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 Abstract 
 
Context: Cardiovascular disease (CVD) is one of the leading causes of mortality in the United States, 

accounting for about 1 in every 4 deaths annually. Studies have shown that passive heating does have 

some degree of effect on arterial stiffness, but not much is known about populations with higher stiffness. 

Objective: To examine the independent effect of core temperature increase during passive heating on 

arterial stiffness. Methods: Participants visited the lab three times; one familiarization and two 

experimental trials. The experimental trials consisted of subjects being passively heated in an environment 

of 40°C / 40% relative humidity (HEAT) or normal laboratory conditions (CONTROL). Participants were 

48.9 ± 12.0 years old of age, 66.7± 12.6 kg, 168.2 ±8.8 cm, and 7.7 ± 2.0 m/s central pulse wave 

velocity. Main Outcome Measures: Before and after passive heating, pulse wave velocity (PWV 

measures occurred via ultrasound at the tibial, radial, femoral and carotid artery sites). At the same time, 

rectal temperature (Trec) was measured. Trec was measured with rectal thermistors; differences between 

trials confirm the changes that occurred as a result of environmental conditions. Central arterial stiffness 

was assessed by using measures between the carotid and femoral artery sites, while peripheral stiffness 

was assessed using the radial and tibial artery sites. The radial site was used for upper peripheral arterial 

stiffness and the tibial site was used for lower peripheral arterial stiffness. Results: Trec at the end of 

passive heating showed significant differences between the CONTROL and PASSIVE HEAT trials 

respectively (36.53 ± .16 vs. 38.14 ± .49°C; p < 0.001). There were no interactions (p>0.05) between time 

and condition for central pulse wave velocity (∆ 1.83 ± 50.44 vs. 3.25 ± 67.34 cm/s; for control and 

passive heating respectively), upper peripheral (∆ 51.50 ± 60.87 vs. 92.77 ± 82.81 cm/s), and lower 

peripheral pulse wave velocities (∆ 46.99 ± 68.55 vs. 23.70 ± 156.67 cm/s). Conclusions: The findings of 

this study indicate that differences in mean body temperature do not result in significant decreases in 

arterial stiffness following passive heating in individuals with poor arterial stiffness at baseline. 
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Introduction 
 
 Cardiovascular disease is among the leading killers in the United States causing close to 600,000 

deaths per year, which comes out to about 1 in 4 deaths (CDC, 2015). This disease is extremely costly in 

regards to medical expenses and insurance costs, and those costs are estimated at 109 billion dollars 

each year (CDC, 2015). High blood pressure (i.e., hypertension), high LDL cholesterol, and smoking are 

three of the primary risk factors in regards for cardiovascular disease, and around half of Americans 

(49%) have at least one of these risk factors (CDC, 2015). Hypertension is one of the more costly risk 

factors of cardiovascular disease, and it is often preceded by increased arterial stiffness (O’Rourke. 

1990). For example, when rats received a high fat / high-sucrose diet (HFHS) they developed an increase 

in arterial stiffness that preceded hypertension by 5 months (Weisbrod et al. 2013). Therefore, as a 

precursor to hypertension, arterial stiffness may be a more precise indicator of arterial health, and 

evidence suggest that it can more accurately predict cardiac events than blood pressure alone (Duprez et 

al. 2007).  

 There have been many solutions for hypertension and arterial stiffness, one of which is exercise. 

The cardiovascular response to exercise has been well documented to decrease the risk of 

cardiovascular disease through decreased arterial stiffness (Manson et al.1999). As an individual 

exercises the blood vessels throughout the body undergo vasodilation and this allows greater blood flow 

to the muscles. Exercise has been shown to decrease both leg and central arterial stiffness in acute bouts 

of exercise (Kingwell et al. 1997).  One of the hormones that control the vasodilation response is nitric 

oxide. Nitric oxide has also been seen to play a major role in arterial compliance (Bellien et al. 2010). 

With these findings it is reasonable to conclude that exercise causes the release of nitric oxide and 

therefore increases arterial compliance.   

 Although physical activity is very effective for decreasing arterial stiffness, it may not always be 

possible because of health risk factors or mobility impairments. Therefore alternatives to exercise should 

be investigated. Another mode of decreasing arterial stiffness is through passive heat stress. Preliminary 

studies conducted by our laboratory have looked examined the effect of passive heat stress on arterial 

stiffness and provide several justifications for the current study (Ganio et al. 2011; Moyen et al. 2013). In 

the first study healthy individuals were passively heated to 1.5°C increase in core temperature. Arterial 
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stiffness was measured with pulse-wave velocity at 0.5,1.0, and 1.5°C above baseline core temperature. 

As a group, average central and peripheral arterial stiffness did not change from baseline during the 

protocol, but correlation analysis showed that individual changes in both central and peripheral pulse-

wave velocity were dependent on baseline stiffness (Ganio et al. 2011). It was found that individuals with 

the highest baseline stiffness showed the greatest decrease in arterial stiffness. (Ganio et al. 2011). A 

follow-up study confirmed this relationship in smokers, such that independent of smoking status, 

individuals with higher baseline stiffness had the greatest decreases in stiffness when heated (Moyen et 

al. 2013). These studies imply that passive heating may only be effecting in reducing arterial stiffness in 

individuals with poor stiffness. Therefore future studies should perform baseline stiffness screening when 

using passive heating.  

This study examined the effects of passive heating on arterial compliance in men and women 

ranging from 35-60 years old who have been screened and selected for enrollment due to “poor” 

stiffness. The data from the previous studies in our lab indicate that individuals with poor stiffness 

respond more drastically to being passively heated (Ganio et al. 2011; Moyen 2013). With this in mind it 

seems pertinent that a study be conducted on a population of people that have been screened for poor 

stiffness to see the extent of their response to passive heating. Also, we will only be including 

postmenopausal women. The basis for these exclusion criteria is results that indicated that menopause 

augments the age-related increase in arterial stiffness and that endothelial function in women during their 

menstrual cycle is highly varied (Zaydun et al. 2006; Williams, 2001).  

The purpose of this study was to examine the effect of passive heating on reducing arterial 

stiffness. This study will test the hypothesis that passive heating will decrease arterial stiffness in men 

and women 35-60 years old who have poor baseline arterial stiffness.  

Methodology 

Participants were 5 men and 4 women ranging from 35-65 years of age, who had no medical 

illness, and are not currently on drugs that affect fluid balance. They abstained from alcohol and caffeine 

on lead-in and testing days, and had a body mass index of 23.40 ± 2.95 kg/m2. Participants reported to 

the Human Performance Laboratory (HPL) in the Department of Health, Human Performance and 
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Recreation at the University of Arkansas for all testing. Prior to enrolling, participants signed an 

institutionally approved Informed Consent document that abides by the Declaration of Helsinki.  

For familiarization, participants reported to the Human performance lab (HPL) and were walked 

through the informed consent document and the study procedures in detail. During the same visit, 

participants completed medical history and physical activity questionnaires. Measures of arterial stiffness 

via Doppler ultrasound (see below) were then taken. Only those with an arterial stiffness that was 

measured at 6 meters per second or greater were included in the study (Ganio et al. 2011). All 

participants had their body composition measured using Dual Energy X-Ray Absorptiometry (DXA). 

For participants that qualified based off the criteria above, they then performed an exercise test to 

determine maximal oxygen consumption (VO2 max). This was performed on an electronically braked 

cycle ergometer (Racermate Veletron, Seattle, WA) with nose clips attached while breathing in room air 

and exhaling into a mouthpiece connected to a metabolic cart (Parvo Medics' TrueOne® 2400, Sandy, 

UT). Exercise started at ~50 watts (W) and increased 25 W every 2 minutes until volitional exhaustion. 

Every 2 minutes and at exhaustion, heart rate (HR) and rating of perceived exertion was measured. 

Participants then took part in separate trials (passive heating, and control [no heating]) that took 

place in a randomized order separated by a minimum of 72 hours. Participants refrained from alcohol and 

exercise 24 h, caffeine 12 h, and food 4 h before each trial. Pre-test compliance was verified with a 24-

hour history questionnaire. Prior to each visit, fluid intake was encouraged by having participants 

consume an additional 500 mL (~16 oz) of water the night before testing and 2-3 hours prior to arrival.  

   The passive heating protocol was as follows. Body mass was measured and a urine sample 

was provided and used to determine hydration status. During this time, participants were asked to insert a 

thermocouple 16 cm beyond the anal sphincter in a private bathroom for measurement of core body 

temperature (Trec). 

.    Participants were then instrumented with an automated sphygmomanometer (Tango+; SunTech 

Medical, Inc., Morrisville, NC, USA) for Heart rate (HR), Blood pressure (BP), and for skin temperature 

(Tsk) (iButtons, Maxim Integrated, San Jose, CA). Participants were then dressed in a water-perfused, 

tube-lined suit that covered the entire body, except the head, face, hands, and feet (Allen-Vanguard 

Technologies). The suit permitted the control of skin and core temperature by changing the temperature 
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of the water perfusing the suit. Participants laid in a supine position on a padded table for approximately 

15 minutes prior to baseline measures of arterial stiffness by Doppler ultrasound. 

    After this resting period, participants were then exposed to passive heat stress (Passive Heating) 

trial by perfusing warm water (49°C; experimental trial) or room temperature water (34°C; control trial) 

through the suit. During this time, measures of VO2, HR, and BP were recorded. Measurements of Trec 

were continuously recorded during the trial via rectal thermocouple (RET-1, Physitemp, Clinton, NJ) and 

Tsk data were continuously collected during the trial then downloading after the trial via the skin 

temperature probes (iButtons, Maxim Integrated, San Jose, CA). Mean body temperature was calculated 

from the Burton formula (.64rectal + .36skin).  For the experimental trial, heating continued until a 1.25°C 

elevation in rectal temperature was achieved (experimental trial; ~1:00 h). For the control trial, 

participants laid down for ~50 minutes. Participants remained in the supine position and were allowed to 

cool off (Passive Heating) by removing the water perfused suit (Allen-Vanguard Technologies) and 

moving them from the environmental chamber, which was kept at 40°C and 40% humidity throughout the 

trial, back to the lab conditions baseline was recorded in and, or lie for another hour (control). Measures 

of arterial stiffness were taken immediately post heating and every 15 minutes for 60 minutes using 

Doppler ultrasound. During this time, measures of VO2, HR, Trec, Tsk, and BP were also recorded. 

Following completion of these measures, participants then voided their bladder into a collection container 

and a nude body mass measure was obtained, and the thermocouple was then removed in a private 

bathroom.   

Statistical analysis: A two-way repeated measures analysis of variance (ANOVA) with appropriate 

follow-up tests was used to examine differences in arterial stiffness between experimental condition and 

time (condition x time). Alpha will be set at 0.05.  When Mauchy’s test of sphericity was violated the 

Greenhouse-Geiser correction was utilized. If there was a significant interaction a pair-wise comparison 

with a Bonferroni correction was used.  

Results 

Participants included five male subjects and four female subjects. Subjects were individuals who 

were 48.9 ± 12.0 years of age, 66.7± 12.6 kg, 168.2 ±8.8 cm, a VO2 max of 34.6 ± 10.34 ml/kg/min, and 

7.7 ± 2.0 m/s central pulse wave velocity 
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 Heart rate was significantly increased (Figure 1) in comparison to control at immediate post 

heating (p = 0.003); control and passive heating respectively, 15 min post heating (p = 0.014), 30 minutes 

post heating (p < 0.001), and 45 minutes post heating (p = 0.017). VO2 was significantly increased at 

baseline for both trials 3.20 ± .81 vs. 2.55 ± .42 ml/kg/min; for control and passive heating, respectively, 

(p = 0.049) and 50 minutes into passive heating 3.46 ± .78 vs. 2.64 ± .63 ml/kg/min; for control and 

passive heating, respectively, (p = 0.001). 

 Mean arterial pressure was only significantly decreased (Figure 2) in comparison to control at 

immediate post heating (p = 0.020) and 15 minutes post heating (p = 0.022). Rectal temperature was 

significantly higher (Figure 3) at each time point after the initial baseline measure: immediate post heating 

(p < 0.001), 15 minutes post heating (p <0.001), 30 minutes post heating (p < 0.001), 45 minutes post 

heating (p < 0.001), and 60 minutes post heating (p < 0.001). Mean skin temperature was significantly 

higher (Figure 4) at immediate post heating (p < 0.001), and 15 minutes post heating (p < 0.001). Mean 

body temperature was significantly higher (Figure 5) at each time point after the initial baseline measure: 

immediate post heating (p < 0.001), 15 minutes post heating  (p < 0.001), 30 minutes post heating (p < 

0.001), 45 minutes post heating (p = 0.005), and 60 minutes post heating (p = .031). 

 There was no significant interaction between condition and time (p>0.05) for any measures of 

arterial stiffness (Figures 6-8) indicating no effect of passive heating on central or peripheral stiffness. 

There was no main effect of time or condition (p > 0.05) on lower or central pulse wave velocity. However, 

there was a main effect of condition on upper peripheral pulse wave velocity (p = 0.015). Further, there 

was a main effect of time on upper peripheral pulse wave velocity (p < 0.001); pairwise comparisons 

revealed significant decrease in pulse wave velocity for immediate post measurement (728.83 ± 25.88 

vs. 656.7 ± 23.49 cm/s; for baseline and immediate post, respectively, p = 0.028).  

 Three Pearson product-moment correlations were run to determine the relationship between 

normothermic baseline pulse wave velocity and changes in pulse wave velocity.  There was a moderate, 

negative correlation between normorthermic baseline central pulse wave velocity and the changes in 

central pulse wave velocity (r=−0.51, p< 0.001). There was a moderate, positive correlation between 

normothermic baseline peripheral pulse wave velocity for both upper peripheral (r= 0.43, p= 0.003), and 

lower peripheral (r= 0.47, p= 0.001). 
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Discussion 

 Previous studies have indicated that there may be a significant change in arterial stiffness with 

passive heating in individuals that have a higher than average baseline (i.e., normothermic) arterial 

stiffness (Moyen et al. 2013). The purpose of this study was to examine the effect of passive heating on 

reducing arterial stiffness. This study tested the hypothesis that passive heating will decrease arterial 

stiffness in men and women 35-60 years old who were screened for poor baseline arterial stiffness. The 

main finding of this study was that with increases in rectal temperature up to 1.25°C there was a no 

significant change in average central, upper peripheral, or lower peripheral pulse wave velocity. 

 It is hypothesized that arterial stiffness has two mechanisms “active” mechanisms and “passive” 

mechanisms. Nichols et al. 2011 discusses how the active mechanisms are associated with cellular and 

molecular processes and passive mechanisms correlate more with mechanical stress and 

hemodynamics. As individuals are passively heated they experience hypotension and that is associated 

with “sympatholytic-like” substances release around the blood vessels that limit the ability for tissues to 

vasoconstrict (Crandall et al. 2014). Wilson et al. 2002 found that the amount of cutaneous 

vasoconstriction was attenuated in individuals who were heat stressed.  This response is thought to be 

assisted by a nitric oxide regulated mechanism.  

 Another potential mechanism for arterial stiffness changes in the effect of shear stress on the 

vessels. Shear stress is defined as a strain in the structure of a substance produced by pressure, when 

its layers are laterally shifted in relation to each other. Lu and Ghassan (2011) state that there is a 

dynamic balance between mechanical or chemical stimulus and biological repose to these. If a 

mechanical stimulus is too high, this can lead to either physiological adaptations or a diseased state (Lu 

and Ghassan 2011). For example exercise would be a physiological perturbation, whereas hypertension 

would be a pathologic perturbation. These different types of perturbation alter the way blood vessels 

stretch and effectively change the stiffness of the artery. This mechanism relates to this study because if 

passive heating can decrease the individuals arterial stiffness, then the amount of sheer stress on the 

vessel will be habitually decreased and thus preventing the diseased state. 

 There were no significant differences in central or peripheral pulse wave velocity data. Ganio et 

al. 2011 discusses the possibility that a higher basal tone could increase individual’s ability to change with 



 

7 
 

passive heating. This study included individuals who were higher in baseline stiffness, but since no 

significant changes were observed it could point to baseline stiffness not being a factor or the baseline 

stiffness simply wasn’t high enough to elicit a significant change. Another possibility is that in the previous 

studies (Ganio et al. 2011; Moyen et al. 2013) individuals were heated to an increase of 1.5°C from 

baseline. 

 When considering upper peripheral pulse wave velocity there was a main effect of time. However, 

when considering each condition individually there was no significant change in pulse wave velocity. A 

training study conducted by Maeda et al. 2008 saw that after a single acute bout of exercise, systemic 

arterial stiffness at rest was not affected. Further, this study found that after a 6-month moderate exercise 

protocol systemic arterial stiffness was significantly decreased immediately post exercise.  This indicates 

that arterial stiffness may be a training adaptation and could explain why an acute bout of passive heating 

was not enough the significantly affect arterial stiffness.  

 In previous studies the pulse wave velocity measure were taken during the passive heating 

protocol. Uniquely this study took measures for an hour post heating. The differences in measurement 

time points could point to the inconsistency with the results found versus the current body of literature. 

The participants were removed from the environmental chamber and the water perfused suit was 

removed immediately following core temperature reaching 1.25°C. For the following hour post-

perturbation the participants laid in normal lab conditions, which were significantly colder than the 

experimental condition. Mechanistically the blood flow would shift from the periphery to more central to 

counter act the colder environment and there would be vasoconstriction of the vessels. The drastic 

change in external temperature could have affected the stiffness of the arteries. 

Limitations 

 One possible limitation of this study was that the foot of the pulse wave was identified visually 

(versus computer aided) when doing analysis. To account for this, analysis of pulse wave information was 

done by only the three primary researchers. Once analysis of an individual trial was started it was finished 

by the same researcher to maintain consistency. Further, in this study an ultrasound was used to 

measure pulse wave velocity whereas previous research has utilized tonometry. Taking pulse wave 

measures from ultrasound have been found to be comparable to those taken from tonometry (Jiang, Liu, 
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et. al., 2008). Another possible limitation is that the distance for each individual measurement could have 

varied slightly, which could have caused some of the high variability in the pulse wave velocity.  
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Figure Legend 

Figure 1. Effect of passive heat stress on Heart Rate. Significance, between conditions, is denoted by (*) 

(p ≤ 0.05). 

Figure 2. Effect of passive heat stress on Mean Arterial Pressure. Significance, between conditions, is 

denoted by (*) (p ≤ 0.05). 

Figure 3. Effect of passive heat stress on Rectal Temperature. Significance, between conditions, is 

denoted by (*) (p ≤ 0.05). 

Figure 4. Effect of passive heat stress on Mean Skin Temperature. Significance, between conditions, is 

denoted by (*) (p ≤ 0.05). 

Figure 5. Effect of passive heat stress on Mean Body Temperature. Significance, between conditions, is 

denoted by (*) (p ≤ 0.05). 

Figure 6. Effect of passive heat stress on central (carotid and femoral) arterial stiffness. Significance, 

between conditions, differences are denoted by (*) (p ≤ 0.05). 

Figure 7. Effect of passive heat stress on upper peripheral (carotid and radial sites) arterial stiffness. 

Significance, between conditions, differences are denoted by (*) (p ≤ 0.05). 

Figure 8. Effect of passive heat stress on lower peripheral (femoral and tibial) arterial stiffness. 

Significance, between conditions, differences are denoted by (*) (p ≤ 0.05).  
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Figures 
 

 

Figure 1. Effect of passive heat stress on Heart Rate. Significance, between conditions, is denoted by (*) 
(p ≤ 0.05). 
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Figure 2. Effect of passive heat stress on Mean Arterial Pressure. Significance, between conditions, is 
denoted by (*) (p ≤ 0.05). 
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Figure 3. Effect of passive heat stress on Rectal Temperature. Significance, between conditions, is 
denoted by (*) (p ≤ 0.05). 
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Figure 4. Effect of passive heat stress on Mean Skin Temperature. Significance, between conditions, is 
denoted by (*) (p ≤ 0.05). 
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Figure 5. Effect of passive heat stress on Mean Body Temperature. Significance, between conditions, is 
denoted by (*) (p ≤ 0.05). 
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Figure 6. Effect of passive heat stress on central (carotid and femoral) arterial stiffness. Significance, 
between conditions, differences are denoted by (*) (p ≤ 0.05). 
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Figure 7. Effect of passive heat stress on upper peripheral (carotid and radial sites) arterial stiffness. 
Significance, between conditions, differences are denoted by (*) (p ≤ 0.05). 
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Figure 8. Effect of passive heat stress on lower peripheral (femoral and tibial) arterial stiffness.  
Significance, between conditions, differences are denoted by (*) (p ≤ 0.05).  
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Approved Project Period: Start Date: 11/09/2015 Expiration Date: 11/08/2016 
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