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ABSTRACT 

 

Stream bioassessment is important for understanding algal-nutrient relationships and the 

development of scientifically defensible numeric nutrient criteria. However, multiple methods of 

periphyton data collection are currently used, and little is known about the comparability of 

resulting datasets. Literature also suggests other factors besides nutrients (i.e. variable grazing, 

light, and flow) can confound algal-nutrient relationships. A one-year method comparison study 

and 31-day algal biomass-nutrient manipulative experiment were conducted in the southern 

Ozarks of Arkansas. The method comparison study was implemented using two common 

bioassessment procedures (whole-surface and delimiter-reduced periphyton removal) to assess 

the potential for combining datasets. During the manipulative experiment, cobbles from the 

Buffalo River Watershed were exposed to a range of phosphorus (P) and nitrogen (N) 

concentrations during P-only and N + P enrichment periods to evaluate algal biomass responses 

using recirculating streamside mesocosms. Results of the method comparison study showed no 

statistical difference between bioassessment procedures for chlorophyll-a (chl-a) and ash-free dry 

mass (AFDM) (p = 0.123 and p = 0.550, respectively) or any interaction between method and 

season. Differences in chl-a and AFDM from both methods were detected (p < 0.001 and p = 

0.012, respectively) when comparing warmer versus cooler seasons. Temperature-dependent 

grazing pressures were a potential explanation for the observed seasonal variability in biomass. 

The experiment revealed a positive linear relationship between benthic chl-a and increasing P 

and N addition up to 0.2 mg/L P (p < 0.001), with apparent N-limitation observed during the P-

only enrichment period. After 17 days of P-only enrichment, chl-a increased with increasing P 

concentrations (p < 0.001), ranging from 4.4 to 57.9 mg/m2. After 14 additional days of N + P 

enrichment, mean chl-a had almost tripled across respective treatments, ranging from 13.3 to 



 

171.1 mg/m2. Results support the need for controlling N and P in freshwater systems to avoid 

excessive algal biomass accrual and provide insight into how possible increases in nutrient 

loading may influence the Buffalo River Watershed, disregarding confounding factors. Overall, 

both studies further scientific understanding of algal-nutrient relationships and verify the 

combining of both bioassessment methods for developing regional nutrient criteria and 

protecting stream designated uses. 
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1. INTRODUCTION 

 Shifts to large-scale crop and animal productions, as well as growing urban populations, 

have led to cultural eutrophication of lotic systems mainly through non-point source loading of 

excess nutrients (Carpenter et al. 1998; Sharpley et al. 1994). Cultural eutrophication is another 

term given to this type of man-made pollution in aquatic systems. According to the latest United 

States Environmental Protection Agency’s (USEPA) National Water Quality Assessment Report, 

53.7% of assessed rivers and streams are impaired, and nutrients are the third highest cause of 

impairment (USEPA 2014a). Nitrogen (N) and phosphorus (P) are the main nutrients of concern 

because they are the primary nutrients limiting, and often colimiting, autotrophic production 

(Dodds et al. 2002; Pringle and Bowers 1984; Tank and Dodds 2003). Autotrophic production in 

streams is driven by periphyton, which is primarily composed of algae and is important to water 

quality because of the detrimental impacts excessive amounts can have on aquatic systems 

(Minshall 1978; Stevenson 2014; Stevenson and Sabater 2010). 

The intensified pace of stream alteration through nutrient enrichment can negatively 

influence ecological communities, as well as society as a whole (Dodds et al. 2013; Smith 2003). 

Consequences of eutrophication of surface waters may include economic losses (Dodds et al. 

2009; Michael et al. 1996), low dissolved oxygen levels (Sabater et al. 2000), potential taste and 

odor changes to drinking water  (WHO 2008), increased exposure to higher levels of NO3
-
 

(Zhang et al. 2014), the potential for production of harmful algal toxins (USEPA 2010), and 

trophic shifts in ecosystems and impacts to stream functions (Clapcott et al. 2010; Meyer et al. 

2005; Singer and Battin 2007). Increased nutrient concentrations in streams have been found to 

increase food quality, shifting macroinvertebrate communities toward lower diversity, particular 

for shredder and collector-gatherer functional groups (Evans-White et al. 2009). 
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1.1  Nutrient Criteria Development in the U.S. 

The realization that governmental regulation of pollution discharge into waterways was 

necessary led to the passage of the Clean Water Act (CWA) in 1972. The CWA has been very 

successful at regulating point source pollution, mainly derived from industrial and municipal 

entities. The main implications of the CWA are that each state is required to develop, monitor, 

assess, and enforce nutrient standards for all surface waters in said state, and any entity wishing 

to discharge waste into a waterway is required to obtain a discharge permit through the National 

Pollution Discharge Elimination System (USEPA 2014b). Unfortunately, the CWA did not 

address non-point source pollution as stringently as point source pollution. 

Water quality standards can either be numeric, meaning that a certain concentration of 

pollutant is tolerated in a waterbody, or narrative, meaning there is a written description of 

impairment. Narrative standards often cite a waterbody as impaired when a certain visual change 

occurs that is not aesthetically pleasing.  More recently, narrative nutrient standards have been 

scrutinized due to difficulty in understanding the exact correlation between the definition of 

impairment and the visual appearance of a waterbody.  For example, narrative nutrient criteria in 

Arkansas states, “Materials stimulating algal growth shall not be present in concentrations 

sufficient to cause objectionable algal densities or other nuisance aquatic vegetation or otherwise 

impair any designated use of the waterbody (APCEC 2014).” Confusion about the actual 

meaning of words like “objectionable” often makes narrative nutrient standards difficult to 

quantify and enforce.  

In 1998 the USEPA created the Clean Water Action Plan (CWAP) to address non-point 

source pollution in the United States. The CWAP required the USEPA to gather and evaluate 

data for 14 designated nutrient ecoregions, based from Omernik (1987) ecoregions, to estimate 



 

 3

potential numeric nutrient standards in the United States by 2001 (USEPA 1998). According to 

the plan, states were supposed to develop their own numeric nutrient standards for rivers, lakes, 

and wetlands by 2003 using the USEPA nutrient standards as guidelines; however, many states 

still only have narrative standards for nutrients as of 2014 according to recent data from the 

USEPA (USEPA 1998; USEPA 2014c). Debates surrounding lack of data, the uncertainty of the 

scale used to derive data, and the proper methods for developing numeric nutrient standards have 

caused setbacks for states (Evans-White et al. 2013). Sound scientific data that can accurately 

derive numeric nutrient standards for surface waterbodies is warranted (Dodds and Welch 2000). 

 Several studies, ranging in methods of data collection, analyses, and spatial scales, have 

been conducted to aid in determining numeric nutrient standards for different areas of the U.S. A 

recent review of nutrient criteria development in the U.S. described the two primary methods for 

deriving numeric nutrient standards that have been used in many of these studies– percentile 

analysis and stressor-response relationships (Evans-White et al. 2013).  

1.1.1  Percentile Analysis 

The USEPA has recommended two ways to use percentile analysis for aiding in the 

development of numeric nutrient standards using reference streams and non-reference streams 

(USEPA 2000). The USEPA’s reference nutrient standards were developed for each of the 14 

nutrient ecoregions by calculating the 25th percentile of the distribution of N and P 

concentrations found in all streams (reference and non-reference) sampled in each ecoregion, 

ranging from minimally impacted to highly impacted streams (USEPA 2000). This method 

assumes that many of the streams sampled are already impaired. Results from the 25th percentile 

analysis method are suggested upper guidelines derived to aid states and tribes in the process of 

furthering scientific investigations that refine numeric nutrient criteria. Calculating the 75th 
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percentile of the distribution of N and P concentrations found only in reference streams, streams 

with negligible anthropogenic impacts, in a designated area (e.g. nutrient ecoregion) has also 

been recommended by the USEPA to aid in developing suggested lower numeric nutrient criteria 

guidelines for further investigation by states and tribes (UESPA 2000). However, finding 

minimally impacted sites is often difficult. Even streams appearing to be insignificantly 

disturbed by anthropogenic activities are often impacted (e.g. through atmospheric deposition of 

various contaminants) and not necessarily representative of nutrient concentrations found in 

reference streams (Smith et al. 2003). Dodds and Oakes (2004) indicated that when establishing 

waterbodies as reference streams, land use impacts by humans are often overlooked. The 75th 

percentile analysis also assumes that 25% of all reference streams are impaired.  Additionally, 

percentile-analysis does not take into consideration nutrient impacts to designated uses but 

merely evaluates the ranges of nutrient concentrations present in reference and non-reference 

streams (Smith and Tran 2010). 

The 25th and 75th percentile analyses were originally expected to offer similar results; 

however, Herlihy and Sifneos (2008) and Suplee et al. (2007) observed that results fluctuated 

between the two analyses. Evans-White et al. (2013) observed that data derived using the 75th 

percentile analysis method often allowed for the development of more lenient regulations than 

data from the 25th percentile analysis method. Nevertheless, the percentile analysis method can 

give investigators a starting point for initiating development of numeric nutrient standards. 

The sites used in this study were located within USEPA nutrient ecoregion XI, the 

Central and Eastern Forested Uplands (CEFU). USEPA suggested nutrient standards for the 

CEFU are as follows: total phosphorus (TP) 5.63-10.47 µg/L, total nitrogen (TN) 0.21-0.58 

mg/L, sestonic chlorophyll-a (chl-a) 0.25-3.26 µg/L (Evans-White et al. 2013). 
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1.1.2  Stressor-Response Relationships 

USEPA and leading scientists in the field have recommended that stressor-response data 

relating to nutrients and ecological impacts be collected for nutrient criteria development (Dodds 

and Welch 2000; Stevenson 2014; USEPA 2010). The idea behind the stressor-response method 

is that input of a certain concentration of some resource (e.g. N and P) will cause a dramatic 

change to occur in an indicator organism’s population, often resulting in a linear or threshold 

response (e.g. increased production or shifts in community structure) (Dodds et al. 2010). Unlike 

percentile analysis, stressor-response relationships can be used to derive meaningful numeric 

nutrient criteria that relate to designated uses of streams (Smith and Tran 2010).  Phosphorus and 

chl-a relationships in lakes have been found to exhibit linear responses (Dillon and Rigler 1974), 

however, linear responses are not always evident in streams. For example, the abundance of two 

fish species (Etheostoma spectabile and Campostoma anomalum) in central Texas streams 

decreased at TP concentrations of 28 and 34 μg/L, while more tolerant fish species (i.e. Cyprinus 

carpio and Cyprinella lutrensis) were observed increasing in abundance with increases in TP 

concentration (Taylor et al. 2014). Groffman et al. (2006) referred to this point of dramatic shift 

as an ecological threshold. Many statistical programs have been developed to identify ecological 

thresholds, as discussed by Dodds et al. (2010).  

The most prominent ecological indicators used in stressor-response studies include 

benthic macroinvertebrates, fishes, and algae (i.e. periphyton). Many studies (e.g. Chambers et 

al. 2012; Dodds et al. 1997; Taylor et al. 2014) have specifically used nutrient impacts to algae 

metrics to derive stressor-response data, mainly in cobble or gravel dominated streams, due to 

periphyton’s high sensitivity to nutrient enrichment as a primary producer (King et al. 2009). 

Increased periphyton productivity often results in negative impacts to fishes and benthic 
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macroinvertebrates as well through large fluctuations in diel dissolved oxygen, changes to 

habitat, and impacts to quantity and quality of food resources (Heiskary and Markus 2003; 

Sabater et al. 2000). Van Nieuwenhuyse and Jones (1996) established that there is a positive 

relationship between sestonic chlorophyll and TP. Lohman and Jones (1999) observed this 

relationship in Ozark streams, as well as found a positive curvilinear relationship between 

sestonic chl-a and mean TN and TP using data from 23 study sites. Seventeen sites without 

known direct sources of nutrient inputs exhibited a linear relationship (Lohman and Jones 1999). 

Dodds et al. (1997) suggested TN and TP better represented periphyton biomass than dissolved 

inorganic N or P. Taylor et al. (2014) observed that small increases in TP concentration (≥ 0.021 

mg/L) shifted algal communities to more tolerant species in central Texas streams. Stevenson et 

al. (2012) detected shifts to nuisance algae species in the Illinois River Watershed at TP 

concentrations of 0.027 mg/L. Results of a study conducted in western U.S. streams suggested 

TN and TP thresholds of 0.59 to 1.79 mg/L and 0.03 to 0.28 mg/L, respectively, elicited shifts in 

algal communities to more nutrient tolerant species (Black et al. 2011). Dodds and Welch (2000) 

suggested TP and TN concentrations of < 0.4 and < 3.0 mg/L, respectively, would control 

benthic chlorophyll from becoming unsightly or impacting recreational activities. Miltner (2010) 

observed changes in benthic chl-a at 0.435 and 0.038 mg/L inorganic nitrogen and TP, 

respectively. 

1.2  Stressor-Response Approach to Understanding Periphyton-Nutrient Relationships 

1.2.1 Influence of Spatial Scale on Criteria Development 

Wickham et al. (2005) and Robertson et al. (2006), among others, have suggested that the 

spatial scale numeric nutrient standards are derived from can impact results. These studies advise 

against using the nutrient ecoregion scale for developing numeric nutrient standards. Stevenson 
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(2014) discussed the need for stressor-response studies that take into account regional differences 

that may impact nutrient concentrations and ecological responses. Longing and Haggard (2010) 

analyzed watershed-specific nutrient criteria for TP and TN data from the Red River Basin and 

found that the more spatially restrictive area often yielded different results compared to using the 

nutrient ecoregion scale. Lohman and Jones (1999) established that incorporating a watershed’s 

land use and size, along with nutrient concentrations, increased the accuracy of predicting 

sestonic chl-a. 

1.2.2  Periphyton Biomass Limiting Factors 

Dodds and Welch (2000) supported the need for data derived from stressor-response 

studies using periphyton and nutrients, but cautioned that other factors may limit or impact 

periphyton biomass responses. Some studies have found variation in algal-nutrient relationships, 

but they acknowledge other possible limiting factors were not accounted for (Stevenson et al. 

2006).  

Vannote et al. (1980) described many of the natural factors influencing algal production 

in streams, such as light availability, slope of the stream, and changes in community structure, 

with the formation of the River Continuum Concept. Seasonal patterns in algal biomass have 

been observed, possibly due to changes in light intensity and fluxes in nutrient inputs (Biggs 

2000). Hill et al. (2009) observed that after ~ 60 µmol photos/m2/s algal biovolume stopped 

increasing linearly and reached photoinhibition at ~ 100 µmol photos/m2/s. Grazers, such as 

Campostoma anomalum, can have both positive and negative impacts to periphyton through 

direct consumption, accidental sloughing, and fertilization (Power et al. 1985; Taylor et al. 

2012). Flow and flood intensity and frequency can impact algal species composition, grazers, 

and algal biomass (Biggs 2000; Biggs and Close 1989; Ceola et al. 2013). Biggs and Close 
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(1989) discovered that flow and nutrients combined explained ~ 63% of the variability in 

periphyton biomass. Geology and climate are two factors that impact the amount of light, natural 

background concentration of nutrients, temperature, as well as community composition found in 

an area (Dodds and Welch 2000; Rohm et al. 2002; Stevenson 1997). Changes in land use to 

predominately urban and agriculture generally increase nutrient concentrations in streams and 

shift streams that were historically controlled by heterotrophic production to be dominated by 

autotrophy (photosynthesis:respiration > 1) (Busse et al. 2006; Broussard and Turner 2009; 

Bernot et al. 2010).  

1.2.3  Trophic State 

Stevenson et al. (2006) observed that relatively high nutrient concentrations in their study 

streams led to greater occurrences of the filamentous algae, Cladophora. Increased biomass, 

especially from filamentous algae, was found to decrease the aesthetic appeal of water bodies 

when maximum benthic chl-a levels reached 100 to 150 mg/m2 (Welch et al. 1988).  Data from 

surveys conducted by Suplee et al. (2009) found that mean benthic chl-a levels > 200 mg/m2 

were unattractive to the general public, while levels < 150 mg/m2 were considered more 

appealing. Investigators have used lentic trophic states (i.e. oligotrophic, mesotrophic, and 

eutrophic) as guidelines for setting nutrient standards (Dodds et al. 1998). Dodds et al. (1998) 

initially established a fundamental way to classify streams based on trophic state by using 

cumulative frequency distributions; however, the authors admitted more empirical data was 

needed to refine the trophic classification system. Biggs (2000) further suggested that trophic 

boundaries could shift depending on the days between disturbance and inorganic N and soluble 

reactive phosphorous (SRP) levels. 
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1.2.4  Local Stressor-Response Studies 

 The Arkansas Department of Environmental Quality (ADEQ) and the Arkansas-

Oklahoma Scenic Rivers Joint Study (SRJS) Committee are conducting two separate stressor-

response studies in northern Arkansas and northeast Oklahoma, respectively, to aid in developing 

regional numeric nutrient standards. Unfortunately, both studies are using different sampling 

methodologies for collecting data. ADEQ’s sampling methodology is modified from the USGS 

National Water Quality Assessment method (NAWQA; Moulton et al. 2002), while the 

Arkansas-Oklahoma SRJS sampling methodology is modified from the USEPA Rapid 

Bioassessment Protocol (Barbour et al. 1999). To my knowledge, no studies have been 

conducted comparing results from the two commonly used sampling methodologies. Method 

comparison is warranted to ensure that numeric nutrient standards are developed from the most 

accurate datasets and to possibly offer a way to link results from studies that use different 

methods for data collection.  

 Arkansas Department of Environmental Quality is in the process of gathering physical, 

chemical, and biological data for Extraordinary Resource Waters (ERW) in the six Level III 

Ecoregions found in Arkansas to aid in understanding stressor-response relationships for regional 

numeric nutrient criteria development. Specifically, ADEQ began collecting data for 10 ERW in 

the Ozark Highlands in 2013 and finished with data collection in 2014 and began sampling 11 

ERW in the Boston Mountains in 2014 and finished sampling in 2015. The sampling method 

used collects periphyton biomass data (i.e. ash-free dry mass (AFDM) and chl-a) by gathering 

five haphazardly selected rocks each from the head and toe of two riffles at individual stream 

sites (ADEQ 2014, unpublished). Closed canopy reaches are not avoided. Known areas from the 
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top surface of each rock are scraped to retrieve the periphyton using a rubber delimiter, scoopula, 

brush with plastic bristles, and stream water.  

The Arkansas-Oklahoma SRJS is located in the Illinois River Basin in Northeast 

Oklahoma and Northwest Arkansas and focuses on the Oklahoma designated scenic rivers.  The 

goal of the study is to collect chemical, physical, and biological data in 35 wadeable streams to 

determine possible TP ecological thresholds for the Illinois River Basin. The study began in 

April 2014 and is set to conclude July 2016. Five rocks (10-20 cm2) are systematically selected 

each from three minimally shaded transects in riffle-glide habitat. The periphyton from the top 

surface of each rock is collected with metal bristled brushes and stream water, and the top 

surface area of each rock is recorded with aluminum foil for later surface area calculations. 

Periphyton samples are analyzed for AFDM and chl-a content.  

1.2.5 Need for Experimental Studies  

 When nutrient gradients are small, such in the ERW sampled by ADEQ, observing algal 

biomass responses may be challenging. Studies have also discussed the importance of controlling 

environmental variables known to confound algal biomass-nutrient relationships (Biggs and 

Close 1989; Hill et al. 2009; Rosemond et al. 2000). Experimental algal biomass-nutrient studies 

can remedy these issues by allowing researchers to observe algal biomass responses across 

chosen nutrient gradients with the option to control for other environmental variables (e.g. 

variation in light, temperature, grazing, and flow). Watershed-specific studies have also been 

recommended (Smith et al. 2003; Smucker et al. 2013). Although experimental nutrient 

manipulation studies have been done, no watershed-specific studies have been conducted within 

the Buffalo River Watershed, which is valued for its aesthetic, economic, and biological 

attributes (Panfil and Jacobson 2001).  



 

 11

1.3  Study Objectives  

 The objectives of this thesis were (1) to compare two common periphyton sampling 

methodologies, the modified USEPA Rapid Bioassessment and the modified NAWQA protocols, 

and (2) to conduct a nutrient enrichment experiment in streamside mesocosms to better 

understand periphyton biomass-nutrient relationships within a select southern Ozarks watershed. 

Physical, chemical, and biological data, including biomass and nutrient data, were collected in 

selected Ozark streams and in streamside mesocosm for this thesis.  
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2. COMPARING TWO PERIPHYTON COLLECTION METHODS COMMONLY 

USED FOR STREAM BIOASSESSMENT AND THE DEVELOPMENT OF 

NUMERIC NUTRIENT STANDARDS 

2.1  Introduction  

Coping with the consequences of living in an anthropogenically-induced greener world 

due to excess nitrogen (N) and phosphorus (P) inputs into waterways is a reality that scientists 

and the public alike must acknowledge (Carpenter et al. 1998; Sharpley et al. 1994; Dodds et al. 

2013). Indeed, a survey of US streams found 42% of assessed stream lengths to be in relatively 

poor condition, with N and P being two of the top four causes of impairment (Paulsen et al. 

2008). The United States Environmental Protection Agency (USEPA) has requested states and 

tribes use empirically generated numeric nutrient criteria to assess accelerated eutrophication of 

streams, lakes, and estuaries (USEPA 1998). Even though the USEPA charged states and tribes 

with developing these criteria by 2003, as of December 2015, Hawaii is the only state that the 

USEPA recognizes as having both N and P criteria for all waterbody types (USEPA 2015). 

Specifically pertaining to streams, five states have partial N and P criteria (Arizona, California, 

Florida, Montana, and Nevada), three states have partial P criteria (New Mexico, Oklahoma, and 

Vermont), four states have statewide P criteria (Wisconsin, New Jersey, Minnesota, and Hawaii), 

and only Hawaii has statewide N criteria (USEPA 2015). Lack of data availability and issues 

related to the spatial scale of studies, and proper data collection methods, have contributed to 

delays in criteria development (Evans-White et al. 2013). 

One way the USEPA recommends states and tribes develop nutrient criteria for streams is 

through the use of predictive relationships that may be identified using bioassessment (USEPA 

2000). Predictive relationships, also known as stressor-response analyses, rely on a stressor 

variable (e.g. N and P concentrations) and a response variable (e.g. fish, macroinvertebrate, 
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and/or microbial assemblages) for determining potential thresholds that contribute to impairment 

of particular designated uses (USEPA 2010). Periphyton is a complex assemblage of algae, 

cyanobacteria, heterotrophic microorganisms, and detritus that are attached to solid submersed 

substrates in aquatic ecosystems (Stevenson et al. 1996). Periphyton are of particular interest in 

stream bioassessment for developing nutrient water quality criteria because primary production 

should be directly influenced by nutrient availability (Dodds et al. 2002). Periphyton assemblage 

and biomass (e.g. mean and maximum chlorophyll-a (chl-a) and mean and maximum ash-free 

dry mass (AFDM)) have been used extensively in the literature as response variables to N or P as 

stressor variables (Evans-White et al. 2013). However, confounding factors, such as canopy 

cover, grazing, watershed land use, and stream flow can influence nutrient-periphyton 

relationships and must also be taken into consideration during bioassessment (Biggs 2000; 

Rosemond et al. 2000; Wickham et al. 2005).  

Multiple methods have been used throughout the United States for collecting periphyton 

biomass in the field (Aloi 1990; Stevenson and Bahls 1999; Lowe and LaLiberte 2007). The 

most common differences between methods include: 1) whether artificial or natural substrates 

are used, 2) how the substrate are selected, 3) the stream habitat (riffle, run, glide, pool, margin) 

from which periphyton are collected, and 4) the size of the periphyton removal area. 

Unfortunately, no consensus exists about which method, if any, is most appropriate to use. 

Problems may arise if and/or when datasets are combined from multiple studies that use different 

data collection methods because the various methods could be biased differently relative to 

confounding factors. For example, periphyton biomass would be highly variable if site selection 

did not control for canopy cover because some stream reaches can be heavily shaded and others 

not. A comparative study of periphyton collection methods could benefit stream bioassessment 
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and nutrient criteria development by clarifying the appropriateness of combining measurements 

derived from different sampling protocols.  

Two stressor-response studies using different data collection methods in the southern 

Ozarks of Oklahoma and Arkansas were conducted between 2013 and 2016 and highlight three 

of the four previously mentioned differences among common methods. The first study was 

conducted by the Arkansas Department of Environmental Quality (ADEQ) to develop nutrient 

criteria for Arkansas’ Extraordinary Resource Waters of Arkansas’ Ozark Highlands and Boston 

Mountains. ADEQ used a modified version of the USGS National Water Quality Assessment 

method (NAWQA; Moulton II et al. 2002) for sampling periphyton, which has also been adopted 

by other state agencies such as the New Mexico Environment Department (NMED 2014). 

Periphyton is collected from a known area using a delimiter from haphazardly selected rocks for 

this sampling method. The second study, overseen by the Arkansas-Oklahoma Scenic Rivers 

Joint Study (SRJS) Committee, focused on the Oklahoma-designed scenic rivers located in 

northeastern Oklahoma and northwestern Arkansas. The Arkansas-Oklahoma SRJS used a 

modified version of the USEPA periphyton sampling methods, which collects periphyton from 

the entire top surface of systematically selected rocks (Barbour et al. 1999; King 2014). The goal 

of both studies was to develop stressor-response relationships between total P (TP) in stream 

water and periphyton biomass. We were interested in determining if the different methods used 

in these two studies would yield similar results so the data could potentially be combined into a 

regional stressor-response in the future (Smith et al. 2003; Smucker et al. 2013). Thus, the 

objective of this study was to compare the two periphyton sampling methodologies to determine 

if and how results varied with known confounding factors. Due to the potential for greater 

experimenter error with the periphyton sampling protocol used by the ADEQ Extraordinary 
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Resource Waters Study (i.e. potential experimenter bias in the rock selection process and during 

delimiter placement on rocks) and other differences in collection procedures between the two 

methods, we hypothesized biomass results would be different between methods. 

2.2  Materials And Methods 

2.2.1  Study Area 

The Ozarks, a level II Omernik ecoregion located in the United States, is composed of 

two level III ecoregions, the Boston Mountains to the south and the Ozark Highlands to the north 

(Omernik 1987). The dominant geology of the Ozark Highlands is limestone and dolomite, while 

the Boston Mountains is mainly composed of sandstone, shale, and siltstone (The Nature 

Conservancy 2003). Oak (Quercus), hickory (Carya), and pine (Pinus) forests dominate the 

Ozarks. Mean temperatures range from 8.7 to 22 °C, and mean precipitation is 115 cm per year 

(U.S. Climate Data 2016). 

Seven southern Ozark streams were designated study sites due to similarities in geology, 

drainage area, land use, and proximity to the two Ozark stressor-response studies (Table 2.1; Fig. 

2.1). Drainage areas ranged from 130 km2 at Cave Creek to 368 km2 at the Little Buffalo River 

(USGS 2015). Land use was predominantly forested in all watersheds, ranging from 75.4% to 

94.3% at Bear Creek and the White River, respectively (Table 2.1). Sampled stream sections 

were primarily gravel and cobble dominated, which is a common stream condition throughout 

the Ozarks (Panfil and Jacobson 2001). All sample streams originate in the Boston Mountains 

and drain north into the Ozark Highlands (Fig. 2.1). Big Creek, Cave Creek, Little Buffalo River, 

and Bear Creek are also tributaries of the Buffalo River, which is designated as an Extraordinary 

Resource Water by the state of Arkansas. The study streams were centrally located between the 

Arkansas-Oklahoma SRJS field sites and the ADEQ Extraordinary Resource Waters field sites 
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(Fig. 2.1). We originally sought study streams along an anthropogenic nutrient concentration 

gradient, but preliminary analysis of stream water samples revealed similar ranges in total N 

(TN) and TP across all sample sites throughout the study (Table 2.1). Thus, the relationships 

between algal biomass and nutrient concentrations were not evaluated in this study. Instead, the 

primary goal was to investigate potential periphyton biomass variability across methods. 

2.2.2  In-Stream Sampling and Data Collection 

The modified NAWQA protocol used by ADEQ is referred to here as “Method A”. This 

method involved collecting periphyton from small delimited areas on various sized cobble 

substrate from streams (Aloi 1990). Alternatively, the study overseen by the Arkansas-Oklahoma 

SRJS, referred to here as “Method B”, involved collecting periphyton from the entire top surface 

of systematically selected cobble substrate and estimating the surface area from which 

periphyton were removed (Barbour et al. 1999; King 2014). Other major differences between the 

two methods include the type of stream habitat sampled, cobble selection method, cobble size, 

number of cobbles collected, and canopy cover preference (Table 2.2). Methods A and B were 

used to collect periphyton from each study stream over a one-year period and specific details of 

each sampling method are provided below. Periphyton sampling commenced in mid-August 

2014 with consecutive sampling occurring roughly every three months thereafter (i.e. November 

2014, February 2015, June 2015, and August 2015) to capture seasonal changes. Flow, habitat 

characteristic data, and water chemistry data were collected during each sampling event.  We 

used both methods to collect periphyton on the same day in each stream. All seven streams were 

sampled within a two-week time period during each season, unless unforeseen weather-related 

circumstances prevented sampling due to safety issues or periphyton scouring events. When 

major scouring events were observed, sampling was postponed two weeks to allow periphyton 
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regeneration. We measured flow in a single location during each quarterly sampling event using 

the mid-point method with a Marsh-McBirney Inc. Flo-mate (model #2000, Frederick, MD). 

Water samples were collected from each site monthly for nutrient analysis.  

Method A 

We selected riffles by visual observation of relatively turbulent water velocity and 

retrievable substrate and avoided areas were periphyton had been scoured or vegetation covered 

the streambed. No preference to canopy cover was given when making riffle selections. Two 

riffles were selected at each stream, with the riffle at the lowest downstream location sampled for 

periphyton first. An attempt was made to sample upstream of bridges; however, this was often 

unavoidable due to study site characteristics. The head and toe of each riffle were identified 

using best professional judgment. Five evenly spaced rocks representative of the streambed 

environment were collected in an approximate straight line from the right to left bank across the 

head and toe of each riffle. Rocks were placed in clean white containers as they were collected in 

the stream and covered with stream water to prevent periphyton drying out. We avoided 

selecting rocks that had obviously been scoured or were embedded in the streambed. A total of 

20 primarily cobble-sized rocks (10 rocks/riffle) were collected per stream for this method. Size 

was not a main consideration when making rock selections; however, as mentioned previously, 

the stream reaches were generally dominated by gravel to cobble sized rocks. 

A rubber gasket (i.e. delimiter) with a 6.35 cm outer diameter and a 2.54 cm inner 

diameter was placed on the top surface of each rock (Fig. 2.2a). The periphyton inside the inner 

area of the gasket was removed (Fig. 2.2b) and placed into a clean white container using a metal 

scoopula and/or a small brush with plastic bristles using as little stream water as possible for 

rinsing. Care was taken to minimize detachment of periphyton outside of the designated removal 
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area. Periphyton removed from the 10 rocks collected from each riffle were combined into a 

single sample so that a periphyton sample was obtained for each of the two riffles. Periphyton 

samples from each riffle were stored separately in labeled one-liter acid washed dark bottles and 

placed on ice until transported to the laboratory at the University of Arkansas, Fayetteville, AR.  

 Habitat characteristic data were recorded for each riffle. We recorded cross-sectional area 

at 10 evenly spaced points along the total riffle length by measuring the stream depth at mid 

channel and near the left and right banks. We estimated mean seasonal velocity for Method A 

habitat in each stream using the cross-sectional area measurements and stream flow. Percent 

closed canopy cover was measured using a concave densiometer at the lower, middle, and upper 

sections of each riffle.  

Method B 

We selected riffle-run habitat at each site with relatively open canopy cover and cobble 

substrate. We avoided areas in streams that exhibited obvious periphyton scouring, any rooted 

vegetation, and depths greater than 30 cm. The number of riffles selected for sampling varied 

depending on the availability of ideal sampling habitat. For example, sometimes one long riffle-

run was selected, but other times three separate riffles were selected and sequentially sampled 

from downstream to upstream. As with Method A, attempts were made to reduce the number of 

samples collected directly downstream of bridges; however, this was often unavoidable. Three 

transects were placed along the wetted width of the selected riffle-run habitat, with the first 

transect placed farthest downstream. Transects were positioned a minimum distance apart, which 

was no less than the length of the longest transect. Starting with the most downstream transect 

and progressing to the consecutive upstream transects, five large washers with flagging tape 

(referred to as “markers”) were systematically placed in the stream equal distances apart along 
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each transect. One cobble-sized rock (10-20 cm2) was collected within a 1 m2 area of each 

marker that best represented periphyton growth in that respective part of the stream. Embedded 

rocks were avoided. Selected rocks were placed in clean white containers organized by transect 

number, and containers were filled with stream water to avoid periphyton drying out. Rocks were 

photographed with identifying information to visually document periphyton biomass. 

Periphyton were removed from the entire top surface of each rock using a small brush 

with wire bristles and a minimal volume of stream water. The resulting slurry was compiled for 

all transects into one-liter acid washed dark bottles and placed on ice until transported to the 

laboratory at the University of Arkansas, Fayetteville, AR. Aluminum foil was trimmed to match 

the area scraped on each rock. A linear regression of area by weight of the aluminum foil was 

used to convert foil weight to area of each rock scraped.  

Percent canopy cover and velocity were recorded at the center marker of each transect 

using a concave densitometer and Marsh-McBirney Inc. Flo-mate, respectively. Depth and 

qualitative measurements, such as dominant substrate, sedimentation on a scale of 1 to 20, 

percent embeddedness, and percent filamentous cover, were recorded at each marker. We 

estimated mean seasonal velocity for Method B habitat in each stream using measured mean 

wetted width and mean depth from the riffle habitats and the stream flow measured as described 

previously. 

2.2.3  Laboratory Analyses 

 Periphyton samples from both sampling methods were individually homogenized with a 

handheld blender, and total slurry volumes were recorded for each sample per stream within 48 

hours of sample collection. Each slurry was separately mixed on a magnetic stirring plate, and 

subsamples of the mixed slurries were individually filtered onto 25 mm Whatman glass fiber 



 

 26

filters (GF/F) for analysis of periphyton biomass as chl-a. Subsamples were also filtered onto 

preweighed 47 mm Whatman GF/F that had been combusted at 450 °C for AFDM analysis. All 

samples were then frozen at -20 °C for analysis on subsequent dates. A Turner Designs Trilogy 

Fluorometer (model #7200-000, Sunnyvale, CA) was used to analyze samples for periphtyon 

chl-a following the acetone extraction method (APHA 2005; #10200 H). Ash-free dry mass was 

estimated following sample drying and ashing at 450 °C (APHA 2005; #10300 C). Subsample 

chl-a and AFDM results and the calculated area of periphyton removal were used to compute 

biomass collected per m2 for slurries amassed using each method. Water samples were analyzed 

for TN and TP on a Skalar San++ Continuous Flow Analyzer (Skalar Inc., The Netherlands) 

(APHA 2005; #4500-N C and #4500-P F) at the Arkansas Water Resource Center’s Certified 

Laboratory, Fayetteville, AR, following persulfate digestion (APHA 2005; #4500-P J).  

2.2.4  Data Analysis and Statistics 

Samples collected using Method A yielded two periphyton biomass measurements (one 

per riffle) for each stream reach sampled on each date, while method B yielded just one 

periphyton biomass measurement for each reach on each date. Preliminary data analysis using 

Welch two sample t-tests revealed no significant difference in periphyton biomass (chl-a or 

AFDM) between upstream and downstream riffles sampled using Method A (p = 0.638, t = 

0.474, and df = 63.9 and p = 0.559, t = 0.587, and df = 55.8, respectively). Thus, the average 

periphyton chl-a and AFDM from both riffles were used to represent results from Method A. 

To compare results from the two methods, the Mixed Procedure in SAS (Version 9.4; 

Cary, NC) was used to run a repeated measures analysis of variance (ANOVA) with a random 

block design for both periphyton AFDM and chl-a. Because there was little variation in TP 

among streams, we had no a-priori hypothesis about potential differences in periphyton biomass 
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among streams. We considered stream to be a random effect for this reason and to account for 

potential autocorrelation. Method was the main effect, and time was treated as a repeated 

measure. Potential method and time interactions were taken into consideration using an 

unstructured covariance matrix. The model assumed that all correlations and variances could be 

different. Two chl-a datapoints (War Eagle Creek in August 2014 and White River in August 

2015) and three AFDM datapoints (War Eagle Creek in June 2015, White River in June 2015 

and August 2015) were excluded in the final data analysis because insufficient material was 

collected onto filters, which caused measurement errors near the level of detection for the 

instrumentation. 

In addition to the statistical comparison of methods, we also computed paired chl-a, 

AFDM, velocity, and canopy cover differences between methods by subtracting Method B 

results from Method A results. This was done to graphically examine the degree of difference 

between methods across seasons and explore any possible relationships between numerical 

differences in periphyton biomass and numerical differences in variables that we expected to 

potentially confound the direct nutrient control of periphyton biomass in streams. We also 

calculated the absolute value of each biomass difference and the 5th and 25th percentiles of all 

chl-a and AFDM measurements collected throughout the study from all streams and methods. 

From these calculations, the percentage of absolute values below each respective percentile of all 

chl-a and AFDM measurements was determined.  

2.3  Results 

2.3.1  Method and Time Comparisons 

Estimated chl-a and AFDM did not differ between Method A and Method B (p = 0.123 

and p = 0.550, respectively).  Additionally, neither chl-a nor AFDM differed between methods 
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over time (p = 0.270 and p = 0.200, respectively). However, chl-a and AFDM differed through 

time, regardless of sampling method (p < 0.001 and p = 0.012, respectively). Results of the 

repeated measures ANOVA are shown in Table 2.3. 

The seasonal variability in periphyton biomass created a range in chl-a and AFDM that 

demonstrated the proportionality of Methods A and B (Figs. 2.3a,b). Interestingly, the chl-a 

results from Method A were often greater than the chl-a results from method B (i.e. many data < 

1:1 line in Fig. 2.3a). The trend in numerical differences between methods was primarily driven 

by observations in November, February, and June (Fig. 2.4a,b). However, there were no 

numerical differences in AFDM (Fig. 2.4c,d), and the repeated measures ANOVA indicated that 

the numerical differences in chl-a between methods were not statistically significant (Table 2.3). 

Because periphyton biomass did not differ between methods, results from both methods 

were combined into a one-way ANOVA to compare specific differences among seasons (i.e. 

August as summer, November as fall, February as winter, and June as spring) using least squares 

means differences. Mean chl-a collected from all streams using both methods was greatest in 

November and February (116.7 and 108.8 mg/m2, respectively) and least in June and August 

(60.0 and 70.6 mg/m2, respectively) (Fig. 2.5a). Mean AFDM collected from all streams using 

both methods was also greatest in November and February (69.8 and 58.4 g/m2, respectively) 

and least in June and August (40.0 and 38.7 g/m2, respectively) (Fig. 2.5b). However, AFDM 

measured in February did not differ from that measured in June and August 2015. February 

AFDM was greater than AFDM measured in August 2014 by 23.6 g/m2.  

2.3.2  Relationships with Confounding Factors 

Mean discharge throughout the study was lowest in September 2014 (0.20 m3/s) and 

peaked in May 2015 (23.3 m3/s) before the June sampling event (Table 2.4). Mean velocity 
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differences between methods across all sites, calculated by subtracting Method B velocity values 

from Method A velocity values, ranged from -1.4 m/s in June to 0.5 m/s in November (Fig. 

2.6a). The most variability in numerical velocity differences between methods was in June, but 

numerical velocity differences were minimal throughout the study (Fig. 2.6a). A paired t-test 

showed there was no difference in velocity of the habitats sampled for either method (p = 0.511, 

t = -0.665, and df = 32). We also observed similarities in percent closed canopy cover between 

habitats sampled using both methods in each stream throughout the study (Fig. 2.6b). 

Specifically, mean percent closed canopy cover from each stream across all seasons ranged from 

17.5% in February to 22.9% in August 2015 and 16.6% in November to 26.1% in August 2014 

for habitats sampled using Method A and Method B, respectively. Mean differences in percent 

closed canopy cover between habitats sampled using both methods across all streams, calculated 

by subtracting Method B canopy cover values from Method A canopy cover values, ranged from 

-1.5% in November to 4.5% in August 2014 (Fig. 2.6b). A paired t-test showed no difference in 

canopy cover of the habitats sampled for either method (p = 0.588, t = 0.547, and df = 33). Thus, 

mean percent canopy cover of habitats sampled using both data collection methods did not 

explain small numerical differences between methods either in chl-a or AFDM data collected 

from each stream across seasons. 

2.4  Discussion 

 Methods that quantify periphyton biomass are extremely important in stream 

bioassessment and in developing numeric nutrient standards. However, existing methods for 

quantifying periphyton are diverse and may not address common confounding factors equally. 

Results of this study indicated the whole-surface and the delimiter-reduced periphyton removal 

methods used by the Arkansas-Oklahoma SRJS and ADEQ, respectively, yielded similar results 
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at the level II ecoregion scale and across seasons. The lack of difference between methods was 

notable because there was significant seasonal variability in periphyton biomass, regardless of 

which method was used. 

2.4.1  Were methods comparable throughout the study and temporally? 

Results suggested chl-a and AFDM datasets collected using Method A and Method B 

provided comparable results across sample sites and seasons. Although numerical variation in 

measurements were observed between methods, the magnitude of these differences was small 

compared to the magnitude of variability in periphyton biomass over the course of the study. For 

example, 45% of the absolute value of all chl-a difference values and 63% of the absolute value 

of all AFDM difference values were equal to or less than the 5th percentiles of all chl-a and 

AFDM measurements collected from all streams throughout the entire study. Variations in chl-a 

and AFDM values between methods were relatively small when considering overall chl-a and 

AFDM measurements. Seventy percent of the absolute value of all chl-a difference values and 

75% of the absolute value of all AFDM difference values were equal to or less than the 25th 

percentiles of all chl-a and AFDM measurements collected from all streams throughout the 

study, respectively. Thus, the variation between methods was not statistically significant, and the 

numerical variation among methods was small compared with the numerical (and statistically 

significant) variation in periphyton biomass among seasons. 

2.4.2  Seasonal Influences on Periphyton Biomass 

Temporally changing biological processes are known to influence periphyton biomass 

accrual in streams (e.g. temperature, grazing, flow, light and nutrient availability) and have been 

well documented in the literature (Ceola et al. 2013; Lange et al. 2011; Winkelmann et al. 2014). 

Periphyton biomass was greatest during the cool seasons when water temperatures were less than 
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or equal to 10 °C. Periphyton growth rates typically increase with water temperature up to 

approximately 30 °C (DeNicola, 1996). Specifically, increased sloughing and reduced biomass 

of filamentous algae, primarily Cladophora, has been observed with temperature increases 

between 23.5 and 30 °C and may have contributed to the decreasing trend in periphyton biomass 

during the warmer months of June and August (Dodds and Gudder 1992; Whitton 1970). 

However, the effect of temperature was probably indirect because temperatures greater than or 

equal to 30 °C were minimal during our study. Thus, greater periphyton biomass in November 

and February was perhaps caused by decreased grazing pressures or variable light availability 

due to changing deciduous tree canopies (Hillebrand 2009; Quinn et al. 1997).  

Riparian vegetation is known to influence the amount of photosynthetically active 

radiation (PAR) available to periphyton communities, which can control biomass accumulation 

(Lowe et al. 1986; Hill 1996). The Ozarks are dominated by deciduous forest (The Nature 

Conservancy 2003), which can translate to seasonally dynamic light conditions in streams 

(Halvorson et al. in-press). Although operational guidelines for collecting canopy cover 

measurements were less strict for Method A, canopy cover results happened to be similar 

between Method A and Method B throughout the entire study. This result, along with the fact 

that we targeted open-canopy environments with Method B, suggests canopy cover was not the 

primary factor influencing seasonal differences in periphyton biomass in this study. Nutrient 

concentrations remained relatively similar for each stream throughout the duration of the study, 

but the availability of reactive nutrients was not measured (Dodds et al. 2002). Flow conditions 

also varied seasonally (Table 2.4), and increased flow has been shown to increase periphyton 

biomass (Biggs et al. 2005). However, a conflicting pattern was observed in June when chl-a and 

AFDM values were relatively lower even though flow rates were greatest in June. Furthermore, 
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any quantitative threshold in flow that could induce scouring remains unknown. Thus, seasonal 

grazing pressure appears to be a logical explanation for the variation observed in periphyton 

biomass in this study. 

Grazer and algal community structures often display seasonal changes, and edibility of 

algae can vary throughout the year (Vanni and Temte 1990). For example, algal community 

composition changes can be coupled with changes in grazer or scraper community composition 

(DeNicola et al. 1990). In this study, increased filamentous algae biomass was visually observed 

in streams during the cooler months, which may have been caused by, or resulted in, shifts in 

macroinvertebrate functional feeding groups due to preferential feeding (Dodds and Gudder 

1992; Hawkins and Sedell 1981). In contrast to this study, Rosemond (1994) did not detect 

seasonal trends in periphyton accrual and attributed the observation to large quantities of grazing 

snails. Thus, the dynamic nature of grazing as a potential confounding factor must be explicitly 

considered in stream bioassessment methods that involve periphyton biomass quantitation.  

Two crayfish species, Cambarus chasmodactylus and Orconectes cristavarius, and three 

benthic fish species, northern hogsuckers (Hypentelium nigricans), white suckers (Catastomus 

commersoni), and central stonerollers (Campostoma anomalum), exhibited reduced feeding 

activities during winter when the mean temperature was less than 6 °C in a temperate North 

Carolina river (Fortino 2006). Increased feeding activities of the same crayfish species were 

previously documented in the same river during August when mean temperatures were relatively 

warmer (Helms and Creed 2005). Dewey (1981) reported seasonal changes in small fish 

abundances in a southern Ozark stream, implying grazing pressures also varied throughout the 

year. Specifically, the central stoneroller (C. anomalum) is one of the most abundant fish species 

in Ozark streams, making them an important control on periphyton biomass due to their strong 
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grazing influences (Gelwick and Matthews 1992; Robison and Buchanan 1988; Matthews et al. 

1987). Temperature-mediated impacts on trophic interactions observed in a boreal stream 

mesocosm experiment showed increased predatory fish (Salvelinus malma) feeding activity at 12 

°C led to decreased caddisfly (Glossosoma spp.) grazing and increased periphyton biomass 

accrual (Kishi et al. 2005). Decreased feeding activity of the predacious fish at 21 °C allowed 

caddisfly grazing to reduce periphyton biomass (Kishi et al. 2005). Evans-White et al. (2003) 

observed preferential seasonal feeding on algae by two crayfish known to occur in Arkansas, 

Orconectes nais and O. neglectus, with greater grazing occurring in spring compared to summer 

or fall. Results from these studies support the idea that grazing pressures may have been reduced 

during November and February in all streams during our study when the mean temperature was 8 

°C. 

2.4.3  Study Implications 

The large-scale implication of this study is that periphyton biomass collected from 

cobbles using the whole-surface periphyton removal method versus the delimiter-reduced 

periphyton removal method resulted in no measureable differences. Variations in velocity and 

light between the methods may have minimally influenced comparability of periphyton biomass. 

However, these variations were not statistically significant and were small relative to the 

seasonal changes in periphyton biomass. More specifically, these results suggest managers 

should use discretion, but may combine data from these different methods in order to generate 

sufficiently large databases to support nutrient and periphyton biomass relationships. For 

example, the Arkansas-Oklahoma SRJS data and the ADEQ Extraordinary Resource Waters data 

may be linked together in regional stressor-response analyses for the ultimate goal of deriving 

regional nutrient criteria for streams and rivers of the southern Ozarks. Although there was no 
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method by season interaction observed in this study, the data exhibited heteroscedasticity (i.e. the 

magnitude of difference between methods and the measured periphyton biomass was positively 

correlated). Thus, fair caution may be to only combine datasets collected in seasons with similar 

temperature ranges so as to avoid any seasonally dynamic confounding factors.  

The limited spatial scale and small number of sample sites in this study provide a brief 

glimpse into the possibilities of combining datasets collected with Method A and Method B. 

Canopy cover in this study was similar between habitats sampled using both methods. Thus, 

more extreme variations in canopy cover may have greater implications for methodological 

differences. Additionally, grazing macroinvertebrates and fish are known to influence standing 

stocks of periphyton in aquatic habitats, especially where large numbers of grazers reside 

(Hillebrand 2008; Hillebrand et al. 2008; Taylor et al. 2012). We were unable to quantitatively 

sample for grazers in this study due to time constraints. However, anecdotal evidence suggests 

grazing pressure may strongly control periphyton biomass in Ozark streams (Power et al. 1988). 

Different types of algae also are better suited for certain habitats and variable temperatures and 

can produce varying amounts of biomass (Biggs and Hickey 1994; Lange et al. 2011). 

Taxonomic identification of periphyton communities was not conducted for samples in this 

study. Quantitatively identifying the impacts of differences between habitats sampled, primarily 

variations in periphyton community composition, canopy cover, and grazing influences are 

important considerations for future method comparison studies. 

In an ideal situation, scientists and natural resource managers would agree to use one 

method of data collection and hold true to that decision. In reality, existing datasets that used 

different methods of data collection already exist and each investigator has reasons why one 

method may be better to use over another method (Aloi 1990). Consensus about which method to 
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use is unlikely to happen in the foreseeable future, so using the best available information to 

justify combining datasets is pertinent because combining datasets increases the availability of 

data for use in bioassessment and nutrient criteria development. Although these findings suggest 

there was no significant difference between AFDM and chl-a results collected using the whole-

surface and the delimiter-reduced periphyton removal methods, future studies with larger sample 

sizes may yield other results, and caution should be applied when combing data from different 

studies. 

2.5  Conclusion 

The goal of this study was to assess the comparability of two common periphyton 

sampling protocols for the purpose of advancing nutrient criteria development. Results 

demonstrated that there were no discernable differences in data based on the method of data 

collection. Sharp differences in periphyton biomass were observed between the warmer (i.e. 

August and June) and cooler months (i.e. November and February) of this study, with the cooler 

months yielding more variable results. Evidence from measurements of confounding factors 

indicate that the seasonal difference was possibly caused by variable grazing.  Although results 

of this study suggest estimates of chl-a and AFDM from each method are comparable, managers 

must make the ultimate decision about whether results are similar enough to justify combining 

datasets. The current study provides an important starting point for combining datasets for 

bioassessment and to inform numeric nutrient criteria development for streams of the southern 

Ozarks. 
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2.7  Tables 

Table 2.1. Select Arkansas Ozarks study area characteristics     
  % Land Use      

 

Site 

Drainage  

Area (km2) 

 

Pasture 

 

Forest 

 

Urban 

 

Latitude (°) 

 

Longitude (°) 

 

Mean TN  

(mg/L) 

 

Mean TP  

(mg/L) 

 

Mean Flow  

(m3/s) 

Bear Creek 237 21.4 75.4 2.9 35.9929 -92.7015 0.69 0.034 5.7 

Cave Creek 130 21.4 77.5 0.8 35.9679 -92.9636 0.36 0.023 2.2 

War Eagle Creek 271 12.8 86.1 0.8 36.0420 -93.7041 0.49 0.028 5.9 

Little Buffalo River 368 10.7 88.5 1.1 36.0333 -93.1174 0.38 0.027 9.6 

Big Creek 232 10.3 88.8 0.4 35.9775 -93.0434 0.44 0.029 6.5 

Kings River 165 6.5 91.8 0.5 36.0196 -93.5387 0.32 0.023 4.4 

White River 232 4.4 94.3 1.3 35.8290 -93.8330 0.47 0.030 14.6 

TN- Total Nitrogen; TP- Total Phosphorus 
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Table 2.2. Major differences in periphyton biomass collection between 

Method A and Method B 

 Method Type 

Method Characteristic Method A Method B 

Habitat Turbulent riffles Riffle-run 

Rock selection method Haphazardly Systematically 

Rock size  Representative of habitat 10-20 cm2 

Periphyton collection area 50.7 cm2/riffle Variable 

Number of rocks collected 20 15 

Canopy cover No preference  Open  
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Table 2.3. Unstructured covariance matrix results for chlorophyll-a 

(chl-a) and ash-free dry mass (AFDM) 

Variable Effect df f p-value 

chl-a Method 1 2.46 0.123 

 Time 4 7.74 <0.001 

      Method x Time 4 1.34 0.270 

AFDM Method 1 0.36 0.550 

 Time 4 3.58 0.012 

      Method x Time 4 1.56 0.200 
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Table 2.4. Mean stream flow from July 2014 through August 2015 from U.S. Geological 

Survey, Arkansas Water Science Center stream flow gaging stations within the Buffalo 

River Watershed (07055660, Buffalo River at Ponca, AR; 07055780, Buffalo River at 

Carver access near Hasty, AR; and 07056515, Bear Creek near Silver Hill, AR) 

Year Month Mean Flow (m3/s) 

2014 July 3.0 

 August 0.9 

 September 0.2 

 October 2.6 

 November 1.1 

 December 2.9 

2015 January 5.6 

 February 2.1 

 March 16.8 

 April 8.3 

 May 23.3 

 June 18.4 

 July 4.3 

 August 0.4 
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2.8  Figure Legends 

Figure. 2.1. Map of study stream locations (yellow triangles), Arkansas-Oklahoma (AR/OK) 

Scenic Rivers Joint Study range (green squares), and the Arkansas Department of Environmental 

Quality (ADEQ) Extraordinary Resource Waters study range (red circles). U.S. level III 

ecoregion GIS layer provided by USEPA. State boundaries GIS layer provided by ESRI, 

TomTom, U.S. Department of Commerce, and U.S. Census Bureau 

 

Figure 2.2. (a) During and (b) after periphyton removal using a rubber delimiter following 

Method A sampling protocol 

 

Figure 2.3. Seasonal and site specific (a) chl-a and (b) ash-free dry mass results collected using 

Method A and Method B. Dashed line represents 1:1 relationship. Colors represent seasons: 

August 2014 (red), November 2014 (green), February 2015 (blue), June 2015 (pink), and August 

2015 (black). Symbols represent streams: Bear Creek ( ), Big Creek ( ), Cave Creek ( ), 

Kings River ( ), Little Buffalo River ( ), War Eagle Creek ( ), and White River ( ) 

 

Figure 2.4. (a) Seasonal influence on chlorophyll-a (chl-a) differences between both methods for 

all streams, and (b) seasonal influence by site on chl-a differences between both methods. (c) 

Seasonal influence on ash-free dry mass (AFDM) differences between both methods for all 

streams, and (d) seasonal influence by site on AFDM differences between both methods. 

Differences were calculated by subtracting Method B biomass results from Method A biomass 
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results. Symbols represent streams: Bear Creek ( ), Big Creek ( ), Cave Creek ( ), Kings 

River ( ), Little Buffalo River ( ), War Eagle Creek ( ), and White River ( ). The blue 

diamonds are the means of each response variable, and the solid middle lines are the medians of 

each response variable 

 

Figure 2.5. Seasonal influence on (a) all chlorophyll-a (chl-a) and (b) all ash-free dry mass 

(AFDM) collected from all streams using both methods throughout the study. The blue diamonds 

are the means of each response variable, and the solid middle lines are the medians of each 

response variable. Significant differences are designated by letters (a, b, and c) 

 

Figure 2.6. Seasonal influence on (a) differences in velocity between habitats sampled in all 

streams using both methods, and (b) percent closed canopy cover differences between methods. 

Differences were calculated by subtracting Method B results from Method A results. The blue 

diamonds are the means of each response variable, and the solid middle lines are the medians of 

each response variable
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2.9 Figures  
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3.  EXPERIMENTAL ALGAL BIOMASS-NUTRIENT RELATIONSHIPS IN THE 

BUFFALO NATIONAL RIVER WATERSHED 

3.1 Introduction 

The Buffalo National River is a state designated Extraordinary Resource Water and 

Natural and Scenic Waterway located in the southern Ozarks and is known as a popular 

recreational river with pristine water conditions (APCEC 2014; Panfil and Jacobson 2001). The 

economies of the surrounding communities are intertwined with river tourism. The National Park 

Service attributed 56.6 million dollars to visitation to the Buffalo River in 2014 alone (Thomas et 

al. 2015). Sensitivity of the watershed to nutrient pollution is a primary concern to scientists and 

local communities because the river has seen increases in urban and agricultural land uses (Panfil 

and Jacobson 2001; Scott and Hofer 1995).   

Autotrophic production in streams and rivers is primarily controlled by nitrogen (N) and 

phosphorus (P) availability (Dodds et al. 2002). Changing land uses can dynamically influence 

stream processes, such as community respiration and nutrient limitation (Johnson et al. 2009), 

and increased agricultural land use has been correlated with increased nutrient loading in streams 

(Allan 2004; Broussard and Turner 2009; Mallin et al. 2015). Specifically, Haggard et al. (2003) 

observed a positive relationship between increased stream nutrient concentrations and increased 

percent pasture associated with animal agriculture in a southern Ozark watershed. Potential shifts 

in animal production within the Buffalo River Watershed could lead to increased N and P 

loading, causing autotrophic production to increase (i.e. more algal blooms, reduced aesthetic 

appeal, and negative impacts to other designated uses). The watershed is primarily underlain by 

karst geology, which is traditionally believed to move nutrients more easily than other types of 

geology (Jarvie et al. 2014; Kaçaroǧlu 1999). This suggests the Buffalo River Watershed may be 

more vulnerable to nutrient impacts than other watersheds without karst. 
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Under the guidance of the U.S. Environmental Protection Agency (USEPA), states have 

struggled with developing nutrient criteria to better protect aquatic environments (Evans-White 

et al. 2013). Directly investigating algal responses to nutrient inputs (i.e. stressor-response 

relationships) is one suggested method for refining nutrient criteria because increased nutrient 

concentrations can strongly influence algal biomass and community composition which, in turn, 

can impair stream designated uses (USEPA 2010). Watershed-specific studies have been 

suggested due to variations in land use and the influence of natural confounding factors on algal 

biomass in streams (Smith et al. 2003; Smucker et al. 2013). For example, catchment size has 

been shown to be an important predictor of sestonic chlorophyll-a in the Ozarks (Lohman and 

Jones 1999). However, algal biomass-nutrient relationships are often difficult to study in the 

field due to the aforementioned confounding factors, and relatively pristine watersheds, such as 

the Buffalo River Watershed, generally only represent small nutrient gradients (Larned 2010). 

This provides challenges when studying algal responses at relatively higher nutrient 

concentrations.  

No prior studies have investigated algal biomass responses across a manipulated nutrient 

gradient in the Buffalo River Watershed, and few studies have examined periphyton growth 

across manipulated nutrient gradients in streamside mesocosms while controlling for other 

influences to periphyton biomass (Rier and Stevenson 2006). Rier and Stevenson (2006) 

observed peak biomass (86.5 mg/m2) and growth (0.183 mg/cm2/day) at 0.038 and 0.016 mg/L P 

as soluble reactive phosphorus (SRP), respectively. Studies investigating periphyton biomass in 

relation to nutrients and other factors in experimental streams have observed peak algal biomass 

(between ~ 100 to 250 mg/m2) at 0.025 and 0.028 mg/L P as SRP (Bothwell 1989; Horner et al. 

1983) and maximum growth (between 0.22 and 0.24 mg/cm2/day) at 0.025 mg/L P as SRP and 
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between 0.022 and 0.082 mg/L P as SRP (Hill and Fanta 2008; Hill et al. 2009). Controlled 

manipulative experiments that investigate basin-specific periphyton biomass responses across 

increasing nutrient gradients are warranted for us to better understand the dynamic relationships 

of nutrients and periphyton and to prepare for potential future nutrient impacts to streams. P-

limitation has traditionally been accepted as the main influence on freshwater production 

(Schindler 1977). However, N-limitation has been observed in the northern Ozarks, and other 

studies have reported N and P co-limitation in aquatic environments (Elser et al. 2007; Lohman 

et al. 1991; Tank and Dodds 2003).  Thus, experimental nutrient studies should consider changes 

in algal biomass across both N and P gradients to better understand algal responses. 

Proactive, instead of reactive, management has been suggested to combat potential 

nutrient impacts to aquatic systems (Mainstone and Parr 2002; Palmer et al. 2009). 

Understanding algal biomass-nutrient relationships in the Buffalo River Watershed is important 

for forecasting possible future algal responses to increased nutrient loading from changing land 

uses and would aid managers in making informed decisions when it comes to proactively 

protecting water resources within the basin (Jarvie et al. 2013; White et al. 2004). In this study, 

we subjected periphyton collected from within the Buffalo River Watershed to a gradient of N 

and P treatments in recirculating streamside mesocosms, while controlling for other factors that 

occur in situ (i.e. variability in shading, grazing, and flow) for 31 days. We aimed to: (1) observe 

trends in periphyton biomass accumulation and nutrient uptake across a gradient of P-only 

enrichments followed by N + P enrichments and (2) compare algal biomass-nutrient relationships 

in this study to a stressor-response field study in the southern Ozarks. We hypothesized: (1) 

periphyton biomass would be positively correlated with increased nutrient immobilization and 

would increase with increasing P treatment, but the greatest response would be in the N + P 
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enrichment because N would be a co-limiting factor with P (Lohman et al. 1991; Tank and 

Dodds 2003), and (2) based on previous studies (Hill et al. 2009; Rier and Stevenson 2006), we 

would observe a threshold response in periphyton biomass between the 0.012 and 0.05 mg/L P 

treatments. 

3.2 Materials and Methods 

3.2.1 Study Area 

The Buffalo River drains approximately 3470 km2 of the Boston Mountains and Ozark 

Highlands, both level III Omernik ecoregions (Omernik 1987; USGS 2015). Specifically, the 

Buffalo River at the Steel Creek Recreational Area is located in the upper portion of the 

watershed and has low nutrient concentrations year round. Mean SRP and nitrate (NO3
-) in the 

Buffalo River at the Steel Creek Recreational Area throughout this experiment were < 0.014 

mg/L P (i.e. detection limit) and 0.027 mg/L N (± 0.0024 standard error), respectively.  The Steel 

Creek Field Station at the Steel Creek Recreational Area is adjacent to the river and served as the 

location of the transplant study due to accessibility to a low-nutrient water source (i.e. Buffalo 

River) and nearby streams where periphyton were initially collected. Big and Cave Creeks, 

which drain 130 and 232 km2, respectively, of the Buffalo River Watershed provided substrate 

and periphyton for this study (USGS 2015). Periphyton from these streams were originally 

chosen to represent algal communities from relatively different background nutrient 

environments; however, analyzed water samples showed that nutrient concentrations were 

similar between streams, and a flooding event immediately preceding the experiment 

complicated this comparison.  
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3.2.2 Transplant Experimental Design 

This experiment took place over a 31-day time period from July 7th through August 6th 

2015 when mean air temperature was 25 °C. Eighteen circular recirculating streamside 

mesocosms were set up using a random-block design, consisting of three blocks, on a level area 

with no canopy cover at the Steel Creek Field Station near Ponca, AR (Fig. 3.1). Each block 

contained six mesocosms attached to a gear-driven paddle wheel system. The same source of 

power supplied all paddle wheel systems. Each mesocosm was considered an experimental unit, 

and there were three replicates per treatment. Replicates were placed in separate blocks, and 

mesocosms within each block were randomly assigned treatments. Treatments consisted of six P 

treatments in the form of KH2PO4 and no N treatments for 17 consecutive days (i.e. P-only 

enrichment) followed by 14 consecutive days of the same P treatments coupled with N as KNO3 

(i.e. N + P enrichment) added at a 10:1 mass ratio of N:P (Table 3.1). This N:P mass ratio 

represents ideal growing conditions for freshwater periphyton (Downing and McCauley 1992; 

Healey and Hendzel 1980; Hecky and Kilham 1988). Limited quantities of mesocosms prevented 

co-occurring P-only and N + P enrichments. Replicates that received treatments of 0 mg/L were 

considered controls. Centrally placed sensors (Quantum Sensor, LI-COR, model #LI-190R, 

Lincoln, NE; Multi-plate Radiation Shield, R. M. Young Company, model #41003, Traverse, 

MI; Relative Humidity and Temperature Probe, R. M. Young Company, model #41382LC2, 

Traverse, MI; Rain Gauge, Texas Electronics, Inc., model #TR-525M, Dallas, TX) mounted at 

1.2 m above the land interface and connected to a datalogger (Campbell Scientific Inc., model 

#CR10X, Logan, UT) measured photosynthetically active radiation (PAR), air temperature and 

relative humidity, and precipitation at 1-hour intervals throughout the experiment (Fig. 3.1).  
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Water from the Buffalo River adjacent to the Steel Creek Field Station was pumped into 

a pre-rinsed polyethylene storage tank using a submersible water pump and water hose, and each 

mesocosm was filled with 75 L of stream water. Respective nutrient treatments were pipetted 

into the mesocosms, and the paddle wheel systems mixed the nutrients and stream water. One 

hundred and seventy-one cobbles (10-20 cm2) were collected from riffle habitat of both Big and 

Cave Creeks, and nine rocks from each stream were placed into each mesocosm. Rocks were 

spatially separated in the mesocosms by stream to allow comparisons of periphyton biomass over 

time from rocks that originated from the two separate streams.  

The water in each mesocosm was completely replenished and re-spiked with respective 

nutrient treatments on days 4, 8, 11, 15, 17, 21, 24, and 28. Evaporative losses and possible 

dilution effects caused by precipitation were assumed to affect mesocosms equally. Overflow 

pipes in each mesocosm allowed excess water to drain. Grazing pressures were negligible 

because macroinvertebrates were immediately removed, if observed. Throughout the study, 

water samples were separately collected from each mesocosm in 250 mL dark bottles prior to 

replenishing water in the experiment. To calculate nutrient immobilization and know background 

nutrient concentrations, water samples were also collected from the Buffalo River in 250 mL 

acid-washed dark bottles each time mesocosms were filled with water. Periphyton were 

individually collected from six rocks per mesocosm (i.e. three representative of each stream) on 

days 3, 9, 14, 17, 24, and 31 from within a 5.07 cm2 area per rock using clean white plastic 

containers, rubber delimiters, small brushes with plastic bristles, metal scoopulas, and minimal 

water from each respective mesocosm. Periphyton biomass samples were compiled by original 

stream and nutrient treatment into 1 L acid-washed dark bottles. Water and periphyton samples 
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were transported on ice to the laboratory at the University of Arkansas, Fayetteville, AR for 

nutrient and biomass analysis, respectively. 

3.2.3 Laboratory Analysis 

All water and periphyton samples were processed within 48 hours of collection. A 

handheld blender was used to individually mix periphyton samples prior to recording slurry 

volumes. While slurries were individually mixing on a magnetic stir plate, subsamples were 

pipetted from each periphyton slurry onto 25 mm Whatman glass fiber filters (GF/F) and pre-

weighed and pre-combusted 47 mm GF/F for later analysis of benthic chlorophyll-a (chl-a) and 

ash-free dry mass (AFDM), respectively. Ash-free dry mass filters were combusted at 450 °C 

prior to filtering. All water samples were individually filtered through acid washed and rinsed 47 

mm GF/F, and the filtrate was collected for SRP and NO3
-
 analyses. Periphyton filters and filtrate 

were stored frozen at -20 °C at the University of Arkansas, Fayetteville, AR until ready to be 

analyzed. Benthic chl-a was analyzed on a Turner Designs Trilogy Fluorometer (model #7200-

000, Sunnyvale, CA) following acetone extraction, and AFDM was calculated following sample 

drying and ashing at 450 °C (APHA 2005). Following analysis, biomass per area was calculated. 

Soluble reactive phosphorus and NO3
- were analyzed on a Turner Designs Trilogy Fluorometer 

using the ascorbic acid (APHA 2005) and cadmium reduction methods, respectively (HACH 

2015).  

3.2.4 Data Analysis and Statistics 

 Nitrogen and P immobilization (mg) were calculated for each treatment during the P-only 

and N + P enrichments using the following equation [1]: 

   ���������	��
 = ((
� + 
�) − 
�) ∗ 75    [1] 
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where NB is the mean background nutrient concentration of stream water added, NT is the nutrient 

(i.e. N or P) treatment concentration, and NL is the mean leftover nutrient concentration after 

being exposed to periphyton and directly before replenishing stream water and reapplying 

nutrient treatments. To convert to a mass of nutrients immobilized we multiplied by the volume 

of water in each mesocosm (i.e. 75 L).  

 R Statistical Software (R Core Team 2015) was used to analyze data using a two-way 

analysis of covariance (ANCOVA) with biomass as the response, P treatment as a continuous 

predictor variable, and stream and N added (yes/no) as factors. Alpha was set at 0.05. The 

models were simplified if no interactions or factorial effects were observed. A linear mixed-

effects model ANOVA was used because the general linear model (GLM) test assumptions were 

violated due to repeated measures over time and heterogeneity in residuals. For example, when 

chl-a was the dependent variable, residuals exhibited heteroscedasticity as P treatment increased 

and the GLM ANOVA did not take lack of independence associated with repeated measures or 

blocking into consideration, so the data were analyzed with a linear mixed-effects model 

ANOVA. A random intercept model was used that included mesocosms nested within blocks 

(random = ~ 1|block/mesocosm) and a fixed variance structure (varFixed = P treatment) which 

allowed for larger residual spread with increasing P treatment. We used the nlme package to run 

linear mixed-effects models in R (Pinheiro et al. 2016).  

3.3 Results 

3.3.1 Biomass Responses  

We observed notable increases in benthic chl-a with increasing P treatment throughout 

the study, and the highest benthic chl-a accumulation was achieved during the second half of the 

study after N was added to the mesocosms at a 10:1 ratio (Figs. 3.2a and 3.3a). An interaction 
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between P treatment and N addition was observed during the N + P enrichment period for 

benthic chl-a (Fig. 3.3a). These patterns suggested N-limitation may have occurred sometime 

before day 17 and was alleviated after the N + P enrichment period began. Phosphorus treatment 

did not, however, influence AFDM even though distinctions were seen with the addition of N (p 

< 0.001) (Figs. 3.2b and 3.3b). On day 31, after 14 days of N + P enrichment, benthic chl-a was 

significantly greater than on day 17 (last day of P-only enrichment) (p < 0.001), but stream did 

not have a significant effect (p = 0.455) (Fig. 3.4a). Stream significantly influenced AFDM 

accumulation during both enrichments (p <0.001), with rocks from Cave Creek developing more 

AFDM than Big Creek rocks (Fig. 3.4b).  

Initially, mean benthic chl-a decreased until day 9 of the P-only enrichment, but 

thereafter, mean benthic chl-a increased with time and increasing P treatment (Fig. 3.2a). 

Differences in mean benthic chl-a across P treatments also became more pronounced with time, 

particularly during the N + P enrichment period (Fig. 3.2a). Benthic chl-a exhibited a significant 

linear response to increasing P treatment on days 17 (last day of P-only enrichment) and 31 (last 

day of N + P enrichment) (p < 0.001) (Fig. 3.3a). However, the slope of the chl-a response to P 

treatment relationship was significantly greater on day 31 (last day of N + P enrichment) (p < 

0.001; Fig. 3.3a). On day 17 (P-only enrichment), mean benthic chl-a across both streams ranged 

from 12.07 mg/m2 in the control treatments to 45.8 mg/m2 in the 0.2 mg/L P treatments (Fig. 

3.3a; Table 3.1). On day 31 (N + P enrichment), mean benthic chl-a across streams ranged from 

13.75 mg/m2 in the control treatments to 153.9 mg/m2 in the 0.2 mg/L P treatments, which was 

almost triple the biomass compared to the same treatment on day 17 (Fig. 3.3a; Table 3.1). Mean 

AFDM increased throughout time (Fig. 3.2b) and was significantly greater on day 31 (N + P 

enrichment) compared to day 17 (P-only enrichment) (p < 0.001; Fig. 3.3b). However, P 
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treatment inadequately explained variation in mean AFDM on both days 17 and 31 (p = 0.552; 

Fig. 3.3b; Table 3.1).  

3.3.2 Nutrient Immobilization 

We observed strong linear relationships (r2 ≥ 0.70) between the masses of P and N 

immobilized and the amount of cumulative benthic chl-a present in the mesocosms during the N 

+ P enrichment (Fig. 3.5; Table 3.1). A linear relationship was reported between cumulative 

benthic chl-a and mass of P immobilized during the P-only enrichment; however, the slope of the 

relationship was almost three times less than during the N + P enrichment (Fig. 3.5; Table 3.1). 

Specifically, the presence or absence of N available for immobilization profoundly influenced 

the extent of cumulative benthic chl-a observed throughout the experiment (Fig. 3.5a). During 

the P-only enrichment, when no N treatments were added, cumulative benthic chl-a across both 

streams was less than 25 mg/m2 (Fig. 3.5a). However, more N was immobilized after N was 

added to the mesocosms during the N + P enrichment period, which resulted in increased mean 

cumulative benthic chl-a up to 153.9 mg/m2 across streams (Fig. 3.5a). Although increasing mass 

of P immobilized was strongly correlated with increasing cumulative benthic chl-a during both 

the P-only and N + P enrichments for both Big and Cave Creeks (r2 ≥ 0.70), we observed the 

greatest cumulative benthic chl-a with increasing mass of P immobilized during the N + P 

enrichment when the mass of N immobilized was also the greatest (Fig. 3.5b). This supports the 

idea that N limitation occurred during the P-only treatment and was no longer limiting after N 

addition.  

3.3.3 Transplant Experiment and Field Study Comparison 

Periphyton from the field and transplant studies responded differently to nutrients, with 

more biomass accumulating at similar P concentrations in the field study than in the transplant 
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study (Tables 3.1 and 3.2). Mean benthic chl-a in the field study ranged from 15.4 to 99.7 mg/m2 

in response to a relatively small P gradient ranging from 0.019 to 0.037 mg/L total phosphorus 

(TP) (Table 3.2). Comparatively, benthic chl-a in the transplant study subjected to similar 

nutrient ranges were more than two times smaller than values observed in the field study. 

Transplant study benthic chl-a values ranged from 4.4 to 48.1 mg/m2 across similar P treatments 

as those observed in the field study (0 to 0.05 mg/L SRP) when results were combined from both 

the P-only and N + P enrichments (Table 3.1). In the field study, mean benthic chl-a values from 

Big Creek and Cave Creek were 65.9 and 95.1 mg/m2, respectively, at 0.033 and 0.025 mg/L TP. 

The mean ratio of N to P was 13:1 for the field study data, which was similar to the transplant 

study (N:P = 10:1). These results suggest one or more periphyton biomass-specific controls 

influenced benthic chl-a accumulation differently in the two studies.  

3.4 Discussion 

The purpose of this study was to experimentally investigate algal biomass-nutrient 

relationships within the Buffalo River Watershed to better understand the potential impacts of 

increased nutrient loading on streams within the drainage. We hypothesized biomass would 

exhibit positive relationships with increasing nutrient availability, and a threshold response 

would be observed below 0.05 mg/L P. We found that algae collected from within the Buffalo 

River Watershed exhibited a positive linear response to increasing P treatment up to 0.2 mg/L P 

throughout the study (p < 0.001), and N addition stimulated an even greater biomass response 

across P treatments (p < 0.001). We also observed a positive correlation between increasing 

biomass and increasing nutrient immobilization (r2 ≥ 0.70). However, no thresholds in 

periphyton biomass were detected across the P gradient, with or without N additions. Results 

give insight into the potential influence of increased nutrient loading within the Buffalo River 
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Watershed, support N and P colimitation literature, and suggest that lack of N can significantly 

limit periphyton biomass accumulation even when P may be plentiful.  

3.4.1 Periphyton Biomass and Nutrient Relationships  

 Benthic chl-a increased with increasing P treatment throughout the study, but the greatest 

benthic chl-a accumulation occurred during the N + P enrichment period. Although scientists 

have traditionally thought freshwaters were limited by P availability (Schindler 1977), more 

modern literature supports co-limitation by both N and P (Elser et al. 2007; Scott et al. 2009; 

Lang et al. 2012). Results of our study confirm the possibility of colimitation within the Buffalo 

River Watershed. During the initial 17 days of P-only enrichment, periphyton communities 

within the mesocosms were N limited. Mean NO3
-
 levels in Big Creek and Cave Creek, sites 

where original periphyton communities were collected, were 0.17 and 0.10 mg/L, respectively. 

Nitrogen limitation has already been documented in the Ozarks with NO3
-
 levels up to 0.10 mg/L 

(Lohman et al. 1991), so it may be realistic to assume the periphyton communities were already 

naturally N limited before the study began. If not already N limited, periphyton became N 

limited during the first 17 days of the experiment because of lack of N addition and low 

background N in the Buffalo River. With the addition of N after day 17, N limitation was 

alleviated and periphyton responded through increased benthic chl-a accumulation up to 171 

mg/m2 on day 31. Phosphorus immobilization was similar between the P-only and N + P 

enrichments, and considerable increases in benthic chl-a were observed after N immobilization 

increased during the N + P enrichment (Fig. 3.3; Table 3.1). This further suggests that by 

increasing N availability we reduced nutrient constraints on the periphyton. 

Other studies have similarly observed increasing benthic chl-across P gradients; however, 

contrary to results of our study, threshold responses in benthic chl-a below 0.05 mg/L SRP have 
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been reported in the literature (Bothwell 1989; Horner et al. 1983; Rier and Stevenson 2006). 

Bothwell (1989) reported peak benthic chl-a (between ~ 100 to 250 mg/m2) in three stream 

trough experiments at 0.028 mg/L SRP and observed thresholds and then declines in biomass 

across P gradients after 30 to 40 days, suggesting we might have observed a threshold response if 

the study had continued past 31 days. Peak benthic chl-a of 86.5 mg/m2 was reported at 0.038 

mg/L SRP when N was not limiting and the N:P ratio was 18:1 (Rier and Stevenson 2006). In 

our study, benthic chl-a was half that observed by Rier and Stevenson (2006) in the 0.05 mg/L 

SRP treatment, and the N:P ratio was 10:1 during the N + P enrichment. Other nutrient 

manipulation studies supplied continuous nutrients to the periphyton and maintained set 

photosynthetically active radiation (PAR) levels, while our mesocosms were not continuously 

dosed with nutrients and were subjected to full sunlight conditions. All of the P (i.e. background 

and P treatment) may have been taken up between nutrient dosing days, which may have 

influenced periphyton biomass differently than if nutrients had been supplied continuously. Since 

our study took place during the summer months, PAR was very high (i.e. mean PAR was 709 

μmol/m2/s). Benthic chl-a has been reported to decrease with increasing PAR, and algal 

biovolume may saturate at PAR levels ~ 100 μmol/m2/s (Hill et al. 2009). Differences in 

community composition may also have induced disparities in biomass accumulation (Chetelat et 

al. 1999). 

3.4.2 Transplant and Field Study 

One of the key reasons for conducting a streamside mesocosm experiment was to be able 

to control for variability in periphyton biomass caused by confounding factors. However, natural 

influences on periphyton biomass (i.e. variable light, flow, and accumulation time) may have 

created observable differences between biomass results of this study and the field study. For 
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example, the periphyton in the field study received a continuous supply of nutrients, but 

periphyton in the mesocosms were exposed to a large mass of nutrients over a short period of 

time every ~ 3 days whenever the water was changed and dosed. Although light is a known 

limiting factor on periphyton biomass accrual (Cashman et al. 2013), periphyton in the transplant 

study were purposely not light-limited, while periphyton in the field study were subjected to 

natural variability in light caused by canopy cover differences. Even though the closed canopy 

cover was less than 30% in the field study, enough shading from extreme temperatures may have 

been provided to reduce stress that could have otherwise lessened biomass accumulation 

(DeNicola, 1996). Alternatively, ambient temperatures ranging from 16.7 to 35.7 °C during the 

transplant study may have reduced the potential maximum biomass due to heat stress. 

Velocity and accumulation time influence periphyton biomass and sloughing as well as 

community composition (Ahn et al. 2013; Biggs 2000; Hondzo and Wang 2002). Periphyton in 

the mesocosm study only had 31 days to acclimate to a different environment compared to the 

field study which already had established periphyton communities adapted to the environmental 

conditions present there. The continuous disruptive motion of the mesocosm paddle wheels 

might have further divided comparison of biomass between the two studies due to differential 

sloughing pressures. Additionally, the beginning of the transplant study coincided with a 

potential scouring event, and scouring was very evident on rocks from Big Creek. Thus, the 

initially lower biomass on rocks used in the transplant study, in combination with other 

differences in confounding factors, contributed to variations in biomass between the field and 

transplant studies. Because biomass increased with increasing nutrient treatment in the transplant 

study and was greater in the field study at comparable nutrient levels with confounding factors 



 

 67

present, we expect increased biomass accumulation within the Buffalo River Watershed if 

nutrient loading increases in the future. 

3.4.3 Future Outlook 

Benthic chl-a levels exceeding 100 mg/m2 have been used to indicate the beginning of 

stream degradation (Dodds et al. 1998; Suplee et al. 2009; Welch et al. 1988).  This biomass 

level was only surpassed in our study in the 0.2 mg/L P treatment during the N + P enrichment 

period when mean benthic chl-a was 153.9 mg/m2 (Table 3.1); however, the field study data 

indicated 0.037 mg/L TP allowed biomass accumulation up to 100 mg/m2 (Table 3.2). Dodds et 

al. (1998) suggested trophic boundaries of 20 mg/m2 (i.e. oligotrophic to mesotrophic boundary) 

and 70 mg/m2 (i.e. mesotrophic to eutrophic boundary) for benthic chl-a to better classify 

streams into oligotrophic, mesotrophic, and eutrophic categories, such as done with lakes. These 

stream classification boundaries are not definitive, but may be helpful in categorizing stream 

trophic state based on periphyton biomass. Mean benthic chl-a in the 0.1 and 0.2 mg/L P 

treatments during the P-only enrichment period were within the lower range of the mesotrophic 

boundaries (29.2 and 45.8 mg/m2, respectively), while mean benthic chl-a in all other P 

treatments were considered oligotrophic (12.1, 8.8, 13.9, and 18.6 mg/m2 in the 0, 0.012, 0.025, 

and 0.05 mg/L P treatments, respectively). During the N + P enrichment period the 0 and 0.012 

mg/L P treatments and 0.025 and 0.05 mg/L P treatments were in the ranges of the oligotrophic 

(13.8 and 14.4 mg/m2) and mesotrophic (21.3 and 44.2 mg/m2) categories, respectively, while 

the 0.1 and 0.2 mg/L P treatments were both considered eutrophic (80.5 and 153.9 mg/m2, 

respectively). Field data were more often classified as mesotrophic and eutrophic even though 

nutrient concentrations were lower in the actual streams than in the mesocosms (e.g. mean 

benthic chl-a was 65.5 mg/m2 across streams) (Table 3.2). Thus, caution should be taken when 
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using experimental data for understanding algal biomass-nutrient relationships, especially 

because disparities in similar field study data have been observed in this study. Understanding 

the dynamic relationship of confounding factors on periphyton biomass needs further 

investigation, especially when comparing experimental and field studies.  

3.5 Conclusion 

Changes to watershed characteristics (i.e. land use) can cause considerable alterations 

within receiving streams that provide beneficial uses. Specifically, increased nutrient loading 

may lead to impaired designated uses due to excessive algal growth.  Thus, understanding algal 

biomass-nutrient relationships at the watershed-specific scale will help managers better protect 

stream designated uses, but continued investigations about the dynamic role confounding factors 

play by influencing periphyton biomass accrual is essential, especially when understanding the 

relevancy of experimentally derived algal biomass-nutrient data. Results of our study give 

insight into algal biomass-nutrient relationships within the Buffalo River Watershed while 

reducing confounding factor impacts. Our results provide experimental evidence that suggests 

both N and P enrichment have the capacity to stimulate algal biomass and provide new insights 

into algal biomass-nutrient relationships within the watershed. However, disparities in 

environmental variability between the field and experimental data, mainly continuous nutrient 

loading at the field sites versus pulsed dosing in our experiment, prevented the identification of 

concentration-based thresholds. 
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3.7 Tables  

 

Table 3.1.  Transplant study corresponding data 
Enrichment 

Type 

Treatment 

+ 

Background 

NO3 (mg/L) 

Treatment 

+ 

*Background 

SRP (mg/L) 

Final NO3 

Concentration 

(mg/L) 

Final SRP 

Concentration 

(mg/L) 

Mass N 

Immobilized  

(mg) 

Mass P 

Immobilized  

(mg) 

Cave  

Chl-a  

(mg/m2) 

Big  

Chl-a  

(mg/m2) 

Cave  

AFDM  

(g/m2) 

Big 

AFDM 

(g/m2) 

P-Only 0 + 0.026 0 + 0.014* 0.0165* 0.014* 0.713 0.000 
19.7 

(±3.8) 

4.44 

(±0.4) 

63.1 

(±8.2) 

19.4 

(±5.0) 

P-Only 0 + 0.026 0.012 + 0.014* 0.0165* 0.014* 0.713 0.900 
9.09 

(±3.7) 

8.58 

(±2.0) 

56.3 

(±4.5) 

22.1 

(±3.1) 

P-Only 0 + 0.026 0.025 + 0.014* 0.0165* 0.014* 0.713 1.875 
16.9 

(±2.6) 

10.8 

(±2.7) 

65.3 

(±16.1) 

16.1 

(±0.4) 

P-Only 0 + 0.026 0.05 + 0.014* 0.0165* 0.014* 0.713 3.750 
15.3 

(±6.8) 

21.8 

(±10.9) 

57.6 

(±13.0) 

25.8 

(±3.8) 

P-Only 0 + 0.026 0.1 + 0.014* 0.0165* 0.014* 0.713 7.500 
31.5 

(±11.5) 

26.9 

(±12.6) 

74.5 

(±10.4) 

19.3 

(±2.9) 

P-Only 0 + 0.026 0.2 + 0.014* 0.0165* 0.020 0.713 14.570 
33.7 

(±14.1) 

57.9 

(±50.1) 

56.5 

(±22.1) 

21.4 

(±0.9) 

N + P 0 + 0.029 0 + 0.014* 0.0165* 0.014* 0.938 0.000 
13.3 

(±2.4) 

14.2 

(±6.7) 

47.2 

(±12.6) 

24.8 

(±4.3) 

N + P 0.12 + 0.029 0.012 + 0.014* 0.0165* 0.014* 9.938 0.900 
13.3 

(±1.3) 

15.5 

(±5.4) 

56.8 

(±12.6) 

43.4 

(±15.1) 

N + P 0.25 + 0.029 0.025 + 0.014* 0.0165* 0.014* 19.688 1.875 
26.8 

(±11.9) 

15.7 

(±3.3) 

113.6 

(±45.8) 

48.5 

(±16.4) 

N + P 0.5 + 0.029 0.05 + 0.014* 0.0165* 0.014* 38.438 3.750 
48.1 

(±14.9) 

40.2 

(±9.3) 

82.5 

(±20.1) 

66.4 

(±18.8) 

N + P 1.0 + 0.029 0.1 + 0.014* 0.0165* 0.014* 75.938 7.500 
89.8 

(±33.0) 

71.1 

(±6.1) 

121.3 

(±24.8) 

45.6 

(±12.1) 

N + P 2.0 + 0.029 0.2 + 0.014* 0.0165* 0.014* 150.938 15.000 
136.7 

(±44.2) 

171.1 

(±10.5) 

68.0 

(±13.7) 

53.5 

(±7.6) 

*Indicates nutrient concentration was below minimum detection level 

Standard errors presented in parentheses 
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Table 3.2. Compiled data from algal biomass-nutrient relationship field study in the Ozarks 

Stream SRP (mg/L) NO3
-+NO2

- (mg/L) NH3 (mg/L) TP (mg/L) TN (mg/L) Chl-a (mg/m2) AFDM (g/m2) 

Bear 0.010 (±0.002) 0.269 (±0.050) 0.027 (±0.002) 0.037 (±0.005) 0.486 (±0.072) 99.7 (±16.2) 72.7 (±8.76) 

Big 0.008 (±0.004) 0.169 (±0.031) 0.034 (±0.006) 0.033 (±0.003) 0.395 (±0.077) 65.9 (±6.33) 37.2 (±9.33) 

Cave 0.008 (±0.002) 0.096 (±0.004) 0.013 (±0.002) 0.025 (±0.002) 0.261 (±0.012) 95.1 (±26.5) 48.3 (±9.61) 

Kings 0.004 (±0.000) 0.114 (±0.025) 0.019 (±0.006) 0.020 (±0.002) 0.255 (±0.009) 40.1 (±7.54) 25.3 (±7.29) 

Little Buffalo 0.003 (±0.002) 0.104 (±0.011) 0.027 (±0.008) 0.028 (±0.002) 0.324 (±0.025) 69.5 (±18.5) 36.6 (±13.0) 

War Eagle 0.002 (±0.000) 0.101 (±0.051) 0.023 (±0.001) 0.027 (±0.002) 0.308 (±0.040) 72.6 (±24.0) 20.5 (±2.10) 

White 0.002 (±0.001) 0.215 (±0.009) 0.030 (±0.021) 0.019 (±0.003) 0.340 (±0.006) 15.4 (±6.35) 13.3 (±10.5) 

Standard errors presented in parentheses 
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3.8 Figure Legends  

Figure 3.1. Diagram of transplant study experimental setup 

 

Figure 3.2. (a) Mean benthic chlorophyll-a (chl-a) and (b) mean ash-free dry mass (AFDM) 

across soluble reactive phosphorus treatments throughout the transplant study. Dashed line 

represents when N + P enrichment began 

 

Figure 3.3. (a) Cumulative benthic chlorophyll-a (chl-a) across soluble reactive phosphorus 

(SRP) treatments on days 17 and 31, and (b) ash-free dry mass (AFDM) across SRP treatments 

on days 17 and 31. Standard error represented by error bars. (a) ( ) y = 223.5474 (SRP) + 

3.8374 and p < 0.001; ( ) y = 647.3938 (SRP) + 3.8374 and p < 0.001 

 

Figure 3.4. (a) Cumulative benthic chloropyll-a (chl-a) and (b) cumulative ash-free dry mass 

(AFDM) across streams during the P-only and N + P enrichment periods. Standard error 

represented by error bars 

 

Figure 3.5. Relationships of cumulative benthic chlorophyll-a (chl-a) to mass of (a) nitrogen (N) 

and (b) phosphorus (P) immobilized by periphyton from Big Creek and Cave Creek during the P-

only and N + P enrichments. (a) ( ) y = 1.072 (N Immobilized) + 1.749, r2 = 0.98, and p = 

0.002; ( ) y = 0.8665 (N Immobilized) + 11.95, r2 = 0.98, p < 0.001. (b) ( ) y = 10.72 (P 

Immobilized) + 2.754, r2 = 0.98, p < 0.001; ( ) y = 8.665 (P Immobilized) + 12.77, r2 = 0.98, 

and p < 0.001; ( ) y = 3.540 (P Immobilized) + 4.871, r2 = 0.98, and p < 0.001; ( ) y = 

1.478 (P Immobilized) + 13.99, r2 = 0.70, and p = 0.035 
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Figure 3.2  



 

 

  79

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3
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 4.  CONCLUSION 

 

Accelerated eutrophication of the world’s freshwater resources has elicited concern from 

the scientific community about potential widespread repercussions of nutrient pollution (Smith et 

al. 1999).  Because of this, the need for scientifically defensible numeric nutrient standards in 

streams has been endorsed for years but has not yet been fully realized (Dodds and Welch 2000; 

Evans-White et al. 2013). Nonetheless, there are many opportunities to develop defensible 

nutrient criteria development through the use of field and experimental studies and protect 

stream ecosystem services (Stevenson and Sabater 2010). Understanding algal-nutrient 

relationships and determining comparability of popular data collection protocols are pertinent 

steps on the journey to acquiring knowledge about how to best pinpoint numerical nutrient 

thresholds (Aloi 1990; Dodds et al. 1998). Additionally, algal-nutrient investigations focused on 

smaller spatial scales aid in reducing natural variation in nutrients and algae due to such factors 

as climate, geology, watershed area, and land use and provide managers with the best tools for 

understanding the dynamics of individual watersheds (Smucker et al. 2013). The focus of this 

thesis was to further contribute to the development of numeric nutrient criteria by: (1) comparing 

two common data collection methods used in periphyton field bioassessments and (2) providing 

experimental evidence of watershed-specific algal biomass responses across manipulated 

nitrogen (N) and phosphorus (P) gradients. 

Evidence suggests pre-existing datasets collected using the delimiter-reduced and whole-

surface periphyton removal techniques may be compiled into larger datasets, particularly when 

data collected during different seasons are regarded separately. Although repeated measures 

ANOVA revealed methods were comparable throughout the study, sometimes variability in 

biomass across seasons was significantly different. Biomass collected during months with cooler 
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temperatures (i.e. November and February) exhibited the most variability between methods (i.e. 

heteroscedasticity). Results of the method comparison study support literature advising that 

confounding factors other than nutrients may greatly influence variability in periphyton biomass 

and the magnitude of influence is seasonally-dependent (Biggs 1995; Hillebrand 2008; 

Villeneuve et al. 2010). For example, the importance of seasonal grazing impacts on periphyton 

biomass in the Ozarks, as suggested by Power et al. (1988), possibly occurred during the study. 

Knowing the comparability of periphyton bioassessment methods is beneficial to managers 

attempting to model algal biomass-nutrient relationships with pre-existing datasets. Still, studies 

with larger sample sizes and within other ecoregions would be advantageous in confirming these 

results, as would comparison of other data collection methods used in periphyton bioassessment.  

Results of the nutrient enrichment experiment provided additional experimental support 

for the growing body of literature that suggests streams can be co-limited by N and P (Elser et al. 

2007; Lange et al. 2011) and confirmed that Ozark stream periphyton productivity are limited by 

both N and P when confounding factors are controlled. Increased N and P enrichment were 

experimentally shown to stimulate increases in algal biomass over a 31 day period, suggesting 

streams in pristine watersheds, like the Buffalo River Basin, may be vulnerable to increased 

nutrient loading primarily from changing land uses (Stevenson et al. 2008). Unlike similar 

nutrient manipulation studies, no thresholds in algal biomass were observed throughout the 

applied nutrient gradient (i.e. 0 to 0.2 mg/L) when stimulated by P alone or N + P (10:1 mass 

ratio) but this finding is likely due to differences in nutrient saturation between flow through and 

pulsed nutrient addition study designs (Bothwell 1989; Hill et al. 2009; Rier and Stevenson 

2006). The observed algal biomass-nutrient relationships in this study are particularly unsettling 

because the economy of the Buffalo National River Watershed is primarily supported by tourism, 
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and reduced economic values have been reported when streams are no longer aesthetically 

appealing due to increases in algal biomass (algal biomass > 100-150 mg/m2) (Dodds et al. 2009; 

Suplee et al. 2009; Welch et al. 1988).  More experimental evidence and regional analysis of 

combined datasets is warranted to improve understanding of the comparability of manipulated 

algal biomass-nutrient experiments and the response of periphyton to nutrient stimulation under 

natural conditions with the presence of other biomass-limiting effects (i.e. variable grazing, 

shading, and flow).  

Together, results from this thesis work provide unique insight into using algal biomass 

responses to nutrient enrichment as a tool for developing numeric nutrient standards in order to 

better protect aquatic resources, specifically at the watershed and level II ecoregion scales. 

Results suggest algal biomass can exhibit positive responses to N and P enrichment. However, 

the presence of confounding factors may limit biomass accrual in natural systems. Additionally, 

the possibility of combining periphyton biomass datasets collected at relatively small spatial 

scales using different bioassessment methods supports increased collaboration between different 

government agencies, universities, and other interest groups. Future studies directed toward 

understanding the dynamic influence confounding factors may have on periphyton biomass are 

needed, and the extent that experimentally derived algal-nutrient datasets represent natural 

responses remains unknown. 
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