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ABSTRACT 

During the last decade, the increasing interest in renewable energy sources has been changing the 

distribution of corn utilization from human and animal consumption to biofuel production, 

leading to a continuous rise in feed costs of livestock diets. Therefore, alternative feed 

ingredients such as distillers dried grains with solubles (DDGS), as well as cereals like wheat, 

barley, and sorghum have become part of the feed matrix to maintain or reduce production costs. 

However, these raw materials often contain a higher concentration of antinutritional factors in 

comparison to corn, including non-starch polysaccharides (NSP) which increase digesta viscosity 

and reduce nutrient absorption in monogastric animals. As a result, the addition of exogenous 

enzymes in poultry feed has steadily increased to maximize nutrient utilization and maintain 

performance parameters with diets containing less digestible ingredients. On the other hand, the 

poultry industry is also facing social concerns regarding the use of antibiotic growth promoters 

(AGP) and the development of antibiotic resistant microorganisms. One alternative among others 

is the utilization of direct-fed microbials (DFM) as substitutes of AGP and also as a prophylactic 

practice to reduce the incidence of bacterial gastrointestinal diseases. Therefore, the objectives of 

the present dissertation were to evaluate and select different Bacillus spp. strains as DFM 

candidates based on enzyme production profiles to improve nutrient absorption and intestinal 

integrity, as well as, maintain a healthy microflora balance in poultry consuming commercial and 

alternative diets. Due to Bacillus endospores are in a dormant state when delivered into the feed, 

it was crucial to evaluate the spores’ germination rate, distribution and persistence in the 

gastrointestinal tract (GIT) of chickens to understand the probable mechanism of action of this 

remarkable beneficial microorganism. It was observed that some full life-cycle development 

occurred and around 90 % of the spores germinated in the GIT, suggesting that a continuous 

administration is advisable for consistent improvement.  Additionally, in a series of in vitro 



 
   

experiments, three Bacillus spp. strains were selected based on their enzyme production activity 

profile of amylase, cellulase, protease, lipase, xylanase and phytase. Analysis of the 16S rRNA 

sequence classified two strains as B. amyloliquefaciens and one of the strains as B. subtilis. The 

three isolates were combined in an equal ratio (1:1:1) and showed to reduce viscosity and 

Clostridium perfringens proliferation in an in vitro digestive model simulating different 

compartments of the GIT of poultry. For in vivo trials in broilers and turkeys a rye-based diet 

was used as a source of high soluble NSP. Inclusion of the Bacillus-DFM candidate significantly 

reduce digesta viscosity and bacterial translocation to the liver, resulting in an increase of 

performance and bone quality parameters, along with maintenance of the beneficial microflora in 

the GIT. Moreover, due to the wide availability of DDGS from the ethanol industry, a different 

set of experiments including 8% of DDGS in the grower diet were developed.  Supplementation 

with the Bacillus-DFM candidate improve growth performance, bone mineralization, and 

intestinal morphology in comparison to the control group (P < 0.05), suggesting that the dietary 

inclusion of selected Bacillus spp. spores is a viable alternative in commercial diets, having a 

positive impact in gut health and production parameters. 
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I. INTRODUCTION 

 

Social concern about the development of multi drug resistant pathogens is challenging the 

poultry industry to find economically viable strategies to the conventional use of antibiotic 

growth promoters (AGP) in poultry diets without affecting production parameters (Boyle et al., 

2007). Continuous and extensive research of suitable alternatives include feed additives such as 

probiotics and direct-fed microbials (DFM) (Hong et al., 2005), organic acids and essential oils 

from plant extracts (Ricke, 2003), or  bacteriophage therapy (Andreatti Filho et al., 2007). The 

use of one or a mixture of these potential substitutes of AGP could potentially provide an 

extraordinary tool to deal with human food-borne pathogens and at the same time maintain 

customer preferences to avoid a reduction in consumption per capita of poultry meat.  

In the case of probiotics, the most common and commercial type is based on lactic acid bacteria 

(LAB) that include the genus Lactobacillus and Pediococcus which are normally part of the 

microflora of different animal species (Tellez et al., 2012).  However, LAB probiotics required to 

be microencapsulated, refrigerated and/or lyophilized to prolong storage shelf-life, and usually 

are administered in the drinking water because they are not feed-stable. In this regard, among the 

large number of probiotic products in use today, some are bacterial spore formers mostly of the 

genus Bacillus. Used primarily in their spore form, some Bacillus direct-fed microbials (DFM) 

have been shown to prevent selected gastrointestinal disorders with an astonishing diversity of 

species and applications (Hong et al., 2008). While not all Bacillus spores are highly heat 

tolerant, some isolates are the toughest life form known on earth (Vreeland et al., 2000) and can 

be used under extreme heat and pressure conditions (pelletization).  Several studies have shown 

that either live vegetative cells or endospores of some Bacillus isolates can prevent colon 
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carcinogenesis (Park et al., 2007). Moreover, it has been previously investigated that selected 

Bacillus strains can produce antimicrobial compounds against Gram-negative enteropathogens, 

such as Salmonella spp., Escherichia coli, and Campylobacter spp. (Tellez et al., 2012). 

Additionally, there is scientific evidence suggesting that Bacillus spores can germinate in the 

GIT into metabolically active vegetative cells, therefore, being considered as part of the 

microflora and not just transiently present in the gut (Hoa et al., 2001).  

On the other hand, steady increments in corn utilization for production of biofuels and reduction 

in harvest yield due to drought seasons have increased corn demand and cost.  Corn is usually the 

main source of energy in poultry diets, but at times it is difficult to formulate least cost diets 

using this cereal and unconventional grains have to be used.  When chickens are fed alternative 

grains such wheat or rye that are high in non-starch polysaccharides (NSP), poor performance 

and unmanageable litter conditions caused by sticky droppings are reported (Fengler and 

Marquardt, 1988). NSP in these cereal grains are comprised mainly of highly branched 

arabinoxylans, increasing digesta viscosity responsible for poor digestibility through interference 

with the movement of particles and solutes across the intestinal lumen, preventing the access of 

digestive enzymes to the endosperm contents and reducing intestinal absorption of nutrients.  In 

addition, increased digesta viscosity reduce conjugated bile acids, affecting fat emulsification 

and fat digestibility (Langhout et al., 1999). Additionally, a elevated digesta viscosity prolonges 

the feed passage rate, increasing the time available for digesta associated bacteria to multiply 

prior to evacuation in the feces, and provides more substrate availability in the distal parts of the 

intestine for microbial fermentation (Kiarie et al., 2013). Alterations in gut permeability are 

connected to bacterial overgrowth in poorly digested diets causing bacterial translocation into the 

portal and/or systemic circulation in several types of leaky gut syndromes leading to systemic 
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bacterial infections (Seki and Schnabl, 2012). Since poultry has little or no intrinsic enzymes 

capable of hydrolyzing NSP, exogenous carbohydrases as additives are used in an attempt to 

reduce the effect of these anti-nutritive factors (Bedford and Schulze, 1998). One of the principal 

sources of exogenous enzymes and antibiotics from bacterial origin are produced by different 

Bacillus strains. However, some but not all Bacillus species have the capacity to produce 

different enzymes including amylase, protease, lipase, cellulase, xylanase, and phytase 

(Hendricks et al., 1995).  The objectives of the present dissertation were to evaluate and select a 

Bacillus-DFM candidate based on different in vitro enzyme production profiles to improve gut 

health integrity, bone quality and growth performance in poultry. 
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ABSTRACT 

Indiscriminate and inappropriate use of antibiotics has led to the emergence of multidrug 

resistant pathogens, resulting in the ban of the use of antibiotics in animal diets in several 

countries. As an alternative, probiotics have been under investigation as feed additives to 

establish an adequate intestinal microflora that improve productive responses in animals. 

Bacteria from the genus Bacillus are receiving important attention, because of their properties to 

control enteropathogens and their remarkable attribute to produce endospores. In addition, some 

Bacillus species have the capacity to synthesize different exogenous enzymes, including 

protease, phytase, xylanase, keratinase, lipase, and cellulase, that have been reported to improve 

absorption of nutrients due to degradation of anti-nutritional factors such as non-starch 

polysaccharides (NSP), phytate and low digestible proteins in poultry diets. These benefits make 

supplementation of Bacillus spores an available and applicable alternative for the use of 

antibiotic growth promoters, reducing the incidence of various gastrointestinal diseases and 

improving production performance in poultry under commercial conditions. In this review, we 

summarize the fate, dissemination, and efficacy of Bacillus direct-fed microbials candidates in 

the gastrointestinal tract of poultry and their effect on health and performance parameters. 

 

INTRODUCTION 

Due to current intensive management practices in poultry production, animals are susceptible to 

enteric microflora imbalances leading to diminishment on performance parameters. To mitigate 

the effect of dysbiosis in the gastrointestinal tract, diets have been commonly supplemented with 

antibiotics as growth promoters showing effective decrease in the presentation of digestive 

disorders and increase in performance (Parker and Armstrong, 1987). However, the 
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indiscriminate and inappropriate use of antibiotics has led to the emergence of multidrug 

resistant pathogens, leading to the prohibition of antibiotics in animal diets in the European 

Union in 2006 (Tellez et al., 2012). The worst scenario is the possible contribution of these 

resistant bacteria from animal production resulting in serious medical implications in humans 

(Klein, 2003). 

As an alternative to the use of antibiotic growth promoters (AGP) in poultry diets, probiotics 

have been under investigation as feed additives to establish an adequate intestinal microflora, 

promoting adequate productive responses in animals (Becquet, 2003; La Ragione et al., 2004). 

Among the species of microorganisms used as probiotics, some facultative anaerobic gram 

positive bacteria from the genus Bacillus are receiving important attention through enhancing 

digestion and absorption of nutrients, and control of enteropathogens such as Salmonella spp., 

Clostridium perfringens, Campylobacter spp., and Escherichia coli in the gastrointestinal tract 

(GIT) of different animal species (Jadamus et al., 2001; Wolfenden et al., 2011; Tellez et al., 

2012). Additionally, the genus Bacillus has the extraordinary capacity to produce endospores 

under stressful environmental conditions; some of these spores have the ability to resist high 

temperatures used during feed preparation (pelletization), extreme pH, dehydration, high 

pressures and contact with caustic chemical substances (Menconi et al., 2013). These admirable 

features make selected Bacillus spores a direct-fed microbial (DFM) suitable for 

commercialization and distribution due to a long-shelf life and stability (Vreeland et al., 2000; 

Shivaramaiah et al., 2011). 

On the other hand, it is really important to understand the factors that affect germination and 

distribution of Bacillus spores throughout the gastrointestinal tract. Bacillus spores germinate 

into vegetative cells depending on nutritional and non-nutritional factors known as germinants 
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(such as L-alanine, asparagine, glucose, fructose, potassium chloride) and the effect of a non-

lethal heat treatment under different pressures (100 – 600 Megapascals) (Setlow, 2003). There is 

evidence supporting the idea that some Bacillus spores germinate in the GIT of chickens, mice, 

pigs, dogs and humans, therefore, being metabolically active and having responses such as, 

production of antimicrobial substances, immunomodulatory effects on the intestinal mucosa, and 

function as competitive exclusion agents interacting with host cells (Hoa et al., 2000; Duc et al., 

2004; Tam et al., 2006). Furthermore, some Bacillus species have the capacity to produce 

different exogenous enzymes, including protease, phytase, xylanase, keratinase, lipase, and 

cellulase (Hendricks et al., 1995; Monisha et al., 2009; Mazzotto et al., 2011; Jani et al., 2012; 

Mittal et al., 2012; Shah et al., 2012). These enzymes help to degrade complex feed molecules, 

improve absorption of nutrients, reduce intestinal viscosity in non-starch polysaccharide rich 

diets (NSP), and decrease the amount of substrates available for growth of pathogenic bacteria. 

Additionally, it has been shown that the presence of Bacillus species such as Bacillus subtilis, 

enhance growth of other beneficial microorganisms such as Lactobacillus by production of 

subtilisin, catalase, and also decreasing intestinal pH (Hosoi et al., 2000). 

All the benefits related to the utilization of Bacillus-DFM in the diet, make supplementation of 

Bacillus spores an available and applicable alternative instead of the use of antibiotic growth 

promoters, avoiding an increment in the presentation of different gastrointestinal diseases and 

maintaining or improving performance parameters in poultry production under commercial 

conditions. 

 

SPORE GERMINATION AND GERMINANTS 
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Although Bacillus spores are in a dormancy state and are considered one of the most stable and 

resistant forms of life. Spores have an active sensor system that allows them to undergo the 

process of germination when environmental and nutritional conditions are favorable. Spores 

respond to the presence of nutritional or non-nutritional factors known as germinants, which 

trigger the start of a series of interconnected reactions that will finally have as a result the 

generation of a metabolically active vegetative cell. Among the nutritional germinants involved 

in germination of Bacillus subtilis, L-alanine is the most common, but also the mixture of 

asparagine, fructose, glucose and potassium chloride have been demonstrated to stimulate the 

initiation of germination (Setlow, 2003). In the case of Bacillus megaterium, L-proline has been 

recognized as an important germinant (Foster and Johnstone, 1990). 

The first step implicated in germination is the interaction between a nutritional germinant like L-

alanine and the receptor of the spore located in the inner membrane. These receptors are 

composed by different proteins (GerA, GerB and GerK), that in the case of Bacillus subtilis are 

encoded by gerA, gerB and gerK operons (Paidhungat and Setlow, 2000). Following the binding 

of the germinant with the cell receptor, there is an increase in the spore core permeability, due to 

the movement of Ca++ cations and dipicolinic acid (DPA) from the core accompanied by uptake 

of water into the core. These steps are considered the first phase of the germination process, 

however, some researchers mention that a non-lethal heat treatment is important to activate the 

spore receptors before binding the germinant (Moir et al., 2002). The second phase of the 

germination process includes the activation of cortex-lytic enzymes that finally allow the 

complete rehydration of the core and activation of the metabolic enzyme activity of the future 

vegetative cell (Setlow, 2003). 
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The mechanism by which the cortex-lytic enzymes are activated is not completely known. B. 

subtilis enzymes CwlJ and SleB are involved in the degradation of the cortex peptidoglycan after 

previous activation of the cell receptor by a specific germinant (Chirakkal et al., 2002, Makino 

and Moriyama, 2002). One hypothesis is that CwlJ activity may be induced by the presence of 

Ca++ and DPA released from the inner membrane of the spore, starting in this way the hydrolytic 

disruption of the cortex and permitting the movement of water inside the spore core. Moreover, 

the increment of stress in the structure of the dissolving cortex could also induce SleB activity, 

having as result the expansion of the germ cell wall, which is going to be the cell membrane of 

the vegetative cell. The substrate of the cortex-lytic enzymes is the muramic-δ-lactam present in 

the peptidoglycans layer, being the target of enzyme activity, however, other enzymes and other 

compound of the cortex may be involved in this process in different Bacillus species (Atrih and 

Foster, 2001). 

In addition to nutrient germinants, there are also non-nutrient factors that stimuli germination, 

such as; heat shock, salts, presence of Ca++ cations and DPA from other germinating spores, and 

different amounts of pressure (100 – 600 MPa). Nevertheless, there is contradictory evidence 

related to low and high pressures and their effect on germination. Wuytack and co-workers 

observed that low pressures (100 – 200 MPa) may influence the activation of inner membrane 

receptors promoting germination; however, at high pressures (600 MPa) germination was not 

completed due to interruption of the final phase steps of the process (Wuytack et al., 2000). In 

contrast, Paidhungat et al. (2000), reported that higher pressures (500 – 600 MPa) incentive 

germination even without presence of nutritional germinants, indicating that pressure may affect 

the release of Ca++ and DPA, therefore avoiding the first phase of activation of spore receptors, 

and acting directly over degradation of cortex peptidoglycans. 
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Additionally, different aspects such as osmoregulation of the core by the cortex layer, 

degradation of small acid-soluble proteins (SASPs) as source of amino acids for cell growth, and 

permeability of the coat and cortex to different nutrient germinants to reach the inner membrane 

of the core are fundamental to complete germination, together with the chain of reactions 

mentioned before. Spore germination is still a process that must be investigated in detail, because 

there are still unknown facts about how the binding of the germinant and the receptor is 

integrated in a response that finish with the activation of cortex-lytic enzymes, and also how 

proteins of the inner membrane receptor interact between each other and with different 

germinants in variable Bacillus species (Moir et al., 2002; Setlow, 2003). Have knowledge about 

the aspects that affect germination and sporulation of the genus Bacillus is crucial to understand 

how these bacteria may act in the GIT of animals when supplemented as direct-fed microbials. 

 

DISTRIBUTION AND GERMINATION OF BACILLUS SPORES THROUGHOUT THE 

GASTROINTESTINAL TRACT IN DIFFERENT ANIMAL MODELS INCLUDING 

POULTRY 

Due to Bacillus spores are recognized to be in a dormant state in comparison to other probiotic 

bacteria such as Lactobacillus, determination of germination of Bacillus spores in the GIT is of 

vital importance. The capacity of certain spores to germinate under gastrointestinal conditions is 

directly related with the possible mechanism of action through which these bacteria will benefit 

the host (Tellez, 2014). Metabolically active cells are required to secrete antimicrobial 

substances, stimulate beneficial microbiota, and act as competitive exclusion agents (Ozawa et 

al., 1981). Additionally, vegetative cells of some, but not all, Bacillus isolates have shown to 

produce exogenous enzymes that may promote an increase in digestibility of different nutrients 
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from the diet (Leser et al., 2008). On the contrary, according to Tam and co-workers, other 

beneficial effects of Bacillus spores such as competition for attachment sites and 

immunomodulation do not require germinated spores to have positive effects on the host, 

therefore both stages (vegetative cells and spores) of the Bacillus life cycle could provide a 

different set of advantages supporing their utilization as functional feed additives (Tam et al., 

2006). 

Equally essential is to know the distribution of the spores throughout the GIT to realize where 

the major advantages of the direct-fed microbial supplementation would be expected to occur. 

Furthermore, it is also crucial to recognize if these bacteria have the capacity to accomplish some 

full life cycle in the GIT or if they are transient occurring, requiring constant supplementation in 

the diet to persist in the digestive tract (Cartman et al., 2007). 

In the case of poultry, Cartman et al. (2008) demonstrate that B. subtilis spores, when provided 

orally, germinate in the GIT. Identification and quantification of spores and vegetative cells were 

done using RT-PCR, qRT-PCR and a strain of B. subtilis (SC2362) that harbored a fusion gene 

(rrnO-lacZ) and a chloramphenicol acetyltransferase gene (cat). After 20 hours of spores 

administration, the number of vegetative cells was higher in comparison to the number of spores 

present in different segments of the GIT. This finding suggests that even when Bacillus spp., are 

considered aerobic bacteria, spores have the ability to germinate into vegetative cells and survive 

in the anoxic environment of the digestive tract. This could be the result of the use of nitrite or 

nitrate molecules as terminal electron acceptors in the electron transport chain by some Bacillus 

strains (Nakano and Zuber, 1998). Additionally, Studies conducted in our laboratory have shown 

that approximately 90% of B. subtilis spores germinate within 60 min in the presence of starter 

broiler feed in vitro, this was observed after a heat-shock treatment (75oC for 10 minutes) that 
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allowed counting of spores only (Table 1). Extended in vivo studies confirmed that viable B. 

subtilis spores were recovered during 120 h, from different sections of the GIT of broiler 

chickens after constantly receiving feed supplemented with spores (106 spores/g) or a single oral-

gavage dose (106 spores/0.25 mL). Approximately a 1 log10 colony forming units (CFU) 

reduction of spore numbers was observed after 24 hours of administration, which may suggest a 

germination rate of around 90% in the GIT (Figure 1) (Latorre et al., 2014a). Similarly, Jadamus 

et al. (2001) observed that spores of B. cereus var. toyoi germinated fast in the crop of chickens. 

Moreover, when vegetative cells were orally administered, spores were collected from different 

segments of the GIT, meaning that both processes were occurring, either germination of spores 

or sporulation of vegetative cells. Furthermore Cartman et al. (2008), found that B. subtilis 

spores can be detected after six weeks of a single oral administration (109 spores/0.1mL), 

meaning that compared to the passage rate of the digesta in chickens (6 -7 hours), spores tend to 

persist over time in the GIT (Shires et al., 1987).  

This behavior was also supported by examination of the fate of Bacillus spores in the GIT of 

different animal models such as mice and pigs. For instance, Hoa and co-workers evaluate the 

amount of spores and vegetative cells present in different parts of the GIT of pathogen-free mice, 

showing that occasionally the amount of spores excreted was higher than the single oral original 

inoculum administer to the mice (Hoa et al., 2001). This result may imply that spores can 

germinate, growth and sporulate, completing a full-life cycle under digestive tract of conditons. 

Furthermore, Leser et al. (2008), evaluate the germination and outgrowth of B. subtilis and B. 

licheniformis spores in the GIT of pigs using a flow cytometry technique (FCM) and also plate 

counting spores after heat-treatment. In the quantitation of spores and vegetative cells using 

FCM, cells were stained with a dye (Syto-13), and differentiate by the low concentration of the 
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dye present in the spore cell wall, in contrast to the high concentration observed in the cell wall 

of vegetative cells. It was revealed that, similar to the GIT of poultry, the number of spores 

diminished with time, meanwhile the number of vegetative cells tend to increase. Additionally, 

in this research was also possible to appreciate that the number of vegetative cells slightly 

increased in comparison with the original inoculum administered, suggesting little outgrowth of 

Bacillus cells in the GIT. Even when conditions of the GIT are not completely suitable for 

germination of Bacillus spores, it has been shown that in different animal species some Bacillus 

isolates are capable to develop a transformation from metabolically dormant spores to 

metabolically active vegetative cells. Spores are tolerant to the acidic pH of the stomach or 

proventriculus, additionally it has been suggested that the change of pH can trigger germination 

in the fore and hind gut (Jadamus et al., 2001; Leser et al., 2008). However, vegetative cells are 

highly susceptible to the presence of bile salts, probably in this way influencing the beginning of 

the sporulation process inside the GIT of the host, and promoting competition of some full life 

cycle development of the Bacillus bacteria before being excreted (Guo et al., 2006). 

 

EFFECT OF BACILLUS DIRECT-FED MICROBIALS ON HEALTH 

In day-old hatch birds, the digestive tract has a reduced bacterial population, making this almost 

unpopulated environment susceptible for colonization by pathogenic bacteria, therefore, 

affecting from the beginning the future performance of affected animals. This is one of the 

reasons for the utilization of probiotics or direct-fed microbials starting from early phases of life 

in livestock animals. Additionally, the prohibition of inclusion of antibiotics in animal diets since 

2006 (Europe Community), increase the necessity to find alternatives to prevent presentation of 

diseases without diminishing production standards (Cartman et al., 2007). The most common 
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bacteria used as probiotics are from the genus Lactobacillus (LAB), however, they must be 

administered for example in the drinking water, and maintained under optimal conditions to 

prolong shelf-life. 

Due to this restrictions, use of some spore former bacteria from the genus Bacillus have earned 

interest in the last years. As mentioned before, spores are resilient to harsh environmental 

conditions, and have a long shelf-life, making them feed-stable and suitable for 

commercialization (Hong et al., 2005; Hong et al., 2008). 

Nevertheless, it is important to understand that not all Bacillus species are used as direct-fed 

microbials; each isolate has different characteristics according to the chemical substances that 

produce, heat resistance temperatures, rate of growth, rate of sporulation, persistence in the GIT, 

and probable advantages to the host. Several studies have shown that vegetative cells of certain 

Bacillus isolates prevent colonization of the GIT by enteropathogens such as Salmonella spp., 

Clostridium perfringens, and Campylobacter jejuni (Teo and Tan, 2005; Svetoch et al., 2005; 

Wolfenden et al., 2011). For instance, Shivaramaiah et al. (2011) administered spores of different 

Bacillus spp. strains to evaluate their effect on  Salmonella Typhimurium exclusion and growth 

performance, showing at the end a reduction in the recovery of this pathogenic bacteria from the 

crop and ceca of chicks and poults that consumed Bacillus-DFM supplemented diets  in 

comparison to the untreated group (P<0.01). Additionally, it was also observed an improvement 

on performance parameters when broilers and poults were fed with Bacillus-supplemented diets 

compared to the control unsupplemented group (P<0.05). Furthermore in a different study, Knap 

et al. (2010) evaluated the effect of the inclusion of B. licheniformis (DSM 17236) in the diet of 

broiler chickens on the presentation of necrotic enteritis (C. perfringens). The study reported that 

the performance of broilers receiving the direct-fed microbial (106 and 107 cfu/g) was similar to 
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the group of birds that consume a medicated diet (Virginiamycin 15 g/ton feed), moreover no 

significant difference were observed regarding to the necrotic enteritis lesion score or mortality. 

In addition, multiple published studies support the fact that some isolates of B. subtilis have the 

ability to decrease the persistence of C. perfringens, avian pathogenic Escherichia coli and 

Salmonella serovar Enteritidis in the GIT of poultry (La Ragione et al., 2001; La Ragione and 

Woodward, 2003). The mode of action of Bacillus vegetative cells to reduce colonization of 

enteropathogens is not completely known.  

Some Bacillus isolates have the capacity to produce antimicrobial compounds against different 

pathogens (Figure 2) or stimulate the immune system of the host. Moreover in the case of C. 

perfringens, due to the ability of some strains of Bacillus to produce proteases, could be possible 

that Clostridium toxins (α-toxin, NetB) were degraded by these enzymes (Knap et al., 2010). On 

the other hand, some Bacillus species have also been studied for detoxification or protective 

effect on cases of mycotoxicosis (Ma et al., 2012; Galarza-Seeber et al., 2015). In addition to the 

use of Bacillus spores as direct-fed microbials, spore forming bacteria have also been studied as 

a vector for oral vaccines, providing in this way an excellent alternative combining the benefits 

of a probiotic with the advantages of a possible tool to increase acquire immune responses for 

different diseases without the presentation of vaccine reactions (Duc et al., 2003). 

 

EFFECT OF BACILLUS DIRECT-FED MICROBIALS ON PERFORMANCE 

PARAMETERS 

In the case of poultry performance and feed formulation, one of the principal problems is the 

continuous utilization of cereal grains such as corn for biofuel production, therefore, affecting 

feedstuffs availability and feed cost, which represents around a seventy percent of the production 
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expenses in the poultry industry. Ethanol production and variability in corn prices have led to the 

use of alternative and less digestible energy sources in poultry diets. Cereals such as wheat and 

barley, as well as by products of biofuel production (Distiller’s dried grains with solubles) have 

become occasionally feed ingredients used in poultry diets. Unfortunately, these alternative raw 

materials increased the amount of less digestible non-starch polysaccharides (NSP) in the feed, 

which as a result generate an increment in digesta viscosity in monogastrics animals (Tellez et 

al., 2014; Tellez et al., 2015). Utilization of Bacillus direct-fed microbials is one of the 

alternatives to optimize the digestibility of NSP rich diets, because some isolates have been 

recognized as xylanase, cellulase and β-glucanase producers ( Robson and Chambliss, 1987; 

Hendricks et al., 1995; Monisha et al., 2009). Xylanase is one of the enzymes that have shown 

reduction of intestinal viscosity, which is one of the factors involved in presentation of 

Clostridium-associated enteritis (Engberg et al., 2004; Wu et al., 2004). More recently, our 

laboratory have demonstrated that inclusion of certain Bacillus-DFM candidates that produce 

exogenous enzymes such as xylanase in high NSP diets significantly reduced both viscosity and 

C. perfringens proliferation in an in vitro digestive model study simulating different 

compartments of GIT of poultry (Latorre et al., 2015). This results were also observed during in 

vivo experiments conducted with chickens and turkeys fed with a high NSP rye-based diet. When 

the Bacillus-DFM candidate was included in the experimental rye-based diet, significant 

improvements in intestinal viscosity, performance parameters, bacterial translocation and bone 

quality were observed in supplemented animals (Tables 2 and 3), suggesting that the 

consumption of a selected Bacillus-DFM producing a variable set of enzymes, could contribute 

to enhance nutrient digestibility and promote healthy intestinal integrity (Latorre et al., 2014b). 

Additionally, some Bacillus species can also synthesize proteases, which could be used to help in 
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the degradation of low quality proteins present in the diet, hence, preventing detrimental enteric 

microflora changes that could result in the proliferation of C. perfringens. One qualitative 

method to screen different Bacillus strains for protease activity is the utilization of milk agar 

medium, followed by the measurement of the zone of clearance present around the evaluated 

bacterial colony after 24 hours of incubation at 37oC (Jani et al., 2012). 

Furthermore, different studies have supported the hypothesis that incorporation of B. subtilis 

spores in the diet improved production parameters in poultry (Jiraphocakul et al., 1990; Santoso 

et al., 1995; Wu et al., 2011; Lei et al., 2013; Zhang et al., 2013). Samanya and Yamauchi (2002) 

reported that the supplementation of B. subtilis var. natto in the diet of chickens increased villi 

height and enterocyte proliferation, showing also a decrease in blood ammonia concentration 

which was correlated with a better intestinal function. 

Moreover, Wolfenden et al. (2010) included two different Bacillus isolates (PHL-RW35 and 

PHL-RW41) at 107 and 105 spores/g of feed respectively, and obtained significant increases in 

body weight after 11 days of age in broiler chicks. Similarly, in another study done by the same 

author (Wolfenden et al., 2011), inclusion of a B. subtilis (PHL-NP122) in the diet of turkeys 

under commercial conditions resulted in a similar improvement on body weight at 23 days of age 

in comparison with a group of chickens consuming a medicated diet (Nitarsone). These results 

suggest that utilization of some Bacillus isolates could be an effective alternative to maintain or 

increase production parameters without utilization of antibiotics growth promoters in the poultry 

industry. 

 

CONCLUSION AND FUTURE PERSPECTIVES 
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Besides control of pathogen colonization of the GIT through production of bacteriocins and 

stimulation of the immune system, some Bacillus direct-fed microbials have the capacity to 

produce a variable set of enzymes that may contribute to enhance performance through 

improving digestibility, reducing intestinal viscosity and promoting healthy intestinal integrity in 

commercial poultry. Additionally, it has been shown that some Bacillus isolates are candidates to 

be used as vectors for oral vaccines, which add one advantage more to the set of benefits 

obtained by this amazing microorganism. However, there are still a lot of unknowns about 

physiological aspects involved in the germination and sporulation process, and also the 

mechanism of action used by these bacteria to control colonization of enteropathogens and 

improve performance parameters. 
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Table 1. Evaluation of germination and growth of Bacillus PHL-NP122 (log10 cfu/g) spores in 

an in vitro crop assay using a corn and soybean feed with or without heat shock†. Adapted from 

Latorre et al., 2014a. 

 

Time (min) 
No heat shock 

(log10 cfu /g) 

Heat shock 

(log10 cfu /g) 

0 6.98 ± 0.1a 6.78 ± 0.1a 

10 6.58 ± 0.2a 6.52 ± 0.2a 

15 6.78 ± 0.2a 6.56 ± 0.2a 

30 7.06 ± 0.1a 6.66 ± 0.1b 

40 7.12 ± 0.1a 6.58 ± 0.1b 

60 7.16 ± 0.1a 6.33 ± 0.2b 
              

a–bMeans within a row with different superscripts differ (P < 0.05). 

†Data is expressed as mean ± SE of five replicates per treatment in each timepoint. 

 

Table 2. Evaluation of body weight, digesta viscosity, and bacterial translocation to the liver in 

neonatal turkey poults fed with a rye-soybean based diet or rye-soybean based diet with Bacillus 

direct-fed microbial (DFM) supplementation. Adapted from Latorre et al., 2014b. 

 

 

 
                       Experiment 1                        Experiment 2 

 
Body 

weight† 

(g) 

Digesta 

viscosity‡ 

(cP Log
10

) 

Bacterial 

translocation£ 

(cfu Log
10

) 

Body 

weight† 

(g) 

Digesta 

viscosity‡ 

(cP Log
10

) 

Bacterial 

translocation£ 

(cfu Log
10

) 

 

CONc 

 

 

65.91 ± 3.6b 

 

2.03 ± 0.3a 

 

3.03 ± 0.5a 

 

74.47 ± 1.6b 

 

2.80 ± 0.4a 

 

2.13 ± 0.7a 

TRTd 82.85 ± 4.2a 1.54 ± 0.2b 1.24 ± 0.5b 95.60 ± 2.2a 1.62 ± 0.5b 0.35 ± 0.4b 

 
 

a-bSuperscripts within columns indicate significant difference at P < 0.05. 
cControl rye based diet without DFM. 
dControl rye based diet with candidate DFM (106 spores/g of feed). 
†Body weight n=25; Data is express as Mean ± SE. 
‡Digesta viscosity is expressed in Log10 (in centipoise, cP = 1/100 dyne s/cm2), n = 12. 
£Liver bacterial translocation (expressed in cfu Log10 /g of tissue), n = 12. 
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Table 3. Evaluation of bone strength and bone composition in neonatal turkey poults fed with a 

rye-soybean based diet without or with Bacillus direct-fed microbial (DFM) supplementation†. 

Adapted from Latorre et al., 2014b. 

 

 

Tibia strength 

load at yield 

(kg/mm) 

Tibia  

diameter 

(mm) 

Total ash 

from tibia           

(%) 

Calcium 

(% of ash) 

Phosphorus 

(% of ash) 

 

CONc 

 

1.14 ± 0.2b 

 

4.45 ± 0.3b 

 

35.61 ± 0.8b 

 

27.35 ± 0.1b 

 

16.35 ± 0.5b 

 

TRTd 

 

2.55 ± 0.1a 5.82 ± 0.8a 50.87 ± 0.7a 40.31 ± 0.5a 22.67 ± 0.3a 

 

a-b Superscripts within columns indicate significant difference at P < 0.05. 
cControl rye based diet without DFM. 
dControl rye based diet with candidate DFM (106 spores/g of feed). 
†Tibias from twelve poults were collected to evaluate bone quality. Data is expressed as mean ± 

SE. 
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*Data is expressed as mean and SE of 5 replicates in each time point (P < 0.05). Comparisons of 

spore counting were performed between constant supplementation of spores in the feed or a single 

oral dose. Adapted from Latorre et al., 2014a. 

Figure 1. Bacillus subtilis (Log10 cfu/g) in crop (a), ileum (b), ceca (c) and feces (d) of broiler 

chickens given a single oral dose or constant administration of spores in the feed. 
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Figure 2. Evaluation of bacteriocin-like compounds synthesis from different Bacillus spp. as 

direct-fed microbial candidates using an overlay methodology. 1 Escherichia coli F18 – Bacillus 

1012 and 0905 showing 20 and 14 mm of inhibition zone respectively; 2 Salmonella Enteritidis – 

Bacillus 0904 and 001 showing 16 and 10 mm of inhibition zone respectively; 3 Clostridium 

perfringens – Bacillus 1012 and 1109A showing 14 and 6 mm of inhibition zone respectively; 4 

Clostridium difficile – Bacillus B2 and 1109A showing 26 and 24 mm of inhibition zone 

respectively. 
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ABSTRACT 

Spores are popular as direct-fed microbials, though little is known about their mode of action. 

Hence, the first objective of the present study was to evaluate the in vitro germination and 

growth rate of Bacillus subtilis spores. Approximately 90% of B. subtilis spores germinate within 

60 min in the presence of feed in vitro. The second objective was to determine the distribution of 

these spores throughout different anatomical segments of the gastrointestinal tract (GIT) in a 

chicken model. For in vivo evaluation of persistence and dissemination, spores were 

administered to day-of-hatch broiler chicks either as a single gavage dose or constantly in the 

feed. During 2 independent experiments, chicks were housed in isolation chambers and fed 

sterile corn soy-based diets. In these experiments one group of chickens was supplemented with 

106 spores/g of feed, whereas a second group was gavaged with a single dose of 106 spores per 

chick on day of hatch. In both experiments, crop, ileum, and cecae were sampled from 5 chicks 

at 24, 48, 72, 96, and 120 h. Viable B. subtilis spores were determined by plate count method 

after heat treatment (75°C for 10 min). The number of recovered spores was constant through 

120 h in each of the enteric regions from chickens receiving spores supplemented in the feed. 

However, the number of recovered B. subtilis spores was consistently about 105 spores per gram 

of digesta, which is about a 1-log10 reduction of the feed inclusion rate, suggesting approximately 

a 90% germination rate in the GIT when fed. On the other hand, recovered B. subtilis spores 

from chicks that received a single gavage dose decreased with time, with only approximately 102 

spores per gram of sample by 120 h. This confirms that B. subtilis spores are transiently present 

in the GIT of chickens, but the persistence of vegetative cells is presently unknown. For 

persistent benefit, continuous administration of effective B. subtilis direct-fed microbials as 

vegetative cells or spores is advisable.   
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INTRODUCTION 

Concerns regarding development of antibiotic-resistant microorganisms and social pressures, 

have continued the trend to ban the use of antibiotics as growth promoters in poultry production. 

This has also resulted in an urgent necessity to find feasible alternatives to maintain poultry 

health, in order to sustain poultry as an economically viable source of animal protein for human 

consumption (Alvarez-Olmos and Oberhelman, 2001; Boyle et al., 2007). In this regard, the use 

of bacterial spores from selected Bacillus strains as direct-fed microbials (DFM) have gained 

recognition as feed and food supplementation. Their capacity to resist rough environmental 

conditions, with survival during feed pelletization procedure with extreme temperatures, as well 

as tolerance to extremes of pH, dehydration, high pressures, caustic chemicals and  long storage 

life, have made them suitable for commercialization and distribution (Vreeland et al., 2000; 

Cartman et al., 2007). During the last 15 years, our laboratories have worked toward the 

identification and application of probiotic candidates for poultry, which, in addition to nutritional 

benefits, can actually displace Salmonella and other enteric pathogens which have colonized the 

gastrointestinal tract (GIT) of chickens and turkeys. Different studies have been focused on 

specific pathogen reduction (Farnell et al., 2006; Vicente et al., 2008; Higgins et al., 2007, 2008, 

2010; Menconi et al., 2011), evaluation of performance parameters under commercial conditions 

(Torres-Rodriguez et al., 2007a, 2007b), and effects on both idiopathic (Higgins et al., 2005) and 

defined enteritis (Wolfenden et al., 2007). These studies have indicated that, selection of 

therapeutically efficacious probiotic cultures with marked performance benefits in poultry is 

possible and that, defined cultures can provide an efficient alternative for conventional 
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antimicrobial therapy (Tellez et al., 2001, 2006, 2012; Higgins et al., 2011). On the other hand, 

studies have indicated that Bacillus spores are involved in rapid activation of host innate immune 

functions (Rhee et al., 2004). Furthermore, some Bacillus species have the capacity to produce 

different exogenous enzymes including protease, lipase, cellulase, xylanase, phytase and 

keratinase (Hendricks et al., 1995; Monisha et al., 2009; Mazotto et al., 2011; Mittal et al., 2011; 

Shah and Bhatt, 2011; Jani et al., 2012). These enzymes may help to decompose complex feed 

molecules, improve absorption of nutrients, diminish intestinal viscosity in non-starch 

polysaccharide diets (NSP), and decrease the amount of substrates available for growth of 

pathogenic bacteria. Additionally, it has been shown that the presence of Bacillus isolates like 

Bacillus subtilis, enhance growth of other beneficial microorganisms such as Lactobacillus by 

production of subtilisin, catalase and decreasing intestinal pH (Hosoi et al., 2000). These studies, 

in total, have opened an exciting possibility for identification of vastly superior and more potent 

probiotics. A probiotic is effective against enteropathogens in various ways, including enhancing 

immune exclusion, competing for essential nutrients, competing for attachment regions, or 

secreting antimicrobial compounds against various enteropathogens (Cartman et al., 2007, 2008). 

However, for most of these actions to be effective, there is an inherent requirement for a 

metabolically active cell, implicating that germination of spores within the gastrointestinal tract 

could be a major factor to be considered to employ Bacillus spore-based DFM. In this context, 

studies in our laboratory have confirmed that selected heat-resistant spore-forming Bacillus 

species can markedly sporulate in high numbers (Wolfenden et al., 2010, 2011; Shivaramaiah et 

al., 2011). There is a growing body of evidence supporting the idea that some Bacillus species 

produced spores can germinate in the GIT of chickens, mice, pigs, dogs and humans, thus 

potentially being metabolically active and possibly eliciting  a mechanism of action similar to 
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other probiotic bacteria (Hoa et al., 2000; Duc et al., 2004; Tam et al., 2006). However, it is of 

prime importance to understand the factors that affect spore germination along with their 

distribution pattern throughout the GIT.  The complete mode of action of bacterial endospores is 

not understood comprehensively, but is presumed to be affected by physiological conditions 

(temperature, pH, and humidity), anatomical distribution and pattern of germination in these 

anatomical segments of the GIT. Earlier studies have shown that Bacillus spores germinate by 

the effects of nutritional and non-nutritional factors known as germinants, for instance: 

availability of L-alanine, asparagine, glucose, fructose, potassium chloride, and the effect of a 

non-lethal heat treatment under different pressures (Setlow, 2003). However, due to anatomical 

differences in the GIT of avian systems, it may not be acceptable to completely apply the results 

obtained in other animal and mammalian models. Therefore, the objectives of the present study 

were to evaluate the in vitro germination and growth rate of the Bacillus subtilis spores, as well 

as the evaluation of in vivo distribution and germination of B. subtilis spores in different 

anatomical regions of GIT in a chicken model, as an extension to enrich comprehension of the 

mechanism of action involving Bacillus based DFM in poultry.  

 

MATERIALS AND METHODS  

Animal Source and Diet 

Day-of-hatch, off-sex broiler chickens were obtained from Cobb-Vantress (Siloam Springs, AR) 

and were placed in isolators, in a controlled age-appropriate environment. Chickens were 

provided ad libitum access to water and a balanced unmedicated corn-soybean diet meeting the 

nutritional requirements of poultry recommended by NRC (1994), and adjusted to breeder’s 

recommendations (Cobb-Vantress Inc., 2013). The common starter diet was an antibiotic-free 
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corn-soybean meal diet (Table 1). All animal handling procedures were in compliance with 

Institutional Animal Care and Use Committee at the University of Arkansas. For experiments 2 

and 3, 6 chickens were humanely killed with carbon dioxide asphyxiation upon arrival, and 

confirmed negative for Bacillus spp. vegetative cells and spores. Briefly, tissue samples from 

crop, ileum, and cecae were aseptically removed from 12 chicks, collected in sterile bags, 

homogenized, weighed, and 1:4 wt/vol dilutions were made with sterile 0.9% saline. 

Ten-fold dilutions of these samples were plated on tryptic soy agar plates (TSA, catalog no. 

211822, Becton Dickinson, Sparks, MD), incubated at 37°C for 24 h to confirm the absence of 

any aerobic vegetative cells. Additionally, all samples from each region received heat treatment 

in a water bath at 75°C for 10 min to eliminate counting of vegetative cells. Ten-fold dilution of 

these samples were plated on TSA, incubated at 37°C for 24 h to confirm the absence of Bacillus 

spp. spores per gram of sample.  

 

Direct-fed Microbial 

Several spore-based Bacillus spp. were isolated and studied from various environmental and 

poultry sources (Wolfenden et al., 2010) in our laboratory. For the present study, B. subtilis 

PHL-NP122 was chosen based on its consistent in vitro activity against Salmonella spp., 

Clostridium spp., and Campylobacter spp. In addition, B. subtilis PHL-NP122 has demonstrated 

the ability to grow and sporulate in high numbers (~109 to 1011 spores/g) in solid-state 

fermentation media (Shivaramaiah et al., 2010; Wolfenden et al., 2011) consisting of a mixture 

of 70% rice straw and 30% wheat bran. The original spore inoculum used in both in vitro and in 

vivo experiments were tested to be at 4.3 × 1010 spores per gram of solid media. 
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In vitro Determination of Germination and Growth Rate of Spores. Experiment 1. 

Experiment 1 employed an in vitro crop assay to evaluate the germination and growth rate of the 

B. subtilis PHL-NP122 spores. Briefly, 1.25 g of unmedicated chick starter feed was measured 

into sixty 13 × 100 mm borosilicate tubes and autoclaved. Post-sterilization, the feed was 

suspended in 4.5 mL of sterile saline and inoculated with 0.5 g of Bacillus spores with a final 

concentration of 107 spores per gram of feed. After inoculation of feed with the spores, the tubes 

were vortexed and incubated at 40°C for 0, 10, 15, 30, 40, and 60 min. At each time point, 5 

tubes were removed from the incubator and 0.2 mL per tube was immediately loaded on to a 

sterile 96-well flat bottom plate, which served as samples for counting spores and viable 

vegetative cells as previously described (Wolfenden et al., 2010; Shivaramaiah et al., 2011). The 

tubes were then heat treated at 75°C for 10 min to eliminate the presence of vegetative cells, and 

samples were again loaded on to another 96-well plate, which served for the actual spore count 

(Barbosa et al., 2005). Overall, each time point mentioned had 5 replicates per treatment, with or 

without heat treatment. Ten-fold dilutions of all samples (pre or post-heat treatment) were plated 

on TSA plates and incubated 12 h at 37°C for enumeration and spore count. The calculated 

difference in the number of cfu between the heat treated and non-heat treated groups, at each 

time point, was considered as the amount of spores that germinated over time. 

 

In vivo Evaluation of Distribution, Persistence and Germination of Spores.  Experiment 2. 

Experiment 2 involved a total of 60 chickens that were randomly divided in 2 groups of 30 

chicks per treatment (constant feed vs. single gavage dose). Each group of 30 chickens were 

allocated in isolation chambers with a wire floor (90 cm × 80 cm) with space underneath for 

excreta to minimize coprophagia and offered feed and water ad libitum. For the first group of 
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birds receiving spores in feed, B. subtilis PHL-NP122 spores were thoroughly mixed with 

previously autoclaved feed in a rotary mixer for 15 min to ensure thorough distribution. The final 

concentrations of spores were also determined retrospectively by serial dilution and further 

plating on TSA for enumeration of actual cfu/gram and ensured to be 106 spores per gram of 

feed. The second group of chicks was gavaged with a single dose of 106 spores suspended in 

0.25 mL of PBS per chick using a sterile ball-ended gavage needle, just before placement. 

Chickens were randomly selected, humanely killed with carbon dioxide asphyxiation, and tissue 

samples from the crop, ileum (from Meckel’s diverticulum to the ileocecal junction), and ceca 

were aseptically removed from 5 chicks at 24, 48, 72, 96, and 120 h after spore consumption by 

constant feed or single gavage, collected in sterile bags, homogenized, and weighed, and 1:4 wt/ 

vol dilutions were made with sterile 0.9% saline. All samples from each treatment received heat 

treatment in a water bath at 75°C during 10 min to eliminate counting of vegetative cells. Ten-

fold dilution of these samples were plated on TSA and incubated at 37°C for 24 h to enumerate 

total cfu of B. subtilis spores per gram of tissue. Feces samples were also collected during the 

same time points, and viable spore counts were determined employing a similar dilution plate 

method as described above. 

 

In vivo Evaluation of Persistence and Distribution of Vegetative Cells and Spores Throughout 

the GIT.  Experiment 3. 

Similarly to experiment 2, this experiment involved a total of 60 chickens that were randomly 

divided in 2 groups of 30 chicks per treatment (constant feed vs. single gavage dose). Each 

group of 30 chickens were allocated in isolation chambers with a wire floor (90 cm × 80 cm) 

with space underneath for excreta to minimize coprophagia and offered feed and water ad 
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libitum. In this experiment, along with determining just the final viable spore count, vegetative 

cells were also measured to evaluate the extent of germination of spores in each of section of 

GIT sampled, at each time point mentioned before in experiment 2. Briefly, ingesta samples 

collected at each time point and loaded on to 96 well sterile plates, both pre- and postheat 

treatment (only heat-treated samples in experiment 2). Ten-fold dilutions of all samples were 

then plated on TSA and incubated for 24 h at 37°C to determine the spore count pre- and 

postheat treatment. The difference in the cfu between heat-treated and non-heat-treated samples 

was counted to be the amount of spores that germinated at each time point. 

 

Germination/Sporulation Rate of a Bacillus-DFM in Different Sections of the GIT in Broiler 

Chickens Consuming Bacillus Spores Constantly in the Feed. Experiment 2 and 3. 

The germination rate of B. subtilis spores between crop and ileum was calculated as follows:  

Germination rate = Crop spores – Ileum spores  

Additionally, the sporulation rate between ileum and ceca was calculated as follows:  

Sporulation rate = Cecal spores - Ileum spores 

 

Statistical Analysis 

Colony-forming units in all experiments were converted to log10 values. Comparison between 

total aerobic vegetative cells versus B. subtilis spores (log10 cfu/g) after heat shock in the crop, 

ileum, and ceca of broiler chickens after a single gavage dose or constant administration in the 

feed were subjected to one-way analysis of variance (ANOVA). Germination/sporulation rate of 

a Bacillus-DFM in different sections of the GIT in broiler chickens consuming Bacillus spores 

constantly in the feed were subjected to ANOVA. All data were compared using the GLM 
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procedure of SAS (version 9.1, SAS Institute Inc., Cary, NC). Significant differences among the 

means were determined by using Duncan’s multiple-range test at P ≤ 0.05. Five replicates were 

evaluated per time point, using a complete randomized design. 

 

RESULTS AND DISCUSSION 

In spite of the success showed by the development of the Lactobacillus probiotic for use in 

commercial poultry, there is still an urgent need for commercial probiotics that are shelf-stable, 

cost-effective, and feedstable (tolerant to heat pelletization procedures) to increase compliance 

and widespread utilization. Among the large number of probiotic products in use today, some are 

bacterial spore formers, mostly of the genus Bacillus. Used primarily in their spore form, some 

have been shown to prevent selected gastrointestinal disorders along with having numerous 

nutritional benefits (Mazza, 1994; Hoa et al., 2000; La Ragione and Woodward, 2003; Duc et al., 

2004; Williams, 2007; Hong et al., 2008). Several studies have shown that either live vegetative 

cells or endospores of some isolates can prevent colon carcinogenesis (Park et al., 2007) or 

discharge antimicrobial substances against gram-positive bacteria, such as Staphylococcus 

aureus, Enterococcus faecium, and Clostridium difficile (Hoa et al., 2000; Hong et al., 2008). 

However, distribution and germination-dependent mechanisms of action of Bacillus spores 

across the GIT are not completely understood in humans or any other animal models, suggesting 

that a metabolically active cell could be a major factor to be considered to employ Bacillus 

spore-based DFM. The present study provides several supporting evidences in this direction by 

employing both an in vitro crop assay and an in vivo chicken model. 

Experiment 1 involving in vitro crop assay provided preliminary idea about the germination of 

spores under study, the data of which are summarized in Table 2. Approximately 90% of the B. 



 

39 
 

subtilis spores germinated within 60 min under in vitro crop and GIT conditions, although 

significant differences were recorded just after 30 min of incubation. The data suggest that this 

short rate at which spores germinate is an important factor, considering the rapid passage rate of 

the digesta, and hence the spores, through the GIT with varying physiological conditions. In 

addition, the data are suggestive that spores germinate into metabolically and functionally active 

vegetative cells, within similar time frame, to produce beneficial metabolic effects. Similar 

results were obtained by Leser et al. (2008) using a nutrient-rich medium, where germination of 

B. licheniformis CH200 and B. subtilis CH201 took between 60 to 90 min to germinate under in 

vitro conditions. On the other hand, distribution and persistence of spores across the GIT play an 

important factor for them to elicit their important functions, and it is believed that the 

germination rate described above place a major role here. Experiment 2, involving in vivo trials 

with broiler chickens, provided more understanding in this regard, the results of which are shown 

in Figure 1. 

To begin with, B. subtilis spores were recovered from sample tissues of crop, ileum, ceca, and 

collected feces from broiler chickens, either given as a single gavage dose or constant 

administration in the feed. Recovered spores count was between 104 and 105 per gram of ingesta 

at all times in crop, ileum, and ceca when spores were constantly administered in the feed. 

Further, recorded reduction of about 1-log10, from the original spore count in the feed to the 

recovered count from GIT, suggested that germination of 90% of spores occurred, which is 

consistent with the results obtained in the in vitro crop assay (Table 2; Figure 1). Recovered 

spores from chicks that received a single gavage dose also followed the same pattern of 1-log10 

reduction, but decreased over time. Further, spores administered either continuously in the feed 

or by single gavage followed a consistent pattern of change in the number of spores recovered 
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from the crop to the cecae. A numerical reduction tendency in the spore count was observed 

from crop to ileum followed by a numerical increment from the ileum to the cecae, at all 

sampling time points (Table 4). The results of experiment 2 were confirmed and extended in 

experiment 3 (Table 3). Overall, our results are in agreement with Jadamus et al. (2001), arriving 

at similar conclusions, that the amount of spores recovered tends to diminish from the crop to the 

ileum, and increase again from the ileum to the cecae (Tables 3 and 4). This change could be 

related to the varying physiological, nutritional, and microbiological conditions of the GIT. The 

reduction of spore cfu in the small intestine could be as a result of germination in the crop, 

duodenum, or jejunum due to abundance of nutrients and favorable conditions in these 

anatomical segments. On the other hand, the increment of spores in the cecae could be a response 

due to the competitive microbial population, contending for oxygen and nutrients. This, 

accompanied by elevated concentrations of bacterial metabolites, such as NH3 (Preston and 

Douthit, 1984; Jadamus et al., 2001), could stimulate sporulation of vegetative cells entering the 

ceca, providing increased chances of survival, before being excreted into the environment. The 

above observations, also suggest that spores transiting through the GIT, could potentially 

undergo a full life-cycle of germination and resporulation, also suggested by previous studies 

(Barbosa et al., 2005; Cartman et al., 2008). In the present study, when neonatal chickens 

received a single gavage dose of spores, a gradual decreased in the amount of spores recovered 

throughout different sampled sections of the GIT over time was observed (Figure 1; Tables 3 and 

4); however, the long persistence of spores observed in feces in experiment 2 and as well as 

spores detected in each GIT organ evaluated in experiments 2 and 3, following one single gavage 

of spores, was longer than the estimated half-life, based on gut-passage time, which in chickens 

is around of 6.5 h (Shires et al., 1987), suggesting that some full life-cycle development may 
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occurs within the GIT (Table 4). This is supported by the study showing the presence of a larger 

amount of spores excreted in the feces compared with the original inoculum administered to 

mice, suggested germination, growth and resporulation of the initial spore dose (Hoa et al., 

2001).  

To the contrary, Spinosa et al. (2000) have argued that the germination of B. subtilis spores and 

generation of beneficial effects by vegetative cells is highly improbable, due to the presence of 

low pH and secretory bile salts in certain regions of the GIT of mice, inhibiting spore 

germination or killing the new vegetative cells. Nevertheless, other authors have shown that heat 

and low pH are conditions that instead of attenuating, could actually stimulate Bacillus spore 

germination, therefore providing evidence of survival within the GIT (Faille et al., 2002), 

partially supported by the results obtained in the present study. 

The germination rate, distribution, and suggested full-cycle development of spores, along with 

the spore recovery data, even after 5 d (120 h) of single gavage dose administration in 

experiments 2 and 3, demonstrate the persistence of these Bacillus spores in the gut. A study by 

Hoa et al. (2001), in a murine model, also showed that after a single oral dose of 5.97 × 108 

spores of B. subtilis SC1712, endospores were detected in feces even after 7 d of sampling. 

Prolonged spore persistence was also reported in mice by Tam et al. (2006), where Bacillus 

spores were detected in feces 27 d after a single gavage dose of 2 natural Bacillus strains, overall 

indicating prolonged persistence in the GIT. This germination and persistence of Bacillus has 

been attributed to the ability of some strains to produce biofilms. The extracellular matrix within 

these biofilms is theorized to improve the adherence of vegetative cells or spores to the mucosal 

surface, as well as protect them against undesirable conditions present in the gut, therefore 

improving the possibilities to persist and thrive within the GIT (Barbosa et al., 2005).  
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In the present study, the disappearing of spores from the different segments of the GIT was not 

abrupt, even from chicks that received a single gavage dose (Figure 1). At 24 h after gavage, 

there were no significant differences of cfu between treatments; however, at 48 h the group of 

birds receiving a single oral dose started to show a significant diminishment in the presence of 

spores throughout the GIT, having at the last sample time (120 h) almost a 3 log10 difference 

with the group consuming spores constantly in the feed. Similarly, the presence of spores in the 

feces of broiler chickens given a single gavage dose gradually but consistently decreased over 

time compared with the feed-supplemented animals (Figure 1). The steady decrease and the rate 

of disappearance of spores from the gut after a single oral gavage in experiments 2 and 3 confirm 

that B. subtilis is transiently present in the GIT of chickens and that a continuous administration 

is advisable for continued intestinal benefits (Tables 3 and 4). Nevertheless, the further 

evaluation in the intended direction of using Bacillus spores as DFM and vaccine delivery 

vehicles is currently ongoing in our laboratory, employing various molecular techniques for 

differentiation and quantification of vegetative cells and spores present in different segments of 

the gastrointestinal tract of poultry.  
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Table 1. Ingredient composition and nutrient content of the starter diet for broiler chickens used 

in all experiments on as-is basis 

 

Item Amount per kg (%) 

Ingredients  

Corn 56.59 

Soybean meal 35.74 

Vegetable oil 3.29 

Dicalcium phosphate 1.81 

Calcium carbonate1 1.12 

Salt 0.38 

DL-Methionine 0.31 

Vitamin premix2 0.10 

L-Lysine HCl 0.19 

Choline chloride 60% 0.10 

Mineral premix3 0.10 

L-Threonine 0.06 

Antioxidant4 0.15 

Total 100 

Calculated analysis 

Metabolizable energy (kcal/ kg) 3,035 

Crude protein (%) 21.70 

Lysine (%) 1.32 

Methionine (%) 0.63 

Met + Cys (%) 0.98 

Threonine (%) 0.86 

Tryptophan (%) 0.25 

Total calcium (%) 0.90 

Available phosphorus (%) 0.45 

Sodium (%) 0.16 
 

1Inclusion of 106 spores/g of feed mixed with Calcium carbonate. 
2Vitamin premix supplied the following per 1000 kg: vitamin A, 20,000,000 IU; vitamin D3, 

6,000,000 IU; vitamin E, 75,000 IU; vitamin K3, 9 g; thiamine, 3 g; riboflavin, 8 g; pantothenic 

acid, 18 g; niacin, 60 g; pyridoxine, 5 g; folic acid, 2 g; biotin, 0.2 g; cyanocobalamin, 16 mg; 

and ascorbic acid, 200 g  (Nutra Blend LLC, Neosho, MO 64850). 
3Mineral premix supplied the following per 1000 kg: manganese, 120 g; zinc, 100 g; iron, 120 g; 

copper, 10–15 g; iodine, 0.7 g; selenium, 0.4 g; and cobalt, 0.2 g (Nutra Blend LLC, Neosho, 

MO 64850). 
4Ethoxyquin. 
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Table 2. Evaluation of germination and growth of Bacillus PHL-NP122 (log10 cfu / g) spores in 

an in vitro crop assay using a corn and soybean feed with or without heat shock (Experiment 1)1 

 

 

 
a–bMeans within a row with different superscripts differ (P < 0.05). 
1Data is expressed as mean ± SE of 5 replicates 

 

  

Time (min) 
No heat shock 

(log10 cfu /g) 

Heat shock 

(log10 cfu /g) 

0 6.98±0.15a 6.78±0.14a 

10 6.58±0.23a 6.52±0.17a 

15 6.78±0.19a 6.56±0.21a 

30 7.06±0.06a 6.66±0.09b 

40 7.12±0.07a 6.58±0.15b 

60 7.16±0.10a 6.33±0.20b 
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Figure 1. Bacillus subtilis (Log10 CFU g-1) crop (a), ileum (b), ceca (c) and feces (d) of broiler 

chickens given a single oral dose or constant administration of spores in the feed (Experiment 2). 

*Data is expressed as mean and SE of 5 replicates  (P < 0.05). 
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Table 3. Comparison between total aerobic vegetative cells versus Bacillus subtilis spores after 

heat shock1 (HS) in crop, ileum, and ceca of broiler chickens after a single gavage dose2 or constant 

administration in the feed3 (Experiment 3) 

 

 
 

Item 

 Feed    Gavage  

Before HS After HS Difference Before HS After HS Difference 

Crop (log10 cfu / g)       

24 h 8.15 ± 0.32a 4.65 ± 0.43b 3.50 7.68 ± 0.39a 4.47 ± 0.19b 3.21 

48 h 7.80 ± 0.12a 5.05 ± 0.38b 2.75 6.00 ± 0.28a 3.88 ± 0.09b 2.12 

72 h 6.95 ± 0.38a 5.13 ± 0.13b 1.82 5.48 ± 0.07a 3.63 ± 0.19b 1.85 

96 h 6.75 ± 0.10a 4.50 ± 0.29b 2.25 5.45 ± 0.18a 2.80 ± 0.27b 2.65 

120 h 6.95 ± 0.13a 5.00 ± 0.58b 1.95 5.15 ± 0.35a 2.13 ± 0.13b 3.02 

Ileum (log10 cfu / g)       

24 h 7.33 ± 0.52a 4.15 ± 0.17b 3.18 6.52 ± 0.48a 4.10 ± 0.09b 2.42 

48 h 7.00 ± 0.24a 4.45 ± 0.21b 2.55 6.00 ± 0.21a 3.70 ± 0.10b 2.30 

72 h 7.85 ± 0.47a 4.45 ± 0.17b 3.40 5.40 ± 0.16a 3.53 ± 0.17b 1.87 

96 h 7.03 ± 0.26a 5.33 ± 0.24b 1.70 5.10 ± 0.29a 3.00 ± 0.00b 2.10 

120 h 7.15 ± 0.30a 5.00 ± 0.41b 2.15 4.98 ± 0.19a 2.25 ± 0.14b 2.73 

Ceca (log10 cfu / g)       

24 h 9.75 ± 0.05a 5.13 ± 0.30b 4.62 9.40 ± 0.14a 4.42 ± 0.21b 4.98 

48 h 9.50 ± 0.09a 5.65 ± 0.24b 3.85 9.00 ± 0.24a 4.28 ± 0.10b 4.72 

72 h 9.40 ± 0.18a 5.95 ± 0.05b 3.45 9.15 ± 0.09a 4.25 ± 0.25b 4.90 

96 h 8.90 ± 0.27a 5.03 ± 0.31b 3.87 8.58 ± 0.17a 3.75 ± 0.14b 4.83 

120 h 9.10 ± 0.09a 5.50 ± 0.29b 3.60 7.78 ± 0.43a 2.70 ± 0.38b 5.08 

 

a–bMeans within a row with different superscripts differ between feed or gavage treatments 

before and after heat shock respectively (P < 0.05).  
1Heat shock was induced by placing a sample of each respective  GIT sample in a water bath at 

75oC for 10 min. Data correspond to the means ± SE of results of  n = 5 birds.  
2106 spores per 0.25 ml 

3106 spores per gram of feed.  
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Table 4. Germination/sporulation rates of a Bacillus-DFM in different sections of the gastro 

intestinal tract in broiler chickens consuming Bacillus spores constantly in the feed (Experiment 

2 and 3)  

 

 

 

Item 

Crop1  

(log10 cfu /g)  

Ileum1 

(log10 cfu /g) 

Ceca1 

(log10 cfu /g) 

Germination 

 (Cp-Il)2 

Sporulation 

 (Cc-Il)3 

Experiment 2      

24 h 4.60 ± 0.51a 4.28 ± 0.59a 4.95 ± 0.48a 0.32 0.67 

48 h 5.28 ± 0.34a 4.70 ± 0.41a 5.20 ± 0.29a 0.58 0.50 

72 h 5.11 ± 0.46a 4.60 ± 0.21a 5.53 ± 0.28a 0.51 0.93 

96 h 4.95 ± 0.48a 4.53 ± 0.28a 5.28 ± 0.34a 0.42 0.75 

120 h 5.35 ± 0.21a 4.95 ± 0.25a 5.25 ± 0.25a 0.40 0.30 

Experiment 3      

24 h 4.65 ± 0.42a 4.15 ± 0.17a 5.13 ± 0.03a 0.50 0.98 

48 h 5.05 ± 0.32ab 4.45 ± 0.21b 5.65 ± 0.24a 0.60 1.20 

72 h 5.13 ± 0.13b 4.45 ± 0.17c 5.95 ± 0.05a 0.68 1.50 

96 h 4.50 ± 0.29c 5.30 ± 0.24b 5.03 ± 0.31a -0.80 -0.27 

120 h 5.00 ± 0.58a 5.00 ± 0.41a 5.50 ± 0.29a 0.00 0.50 
 

a–cMeans within a row with different superscripts differ (P < 0.05). 

  1Data is expressed as mean ± SE of 5 replicates 
2Cp-Il = Difference in spore count between crop and ileum 
3Cc-Il = Difference in spore count between ceca and ileum 
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IV. CHAPTER II 
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ABSTRACT 

Social concern about misuse of antibiotics as growth promoters (AGP) and generation of 

multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in 

several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly 

evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been 

extensively investigated because of their extraordinary properties to form highly-resistant 

endospores, production of antimicrobial compounds and synthesis of different exogenous 

enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from 

environmental and poultry sources as DFM candidates, considering their enzyme production 

profile, biofilm synthesis capacity and pathogen-inhibition activity. Thirty one Bacillus isolates 

were screened for in vitro relative enzyme activity of amylase, protease, lipase and phytase using 

a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. 

These three isolates were identified as B. subtilis (1/3), and  B. amyloliquefaciens  (2/3) based on 

biochemical tests and 16S rRNA sequence analysis. In addition, the three selected strains have 

previously being tested for resistance of different simulated gastrointestinal conditions. For 

evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was 

determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm 

formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against S. 

Enteritidis (26/31), E. coli (28/31) and C. difficile (29/31). The results of this study suggest that 

the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and 

antimicrobial compounds may contribute to enhance performance through improving nutrient 

digestibility, reducing intestinal viscosity, maintaining a beneficial gut microflora and promoting 

a healthy intestinal integrity in poultry. 
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INTRODUCTION 

The continuous tendency to reduce the use of antibiotic growth promoters (AGP) in poultry 

production due to social concern about generation of antibiotic resistant bacteria, have resulted in 

the crucial necessity to find economically viable alternatives that can maintain optimal health 

and performance parameters under commercial conditions (Alvarez-Olmos and Oberhelman, 

2001; Boyle et al., 2007). One possible substitute for AGP that has been extensively studied is 

the utilization of probiotics to prevent and treat gastrointestinal infections (Higgins et al., 2011). 

The most common microorganisms used as probiotics are lactic acid bacteria (LAB) from the 

genus Lactobacillus and Pediococcus, however, these microorganisms required refrigeration or 

lyophilization to survive for long storage periods, and microencapsulation to withstand feed 

application, therefore adding cost to their industrial production (Tellez et al., 2012). Among the 

microorganisms used as direct-fed microbials (DFM), Bacillus spores have been increasingly 

included as feed additives in poultry diets, due to their remarkable resistance to harsh 

environmental conditions, and also have a long shelf life. (Cartman et al., 2007; Vreeland et al., 

2000). Bacteria from the genus Bacillus are Gram-positive, rod shaped and usual inhabitants of 

the soil. However, different studies have shown that Bacillus spores can also be present, 

germinate and survive in the gastrointestinal tract (GIT) of different animal species, suggesting 

that these bacteria could be considered facultative anaerobes and part of the metabolically active 

host microflora (Hoa et al., 2001; Hong et al., 2009; Latorre et al., 2014). Rate of survival and 

persistence of some Bacillus strains in the GIT may be related to their capacity to synthesize 

biofilms, thereby, protecting themselves against the harsh environmental conditions present in 
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the gut (Barbosa et al., 2005). Moreover, one of the principal sources of enzymes and antibiotics 

from bacterial origin used by biotechnology companies are produced by different Bacillus 

strains, making this multifunctional microorganism useful inside or outside a host (Priest, 1977; 

Azevedo et al., 1993).  

On the other hand, the increasing consumption of poultry meat globally, along with utilization of 

grains such as corn for biofuel production has led to the use of less digestible energy sources in 

poultry diets. Alternative cereals such as wheat, barley, triticale or rye have been previously 

included in poultry feed. (Lesson and Proulx, 1994; Bedford, 1998; Mendes et al., 2013). 

However, the incorporation of these raw materials in monogastric diets have a negative impact 

on growth performance due to an elevated concentration of antinutritional factors such as non-

starch polysaccharides (NSP) in comparison to corn-based feed (Choct et al., 1996). Diets rich in 

NSP generate an increase in intestinal viscosity, affecting digestibility and absorption of 

nutrients by the intestinal surface (Annison, 1993). An alternative to reduce the negative effects 

generated by NSP is the inclusion of microbial enzymes, such as xylanase, which have been 

shown to reduce intestinal viscosity and Clostridium-associated enteritis ( Guo et al., 2014). 

Additionally, utilization of other microbial enzymes such as α-amylase, protease, lipase and 

phytase have demonstrated to increase degradation of low quality proteins, improve bone quality 

and enhance absorption of carbohydrates and fatty acids (Meng et al., 2004; Woyengo and 

Nyachoti, 2011; Murugesan et al., 2014). In this regard, the exogenous enzymes produced by 

Bacillus spp. that may help to degrade complex antinutritional factors in poultry diets and 

improve nutrient absorption include cellulase (Hendricks et al., 1995), α-amylase (Ibrahim et al., 

2012), β-glucanase (Aono et al., 1992), α-galactosidase, β-mannanase (Talbot and Sygusch, 

1990), xylanase (Monisha et al., 2009), protease (Olejuyigbre and Ajele, 2005), lipase (Shah and 
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Bhatt, 2011), keratinase (Mazzoto et al., 2011) and phytase (Choi et al., 2001). Nonetheless, it is 

important to mention that not all Bacillus bacteria synthesize the same type of enzymes, 

therefore, requiring selection and characterization of adequate isolates according to the specific 

target substrates in the diet. 

Besides the capacity of certain Bacillus spp. to produce enzymes and increase utilization of 

nutrients from different feedstuffs, spores from various Bacillus strains have also been included 

in poultry diets to control the incidence of different gastrointestinal diseases through the 

production of antimicrobial compounds or acting as competitive exclusion agents against 

Salmonella Typhimurium (Shivaramaia et al., 2011), Clostridium perfringens (Tactacan et al., 

2013),  Escherichia coli (La Ragione et al., 2001) and Campylobacter jejuni (Svetoch et al., 

2005). Additionally, Bacillus-DFM have shown to enhance cellular and humoral immune 

responses by increasing the number of solitary lymphoid follicles in the intestinal mucosa, 

influencing the development of the gut-associated lymphoid tissue (GALT), enhancing antibody 

responses after vaccination, and augmenting macrophage function (Rhee et al., 2004; Kyung-

Woo et al., 2011; Molnar et al., 2011). Dietary supplementation with Bacillus spores may also 

has a positive effect on other beneficial bacteria populations such as LAB through production of 

subtilisin and catalase, as well as, reducing pH and oxygen concentration in the gut to generate a 

more favorable environment (Hosoi et al., 2000; Jeong and Kim, 2014). In the case of intestinal 

epithelial integrity, it has been shown in vitro (Caco2 cells) and ex vivo that a B. subtilis quorum-

sensing signal molecule known as the competence and sporulation-stimulating factor (CSF), 

induces expression of the heat shock protein Hsp27. Therefore, enhancing protection of 

enterocytes against oxidative damage, and preventing detrimental effects on the intestinal barrier 

(Okamoto et al., 2012).  At the end, all the characteristics mentioned before support the 
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utilization of selected Bacillus spp. spores as a feasible alternative to AGP, improving 

performance parameters through production of enzymes and maintaining an optimal health status 

by synthesis of antimicrobial compounds. Therefore, the purpose of the present study was to 

evaluate and select Bacillus isolates from environmental and poultry sources as candidate direct-

fed microbials (DFM) based upon enzyme production profiles, pathogen inhibition capacity and 

biofilm synthesis, hence, extending our understanding of the mechanism of action of Bacillus-

DFM and its applicability in the poultry industry.  

 

MATERIALS AND METHODS  

Bacillus spp. isolation 

Previous research conducted in our laboratory focused on isolation of several Bacillus spp. from 

environmental and poultry sources as described by Wolfenden et al. (2010). Briefly, samples 

from intestinal content, fecal material and environmental sources were collected using sterile 

cotton swabs and placed into sterile borosilicate tubes for transport.  All samples were 

pasteurized by heat treatment at 70° C for 15 min to eliminate the presence of vegetative cells 

and allow the isolation of sporeformers only.  Swabs were then plate struck on tryptic soy agar 

(TSA, Becton Dickinson, Sparks, MD) to be able to collect individual colonies after 24 h of 

incubation at 37°C. Additionally, all the strains used in the present study were previously 

selected as negative for alpha and beta hemolysis after being inoculated on TSA plates 

containing 50 ml/L of defibrinated sheep blood (catalog no. R54012, Remel, Lenexa, KS). 

 

In vitro determination of enzyme activity 
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Thirty one Bacillus spp. isolates obtained from the Poultry Health Laboratory at the University 

of Arkansas were screened for production of α-amylase, protease, lipase and phytase. All 

Bacillus strains were growth in tryptic soy broth (TSB, Becton Dickinson, Sparks, MD)  at 37oC 

for 24 h. Then the isolates were washed with a saline solution (0.9%) and centrifuged three times 

at 3500 RPM for 15 min to prepare a clean inoculum. During the screening process, 10 µl of 

each Bacillus strain were placed on the center of a selective media according to the enzyme 

under evaluation. After incubation, all plates were evaluated and the diameters of the zones of 

clearance were measured. The relative enzyme activity (REA) was determined by using the 

formula: REA = diameter of zone of clearance divided by the diameter of the bacterial colony in 

millimeters. Based on REA test organisms were categorized into excellent (REA > 5.0), good 

(REA > 2.0 to 5.0) or poor (REA < 2.0) enzyme producers (Jani et al., 2012). Each Bacillus 

strain was evaluated by triplicate, and values are presented in table 1. More details about the 

composition of each selective media and incubation periods used to evaluate the capacity to 

produce a particular enzyme are described below. 

 

Production of Amylase 

To determine amylase enzyme activity, a starch agar media was used and consisted of 10 g of 

tryptone, 3 g of soluble starch, 5 g of KH2PO4,  10 g of yeast extract, 15 g of noble agar and 1000 

ml of distilled water. The starch media was autoclaved at 121oC for 15 min and poured in petri 

dishes when the temperature reach 50oC. Then each tested Bacillus strain was inoculate and 

incubated at 37oC for 48 h. For visualization of the zone of clearance all petri dishes were 

flooded with 5 ml of Gram’s iodine solution (Ibrahim et al., 2012).  
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Production of Protease 

For evaluation of protease activity, a skim milk agar media was prepared containing 25 g of skim 

milk, 25 g of noble agar and 1000 ml of distilled water. The mixture was stirred thoroughly and 

autoclaved at 121°C for 15 min. For plating, the skim milk agar solution was held in a water bath 

at 50°C and then it was poured quickly into plates. Each Bacillus strain was inoculate on petri 

dishes and incubated at 37oC for 24 h to observe if a zone of clearance was developed (Pailin et 

al., 2001). 

 

Production of Lipase 

Lipase activity was assessed using the Spirit blue agar media (Difco Laboratories, Detroit, MI, 

USA) composed by 10 g of pancreatic digest of casein, 5 g of yeast extract, 20 g of noble agar, 

and 0.15 g of the die spirit blue. A total of 35 g spirit blue agar were used per 1000 ml of distilled 

water. The media was sterilized at 121oC for 15 min and let to reach 50oC in a water bath, before 

being mixed with 30 ml of a lipoidal solution prepared with 100 ml of olive oil, 1 ml of 

polysorbate 80 and 400 ml warm water (60oC). Plates were inoculated and incubated at 37oC for 

24 h, before the determination of a zone of clearance around each bacterial colony. 

 

Production of Phytase 

For determination of phytase activity, Bacillus isolates were screened in a medium that 

contained: 10 g dextrose, 0.3 g (NH4)2SO4 , 0.5g MgSO4, 0.1 g CaCl2, 0.01 g MnSO4, 0.01 g 

FeSO4, 5 g Na-phytate, and 20 g of noble agar per 1000 ml of distilled water. The phytate media 

was autoclaved at 121oC for 15 min and poured into petri dishes when the temperature reach 

50oC. Isolates were inoculated and incubated at 37oC for a maximum of 120 h to evaluate if a 
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zone of clearance was generated surrounding the tested bacterial strains (Gulati et al., 2007; 

Mittal et al., 2011). 

 

In vitro Assessment of Antimicrobial Activity against Salmonella Enteritidis and Escherichia 

coli 

Thirty one Bacillus spp. strains were screened by triplicate for in vitro antimicrobial activity 

against Salmonella Enteritidis and Escherichia coli as reported previously (Wolfenden et al., 

2010). Briefly, 10 µl of each Bacillus isolate were placed on the center of TSA plates, and 

incubated for 24 h at 37oC. Then, the petri dishes with visible Bacillus colonies were overlaid 

with a TSA soft agar containing either 106 cfu/ml of S. Enteritidis or E. coli. After aerobic 

incubation for 24 h at 37oC, all plates were observed and the diameters of the zones of inhibition 

were measured removing the diameter of the bacterial colony.         

 

In vitro Assessment of Antimicrobial Activity against Clostridium difficile 

All tested Bacillus spp. isolates were cultured aerobically overnight on TSA plates and screened 

for in vitro antimicrobial activity against Clostridium difficile. Briefly, 10 µl of each Bacillus 

strains were placed in the centre of TSA plates. After 24 h of incubation at 37 °C, the plated 

samples were overlaid with TSA containing 106 cfu/mL of C. difficile and plates were incubated 

anaerobically.  After 24 h of incubation at 37 °C, all plates were evaluated for the presence of 

zones of inhibition, and the diameter of the inhibition  zone was measured as mentioned above 

for S. Enteritidis and E. coli antimicrobial activity evaluation.  

 

Biofilm assay 
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To determine biofilm synthesis a previously published crystal violet staining method was used 

with slight modifications (O’Toole and Kolter, 1998). Briefly, Bacillus isolates were growth in 

TSB overnight at 37oC, and 10 µl of each strain were inoculated in 0.5 ml of Casein-Manitol 

broth in 1.5 ml polypropylene tubes. After 12 h of incubation at 37oC, the liquid supernatant was 

removed  and the tubes were gently rinsed with distilled water. Then,  1 ml of a 1% w/v crystal 

violet solution was added to the tubes to stained the cells adhered to the walls forming a ring. 

After 25 min, the crystal violet solution was removed and the tubes were washed with distilled 

water. The qualitative measurement of biofilm synthesis was based on color intensity and size of 

the adherent crystal violet ring with a score ranging from negative (-) to strong (++) biofilm 

formation.  

 

Identification of Bacillus-DFM candidates 

Bacillus spp. strains laboratory identified as AM1002, AM0938 and JD17 were selected as 

superior enzyme producers based on their enzyme activity profile. These candidates were 

identified and characterized based on biochemical evaluation tests using a bioMerieux API 50 

CHB test kit (bioMerieux, Marcy l’Etoile, FRA). Selected candidates were also subjected to 16S 

rRNA sequence analysis in a specialized laboratory (Midi labs, Newark, DE, USA). Generally 

recognized as safe (GRAS) status of these three isolates were affirmed as described by 

Wolfenden et al., (2011). One of the three Bacillus strains (AM1002) was identified as B. 

subtilis, and the other two isolates (AM0938 and JD17) were identified as B. amyloliquefaciens. 

 

Statistical analysis 

 

http://www.google.com/search?hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLR&ei=HXeESt3OL5HeMdTc4d4E&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=bioMerieux+API+B+CH50+test+kit&spell=1
http://www.google.com/search?hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLR&ei=HXeESt3OL5HeMdTc4d4E&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=bioMerieux+API+B+CH50+test+kit&spell=1


 

63 
 

Data from all measurements were subjected to One-way analysis of variance as a completely 

randomized design using the General Linear Models procedure of SAS (version 9.1, SAS Institute 

Inc., Cary, NC) (SAS, 2002). Means were separated with Duncan’s multiple-range test and 

considered significant at P < 0.05.  Data were reported as mean ± standard error.  

 

RESULTS 

Determination of in vitro enzyme activity 

Bacillus spores were isolate by heat treatment of intestinal, fecal and environmental samples 

eliminating the presence of vegetative cells. Although enzyme activity was detected for the 

majority of the strains, there were considerable differences in their relative enzyme activity 

values. Three of the thirty one screened Bacillus spp. strains showed a significantly higher REA 

value for amylase production in comparison to other bacterial colonies. Isolates AM1002, 

AM1012 and AM0905 obtained REA values of 6.3, 6.1 and 5.8 respectively, all of them 

categorizing these Bacillus isolates as excellent amylase producers (REA > 5.0). In the case of 

protease activity, strain AM0938 showed a REA value of 3.4 which is considered good (REA 

>2.0-5.0), surpassing the enzyme activity values of the other screened strains. Lipase synthesis 

was superior in the isolate AM1002 (REA = 3.0), meanwhile, phytase production was classified 

as good for the strains JD17 (REA = 2.3) and MM65 (REA = 2.5). A complete description of the 

enzyme activity profile of all the evaluated isolates and the appearance of each selective media 

are presented in Table 1 and Figure 1 respectively.  

 

In vitro evaluation of antimicrobial activity 



 

64 
 

An overlay method was used to assess the production of antimicrobial compounds by the thirty 

one Bacillus strains against Gram-positive and Gram-negative enteropathogens (Table 2; Figure 

2). Although antimicrobial activity was observed in a greater number of isolates, individual 

differences were evident in the degree of inhibition and spectrum of activity. In the case of  S. 

Enteritidis, isolate NP122 generated the largest diameter of the zone of inhibition with 13.7 mm, 

followed by the strain AM0904 with a diameter of 12.0 mm. Activity against E. coli was more 

evident in isolates AM1010 and AM1012, both with a diameter of clearance of 20 mm. 

Interestingly, C. difficile was the most susceptible microorganism in presence of almost all 

Bacillus spp. strains, with an average zone of inhibition of 19 mm for the thirty one isolates, 

where the strain AM1010 produced larger pathogen inhibition activity with a diameter of 

clearance of 28 mm. 

 

Biofilm synthesis 

Biofilm production was evaluated by generation of an adherent crystal violet-stained ring in 

polypropylene tubes. All the screened Bacillus spp. strains produced biofilms, however, isolates 

AM0905, AM0933, AM0940, AM0941, AM1002, AM1011, AM1012, AM1109A, AM1109B, 

NP122 and MM65  were identified as strong biofilm formers with a wider and more colorful 

intense ring of adherence present on the wall of the test tubes (Table 2; Figure 3). 

 

Characterization and selection of Bacillus-DFM candidates 

Based on the REA results, three Bacillus-DFM candidates were selected with excellent to good 

REA values for each of the evaluated enzymes. These candidates were then identified and 

characterized using a bioMerieux API 50 CHB test kit (bioMerieux, Marcy l’Etoile, FRA). This 

http://www.google.com/search?hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLR&ei=HXeESt3OL5HeMdTc4d4E&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=bioMerieux+API+B+CH50+test+kit&spell=1
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set of biochemical tests classified Bacillus spp. strains based on their capacity to metabolize 49 

different carbohydrates (Table 3). According to the fermentation profile, all isolates were 

categorized as Bacillus subtilis/amyloliquefaciens with an identification percentage of 99.0 % or 

higher.  To further assist in identification of the strains, each isolate was also subjected to 16S 

rRNA sequence analysis in a specialized laboratory (Midi labs, Newark, DE, USA). One of the 

three Bacillus spp. isolates (AM1002) was identified as B. subtilis, and the other two isolates 

(AM0938 and JD17) were identified as B. amyloliquefaciens (Table 4). Generally recognized as 

safe (GRAS) status of these three isolates were affirmed as described by Wolfenden et al. (2010).  

 

DISCUSSION 

Nowadays, poultry diets include a variety of ingredients from different plant and animal sources. 

Due to an increasing demand of cereal grains for production of biofuels, rising corn prices have 

had a direct impact on diet costs (Donohue and Cunninghan, 2009). Consequently, the necessity 

to reduce costs of production have required the inclusion of less digestible and more available 

raw materials in poultry diets. Distillers’ dried grains with solubles (DDGS) are usually available 

to be included in the ingredient matrix, as a result of the continuous development of the ethanol 

industry (Loar et al., 2010). Additionally, alternative grains such as wheat, barley and sorghum 

have also increased their participation in the composition of poultry diets, however,  it is 

important to mention that these feedstuffs often contain a higher concentration of non-starch 

polysaccharides in comparison to corn (Kundsen, 1997). To improve nutrient utilization and 

increase flexibility of the ingredient matrix used in poultry diets, multiple research have been 

performed evaluating the inclusion of different exogenous enzymes either alone or in diverse 

combinations (Choct et al., 1995; Avila et al., 2012).  It has been well established that 
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incorporation of carbohydrases (xylanase, β-glucanase, or amylase), and phytase can reduce the 

adverse impact of anti-nutritional factors in monogastric animals fed with diets containing 

alternative grains (Cowieson and Adeola, 2005). Additionally, a growing interest based on the 

reduction of environmental pollution generated by livestock production has been one of the 

principal targets supporting the inclusion of enzymes in animal feed (Ghazi et al., 2003). 

Nevertheless, research results have been variable due to the different sources of exogenous 

enzymes under evaluation. Some of this enzymes are denature at acidic pH (Proventriculus) or 

do not resist high temperatures commonly used during feed pelletization. One of the principal 

sources of microbial enzymes are produced by bacteria from the genus Bacillus (Monisha et al., 

2009; Ibrahim et al, 2012). For this reason in the present study, thirty one Bacillus spp. were 

screened for production of amylase, protease, lipase and phytase (Table 1). Three strains were 

selected based on superior REA values on at least one of the enzymes under evaluation. These 

results demonstrate that not all Bacillus spp. synthesize the same type of enzymes over time, 

suggesting that this capacity is a strain-specific characteristic (Figure 1). Additionally, the three 

selected Bacillus spp. strains candidates were identified as GRAS by biochemical tests and 16s 

rRNA sequencing analysis (Table 4), suggesting that they could be included in poultry diets 

under commercial conditions. 

On the other hand, despite of the success showed by the development of the LAB probiotics for 

use in commercial poultry, there is still an urgent necessity for commercial DFM that are shelf-

stable, cost-effective and feed-applicable to increase widespread utilization of viable substitutes 

of AGP in the poultry industry. In this regard, Bacillus spp. spores have been isolated from the 

gastrointestinal tract of multiple animal species, including poultry and pigs suggesting that this 

microorganism could be an active member of the host microflora (Barbosa et al., 2005; Guo et 
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al., 2006). Moreover, some Bacillus spp. endospores have been extensively studied as DFM, 

showing to be a safe and reliable prophylactic tool to diminish the presentation of gastrointestinal 

diseases in livestock and humans (La Ragione and Woodward, 2003; Duc et al., 2004; Hong et 

al., 2008).  In the present study, the majority of the tested Bacillus spp. strains showed 

antimicrobial activity against different food-borne pathogens, including S. Enteriditis (25/31) and 

E. coli (27/31). This could be the result of the capacity of some Bacillus to synthesize 

antimicrobial compounds, compete for nutrients, and/or change the environmental conditions of 

the media (Figure 2). Furthermore, it was remarkable to observe that the most susceptible 

enteropathogen to the presence of almost all Bacillus isolates was C. difficile (28/31). This 

anaerobic sporeformer bacteria is the principal aetiological agent of nosocomial diarrhea in 

patients under antibiotic therapy, and it has also been isolated from animals and retail meat 

(Harvey et al., 2011; Colenutt and Cutting, 2014). Therefore, these results suggest that utilization 

of selected Bacillus-DFM may be a suitable alternative to reduce the incidence of bacterial 

gastrointestinal diseases in humans and animals, including cases of C. difficile infection. 

However, as observed in the enzyme production profile, the ability to produce antimicrobial 

compounds appear to be a specific feature for each Bacillus spp. isolate (Table 2). 

In the case of biofilm formation, it is possible that this polysaccharide structure serve as a 

mechanism of survival for some Bacillus isolates to resist the harsh environmental conditions of 

the gastrointestinal tract. Additionally, generation of biofilms could help Bacillus cells to be 

attached to the gut epithelia, therefore, increasing their persistence in the intestinal mucosa, as 

well as, preventing adherence of enteropathogens. (Barbosa, et al., 2005). Results of the biofilm 

assay in the present study classified (11/31) Bacillus spp. strains as superior biofilm formers, 
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suggesting that these isolates could probably remain for a longer period in the gastrointestinal 

tract (Table 2; Figure 3).  

In summary, our results confirm that Bacillus spp. isolates differ in their capacity to produce 

enzymes, antimicrobial compounds and biofilms even if they are from the same species. 

Therefore, an exhaustive selection process must be performed according to the purpose the DFM 

is going to be used.  Bacillus strains selected as superior enzyme producer were different from 

the isolates showing the highest antimicrobial activity, however, all Bacillus isolates showed 

certain pathogen-inhibition activity. As a result, it is expected that the consumption of the 

Bacillus-DFM candidate selected in this study based on enzyme activity profiles, may contribute 

to enhanced performance parameters by improving nutrient digestibility, maintaining a balanced 

microflora and promoting healthy intestinal integrity in poultry consuming conventional and 

high NSP diets. 
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Table 1. Relative enzyme activity (REA)a values produced by Bacillus spp. strains evaluated as 

enzyme producer candidates  

 

Bacillus 

isolatesb 

Amylase Protease Lipase Phytase 

AM0902 1.0 ± 0.00 1.0 ± 0.00 1.9 ± 0.15 1.0 ± 0.00  

AM0904 5.3 ± 0.19 2.7 ± 0.08 2.3 ± 0.06 1.2 ± 0.07 

AM0905 5.8 ± 0.44 * 3.0 ± 0.26 2.7 ±0.17 1.6 ± 0.24 

AM0908 5.3 ± 0.06 2.1 ± 0.08 2.3 ±0.07 1.4 ± 0.10 

AM0923 5.7 ± 0.19 2.8 ± 0.04 2.2 ±0.26 1.5 ± 0.02 

AM0933 5.3 ± 0.21 2.3 ± 0.09 2.1 ±0.07 1.3 ± 0.07 

AM0934 4.5 ± 0.18 3.1 ± 0.34 2.4 ±0.35 1.2 ± 0.08 

AM0938 5.0 ± 0.50 3.4 ± 0.30 * 2.7 ±0.17 2.1 ± 0.08 

AM0939 3.9 ± 0.12 2.9 ± 0.44 2.2 ±0.12 1.4 ± 0.13 

AM0940 5.9 ± 0.27 1.8 ± 0.19 2.4 ±0.21 1.4 ± 0.12 

AM0941 1.0 ± 0.00 1.7 ± 0.40 2.8 ±0.27 2.0 ± 0.12 

AM1002 6.3 ± 0.12 * 2.8 ± 0.15 3.0 ±0.35 * 2.1 ± 0.11 

AM1010 5.7 ± 0.16 2.1 ± 0.11 2.6 ±0.21 1.5 ± 0.12 

AM1011 4.4 ±  0.30 3.0 ± 0.13 2.5 ±0.29 1.3 ± 0.10 

AM1012 6.1 ± 0.18 * 2.5 ± 0.15 2.3 ±0.17 1.4 ± 0.02 

AM1013 4.1 ± 0.08 2.3 ± 0.09 2.0 ±0.09 1.3 ± 0.05 

AM1109A 2.7 ± 0.27 1.8 ± 0.10 2.2 ±0.11 1.4 ± 0.11 

AM1109B 1.8 ± 0.42 1.0 ± 0.00 2.4 ±0.21 1.4 ± 0.07 

B2/53 4.0 ± 0.64 2.7 ± 0.16 2.5 ±0.08 1.6 ± 0.05 

BL 2.2 ± 0.13 1.0 ± 0.00 1.0 ±0.00 1.0 ± 0.00 

JD17 4.0 ± 0.29 2.9 ± 0.20 2.6 ±0.11 2.3 ± 0.15 * 

JD19 3.4 ± 0.33 2.1 ± 0.17 2.2 ±0.12 1.5 ± 0.01 

NP001 4.3 ± 0.19 2.3 ± 0.14 1.9 ±0.11 1.1 ± 0.04 

NP002 3.0 ± 0.40 2.3 ± 0.29 2.1 ±0.11 1.2 ± 0.12 

NP117B 2.7 ± 0.48 3.0 ± 0.06 2.1 ±0.14 1.3 ± 0.12 

NP121 3.1 ± 0.46 2.2 ± 0.13 2.0 ±0.09 1.5 ± 0.14 

NP122 4.7 ± 0.36 2.8 ± 0.40 2.3 ±0.15 1.3 ± 0.12 

NP124 1.6 ± 0.40 2.1 ± 0.29 2.2 ±0.12 1.1 ± 0.00 

NP126 3.3 ± 0.23 2.5 ± 0.15 2.2 ±0.12 1.2 ± 0.07 

MM65 3.8 ± 0.31 1.0 ± 0.00 3.0 ±0.22 2.5 ± 0.06 * 

RW41 4.2 ± 0.88 1.3 ± 0.11 2.0 ±0.04 1.2 ± 0.04 
* Identified bacterial strains as superior enzyme producers with a higher REA value P < 0.05  
a REA was calculated dividing the diameter of area of clearance by the diameter of the Bacillus 

colony. Organism were classified as excellent (REA > 0.5), good (REA >2.0-5.0), or poor (REA 

< 2.0) enzyme producers. Data expressed as mean ± SE. 
b All Bacillus spp. isolates were tested by triplicate. 
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Figure 1. Representative examples of microbial enzyme activity using a different selective 

media for each enzyme under evaluation. An area of clearance around a bacterial colony can be 

observed, representing enzyme production of (a) Amylase, (b) Protease, (c) Lipase, and (d) 

Phytase. All Bacillus spp. strains were screened by triplicate. 

 

 

 

 
 

Figure 2. Evaluation of antimicrobial activity from different Bacillus spp.isolates using an 

overlay method. A zone of inhibition is shown surrounding a tested bacterial colony located in 

the middle of the plate against (a) S. Enteritidis, (b) E. coli and (c) C. difficile. All Bacillus spp. 

strains were screened by triplicate. 

 

 

 
 

Figure 3. Determination of biofilm synthesis was performed using a crystal violet staining 

method. Measurement of biofilm synthesis was based on color intensity and size of the adherent 

crystal violet ring with a score ranging from negative (-) to strong (++) biofilm formation. All 

Bacillus spp. strains were screened by triplicate. 

 

(a) (b) (c) (d) 

(a) (b) (c) 
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Table 2. Evaluation of Antimicrobial activitya and biofilm synthesisb of different Bacillus spp. 

isolates. 

 

Bacillus  

isolates 

S. Enteritidis 

(mm) 

E. coli         

(mm) 

C. difficile   

(mm) 

Biofilm 

formation 

AM0902 0.0 ± 0.00 0.0 ± 0.00  0.0 ± 0.00 + 

AM0904 12.0 ± 0.38 * 16.0 ± 2.31 26.0 ± 1.86 + 

AM0905 6.7 ± 0.67 14.0 ± 1.15 20.3 ± 1.67 ++ 

AM0908 6.0 ± 0.56 4.3 ± 0.33 22.0 ± 2.31 + 

AM0923 7.7 ± 0.30 10.0 ± 3.06 24.0 ± 3.06 + 

AM0933 1.3 ± 0.33 4.0 ± 0.58 10.0 ± 1.15 ++ 

AM0934 6.3 ± 0.40 8.7 ± 1.76 22.7 ± 2.40 + 

AM0938 8.0 ± 1.15 10.0 ± 2.00 22.0 ± 2.00 + 

AM0939 6.3 ± 0.88 8.3 ± 1.33 26.0 ± 2.60 + 

AM0940 8.0 ± 1.12 10.3 ± 1.67 21.0 ± 1.76 ++ 

AM0941 0.7 ± 0.27 0.0 ± 0.00 0.0 ± 0 .00 ++ 

AM1002 5.7 ± 0.58 8.7 ± 1.76 16.0 ± 2.08 ++ 

AM1010 8.0 ± 1.10 20.0 ± 1.45 * 28.0 ± 2.67 * + 

AM1011 8.5 ± 0.90 10.7 ± 1.76 20.3 ± 2.33 ++ 

AM1012 8.7 ± 0.88 20.0 ± 2.19 * 10.0 ± 1.75 ++ 

AM1013 4.0 ± 1.15 10.0 ± 1.15 22.0 ± 1.15 + 

AM1109A 10.3 ± 1.20 12.0 ± 1.50 24.0 ± 1.11 ++ 

AM1109B 0.3 ± 0.33 0.0 ± 0.00 14.7 ± 1.62 ++ 

B2/53 10.3 ± 1.20 12.0 ± 0.58 26.0 ± 3.08 + 

BL 0.0 ± 0.00 4.0 ± 0.52 10.0 ± 2.00 + 

JD17 6.3 ± 0.33 10.0 ± 1.15 20.6 ± 3.53 + 

JD19 2.0 ± 0.58 2.7 ± 0.67 19.0 ± 1.72 + 

NP001 8.0 ± 0.88 6.0 ± 0.58 12.0 ± 1.13 + 

NP002 4.3 ± 1.33 6.0 ± 1.10 20.7 ± 2.40 + 

NP117B 2.7 ± 0.67 6.0 ± 1.15 18.0 ± 3.46 + 

NP121 2.3 ± 0.33 14.0 ± 3.06 16.0 ± 2.31 + 

NP122 13.7 ± 1.86 * 12.0 ± 2.00 26.0 ± 4.16 ++ 

NP124 6.0 ± 1.73 12.0 ± 1.86 22.0 ± 2.03 + 

NP126 0.3 ± 0.30 2.0 ± 1.89 21.7 ± 1.76 + 

MM65 8.0 ± 0.55 10.0 ± 1.15 20.3 ± 1.45 ++ 

RW41 5.7 ± 0.88 10.0 ± 2.00 22.0 ± 2.28 + 
* Identified bacterial strains with the enhanced antimicrobial activity P < 0.05  
a Represents the diameter of the zone of inhibition observed at 24 h of incubation without the 

diameter of the bacterial colony. Data expressed as mean ± SE. 
bThe qualitative measurement of biofilm synthesis was based on color intensity and size of the 

adherent crystal violet ring with a score ranging from negative (-) to strong (++) biofilm 

formation. All Bacillus spp. isolates were tested by triplicate.  
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Table 3. Characterization of selected Bacillus-DFM candidate strains based on biochemical 

carbohydrate metabolism testsab 

 

Item AM1002 AM0938 JD17 

Amidon (starch) + + + 

Amygdalin + + + 

Arbutin + + + 

D-Adonitol - - - 

D-Arabinose - - - 

D-Arabitol - - - 

D-Cellobiose + + + 

D-Fructose + + + 

D-Fucose - - - 

D-Galactose - - - 

D-Glucose + + + 

D-Lactose (bovine origin) + + + 

D-Lyxose - - - 

D-Maltose + + + 

D-Mannitol + + + 

D-Mannose + + + 

D-Melezitose - - - 

D-Melibiose + - + 

D-Raffinose + + + 

D-Ribose + + + 

D-Saccharose (sucrose) + + + 

D-Sorbitol + + - 

D-Tagatose - - - 

D-Trehalose + + + 

D-Turanose - - - 

Dulcitol - - - 

D-Xylose + + + 

Erythritol - - - 

Esculin (ferric citrate) + + + 

Gentibiose + + - 

Glycerol + + + 

Glycogen + + + 

Inositol + + + 

Inulin + - - 

L-Arabinose + + + 

L-Arabitol - - - 

L-Fucose - - - 

L-Rhamnose - - - 

L-Sorbose - - - 

L-Xylose - - - 
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Table 3. Characterization and identification of selected Bacillus-DFM candidate strains based on 

biochemical carbohydrate metabolism testsab (Continue) 

 

Item AM1002 AM0938 JD17 

Methyl-αD-glucopyranoside + + + 

Methyl-αD-mannopyranoside - - - 

Methyl-βD-xylopyranoside - - - 

N-Acetylglucosamine - - - 

Potassium 2-Ketogluconate - - - 

Potassium 5-Ketogluconate - - - 

Potassium gluconate - - - 

Salicin + + + 

Xylitol - - - 
aBioMerieux API50 CHB test kit (bioMerieux, Marcy l’Etoile, FRA) 
bDifferent scores (+ or -) reflect the capacity of the tested Bacillus spp. isolate to ferment an 

specific carbohydrate or carbohydrate derivative. 
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Table 4. Identification of Bacillus-DFM candidates showing the highest enzyme by bioMerieux API 50 CHBa and 16S rRNA sequence 

analysesb  

 

 

Isolate 

        API50 CHB  16S rRNA sequence analysis 

Taxon % ID  Closest match % ID 

AM1002 Bacillus subtilis/amyloliquefaciens 99.2  Bacillus subtilis 100.0 

AM0938 Bacillus subtilis/amyloliquefaciens 99.0  Bacillus amyloliquefaciens 99.7 

JD17 Bacillus subtilis/amyloliquefaciens 99.4  Bacillus amyloliquefaciens 99.6 
 

a BioMerieux API 50 CHB test kit. 
b 16S rRNA sequence analysis. 
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ABSTRACT 

Previously, our laboratory has screened and identified Bacillus spp. isolates as direct-fed 

microbials (DFM). The purpose of the present study was to evaluate the cellulase and xylanase 

production of these isolates and select the most appropriate Bacillus spp. candidates for DFM. 

Furthermore, an in vitro digestive model, simulating different compartments of the 

gastrointestinal tract, was used to determine the effect of these selected candidates on digesta 

viscosity and Clostridium perfringens proliferation in different poultry diets. Production of 

cellulase and xylanase were based on their relative enzyme activity.  Analysis of 16S rRNA 

sequence classified two strains as B. amyloliquefaciens and one of the strains as B. subtilis.  The 

DFM was included at a concentration of 108 spores/g of feed in 5 different sterile soybean-based 

diets containing corn, wheat, rye, barley, or oat. After digestion time, supernatants from different 

diets were collected to measure viscosity, and C. perfringens proliferation. Additionally, from 

each in vitro simulated compartment, samples were taken to enumerate viable Bacillus-spores 

using a plate count method after heat-treatment. Significant (P<0.05) DFM-associated reductions 

in supernatant viscosity and C. perfringens proliferation were observed for all non-corn diets. 

These results suggest that antinutritional factors such as non-starch polysaccharides from 

different cereals can enhance viscosity and C. perfringens growth. Remarkably, dietary inclusion 

of the DFM that produce cellulase and xylanase reduced both viscosity and C. perfringens 

proliferation compared with control diets. Regardless of diet composition, 90% of the DFM 

spores germinated during the first 30 min in the crop compartment of the digestion model, 

followed by a noteworthy increased in the intestine compartment by ~2 log10, suggesting a full-

life cycle development. Further studies to evaluate in vivo necrotic enteritis effects are in 

progress.   
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Keywords: Clostridium perfringens, Bacillus-DFM, spore, enzymes, viscosity 

 

INTRODUCTION 

Necrotic enteritis (NE) in broilers is a multi-factorial disease with severe economic implications 

(Hofacre, 2001). It is caused by type A strains of Clostridium perfringens that are specific to 

poultry with toxin types alpha and NetB (Keyburn et al., 2006; Keyburn et al., 2008). Coccidia 

infections are the most common pre-requisite for NE to occur (Schoepe et al., 2001), however, 

dysbacteriosis associated with diet ingredients, changes in feed ration, immunosuppression, 

Salmonella infections, and/or removal of the use of quimioterapeutics are known to predispose 

birds to NE (Shivaramaiah et al., 2011b). Antibiotic growth promoters (AGPs) are commonly 

used to mitigate the incidence of enteric diseases such as NE. Nevertheless, concerns regarding 

the development of antibiotic-resistant microorganisms and social pressures have led to a 

tendency to ban AGPs in poultry production (Castanon, 2007). In this scenario, there is an 

imperative necessity to find feasible alternatives for AGPs to maintain poultry health (Alvarez-

Olmos and Oberhelman, 2001). In fact, the use of selected strains of various beneficial 

microorganisms from the genus Bacillus and Lactobacillus have shown to be a suitable option 

for the poultry industry (Tellez et al., 2012). Bacillus spp. are  gram-positive, aerobe, motile, and 

usually found in soil and water sources, as well as in the gastrointestinal tract of animals and 

humans (Hong et al., 2009).  Different Bacillus spp. have already been studied and extensively 

used as a source of industrial enzymes as well as antibiotics by biotechnology companies (Kunst,   

1997). However, the production of most of these enzymes depends on the intense metabolic 

changes associated with environmental conditions (Gonzalez-Pastor et al., 2003; Hong et al., 

2005; López et al., 2009). During extreme environmental conditions, vegetative cells of Bacillus 

http://en.wikipedia.org/wiki/Gram-positive


 

83 
 

spp. form endospores, which are considered, the toughest way of life on Earth (Vreeland et al., 

2000).  

The use of spores from selected Bacillus strains, as direct-fed microbials (DFM), are shown to 

have the capacity to germinate and sporulate in the gastrointestinal tract of different animal 

species including poultry.  Thus, they become metabolically active in vivo, imparting numerous 

nutritional benefits including the production of extracellular enzymes such as protease, lipase, 

cellulase, xylanase, phytase and keratinase (Hendricks et al., 1995; Sen et al., 2012) and other 

chemical compounds beneficial for the host (Jadamus et al., 2001).  

In most of the U.S.A. and other countries, including Brazil, broiler feed is based primarily on 

corn and soybean meal. However, sometimes it is difficult to formulate least-cost diets using 

corn. Consequently, other cereals or ethanol by-products with variable concentrations of 

antinutritional factors are used as alternatives. When chickens are fed alternative grains with high 

levels of non-starch polysaccharides (NSP), an increase in digesta viscosity, poor nutrient 

digestibility, reduced bone mineralization and occurence of enteric diseases such a NE have been 

reported (MacAuliffe et al., 1976; Choct et al., 1996). Hence, utilization of these feedstuffs in 

poultry diets usually result in decreased growth performance, intestinal dysbacteriosis, and 

detrimental litter conditions caused by sticky droppings (Fengler and Marquardt, 1988; Bedford 

and Classen, 1993). For that reason, the inclusion of enzymes such as carbohydrases is a routine 

practice in poultry diets that contain grains with elevated NSP concentration values in 

comparison to corn (Adeola and Cowieson, 2011; Slominski, 2011).  However, there are 

inconveniences related to dietary inclusion of some enzymes, due to denaturation and lost of 

activity under high pelletization temperatures commonly used in poultry rations. Therefore, the 

objective of the present study was to perform a selection of Bacillus spp. for cellulase and 
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xylanase production as direct-fed microbials, and evaluate them on digesta viscosity and 

Clostridium perfringens proliferation in different poultry diets using an in vitro digestive model. 

The practical implication of the results will be to utilize cost effective alternative grains in 

poultry feed formulation, and at the same time improve digestibility as well as production 

performance in birds using a more thermostable DFM product.  

 

MATERIALS AND METHODS  

Diets 

Five mash soybean-based broiler grower diets containing different cereals such as corn, wheat, 

rye, barley or oat were used as substrate for bacterial growth during the in vitro digestive model. 

Experimental diets were formulated to approximate the nutritional requirements of broiler 

chickens as recommended by the NRC (NRC, 1994), and adjusted to breeder’s recommendations 

(Cobb-Vantress Inc,. 2013). No antibiotics, coccidiostats or enzymes were added to the feed 

(Table 1). All diets were autoclaved and confirmed negative for Bacillus spp. spores. Later, these 

diets were inoculated with the respective spores (108 spores/g of feed) of the Bacillus-DFM 

candidate according to various treatments. 

 

In vitro assessment of cellulase and xylanase production  

Previous research conducted in our laboratory focused on isolation of several Bacillus spp. from 

environmental and poultry sources (Shivaramaiah et al., 2011a; Menconi et al., 2013). Isolates 

were then screened for production of cellulase and xylanase. For evaluation of cellulase activity, 

the cellulose-Congo red agar was used and consisted of 0.50 g of K2HPO4 (Fisher Scientific, San 

Francisco, CA, USA), 0.25 g of MgSO4 (Sigma Chemical Co, St. Louis, MO, USA), 1.88 g of 
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ashed, acid-washed cellulose powder (J. T. Baker Chemical Inc, Phillipsburg, NJ, USA), 0.20 g 

of Congo red (J. T. Baker Chemical Inc, Phillipsburg, NJ, USA), 20 g of noble agar (Difco 

Laboratories, Detroit, MI, USA), and 1000 mL of distilled water (Hendricks et al., 1995). For 

evaluation of xylanase activity, the medium used to screen Bacillus isolates contained 3 g of 

NaNO3, 0.5 g of  K2HPO4, 0.2 g of MgSO4.7H2O, 0.02 g of MnSO4.H2O, 0.02 g of FeSO4.H2O, 

0.02 g of CaCl2.2H2O with 20 g of noble agar (Difco Laboratories, Detroit, MI, USA), and 1000 

mL of distilled water. Besides, 1 g yeast extract and 5 g beechwood xylan (Sigma Chemical Co, 

St. Louis, MO, USA) were used as carbon sources (Monisha et al., 2009). During the screening 

process, 10 µL of each Bacillus isolate were placed on the centre of each plate containing 

cellulose or xylan media.  After 24 h of incubation at 37 °C, all plates were evaluated and the 

diameters of the zones of clearance were measured removing the diameter of the bacterial 

colony. The relative enzyme activity (REA) was calculated by using the formula: REA = 

Diameter of zone of clearance divided by the diameter of the bacterial colony in millimetres 

(mm). Based on REA test in each group, organisms were categorized in to excellent (REA>5.0), 

good (REA>2.0 to 5.0) or poor (REA<2.0) relative enzyme activity (Jani et al., 2012). Each 

Bacillus strain was evaluated by triplicate, and the average measurements are presented in Table 

2.   

 

DFM culture identification   

Based on the REA results, three Bacillus-DFM candidates with excellent to good REA were 

selected. These candidates were then identified and characterized using a bioMerieux API 50 

CHB test kit (bioMerieux, Marcy l’Etoile, FRA). Individual strain were also subjected to 16S 

rRNA sequence analysis to a specialized laboratory (Midi labs, Newark, DE, USA). Generally 

http://www.google.com/search?hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLR&ei=HXeESt3OL5HeMdTc4d4E&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=bioMerieux+API+B+CH50+test+kit&spell=1
http://www.google.com/search?hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLR&ei=HXeESt3OL5HeMdTc4d4E&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=bioMerieux+API+B+CH50+test+kit&spell=1
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recognized as safe (GRAS) status of these three isolates were affirmed as described by 

Wolfenden et al. (2011). One of the three Bacillus strains (AM1002) was identified as B. subtilis, 

and the other two isolates (AM0938 and JD17) were identified as B. amyloliquefaciens (Table 3). 

Following the identification, all three Bacillus candidate strains were sporulated and mixed in 

equal amounts during the Bacillus-DFM preparation process as described below and 

incorporated to the experimental diets. 

 

Preparation of Spore-based DFM 

In an effort to grow high numbers of viable spores, modified version of a solid state fermentation 

media (SS) developed by Zhao et al. (2008) was used. Briefly, to prepare the SS fermentation 

media, ammonia broth was added to a mixture of 70% rice straw and 30% wheat bran at the rate 

of 40% by weight. Then, the SS fermentation media was added to 250 mL Erlenmeyer flasks and 

sterilized by autoclaving for 30 min at 121°C. Each of the three Bacillus strains candidates was 

grown, individually, overnight at 37 °C in test tubes containing 10 mL of tryptic soy broth (TSB, 

Becton Dickinson, Sparks, MD, USA). After incubation, 2 mL of each candidate culture were 

added separately to the previously prepared SS fermentation media flasks. The inoculated flasks 

were incubated for 24 h at 37 °C to promote growth of the Bacillus spp. candidates, and 

incubated for another 72 h at 30 °C to trigger the initiation of the sporulation process. Following 

this, the inoculated SS fermentation media was removed from the Erlenmeyer flasks, placed onto 

Petri dishes, and dried at 60 °C for 18 h. Then, the SS fermentation media was aseptically ground 

into a fine powder that contained stable Bacillus spores (~ 1011 spores/g). 1 g of spores from each 

isolate (1:1:1) was combined to produce the Bacillus-DFM candidate final product containing ~ 

3 x 1011 spores/g. Bacillus-DFM candidate was included into each experimental diet to reach a 
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final concentration of 108 spores/g using a rotary mixer for 15 min. Samples of feed containing 

the DFM candidate were subjected to 100°C for 10 min to eliminate vegetative cells and  

validate the amount of spores per g of feed after inclusion and mixing steps. Following heat-

treatment, 10-fold dilutions of the same feed samples from the glass tubes were plated on tryptic 

soy agar plates (TSA, Becton Dickinson, Sparks, MD, USA); letting spores in the feed sample 

germinate to vegetative cells after incubation at 37 °C for 24 h, hence representing the number of 

spores present per g of feed. 

 

Clostridium perfringens strain 

A strain of C. perfringens previously described in a NE challenge model was kindly donated by 

Dr. Jack. L. McReynolds, USDA-ARS, College Station, TX (McReynolds et al., 2004). A frozen 

aliquot was shipped on ice to our laboratory and was amplified in TSB with sodium thioglycolate 

(Sigma-Aldrich, St Louis, MO, USA). The broth culture was plated on phenylethyl alcohol agar 

plates (PEA, Becton Dickinson, Sparks, MD, USA) with 5 % sheep blood (Remel, Lenexa, KS, 

USA) to confirm purity, aliquots were made with 25 % sterile glycerol and stored at -80 °C until 

further use. A single aliquot was individually amplified in TSB with sodium thioglycolate 

overnight for the in vitro proliferation studies and the final dose was confirmed by plating 10-

fold dilutions on TSA plates with sodium thioglycolate. 

 

In vitro assessment of antimicrobial activity against Clostridium perfringens  

The three Bacillus isolates present in the Bacillus-DFM candidate treatment were individually 

cultured aerobically overnight on TSA and screened for in vitro antimicrobial activity against C. 

perfringens as reported previously (Layton et al., 2013).  Briefly, 10 µL of each Bacillus isolate 
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were placed on the centre of TSA plates, and incubated for 24 h at 37 °C. Then the plates with 

visible Bacillus colonies were overlaid with TSA with sodium thioglycolate containing 106 

colony forming units (cfu) per mL of C. perfringens, and all plates were incubated anaerobically 

at 37 °C. After 24 h of incubation, all plates were evaluated and the diameters of the zones of 

inhibition were measured removing the diameter of the bacterial colony. Each Bacillus strain was 

evaluated by triplicate, and the average measurements of antimicrobial activity against C. 

perfringens are presented in Table 2. 

 

In vitro digestion assay  

The in vitro digestion model used in the present study was based on previous publications, with 

minor modifications (Zyla et al., 1995; Annett et al., 2002), and the assay was performed with 

five different experimental diets, with or without Bacillus-DFM candidate, in quintuplicates. 

Briefly, for all the gastrointestinal compartments simulated during the in vitro digestion model, a 

biochemical oxygen demand incubator (VWR, Houston, TX, USA) set at 40oC (to simulate 

poultry body temperature), customized with an standard orbital shaker (19rpm; VWR, Houston, 

TX, USA) was used for mixing the feed content. Additionally, all tube samples were held at an 

angle of 30o inclination to facilitate proper blending of feed particles and the enzyme solutions in 

the tube. The first gastrointestinal compartment simulated was the crop, where 5 g of feed and 10 

ml of 0.03 M hydrochloric acid (HCL, EMD Millipore Corporation, Billerica, MA, USA) were 

placed in 50 mL polypropylene centrifuge tubes and mixed vigorously reaching a pH value 

around 5.2. Tubes were then incubated for 30 min. Following this time, all tubes were removed 

from the incubator. To simulate the proventriculus as the next gastrointestinal compartment, 

3000 U of pepsin per g of feed (Sigma-Aldrich, St Louis, MO, USA) and 2.5 mL of 1.5 M HCl 
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were added to each tube to reach a pH of 1.4 to 2.0. All tubes were incubated for additional 45 

min.  The third and final step was intended to simulate the intestinal section of the 

gastrointestinal tract. For that, 6.84 mg of 8 x pancreatin (Sigma-Aldrich, St Louis, MO, USA) in 

6.5 mL of 1.0 M sodium bicarbonate (Sigma-Aldrich, St Louis, MO, USA) were added, and the 

pH was adjusted to range between 6.4 and 6.8 with 1.0 M sodium bicarbonate.  All tube samples 

were further incubated for 2 h.  Hence, the complete in vitro digestion process took 3 h and 15 

min. After the digestion, supernatants from all the diets were obtained by centrifugation for 30 

min at 2000 g. All supernatants were then tested for viscosity and C. perfringens proliferation as 

described below. 

 

Viscosity  

Viscosity was measured using a Brookfield digital cone-plate viscometer fitted with a CP-40 

spindle (Brookfield Engineering Laboratories Inc., Stoughton, MA, USA). From each 

supernatant, 0.5 mL were taken to measure viscosity at a shear rate of 42.5 sec-1 at 40 °C to 

mimic body temperature of poultry. Viscosity was evaluated by quintuplicate per diet with or 

without inclusion of the Bacillus-DFM candidate and reported in centipoise (cP = 1/100 dyne 

s/cm2). 

 

Clostridium perfringens proliferation 

Proliferation of C. perfringens was performed according to previously published methods  with 

minor modifications (Annett et al., 2002). A suspension of 105 cfu per mL of C. perfringens was 

added to five replicates of each of the following groups: 1) 6 mL TSB with sodium thioglycolate 

as a positive control group; 2) 3 mL TSB with sodium thioglycolate plus 3 mL supernatant from 
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each digested control non-DFM diet; 3) 3 mL TSB with sodium thioglycolate plus 3 mL 

supernatant from digested diets supplemented with Bacillus-DFM. Samples were incubated 

anaerobically at 40 °C, with tubes set at 30o angle with constant shaking (200 rpm) for 4h. After 

incubation, 10-fold serial dilutions were made from all treatment groups in 0.85 % sterile saline. 

Then, 10 µL was plated on TSA with sodium thioglycolate and incubated for 24 h at 40 °C, 

anaerobically. Results were expressed as log10 cfu of C. perfringens/mL. 

 

In vitro determination of spore persistence 

Persistence of the Bacillus-DFM spores in the in vitro digestive model was also evaluated (five 

replicates per diet treatment). At each time point during the digestive simulation process (crop, 

proventriculus and intestine) 0.2 mL were immediately loaded into 0.5 mL sterile centrifuge 

tubes and heat-treated (pasteurized) at 75 °C for 10 min to eliminate the presence of vegetative 

cells (Barbosa et al., 2005). After pasteurization, samples were loaded into sterile 96-well flat 

bottom plate and 10-fold dilutions were made and plated on TSA.  Plates were incubated for 24 h 

at 37oC on aerobic conditions to enumerate spores/g of sample.   

 

Statistical analysis 

Data from all measurements were subjected to One-way analysis of variance as a completely 

randomized design using the General Linear Models procedure of SAS (SAS version 9.1) (SAS, 

2002). Means were separated with Duncan’s multiple-range test at P < 0.05 considered as 

significant.  Data were reported as mean ± standard error.  

 

RESULTS 
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Isolates AM1002, AM0938, and JD17 were selected from a pooled of Bacillus isolates in our 

laboratory,  based on the REA values for cellulose and xylanase, and the zone of inhibition for C. 

perfringens (Table 2).  Isolate AM1002 showed a REA value of 6.2 and AM0938 showed a REA 

value of 5.1, both considered excellent REA values (>5.0) for cellulase activity (Jani et al., 

2012); additionally, isolate JD17 showed a REA value of 4.7, which is considered good (>2.0 to 

5.0) for cellulase production.  A similar trend was observed for xylanase activity where isolate 

AM1002 showed a REA value of 6.3 (excellent); AM0938 showed a REA value of 4.8 (good), 

and isolate JD17 showed a REA value of 4.0 (good) for xylanase production. In the case of 

antimicrobial activity against C. perfringens, isolate AM0938 generated the largest diameter of 

the zone of inhibition with 14 mm, followed by isolates AM1002 and JD17 with 12 and 8 mm 

respectively. Although enzyme production and antimicrobial activity were observed for all the 

isolates, individual differences were evident even in bacteria of the same species (Table 2). The 

API 50 CHB system characterized all three isolates as B. subtilis/amyloliquefaciens (Table 3). 

Analysis of 16S rRNA sequence classified two strains (AM0938, JD17) as B. amyloliquefaciens 

and one of the strains (AM1002) as B. subtilis, which was consistent with the results observed by 

the carbohydrate fermentation profile of the biochemical test. 

The results of the evaluation of digesta viscosity of different diets with or without inclusion of a 

Bacillus-DFM candidate after in vitro digestion are summarized in Table 4. An evident increase 

in viscosity was observed in soybean-based diets containing wheat, barley, rye and oats when 

compared to corn, being rye and oat diets with the highest viscosity values. However, it was 

noteworthy to observe that dietary inclusion of the Bacillus-DFM candidate significantly (P < 

0.05) reduced viscosity in all diets containing cereals different to corn in comparison to control 

diets without DFM inclusion (Table 4).   
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Table 5 summarizes the results of the proliferation of C. perfringens in the supernatant from 

different digested diets with or without inclusion of a Bacillus-DFM candidate. A significant 

increase in C. perfringens proliferation was observed in supernatants collected from control diets 

that contained wheat, barley, rye and oat compared to the TSB positive control group. 

Startlingly, dietary inclusion of a Bacillus-DFM candidate in non-corn diets significantly reduced 

C. perfringens proliferation when compared to the control non-DFM supplemented diets. The 

corn-based diet showed similar cfu values of C. perfringens with or without inclusion of the 

Bacillus-DFM candidate.  

Persistence of the Bacillus-DFM candidate spores in the different gastrointestinal compartments 

simulated in the in vitro digestive model is presented in Table 6. Regardless of diet composition, 

on average, a reduction of more than half of a log10 was observed in the crop compartment 

during the first 30 min of incubation, and it was followed by a further significant ~2 log10 

reduction of spore counts in the proventriculus. Remarkably, in all diets, a significant increment 

in spore numbers, ~2 log10 was observed during the final digestion step simulating intestinal 

conditions (Table 6).  

 

DISCUSSION 

High-energy diets have been utilized to maximize growth during starter, grower and finisher 

phases of production. Consequently, the primary dietary energy sources in commercial broiler 

diets have been traditional cereal grains such as corn and sorghum. However, with the recent 

price volatility of common feed ingredients, the animal industry seeks alternative grains or 

industry by-products to  include in diet formulations (Friesen et al., 1992; Kiarie et al., 2013). 

Wheat, barley, rye, and oat, contain lower bioavailable energy, and elevated NSP levels in 
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comparision to corn are alternative options (Bach Kundsen, 1997). However, these cereals have 

limited use in monogastric diets, because often high inclusion results in relatively poor 

performance, detrimental litter conditions, and increase predisposition for NE (Bedford et al., 

1991; Choct, et al., 1995; Mahmood et al., 2014). Hence, supplemental carbohydrases such as 

NSP-degrading enzymes have  allowed to increase the utilization of these alternative ingredients 

by reducing their antinutritional effects (Shirzadi et al., 2010; Zou et al., 2013). The 

carbohydrase market is accounted by two dominant enzymes: xylanases and cellulases. Other 

commercially available carbohydrases include α-amylase, α-galactosidase, β-glucanase, β-

mannanase, and pectinase (Bedford and Schulze, 1998).  

In the present study, the Bacillus spp. strains that conform the DFM candidate treatment were 

identified as either B. subtilis or B. amyloliquefaciens (Table 3), therefore being feasible for in 

vivo evaluation studies as they are generally recognized as safe (GRAS) candidates 

(Shivaramaiah et al., 2011a). Furthermore, the three selected Bacillus spp. isolates showed a 

variable ability to produce cellulase and xylanase (Table 2), hence, in addition to the benefits that 

spores or vegetative cells can provide as probiotics (Hong et al., 2009), they may improve the 

digestibility of cereals with high soluble NSP (Wang et al., 2005). 

The Bacillus-DFM candidate treatment also demonstrated effective antimicrobial properties 

against C. perfringens which could be due to production of antimicrobial like-compounds and/or 

competition for nutrients (Tables 2 and 5). Little is known about the mechanisms underlying the 

higher incidence of NE in broilers fed diets containing cereals with elevated levels of NSP, but it 

could be related to a prolonged feed rate of passage and a reduction in the digestion of nutrients 

that later in the hind gut will be available for bacteria to growth (Palliyeguru and Rose, 2014). 

For in vitro evaluation of C. perfringens proliferation, TSB with sodium thioglycolate (positive 
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control) groups were included. In the TSB group (positive control) the C. perfringens inoculum 

was increased ~ 0.5 log10, after 4 h of incubation.  However, it was interesting to observe a 

significant increase in C. perfringens proliferation in the supernatants collected from control 

non-DFM diets that contained wheat, barley, rye and oat, compared with the enrichment TSB 

medium with sodium thioglycolate group (Table 5).  

These results suggest that partial digestion of NSP grains and increased digesta viscosity 

provides a favorable nutritional environment that supports the growth of C. perfringens. 

Interestingly, dietary inclusion of a Bacillus-DFM candidate in non-corn diets significantly 

reduced both viscosity (Table 4) and C. perfringens proliferation (Table 5), when compared to 

control diets without DFM inclusion. This result shows the capacity of certain Bacillus isolates 

to inhibit the growth of pathogenic bacteria like C. perfringens, probably due to competition for 

nutrients, production of antimicrobial-like compounds or changes in environmental conditions. 

Proliferation of C. perfringens in the corn-based diet remained constant with or without the 

inclusion of the Bacillus-DFM candidate and in the TSB positive control group (Table 5). This 

outcome could be related to the lower concentration of NSP usually found in corn grains in 

comparison to other cereals, which was also supported by low digesta viscosity values (Table 4). 

These results are in accordance with previous reports (Annett et al., 2002), however, it is 

important to mention that diet ingredients are just one of the multiple predisposing factors that 

could affect the incidence of  NE in commercial conditions (Murphy et al., 2009; Lee et al., 

2011).   

Beneficial bacterial spores are popular as DFM, though little is known about their mode of 

action.  Previous studies conducted in our laboratory, have demonstrated that ~ 90% of Bacillus 

spores of a selected strain germinate within 30 min under in vitro and in vivo model conditions, 
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with relatively constant numbers of spores in each gastrointestinal compartment evaluated, 

hence, suggesting that full life-cycle may occurs (Latorre et al., 2014). In the present study, 

regardless of the diet, similar in vitro persistence of the Bacillus-DFM candidate spores was 

observed in the different simulated compartments (Table 6). On average, a half log10  reduction in 

spore numbers were detected in the crop compartment suggesting spore germination.  In the 

proventriculus compartment, a further  ~2 log10 reduction was shown, supporting our previous 

findings (Menconi et al., 2013; Latorre et al., 2014), which suggest that  further germination of 

spores occurs even at low pH enviroments. However, it was particularly interesting to observed a 

~2 log10 increment in spore counts in the intestinal simulated compartment (Table 6). The 

increment in the numbers of spores could be a response to bacterial metabolites, competition for 

oxygen and nutrients available resulting in resporulation (Jadamus et al., 2001). The above 

observations also support previous reports suggesting that spore transiting through the 

gastrointestinal tract could potentially undergo a full life-cycle of germination and resporulation 

(Barbosa et al., 2005; Cartman et al., 2008). Moreover, it has been demonstrated that germination 

of spores into metabolically and functionally active vegetative cells, within a similar time frame, 

produced beneficial metabolic and immunological effects in different animal species (Hoa et al., 

2001; La Ragione et al., 2003; Leser et al., 2008; Huang et al., 2009;   Xu et al., 2012).  

In summary, our results confirm that poultry diets containing cereal grains with a higher content 

of NSP in comparison to corn can enhance viscosity and C. perfringens growth (Bedford et al., 

1993; Choct et al., 1996). Remarkably, the dietary inclusion of a selected Bacillus-DFM 

candidate in non-corn based diets significantly reduced both viscosity and C. perfringens 

proliferation when compared with the control non supplemented-diets. Additionally, Bacillus-

DFM candidate spores persisted and change their amount according to the variable biochemical 
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conditions of the in vitro digestive model; therefore, supporting the hypothesis of the possible 

full-life cycle development in the gastrointestinal tract. The results from the present in vitro 

study encourage us to further evaluate the utilization of this Bacillus-DFM candidate in an in 

vivo NE model that we have developed in our laboratory (Shivaramaiah et al., 2011b), as well as 

to purify, characterize, and measure the international units of cellulase and xylanase that these 

Bacillus isolates produce.  This knowledge will provide a valuable tool to use a stable DFM that 

produce exogenous enzymes in poultry diets.   
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Table 1.  Ingredient composition and nutrient content of different broiler chicken diets used for 

in vitro digestion with or without inclusion of Bacillus-DFM candidate spore on as-is basisa. 

 

 

Item 

Corn-

based diet 

Wheat-

based diet 

Barley-

based diet 

Rye-

based diet 

Oat-

based diet 

Ingredients (g/kg)      

Corn (80 g/kg CP) 619.6 - - - - 

Wheat (135 g/kg CP) - 711.0 - - - 

Barley (113 g/kg CP) - - 654.3 - - 

Rye (126 g/kg CP) - - - 622.6 - 

Oats (98 g/kg CP) - - - - 638.0 

Soybean meal (475 g/kg CP) 298.2 203.9 241.9 264.6 260.0 

Poultry oil 39.1 42.8 65.0 70.0 70.0 

Dicalcium phosphate 16.9 17.1 17.0 16.6 16.4 

Calcium carbonate 10.6 8.5 8.2 10.4 10.0 

Salt 3.8 3.0 3.0 5.7 2.0 

DL-Methionine 3.3 2.5 3.0 3.0 3.2 

L-Lysine HCL 2.8 4.6 2.0 2.0 1.6 

L-Threonine 1.2 2.1 1.1 0.6 0.6 

Choline chloride 60 % 2.0 2.0 2.0 2.0 2.0 

Vitamin premixb 1.0 1.0 1.0 1.0 1.0 

Mineral premixc 1.0 1.0 1.0 1.0 1.0 

Antioxidantd 0.5 0.5 0.5 0.5 0.5 

Calculated analysis       

Metabolizable energy (MJ/kg) 13.0 13.0 12.3 12.2 11.9 

Crude protein (g/kg) 195.0 200.0 190.0 205.0 186.4 

 

aInclusion of 108 spore/g of feed mixed with calcium carbonate. 
bVitamin premix supplied per kg of diet: Retinol, 6 mg; cholecalciferol, 150 µg; dl-α-tocopherol, 

67.5 mg; menadione, 9 mg; thiamine, 3 mg; riboflavin, 12 mg; pantothenic acid, 18 mg; niacin, 

60 mg; pyridoxine, 5 mg; folic acid, 2 mg; biotin, 0.3 mg; cyanocobalamin, 0.4 mg. 
cMineral premix supplied per kg of diet: Mn, 120 mg; Zn, 100 mg; Fe, 120 mg; copper, 10 to 15 

mg; iodine, 0.7 mg; selenium, 0.2 mg; and cobalt, 0.2 mg. 
dEthoxyquin. 
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Table 2. Relative enzyme activity values (REA) and Clostridium perfringens zone of inhibition 

produced by different Bacillus spp. strains present in the Bacillus-DFM candidate treatment. 

 

Measurements AM1002 AM0938 JD17 

 

Cellulase activity at 24 h 

   

Colony size (mm) 5.7 ± 0.33 a 6.0 ± 0.58 a  6.3 ± 0.33 a 

Zone of clearance (mm) 35.2 ± 1.76 a 30.7 ± 0.67 ab 29.3 ± 2.19 b  

REAc  6.2 ± 0.12 a 5.1 ± 0.49 ab 4.7 ± 0.29 b 

 

Xylanase activity at 24 h 

   

Colony size (mm) 5.0 ± 0.58 b 6.7 ± 0.33 ab 7.3 ± 0.67 a 

Zone of clearance (mm) 31.7 ± 0.88 a 32.0 ± 1.15 a   29.0 ± 1.53 a 

REAc 

 

6.3 ± 0.87 a  4.9 ± 0.43 ab 4.0 ± 0.15 b 

C. perfringens at 24 h    

Zone of inhibition (mm)d 12.3 ± 1.45 a 14.0 ± 1.00 a 8.0 ± 1.15 b 

 

a-b Superscripts within a row with no common superscript differ significantly P < 0.05. 

c Relative enzyme activity values (REA) reflect the capacity to produce cellulase and xylanase 

enzymes by Bacillus spp. REA was calculated dividing the diameter of area of clearance by the 

diameter of the Bacillus colony. Based on REA test, organism can be categorized into three 

groups showing excellent (REA>5.0), good (REA>2.0 to 5.0), or poor (REA<2.0) relative 

enzyme activity. All Bacillus spp. isolates were tested by triplicate.  Data expressed as mean ± 

SE. 
d Represents the diameter of the zone of inhibition observed at 24 h of incubation without the 

diameter of the bacterial colony.  All Bacillus spp. isolates were tested by triplicate.  Data 

expressed as mean ± SE 

 

 

 

 

 



 

 

9
9
 

Table 3. Identification of Bacillus spp. isolates by bioMerieux API 50 CHBa and 16S rRNA sequence analysesb present in the Bacillus-

DFM candidate treatment. 

 

 

Isolate 

        API50 CHB  16S rRNA sequence analysis 

Taxon % ID  Closest match % ID 

AM1002 Bacillus subtilis/amyloliquefaciens 99.2  Bacillus subtilis 100.0 

AM0938 Bacillus subtilis/amyloliquefaciens 99.0  Bacillus amyloliquefaciens 99.7 

JD17 Bacillus subtilis/amyloliquefaciens 99.4  Bacillus amyloliquefaciens 99.6 
 

a BioMerieux API 50 CHB test kit. 
b 16S rRNA sequence analysis. 
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Table 4. Evaluation of in vitro viscosity of different diets with or without inclusion of a Bacillus-

DFM candidate. 

 

 

 

Diet 

 

Viscosity (cP)c 

Control Bacillus-DFM 

Corn-based 0.96 ± 0.01 a 0.97 ± 0.01 a 

Wheat-based 1.55 ± 0.02 a 1.28 ± 0.01 b 

Barley-based 1.75 ± 0.02 a 1.34 ± 0.03 b 

Rye-based 8.40 ± 0.37 a 2.39 ± 0.04 b 

Oat-based 36.9 ± 2.15 a 1.34 ± 0.01 b 

 

a-bSuperscripts within a row with no common superscript differ significantly P < 0.05. 
c Viscosity was measured after 3 h and 15 min of in vitro digestion at 40 oC.  Data expressed as 

mean ± standard error. 
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Table 5. Proliferation of Clostridium perfringensd in different digested diets with or without 

inclusion of Bacillus-DFM candidate sporee. 

 
 

Dietc TSB+Thio Control Diet Bacillus-DFM 

Corn-based 6.38 ± 0.13 a 6.44 ± 0.19 a 6.68 ± 0.08 a 

Wheat-based 6.12 ± 0.24 b 7.12 ± 0.07 a 5.20 ± 0.18 b 

Barley-based 6.36 ± 0.06 c 7.50 ± 0.13 a 6.86 ± 0.11 b 

Rye-based 6.05 ± 0.21 c 7.15 ± 0.09 a 6.68 ± 0.12 b 

Oat-based 6.12 ± 0.07 b 6.96 ± 0.13 a 5.76 ± 0.07 c 

 

a-b Superscripts within a row with no common superscript differ significantly P < 0.05.  
c Supernatant from each diet was used as part of the broth for C. perfringens growth. Data 

expressed as mean ± standard error. 
d Inoculum used 105 cfu of C. perfringens and 108 spores/g of Bacillus-DFM candidate. 
e Data expressed in log10 cfu/mL.   
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Table 6. Persistence of Bacillus-DFM candidatec spore during in vitro digestionf in different 

diets under variable biochemical conditions simulating different sections of the gastrointestinal 

tract of poultrye. 

 

Dietd Crop (30 min) Proventriculus (45 min)  Intestine (120 min) 

Corn-based 7.32 ± 0.10 a 5.43 ± 0.17 b 7.20 ± 0.09 a 

Wheat-based 7.54 ± 0.06 a 5.58 ± 0.10 b 7.33 ± 0.19 a 

Barley-based 7.45 ± 0.16 a 4.95 ± 0.21 b 7.27 ± 0.08 a 

Rye-based 7.28 ± 0.10 a 5.60 ± 0.22 b 7.09 ± 0.17 a 

Oat-based 7.66 ± 0.07 a 5.06 ± 0.15 b 7.30 ± 0.15 a 

 

a-b Superscripts within a row with no common superscript differ significantly P < 0.05. 
c Inclusion of 108 spore/g of feed 
d Heat shock was induced by placing a sample of each simulated compartment in a water bath at 

75 oC for 10 min. Data expressed as mean ± standard error. 
e Data expressed in Log10 cfu/mL.  
f pH and time of incubation varied according to the simulated organ. 
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ABSTRACT  

Rye contains high concentrations of non-starch polysaccharides (NSPs), leading to reduced 

digestibility. Since poultry have little or no endogenous enzymes capable of hydrolyzing these 

NSP, exogenous carbohydrases as feed additives are used in an attempt to reduce the anti-

nutritional effects of these polysaccharides. Previously, an in vitro study conducted in our 

laboratory showed that inclusion of certain Bacillus direct-fed microbial (DFM) candidates that 

produce exogenous phytase, lipase, protease, cellulase, and xylanase in high-NSP diets 

significantly reduced both digesta viscosity and Clostridium perfringens proliferation. In the 

present study, rye-based turkey starter diets with or without Bacillus-DFM were administered ad 

libitum to day-of-hatch turkey poults in two independent experiments. In both experiments, day-

of-hatch turkey poults were randomly assigned to either a control diet (CON) or a DFM treated 

diet (n = 25 birds/group). At 10 days-of-age, all turkey poults from experiments 1 and 2 were 

weighted and 12 turkey poults/group were randomly selected and humanely killed. Liver 

samples were aseptically collected to evaluate bacterial translocation, and intestinal digesta 

samples were individually collected to evaluate viscosity. Additionally, in experiment 2 both 

tibias were removed for assessment of bone parameters. In both experiments, the treated group 

showed a reduction in the total number of coliforms in the liver and a reduced digesta viscosity 

when compared to the CON group (P <0.05).Turkey poults fed the Bacillus-DFM candidate had 

increased tibia diameter, breaking strength, ash content, calcium content, and phosphorus content 

when compared with CON turkey poults. In summary, turkey poults fed with a rye-based diet 

without DFM showed an increase in bacterial translocation and digesta viscosity, accompanied 

by a reduction in bone mineralization; however, these adverse effects can be prevented by the 

inclusion of selected a Bacillus-DFM candidate in high-NSP diets.  
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Keywords: Bacillus subtilis, digesta viscosity, bone mineralization, turkey poults, rye 

 

INTRODUCTION 

Maize is usually the main energy source in poultry diets, but in some countries, at times, it is 

difficult to formulate least cost diets using this cereal. In addition, the unpredictable price of 

maize suggests that the global poultry industry will continue to seek alternative cost-effective 

feed ingredients such as cereal by-products from biofuel and milling industries. Nevertheless, the 

successful inclusion of alternative ingredients in poultry diets will depend on the characterization 

of the nutritive value of these feed ingredients. Additionally, there is an increasing interest for 

technologies that can mitigate problems associated with  anti-nutritional factors such as non-

starch polysaccharides (NSP) and phytates in poultry feed ingredients considering that chickens 

lack the endogenous enzymes necessary for digesting these components (Moran et al., 1969; 

Bedford et al., 1991; Friesen et al., 1992; Bedford and Classen, 1993; Kiarie et al., 2013).  Rye 

has been recognized as one of the cereals with the highest negative impact on performance 

parameters when included in poultry diets. It has been well documented that the high 

concentration of soluble NSP in rye increases digesta viscosity and stickiness of droppings, 

which results in poor performance (Choct et al., 1995; Bedford and Schulze, 1998; Lázaro et al., 

2004). Furthermore, malabsorption of lipids and fat-soluble vitamins, deterioration of bone 

mineralization, and reduced leg soundness are all associated with rye utilization in poultry feeds 

(MacAuliffe and McGinnis, 1971). Soluble NSP in rye mainly comprised highly branched 

arabinoxylans, increasing digesta viscosity being responsible for poor digestibility through 

interference with the movement of particles and solutes across the intestinal lumen, preventing 

the access of digestive enzymes to the endosperm contents, and reducing intestinal absorption of 
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sodium and calcium (Fengler and Marquardt, 1988).  Increased digesta viscosity reduces 

conjugated bile acids, affecting fat emulsification and fat digestibility (Langhout et al., 1997). 

Recent studies published by our laboratory have shown that the significant reduction in bone 

strength and mineralization in chickens fed with rye (Tellez et al., 2014), or gluten intolerance in 

human beings (Bianchi and Bardella, 2008; Capriles et al., 2009), are also associated with 

malabsorption of minerals and fat-soluble vitamins. Since poultry has no enzymes capable of 

hydrolyzing NSP, exogenous xylanases are used as feed additives in an attempt to reduce the 

effect of this anti-nutritive factor (Bedford and Schulze, 1998). Previously, we have evaluated 

the inclusion of a selected Bacillus direct-fed microbial (DFM) candidate that produces 

exogenous enzymes (protease, phytase, lipase, xylanase, and cellulase) in high NSP diets (rye, 

wheat, barley, and oat). In those studies, a significant reduction in both viscosity and Clostridium 

perfringens proliferation was observed between high-NSP control non-treated diets and the same 

diets supplemented with Bacillus-DFM in vitro (Latorre et al., 2014; Tellez et al., 2014a). In 

addition, studies conducted in broiler chickens using rye as an energy source in our laboratories 

also have shown that rye increased digesta viscosity, bacterial translocation, and leakage of 

fluorescein isothiocyanate dextran (FITC-d), altering the microbiota composition as well as bone 

mineralization in chickens (Tellez et al., 2014b). The objective of the present study was to 

evaluate the role of a Bacillus subtilis based DFM candidate, which was selected for enzyme 

production on digesta viscosity, bacterial translocation, and bone mineralization in turkey poults 

fed with a rye-based diet. 

 

MATERIALS AND METHODS 

Animal source and diets  
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In order to show that similar results can be achieved independently, two experiments were 

conducted in the present study. In each experiment, 50 day-of-hatch turkey poults were obtained 

from a commercial hatchery (Cargill, Gentry, AR, USA), and placed in isolators chambers with a 

controlled age-appropriate environment and ad libitum access to feed and water for 10 days. The 

number of animals used was based on published studies in which similar outcomes were 

measured (Campbell et al., 1983; Zhang and Coon, 1997; Higgins et al., 2010a; Higgins et al., 

2010b). Turkey poults were randomly assigned to either a control group (CON) with a rye-based 

diet meeting the nutritional requirements for turkey poults as recommended by the National 

Research Council (NRC, 1994), or a treated group (TRT) fed with a rye-based diet supplemented 

with 106 spores/g of feed of a specifically selected Bacillus-DFM candidate. No antibiotics were 

added to any of the diets (Table 1). All animal handling procedures were in compliance with the 

Institutional Animal Care and Use Committee (IACUC) at the University of Arkansas, 

Fayetteville. Specifically, the IACUC approved this study under the protocol #11047 –

“evaluation of direct-fed microbials and prebiotics in poultry.” 

 

DFM Preparation 

In an effort to grow high numbers of viable spores, a solid state fermentation media (SS) 

developed by Zhao et al. (2008) was selected and modified for use in these experiments. Briefly, 

a liquid media component was added to a mixture of 70 % rice straw and 30 % wheat bran at a 

rate of 40 % by weight. The SS media was added to a 250ml Erlenmeyer flask and sterilized by 

autoclaving for 30 min at 121°C. Candidate isolates were grown individually overnight at 37°C 

in TSB, then 2ml of a candidate culture were added to the prepared SS media. The inoculated 

flasks were incubated for 24 h at 37°C and then incubated for another 72h at 30°C. The cultures 
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were removed from their flasks, placed onto petri dishes, and then dried at 60°C. Following this, 

the cultures were aseptically ground into a fine powder to generate stable spores (~1011 spores/g). 

Spores were mixed into the feed using a rotary mixer for15min. Samples of feed containing the 

Bacillus-DFM culture were taken and a 1:10 dilution was made with saline. All samples were 

subject to 100°C for 10 min, enumerated using 10- fold dilutions and plate-counted following 

overnight incubation at 37°C on tryptic soy agar plates (TSA, catalog no. 211822, Becton 

Dickinson, Sparks, MD, USA) (Data not shown). 

 

Experimental design  

In experiments 1 and 2, 50 day-of-hatch, turkey poults were randomly assigned to 1 of 2 groups 

(n = 25). At 10 days-of-age, all turkey poults in both experiments were weighed and 12 turkey 

poults were randomly selected and humanely killed using carbon monoxide asphyxiation 

method. The right half of the liver was collected aseptically to evaluate bacterial translocation. 

Additionally, digesta samples were individually collected to evaluate viscosity and, and in 

experiment 2, both tibias were used to analyze bone parameters as described below. 

 

Viscosity  

Total intestinal contents were collected from Meckel's diverticulum to the ileocecocolonic 

junction. For viscosity analysis, approximately 1.5 g (wet weight) of the fresh digesta were 

immediately centrifuged (12,000 x g) for 5 min. The supernatant was collected and stored on ice 

until viscosity  was determined using a LVDV-I Brookfield digital cone-plate viscometer fitted 

with a CP-40 spindle (Brookfield Engineering, Middleboro, MA). The analyzed samples and the 

viscometer cup were maintained at a temperature of 40°C during viscosity measurement. 
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Viscosity was measured in centipoise (cP = 1/100 dyne s/cm2) and the results were reported as 

log10 cP. 

 

Bacterial translocation 

Briefly, the right half of the liver was removed from each poult, collected into sterile bags, 

homogenized, weighed and 1:4 wt/vol dilutions were made with sterile 0.9% saline. Ten-fold 

dilutions of each sample were made in a sterile 96 well Bacti flat bottom plate, and the diluted 

samples were plated on MacConkey Agar (VWR Cat. No. 89429-342 Suwanee, GA 30024). 

Biochemical evaluation tests as well as identification of isolated colonies were carried out using 

a bioMerieux API 20E test kit (catalog no. 50430, bioMerieux, Marcy l’Etoile, France). Bacterial 

translocation was expressed in colony forming units (log10 cfu/g of tissue). 

 

Bone parameters 

In experiment 2, bone parameters were measured according to the methods described by Zhang 

and Coon (1997). Tibias from each poult were cleaned of attached tissues. Bones from the left 

leg were subjected to conventional bone assays as described below, and the tibias from the right 

legs were used to determine breaking strength. The bones from the left tibia were dried at 100°C 

for 24 h and again weighed. Then the samples were ashed in a muffle furnace (Isotemp muffle 

furnace, Fisher Scientific, Pittsburgh, PA) at 600°C for 24 h in crucibles, cooled in a desiccator, 

and weighed. Finally, the content of calcium and phosphorus in the tibia were determined using 

standard methods (AOAC International, 2000). The right tibial diaphyses from individual birds 

were cleaned of adherent tissues, the periosteum was removed, and the biomechanical strength of 

each bone was measured using an Instron 4502 (Norwood, MA, USA) material testing machine 

http://ps.fass.org/cgi/content/full/89/1/34#R2
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with a 509 kg load cell. The bones were held in identical positions and the mid-diaphyseal 

diameter of the bone at the site of impact was measured using a dial caliper. The maximum load 

at failure was determined using a three-point flexural bend fixture with a total distance of 30 mm 

between the two lower supporting ends. The load, defined as force in kg per mm2 of cross-

sectional area (kg/mm2), represents bone strength. The rate of loading was kept constant at 20 

mm/min collecting 10 data points per second using Instron’s Series IX Software (Norwood, MA, 

USA). 

 

Statistical analysis 

All data were subjected to one-way analysis of variance as a completely randomized design 

using the General Linear Models procedure of SAS (SAS Institute, 2002). Data are expressed as 

mean ± standard error. A P-value of P< 0.05 was set as the standard for significance.   

 

RESULTS AND DISCUSSION 

Thousands of years of evolution shaped the digestive system of the jungle fowl to deal with the 

dietary ingredients they encounter in an efficient manner. More recently, through intensive 

genetic manipulation, nutrition, and health programs, we have altered the biology and growth 

potential of poultry among other productive animals (Muramatsu et al., 1990; Fuller et al., 1995). 

In the wild, the diets of these animals would be made up of many different ingredients, few of 

which would ever reach more than 30% of total intake on a life time basis. The range in types 

and relative quantities of ingredients that can be presented to the modern commercial 

monogastric animals, while complex, tend to result in a diet in which two or three ingredients 

may constitute around 75% of intake (NRC, 1994). Such change is driven by least cost 
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formulation processes, and endeavors to provide maximum nutrient density for minimum cost 

(Bedford and Schulze, 1998). Maize is usually the main source of energy in poultry diets, but at 

times it is difficult to formulate least cost diets using maize and unconventional grains have to be 

used. When poultry are fed alternative grains such wheat or rye that are high in NSPs, poor 

performance, and unmanageable litter conditions caused by sticky droppings are reported 

(Campbell et al., 1983; Fengler and Marquardt, 1988; Choct et al., 1995).Wheat or rye contains 

high concentrations of NSP, leading to reduced digestibility. In addition, high-NSP diets have 

also been associated with necrotic enteritis, a multifactorial disease caused by C. perfringens that 

is probably the most important bacterial disease in terms of economic implications in broiler 

chickens (Hofacre, 2001; Annett et al., 2002; Timbermont et al., 2011). Therefore, feeding 

enzymes for swine and poultry have made the largest impact in the past decade to solve problems 

associated with grains rich in NSP (Kiarie et al., 2013). NSP-degrading enzymes (NSPases, 

xylanase, β-glucanase, β-mannanase, α-galactosidase, and pectinase) improve nutrient 

digestibility and reduce digesta viscosity (Esteve-Garcia et al., 1997). In the present study, a 

significant improvement in body weight by day10-of-age was observed in turkey poults fed rye 

with added Bacillus-DFM candidate when compared to turkey poults that were fed an 

unsupplemented rye-based diet (P <0.05). Turkey poults from the TRT group in both 

experiments showed a significant reduction in digesta viscosity, which was associated with a 

decrease in bacterial translocation to the liver (Table2). The lactose positive colonies obtained 

from liver samples were identified as E. coli. Feeding diets that are high in NSP and high 

viscosity may be the pathological mechanism underlying bacterial translocation of gut microflora 

from the intestinal lumen, which predisposes poultry to systemic bacterial infections (Yegani and 

Korver, 2008; Salzman, 2011; Ilan, 2012; Seo and Shah, 2012). Inflammatory responses to gut-



 

117 
 

derived and blood-borne pathogens typically occur in the liver and spleen, which are the major 

organs that remove bacteria and toxins, including lipopolysaccharides (LPS), from the blood 

stream (Yoshikawa et al., 2008). Particularly, the levels of LPS, a component of Gram-negative 

bacteria, are increased in the portal and/or systemic circulation with impaired gut epithelial 

integrity and dysbacteriosis (Tlasklova et al., 2011). Strong evidence suggests that pathogen-

derived compounds from the gut have a major role and modulating effect on liver diseases and 

chronic inflammation (Silva et al., 2012; Sjöberg et al., 2013). Diet ingredients, integrity of the 

gut epithelium, immune defense in the gut and in the liver, as well as the composition of the 

microbiome in the intestinal tract all appear to play an integrated role in the maintenance of 

health and balance in the gut–liver axis (Keita and Söderholm, 2012). The results of the present 

study suggest that rye-based diets can both enhance bacterial translocation and digesta viscosity, 

but these adverse effects can be prevented by the inclusion of this specific Bacillus-DFM 

candidate (Table2).  

Bone parameters were measured in experiment 2 to determine whether the addition of the 

specifically selected Bacillus-DFM candidates would counteract the loss of mineral and vitamin 

utilization that occurs when feeding a rye-based diet. There was a significant increase (P <0.05) 

in tibial diameter, tibial breaking strength, as well as  the ash, calcium, and phosphorus content 

of the tibias observed when the selected candidate DFM was added to the rye-based diet in 

comparison to rye-based diet fed turkey poults without the Bacillus-DFM (Table3). The 

significant reduction in bone mineralization observed in the control group confirmed previous 

studies that have shown that high-NSP diets in poultry or gluten intolerance in human beings is 

also associated with deterioration of bone mineralization and leg soundness (MacAuliffe et al., 

1976; Kotake et al., 2009; Schuppan et al., 2009; Wideman and Prisby, 2011). In the present 
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study, dietary supplementation of a selective DFM candidate, which has the ability to secrete 

exogenous enzymes (xylanase, cellulose, protease, phytase, and lipase) was able to significantly 

improve performance, decrease digesta viscosity, and improve bone mineralization (experiment 

2), suggesting that the possibility of using this feed additive as an alternative to feed enzymes. 

These results also confirm in some extent our earlier findings that have shown significant 

reduction in both viscosity and C. perfringens proliferation between high-NSP control non-

treated diets or the same diets supplemented with the selective DFM candidate in vitro (Latorre 

et al., 2014, Tellez et al., 2014b). Together, they represent a step toward the application of 

nutrigenomics in the context of a poultry model. The incorporation of one or more “omics” 

techniques (in particular, assessment of the microbiome) will provide a better understanding of 

how dietary food components can affect physiological functions and the fundamental cellular 

and molecular mechanisms implicated in the digestive process of high-NSPs diets in poultry. In 

summary, the results of the present study confirm our previous investigation conducted in 

chickens fed with rye, which showed a significant increase in digesta viscosity that has been 

associated with low performance, increased enteric bacterial translocation to liver, and decreased 

bone strength (Tellez et al., 2014a). Large scale commercial studies to evaluate dietary inclusion 

of selected Bacillus-DFM candidates that produce exogenous enzymes in high-NSP diets in 

poultry, on performance parameters, micro- biome composition, and incidence of necrotic 

enteritis caused by C. perfringens are currently being evaluated. 

 

 

 

 



 

119 
 

Table 1. Composition of the experimental diets (g/kg) 

 

Diet Rye-based diet 

Rye (126 g/kg CP) 372.4 

Soybean meal (474.2 g/kg CP) 482.2 

Poultry oil 79.5 

Dicalcium phosphate 36.6 

Ground limestone 11.3 

Sodium chloride 4.1 

DL-Methionine 4.3 

Vitamin premixa 1.0 

L-Lysine HCl 5.0 

Choline chloride 60 % 1.0 

Mineral premixb 1.0 

Threonine  1.2 

Selenium 0.2 

Antioxidantc 0.2 

Calculated analysis  

ME, MJ/kg 11.9 

Crude protein,  g/kg 285 

Crude fat, g/kg 96.2 

Calcium, g/kg 14.9 

Total phosphorus, g/kg 10.9 

Lysine, g/kg 18.2 

Methionine, g/kg 7.9 

Methionine + cystine, g/kg 11.8 
 

aVitamin premix supplied per kilogram of diet: Retinol, 9.2 mg; cholecalciferol, 100 µg; dl-α-

tocopherol, 90 mg; menadione, 6 mg; thiamine, 6.2 mg; riboflavin, 26.5 mg; pantothenic acid, 39.7 

mg; niacin, 100 mg; pyridoxine, 11 mg; folic acid, 4 mg; biotin, 0.3 mg; cyanocobalamin, 0.1 mg. 
bMineral premix supplied per kilogram of diet: Mn, 70 mg; Zn, 40 mg; Fe, 37 mg; Cu, 6 mg; I, 

0.7mg; Co, 0.2 mg. 
cEthoxyquin. 
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Table 2. Evaluation of body weight, digesta viscosity, and bacterial translocation to the liver in neonatal turkey poults fed with a rye-

soybean based diet with or without dietary inclusion of a Bacillus direct-fed microbial (DFM) in experiment 1 and 2.  

 

 

 

 

                                Experiment 1                              Experiment 2 

Body weight 

(g) 

Digesta viscosity 

(cP Log
10

) 

Bacterial 

translocation 

(cfu Log
10

) 
 

Body weight 

(g) 

Digesta viscosity 

(cP Log
10

) 

Bacterial 

translocation 

(cfu Log
10

) 

 

CONc 

 

65.91 ± 3.61b 

 

2.03 ± 0.31a 

 

3.03 ± 0.51a 

  

74.47 ± 1.59b 

 

1.80 ± 0.45a 

 

2.13 ± 0.67a 

 

TRTd 

 

82.85 ± 4.23a 

 

1.54 ± 0.22b 

 

1.24 ± 0.51b 

  

95.60 ± 2.17a 

 

1.62 ± 0.53b 

 

0.35 ± 0.40b 

 

a-bSuperscripts within columns indicate significant difference at P < 0.05. 

cControl rye based diet 
dControl rye based diet with candidate DFM.  

Body weight n=25; Intestinal viscosity and bacterial translocation n= 12.  Data is express as mean ± SE. 

Intestinal viscosity is expressed in Log10 (in centipoise, cP = 1/100 dyne s/cm2).  

Liver bacterial translocation (expressed in cfu Log10 /g of tissue).  
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Table 3.  Evaluation of bone strength and bone composition in neonatal turkey poults fed with a rye-soy based diet with or without 

dietary inclusion of a Bacillus direct-fed microbial (DFM) in experiment 2. 

 

 
Tibia strength 

load at yield (kg/mm2) 

Tibia diameter 

(mm) 

Total ash from tibia 

(%) 

Calcium 

(% of ash) 

Phosphorus 

(% of ash) 

 

CONc 

 

0.26 ± 0.02b 

 

4.45 ± 0.32b 

 

35.61 ± 0.81b 

 

27.35 ± 0.07b 

 

16.35 ± 0.52b 

TRTd 0.44 ± 0.03a 5.82 ± 0.78a 50.87 ± 0.75a 40.31 ± 0.46a 22.67 ± 0.29a 

 

a-b Superscripts within columns indicate significant difference at P < 0.05.  
cControl rye based diet  
dControl rye based diet with candidate DFM. 

Tibias from twelve poults were collected to evaluate bone qualities. Data is expressed as mean ± SE.  
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ABSTRACT   

1. The effects of the dietary inclusion of a Bacillus based direct-fed microbial (DFM) candidate 

on digesta viscosity, bacterial translocation, microbiota composition, and bone mineralization 

were evaluated in broilers consuming rye-based diets. 

2. In the present study, control mash rye-based diets (CON) or Bacillus-DFM supplemented diets 

(TRT) were administered ad libitum to male broilers in three independent experiments.  

3. In experiments 1 and 2 (n = 25/group) liver samples were taken to evaluate bacterial 

translocation, digesta samples were used for viscosity measurements, and the intestinal microbial 

flora was evaluated from different intestinal sections to enumerate total recovered gram-negative 

bacteria, lactic acid bacteria and anaerobic bacteria, additionally both tibias were removed for 

assessment of bone quality. 

4. In Experiment 3, each experimental group had 8 replicates of 20 chickens (n = 160/group). 

Weekly, body weight (BW), feed intake and feed conversion ratio (FCR) were evaluated. At d 

28-of-age, samples were taken to determine bacterial translocation, digesta viscosity, and bone 

quality characteristics. 

5. In all experiments, consumption of Bacillus-DFM reduced bacterial translocation to the liver 

and digesta viscosity (P < 0.05). Additionally, DFM supplementation improved BW, bone 

quality measurements and FCR (P < 0.05). Moreover, chickens fed the Bacillus-DFM diet in 

experiments 1 and 2 showed a significant reduction in the number of gram-negative and 

anaerobic bacteria in the duodenal content compared to control.  

6. In summary, chickens fed a rye-based diet without DFM inclusion showed an increase in 

bacterial translocation and digesta viscosity, accompanied by reduced performance and bone 

quality variables relative to the Bacillus-DFM candidate group. Hence, incorporation into the 
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feed of a selected DFM ameliorated the adverse antinutritional effects related to utilization of 

rye-based diets in broilers chickens.   

 

Keywords: Bacillus spp., viscosity, microbiota, bone quality, broilers, rye 

 

INTRODUCTION 

Concerns regarding development of antibiotic-resistant microorganisms and social pressures 

have continued the trend to ban the use of antibiotics as growth promoters in poultry production 

(Castanon, 2007). This has also resulted in an urgent necessity to find feasible alternatives to 

maintain poultry health, in order to sustain poultry as an economically viable source of animal 

protein for human consumption (Alvarez-Olmos and Oberhelman, 2001). In this regard, the use 

of selected strains from different beneficial microorganism from the genus Bacillus and 

Lactobacillus have shown to be a suitable option for the poultry industry (Tellez et al., 2012). 

Bacillus spp. are a gram-positive, facultative aerobe, endospore-forming, rod shaped bacterium 

normally found in soil and water sources, as well as in the gastrointestinal tract of animals and 

humans (Hong et al., 2009). Its multiple flagella, allows it to move quickly in liquids.  Bacillus 

spp. are the most investigated gram-positive bacteria and a model organism to study bacterial 

chromosome replication and cell differentiation and together with other beneficial microbes have 

been extensively used as a source of industrial enzymes and antibiotics by biotechnology 

companies (Hendricks et al., 1995; Kunst et al., 1997; Monisha et al., 2009). When 

environmental conditions are not favorable for growth and replication of bacteria from the genus 

Bacillus, dramatic metabolic changes occur, such as; the induction of chemotaxis, cannibalism, 

production of macromolecular hydrolases (proteases and carbohydrases), as well as the 

http://en.wikipedia.org/wiki/Gram-positive
http://en.wikipedia.org/wiki/Flagellate
http://en.wikipedia.org/wiki/Model_organism
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formation of endospores (González-Pastor et al., 2003; Hong et al., 2005; López et al., 2009; 

Higgins and Dworkin, 2012). Due to the capacity of bacterial spores to resist harsh 

environmental conditions and long storage periods, endospores from selected Bacillus strains 

have been used as reliable direct-fed microbials (DFM) in animal production (Tellez et al., 

2013). Additionally, Bacillus-DFM have previously been shown to prevent gastrointestinal 

disorders and impart numerous nutritional benefits for animals and humans (Duc et al., 2004; 

Cartman et al., 2007; Sen et al., 2012). Recent studies published by our laboratory have shown 

that approximately 90% of B. subtilis spores germinate within 60 min in presence of feed in vitro 

and in vivo in different segments of the gastrointestinal (Latorre et al., 2014a). After spore 

germination into vegetative cells, Bacillus spp. bacteria become metabolically active to produce 

chemical compounds that are beneficial to the host and the intestinal microflora (Jadamus et al., 

2001; Leser et al., 2008). 

In most of the U.S. and in other countries, including Brazil, broiler feed is based primarily on 

maize and soybean meal, which supplies the majority of energy and protein in the diet. 

Utilization of the nutrients contained in maize by broilers is generally considered to be high. 

Nevertheless, at times it is difficult to formulate least cost diets using maize and unconventional 

grains with variable concentrations of antinutritional factors have to be used. Rye (Secale 

cereale) is a cereal member of the wheat tribe (Triticeae) and has been reported to contain 152 

grams of total non-starch polysaccharides (NSP) per kilogram of dry matter (Antoniou et al., 

1981; Bach Knudsen, 1997). When chickens are fed alternative cereal grains such as rye that are 

high in soluble NSP; high digesta viscosity, poor nutrient digestibility and reduced bone 

mineralization have been reported, resulting in decreased growth performance and  reduced litter 

quality conditions caused by sticky droppings (Campbell et al, 1983; Fengler and Marquardt, 

http://en.wikipedia.org/wiki/Triticeae
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1988). However, different studies have shown that the inclusion of carbohydrases such as 

xylanase in rye-based diets significantly improved all these negative factors reducing the impact 

of the antinutritional components present in the rye grain. (Bedford and Classen, 1993; Dänicke 

et al., 1997; Silva and Smithard, 2002).  Previously, we have evaluated the inclusion of selected 

Bacillus-DFM candidates that produce a different set of extracellular enzymes using different 

poultry diets in vitro (rye, wheat, barley, and oat based-diets), resulting in a significant reduction 

in both digesta viscosity and Clostridium perfringens proliferation between control diets and 

Bacillus-DFM supplemented diets (Latorre et al., 2015). The objective of the present study was 

to evaluate the role of a multiple enzyme producing Bacillus-based DFM on growth 

performance, digesta viscosity, bacterial translocation, microbiota composition, and bone 

mineralization in broiler chickens fed with a rye-based diet. 

 

MATERIALS AND METHODS 

Isolation and characterization of Bacillus spp.  

Previous research conducted in our laboratory focused on isolation of several Bacillus spp. from 

environmental and poultry sources (Shivaramaiah et al., 2011; Wolfenden et al., 2011; Menconi 

et al., 2013). Identification and characterization of the different isolates was carried out using a 

bioMerieux API 50 CHB test kit (catalog no. 50430, bioMerieux, Marcy l’Etoile, France), and 

individual plates of each strain were also sent for 16S rRNA sequence analysis to a specialized 

laboratory (Midi labs, Newark, DE, USA).  One of the three Bacillus strains (AM1002) was 

identified as B. subtilis, and the other two isolates (AM0938 and JD17) were identified as B. 

amyloliquefaciens (Table 1). These Bacillus strains were selected as superior producers of 

cellulase and xylanase based on a qualitative enzyme activity evaluation performed using a 

http://www.google.com/search?hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLR&ei=HXeESt3OL5HeMdTc4d4E&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=bioMerieux+API+B+CH50+test+kit&spell=1
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different selective media for each evaluated enzyme (Latorre et al., 2014b; Latorre et al., 2015). 

Then, the three Bacillus spp. selected strains were sporulated and mixed during the DFM-

candidate preparation process before dietary inclusion. 

 

DFM preparation 

In an effort to grow high numbers of viable spores, a solid state fermentation media (SS) 

developed by Zhao et al. (2008) was selected and modified for use in these experiments. Briefly 

to prepare the SS fermentation media, ammonia broth was added to a mixture of 70% rice straw 

and 30% wheat bran at a rate of 40% by weight. Then, the SS fermentation media was added to 

250 mL Erlenmeyer flasks and sterilized by autoclaving for 30 min at 121°C. Each of the three 

Bacillus spp. isolates was grown individually overnight at 37°C in test tubes containing 10 mL of 

tryptic soy broth (TSB, catalog no. 211822, Becton Dickinson, Sparks, MD).  Following 

incubation, 2 mL of each isolate culture were added separately to the previously prepared SS 

fermentation media flask. The inoculated flasks were incubated for 24 h at 37°C to promote 

growth of the Bacillus spp. vegetative cells, and then incubated for another 72 h at 30°C to 

trigger the initiation of the sporulation process. Following this, the inoculated SS fermentation 

media was removed from the Erlenmeyer flasks, placed onto petri dishes, and dried at 60°C. 

Then, the SS fermentation media was aseptically ground into a fine powder that contained stable 

Bacillus spores (~ 1011 spores/g). Bacillus spp. spores from each of the three selected strains 

were combined in equal amounts to conform the Bacillus-DFM candidate treatment. Next, the 

DFM was included into the feed to reach a concentration of 106 spores per gram of feed using a 

rotary mixer for 15 minutes. Samples of feed containing the Bacillus-DFM candidate were taken 

to validate the amount of spores per gram of feed after the inclusion and mixing steps, a 1:10 
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dilution was made with saline in glass sterile tubes and all feed samples were incubated at 100°C 

for 10 min to eliminate the presence of vegetative cells present in the feed allowing the 

enumeration of spores only. Following heat-treatment, 1:10 dilution of the feed samples from the 

glass tubes were plated on tryptic soy agar plates (TSA, catalog no. 211822, Becton Dickinson, 

Sparks, MD); letting spores in the feed sample germinate into vegetative cells after incubation at 

37°C for 24 h, hence representing the number of spores present per gram of feed. 

 

Animal Source and Diets 

In the present study, three independent experiments were conducted. For all experiments d-of-

hatch male broiler chicks were obtained from Cobb-Vantress (Siloam Springs, AR, USA). In 

experiments 1 and 2, chicks were placed in isolation chambers (90 cm x 80 cm) with a controlled 

age-appropriate environment. Meanwhile in experiment 3, birds were neck-tagged and randomly 

located to one of sixteen floor pens (300 cm x 150 cm) with new pine shavings as litter in an 

environmentally controlled room. Temperature was maintained at 34°C for the first 5 d and was 

then gradually reduced according to normal management practices, until a temperature of 23°C 

was achieved at day 21 of age. In all experiments, broilers chicks were randomly assigned to 

either a control group (CON) consuming a mash rye-based diet or a treated group (TRT) fed with 

a mash rye-based diet supplemented with the Bacillus-DFM candidate (106 spores/gram of feed). 

In experiments 1 and 2, a starter diet was fed throughout the experimental period (0 to 10 d).  

However, in experiment 3 due to a prolonged duration, starter (0 to 7 d) and grower (8 to 28 d) 

diets were offered. Prior to formulating the experimental diets, it was determined that the rye 

grain contained: moisture 109 g/kg, crude protein 124 g/kg, crude fat 18 g/kg, crude fiber 29 

g/kg, calcium 0.9 g/kg, and phosphorus 3.1 g/kg. The experimental diets were formulated to 
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approximate the nutritional requirements of broiler chickens as recommended by the National 

research council (1994), and adjusted to breeder’s recommendations (Cobb-Vantress Inc., 2013). 

No antibiotics or coccidiostats were added to the feed (Table 2). The chemical composition of 

the experimental diets was determined by AOAC international (2000) methods for moisture 

(930.15), crude protein (984.13), crude fat (920.39), crude fiber (978.10), calcium (968.08) and 

phosphorus (965.17). All animal handling procedures were in compliance with the Institutional 

Animal Care and Use Committee at the University of Arkansas, Fayetteville, USA. 

 

Experimental Design of Experiments 1 and 2 

In order to show that similar results can be achieved independently, two experiments were 

conducted in the present study in broiler chickens that were raised for 10 days. In each 

experiment, 50 d-of-hatch, chickens were randomly assigned to one of two groups: rye-based 

diet or a rye-based diet supplemented with Bacillus-DFM (n = 25/group); the number of animals 

used was based on published studies in which similar variables were measured (Bedford et al., 

1991; Latorre et al., 2014b; Tellez et al., 2014). At 10 d-of-age, in both experiments, all chickens 

were weighed and humanely killed by CO2 asphyxiation. Samples were obtained from randomly 

selected individual broilers and analyzed separately. The right half of the liver was aseptically 

removed to evaluate bacterial translocation (n = 12/group). Additionally, digesta samples were 

taken to evaluate viscosity (n = 8/group) and both tibias were removed to analyze bone quality 

characteristics (n = 12/group). Moreover, in both experiments duodenal, ileal, and cecal gut 

sections were obtained to enumerate different bacterial populations (n = 12/group). Details about 

measurement techniques are described below. 
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Experimental Design of Experiment 3 

As an extension of experiments 1 and 2, and for evaluation of the rye-based diet during the 

starter and grower production periods, 320 d-of-hatch chickens were neck tagged and randomly 

allotted based on initial body weight (BW) to one of two groups; control rye-based diet or 

Bacillus-DFM supplemented rye-based diet. Each treatment was comprised of eight replicates of 

20 chicks each (n = 160/group) and for evaluation of growth performance each replicate was 

used as experimental unit. Weekly, all broilers were individually weighed and BW, body weight 

gain (BWG) and pen feed intake (FI) were noted at the end of each phase to calculate the feed 

conversion ratio (FCR) for starter (0 to 7 d), grower (8 to 28 d), and overall (0 to 28 d) 

experimental phases. At 28 d-of-age, all chickens were weighed and humanely killed by CO2 

asphyxiation. Samples were obtained from two randomly selected broilers for bacterial 

translocation and bone quality determination (n = 16/group). In the case of evaluation of digesta 

viscosity, one bird per replicate was selected to collect the intestinal content (n = 8/group). 

Details about measurement techniques are described below. 

 

Digesta Viscosity  

Total intestinal contents were obtained from duodenum to cloaca in experiment 1 and 2 to 

evaluate digesta viscosity. In experiment 3, digesta was taken from duodenum to Meckel’s 

diverticulum. Approximately 1.5 grams (wet weight) of the fresh digesta were immediately 

centrifuged (12,000 x g) for 5 min. The supernatant was obtained and stored on ice until 

viscosity was determined using a LVDV-I Brookfield digital cone-plate viscometer fitted with a 

CP-40 spindle (Brookfield Engineering, Middleboro, MA). The analyzed samples and the 

viscometer cup were maintained at a temperature of 40°C during viscosity measurements to 
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simulate broiler’s body temperature conditions. Viscosity was measured in centipoise (cP = 

1/100 dyne s/cm2).  

 

Bacterial Translocation 

Briefly, the right half of the liver was removed from each chicken, collected into sterile bags, 

homogenized, weighed and 1:4 w/v dilutions were made with sterile 0.9% saline. Then, ten-fold 

dilutions of each sample were made in a sterile 96 well Bacti flat bottom plate, and the diluted 

samples were plated on MacConkey Agar (VWR Cat. No. 89429-342 Suwanee, GA 30024). 

Biochemical evaluation tests as well as identification of isolated colonies that grew on the 

MacConkey agar plates were carried out using a bioMerieux API-20E test kit (catalog no. 20100, 

bioMerieux, Marcy l’Etoile, France). Bacterial translocation was expressed in colony forming 

units (Log10 cfu/gram of tissue). 

 

Intestinal microflora 

Whole duodenum, ileum, and cecae were aseptically removed, separated into sterile bags, and 

homogenized. Samples were weighed and 1:4 w/v dilutions were made with sterile 0.9% saline. 

Then, ten-fold dilutions of each sample, from each group were made in a sterile 96 well Bacti 

flat bottom plate and the diluted samples were plated on three different culture media; for 

enumeration of  total recovered lactic acid bacteria (LAB) on de Man Rogosa Sharpe agar 

(Difco™ Lactobacilli MRS Agar VWR Cat. No. 90004-084 Suwanee, GA 30024); total 

recovered gram negative bacteria (TGB) on MacConkey agar; and total recovered anaerobes 

(TAB) on tryptic soy agar plates containing sodium thioglycolate (catalog no. 212081, Becton 
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Dickinson, Sparks, MD). Bacteria enumeration was expressed in colony forming units (Log10 

cfu/gram of tissue), and all plates were incubated during 18 h at 37oC before bacterial count. 

 

Bone Quality 

Bone quality measurements were made according to the methods described by Zhang and Coon 

(1997). Tibias from each chicken were cleaned of adherent tissues. Bones from the left leg were 

subjected to conventional bone assays as described below, and tibias from the right legs were 

used to determine breaking strength. Bones from the left tibia were dried at 100°C for 24 h and 

weighed. Then the samples were ashed in a muffle furnace (Isotemp muffle furnace, Fisher 

Scientific, Pittsburgh, PA) at 600°C for 24 h in crucibles, cooled in a desiccator, and weighed. 

From the left tibia, total calcium content was obtained by inductively coupled plasma 

determination (968.08; AOAC international, 2000), and total phosphorus contend was 

determined by colorimetry using the molybdo-vanadate method (965.17; AOAC international, 

2000). In the case of the right tibia samples, the tibial diaphysis from individual birds were 

cleaned of adherent tissues, the periosteum was removed, and the biomechanical strength of each 

bone was measured using an Instron 4502 material testing machine (Norwood, MA) with a 509 

kg load cell. The bones were held in identical positions and the mid-diaphyseal diameter of the 

tibial midshaft, which was also the site of impact, was measured using a dial caliper. The 

maximum load at failure was determined in the tibial midsection between epiphyses, using a 

three-point flexural bend fixture with a total distance of 30 mm between the two lower 

supporting ends. The load, defined as force in kilograms per square millimeter of cross-sectional 

area (kg/mm2), represents bone strength. The rate of loading was kept constant at 20 mm/min 
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collecting 10 data points per second. The data were automatically calculated using Instron’s 

Series IX Software (Norwood, MA). 

 

Statistical Analysis 

In all experiments, data were subjected to one-way ANOVA as a completely randomized design 

using the GLM procedure of SAS (SAS Institute, 2002). In experiments 1 and 2, each 

measurement obtained from individual broilers from each experimental group was considered as 

the experimental unit for BW (n=25/group), digesta viscosity (n=8/group), liver bacterial 

translocation (n=12/group), microbiota composition (n=12/group) and bone quality parameters 

(n=12/group). Additionally, as an extension of experiments 1 and 2, in experiment 3 for the 

evaluation of growth performance (BW, BWG, FI and FCR) each of the 8 replicates of 20 

chickens was considered as the experimental unit, whereas data on digesta viscosity (n=8/group) 

bacterial translocation (n=16/group), and bone quality (n=16/group) were based on randomly 

selected broilers from all replicates of each group. Data are expressed as mean ± SE and a P-

value of P < 0.05 was set as the standard for significance.   

   

RESULTS 

The results of the evaluation of BW, digesta viscosity, and liver bacterial translocation in broiler 

chickens consuming a rye-based diet with or without dietary inclusion of a selected Bacillus-

DFM candidate in experiments 1 and 2 are summarized in table 3. Chickens that received the 

rye-based diet supplemented with the DFM had a significant increase in BW at d 10 of age 

compared with the control group (P < 0.05), and also showed a significant reduction in digesta 

viscosity and bacterial translocation in both experiments (Table 3). Identification of the gram-
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negative, lactose positive bacteria translocated to the liver in all experiments was confirmed to be 

Escherichia coli using the bioMerieux API-20E test kit. 

Table 4 summarizes the results of the evaluation of total bacterial counts recovered from 

duodenum, ileum, and cecae in 10 d-old broiler chickens from experiments 1 and 2. In both 

trials, DFM supplemented chickens had a significant decrease in the number of total gram-

negative bacteria recovered from the duodenum when compared to the control group. Similarly, 

in both experiments, a reduction in the number of total anaerobic bacteria from the duodenum of 

chickens consuming the Bacillus-DFM was observed in comparison to the unsupplemented 

group. Additionally, a reduction in the number of total anaerobic bacteria was also showed in the 

ileum from the DFM group in experiment 2 (P < 0.05). Nevertheless, similar amounts of lactic 

acid bacteria were recovered from each intestinal section evaluated in both experiments from 

both experimental groups. Moreover, comparable bacterial counts were observed between 

experimental groups in the cecae in both trials for total gram-negative, lactic acid and anaerobic 

recovered bacteria.     

In experiment 3, during the starter phase (0 to 7d), broilers consuming the diet supplemented 

with Bacillus-DFM showed similar values in all the growth performance variables (BW, BWG, 

FI and FCR) that were evaluated in comparison to the control group. On the other hand, during 

the grower phase (8 to 28d) and the overall study period (0 to 28d), broilers consuming the 

Bacillus-DFM candidates had a significantly higher BW and BWG coupled with a more efficient 

FCR compared to the control group (P < 0.05). Feed intake was similar between both 

experimental groups throughout the study. In the case of digesta viscosity and bacterial 

translocation, inclusion of the Bacillus-DFM in the rye-based diet resulted in a significant 

reduction of viscosity in the intestinal content, together with a decrease in the number of gram-
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negative, lactose positive bacteria present in the liver, which was confirmed to be Escherichia 

coli (Table 5). 

The effects of the dietary inclusion of the Bacillus-DFM candidate on bone quality in chickens 

consuming a rye-based diet are shown in Table 6. In experiments 1 and 2, bone strength and 

composition were measured in 10 d-old broilers, showing a significant improvement in all bone 

quality measurements in chickens consuming the Bacillus-DFM in comparison to the control 

group (P < 0.05). Similar results were also obtained in experiment 3, where bone quality 

variables were measured in 28 d-old broilers, showing an increase in bone strength, and 

percentage of ash, calcium and phosphorus when the Bacillus-DFM was included in the diet (P < 

0.05). However, in all experiments similar tibia diameters were observed between experimental 

groups.  

 

DISCUSSION 

When chickens are fed with diets containing grains such as rye instead of maize, poor 

performance and detrimental litter conditions caused by sticky droppings occurred (Campbell et 

al., 1983; Fengler and Marquardt, 1988).  Rye has an elevated concentration of highly branched 

arabinoxylans in comparison to other cereals like wheat or maize (Bach Knudsen, 1997). The 

presence of soluble NSP from rye in the intestinal lumen increase digesta viscosity affecting 

nutrient availability and absorption (Bedford and Classen, 1993; Choct et al., 1995;). The high 

concentration of soluble NSP in rye-based diets also have an impact on the intestinal bacterial 

population, probably as a consequence of the increase digesta viscosity and prolonged feed 

passage time (Choct et al., 1996; Bedford and Schulze, 1998; Kiarie et al., 2013).  Furthermore, 

utilization of rye in poultry diets has also been related to malabsorption of lipids, deterioration of 
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bone mineralization, and reduced leg soundness (MacAuliffe and McGinnis, 1971). This 

negative effect on bone quality could be also be related to an elevated digesta viscosity, 

therefore, enhancing the deconjugation of bile acids by the overgrowth intestinal microflora, 

resulting in a reduction of micelle formation, affecting fat solubilization and absorption of fat 

soluble vitamins and minerals (Grammer et al., 1982). Since monogastric animals do not have 

endogenous enzymes capable of hydrolyzing the β-linkages present in soluble NSP, exogenous 

carbohydrases (xylanase, β-glucanase, β-mannanase, α-galactosidase and pectinase) have been 

used in poultry diets as feed additives in attempt to reduce the adverse impact of these anti-

nutritional factors (Bedford et al., 1991; Bedford and Classen, 1993; Esteve-Garcia et al., 1997). 

It has been well documented that inclusion of xylanase in rye-based diets significantly improve 

viscosity of digesta supernatant,  accelerate feed passage time  through the gastrointestinal tract, 

and enhance digestibility of dietary protein and fat sources resulting in an improvement in 

growth performance (Dänicke et al., 1997; Langhout et al., 1997; Lázaro et al., 2004; Lee, 2014). 

The results of the present study support previous findings published by our laboratory in turkey 

poults fed with rye-based diets (Latorre et al., 2014b). Similarly, digesta viscosity was 

considerably higher in chickens fed with rye-based diets without the DFM when compared to 

broilers consuming the DFM-supplemented diet, the supernatant being more semi-solid than 

liquid in the control group, suggesting that viscosity alone could be directly responsible for poor 

performance. The increase in digesta viscosity observed in the control group was also associated 

with elevated bacterial translocation to the liver and overgrowth of gram-negative and anaerobic 

bacteria in the duodenal section when compared with chickens that consumed the Bacillus-DFM 

diet. These differences could be due to less substrates available for bacterial growth, generating 

lower intestinal inflammation, and translocation of bacteria when the intestinal viscosity was 
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reduced by the inclusion of the DFM candidate, suggesting more absorption of nutrients by the 

intestinal brush border of supplemented broilers. It has been previously reported that alterations 

in gut permeability are connected with bacterial translocation in the portal and/or systemic 

circulation during several types of “leaky gut” syndromes leading to bacterial septicemia (Ilan, 

2012; Seki and Schnabl, 2012). On the other hand, significant improvements in BW, BWG and 

FCR were observed in chickens consuming the Bacillus-DFM supplemented diet when 

compared to chickens from the control group, suggesting that the production of enzymes from 

the combined Bacillus spp. strains used as DFM could increase the absorption of nutrients 

promoting growth performance and a more efficient feed conversion ratio in addition to 

enhancing the physical and bacteriological conditions of the intestinal content. Furthermore, the 

significant reduction in bone strength and mineralization generated by consumption of rye-based 

diets confirmed previous research from different authors that have shown that the inclusion of 

rye in poultry diets is associated with malabsorption of minerals and fat-soluble vitamins 

(MacAuliffe et al., 1976; Campbell et al., 1983; Wideman et al., 2013). However, the results 

from the present study suggest that the reduction of digesta viscosity together with the 

production of phytase by the Bacillus-DFM candidate could enhance the absorption of nutrients 

including minerals, hence improving bone strength and bone mineralization.  

In conclusion, the present study showed that chickens fed on rye-based diets have an increased in 

digesta viscosity and bacterial translocation associated with overgrowth of gut microflora, low 

performance, and decreased bone mineralization.  However, this is one of the first studies 

reporting that these adverse effects caused by the utilization of rye in poultry diets can be 

minimized by the inclusion of a selected Bacillus-DFM candidate, thereby enhancing intestinal 

integrity and absorption of nutrients resulting in an improvement of production performance. 
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Large-scale commercial studies to evaluate the dietary supplementation of different poultry diets 

with the combination of these Bacillus spp. candidate strains are currently being evaluated.   
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Table 1. Identification of Bacillus spp. isolates by bioMerieux API 50 CHB1 and 16S rRNA sequence analyses2 present in the 

Bacillus-DFM candidate treatment. 

 
 

 

Isolate 

        API50 CHB  16S rRNA sequence analysis 

Taxon % ID  Closest match % ID 

AM1002 Bacillus subtilis/amyloliquefaciens 99.2  Bacillus subtilis 100.0 

AM0938 Bacillus subtilis/amyloliquefaciens 99.0  Bacillus amyloliquefaciens 99.7 

JD17 Bacillus subtilis/amyloliquefaciens 99.4  Bacillus amyloliquefaciens 99.6 
 

1 BioMerieux API 50 CHB test kit. 
2 16S rRNA sequence analysis. 
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Table 2. Ingredient composition and nutrient content of broiler chicken rye-based diets used in 

all experiments on as-is basis 

 

Item Starter diet Grower diet 

Ingredients (g/kg)   

Rye 583.4 619.1 

Soybean meal 311.6 269.3 

Poultry fat 63.0 70.0 

Dicalcium phosphate 18.0 16.6 

Calcium carbonate1 11.0 10.4 

Salt 3.8 5.7 

DL-Methionine 3.5 3.0 

Vitamin premix2 1.0 1.0 

L-Lysine HCl 2.2 2.0 

Choline chloride 60% 1.0 1.0 

Mineral premix3 1.0 1.0 

Threonine 0.8 0.6 

Antioxidant4 0.2 0.2 

Calculated analysis   

Metabolizable energy (MJ/ kg) 11.93 12.18 

Crude protein 223.8 207.9 

Lysine 13.2 11.9 

Methionine 6.4 5.8 

Methionine + Cystine 9.8 8.9 

Threonine 8.6 7.8 

Tryptophan 3.0 2.8 

Crude fat 77.0 88.4 

Crude fibre 27.2 26.7 

Total calcium 9.0 8.6 

Available phosphorus 4.5 4.2 

Determined analysis   

Crude protein 220.0 203.0 

Crude fat 76.0 88.2 

Crude fibre 27.0 26.4 

Calcium 9.1 8.4 

Total phosphorus 7.2 7.0 
 

1Inclusion of 106 spores/g of feed mixed with calcium carbonate. 
2Vitamin premix supplied per kilogram of diet: Retinol, 6 mg; cholecalciferol, 150 µg; DL-α-

tocopherol, 67.5mg; menadione, 9 mg; thiamine, 3 mg; riboflavin, 12 mg; pantothenic acid, 18 

mg; niacin, 60 mg; pyridoxine, 5 mg; folic acid, 2 mg; biotin, 0.3 mg; cyanocobalamin, 0.4 mg. 
3Mineral premix supplied per kilogram of diet: Mn, 120 mg; Zn, 100 mg; Fe, 120 mg; copper, 10 

to 15 mg; iodine, 0.7 mg; selenium, 0.2 mg; and cobalt, 0.2 mg. 
4Ethoxyquin. 
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Table 3.  Evaluation of body weight (BW), digesta viscosity, and bacterial translocation to the 

liver in broiler chickens consuming a rye-based diet with or without dietary inclusion of a 

selected Bacillus direct-fed microbial candidate (experiments 1 and 2)1 

 

 

Item BW2                   

(g)        
Digesta viscosity3    

(cP) 

Bacterial translocation4 

(Log10 cfu/g) 

Experiment 1    

Rye diet 111 ± 5.2b 501 ± 71.17a 2.4 ± 0.45a 

Rye diet + DFM 138 ± 4.9a 271 ± 12.69b 1.0 ± 0.27b 

Experiment 2    

Rye diet 141 ± 5.2b 591 ± 51.72a 2.4 ± 0.73a 

Rye diet + DFM 168 ± 6.9a 306 ± 14.70b 1.1 ± 0.57b 

 

a,bSuperscripts within colums and experiment indicate significant difference at P < 0.05. 
1Data are expressed as mean ± SE.  
2Body weight, n = 25/group.  
2Digesta viscosity is expressed in centipoise (cP), n = 8/group. 
3Liver bacterial translocation is expressed in colony forming units, n = 12/group. 

 

 

 

 

 

 

 

 

 

 



 

 
 

1
4
6
 

Table 4.  Evaluation of total bacterial counts in duodenum, ileum, or cecae in neonatal broiler chickens consuming a rye-based diet 

with or without dietary inclusion of a selected Bacillus direct-fed microbial candidate (Experiments 1 and 2)1 

 

  Duodenum2   Ileum2   Cecae2  

Item TGB LAB TAB TGB LAB TAB TGB LAB TAB 

Experiment 1          

Rye diet 3.9 ± 0.08a 6.1 ± 0.21 5.6 ± 0.31a 5.4 ± 0.74 6.8 ± 0.12 5.9 ± 0.65 7.5 ± 0.19 8.2 ± 0.15 7.9 ± 0.37 

Rye diet + DFM 2.2 ± 0.69b 5.8 ± 0.08 4.7 ± 0.12b 4.9 ± 0.91 6.4 ± 0.38 5.4 ± 0.63 7.2 ± 0.28 7.9 ± 0.09 7.9 ± 0.19 

Experiment 2          

Rye diet 4.0 ± 0.25a 7.3 ± 0.21 7.9 ± 0.22a 3.7 ± 0.34 7.9 ± 0.23 8.6 ± 0.08a 7.7 ± 0.22 8.9 ± 0.12 9.0 ± 0.12 

Rye diet + DFM 3.0 ± 0.23b 7.0 ± 0.25 6.5 ± 0.25b 4.0 ± 0.25 8.1 ± 0.14 7.9 ± 0.07b 7.4 ± 0.23 8.8 ± 0.15 8.8 ± 0.11 

 
a,bSuperscripts within columns and experiment indicate significant difference at P < 0.05. 
1Data are expressed as Log10 cfu/g mean ± SE. 
2TGB: Total Gram negative bacteria recovered, LAB: Total lactic acid bacteria recovered, TAB: Total anaerobic bacteria recovered 

from different intestinal sections in each experimental group, n = 12/group. 
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Table 5. Evaluation of body weight (BW), body weight gain (BWG), feed intake, feed 

conversion ratio (FCR), digesta viscosity, and bacterial translocation to the liver in broiler 

chickens consuming a rye-based diet with or without dietary inclusion of a selected Bacillus-

direct-fed microbial candidate (Experiment 3)1 

 

 

Item Rye diet Rye diet + DFM 

BW, g/broiler   

d 0 39 ± 0.2 38 ± 0.3 

d 7  96 ± 3.2 102 ± 3.1 

d 28 804 ± 7.3b 830 ± 6.4a 

BWG, g/broiler   

d 0 to 7 57 ± 3.1 64 ± 2.9 

d 7 to 28 708 ± 6.2b 728 ± 6.2a 

d 0 to 28 766 ± 7.4b 790 ± 6.5a 

Feed intake, g/broiler   

d 0 to 7 118 ± 2.8 116 ± 2.3 

d 7 to 28 1733 ± 17.8 1694 ± 16.8 

d 0 to 28 1851 ± 19.6 1810 ± 17.0 

Feed conversion ratio   

d 0 to 7 2.10 ± 0.072 1.85 ± 0.122 

d 7 to 28 2.45 ± 0.025a 2.34 ± 0.023b 

d 0 to 28 2.42 ± 0.019a 2.30 ± 0.021b 

Evaluation at 28 d   

Digesta viscosity (cP)2  96.2 ± 2.95a 61.5 ± 2.34b 

BT (Log10 cfu/g)3 1.5 ± 0.18a 0.9 ± 0.15b 

 

a,bSuperscripts within rows indicate significant difference at P < 0.05 
1Data are expressed as mean ± SE. 
2Digesta viscosity evaluated in 28-d old broilers expressed in centipoise (cP), n = 8/group  
3BT = Bacterial translocation was evaluated in 28-d old broilers, n = 16/group 
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Table 6. Evaluation of bone breaking strength and bone composition in broiler chickens consuming a rye-based diet with or without 

dietary inclusion of a selected Bacillus direct-fed microbial candidate (Experiments 1, 2 and 3)1 

 

 

Item 

Load at 

break (kg) 

Tibia diameter 

(mm) 

Breaking strength 

(kg/mm2) 

Total ash       

(%) 

Calcium          

(%) 

Phosphorus       

(%) 

Experiment 12       

Rye diet 1.7 ± 0.01b 2.6 ± 0.28 0.6 ± 0.02b 34.9 ± 0.35b 18.5 ± 0.27b 13.1 ± 0.12b 

Rye diet + DFM 2.7 ± 0.01a 2.9 ± 0.28 0.9 ± 0.01a 54.7 ± 0.39a 36.5 ± 0.87a 26.1 ± 0.82a 

Experiment 22       

Rye diet 1.7 ± 0.03b 2.9 ± 0.78 0.6 ± 0.03b 30.9 ± 0.75b 21.3 ± 0.46b 15.7 ± 0.29b 

Rye diet + DFM 2.8 ± 0.09a 2.9 ± 0.28 1.0 ± 0.09a 56.6 ± 0.44a 40.3 ± 0.21a 29.8 ± 0.10a 

Experiment 33       

Rye diet 22.2 ± 0.93b 5.5 ± 0.08 4.1 ± 0.23b 44.9 ± 0.95b 17.5 ± 0.26b 9.2 ± 0.11b 

Rye diet + DFM 26.5 ± 1.68a 5.6 ± 0.20 4.8 ± 0.18a 55.0 ± 0.61a 29.5 ± 0.27a 15.2 ± 0.13a 

 

a,bSuperscripts within columns indicate significant difference at P < 0.05 within each experiment. 
1Data are expressed as mean ± SE. 
2Bone measurements evaluated from 10 d-old broilers, n = 12/group 
3Bone measurements evaluated from 28 d-old broilers, n = 16/group 
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ABSTRACT 

Distiller’s dried grains with solubles (DDGS) have increasingly been used in poultry diets as 

consequence of rising grain costs. DDGS have a variable compositional value and a high 

inclusion of this by-product has been considered a risk factor for GI diseases such as necrotic 

enteritis. Presently, two experiments were conducted using a starter corn-soybean diet (0-7d) and 

a corn-DDGS-soybean grower diet (7-28d) with or without inclusion of a Bacillus-DFM. In both 

experiments, day-of-hatch chicks were randomly assigned to two different groups: Control group 

without DFM or Bacillus-DFM group, containing 106 spores/g of feed. In each experiment, eight 

pens of 20 chicks (n=160/group) were used. Performance parameters of body weight (BW), body 

weight gain (BWG), feed intake (FI) and feed conversion (FCR) were evaluated in each growth 

phase. Additionally, in experiment 2, one broiler per replicate was  humanely killed and 

intestinal samples were collected to determine intestinal morphology, as well as, the microbiota 

population of total lactic acid bacteria (LAB), total gram negative bacteria (GNB) and total 

anaerobic bacteria (TAB) at 28d of age. Furthermore, both tibias were evaluated for bone 

strength and bone composition.  In both experiments BW, BWG and FCR were improved by the 

DFM when compared to the control group (P<0.05). In experiment 2, chickens supplemented 

with the DFM had less TGN in the foregut intestinal segment and higher LAB counts in both 

foregut and hindgut sections (P<0.05). Small but significant increases in tibia breaking strength, 

and bone mineralization were observed in the DFM group when compared with control. In the 

case of intestinal morphology, DFM dietary inclusion increased villus height, villus width, villus 

area, muscular thickens and the VH:CD ratio in both duodenum and ileum sections. Therefore, 

results of this study suggest that consumption of a selected Bacillus-DFM producing a variable 
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set of enzymes, could contribute to enhanced performance, intestinal microbial balance and bone 

quality in broiler chickens consuming a grower diet that contains corn-DDGS.  

 

Keywords Bacillus-DFM, DDGS, enzymes, microbiota, bone quality 

 

INTRODUCTION 

Distillers dried grains with solubles (DDGS) is a by-product of the biofuel industry produced by 

dry mill ethanol plants. During the fermentation process starch from cereal grains is converted to 

ethanol and CO2, concentrating the remaining nutrients in DDGS (Singh et al., 2007). Corn, as 

an efficient source of readily fermentable starch, is the main grain used in ethanol production; 

but also wheat, barley, and sorghum or combinations of these grains are used. The growth of 

ethanol production have resulted in increased quantities of DDGS available to feed producers, 

therefore, making it an attractive alternative feed ingredient during elevated corn cost periods 

(Singh et al., 2007; Stein, 2007 ). DDGS may provide a rich source of protein, amino acids, 

phosphorus, xanthophylls and other nutrients in poultry diets (Wang et al., 2007a). High quality 

DDGS can be safely fed at 5-8% in starter diets for broiler chickens and turkeys, also 10-15% 

dietary level can be used in broiler and turkey grower-finisher diets or for feed formulation of 

laying hens, partially replacing in a cost effective way, soybean meal, corn and other cereals 

(Singh et al., 2005; Świątkiewicz and Koreleski., 2008). However, the principal limitations on 

use of DDGS as a feed component are the high nutritional composition variability and 

bioavailability of nutrients, observed especially for lysine, methionine, minerals and energy 

(Barekatain et al., 2013). On the other hand, Behnke (2007) reported that inclusion of 5 to 7% of 

DDGS could have a negative impact on pellet quality, increasing the percentage of fines per feed 
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batch. The majority of the reported compositional profiles of DDGS have focused mainly on 

common constituents such as crude protein (28.7 - 32.9%), crude fiber (5.4 – 10.4%), crude fat 

(8.8 – 12.4%), ash (3.0- 9.8%), phosphorus (0.42 – 0.99%), lysine (0.61 – 1.06%), methionine 

(0.54 – 0.76%) and tryptophan (0.18 – 0.28%)(US Grains Council, 2012). Nevertheless, non-

starch polysaccharides (NSP) make up 25–30% of the DDGS, with the two major components of  

the NSP being arabinoxylan and cellulose (Singh et al., 2002; Singh et al., 2005; Kim et al., 

2008).  Therefore, targeting the indigestible components specific of DDGS with the correct blend 

of supplemental exogenous enzymes can allow a more efficient utilization of this co-product by 

poultry, as well as increased its percentage of inclusion in livestock diets, resulting in greater 

economic returns (Min et al., 2011).  The use of spores from selected Bacillus strains as direct-

fed microbials (DFM), have been shown to prevent gastrointestinal disorders and impart 

numerous nutritional benefits including the production of extracellular enzymes such as amylase, 

protease, lipase, cellulase, xylanase, and phytase (Hendricks et al., 1995).  Previous studies 

published by our laboratory suggest that the dietary inclusion of a previously selected Bacillus-

DFM based on in-vitro enzyme production profiles, could contribute to enhance bone quality, 

reduce digesta viscosity and improve both intestinal microbial balance and performance 

parameters in poultry consuming diets that contained a considerable percentage of soluble NSP 

(Latorre et al., 2014b; Latorre et al., 2015a).  Therefore, the objectives of the present study were 

to evaluate the inclusion of a Bacillus-DFM in a grower broiler diet containing DDGS on 

performance, bone quality, intestinal microflora and intestinal epithelial morphology. 

 

MATERIALS AND METHODS 

Animal source and experimental diets 
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In the present study, two independent experiments were conducted. For all experiments d-of-

hatch male broiler chicks were obtained from Cobb-Vantress (Siloam Springs, AR, USA). In 

both experiments, chicks were neck-tagged and randomly located to one of sixteen floor pens 

(300 cm x 150 cm) with new pine shavings as litter in an environmentally controlled room. 

Temperature was maintained at 34°C for the first 5 d and was then gradually reduced according 

to normal management practices, until a temperature of 23°C was achieved at day 21 of age. In 

both trials, a mash starter corn-soybean based diet (0 to 7 d) and a mash grower diet containing 

8% DDGS (8 to 28 d) were offered according to the phase of production. Prior to formulating the 

experimental diets, it was determined that DDGS contained: moisture 13.1% , crude protein 

29.2%, crude fat 11.0%, crude fiber 8.5%, calcium 0.14% and phosphorus 0.72%. The 

experimental diets were formulated to approximate the nutritional requirements of broiler 

chickens as recommended by the National research council (1994), and adjusted to breeder’s 

recommendations (Cobb-Vantress Inc., 2013). No antibiotics or coccidiostats were added to the 

feed (Table 1). The chemical composition of the experimental diets was determined by AOAC 

international (2000) methods for moisture (930.15), crude protein (984.13), crude fat (920.39), 

calcium (968.08) and phosphorus (965.17). All animal handling procedures were in compliance 

with the Institutional Animal Care and Use Committee at the University of Arkansas, 

Fayetteville, USA. 

 

Experimental design 

In order to show that similar results can be achieved independently, two experiments were 

conducted in the present study in broiler chickens that were raised during the starter and grower 

production phases. In both trials, broilers chicks were randomly assigned to either a control 
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group or a DFM candidate group fed with a diet supplemented with 106 spores/gram of feed of a 

Bacillus-DFM previously selected based on in vitro enzyme activity (Latorre et al., 2015b). Each 

treatment was comprised of eight pens of 20 chicks (n=160/group) and for evaluation of growth 

performance, each replicate was used as experimental unit. Every week, all broilers were 

individually weighed and BW, body weight gain (BWG) and feed intake (FI) data per pen were 

obtained to calculate the feed conversion ratio (FCR) for starter , grower and the overall 

experimental periods. Additionally in experiment 2 at day 28 of age, one broiler per replicate (n 

= 8/group) was humanely killed by CO2 asphyxiation to collect intestinal samples for 

determination of the recovered microbiota population of total lactic acid bacteria (LAB), as well 

as, total Gram negative bacteria (GNB) and total anaerobic bacteria (TAB). Additionally, 

intestinal sections of duodenum and ileum were obtained to evaluate morphological parameters 

(n = 8/group).  In the case of evaluation of bone quality parameters, both tibias from one bird per 

replicate were collected (n = 8/group). Details about measurement procedures are described 

below.  

 

DFM preparation 

In an effort to grow high numbers of viable spores, a solid state fermentation media (SS) 

developed by Zhao et al. (2008) was selected and modified for use in these experiments. Briefly 

a liquid media component was added to a mixture of 70% rice straw and 30% wheat bran at a 

rate of 40% by weight. The SS media was added to a 250 mL Erlenmeyer flask and sterilized by 

autoclaving for 30 min at 121°C. Candidate isolates were grown individually overnight at 37°C 

in TSB, then 2 mL of a candidate culture were added to the prepared SS media. The inoculated 

flasks were incubated for 24 h at 37°C then incubated for another 72 h at 30°C. The cultures 
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were removed from their flasks, placed onto petri dishes, and then dried at 60°C. Following this, 

the cultures were aseptically ground into a fine powder to generate stable spores (~ 1011 

spores/g). Spores were mixed into the feed using a rotary mixer for 15 minutes. Samples of feed 

containing the DFM culture were taken and a 1:10 dilution was made with saline. All samples 

were subject to 100°C for 10 min. Ten-fold dilutions of these samples were plate on tryptic soy 

agar plates (TSA, catalog no. 211822, Becton Dickinson, Sparks, MD), incubated at 37°C for 24 

h to count the number of spores per g of feed. 

 

Enumeration of bacteria 

For determination of total recovered bacteria, intestinal sections from duodenum to Meckel’s 

diverticulum (foregut) and from Meckel’s diverticulum to ceca (hindgut) were aseptically 

collected, separated into sterile bags and homogenized. Samples were weighed and 1:4 wt/vol 

dilutions were made with sterile 0.9% saline. Later, ten-fold dilutions of each sample, from each 

group were made in a sterile 96 well Bacti flat bottom plate and then plated on different culture 

media; for enumeration of total recovered lactic acid bacteria (LAB) on Man Rogosa Sharpe agar 

(Difco™ Lactobacilli MRS Agar VWR Cat. No. 90004-084 Suwanee, GA 30024); total 

recovered Gram negative bacteria (TGN) on MacConkey agar (VWR Cat. No. 89429-342 

Suwanee, GA 30024) and total recovered anaerobes (TAB) on tryptic soy agar containing 

sodium thioglycolate (Becton Dickinson Cat No. 212081 Sparks, MD 21152). All plates were 

incubated at 37oC for 18 h and bacterial counts were expressed in colony forming units (Log10 

cfu/g of tissue). 

 

Bone parameters 
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Bone parameters were measured according to the methods described by Zhang and Coon, 

(1997). Tibias from each chicken were cleaned of attached tissues. Bones from the left leg were 

subjected to conventional bone assays as described below and tibias from the right leg were used 

to determine breaking strength. The bones from left tibia were dried at 100°C for 24 h and 

weighed. Then the samples were ashed in a muffle furnace (Isotemp muffle furnace, Fisher 

Scientific, Pittsburgh, PA) at 600°C for 24 h in crucibles, cooled in a desiccator and weighed. 

From the left tibia, total calcium content was obtained by inductively coupled plasma (968.08; 

AOAC International, 2000) and total phosphorus content was determined by colorimetry using 

the molybdo-vanadate method (967.17; AOAC International, 2000). In the case of the right tibia 

samples, the tibial diaphysis from individual birds were cleaned of adherent tissues, the 

periosteum was removed and the biomechanical strength of each bone was measure using an 

Instron 4502 (Norwood, MA) material testing machine with a 590 kg load cell. The bones were 

held in identical positions and the mid-diaphyseal diameter of the tibial mid-shaft which was also 

the site of impact, was measured using a dial caliper. The maximum load at failure was 

determined in the tibial mid-section between epiphyses, using a three-point flexural bend fixture 

with a total distance of 30 mm between the two lower supporting ends. The load, defined as 

force in kilograms per square millimeter of cross-sectional area (kg/mm2), represents bone 

strength. The rate of loading was kept constant at 20 mm/min collecting 10 data points per 

second. The data were automatically calculated using Instron’s Series IX Software (Norwood, 

MA). 

 

Intestinal Morphometric Analysis  
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Intestinal sections were standardized: for duodenum, a 0.5 cm section was collected from the 

middle of the descending duodenum; and for ileum, a 0.5 cm section was collected from the mid-

ileum at the Meckel’s diverticulum. Duodenal, and ileal sections were fixed in 10% neutral 

buffered formalin and embedded in paraffin, sectioned (5-mm thick), set on a glass slide, and 

stained with hematoxylin and eosin (H&E), then examined by light microscopy. 

Photomicrographs of random selected fields of each intestinal sample were acquired using a 

microscope equipped with a Leica DFC450C camera and Leica V 3.8.0. software (Leica 

Application Suit) and used for morphometric analysis. ImageJ 1.47v software (Rasband, 1997-

2012) was used to make the measurements in the morphometric analysis of the different 

intestinal sections. For villus height of duodenum and ileum, an average of 10 villi per bird were 

measured, with a total of 8 broilers per group. Villus length was measured from the tip of the 

villus to the top of the lamina propria. Crypt depth was measured from the base of the 

invagination between villus upwards the region of transition between crypt and villus 

(Aptekmann et al., 2001). Data from villus height and crypt depth were used to obtain the 

VH:CD ratio. Moreover, villus width was measured at the base area of each villi, and the villus 

surface area was calculated using the formula (2π)(VW/2)(VL), where VW = villus width, and 

VL = villus length (Sakamoto et al., 2000). 

 

Statistical Analysis 

In all experiments, data were subjected to one-way ANOVA as a completely randomized design 

using the GLM procedure of SAS (SAS Institute, 2002). In both experiments, for the evaluation 

of growth performance (BW, BWG, FI and FCR) each of the 8 replicates of 20 chickens was 

considered as the experimental unit, whereas data on bone quality (n=8/group), intestinal 
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microbiota (n=8/group), and intestinal morphology (n=8/group) were based on randomly 

selected broilers from all replicates of each group. Data are expressed as mean ± SE and a P-

value less than 0.05 was set as the standard for significance.   

 

RESULTS 

The results of the evaluation of performance parameters (BW, BWG, FI, FCR) in broiler 

chickens consuming a corn-DDGS-soybean grower diet with or without dietary inclusion of a 

Bacillus-DFM candidate of experiment 1 are summarized in Table 2.  In this experiment, during 

the starter phase (0-7d), broilers consuming the diet supplemented with the DFM showed similar 

values in all the growth performance variables  that were evaluated in comparison to the control 

group. On the other hand, during the grower phase (8-28d) when 8% of DDGS was included into 

the diet, supplementation with the Bacillus-DFM improve BWG in 48 g and FCR in 9 points 

when compared to the control group (P<0.05) (Table 2). Similarly, in experiment 2, inclusion of 

the Bacillus-DFM significantly increase BWG in 34 g and improve FCR in 7 points compared to 

the group consuming an unsupplemented diet. Additionally, FI was reduced in 41 g in the DFM 

group compared to control (P<0.05)(Table 3). In both trials, addition of the DFM improved 

performance parameters in the overall experimental period (0-28d), showing consistency of the 

results between trials. 

Table 4 shows the results of the determination of total bacterial counts recovered from the 

foregut and hindgut intestinal segments in 28-d old broiler chickens from experiment 2. Chickens 

that received the Bacillus-DFM had reduced counts of TGN and increased numbers of LAB in 

both foregut and hindgut intestinal sections (P<0.05). Results of the assessment of bone strength 

and bone composition in broiler chickens fed with a corn-DDGS-soybean grower diet with or 
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without dietary inclusion of a Bacillus-DFM candidate in experiment 2 are summarized in Table 

5.  Bone strength and composition were measured in 28 d old broilers, showing that 

supplementation with the Bacillus-DFM significantly improve tibial breaking strength, as well 

as, calcium and phosphorus content compared with chickens receiving a control diet. (Table 5).  

Table 6 shows the results of the intestinal morphometric analysis of duodenum and ileal sections 

in chickens at 28-d of age from experiment 2.  A significant increase in villus height, villus 

width, villus area, muscular thickness and VH:CD ratio were observed in chickens that received 

the DFM in both duodenum and ileum sections when compared with control group (Table 6). 

 

DISCUSSION 

Distillers dried grain with solubles is a by-product that can be obtained from different cereals 

during biofuel production (Świątkiewicz and Koreleski, 2008). As ethanol production has 

expanded in recent years, the availability of DDGS as feedstuff for poultry diets has increased 

(Wang et al., 2007b). To choose the correct percentage of inclusion for DDGS, it is important to 

know the nutritional composition profile of this raw material. Although DDGS have a good 

nutritional value and can be included at high levels in other livestock rations such as swine, 10% 

has traditionally been the recommended feeding limit for broiler chickens during the grower 

period (Stein, 2007). This upper feeding limit is linked to the high level of indigestible fiber 

components present in either wheat or corn DDGS (Barekatain et al., 2013).  Compared with 

protein sources such as soybean meal, the nutritional value of DDGS is lower, due to its inferior 

protein quality, partly caused by the excessive pretreatment and drying conditions during the 

ethanol production process, and high level of non-starch polysaccharides (∼30%) (Martinez-

Amezcua et al., 2007).  Diets high in NSP reduce effective energy and nutrient utilization in 
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poultry and other monogastric animals due to the lack of  endogenous enzymes needed to break 

down the complex cell wall polysaccharides that encapsulate other nutrients ( Bedford et al., 

1991; Bedford and Classen, 1993; Bedford and Schulze, 1998)  Hence, exogenous enzymes have 

been used as feed additives in poultry diets to diminish this antinutritional cage effect (Choct, 

2006; Slominski, 2011).  For instance,  non-starch polysaccharide-hydrolyzing enzymes may 

increase the accessibility of phytase to phytin, increasing phosphorus availability and absorption 

(Singh et al., 2007; Zijlstra et al., 2010). This hypothesis is supported by research published by 

different authors (Choct et al., 1995; De Vries et al., 2014). On the other hand, one of the 

principal sources of the exogenous enzymes used by biotechnology companies are bacteria from 

the genus Bacillus (Monisha et al., 2009; Shah and Bhatt, 2011; Ibrahim et al., 2012). Bacillus 

are Gram-positive, rod shape and facultative anaerobe bacteria with a remarkable life-cycle 

including generation of endospores in nutritionally limit environments (Cutting, 2011). Bacillus 

spp. spores ability to resist rough environmental conditions, surviving high temperature during 

the feed pelletization procedure, as well as tolerating extreme pH, dehydration, high pressures, 

caustic chemicals and long storage periods have made them suitable for commercialization and 

distribution as direct-fed microbials (Cartman et al., 2007).  Previously, our laboratory has 

screened and identified different Bacillus spp. isolates as DFM candidates for the production of 

exogenous enzymes (cellulase, xylanase, amylase, phytase, protease, and lipase). Moreover, we 

have demonstrated that the inclusion of cereal grains with a higher content of soluble NSP in 

comparison to corn increased digesta viscosity and C. perfringens growth. Nevertheless, the 

dietary inclusion of the selected Bacillus-DFM candidate in non-corn based diets significantly 

reduced both viscosity and C. perfringens proliferation when compared to control non-

supplemented diets (Latorre et al., 2015b). Additionally, chickens or turkeys fed a rye-based diet 
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without DFM showed an increase in bacterial translocation and digesta viscosity, accompanied 

by reduced bone mineralization; however these adverse effects were ameliorated by the inclusion 

of the DFM-candidate (Latorre et al., 2014b; Latorre et al., 2015a). Furthermore, it has been 

shown that Bacillus spores can persist and change their distribution according to the variable 

biochemical conditions of the GIT of broiler chickens; therefore, supporting the hypothesis of a 

possible full-lifecycle development in the gastrointestinal tract (Latorre et al., 2014a).  In the 

present study, supplementation with the Bacillus-DFM in a grower diet containing 8 % of DDGS 

improved performance parameters, bone quality, intestinal microflora balance and intestinal 

morphology, therefore supporting our previous results with poultry diets including alternative 

feed ingredients. Chickens that received the DFM in the grower-DDGS diet, increased the 

surface area of absorption in both duodenal and ileal intestinal sections, and this could be related 

to a more efficient utilization of the diet due to the production of exogenous enzymes by the 

DFM. It was also interesting to observed, that broilers receiving the Bacillus-DFM had a higher 

count of LAB in the foregut and hindgut intestinal sections.  Perhaps, the improvement in villi 

high and villi width was due to an elevated production of short chain fatty acids by LAB in the 

intestinal lumen.  On the other hand, the reduction of TGN bacteria, may also diminished the 

level of intestinal inflammation, therefore, enhancing epithelial integrity and nutrient absorption.  

In summary, the results of this study suggest that the dietary inclusion of a previously selected 

Bacillus-DFM based on in-vitro enzyme production profiles, could contribute to enhance 

performance, bone quality, and improve both intestinal microbial balance as well as epithelial 

morphology in broiler chickens consuming diets that contained a considerable percentage of 

DDGS.  Further studies to evaluate metabolomics and microbiome analysis as well as other gut 
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inflammation biomarkers in chickens fed with this selected Bacillus-DFM in different poultry 

diets are currently being evaluated.  
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Table 1. Ingredient composition and nutrient content of a corn-soybean starter diet and a corn-

DDGS-soybean grower diet used in all experiments on as-is basis 

 

Item Starter diet Grower diet 

Ingredients (%)   

Corn 57.34 56.68 

Soybean meal 34.66 27.05 

DDGS - 8.00 

Poultry fat 3.45 4.09 

Dicalcium phosphate 1.86 1.59 

Calcium carbonatea 0.99 1.03 

Salt 0.38 0.34 

DL-Methionine 0.33 0.26 

L-Lysine HCl 0.31 0.32 

Threonine  0.16 0.12 

Vitamin premixb 0.20 0.20 

Mineral premixc 0.10 0.10 

Choline chloride 60% 0.20 0.20 

Antioxidantd 0.02 0.02 

Calculated analysis   

Metabolizable energy (kcal/ kg) 3,035 3,108 

Crude protein (%) 22.16 20.73 

Ether extract (%) 5.68 7.11 

Lysine (%) 1.35 1.20 

Methionine (%) 0.64 0.57 

Methionine + Cystine (%) 0.99 0.91 

Threonine (%) 0.92 0.82 

Tryptophan (%) 0.28 0.24 

Total calcium 0.90 0.84 

Available phosphorus 0.45 0.42 

Determined analysis   

Crude protein (%) 21.15 20.30 

Ether extract (%) 6.05 6.78 

Calcium (%) 0.94 0.90 

Phosphorus (%) 0.73 0.69 
 

aInclusion of 106 spores/g of feed mixed with calcium carbonate. 
bVitamin premix supplied the following per kg: vitamin A, 20,000 IU; vitamin D3, 6,000 IU; 

vitamin E, 75 IU; vitamin K3, 6.0 mg; thiamine, 3.0 mg; riboflavin, 8.0 mg; pantothenic acid, 18 

mg; niacin, 60 mg; pyridoxine, 5 mg; folic acid, 2 mg; biotin, 0.2 mg; cyanocobalamin, 16 µg; 

and ascorbic acid, 200 mg (Nutra Blend LLC, Neosho, MO 64850). 
cMineral premix supplied the following per kg: manganese, 120 mg; zinc, 100 mg; iron, 120 mg; 

copper, 10 to 15 mg; iodine, 0.7 mg; selenium, 0.4 mg; and cobalt, 0.2 mg (Nutra Blend LLC, 

Neosho, MO 64850). 
dEthoxyquin. 
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Table 2. Evaluation of body weight (BW), body weight gain (BWG), feed intake (FI), feed 

conversion ratio (FCR), in broiler chickens consuming a Corn-DDGS-Soybean grower diet with 

or without dietary inclusion of Bacillus-direct-fed microbials (Experiment 1)c 

 

Item Control Bacillus-DFM 

BW, g/broiler   

d 0 47.2 ± 0.5a 47.5 ± 0.2a 

d 7 150.6 ± 3.2a 148.8 ± 1.2a 

d 28 1437.0 ± 14.4b 1484.0 ± 14.5a 

BWG, g/broiler   

d 0 to 7 103.4 ± 2.9a 101.3 ± 1.1a 

d 8 to 28 1286.4 ± 13.3b 1335.3 ± 14.1a 

d 0 to 28 1389.8 ± 14.3b 1436.6 ± 14.6a 

FI, g/broiler   

d 0 to 7 177.0 ± 6.4a 175.1 ± 7.3a 

d 8 to 28 2081.8 ± 19.8a 2052.3 ± 20.8a 

d 0 to 28 2212.6 ± 19.9a 2182.6 ± 19.6a 

FCR   

d 0 to 7 1.17 ± 0.02a 1.18 ± 0.04a 

d 8 to 28 1.62 ± 0.01a 1.53 ± 0.02b 

d 0 to 28 1.54 ± 0.01a 1.47 ± 0.01b 

 

a,b Means with no common superscript letter within a row differ significantly at P < 0.05 
c Data are expressed as mean ± SE. 
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Table 3. Evaluation of body weight (BW), body weight gain (BWG), feed intake (FI), feed 

conversion ratio (FCR), in broiler chickens consuming a Corn-DDGS-Soybean grower diet with 

or without dietary inclusion of Bacillus-direct-fed microbials (Experiment 2)c 

 

 

Item Control Bacillus-DFM 

BW, g/broiler   

d 0 39.7 ± 0.2a 39.9 ± 0.3a 

d 7 115.3 ± 1.7a 116.2 ± 1.5a 

d 28 1409.0 ± 7.9b 1444.0 ± 12.6a 

BWG, g/broiler   

d 0 to 7 75.6 ± 1.8a 76.3 ± 1.6a 

d 8 to 28 1294.1 ± 8.7b 1328.6 ± 12.1a 

d 0 to 28 1369.7 ± 7.9b 1404.8 ± 12.6a 

FI, g/broiler   

d 0 to 7 130.8 ± 3.2a 130.5 ± 2.3a 

d 8 to 28 1879.0 ± 10.2a 1838.0 ± 13.3b 

d 0 to 28 2010.0 ± 9.7a 1966.6 ± 13.6b 

FCR   

d 0 to 7 1.13 ± 0.01a 1.12 ± 0.02a 

d 8 to 28 1.45 ± 0.03a 1.38 ± 0.01b 

d 0 to 28 1.43 ± 0.02a 1.36 ± 0.01b 

 

a,b Means with no common superscript letter within a row differ significantly at P < 0.05 
c Data are expressed as mean ± SE. 
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Table 4.  Determination of total bacterial counts in the foregut and hindgut intestinal segments in broiler chickens consuming a corn-

DDGS-soybean grower diet with or without dietary inclusion of Bacillus direct-fed microbials (Experiments 2)c 

 

  Foregutd    Hindgutd  

Item TGBe LABe TABe  TGBe LABe TABe 

Control 4.70 ± 0.18a 5.19 ± 0.29b 5.24 ± 0.28a  6.76 ± 0.41a 6.10 ± 0.42b 7.14 ± 0.60a 

Bacillus-DFM 3.75 ± 0.17b 6.11 ± 0.19a 5.67 ± 0.49a  5.89 ± 0.49a 7.37 ± 0.04a 6.39 ± 0.61b 

 

a,b Different superscripts within columns indicate significant difference at P < 0.05. 
c Bacteria enumeration evaluated from 28 d-old broilers, n = 8/group 

Data are expressed as Log10 cfu/g mean ± SE. 
d Forgut: From duodenum to Meckel’s diverticulum, Hindgut: From Meckel’s diverticulum to ceca. 
e TGB: Total Gram negative bacteria recovered, LAB: Total lactic acid bacteria recovered, TAB: Total anaerobic bacteria recovered 

from different intestinal sections in each experimental group. 
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Table 5. Assessment of bone strength and bone composition in broiler chickens fed with a Corn-DDGS-Soybean grower diet with or 

without dietary inclusion of Bacillus direct-fed microbials (Experiment 2)c 

 

 

 

Item 

Load at break 

(kg) 

Tibia diameter 

(mm) 

Breaking strength 

(kg/mm2) 

Calcium          

(%) 

Phosphorus       

(%) 

Control 35.85 ± 1.47b 6.84 ± 0.21a 5.26 ± 0.02b 35.24 ± 0.10b 16.60 ± 0.30b 

Bacillus-DFM 42.88 ± 2.75a 7.14 ± 0.31a 5.99 ± 0.01a 39.26 ± 0.24a 20.83 ± 0.66a 

 

a,b Means with no common superscript letter within a column differ significantly at P < 0.05 
c Data are expressed as mean ± SE. Bone measurements evaluated from 28 d-old broilers, n = 8/group 
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Table 6.  Morphometric analysis of duodenum and ileal tissue in chickens at d 28 of age 

(Experiment 2)c 

Tissue Control Bacillus-DFM 

Duodenum   

Villus Height (µm) 337.20 ± 3.07b 457.24 ± 4.66a 

Villus Width  (µm) 40.07 ± 0.44b 44.43 ± 0.22a 

Crypt depth (µm) 64.07 ± 1.14a 55.23 ± 0.44b 

Area (mm2)d 42.38 ± 0.52b 63.95 ± 0.85a 

Muscular thickness (µm) 46.79 ± 0.82b 60.42 ± 0.40a 

VH:CDe 5.34 ± 0.06b 8.32 ± 0.11a 

Ileum   

Villus Height (µm) 140.88 ± 3.06b 166.90 ± 3.81a 

Villus Width  µm 33.91 ± 0.82b 39.62 ± 0.62a 

Crypt depth (µm) 46.88 ± 1.64a 38.59 ± 1.00b 

Areac (mm2)d 15.32 ± 0.59b 21.15 ± 0.73a 

Muscular thickness (µm) 34.86 ± 0.44b 43.16 ± 0.64a 

VH:CDe 3.02 ± 0.03b 4.55 ± 0.13a 

 

a,b Means with no common superscript letter within a row differ significantly at P < 0.05 
c Data are expressed as mean ± SE. Morphometric analysis evaluated from 28 d-old broilers, n = 

8/group 
d 2π × (villus width/2) × villus height (Sakamoto et al., 2000). 
e Villus height to crypt depth ratio. 
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IX. CONCLUSIONS 

 

In the series of studies evaluating and selecting different Bacillus spp. strains as DFM candidates 

presented in this dissertation, multiple mechanisms of action of this wonderful microorganism 

were investigated, including strain-specific features from different isolates, and feasibility of 

being used in large-scale commercial production conditions with different poultry diets. 

Determination of the endospores’ behavior and distribution in the GIT of chickens was crucial to 

provide support to following research. It was observed that approximately 90% of the spores 

included in the diet germinate in the GIT, suggesting that spores become metabolically active 

vegetative cells in the intestinal lumen, providing a different set of benefits such as production of 

microbial compounds and enzymes. Additionally, the persistence of spores in the GIT following 

a single gavage dose was much longer than the estimated half-life based on gut passage time, 

suggesting that some full-life cycle development occurs within the GIT. The number of spores 

variates in each gut section, showing a higher germination rate in compartments like the crop, 

and an increase in the sporulation rate in the ceca. This could reflect different phases of the live 

cycle preparing a new generation of bacteria to exit the host and remain viable in the 

environment as endospores. Moreover, these results confirm that Bacillus spores are transiently 

present in the GIT of chickens, but the persistence of vegetative cells is presently unknown. 

Therefore, to obtain a prolonged benefit in poultry performance parameters, continuous 

administration of selected Bacillus spp. strains as DFM is advisable.   

Screening and selection of Bacillus isolates is an exhaustive process that depend on the purpose 

the DFM is going to be used. Not all Bacillus bacteria are the same, even within the same species 

there are individual differences that could affect the capacity to produce variable amounts of 

antimicrobial compounds, enzymes, and biofilms or immunomodulatory effects in the host. In 
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the case of enzyme production, from 31 different isolates 3 were selected as superior enzyme 

producers of amylase, protease, lipase, cellulase, xylanase, and phytase. However, it is important 

to mention that the three selected Bacillus isolates were mixed in equal proportions (1:1:1) to 

conform the final DFM-candidate. Furthermore, the previously selected DFM during an in vitro 

study showed to reduce digesta viscosity, C. perfringens proliferation and also survive different 

simulated biochemical conditions of various compartments of the GIT (Crop, proventriculus and 

small intestine) using poultry diets based on multiple high NSP cereals as principal source of 

energy.  

On the other hand, inclusion of the Bacillus-DFM candidate in a rye-based diet fed to turkey 

poults showed an impressive reduction of the detrimental antinutritional effects reported in diets 

with an elevated content of arabinoxylans.  The group of poults consuming the DFM had a 

significant decrease in digesta viscosity, as well as in the number of bacteria translocated from 

the intestinal lumen to the liver in comparison to control, suggesting an improvement of gut 

epithelial integrity related to the capacity of these selected strains to produce xylanase and 

antimicrobial agents to control bacterial overgrow and presentation of intestinal inflammation. 

Therefore, supplementation of high NSP diets with the DFM-candidate resulted in enhanced 

intestinal physiological conditions for absorption of nutrients, improving bone quality parameters 

and growth performance.  A similar outcome was observed in a series of trials conducted with 

broiler chickens consuming rye-based diets, where the inclusion of the Bacillus-DFM reduced 

digesta viscosity, bacterial translocation, and total recovered Gram-negative bacteria as well as 

total recovered anaerobic bacteria in the duodenum. Decrease digesta viscosity in diets 

containing a higher concentration of soluble NSP is a key factor to increase performance 

parameters, because in a viscous intestinal environment the interaction of endogenous enzymes 
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and the intestinal content is limited and inefficient. Additionally, the lower passage rate and 

oxygen tension can benefit growth of enteropathogens such as C. perfringens resulting in the 

presentation of intestinal diseases such as necrotic enteritis. Hence, incorporation to the 

ingredient matrix of a feed additive taking advantage of already know benefits of probiotics on 

gut health and also their ability to improve nutrient utilization through synthesis of exogenous 

enzymes could be a new approach to maintain performance standards in diets without AGP. 

Due to a continuous interest in renewable energy sources, the biofuel industry has been steadily 

expanding. Consequently, corn utilization has been changing from the feed to the ethanol 

industries, having as a result high availability of by-products such as DDGS that are increasingly 

being included as raw materials in livestock diets. The impact of the inclusion of the selected 

DFM-candidate was evaluated in grower diets containing 8% DDGS and showed a constant 

improvement of growth performance parameters, making broilers more efficient in the use of this 

alternative ingredient.  Bacillus-DFM supplementation enhanced bone quality and increased the 

number of LAB in the foregut and hindgut intestinal sections. Additionally, it was observed a 

significant development of the intestinal epithelia with a higher villus area of absorption that 

could be related with more production of short chain fatty acids in the gut lumen. 

The compilation of studies of this dissertation confirm that poultry diets supplemented with 

Bacillus endospores from isolates selected based on in vitro enzyme activity could contribute to 

enhance intestinal physiological traits, improve nutrient absorption, increase bone quality, and 

help to maintain a healthy microbial balance. At the end, resulting in more efficient performance 

parameters in poultry when consuming diets that contained considerable percentages of 

alternative and/or conventional feed ingredients. 
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