters. We could then use a 

community detection algorithm to detect communities within the undirected network based on 
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similar characteristics and gene functions. This would allow us to have more groups when fitting 

a cox proportional hazard model with a sparse group lasso penalty.  

There is still a lot more work to be done before we can fully understand the prognostic 

biomarkers in ovarian cancer survival. Employing different network models, relaxing the 

normality assumption, using cross-validation to select an optimal value for the mixing parameter 

(𝛼), as well as using a smaller value for the regularization parameter, 𝜆, to partition the network 

structure into more clusters, along with community detection in the analysis of different genomic 

profiles could potentially lead to the identification of new biomarkers.  
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