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CHARACTERIZATION OF THE BIVARIATE NEGATIVE
BINOMIAL DISTRIBUTION

James E. Dunn

INTRODUCTION

The univariate negative binomial distribution (also known as
Pascal's distribution and the Polya-Eggenberger distribution under vari-
ous reparameterizations) has recently been characterized by Bartko
(1962). Its broad acceptance and applicability in such diverse areas

as medicine, ecology, and engineering is evident from the references
listed there. On the other hand, the corresponding joint distribution,
the bivariate negative binomial, seems to have received only negligible
attention with the principal applications having been made in studying
accident proneness, c.f. Arbous and Kerrich (1951), Bates and Neyman
(1952).

In trying to trace the history of this distribution, one becomes
aware that no comprehensive study of the distribution apparently exists;
in the context where it occurs, it appears as an intermediate step to
some other result. Hence, the purpose of this paper is two-fold. First,
it will be desirable to compile a list of properties which characterize
the distribution. It is hoped that this availability willmake it easier for
applied scientists to examine their research for new applications of the
bivariate negative binomial distribution. Second, since the estimation
problem must certainly arise in applications, some new results, in
particular the maximum likelihood (ML) solution, will appear here.

BIVARIATE PROBABILITY GENERATING FUNCTIONS

It is well known that use of probability generating functions
provides a powerful tool in revealing properties of probability distribu-
tions. For example, one may consult Bailey (1964) or Feller (1957) for
excellent discussions of their characteristics in the univariate case. How-
ever, it seems worthwhile to review some of their basic properties in
the bivariate situation.

Definition: Let X, Y be jointly distributed, non-negative, integral
valued random variables. If Pr{x«x, Y-y}¦ p then the associated
bivariate p.g.f. is defined to be the power series transformation.

o(z
i'z*] ¦ LLv<* (l)

Theorem 1: The univariate p.g.f. for the marginal distribution of
X is given by ox

(z)
-

G(z, l); the univariate p.g.f. for the marginal
distribution of Y is given by o (z)

-
o(l, z).

y

Note that either z
\

op Z2, corresponding to X, or Y, is set equal
to 1 and the subscript is dropped from the remaining Z.
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Theorem 2: Let W = X+ Y define a new random variable. The
univariate p.g.f. for the marginal distribution of the sum W is
ov

(z) • o(z, z).

Theorem 3: Given a bivariate p.g.f.
°*zi» zz}, the terms of the

corresponding distribution {p } may be obtained as

Pqq
-

0(0, 0) ifx
-

y
-

0

p

_
»X+y G(Z

lt Z2
) Ifx>0 or y>0

8Z* 3Z* Zx
-

Zg

-
0

xl yl

Theorem 4: We define the joint r,s factorial moment by

"(r ¦]

-
Etx< x

-
1) ••• (X-r*l)Y(Y-l)... (Y-x*l)>

where E denotes the expected value operator. Then

v,,
-!l'!VV

3Z, 3Z h
" Z2

-
X

1""2
Proofs of these results follow by direct application of the indicated
operations to the definition of the bivariate p.g.f.

BIVARIATE NEGATIVE BINOMIALDISTRIBUTION

Since we shall need to make frequent references to the univariate
negative binomial in what follows, we state the following:

Definition: We say that a non-negative, integral valued random
variable V has a (univariate) negative binomial distribution if for
parameters

A>0, O<P<1

Pr{V«v>
-

Pr

-
(1-P)A

ift-0

(1-P) A A(A-»l)...(A»v-l)PT ifr>0 (2)
v!

It is easily verified that the mean and variance in this case are
respectively

E<V)
-
gl , rar(V>

-
jgp (3)

The associated univariate p.g.f. is, by definition

wl>r**-m" (i*)

Feller (op. cit.) gives the following

Definition: We say that non-negative, integral valued random
variables X,Y have a bivariate negative binomial distribution if their
joint p.g.f. is

(5)

where
a. Po. Px,P2>0; Pq+Pj+P,,

-
1 (6)
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Applying theorem 3, we obtain terms of the distribution directly
p00 p0 x terms y terms

p» (-a )(-a-1)...(-a-xfl)(
-
Pl)

x(-a-x)...(-a-x-y*l)(-p2
)y

Pxy
"

«iyi (i-Vlzx-p2z2 )*+x+y
W<>

a a(a+l)...(a»x+y-l) p x pjf ifx 4 0 or y + 0
P0
'

xlyl
-
1 _.^
9^" G(Z,, Z.)

(7)

Since the general expression for appears as an inter-

mediate step in obtaining (7), we can apply theorem 4 directly to
obtain the joint r,s factorial moment, viz.

njr>l]

-
.(**l)...(a*r+8-l)(p

1/p0
)r(p

2
/p

0
)"

Marginal Distributions

(8)

Applying theorem 1 and recalling that Po
-

i-Pj-^, we obtain the
p.g.f. for the marginal distribution of X as

•.««••'••« {te*^"pfej
which, by identifying P "~j^r and A = a, is identical with (4). Itl-p2
follows from the uniqueness of the p.g.f. that the marginal distribution
of X is negative binomial with respective mean and variance,

E<X)
-

ap^ ,Yar(X)
-

ap^p^) (9)

P0 2
P0

and probability distribution given by

I l-p2I Il-p2
/ (10)

By symmetry of Piziand 1>2Z2 in (5), it follows immediately that
the marginal distribution of Y is also negative binomial with

P0 Po
2

(ll)

and probability distribution given by

Pr(Y-y) -/p0 Ya(a-»l)...(a»y-l) / P2 Y Ify>0 (12)

The marginal distribution of the sum W = X + Y is equally simple
since from theorem 1,

v> -•<•.•> -£S$.T
which, by identifying p

-
Pi*vz aBi A " a, is again identical with (4).

Hence, this marginal distribution is also negative binomial with respec-
tive mean and variance
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E{W>
- *—S- , var<W)

-
±5-^-

P0
2

and probability distribution
Pr(W-O)

-
(l-Pl-p2

)a
-

p0

'

PHW-v)
-

pQ
2 a(^l?;;-(a^-l) (pi+p2)k u v>0

The existence of these three derived distributions is well-known, cf.
Feller (op. cit.) but it is interesting to see their explicit functional forms.

Covariance and Correlation

Bivariate and multivariate distributions possess an additional inter-
est over their univariate analogues inasmuch as they allow characteriza-
tion of the association between random variables. Setting r = s = 1
in (8), we easily obtain

a(a+l)p p
E(XY)

-
P0

from which, by definition, the covariance and correlation between X
and Y are respectively

corCX.Y)
-

E(XY) -E{X)E(Y)
-

P0
(13)

corr(x
-
Y) " (ytIx). ¦((p o*p1

)(po*p2
) /

where means and variances of X and Y are given in (9) and (11).
Obviously 0<corr(x,Y)<l Wnere the lower bound is attained if Pj"O or p2»0

and the upper bound by setting P0"0.

Conditional Distributions

Since conditional distributions form the theoretical basis of all
regression analyses, it is informative to examine these properties in the
special context of the bivariate negative binomial distribution. By

definition, the conditional probability that Y = y given that X =: x,

written Pr{Y"y|x-x), is

¦***!*«> -^^feS61
Hence, by taking the ratio of (7) and (10) and simplifying, one obtains
the familiar expressions

Pr<Y-O|X-x>
-

(l-p2
)a4*

<!«•>
Pr(Y-y|X-x)

-
(l-p,.)***(a+»Xa-f«*l )...U*x+r-l) p/ Ify>0

i.e. the conditional distribution of Y is negative binomial. By identifying
P"P2 and A»a+x in (2), it follows immediately that the conditional mean
and variance of Y are respectively

E{Y|X-X)
- Pg<«««>- .»P2 +/Pg \ (15)

3^J- i-p
2 [x^-j

r«r{Y|x-x)
-

P2
(a*x)

(ig)
(1-P2

)2
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with p.g.f. given by

W z) lE^f/ CiT)

By symmetry of X with Y and Pj with P2, it follows that the
conditional distribution of X given Y = y is also negative binomial with

Pr{X-O|r-y)
-

(l-p^**7 (18)

Pr(X-x|r-y)
-

(1-Pl)
a4y (a*y)(a-*y+l)...(»«r*»>l)p1

x z>0

xi
with

E{X|Y-y}- Pl(a^> -!El_*/!L_)y (19)
i-px i-px v i-px

y *

rar{X|T-y>
-

p
l(a4y) (20)

(X-p/
0,1,(8) -l^h-)"7

(21)
X|y (i-Plz/

Arbous and Kerrich (op. cit.) were aware of the nature of these condi-
tional distributions but their rather cumbersome notation involving
several exponential terms gives a foreboding appearance to inherently
simple formulae.

Expressions (15) and (19) are fundamental to regression analysis

inasmuch as they provide the classical prediction models, i.e. regression
of the mean for y given x and for x given y respectively. In each
case, they are written in two forms to emphasize the linearity of the
conditional mean on the conditional variable. Under these conditions,
as Meyer (1965) points out, we might equivalently have written

E{T|X-x>
-

E(Y) «• cov(X.Y) . (x-E{X>)
Tar(X)

and

(22)

E{x|Y-y)
-

E{X) ? coy{X.Y> . (y-E{Y}),
Tar(Y)

(23)

these relations being easily verified by substituting the results of (9),
(11), and (13) in the above expressions and comparing the results to
(15) and (19).

Intuitively, one might suppose that since expressions (22) and (23)
hold for the bivariate normal distribution, c.f. Fraser (1958), and also,
as we have shown, for the bivariate negative binomial, that they hold
for all bivariate distributions. Meyer (op. cit.) gives several counter

examples. In actual fact, one must verify in each case, as we have
done, that these regression models are linear. Of course, in the
process, we have revealed the salient feature that each of the condi-
tional distributions is univariate negative binomial.

ESTIMATION

The existence of the regression models shown in (15) and (19)
immediately suggests the practical question of trying to estimate the
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unknown parameters of the models from experimental data. In what
follows, let us suppose that x\> X2* y2;*";xn* y

n is a random sample
of n pairs drawn from a common bivariate negative binomial distribu-
tion. The immediate problem is to estimate p0> Px. »2, and a defined
in (5), (6), and (7).

Graphical Solution

(a) Plot y as a function of x. Draw a "sight line" (or fit by least
squares). Call it y = G + Hx.

(b) Plot x as a function of y. Draw a "sight line" and call it
x = K + Ly.

(c) Equating the constants of these fitted lines to their equivalents
in (15) and (19), i.e. estimated intercepts to theoretical inter-
cepts, etc., and solving for the unknowns yields estimates

*¦¦& *
2 -lfe (»>

& -(1-^jK or a
-

(1-P2
)G (25)

*1 *2
*0 "!"V*2

Moment Estimation

Let
n n n

mx mIxt
• "

y ¦ I*« Bxv
" IVi

!¦! T 1-1
1

1«1 1 1

n b a

(26)

Equating these sample moments to their population equivalents
e(x), e(y), e(xt) given previously and solving for the unknowns, we
obtain the moment estimators

m -m m "l a+m +m (27)

Arbous and Kerrich (op. cit.) used moment estimates in their
example. However, a profusion of exponential terms makes their
expressions look formidable compared with those given above.

Maximum Likelihood Estimation

Suppose x-o "d Y-o for nQ pairs of observations and that either
x»»o or Yj«o for the remaining n-»»0"r pairs of observations. Using (7), the
joint likelihood function is

L(a
1

,p
1,p2

)-(l-p
1-p2

)na -p Pl
xip

2
yia(a*l)¦..(a+x^-1)

where the product involves only those pairs where either xi*°or *i*0 •

The maximum likelihood (ML) estimators are those values of »• Pi» P2
which maximize L(«t px,p

2
) or equivalently in L(a,p1$p2). We obtain
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31nL u -na
9p
l 1-'l-P2 ?!

31nL m -na
3p2 1-Pl-P2 P2

-j^-

-
n ln(l-Pl-p2

) + [ [ (a+j-1) x

Equating each of these to zero, we obtain the ML estimators as
«

- "* • -. my
pl &-HI1 -nn P2 a-mi +ra

(28)
x y x y

where a is the positive solution of

tU) -*la(l^)+1,1^^-^-0 (29)

Newton's iteration 4^ ¦ 4. k is useful in solving (29) where

f'(*) * x y II (-+. ,\-2 and either moment estimates or the
a(a-HB

x-fa ) i-1 j-l *»*J-i
'

graphical solution may be used as a starting point of the iteration.

If

adipj+rpjj) anR ¦ n
P0

¦ym. a(np
2
+rp

Q
) n

P02
p

0 J

; k r(a+k)(P;L +p2
)
k

¦4 1-1 r(.)r(ktiKa.M)2
'the as ymPtotic variance

-
covari "where Jmr^o I

ance matrix for the ML estimators is given by

Having shown the feasibility of the ML solution, we are then in
a position to suggest tests of hypothesis based on Wilks' (1962) likeli-
hood ratio criterion. For example, suppose we wish to know if the
means of X and Y are identical. Formally, hq: e(x)

-
e{y) where the

logical alternative is V E
*x>'< e(y>. But from (9) and (11), we see that

Ho is true only ifpi"p2 . Hence, the hypotheses may be restated as
Ho:p
i

"
P2* Hi:p

i
*

V We have already indicated in (28) and (29)
the ML solution in the unconstrained parameter space under n

1. Let
1.(4, pj, p

2
) denote the value of the likelihood function at this solution.

In the constrained parameter space where Ho is true, i.e. where
pi"p2Mp sa Y/ after equating derivatives to zero we see that the likelihood
function is maximized by choosing

«_?«. (30)a. * y
P 2(i-nn -HH )

y y
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where a* again is the positive solution of (29), i.e. & and 6* are identical.
From (30), we see that

. >1**2
P "

2

i.e. simply take the average of the estimates of t± and P2 • Let L(£,$,j)
be the value of the likelihood function at this solution. Wilks' likelihood
ratio procedure suggests that when HQ is true, test statistic

T
-

-2 ln[L{i,p,i)/l.(».,tx,P2
)] (31)

has an asymptotic chi-square distribution with one degree of freedom.
p

Hence, reject h at the o-level of significance of T>x (jjj^.

Example

Table 1 gives data reproduced from Arbous and Kerrich (1951)
involving accident proneness of 122 experienced railroad shunters. The
columns (y) refer to the number of accidents suffered by an individual
in the 6 year period 1937-42; the rows (x) refer to the number suffered
in the following 5 years 1943-47. Table entries indicate the number
of individuals suffering a particular combination of accident rates.

Table 1: Accidents among 122 experienced railroad shunters (25
years experience), from Adelstein (1951).

1937-42 (6 years)

10
l2 3 U 5 6

0 21 18 8 2 1 0 0 50
1 13 ll» 10 1 1* 1 0 1*3
2 U 5 <• 2 1 0 1 IT

19l»3_li7 3 2132010 9•» 0011000 2
5 0000000 0
6 0000000 0
7 I 0 1 0 0 0 0 0 I 1

U0 39 26 8 6 2 1 122

Table 2 gives estimates of *• po f p
iand p

2 obtained from the pro-
cedures just obtained. In the graphical solution, we actually fitted ihe
regression of x on y and y on x by least squares as an intermediate
step and obtained

y
-

0.9857U ? 0.29193 x (32)

x
-

0.67986 ? 0.23263 y

Table 2: Comparison of estimates by three methods.
po pi

p
2

Graphical 0.58531 0.18873 0.22596 2.922U2
3.37671

Moment 0.59505 0.17587 0.22908 3.30023

Maximum 0.60361 0.17215 0.22l»23 3.1*2002
Likelihood
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Two estimates of a result from the graphical solution as indicated
in (25). No clear guide for choosing one over the other is evident.
Moment and ML estimates are in close agreement, though from our
knowledge of estimation problems in the univariate case, we suspect
that this may be a coincidence, that in fact the two estimation pro-
cedures may lead to quite different estimates depending on the actual
values of the parameters. Usually the ML estimates are more efficient;
i.e. smaller variances, and hence are preferred where available.

Since the invariance principle holds for our ML estimates of *•Po'
p
l*P2* we obtain MLestimates of various functions of these parameters

directly by simply replacing parameters with the corresponding esti-
mates. Estimates of some of the more interesting functions are shown
in table 3.

Table 3. Maximum Likelihood Estimates of Various Functions
Function Estimate
E{X> 0.97539

var{X) 1.25357

e<y> 1.270147

var{Y) 1.7U2143

cov(X,Y) 0.3623U

corr U.Y) 0.77529

E{y|x»x} 0.98853 ? 0.2890ltx

E{x|y-y} 0.71119 ? 0.2O795y

E{Y|X-2) 1.56666

E{X|Y-2) 1.1271

The ML estimates of the regression lines may be compared with the
corresponding least squares estimates given in (32). The discrepancy
does not look too serious for most purposes.

To test Ho: ***}¦E(Y)
/ we calculate the following quantities:

-InLU.i^.fig)
-

-3I41. 77^95

f>
-

0.19819

-In L(i,§),§>)
-

-132l»5.082

T ¦ 25807.

Since Pr{X/
1j>25flO7}<io~5, we conclude that there is strong evidence of a

location shift in accident frequency from Y (1937) to X (1943-47).

Examination of the estimates in table 3 suggests the shift is e{Y)>e(X),

i.e. the over-all rate of accidents has been reduced. One might suspect

that new safety innovations may be responsible for this change.

SUMMARY

So far as the author is aware, the bivariate negative binomial is
the only joint distribution other than the bivariate normal in which both

85

Journal of the Arkansas Academy of Science, Vol. 21 [1967], Art. 17

Published by Arkansas Academy of Science, 1967



86

Arkansas Academy of Science Proceedings

marginal random variables, both conditional random variables, and
the sum of the random variables all have a common probability distribu-
tion, namely the univariate analogue of the bivariate distribution. We
have shown that the correct models for regression of the mean are
linear in both cases and have indicated a choice of estimation pro-
cedures. In addition to the indicated test for shift in means, one would
still like to formulate a likelihood ratio test for independence. Though
the test seems plausible, the method of approach is not evident.
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