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Abstract

The heterogeneity of multiprocessor systems on chip (MPSoC) has presented unique

opportunities for furthering today’s diverse application needs. FPGA-based MPSoCs have the

potential of bridging the gap between generality and specialization but has traditionally been

limited to device experts. The flexibility of these systems can enable computation without

compromise but can only be realized if this flexibility extends throughout the software stack. At

the top of this stack, there has been significant effort for leveraging the heterogeneity of the

architecture. However, the betterment of these abstractions are limited to what the bottom of the

stack exposes: the runtime system.

The runtime system is conveniently positioned between the heterogeneity of the hardware,

and the diverse mix of both programming languages and applications. As a result, it is an

important enabler of realizing the flexibility of an FPGA-base MPSoC. The runtime system can

provide the abstractions of how to make use of the hardware. However, it is also important to

know when and which hardware to use. This is a non-issue for a homogeneous system, but is an

important challenge to overcome for heterogeneous systems.

This thesis presents a self-aware runtime system that is able to adapt to the application’s

hardware needs with a runtime overhead that is comparable to a naive approach. It achieves this

through a combination of pre-generated offline data, and the utilization of runtime data. For

systems with diminishing hardware, the results confirmed that the runtime system provided high

resource efficiency. This thesis also explored different runtime metrics that can affect the

application on a heterogeneous system and offers concluding remarks on future work.
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SW Abbreviation for Software.
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Chapter 1

Introduction

General computing systems have evolved over the past decade to support the increasing diversity

of concurrent and parallel tasks. System designers continually face the challenge of increasing

performance while decreasing the energy footprint of these systems. One component that

maintains its presence in many of these systems is the general purpose processor (GPP), otherwise

known as the central processing unit (CPU). CPUs have long provided a flexible architecture for

targeting applications that span across multiple domains. With the support of mature compilers

and increasing levels of abstraction provided by high-level languages [42, 3, 35, 45, 36, 43],

CPUs can provide high user productivity and application portability. Due to the generality of the

architecture, however, performance (and energy consumption) cannot best an application-specific

integrated circuit (ASIC). The use of ASICs has generally led to loss of portability and a

significant decrease in productivity. One of the design choices that CPU architects have made to

increase performance is outfitting parallel functional units throughout a CPU’s pipeline, coining

the term superscalar processors. These additional resources, coupled with advanced branch

prediction techniques enables CPUs to exploit instruction-level parallelism (ILP).

Many of today’s applications such as those in the linear algebra and image processing

domains, benefit from an architecture that supports the single-instruction, multiple-data (SIMD)

model. CPU support for data-level parallelism (DLP) has been achieved through the inclusion of

co-processors or (application-specific) accelerators within the processor [63]. The advantage of

this tight-coupling implementation is that the use of this specialized hardware registers as another

instruction that is part of the CPU’s instruction set architecture (ISA). Considering compiler

support for such instructions, this level of transparency upholds application portability and user

1
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productivity, while providing a new avenue for program acceleration traditionally achieved

through ASICs alone.

The reality is, many of these optimizations may or may not make it into a CPU depending

on the constraints given to the CPU architect or the system integrator. Designers are always

forced to strike a balance between generalized and application-specific, area and performance,

and time-to-market and item costs. While the CPU does provide support for targeting most

applications, one must consider which particular features a CPU may provide over others that

would best benefit the targeted applications. Alternatively, with the advent of the many-core era,

the opportunity arises for integrating multiple heterogeneous processors in the system. Therefore,

the sacrifice of choosing a single configuration of a CPU for a multiprocessor system becomes

moot as one can simply incorporate multiple configurations, capable of being optimized for

different sets of tasks. The question poised here is does heterogeneity bring performance

2



advantages of ASICS all the while maintaining CPU generality, and why or why not?

1.1 Why Heterogeneity?

More than a decade ago, a shift towards multiprocessor systems occurred in the general purpose

computing community to combat the power wall: with increased processor clock speeds for faster

performance came increased power (and heat) output [13, 50, 11]. These symmetric

multiprocessor (SMP) systems were composed of identical processors (with identical bus and

memory hierarchies) executing identical instruction streams independently, resulting in higher

computational throughput over uniprocessor systems. New programming models for SMP

systems emerged, enabling software developers to leverage transparent instruction-level

parallelism (ILP) found in processors with explicit thread-/task-level parallelism (TLP) [35, 14].

Although technology scaling allowed vendors to increase the numbers of processors, application

performance did not necessarily scale at the same rate. Amdahl’s law [6] provides a means to

calculate how much performance can scale for an application. Small fractions of the application

that can be parallelized may benefit or not due to other overhead costs (communication and

memory I/O). Introducing multiple, heterogeneous processing elements optimized for different

sets of tasks within an application would enable performance to scale beyond SMP systems [32].

Heterogeneous multiprocessor systems, herein referred to as heterogeneous systems, have

demonstrated their performance and energy benefits over their homogeneous counterparts

[59, 30]. By including multiple heterogeneous processing elements, one can begin to place tasks

onto specific components that provide greater performance and/or energy benefits. For example,

the system may choose to conserve energy by mapping a longer running, memory-bounded task

onto a low-performance and low-powered processor over a higher performance, high powered

core. Examples of commercially available heterogeneous architectures today include ARM’s

big.LITTLETM multi-core architecture, Intel’s QuickIA platform, and IBM’s Cell platform

[1, 15, 33]. However, due to the heterogeneity of these example platforms, a high-priority,

3



CPU-bound tasks have the opportunity to be scheduled onto a processor with a high affinity.

Contrasting this with a homogeneous platform, the design may consume more power, degrade in

performance, or both due to minimal flexibility of where best to schedule tasks.

Micro-Benchmark Task Descriptions
Name Description
mul32 32-bit integer multiplication
mul64 64-bit integer multiplication
idivu 32-bit Unsigned integer division
idiv 32-bit Signed integer division
fpu 32-bit Floating point instructions. Includes square root function.

Table 1.1: Descriptions of the tasks used in Table 1.2.

System heterogeneity, otherwise referred to as system asymmetry, can arise from multiple

sources and does not necessarily translate into a system composed of multiple processing

elements, each provided by a different vendor. Processors can introduce asymmetry in simple

features such as clock frequency, or can encompass more micro-architectural differences such as

the number of general purpose registers (GPR), inclusion of different co-processors, and

in/out-of-order instruction execution capabilities [37]. Table 1.2 provides a simple example of the

performance effects of processor heterogeneity. The description of each task is outlined in Table

1.1.This example provides the execution time of several micro-benchmarks running on a 6

processor system: 1 host processor that schedules work onto 5 slave processors. Each

micro-benchmark focuses on one type of task. The idea here is to isolate one task at a time to

provide better insight into the decisions a runtime system or operating system (OS) may need to

make when presented with a diverse set of tasks in its ready-to-run-queue (R2RQ). While all of

the slave processors in this system are derived from the same base design, each one is configured

to include a different co-processor optimized for one of these tasks. As a result, the instruction set

is slightly modified amongst them. As the table highlights, this can translate into a significant

performance delta amongst these processors for a particular benchmark. This table also suggests

the energy benefits that can be gained by scheduling with this constraint. If all processors expel

the same amount of power, scheduling a task that minimizes rather than prolongs the execution of

4



Micro-Benchmark Performance on a Heterogeneous system
Proc. 1 Proc. 2 Proc. 3 Proc. 4 Proc. 5

mul64 303.14 (1x) 130.07 (2.3x) 23.11 (13.1x) 213.35 (1.4x) 303.02 (1x)
mul32 138.84 (1x) 15.24 (9.1x) 15.17 (9.2x) 138.61 (1x) 139.01 (1x)
idivu 45.97 (1x) 46.10 (1x) 45.88 (1x) 45.94 (1x) 7.43 (6.2x)
idiv 44.69 (1x) 44.34 (1x) 45.39 (1x) 44.68 (1x) 6.89 (6.6x)
fpu 104.56 (18.3x) 115.56 (16.7x) 1058.22 (1.8x) 718.44 (2.7x) 1931.18 (1x)
shift 7099.59 (1x) 7098.70 (1x) 7098.85 (1x) 554.41 (12.8x) 7099.37 (1x)

Execution times (µs) and speedup relative to slowest time.

Table 1.2: Micro-benchmarks executing on heterogeneous processors.

this task would net less energy consumed by the system.

The previous example demonstrated the potential performance gains from a heterogeneous

multiprocessor system but is often not representative of a system today. Often, this multiprocessor

system is also augmented with hardware accelerators external to the multiple processors.

Hardware accelerators excel at DLP, offering a higher performance-to-power metric over general

purpose processors [31, 23]. This leaves more branchy or speculative code and coarse-grained

tasks (i.e. TLP) to processors. However, designers may work with a limited amount of area and

accounting for any and all types of ASIC components within their design is not realistic. Hence,

the appeal of CPUs. Alternatively, an enticing heterogeneous platform for providing exploration

of both general purpose and application specific components is a Field Programmable Gate Array

(FPGA).

FPGAs have the potential to bridge the gap between the benefits of general purpose

processors and ASIC-like components. The increasing densities of the reconfigurable fabric allow

users to implement complete chip heterogeneous multiprocessor (CHMP) systems [16]. The

malleability of the FPGA allows CHMP systems to be built that are tailored to the exact types of

parallelism that may be available in each application. Execution of unmodified software

applications can benefit from familiar architectures equipped with general purpose processors

integrated as either reconfigurable soft, or hard intellectual property (IP) cores. However, FPGA

users wishing to extract additional performance from the application can do so by including
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application-specific components onto the FPGA. Without having to commit to silicon as is done

with an ASIC design cycle, this allows a more cost-effective solution. Leveraging this flexibility

beyond processor heterogeneity, however, has been limited to FPGA device and tool experts as it

imposes a high learning curve for the general software community. This requirement is

continually being relaxed by new developments in high-level synthesis, re-useable IP, and

programming models and abstractions [17, 41, 40]. Nevertheless, there still remains several

challenges pertaining to FPGA-based CHMP systems and the heterogeneity it exposes.

1.2 Issues of Heterogeneity

Exploiting the use of heterogeneous components in a system faces several challenges. Today’s

commercial operating systems (OS) generally offer little to no support for system heterogeneity,

and it is usually up to the software programmer to exploit this flexibility. As heterogeneous

systems become more of a commodity item, it is important to address these challenges if one is to

see a continued benefit in their use [4]. The following sections provides several challenges,

specifically pertaining to CHMP systems on FPGAs.

1.2.1 Application portability and complexity

Programming for heterogeneous systems has traditionally come at the cost of both application

complexity and portability. To fully exploit the performance a heterogeneous system can provide

without support of the runtime and/or the OS, programmers are required to know and leverage

detailed knowledge of the underlying hardware. For example, where and when to schedule a task

based on multiple variables such as performance characteristics that can vary from one

FPGA-based CHMP configuration to another. Without any heterogeneous hardware abstractions,

accounting for such intricacies increases application complexity. Furthermore, including

platform-specific optimizations within the source also affects application portability and requires

it to be modified when moving between one system configuration to another. It is infeasible to
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account for all possible system configurations and doing so increases application complexity.

As noted previously, users of FPGA-based CHMP systems are required to know the

hardware in order to design and use application-specific components within their systems.

Consequently, the adoption rate of this heterogeneous platform by the general software

community has been slow as a result of the imposed high learning curve. As will be discussed in

Section 2.1, there is an abundance of research addressing the need for easier programmability.

However, the use of user-provided hardware should coincide with application portability and

complexity. Additionally, runtime decisions such as dynamically mapping tasks to the

appropriate resource (i.e. accelerator or CPU) presents another challenge.

1.2.2 Dynamic Mapping

Determining how the application should be mapped onto heterogeneous systems before runtime is

referred to as static mapping. Statically mapping the application is not sufficient for both

homogeneous and heterogeneous systems alike [47]. Luk et. al note that not knowing the

workload size renders performance estimation offline inaccurate [39]. Generating and optimizing

a mapping scheme offline without knowing the data size can result in poor mapping. For example,

allocating a small data-set onto hardware optimized for larger data sets can degrade performance

(and increase power). Additionally, the heterogeneity of the system naturally exhibits

asynchronous and indeterministic behavior. This can prove difficult to model the diverse

components and their interactions in the system without making several (static) assumptions. This

challenge is compounded further when considering FPGA CHMP systems. In addition to

enabling FPGA users to realize their system designs on the chip itself through hardware

synthesis, FPGAs also supports systems to change their hardware during runtime through a

process known as dynamic partial reconfiguration (DPR) [64].

DPR offers an opportunity to shape the platform to the application’s needs as it executes,

gaining additional performance and/or energy savings wherever applicable. The process of
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dynamically using additional hardware can unlock further speedup in comparison to static

heterogeneous designs [32]. Furthermore, this can be advantageous on more resource-constrained

CHMP systems by swapping in-and-out hardware. This offers greater flexibility for designers

when trading hardware resources/area for performance.

To accommodate FPGA CHMP systems utilizing DPR, dynamic mapping is needed to

reflect scheduling decisions based on runtime parameters such as workload sizes and current

system configuration. It is also needed for the different phases of an application. Not doing do so

can lead to non-optimal performance, and even worse, system failure as components assumed to

be present may no longer exist. Consequently, this makes scheduling (or in general,

programming) for such systems much more difficult as there are more scheduling decisions to

explore. Navigating through this multidimensional search space can lead to high runtime

overheads, thus increasing the application execution times further [51].

While knowing the intricacies of a relatively small heterogeneous system may suffice for

statically mapping an application, targeting larger heterogeneous systems becomes less attainable

to do so by hand. What is needed is a dynamic solution where, ultimately, the mapping decision is

done (or further aided) by the runtime system. This enables better mapping solutions that

appropriately reflect the state of the system and pending tasks. Additionally, offering a dynamic

solution can scale the performance of an application further over time. In the case of FPGA

CHMP systems, as the necessary hardware diminishes or increases online through the use of

DPR, the runtime can accommodate the decrease/increase in computational power and map the

application appropriately. Similarly, when better performing processing elements are introduced

in the system, dynamically mapping the application against the current system configuration can

immediately leverage this resource.

8



1.2.3 Interoperability

Interoperability challenges within heterogeneous systems arises from the diversity of the

components. For example, processors that differ in ISAs implement equivalent operations

differently in hardware. As a result, this varies execution and memory access times amongst

them. Another example is the application binary interface (ABI), which dictates the intricacies of

a processor at the machine code level such as data storage and retrieval. The difference of ABI

here can result in data misinterpretation. The introduction of custom hardware accelerators within

FPGA CHMP system exacerbates this issue further, and gives a stronger need for some degree of

standardization within a heterogeneous system.

Standardization in the form of hardware/software abstractions allows different components

to interact within the system. Without such abstractions, this can lead to code complexity and

non-portability. Standardization of OS services such as task management and synchronization

should be provided for a machine that focusses on parallel execution. In addition to this, system

configuration changes as a result of exploiting DPR should not introduce any interoperability

issues and disrupt the flexibility of FPGA CHMP systems. Therefore, a need for an abstraction

layer that seamlessly connect heterogeneous components at the HW/SW boundary is necessary

and facilitates the flexibility offered by heterogeneous components.

1.3 Thesis Statement

Programming support for heterogeneous multiprocessor systems remains a challenge today

despite the increasing ubiquity of these systems over the years. One of the attractions towards

heterogeneous systems lies within their diverse hardware, gaining opportunities for hardware task

specialization to further maximize performance/energy savings [19, 29]. Consequently, this has

encouraged programmers to include more platform specific information within the source code to

take advantage of these performance/energy savings. Without higher levels of abstraction and/or

9



middleware support, this eliminates the idea of application portability, increases application

complexity, and thus decreases programmer productivity. This thesis proposes to investigate if

these trends can be reversed for FPGA-based heterogeneous multiprocessor systems by

considering the following questions:

• Can platform specific details be moved from the source code and be encapsulated under

platform neutral policies of a portable programming model to reinstate portability?

• Can the complexity of the software design process be reduced by enabling automatic

profiling during runtime?

• Can dynamic mapping occur at reasonable overhead costs with high accuracy of fitting task

placement? How best to determine task specialization for processors? Can some of this

information be determined offline?

• Can resource efficiency be increased despite increasing levels of system complexity, by

introducing additional self-awareness within the operating system?

Thesis: For FPGA-based heterogeneous multiprocessor systems, a self-aware runtime system

can replace the need for a user to engage in hand profiling and explicit thread scheduling of an

application on different configurations of heterogeneous resources. Through the integration of a

self-aware runtime system in one’s design, a heterogeneous multiprocessor system can better

utilize its resources and match the performance of a homogeneous system where resource

constraints are non-existent.

1.3.1 Thesis Contributions and Organization

To support the thesis statement, this work provides the following set of contributions:

• Integrated identification of processor (and hardware accelerator) specialization within the

scheduler that results in little additional runtime overhead in comparison to a naive
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approach.

• Modified the hthreads compilation flow to parse platform configuration, including but not

limited to MicroBlaze processor configuration and attached hardware accelerators.

• Integration of an accelerator library that enables users to utilize attached accelerators

through software function invocations.

The remainder is organized as follows. Chapter 2 surveys the current state of the art

approaches on multiple issues of heterogeneous computing, and concludes with FPGA related

work. Next, Chapter 3 provides a detailed discussion of this thesis approach to addressing some

of the issues raised in Chapter 1. A discussion of this thesis’ evaluation against the proposed

approach is presented in Chapter 4. Finally, the thesis concludes by reflecting back on the

questions proposed and offers some potential future work that can follow this thesis.
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Chapter 2

Background

Heterogeneous MPSoC systems are a commodity in today’s society, and can be found in high

performance computing data-centers to embedded devices within automobiles. Their

heterogeneity, offering both flexibility and specialization, provides opportunities for additional

levels of performance (and/or energy savings). However, achieving this continues to be met with

the difficulty in programming such systems. Many have approached this problem with various

solutions such as unified programming languages (and tools) and self-aware runtime systems.

Others have incorporated both of these examples into programming frameworks. Still, very few

have approached the reconfigurable domain. The following sections offer details on state of the

art approaches in each of these categories.

2.1 Programming Languages and tools

To begin, many of the programming languages and tools (libraries and compilers) presented here

attempt to provide one or more of the following:

• Device/platform abstractions for easier programming, and subsequently increasing user

productivity.

• Platform portability between systems with both the presence or absence of preferred

hardware.

• Easier accessibility of potential performance gains of the heterogeneous component while

balancing programming effort.
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Amongst these characteristics, the important goal many of the following languages and

tools tend to focus on is enabling easier programmability. Therefore, many forgo addressing

efficient utilization of resources. The absence of runtime information make programming

languages and their use offline, not a complete solution for the programmability of heterogeneous

systems. Many of these languages still require the programmer to explicitly identify where

computation should execute and/or greedily schedule all work on a particular device (e.g. GPU

vs. CPU). Nevertheless, the research presented here should be regarded as supplemental work as

it provides a transparent front-end interface to a heterogeneous system.

2.1.1 C++ AMP:

With the increasing use of general purpose graphics processing units (GPGPUs) on desktops, it

has been made possible to accelerate non-graphics related applications on a cost-effective

hardware solution. Microsoft proposed the C++ Accelerated Massive Parallelism (C++ AMP)

project, enabling users to exploit DLP on these types of data-parallel hardware. The targeted

hardware has generally included GPUs. However, modern CPUs containing support for SIMD

(vector) operations allows the C++ AMP runtime to fall back to such hardware whenever GPUs

fail to provide the computation [42].

2.1.2 Bolt:

Bolt is a C++ Standard Template Library (STL) that aims for accelerating user applications on

accelerated hardware [3]. Bolt includes optimized implementations of common algorithmic

patterns such as reduce and transform, and currently has a few back-ends for generating code to

languages such as C++ AMP, OpenCL and Intel Thread Building Blocks. Having been brought to

market by a GPU supplier, Advanced Micro Devices (AMD), Bolt is optimized specifically for

AMD GPUs. However, like C++ AMP, the library includes fall-back mechanisms to CPUs. Bolt

can dynamically query the platform, favoring the GPU device due to the assumption that it will
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provide a higher level of data-parallel performance. Additionally, the memory hierarchy is not

imposed on the user unlike OpenCL. As a result, programmers are presented with a linear address

space found on familiar homogeneous architectures.

2.1.3 Intel Thread Building Blocks:

The Intel Thread Building Blocks (Intel TBB) is a C++ STL designed for supporting parallelism

across multiprocessor systems [35]. Unlike the previous discussed thus far, Intel TBB does not

target other types of data-parallel hardware such as GPUs. Users write their application in terms

of tasks and the library maps these tasks onto threads (CPUs assumed to be homogeneous) for

more finer-grained parallelism. The Intel TBB runtime also provides load balancing of tasks and

encourages users to reduce the granularity of tasks in order to provide the task-based scheduler

greater opportunity for load-balancing. Currently, Intel TBB integrates load-balancing through

task-queuing and work-stealing. Work stealing allows one to mask out any potential latencies

attributed from a long running task, offering better load-balancing [12].

2.1.4 OpenMP:

OpenMP is an API for C/C++ and Fortran programmers enabling them to write parallel,

shared-memory code for multiprocessor systems [18, 44]. Unlike task-based models such as

Intel’s TBB, OpenMP is a directive based parallel programming model: programmer’s annotate

parallel sections of the source code and leave implementation specific details up to the compiler

(i.e. how to execute the annotated code in parallel). OpenMP is being adapted to extend support

to heterogeneous multiprocessor systems such as the IBM Cell [45], and general purpose graphics

processing units (GPGPUs) [65, 49]. However, it was becoming important to provide a standard

set of directives for these accelerators. As a result, new emerging projects designed to naturally

accommodate accelerators within the system such as GPUs include OpenACC [2] and

OpenHMPP [22].
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One of the dynamic properties of OpenMP (and its derivatives) can be found in its support

for dynamic threading. When dynamic threading is disabled, the OpenMP greedily creates the

maximum amount of threads when parallel code regions are encountered. When dynamic

threading is enabled however, the runtime can create a variable number of threads. Currently, the

OpenMP standard does not automatically adjust this variable number based on the runtime

environment and is up to the programmer to define this number. Therefore, dynamic as defined

here simply means user-configurable as opposed to self-adaptable.

2.1.5 Cilk/Cilk Plus:

Cilk is another directive-based programming model aimed at providing a reasonable ratio

between user productivity and performance. Cilk (C) or Cilk Plus (C++) was designed to quickly

and easily parallelize code for both general multi-core processors and processors with SIMD

extensions/vector support. It achieves this through its simple code annotations all the while

maintaining the serial nature of existing code bases programmers are familiar with. As with

directive-based models, parallel regions must be explicitly annotated for use during compilation

(and runtime). However, the user is relieved from deciding where such tasks will run in parallel.

Intel’s Cilk Plus shares similar scheduling policies with Intel’s TBB: both take a greedy approach

by assigning as many worker threads as possible throughout the system, and both support

randomized work-stealing across all thread’s double-ended queues (deques) to provide reasonable

system load-balancing. Like Intel’s TBB, Cilk Plus also does not support processor affinity and

processors are assumed to be homogeneous.

2.2 Programming Frameworks

Programming frameworks can be defined as a collection of software (libraries) that provides an

environment in which one can program a targeted platform. Programming frameworks differ from

programming languages in that they guide the user in using its software to craft the application;
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programming languages can too, use existing software but the decision is at the programmer’s

discretion.

Since programming in these frameworks entails making heavy use of their Application

Programming Interfaces (APIs), much of the implementation-specific details are abstracted.

These types of frameworks can provide their own virtual memory hierarchies and communication

protocols atop the existing hardware platform. Furthermore, programming frameworks enables

compiler and programming language developers to target such frameworks. This provides an

opportunity for programmers to utilize legacy languages to target platforms that wouldn’t

otherwise be supported on its own.

2.2.1 OpenCL:

OpenCL is a portable/cross-platform parallel programming framework designed to aid

programmers in directing computation across a range of heterogeneous computational devices

[36, 53]. These devices are but not limited to CPUs, GPUs, digital signal processors (DSPs) and

FPGAs. OpenCL can be used to exploit both TLP as well as DLP.

The execution model of OpenCL is similar to a task-based model however, OpenCL defines

tasks as kernels. Instances of kernels assigned to devices are referred to as work-items, which are

ultimately grouped into a work-group. Since OpenCL devices can contain many processing

elements (PEs) such as a GPU or a multi-core CPU, workgroups are assigned to these devices

where work-items are then computed individually on the processing elements (PEs) of that device.

Alongside its execution model, OpenCL adopts a memory model that consists of four types

of memories: private, local, constant, and global. Private memory is reserved for each individual

PE on the OpenCL device. For example, the private cache for each core in a multi-core CPU can

be considered as private memory. Local memory is temporal memory that is shared amongst PEs

within the device, but not globally accessible by other OpenCL devices. Constant and global

memory are similar such that they are accessible by all OpenCL devices but differ in that constant
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memory is a read-only memory.

OpenCL exposes both the execution model and memory model to the programmer. Through

the use of OpenCL’s application programming interfaces (APIs), the memory hierarchy in

addition to the heterogeneity of the device is abstracted. This allows portable code to be

generated, however it is still possible for OpenCL programs to be tuned to specific platforms.

This is realized through explicit management of where computation should occur by the

programmer. Although one can query each device to obtain optimal working data sizes, OpenCL

does not support automatic inference of where best to assign such tasks and the associated data.

Additionally, one must explicitly perform memory management. When queuing workloads across

different OpenCL devices, one must take care to transfer data between the system’s global

memory and the device’s local memories.

2.2.2 Heterogeneous System Architecture:

The Heterogeneous System Architecture (HSA) [4] is a specification created to unify

heterogeneous computing components and provide support for familiar programming models

such as C++, C++ AMP, OpenCL, and OpenMP. HSA was created to address many of the

existing challenges within heterogeneous systems, namely:

• Power consumption - the opportunity of leveraging the heterogeneity to reduce power is

becoming more important as devices become smaller.

• Scalable performance - the accessibility of devices offering higher levels of computational

throughput necessitates the performance to scale in order to warrant such device

integrations.

• Programmer productivity - avoid soliciting a high learning curve by providing a familiar

programming model to maintain and/or increase programmer productivity (and program

portability).
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• Program portability - the need to maintain program portability across heterogeneous

systems to avoid rewriting code is important. Not doing so can negatively affect the

programmer’s productivity.

HSA was founded by the HSA Foundation, comprising of companies such as ARM,

Qualcomm, AMD, and many others. Among them, AMD has demonstrated HSAs on their

Accelerated processing units (APUs) consisting of both CPU and GPU, alternatively labelled as

latency compute unit (LCU) and throughput compute unit (TCU) respectively. LCUs are a

generalization of a CPU whereas TCUs can refer to GPGPUs and FPGAs. Traditionally,

programming such devices required two disparate programming models. To remedy this, HSA

foundation proposes a common intermediate representation referred to as the HSAIL, enabling

high-level programming languages and compilers to target. The HSA also abstracts the

distributed memory hierarchy that can arise from multiple heterogeneous devices. By adhering to

the HSA specification, companies can enable programmers to leverage their devices in a very

transparent and portable fashion. This is in contrast to more popular programming frameworks

such as OpenCL, or CUDA by Nvidia [43], where the memory hierarchy is exposed and explicit

memory management is required.

2.2.3 PLASMA:

The authors in [46] recognize the myriad of specialized accelerators and the differing

programming models each brings to high-performance computing systems. As mentioned

previously, this introduces distributive memory and heterogeneity, and requires the programmer to

identify scenarios that warrants their use. Load-balancing and computation scheduling also

presents a challenge in these systems where tasks can optionally execute on more general-purpose

hardware (e.g. CPU). To address such problems, the authors propose a programming framework,

referred to as PLASMA. The framework consists of an Intermediate Representation (IR) allowing

existing legacy programming languages and tools to target the PLASMA platform, a compiler
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supporting multiple device specific back-ends, and a runtime to manage computation throughout

the system. The authors integrate static partitioning within their work; hand-partitioning

computation across both a (multi-core) CPU and GPU. This partitioning does not take into

account data-sizes and other runtime data that may affect scheduling. The authors mention that

the runtime system can be replaced to handle said dynamic partitioning and scheduling.

2.2.4 Dandelion:

Dandelion is a programming framework for distributed heterogeneous systems [48]. Users

targeting the Dandelion system write code in the .NET LINQ framework. Dandelion then maps

tasks from the user’s source onto cluster machines, onto which those machines map work onto

their heterogeneous resources: multi-core CPUs and GPUs. The inclusion of heterogeneous

hardware, namely GPUs, in addition to distributed computing introduces varying programming

models. To insulate the programmer from varying implementation-specific details, Dandelion

includes three execution engines: a distributed cluster engine, a multi-core CPU engine, and a

GPU engine. Each of these engines receives a data-flow graph dictating the order of computation

and synchronization. Computation mapping begins at the cluster level to an available machine;

followed by the machine level where computation is mapped to either the multi-core CPU or the

GPU. Currently, the mapping to a CPU or GPU is determined offline. Furthermore, the Dandelion

does not address resource availability and assumes each machine in the cluster is homogeneous

with respect to one another.

2.2.5 OpenCPI:

OpenCPI is a software framework whose programming model is component-based [34]. This

programming model abstracts a computing resource or a collection of computing resources (e.g.

millions of gates on an FPGA) as a component. The programming model, coupled with a

well-defined interface between components enables application portability and component
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interoperability. As a result, OpenCPI focuses on bringing component-based programming onto

real-time systems where it is natural for components to be swapped in and out (e.g. aerospace and

military grade applications). OpenCPI provides a middleware solution for targeting such

heterogeneous systems that are composed of CPUs, FPGAs, DSPs, and other emerging

technologies.

2.3 Runtime Systems

According to [10], runtime systems do what programming languages cannot. That is to say,

runtime systems have the advantage of utilizing the available runtime variables and resolved data

sizes during runtime. Programming languages cannot extract information and optimize the

scheduling of work on information that is not yet available.

Runtime systems provides several core services for the program and can be viewed as an

extension of the programming language itself. Core services can include but are not limited to

operating system calls, exception handling, stack management, scheduling, and profiling. Due to

this, the position of runtime systems provides an appropriate opportunity to insert additional

self-aware services such as processor affinity discovery, and resource-aware scheduling. The

related works that follow, exhibit this autonomous behavior but are able to provide a level of

transparency a programming language alone cannot do. Note, runtime system and scheduler are

used interchangeably throughout the remaining of this thesis. The scheduler exists alongside

many other core services that the runtime can provide.

2.3.1 Elastic Computing:

The elastic computing system (ECS) is a combination of a programming framework and profiling

tools that currently targets desktop systems composed of CPUs, GPUs, and FPGAs. ECS aims at

providing transparent, portable and adaptable computing [57, 58]. To achieve this, ECS utilizes a

20



function library that stores a collection of commonly used functions referred to as elastic

functions. Elastic functions differ from traditional functions in that they include implementation

decisions within themselves based on runtime data such as input data and (available) computing

resources. This enables them to provide a level of transparency to the user without requiring them

to specify implementation details within their code, hence rendering their application

non-portable.

Unlike other works that specify a single implementation for a given function [39, 10], ECS

designed the elastic function library to include multiple implementations for each function. This

presents an opportunity for ECS to explore alternative implementations of a given function and

provide the fastest implementation based on runtime parameters. For example, choosing between

insertion sort and quick sort when the size of the data is small, or if an FPGA with bitonic sort is

provided. Furthermore, ECS enables the user to provide suggestions when using elastic functions

that could benefit the runtime on choosing the most appropriate implementation. For example, if

the data is mostly sorted, it may be best to choose insertion sort as compared to randomly sorted

data would profit the most using quick sort.

ECS identifies the appropriate implementation (and parallelization strategies) offline

through a processor know as implementation assessment. Implementation assessment is

performed at installation time of ECS, and stores empirical results that take any architecture

effects such as memory bottlenecks, cache configurations, and interconnect architectures. To

begin, ECS exhaustively samples for all combinations of computing resources, every

implementation for every elastic function to build an implementation performance graph (IPG).

IPGs are two-dimensional piecewise linear functions that given a work metric, an estimate of

execution time is provided. Work metrics are an abstract representation of the amount of

work/computation that will be incurred for the input parameter(s). For elastic functions that have

a single input parameter, a mapping is made on assigning this parameter as the the work metric.

For elastic functions composed of multiple parameters, the work metric should identify the subset
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of parameters that affect the function’s execution time. In both cases, the work metric is assumed

to be statically defined by the one designing the specific implementation of an elastic function.

To avoid expensive comparisons during runtime when deciding which implementation to

choose when the application invokes an elastic function, ECS additionally employs optimization

planning. Optimization planning is performed at ECS installation time, after implementation

assessment. It involves combining all IPGs for a particular elastic function, and creating a new

graph that reflects the fastest implementation for varying regions of the work metric. This

function performance graph (FPG) enables the runtime to lookup a single source of performance

information, circumventing a possibly large overhead for navigating elastic functions that include

numerous implementations. Additionally, ECS also employs work parallelization planning

(WPP) that can use FPGs to determine how to effectively partition the elastic function across

multiple computing resources. This enables ECS to intelligently distribute work amongst

computing resources rather than greedily assigning work to all, possibly negatively affecting

performance. This information is also collapsed into a single graph, referred to as the work

parallelization graph (WPG) for fast lookups during runtime. However, WPP does not take into

account resource contention and other affects that arises when multiple instances are executing,

and it is assumed the performance remains the same as it would when one implementation is

executing on a single resource.

While ECS presents many unique solutions on adaptable computing, ECS targeted platform

does not revolve around reconfigurable computing. ECS does demonstrate the use of FPGAs,

however, there is no documented support for partial reconfiguration. Additionally, ECS does not

queue work to devices as ECS does not attempt to minimize the overall/absolute execution time

of the application. Rather, ECS aims at providing the fastest execution time for a given task,

relative to the current state of the system.
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2.3.2 Harmony:

Harmony is a collection of runtime services that provide dynamic inference of concurrency,

application portability, application scalability, and efficient utilization of heterogeneous resources

through dynamic partitioning [20]. Harmony provides a task-based programming model that

directs users in creating sequentially specified imperative programs. That is, applications are

specified as a sequence of control structures and compute kernels. This follows very similarly to

StarPU discussed in Section 2.4.3, whose applications are also described as a task control-flow

data graph. Meta-data is also supplied from the user (and can be supplied through compilers),

which provides runtime data to infer concurrency from a sequentially written program without

resorting to pragmas such as those found in OpenMP and OpenACC. Some of this meta-data

includes read and write memory locations used to determine concurrency or anticipate data

dependencies between compute kernels, a pointer to the next kernel which provides a more

explicitly controlled dependency, a user provided function that enables the runtime to determine

kernel complexity/estimate performance based on input-data, binary implementations for

compute kernel for at least one architecture (similar to StarPU’s codelet, or SPREAD’s switchable

threads), and more.

These dependency graphs are generated during runtime and in order to balance performance

with the overhead of scheduling and the generation of these graphs, Harmony limits the size of

the scheduling window or how many kernels it manages at any given time before adding more to

the graph. Harmony also collapses multiple kernels into one on these dependency graphs to

reduce the overhead of managing multiple kernels on the graph. This is done by using a kernel’s

estimated execution time. If it is found that the execution time is less than some threshold, the

compute kernels are either combined with a previous kernel on the dependency graph or the next

one dictated by program order. As a result of combining multiple compute kernels, it enables the

system to schedule more compute kernels with less overhead.

To estimate performance for a given compute kernel, Harmony uses a combination of

23



logging historical execution latencies for that kernel on various hardware, and computing offline

regressional models over such logged data and meta-data. Users can indicate through meta-data,

which inputs do affect the complexity of the compute kernels. Harmony can then aggregate this

data with latencies already recorded (historical execution times on different hardware) to form a

multivariate regressional model. They also indicate that they can improve results further if the

user additionally adds ”user-supplied estimates” of kernel complexity. However, most of this

discussion on performance monitoring and optimization in [21] does not provide sufficient detail

as to how the authors used these regressional models and how much overhead it generates.

Although they mention such techniques are possible for their runtime system, they ultimately do

not demonstrate the use of input data and latencies to shape a performance curve with a

multivariate regressional model.

2.3.3 Qilin:

The authors in [39] recognize the importance of heterogeneity and its advantages on today’s

multiprocessor systems. They also mention that in order to take advantage of this heterogeneity,

efficient utilization is necessary. Their solution includes automatically mapping computation to a

CPU and GPU configuration where most appropriately. This is done transparently to the user,

giving way to provide portable and scalable code across different system configurations.

To begin, Qilin leverages two threading-based APIs: Intel TBB for scheduling parallel

workloads onto CPUs and NVIDIA CUDA for (NVIDIA) GPUs. As a result, Qilin does not

support heterogeneous processors. Qilin’s programming model requires the programmer to

explicitly write parallelizable code through Qilin’s APIs. The rationale behind this is it alleviates

the complexity of extracting parallelism from serial code, and instead can focus on performance

tuning [39]. Qilin programs compute on two types of data: QArray and QArrayLists. QArrays are

multidimensional arrays and QArrayLists are list of QArray objects. Qilin programs can be

written with two sets of APIs: Stream-API and Threading-API. The Stream-API approach
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includes utilizing common data-parallel functions (and overloaded operators) that exist within the

Qilin library. A few examples include sqrt(), BLAS(), shift(), and sum(). Threading-API enables

the user to provide their own function to execute on QArrays and QArrayLists. This is done by

writing both Intel TBB code as well as NVIDIA CUDA code, providing a wrapper function that

includes both source code, and then calling the wrapper function at runtime to bootstrap into

either or both of them. Additionally, the user can annotate data as partitionable. This enables the

runtime to automatically partition and merge the data across both the CPU and GPU.

Qilin contains an online compilation flow when targeting CPUs and GPUs. Qilin API calls

are translated into TBB or CUDA source code, from which are then passed to the appropriate

compiler during runtime. The motivation for online compilation is that it allows the final binary to

reflect the current runtime environment and/or data sizes that are unknown offline. This also

leverages the optimizations of the respective compilers when the input data is known. However,

the authors do not provide further insight on runtime overhead for online compilation and how it

affects performance.

Performance modelling on Qilin is similar to that of StarPU 2.4.3, a linear performance

model is built from empirical runtime data collected overtime. For the current system

configuration, Qilin additionally stores such data offline for later use. If there exists tasks within a

program of which no stored data exist, Qilin first trains on the data. This is performed by first

dividing the data in half, where half of the data is assigned to the CPU(s) and the other half for the

GPU. Qilin further divides the data into m subparts on each of the two hardware, whose execution

on those subparts are recorded and used to approximate performance for it. Additionally, the

fraction of the amount of work assigned to the CPU, β, is also found by computing the

intersection of both the CPU’s and GPU’s performance equation line. This is utilized in

partitioning a single task across both types of hardware for better load balancing. If β≤ 0, the

entire argument size is offloaded to the GPU. If β≥ 0, the CPU is given the entire argument size.

The authors recognize that the computational throughput of the CPU and GPU working
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cooperatively is assumed to be the same in cases where one works alone in the system (i.e. one is

idle and the other is busy). The authors attempt to account for this but provide insufficient details

on the chosen method.

2.4 Reconfigurable Systems

The purpose of this section is to provide the state of the art that addresses heterogeneity on

reconfigurable systems. Much of what has been discussed earlier will apply here as well. Besides

targeting a new platform, capabilities such as DPR enables these systems to dynamically change

its hardware to that of which an application requires. This brings a challenge previous works

mentioning support for FPGAs have not explored. While this flexibility can provide the hardware

on-demand, having the capability does not dictate that one should always exploit it. The

following works provides exploration on this front and highlights more of the ingrained

challenges as a result of a reconfigurable platform.

2.4.1 AMAP:

With the increased densities of FPGAs, application designers have much more flexibility on where

portions of their application can execute: either in hardware or software or both. The authors in

[52] agree that deciding how to partition the application at compile time misses opportunities for

runtime optimizations. This static partitioning can not maximize optimization based on unknown

function parameter values. Furthermore, changes to the system’s environment (e.g. power or

resource availability) can further affect partitioning decisions. To address this, [52] introduces an

adaptive mapping algorithm (AMAP) that dynamically partitions the application during runtime

based on previous execution times. The authors argue that by deferring this decision as late as

possible (ALAP), better partitioning results can be achieved over compile time techniques.
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2.4.2 SPREAD:

SPREAD is a partially reconfigurable and adaptable system, and programming model that targets

streaming applications such as multimedia and cryptographic applications [56]. SPREAD’s

programming model is thread-based and the authors include support for hardware threads through

a hardware thread interface (HTI). The HTI enables both hardware and software threads to

coexist during runtime. Additionally, SPREAD supports reconfigurable point-to-point

communication channels to facilitate the pipeline parallelism needed for streaming-based

applications. Another optimization that is included is caching runtime partial reconfigurations in

order to amortize runtime overhead and increase the reuse of dynamically allocated resources.

In addition to dynamic resource allocation for hardware threads and reconfigurable

point-to-point streaming channels, SPREAD integrates runtime adaptability through the seamless

switching between hardware and software threads. Like ReconOS [38], every hardware thread

that is created has a software delegate thread referred to as a stub thread that can be used for

hardware monitoring and data stream redirection. SPREAD additionally defines a switchable

thread, which contains both hardware and software implementations for a given thread function.

This enables hardware/software threads to fall-back to software/hardware based on the

application’s needs during runtime such as higher priority resource allocation. However, these

software implementation threads are limited only to a single processor, of which the OS resides

on.

2.4.3 StarPU:

When hardware accelerators are introduced into the system, a common approach towards utilizing

it is to offload all work tuned for that device. Many programming models support this approach as

discussed in Section 2.1. The authors in [10], believe that scheduling tasks across the entire

system rather than simply offloading (and queuing) them all to a predetermined accelerator
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provides greater benefit in terms of performance as well as mitigating dark silicon [24]: a term

used to describe the increasing inefficiency of a system due to underutilization of components.

Their solution is a runtime system called StarPU, which targets both numerical kernel libraries

and parallel programming languages. Additionally, StarPU presents a task-level programming

model, where the user writes the implementation of tasks and describe any dependencies between

them. To enable execution of these tasks on any device, StarPU uses codelets which are

containers for including multiple device-specific binary implementations for the given task.

StarPU also does not require explicit marshalling of data similar to OpenCL. StarPU relieves this

explicit memory management as the runtime ultimately has control of determining where best to

schedule the task. Other transparent optimizations include data prefetching, and employing a

write-back policy (delaying writes back to memory, thus localizing the data).

The authors of StarPU make further argument that a single scheduling policy does not

suffice for all applications and believe that the runtime should be flexible to allow multiple

scheduling policies to be utilized. To accommodate multiple scheduling strategies between the

runtime system and the heterogeneous resources, the authors make use of queues. When the

application submits tasks to be scheduled, tasks may be enqueued/dequeued from a single FIFO

(e.g. greedy policy) or multiple dedicated FIFOs (e.g. work-stealing policy). Much of the analysis

uses the heterogeneous earliest finishing time (HEFT) policy. The HEFT scheduling policy tries to

minimize the completion time for the system by summing both pending tasks and the new task’s

estimated execution times for all hardware resources. This can naturally lead to the scheduling of

certain tasks onto heterogeneous resources that demonstrate an affinity for such tasks (provided

the data granularity is ideal for that resource). In order to demonstrate this, the authors estimate

task completion time dynamically online through performance (and data) modelling [9].

Modelling the performance of tasks by hand can be tedious as it requires detailed

knowledge of both architecture and algorithm. This is further exacerbated for a system with much

heterogeneity. Pre-calibrating performance models through benchmarking suites also does not
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present a viable solution as it does not represent a realistic workload, does not take into account

the dynamic behavior of the system, or both. The authors decided on a history-based approach,

where actual performance data is captured and referenced during runtime for the benefit of

scheduling future scheduled tasks. The authors do assume some regularity hypothesis in many

algorithms utilized fixed sizes of data, or limited sets of data. Execution information for a given

kernel and hardware are stored and referenced in their respective online tables. The parameters to

a given kernel pass through a hash function that ultimately generates an index into the tables. The

authors claim this history-based approach is a simpler than multivariate performance models that

distinguish table entries for data sizes such as a 1024×50 matrix vs. a 50×1024 matrix.

2.4.4 CaaS:

The Core as a Service (CaaS) project was designed as a service-oriented architecture (SOA),

similar to what is used in the networking domain, and targets an MPSoC [55]. CaaS defines two

types of tasks: scheduling servants or scheduling agents which disperse tasks to computing

servants. Computing servants receive and service the tasks. Computing servants are categorized

into software servants such as general purpose processors (MicroBlaze), and hardware servants

such as DSPs or custom hardware accelerators. Similar to Harmony, CaaS utilizes a

directive-based programming model referred to as the flexible programming model (FPM) [54].

CaaS can automatically infer inter-task dependencies through high-level programming

annotations captured during compilation and utilized during runtime. Such annotations include

the specification of directionality (inputs/outputs) on a function’s parameters.

Like Harmony and StarPU, the user writes a sequentially written program, which executes

on a master (main) processor. Users can also utilize FPM-library calls which are functions

designated to execute on computing servants (either within software or hardware). As these

non-blocking calls are encountered, the runtime scheduler determines task dependencies by

utilizing the function’s annotations in order to automatically execute a subset of them
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concurrently. Additionally, it is mentioned in [54] that one of the functions for the scheduler is to

estimate the total execution time for each computing servant. This can be used to decide which

target computing servant should execute the given task based on earliest finishing time. However,

no details are given on this automatic adaptive mapping scheme, and how execution time is

estimated and its cost for doing so.

In addition to automatic detection of task dependencies, Caas also provides profiling

mechanisms and runtime partial reconfiguration. Profiling mechanisms are used to provide

feedback to the programmer on what sections of their code is executed frequently. It was

suggested that this feedback can be provided to the runtime’s scheduler for more efficient task

mapping. Partial reconfiguration is also provided as a runtime service and is invoked on an FPM

library call-by-call basis when the target resource is currently not present. Furthermore, CaaS

does not provide any details on mitigating the overhead of partial reconfiguration with

computation. Therefore, whether invoking the partial reconfiguration service is warranted does

not weigh in on the scheduling decisions of the runtime. This is up to the user who is granted

explicit control as to where computation should occur though the FPM-library calls.

2.4.5 CAP-OS:

Hübner et. al. in [28, 27] reports on an adaptive OS referred to as the Configuration Access Port

OS (CAP-OS). The authors argue that traditional task scheduling made on resource (processor)

availability and priority does not suffice for systems with runtime reconfigurable hardware. Their

work addresses task scheduling onto reconfigurable hardware consisting of processors, and

directly/indirectly attached accelerators for real-time systems.

CAP-OS’ programming model is task-based and transparently resolves any task

inter-dependencies through the generation of task graphs. For every task graph, a global deadline

is provided. Additionally, each task is augmented with meta-data. This meta-data includes the

task ID, predecessor/successor tasks, algorithm type or hardware constraints, partial bitstream file
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or software binary, and execution and reconfiguration times to name a few. The specification of an

algorithm type aids in maximizing the reuse of previously allocated resources during runtime. It

does so by assigning tasks with similar hardware requirements and/or specific hardware

configurations. Unfortunately, there are no details provided as to how the hardware resources are

identified to the appropriate algorithm type.

CAP-OS classifies tasks into three categories: software tasks (processors), codesign tasks

(processors augmented with hardware accelerator(s)), and hardware tasks (hardware accelerators

directly attached to the system’s interconnect). For both codesign and hardware tasks, CAP-OS’

toolchain [26] guides the user in profiling their code for estimating execution time and for

including hardware task implementations. While software and hardware tasks execute on both

processor and hardware accelerators respectively, codesign tasks provides an opportunity for

increased system adaptability and further scheduling flexibility. CAP-OS leverages this flexibility

by taking into account appropriate targets to schedule tasks in order to satisfy timing constraints.

This same technique of an earliest deadline first (EDF) scheduling policy mirrors StarPU’s HEFT

scheduler.
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Chapter 3

Implementation

This chapter describes the implementation details in this thesis. The chapter begins by elaborating

HybridThreads (hthreads), a micro-kernel of which this entire thesis is built. Following this are

specific details on the compilation framework and also limitations/assumptions about hthreads.

Next, information is given on the polymorphic function library, its use in enabling users for quick

and portable use of hardware accelerators, and the runtime decisions to provide a level of

transparency to the user. After this follows a section describing how this thesis goes about a

minimal overhead of determining processor specialization for a thread. Finally, this chapter

concludes by describing the runtime system and how it uses the previously aforementioned details

to map threads to processors.

3.1 HybridThreads (hthreads)

HybridThreads (hthreads) is a hardware/software co-designed micro-kernel operating system that

provides a POSIX threads (Pthreads) compliant programming environment, and abstracts both

general purpose processors and custom hardware accelerators as threads under a unifying,

heterogeneous platform [8]. An example of an hthreads system is shown in Figure 3.1. At a

minimum, hthread systems contain one processor upon which a portion of the OS resides. Here,

software threads can be created and executed on this main processor, referred to as the host

processor. Hthreads also supports hardware threads, which are defined as custom hardware

accessible through a Hardware Abstraction Layer (HAL). The HAL is a finite-state machine

(FSM) referred to as the Hardware Thread Interface (HWTI), and serves as the communication

32



layer between the OS and the custom hardware. In addition to abstracting the execution of threads

on custom hardware, the HWTI supports synchronization primitives such as mutex locks and

conditional signals, extending the Pthreads compliance from software to hardware threads.

The HAL extended the threading model onto custom hardware but the FSM within the HAL

posed a problem for scalability. Continuing to expand OS service support through additional

hardware application portable interfaces (APIs) was increasingly expensive in area and latency.

To address this, hthreads moved the functionality of the HWTI to software using general purpose

processors slaved to the host processor. As opposed to directly attaching to the interconnect,

custom hardware attached directly to slave processors. The slave processors coupled with

memory-mapped Block RAM (BRAM), is collectively referred to as the Virtual-HWTI

(V-HWTI) [5, 7]. Through the inherent abstractions of software, this provided a more scalable

solution for future extensions of OS services: adding a new OS system call did not require any

hardware design and verification within hthreads. The use of general purpose processors also

increased the flexibility of system. Users have the option to write threads in ways such that the

thread runs entirely on the processor, the custom hardware or distributively on both. Provided the

necessary software abstractions for utilizing custom hardware attached to slave processor allows

programmers to write portable code, agnostic to the type of hardware it executes on. This

presented new avenues of research; one in particular included integrating heterogeneous slave

processors. However, the question that was raised is how can the host seamlessly target threads

onto multiple heterogeneous processors during runtime?

3.1.1 Heterogeneous Compilation Flow

Thread creation on an hthreads’ heterogeneous MPSoC platform is achieved through an

automated compilation flow. Multiple ISA-specific binaries are produced by compiling the

original source file for said targeted architecture(s), flattening or decompressing the binary to

ensure a contiguous memory layout within its binary output, embedding this modified binary
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within the host processor’s binary as a data structure, and recording the offsets at which point

within the embedded binaries do thread functions reside for each heterogeneous processor. With

this information, the runtime can appropriately supply the correct address of thread functions to

the corresponding processors. As the name implies, thread functions are functions that threads

can execute. Within the compilation flow, they differentiate themselves from other functions only

in their name declaration: the name of thread functions are suffixed with thread. This allows for

easy symbol identification when compiling the user code and recording thread offsets in the

embedded binaries. Figure 3.2 [5] from Agron [5] gives a high level overview of this compilation

flow and shows how a programmer can write a single source file without processor specific

optimizations, and target many different architectures during runtime.

The early version of the heterogeneous compilation flow was created and automated by

Agron [5]. At the time, it only supported similarly configured MicroBlaze slave processors but

provided a proof of concept that supporting heterogeneous processors between host and slave

processors was possible. As part of this work, the compilation flow was modified to extend

heterogeneity amongst slave processors. The details of this expansion is provided in Section

3.3.1. However, there still remains a few support limitations to this heterogeneity at the slave

processor level.

3.1.2 Limitations of hthreads

While the hthreads platform serves as a vehicle for heterogeneous MPSoC exploration, there

exists a number of limitations that should be mentioned. The following are a few that are relevant

to this thesis. First, hthreads has predominately targeted Xilinx FPGAs. As a result, the hthreads

microkernel that exists as IP cores have evolved to utilized the interconnect with each new

generation. Currently, the hthreads platform supports the new AMBA busses (AXI4-Lite,

AXI4-Stream) [60]. Additionally, hthreads supports the first-party MicroBlaze [63] processor that

is designed to utilize the AMBA bus (and previous Xilinx interconnect offerings). No support has

35



H
eterogeneous C

om
pilers

     #include header.h

void * thread1 (void * arg);
void * thread2 (void *arg);
.
.
void * threadN (void * arg);

User Source

MicroBlaze 
Compiler

PowerPC 
Compiler

ARM 
Compiler

0x400: void *thread1 (void *)
.
.
0xB00: void *thread2 (void *)
.
0xC00: void *threadN (void *)

MicroBlaze Binary

0x100: void *thread1 (void *)
.
.
0x200: void *thread2 (void *)
.
0x400: void *threadN (void *)

PowerPC Binary

0xC40: void *thread1 (void *)
.
.
0xD20: void *thread2 (void *)
.
0xE40: void *threadN (void *)

ARM Binary

Heterogeneous Header File

Figure 3.2: A flow chart describing the embedding process for heterogeneous binaries.

36



been provided for other third-party soft processors such as the Leon3 or ZPU [25, 66] as either

they have not included support for interconnects such as the AMBA bus, no supported and

complete build tool-chain, or were generally too large for the hthreads platform.

Another missing feature is thread preemption on the slave processors. This is currently

supported on the host processor as software threads can be created with a variable priority. In

contrast, hardware threads carry a fixed priority and are immediately dispatched to the slave

processor (or the custom hardware) once received by the thread scheduler. Implementing this

feature can provide opportunities of thread/computation migration across slave processors in

scenarios where more computationally-capable processors become available for use.

Finally, thread creation onto slave processors is only supported by a single host processor.

Although an SMP variant of hthreads exists that allows two host processors to create and schedule

threads, these threads are software threads limited to executing onto the host processors. As

hthreads moves towards supporting more than one application to execute at a time, the sharing of

slave processors may be an important step in continuing the scalability of the platform.

3.2 Polymorphism - Dynamic and adaptable behavior

It was explained in Section 3.1, that hthreads unifies both software and hardware threads through

the use of the HAL. It was also mentioned that slave processors can serve as the HAL for custom

hardware. Using a processor (or software) as the front end to the rest of the system for custom

hardware provides great flexibility. An example is allowing the programmer to construct a thread

such that a portion executes on the slave processor and a portion executes on the attached custom

hardware. However, leveraging this flexibility within a thread can introduce platform details as

assumptions of the hardware must be made at time of writing. Another issue is knowing when to

make use of custom hardware. Section 1.2.2 highlighted that depending on the hardware resource

a thread requires, there may be an intersection point at which executing the function in software

compared to shifting the work to a hardware accelerator exists. Furthermore, this point is not fixed
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and varies between hardware accelerators (see Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9). This is

further exacerbated for a heterogeneous system where the performance curves amongst processors

themselves can differ from one another, thereby introducing greater variance to performance.

This work introduced polymorphic functions, which were created to offload these decisions

from the programmer to the runtime system. Polymorphic functions have been investigated in

other research [20, 56, 10]. They are wrapper functions that coordinate the handling of data and

perform partial reconfiguration (PR), utilize pointer information for the execution of the function

in software, and provides the control flow for deciding how and when to execute the function:

hardware or proceed in software.
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The control logic within a polymorphic function decides when to execute in hardware or

software based on the runtime information. The runtime information used within a polymorphic

function call are as follows:

• Software and hardware execution times

• Partial reconfiguration overhead

• Current hardware accelerator attached to the processor (if any)

• Determine whether accelerator is static or dynamic

This list does not represent a complete list but only those that are currently utilized when invoking

a polymorphic function. For the current functions in the polymorphic function library as seen in

Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9, it suggests that it is always best to execute in hardware

if the necessary hardware exists. However, when the hardware does not exist, each slave processor

checks whether it can swap in the needed accelerator in the case it has a dynamic accelerator

attached. If so, the slave processor then compares the hardware and software execution times of a

polymorphic function along with the PR overhead, to decide whether or not to execute the

function in software or perform PR of the necessary accelerator and transfer computation directly

onto it. The entire process for invoking a polymorphic function is provided in Figure 3.10.

The runtime system keeps information about the performance of polymorphic functions for

each heterogeneous processor within the tuning table shown in Figure 3.11. The tuning table is

populated once at boot (similar to what is done in [58]) and is used when comparing the software

and hardware executions of a polymorphic function. The tuning table is stored offline for each

system configuration to avoid repeatedly generating it at every bootup. Currently, there exists a

single PR controller, responsible for receiving commands by the processors in the system and

performing PR on the dynamic accelerators. The performance data that is generated assumes little

to no bus, memory, and/or PR controller contention. This is a non-issue however, as the systems

integrating PR are currently limited to a maximum of 16 slave processors.
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Figure 3.11: Three-dimensional tuning table storing polymorphic function performance data.
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3.3 Determining processor specialization - Thread affinity

While a polymorphic function’s performance data can be automatically generated or loaded at

boot, performance data for the entire thread body remains unknown until runtime. One of the

goals set forth by this thesis is to not require the end user to manually profile their code in an

effort to determine where best to map a thread. Additionally, while profiling threads can be

automated, it is assumed that the polymorphic function library and the code that it includes

remains static and is not under rapid development as a user’s source code. The polymorphic

function library only needs to be generated once for a platform and can be loaded into memory

for said platform for any user program wanting to take advantage of it. Furthermore, one of the

use-case scenarios this work targets is operating systems, or time-sharing software that executes

for a long period of time. Whenever a new program/task is introduced into the system, it is

infeasible to require the entire system to halt in order to benchmark this new task.

To support this level of performance-aware transparency, this thesis combines information

generated offline by the compiler with runtime data used when scheduling a thread. The items

that are generated offline include information about the platform, a processor-priority list for each

thread, and a polymorphic function call-graph. All three of these topics are discussed in the

following sections.

3.3.1 Platform Analysis

A process that was added within the heterogeneous compiler was the platform analysis stage. A

similar operation to what the commercially available Xilinx XSDK tool provides, platform

analysis allows the compiler to grab information about how an FPGA MPSoC platform was

configured in order to determine how to compile one’s program against it. This information

includes how many (slave) processors are in the system, what accelerators are attached to the

processors (if any), is PR supported, and how each slave processor is configured (specifically,
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1 <PROCESSORS>
2 <PROCESSOR Hth reads ISA =” mblaze ” HWVERSION=” 9 . 5 ”>
3 <PARAMETER NAME=”HWVERSION”>
4 <OPTION VALUE=” 9 . 5 ” FLAG=”−mcpu=v9 . 5 ” />
5 < /PARAMETER>
6 <PARAMETER NAME=”C USE FPU”>
7 <OPTION VALUE=” 0 ” FLAG=”−msoft− f l o a t ” />
8 <OPTION VALUE=” 1 ” FLAG=”−mhard− f l o a t ” />
9 <OPTION VALUE=” 2 ” FLAG=”−mhard− f l o a t −mxl−f l o a t −c o n v e r t −mxl−

f l o a t −s q r t ” />
10 < /PARAMETER>
11 <PARAMETER NAME=”C USE BARREL”>
12 <OPTION VALUE=” 0 ” FLAG=”−mno−xl−b a r r e l−s h i f t ” />
13 <OPTION VALUE=” 1 ” FLAG=”−mxl−b a r r e l−s h i f t ” />
14 < /PARAMETER>
15

16 . . . . . . F i l e t r u n c a t e d f o r b r e v i t y . . . .

Figure 3.12: Compiler flags for the MicroBlaze corresponding to configured parameters.

what co-processors are enabled). Figure 3.12 represents the file used by the compiler to map

certain values of a MicroBlaze (version 9.5) parameter to compiler flags that should be passed

during compilation. Additionally, having knowledge of whether the system supports PR or not

dictates whether the appropriate PR support libraries are provided within the compilation build.

The result of platform analysis has enabled the hthreads compiler to support differently

configured slave processors.

3.3.2 Instruction Flagging

The platform analysis stage also enabled the capability to flag certain instructions, known as the

instruction flagging stage. The instruction flagging stage during compilation reads the

information passed on from the platform analysis, specifically enabled co-processors on each

slave processor, and flags the co-processor instructions for each thread function. The assumptions

made here is that hardware is generally faster than software and all processors share a common

base architecture. If instructions that make use of co-processors are found during compilation,

then this processor should be given more weight, hence the flagging of instructions. Similar to

Figure 3.12, Figure 3.14 previews the file used in this stage to support this flagging process.
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1 t y p e d e f s t r u c t {
2 Hbool i d i v ;
3 Hbool fpu ;
4 Hbool b a r r e l ;
5 Hbool mul ;
6

7 / / Rese rved f o r f u t u r e use
8 Hbool i d i v r a t i o ;
9 Hbool f p u r a t i o ;

10 Hbool b a r r e l r a t i o ;
11 Hbool m u l r a t i o ;
12

13 / / F i r s t p o s s i b l e a c c e l e r a t o r , used
14 Hin t f i r s t a c c e l e r a t o r ;
15

16 / / PR p r e f e r e n c e : v a l i d i f m u l t i p l e
17 / / po lymorph i c f u n c t i o n s c a l l e d .
18 Hbool p r e f e r P R ;
19

20 } t h r e a d p r o f i l e t ;

Figure 3.13: Thread profile structure that describes what co-processors a thread can use for a given
platform or a set of slave processors.

Based on the targeted platform, this allows the compiler to generate a thread profile (Figure 3.13).

A thread profile provides information about what co-processors can a thread function utilize

considering the given set of slave processors in the targeted platform and how they are configured.

This information is stored within the first 4 parameters of this data structure. As a result of this

information, finding a suitable processor can be generalized to one whose enabled co-processors

intersects with these values in a thread profile. This generalization provides a simple estimation of

finding a suitable thread-to-processor mapping. It also does not add any overhead cost to the

runtime as the compiler generates a priority array list for each thread function, sorted by most

preferable to least preferable processor with respect to co-processor utilization. During runtime,

the scheduler can index into this ordered array when scheduling threads.

3.3.3 Polymorphic Function Call Graph

A final addition that was added to the heterogeneous compiler was the generation of a function

call graph. This stage has been written to apply to any function symbol, but is used in this thesis to
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1 <PROCESSORS>
2 <PROCESSOR Hth reads ISA =” mblaze ” HWVERSION=” 9 . 5 ”>
3 <PARAMETER NAME=”C USE DIV” VALUE=” 1 ” OPCODE=” 010010 ” STRUCT ENTRY=”

i d i v ”>
4 <OPTION VALUE=” i d i v ” />
5 <OPTION VALUE=” i d i v u ” />
6 < /PARAMETER>
7 <PARAMETER NAME=”C USE HW MUL” VALUE=” 1 ” OPCODE=” 010000 ”

STRUCT ENTRY=” mul ”>
8 <OPTION VALUE=” mul ” />
9 <!−− C USE HW MUL = 2 −−>

10 <OPTION VALUE=” mulh ” />
11 <OPTION VALUE=” mulhu ” />
12 <OPTION VALUE=” mulhsu ” />
13 <OPTION VALUE=” mul i ” />
14 <PARAMETER NAME=”C USE FPU” VALUE=” 1 ” OPCODE=” 010110 ” STRUCT ENTRY=”

fpu ”>
15 <OPTION VALUE=” fadd ” />
16 <OPTION VALUE=” f r s u b ” />
17 <OPTION VALUE=” f s u b ” />
18 < /PARAMETER>
19

20 . . . . . . F i l e t r u n c a t e d f o r b r e v i t y . . . .

Figure 3.14: Instruction flagging information for the MicroBlaze’s co-processors.

select polymorphic functions only. With this information, it is possible to know whether a thread

requires partial reconfiguration. If it is discovered by this stage that a thread makes multiple,

different polymorphic calls, then it is assumed PR is preferred due to slave processors containing

at most one dynamic/static accelerator. If it is found that only a single polymorphic function call

is invoked, partial reconfiguration is optional. However, if there are no polymorphic functions

called within a thread, then this thread should not consume a processor which has a static/dynamic

accelerator (unless it was found that this processor has a high affinity for the thread).

In all of these cases, this information should be conveyed to the runtime system. This is

done using the thread profile data structure previously shown in Figure 3.13. The field,

first accelerator describes whether or not a processor calls a polymorphic function. It also

provides a way for the scheduler to reduce the amount of PR needed by matching a processor with

the initial accelerator it may need. The other field, prefer PR is used by the runtime to indicate

this thread may call multiple polymorphic functions. It is not guaranteed that the thread will as
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the polymorphic functions may all be conditionally invoked. If PR is preferred however, threads

should be mapped to processors that have dynamic accelerators. Whether the polymorphic calls

execute in hardware or software will depend on the runtime performance data of that call.

However, having the option for reconfiguration may prove beneficial for times when it is needed.

3.4 Runtime System

As outlined in Section 3.1.1, the compiler supplies the runtime system the correct address of

thread functions for each heterogeneous processor. This information alone is not sufficient for

self-awareness and for dynamically mapping threads to more capable performing processors than

others. As was discussed in Section 1.2.2, generating a static mapping for threads to processors

can also be a dangerous solution, particularly for a system whose hardware varies over its uptime.

Therefore, information about the current state of the system must also be taken under

consideration when placing a thread onto a processor. The following sections provide details on

thread scheduling against a heterogeneous system with combinations of static, dynamic, or no

accelerators attached to each processor.

3.4.1 Two-tiered Scheduler

Previously, the scheduling policy within the hthreads runtime system began with a processor

availability lookup, immediately scheduling a thread once an available processor was found.

Since this policy pre-existed the polymorphic function library and slave processors were

considered to be identical at the time, there was not a need to analyze which processor would be

best to execute a thread: all processors would produce similar results. Now, with the introduction

of heterogeneity amongst slave processors also brings asymmetrical performance. This simple

scheduling policy used previously would not suffice. The scheduler must now take into account

several new parameters: how the processor is configured, if there are any external hardware

accelerators attached (as part of the polymorphic function library), and what resources does a
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thread require. Additionally, the system state, namely the attached accelerators can change

through DPR and the runtime must be aware of such changes when considering new threads to

schedule on slave processors.

To address this, the scheduler within this thesis is a two tiered scheduler. The first tier of the

scheduler that creates and schedules threads onto slave processors, executes partially in software

on the host processor and partially in hardware. This scheduler attempts to map threads onto

processors where the accelerated resources that it uses such as hardware accelerators or

co-processors are maximized. Once a thread begins execution on a slave processor, further

scheduling is required when invoking a polymorphic function call. When a polymorphic function

executes, the second tier of the scheduler directs computation onto the attached hardware

accelerator or proceeds in software. If the first tier is successful in mapping a thread to a

processor with the appropriate resources, this potentially provides a high resource hit-rate as the

hardware it needs currently exists on the slave processor. Therefore, the second tier supports the

first in case the hardware does not exist (see the previous section, 3.2, for more details).

Therefore, it is important that the first tier, from here on referenced as the scheduler, maps threads

to processors with the needed resources. These processors are referred to as the ideal processors.

3.4.2 Mapping threads to processors

The strategy towards mapping threads onto ideal processors is to utilize information on processor

specialization for each thread. As previously mentioned in Section 3.3.2, the compiler generates

an ordered list from most preferred to least preferred processor for every thread function. This

enables the runtime to consider processor availability, with implicit priorities assigned to

processors. If the application and slave processors are sufficiently diverse, this ordered list can

map threads to their processors at a higher rate than choosing the first available processor. Other

bodies of research have chosen instead to track historical data [10] or benchmark [39] tasks when

input sizes can vary as is the case with this thesis. With the approach taken in this thesis, the
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scheduler does not introduce additional overhead as it operates on pre-generated information.

However, this data generated by flagged instructions alone is not sufficient for mapping to ideal

processors. The distribution of those flagged instructions is another metric that should considered.

The impact of using this metric is expounded in Section 4.3.1.

Threads invoking polymorphic functions also provide another strategy for mapping threads

to processors. Polymorphic functions implicitly provide hints as to what external hardware

accelerators it will use and whether or not PR will be needed (Section 3.3.3). The flow chart in

Figure 3.15 summarizes the final scheduling policy the runtime uses when mapping threads to

processors. The scheduler begins by first referencing an ordered list of processors, represented as

the set, P = {p0, p1, . . . pN−1}. Processor p0 represents any processor in the system and does not

necessarily equate to processor id 0. From this list, the runtime can index from most preferable to

least preferable processor, checking the availability and assigning a rating to each. There are

three rating values: Good, Better, and Best. There is a fourth rating value, perfect, that is implied

when the system finds an ideal match for the thread. Processors that fall short of an ideal match

belong to one of the three values mentioned.

If an ideal match is not found, this rating mechanism allows the runtime to compare a

processor’s external hardware resources to the thread’s hardware requirements. Internal hardware

resources such as the MicroBlaze’s enabled co-processors have already been taken into account

through the ordering of the processor set, P. Once the runtime has traversed the entire list, it can

find the next appropriate processor to map a thread. For example, if a thread prefers PR, finding a

processor that has a dynamic accelerator is preferable. On top of this, knowing what polymorphic

function will be invoked first also leads to matching a processor that has that initial hardware

accelerator. This eliminates the need for PR once a thread begins execution. If such a processor

exists, according to the flow chart, this represents the ideal case. If it is found that the processor’s

current hardware accelerator does not match the first invoked polymorphic function, but has a

dynamic accelerator attached, it passes as the next appropriate option. Therefore, its number
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i = 0
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Figure 3.15: Scheduling flowchart for threads with Polymorphic functions
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would be assigned to the variable best if it has not already been assigned. The reason why the

runtime does not overwrite a previously assigned processor number is due to the initial ordered

list of processors. More appropriate processors in terms of their internal hardware support for a

thread, are assigned to these values first. Overwriting these values as the runtime traverses more

into this list only leads to the processor reversing the intended preferences.
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Chapter 4

Evaluation

This thesis presents a series of tests to evaluate the thesis’ claims and questions put forth in

Section 1.3. This chapter begins by first explaining how an FPGA-based MPSoC system was

configured to be representative of a heterogeneous system. Although some of the testing utilized

different heterogeneous systems (and in some cases, a homogeneous system) for simplifying the

test, the underlying heterogeneous architecture remained the same. Next, a discussion is given on

the execution of a homogeneous task load by a heterogeneous system and provides a comparison

to the equivalent amount of work given in a heterogeneous task workload. Following this are brief

discussions of runtime metrics that influence the performance of the self-aware runtime. Finally,

the chapter concludes with tests drawn from real-world applications on a larger heterogeneous

system, and provides a brief look at the resource efficiency achieved by the proposed self-aware

runtime system.

4.1 Creating a heterogeneous system - Evaluation Setup

Earlier on in this body of research, the boards that were used coupled an IBM PowerPC hard

processor and the FPGA fabric co-joined onto a single chip. A heterogeneous multiprocessor

system could be realized by instantiating on the FPGA, soft processors that worked in tandem

with the external, hard processor. However, these specific boards were retired from the vendor’s

toolsuite. It should be noted that Xilinx does support recent boards with similar hard and soft

processor configurations in their toolsuite today [62]. However, the FPGA fabric included onto

these boards are not as dense and therefore, would not be able to support large (10+)
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Figure 4.1: Example system containing 5 heterogeneous slave processors.

multiprocessor systems integrated with several PR regions. To accommodate larger designs, this

work has used a combination of both the Xilinx Virtex 7 and Kintex 7 [61] FPGA evaluation

boards. These boards do not contain any hard processors, but heterogeneous processors can be

instantiated as soft processors.

To create processor heterogeneity from a soft IP cores, this thesis leverages the

reconfigurable MicroBlaze [63] processor. The MicroBlaze allows the system designer the

opportunity to configure it in ways that can affect performance (and area). For example, a

MicroBlaze configuration can cherry-pick from several co-processors. Available co-processors

include a 32-bit Floating Point Unit (FPU), 32-bit FPU-Extended (FPU-E) enabling additional
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FPU instructions such as square root and floating point comparisons, 32-bit and 64-bit integer

Multiplier (MUL and MUL-E), integer pattern comparator (PATTERN), Barrel shifter

(BARREL), and a 32-bit integer divider (I-DIV). Additionally, tightly coupling reconfigurable

regions to the MicroBlazes further created a greater degree of heterogeneity as new, but diverse

support for external hardware acceleration can exist statically or change during runtime. Access

to these PR regions can be modified during runtime to emulate static, dynamic, or no accelerators

attached. Figure 4.1 shows an example system that containing 5 slave MicroBlazes configured

with different co-processors to yield a heterogeneous MPSoC. The co-processor selections in all 5

slave processors were generated to cover all of the available co-processors and to ensure different

binary outputs for each processor. There was also a need to provide an ample mix of

heterogeneity, and less so on overlap. Contrary to approaches where systems are generated

specifically for a single application, these systems were generated to execute multiple

applications, and it is the goal of the self-aware runtime system to maximize performance with

the available resources.

4.2 Executing homogeneous task loads

It is common for a single application during its runtime to spawn homogeneous tasks to divide

and conquer a workload. This is particularly true for single instruction, multiple data (SIMD)

code such as loops that act on independent data. This thesis also examines not only how well a

heterogeneous task load may execute on a heterogeneous FPGA-based MPSoC, but must evaluate

the performance in comparison to a homogeneous task load.

To create this scenario, the heterogeneous multiprocessor system shown in Figure 4.1 was

used. While the system contains PR regions, the following example leverages only processor

heterogeneity defined by the presence/absence of different co-processors in each processor.

Additionally, the tasks that were chosen targets one of the MicroBlaze’s co-processors if

available. This set of tasks were used in an earlier motivating example found in Section 1.1).
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Homogeneous vs. Heterogeneous Task Load
Task (# of operations) Execution Time (µs)

Homogeneous
Load

shift (960) 1,588
fpu (144) 1,895
idivu (30) 252

mul64 (1441) 4,529
mul32 (1201) 1,155

Heterogeneous Load shift, fpu, idivu, mul64, mul32 828

Table 4.1: Performance of homogeneous tasks scheduled on all processors vs heterogeneous load
of these tasks scheduled onto a heterogeneous system.

Each task (except idivu) was given a large enough data size to ensure the execution time would

amortize the initial task scheduling overhead. This data size is measured in Table 4.1 as the

number of operations as opposed to memory footprint. For each of these tasks stated in the

homogeneous load, the number of operations for the corresponding task in the heterogeneous load

is multiplied by N processors, where N in this example is 5. That is, if the shift task involved 960

shifting operations on each of the 5 processors in the homogeneous task load, the corresponding

task within the heterogeneous load executing on a single processor performed N ∗960 = 4800

shifting operations.

In both heterogeneous and homogeneous task loads, dynamic scheduling of tasks with

consideration of processor specialization was used. As a result, it is possible for the scheduler to

reuse a previously scheduled but currently available slave processor in the homogeneous test. This

was done to investigate equal scheduling policies on both task sets. Unlike scheduling tasks on

the first available processor, scheduling with processor specialization allows these tasks to execute

quickly on processors that are more fit or hardware-equipped for the task: processors that have

accelerated hardware for specific operations. This combined with the diversity of the processors

in this system, allows each task to map to one or more processors capable of accelerated

execution. Introducing a more complex system by integrating additional processors will only

increase system flexibility due to increasing opportunities to map tasks to ideal processors. Thus,

the heterogeneity of the system can continue to perform favorably for heterogeneous task loads.
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Shift Task (Homogeneous Load) - Detailed view
Thread Processor Execution Time (µs)

1 3 121
2 0 1,454
3 1 1,455
4 2 1,455
5 4 1,454

Total Thread Create Overhead: 111 µs
Total Time: 1,588 µs

Table 4.2: Details on the shift benchmark executed on a heterogeneous system.

On the other hand, scheduling several of the same tasks (especially in succession of one

another) as is done in the homogeneous task set does not perform favorably on a heterogeneous

system. This is due to the higher contention of similar fit processors these threads may need to be

mapped to. In terms of scheduling overhead, both of the task sets involved scheduling 5 threads

into the system. For a specific task, such as shift, both executed the same amount of shifting

operations. While one can infer that some of the homogeneous tasks are being mapped to less

ideal processors resulting in poor performance, there is a need to quantify how less ideal are these

processors.

Table 4.2 highlights why scheduling consecutively the same task across multiple threads

(albeit, with a 1
5 workload size each) performs poorly in contrast to scheduling the entire task’s

workload on a single processor as is the case in the heterogeneous task load. The table details the

5 shift thread’s execution time, which processor the thread mapped to, total OS scheduling

overhead, and total running time. As shown, the scheduler immediately schedules the first thread

to the processor(s) for which it is most fit. In this case, processor #3 has a hardware barrel shifter.

However, it is the only processor with such accelerated shifting capacities. Although it finishes in

121 µs, the overhead of scheduling a single thread requires 20-25µs. As the table shows, the

combined thread creation overhead was 111 µs which is less than Processor #3’s execution time.

Therefore, the OS was able to schedule 4 additional threads within that 121 µs execution window.

If there were a 6th instance of the shift task, the OS would be able to reuse Processor #3 by the
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Unsigned Integer Division/idivu Task (Homogeneous Load) - Detailed view
Thread Processor Execution Time (µs)

1 4 17
2 0 94
3 4 15
4 1 95
5 4 16

Total Thread Create Overhead: 110 µs
Total Time: 252 µs

Table 4.3: Details on the idivu benchmark executed on a heterogeneous system.

time it schedules it provided that the workload size remained the same.

The moment the data size becomes smaller, and the execution of a task on a preferred

processor becomes less than the task scheduling overhead, the system will reuse that processor.

This is the case for the idivu task which has a 15-17 µs execution time a processor that has an

integer divider unit: processor #4. As shown in Table 4.3, processor #4 is reused several times as

soon as it becomes available. While the the execution time reported for processor #4 is less than

scheduling a thread in this system, this execution time does not take into account the slave

processor performing additional thread exiting procedures as well as the hthreads scheduler IP

core issuing a ”GO” command to the awaiting slave processor. While a small dataset may seem

unlikely as programmers typically divide a large dataset in order to warrant the overhead of

scheduling on multiple processors, it is a possible scenario nonetheless.

4.3 Runtime metrics for effective heterogeneous scheduling

While knowing what particular instructions make use of certain hardware accelerators (internal or

external) can help in determining where best to map a thread, there is additional information the

runtime system can utilize. The following sections explores several additional sources of

information that can be supplied to the runtime system. Whether it can provide additional benefit

to a heterogeneous system is also investigated.
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4.3.1 Instruction Distribution

Instruction distribution describes which instructions impact the thread’s execution time and thus,

impact the original processor mapping discussed in Section 3.3.2. For example, at compile time it

may be determined through the instruction flagging stage that a thread performs both floating

point and integer division, but the execution ratio between the two operations may be 10:1.

Therefore, when deciding between a MicroBlaze with an integer division co-processor and one

with a floating point unit only, knowing this information can help determine where best to

schedule this thread. In this case, suffering the loss of integer division on the latter processor to

address the floating point instructions that dominates the thread’s execution is the correct decision.

To test this, instruction distribution was manually added to a slave’s meta-data profile

managed on the host at runtime. This distribution was found by running the thread shown in

Figure 4.2 on a MicroBlaze that contains any of the necessary co-processors the thread may

require. While this is a manual procedure, it should be noted that it can be incorporated in runtime

through a combination of thread execution history and performance profiling features offered

within the MicroBlaze. At the time of this writing however, such features in the MicroBlaze exist

but do not work reliably to provide confidence in the profiling data it captures.

The thread in Figure 4.2 contains a finite amount of shifting operations, coupled with

floating point operations encapsulated within the body of a loop. If it is assumed that both types

of operations that make use of their respective hardware execute in a similar amount of time, it

can be concluded that the floating point operations have the potential to dominate this thread’s

execution time. To demonstrate this, this thread was first mapped to a processor based on only the

number of instructions generated by the compiler through the instruction flagging stage. In this

case, 18 32-bit shifting operations as the values being shifted are 64-bits each and 2 floating point

operations. As a result, the runtime system automatically gives more weight to the processor that

contains a barrel shifter. For the system shown in Figure 4.1, processor #3 contained a barrel

shifter unit, and processor #0 and #1 contained a floating point units. Alternatively, if the
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1 t y p e d e f s t r u c t {
2 Huin t max ;
3 Huin t s h i f t n u m ;
4 } v o l a t i l e f p u s h i f t t ;
5

6 void ∗ f p u s h i f t t h r e a d ( void ∗ a r g ) {
7 f p u s h i f t t ∗ d a t a = ( f p u s h i f t t ∗ ) a r g ;
8 Huin t max = da ta−>max ;
9 Huin t s h i f t n u m = da ta−>s h i f t n u m ;

10 Huin t i = 0 ;
11 v o l a t i l e f l o a t sum = 0 . 0 F , temp = 2 . 0 F ;
12

13 v o l a t i l e Hlong m = 0x1 , j = 0x2 , k = 0x3 , l = 0x7 ;
14

15 / / F i n i t e number o f s h i f t i n g o p e r a t i o n s
16 m = m >> s h i f t n u m ;
17 j = j >> s h i f t n u m ;
18 k = k << s h i f t n u m ;
19 l = l << s h i f t n u m ;
20

21 / / V a r i a b l e number o f f l o a t i n g p o i n t o p e r a t i o n s
22 f o r ( i = 0 ; i < max ; i ++) {
23 / / F l o a t i n g p o i n t m u l t i p l i c a t i o n
24 temp ∗= temp ;
25 / / F l o a t i n g p o i n t a d d i t i o n
26 sum += temp ;
27 }
28

29 re turn ( void ∗ ) SUCCESS ;
30 }

Figure 4.2: Instruction example: the floating point instructions may be dominant depending the
number of times the for-loop executes.
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Instruction Distribution Example
Scheduling optimization Processor Execution Time (µs)
Scheduling based on static number of compiled instructions 3 663
Scheduling knowing the distribution of compiled instructions 0 85

Table 4.4: Results of executing a thread that includes an uneven distribution of shifting operations
(18) and floating point operations (2400).

scheduler maps the thread to processor #0, a faster execution is observed for the thread as given in

Table 4.4. This is true as long as the floating point operations dominate the thread’s execution

time.

4.3.2 Resource-Awareness

Another runtime optimization that can be integrated in order to reduce PR overhead, and thus,

reduce the contention in accessing the PR controller is knowing ahead of time, what polymorphic

functions are called within a thread and whether it prefers a processor with a PR region (discussed

previously in Chapter 3. By design, slave processors report to the hthreads runtime system what

accelerators (if any) are attached to them and whether it is partially reconfigurable (i.e. if it has a

dynamic accelerator). If it is partially reconfigurable, slaves report the currently attached

accelerator once a thread finishes execution. Scheduling with this information compliments

known information on which co-processors a thread utilizes. This is because the ultimate goal is

to treat both internal and external hardware accelerators similarly. The scheduler addresses this by

considering a thread’s use of co-processors first as that remains static, and then determines

whether the processor is connected to the appropriate external hardware (i.e. static or dynamic

accelerator).

The first test critiques on whether or not knowing ahead of time 1) which external hardware

accelerator may be used as a result of a polymorphic function call and, 2) knowing if partial

reconfiguration is possibly needed in the case of multiple polymorphic function calls. To isolate

this test from other factors, the slave processors always attempt to execute in hardware. Hence,
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1 i n t main ( ) {
2 i n i t h o s t t a b l e s ( ) ;
3

4 / / S t a r t t i m e r
5 s t a r t = h t h r e a d t i m e g e t ( ) ;
6

7 / / C r e a t e d e t a c h e d t h r e a d s
8 t h r e a d c r e a t e (& t h r e a d s [ 0 ] , w o r k e r s o r t v e c t o r t h r e a d ) ;
9 t h r e a d c r e a t e (& t h r e a d s [ 1 ] , w o r k e r c r c t h r e a d ) ;

10 . . . .
11 . . . .
12 t h r e a d c r e a t e (& t h r e a d s [ 1 2 7 ] , w o r k e r s o r t t h r e a d ) ;
13

14 / / Wait u n t i l s l a v e p r o c e s s o r s have e x e c u t e d a l l queued t h r e a d s
15 whi le ( g e t n u m f r e e s l a v e s ( ) != NUM OF AVAILABLE HETERO CPUS) ;
16

17 / / S top t i m e r
18 s t o p = h t h r e a d t i m e g e t ( ) ;
19

20 re turn 0 ;
21 }
22

23 / / Example o f t h r e a d f u n c t i o n
24 void ∗ w o r k e r s o r t t h r e a d ( void ∗ a r g ) {
25 Data ∗ myarg = ( Data ∗ ) a r g ;
26

27 / / SORT
28 i f ( p o l y b u b b l e s o r t ( myarg−>s o r t d a t a , myarg−>s o r t s i z e ) )
29 re turn ( void ∗ ) FAILURE ;
30

31 re turn ( void ∗ ) SUCCESS ;
32 }

Figure 4.3: Pseudocode for the synthetic benchmark.
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Figure 4.4: Platform A

they do not retrieve profiling data for the polymorphic function. If partial reconfiguration

functionality exists at that slave processor, it will perform partial reconfiguration in order to

execute the function in hardware. If the slave does not have the external resources to execute a

polymorphic function in hardware, it will default to software execution. This test, shown in Figure

4.3, creates 128 detached threads in the system. These threads perform various polymorphic

functions. In the case of worker crc thread, it calls the CRC polymorphic function only but for

worker sort vector thread, it calls both the bubblesort and vector addition polymorphic functions.

Once this arbitrary amount of 128 threads finishes, the host processor records and displays the

execution time, and optionally checks the results and displays the thread to processor mapping.

Furthermore, there was a need to vary the system configuration during this test to observe

any changes that arise with less hardware resources/diminishing levels of system complexity.

Therefore, this test was executed on three platforms derived from Figure 4.1. The first system,

contains all 5 slave processors with dynamic accelerators attached. The second system contained
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Resource-Aware Scheduling
Platform A Platform B Platform C

Base scheduling 2,626.31 6,758.16 6,767.92
Base scheduling with random selection 2,861.24 6,687.99 6,688.45
Resource Aware-Scheduling 2,611.59 2,606.92 2,629.43

Execution Time (ms)

Table 4.5: Results of executing 128 detached threads that call various polymorphic functions,
randomly. Data sizes for each call was also randomly chosen.

three processors with dynamic accelerators, and two with static accelerators. Finally, the third

system contained three processors with dynamic accelerators, and two with neither static or

dynamic accelerators. A simplified figure of these three systems are provided in Figures 4.4, 4.5,

and 4.6.

The results in Table 4.5 confirm that knowing ahead of time what resources a thread may

use, will deliver better overall system performance. This is seen when one considers moving the

application from Platform A to Platform B and Platform C. During this shift, some of the slaves

lose the ability to perform PR (Platform B), and some no external hardware accelerators (Platform

C). This can force slaves to execute a polymorphic function in software or undergo the cost of PR

even if there is an available processor with the appropriate resource. The arrangement of these

disadvantaged processors were purposely configured between the three test systems to show this

worst case. In the base scheduling scheme, the runtime examines each available processor

beginning with Processor #0 to Processor #5, and schedules a thread once an available processor

is found. Processor #0 in both Platform B and C do not have PR functionality or an accelerator at

all. Processor #0 is the first processor under consideration for the base scheduler and if available,

a thread will be mapped. As a result, the performance worsens on the base scheduler when

moving from Platform A to Platform B or Platform C. To provide a more fair assessment to the

resource-aware scheduling, results are included for the base scheduling policy with random

selection. That is, instead of the base scheduler identifying which processor is available beginning

with #0, it chooses a processor number at random to check its availability. While this scheduling

policy does marginally improve over the base scheduling policy in both platforms B and C,
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Resource-Aware Scheduling - PR and Software Ratio Details
Platform A Platform B Platform C

Base scheduling 75% / 0% 73% / 23% 78% / 28%
Base scheduling with random selection 82% / 0% 83% / 11% 84% / 12%

Resource Aware-Scheduling 58% / 0% 49% / 0% 77% / 0%

Table 4.6: PR percentage when executing in Hardware/Percentage of software executions out of
the 154 polymorphic functions called across the 128 threads.

performance degrades in platform A. The base scheduling policy, is likely to reuse a processor

with the appropriate hardware. This can be seen when one considers that the base scheduler

performed PR 75% of the time during its 154 calls to polymorphic functions compared to the base

scheduler with random selection invoking partial reconfiguration 82% of the time.

The alternative resource-aware scheduler on the other hand, provides very consistent results

when moving between different configurations. To have a better understanding of why this

scheduler avoids any performance loss through the loss of resources, a comparison can be made

with the number of partial reconfigurations needed when deciding to execute in hardware and the

percentage of software executions over the total amount of polymorphic functions invoked (154).

As shown in Table 4.6, both of the base schedulers in Platforms B and C begin to map threads

onto processors that are forced to execute in software due to a lack of resources whereas the

resource-aware scheduler consistently maps threads to slaves with appropriate resources.

Randomly selecting a processor candidate when scheduling a thread reduces the amount of

software execution needed over the base scheduler. However, as explained previously, it became

more likely to need partial reconfiguration. As a result, the high frequency of partial

reconfiguration and resulting overhead can be observed across all three platforms for the base

scheduler with random selection.

The PR percentage provides this thesis a way to verify whether the resource-aware

scheduling minimizes the amount of PR within the system. Platform A presents an opportunity

for this as all slave processors are equipped with a PR region, and under this testing procedure,

there is a bias of performing PR if the hardware is not currently loaded. Additionally, all
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scheduling policies resulted in 0% software execution. Therefore, it can be concluded from Table

4.6 that the resource-aware scheduler successfully decreased partial reconfiguration required by

23% over the base scheduler. Platform B also shows a reduction in partial reconfiguration and is

greater than Platform A. The reason for this is based on the priority of certain hardware features

to what a thread needs. As pointed out earlier in Section 3, for threads that invoke a single

polymorphic function, the resource-aware scheduler gives a greater priority to processors that

have a static accelerator, reserving processors with a dynamic accelerator/PR region to threads

that invoke multiple polymorphic functions. Since Platform B contains a mix of these two

processor configurations, the resource-aware scheduler has better opportunity to map a thread to

these ideal processors. As a result, the resource-aware scheduler was able to map threads to their

ideal processors 32% of the time in Platform B whereas in Platform A that is filled with only PR

regions on slaves, this decreased to only 4% of the time.

4.3.3 Forward Progress Threshold

A runtime metric that was added out of necessity was a threshold that indicates the number of free

slaves needed before making any forward progress with scheduling. The synthetic benchmark in

Figure 4.3 creates more threads than there are processors in the 3 platforms, A, B and C. In this

scenario, scheduling a thread as soon as a processor becomes available would make deciding

where best to schedule the thread moot (unless such a thread mapping is queued). Therefore, the

Forward Progress Threshold (FPT) presents a way for the scheduler to have alternate options

when scheduling a thread.

To provide a fair comparison, the FPT was applied to both the base scheduler(s) and the

resource-aware scheduler. Before scheduling a thread, the scheduler checks if the available

amount of processors is less than some percentage. For the previous tests, this was set to be 50%

of the slaves, or 3 out of 5 processors. Unlike the base scheduler with random selection and the

resource-aware scheduler, this limits scheduling threads only to processors #0 through #2 for the
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Scheduler Policy: Forward Progress Threshold = 20%
Platform A Platform B Platform C

Base scheduling 1,675.44 5,467.24 5,467.24
Base scheduling with random selection 1,875.89 5,525.24 5,525.26
Resource Aware-Scheduling 1,675.46 6,618.14 6,653.15

Execution Time (ms)

Table 4.7: Results of scheduling 128 detached threads, whereby threads are released only when
20% or more of the processors are available.

base scheduler as it always checks for the first available slave beginning with processor #0. As

Table 4.7 highlights, when decreasing this constraint by reducing the FPT to 20% or 1 or more

available slave processors, performance improves for all scheduling policies in Platform A. This

is to be expected as all processors in Platform A contain a PR region, and all have a bias

according to the test setup to execute polymorphic functions in hardware. Since these threads are

only composed of polymorphic function invocations, the performance gained on Platform A

simplifies to which thread has the appropriate external resource to minimize partial

reconfigurations. In the case of Platform B and C however, performance is much worse for

resource-aware scheduling over the previous 50% FPT.

To understand why this behavior is observed, metrics such as PR ratios, software execution

ratios, and the number of times a thread was mapped to an ideal location according to the flow

chart discussed in Chapter 3 are again analyzed. For Platform A, all threads executed in hardware

as all processors contained a dynamic accelerator. All three scheduling policies performed

similarly with respect to their PR ratios as Table 4.8 reveals. The slight variation in performance

between the base schedulers can be attributed to the additional overhead of randomly selecting a

processor. This became evident once the percentages of mapping a thread to an ideal processor, to

a processor that is the next best candidate, and so on were compared.

For Platform B and C, the base schedulers perform marginally better than their previous

results found at an FPT of 50%. The additional savings of time was recovered from a lower

minimum slave processor count the scheduler needed to wait on. However, the resource-aware
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Scheduler Policy - PR and Software Ratio Details: Forward Progress Threshold = 20%
Platform A Platform B Platform C

Base scheduling 79% / 0% 78% / 10% 78% / 10%
Base scheduling with random selection 79% / 0% 77% / 16% 77% / 16%
Resource Aware-Scheduling 78% / 0% 72% / 9% 72% / 10%

Table 4.8: PR percentage when executing in Hardware/Percentage of software executions out of
the 154 polymorphic functions called across the 128 threads.

scheduler performs worse than the two base schedulers and much worse from its previous results

in Table 4.5. Although, Table 4.8 shows that the PR ratios are lower than the two base scheduling

policies indicating that there is more reuse of hardware accelerators and less partial

reconfigurations, the difference is insignificant. Furthermore, the metric describing the amount of

times a thread was mapped to its ideal processor, the next best candidate, etc. were very similar

across the three schedulers for Platforms B and C. The reasoning for the performance degradation

of the resource-aware scheduler is tied to the FPT percentage. When the resource-aware scheduler

is only given a single choice in the case where the FPT = 20% compared to several (3) choices

with an FPT = 50%, scheduling with resource consideration defaults to similar performance of

that of the base schedulers. Flexibility is needed for exploiting the performance of heterogeneous

architectures. Without this, threads are mapped to processors with no consideration of resources

needed to accelerate the thread. As a result, the resource-aware scheduler performs similarly to

that of the base schedulers in platforms B and C, with one exception. There is a 1,000 ms

difference. This difference is from software executions between the resource-aware scheduler and

the base schedulers. Threads were mapped onto processors that are less ideal to execute the

polymorphic function(s) than others in the case of the resource-aware scheduler.

To elaborate, the fact that the system contains heterogeneous processors results in differing

software execution times amongst them. On platform B and C, for example, the two possible

locations where software execution can or will occur are processor’s #0 and #2. This is due to the

lack of a dynamic accelerator or the correct static accelerator. To prove that this is the source of

the 1,000 ms difference between the resource-aware and base schedulers, each processor’s
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software execution of a polymorphic function was timed and tallied up for all threads executing

on them. Since thread execution across these processors overlap, viewing the processor whose

software execution total is largest provides an adequate estimate as to the differences amongst the

scheduling policies. For the base scheduler with random selection, the total time recorded for all

software executions of polymorphic functions occurred on Processor #2 was 5,382.46 ms out of

the 5,525.24 ms total execution time. In contrast, the resource-aware scheduler resulted in

Processor #0’s total software execution time of 6,609.72 ms out of the 6,618.14 ms total execution

time. A difference close to 1,000 ms confirms why the resource-aware scheduler performance is

an additional 1,000+ ms worse than the base schedulers.

4.4 Putting it all together

In this section, we look at combining the ideas of the previous sections and applying them to

real-world tasks. From this, this thesis would like to draw several key points: how well does the

system scale when introducing additional heterogeneity/complexity.

4.4.1 Executing real-world tasks

The previous tests included micro-benchmarks, written to target each of the co-processors in the

MicroBlaze. As such, the majority of their runtime utilized the co-processor instructions and less

on memory I/O or other unaccelerated operations. Similarly for examining resource-awareness,

the tasks that were scheduled had execution times dominated by the use of hardware accelerators

attached to slave processors. These previous tests were conducted to show the potential of a

heterogeneous system and how important it is to have a self-aware runtime system to manage it.

The purpose of this section is to evaluate the self-aware runtime system further using a sample of

non-synthetic tasks such as those used across multiple domains in research and industry. The tasks

that are used, the co-processors within the MicroBlaze they leverage, and their descriptions are all

described in Table 4.9. Additionally, the fastest and slowest times are also shown for each task.
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Task Description Table
Name Co-processors Description Fastest

Time(ms)
Slowest
Time(ms)

Distance Floating Point Given two floating point arrays,it
computes the distances between
pairs of points in both arrays.

4.5 21.5

Find Max Barrel Shifter Given two integer arrays, it deter-
mines the max value for each pair
of values in both arrays.

6 13

Histogram Integer Division Given an array of integers, it
computes a frequency count for a
configurable amount of ranges.

13 27

Matrix Multiply 32-bit Multiplier Performs matrix multiply on two
square matrices.

10 16

Mandel Brot Floating Point Given an array of floating point
values, it determines whether the
complex number for that value
belongs to the Mandelbrot set.

4.6 5,541

Approx. Pi Floating Point Approximates Pi using the Ni-
lakantha series.

0.4 18

Table 4.9: Table providing the name, MicroBlaze co-processor support, and descriptions of each
real-world task used in this thesis. Fastest/Slowest Time is the time recorded for a MicroBlaze in
the 24 processor system used in Section 4.4.1

The first test that was executed consisted of scheduling an arbitrary amount of threads onto a

6 to 24 heterogeneous processor system. The amount of threads scheduled onto the system

totalled 25 threads (5 Approx. Pi, 3 MandelBrot, 5 Histogram, 3 Distance, 4 Matrix Multiply, 5

Find Max threads). Although there were multiple instances of the same tasks, all of the tasks were

arranged in a random order when delivering them to the task. This was to avoid a sudden burst of

homogeneous tasks all requesting similar resources. The FPT values for this tests ranged from

10% to 30% for comparison to the base scheduler with random selection.

Another variant of the self-aware runtime system was also added to the system that

integrates thread queues within the scheduler. Instead of stalling until a certain percentage of

slave processors became available, queuing threads would allow the runtime system to have a

faster response time when scheduling threads and possibly lead to faster execution times over the

runtime variants utilizing the FPT values. This can be seen in the total task creation overhead in
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Figure 4.7. The figure shows, as the system becomes smaller, the overhead is larger when using

an FPT value compared to the thread queuing. However, as the system becomes larger, the

scheduler utilizing FPT has greater opportunity for mapping threads as the number of available

slaves needed becomes less. Thread queuing would also provide similar overhead times, but the

functionality of thread queuing currently executes in a software thread that involves CPU context

switching of the main thread on the host processor. Hthreads does provide fast CPU context

switching due to the hardware implementation of a thread manager and scheduler, but the CPU

context resides in main memory across a shared bus. This overhead slightly decreases however,

from 6 to 24 processors due to the higher availability of alternative preferred processors to map

to, and thus, less context switching on the host processor. The base scheduler with random

selection remains fairly constant through the processor range in this Figure. This is largely due to

the high overhead of randomization currently used.

Figures 4.8, 4.9, 4.10, 4.11 and 4.12, all show the execution times for the self-aware runtime

with thread queuing compared to the other scheduling policies used in this thesis. The first note of

importance is the comparison to the base scheduler in Figure 4.8. A speedup is observed across

all 4 systems with thread queuing enabled. For the system with 12 heterogeneous processors, the

speedup is significantly larger than the other systems. This was also seen in Figure 4.9, but for a

different system (24 processor system). The reason for these results is due to the thread mapping

between the Base scheduler, and the base scheduler with randomization. As can be seen in Table

4.9, some of the tasks involved in this test had execution times ranging in the 1,000’s of

milliseconds. If the scheduler were to map a thread onto one of these processors, it would

dominate the execution time. This is the case for both base schedulers in comparison to the

self-aware scheduler with thread queuing.

The comparisons between thread queuing and utilizing the FPT values track very similarly

between each other. As the FPT value decreases, the scheduler makes faster decisions at the

expense of not having as many options when mapping a thread to a processor. As a result, thread
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queuing enjoys a healthy speedup on the smaller systems in Figure 4.10 as it can queue threads to

preferred processors all the while making forward progress of scheduling other threads. As the

system becomes larger, there is an increase in tasks executing in parallel. This leads to an increase

in the amount of processors that are available, and thus faster scheduling decisions for the

schedulers utilizing the FPT values. As a result, thread queuing has a marginal increase in

speedup, even for larger systems.

What is not explicitly shown in these figures, but rather implied is the high unpredictability

in the execution times for systems that have fast scheduling response times. It was mentioned that

for the base schedulers, there was at least one instance where a mapped thread resulted in its

execution dominating the entire application’s execution time (120X and 131X speedup in Figures

4.9 and 4.8 respectively). The same is true for the self-aware system with a low FPT value (10%).

Figure 4.10 shows for the 12 processor system, there was at least a non-optimal thread mapping

that resulted in a 3.5X speedup for thread queuing. When comparing the Figures 4.11 and 4.12,

this was not observed at the 12 processor system. This unpredictable behavior was also observed

for the self-aware runtime employing thread queues. This variant represents both fast scheduling

decisions as with the base schedulers, but also waits/queues threads to their appropriate

processors. Since this is a heterogeneous system, threads that have more than one preferred

processor do not necessarily execute similarly. For example, the approximating PI task can

execute in 0.4 ms on the most preferred processor, 9.6 ms as the next best option, and finally, in 15

ms on the slowest option. For thread queuing, the scheduler will be presented with the first two

options, but not the last as it represents an unaccelerated path of execution. However, the

difference between the first two is significant to cause a slowdown if a decision is made on the

latter processor. As a result, the execution results can be impacted by faster scheduler decisions.

83



      6 12 18 24

98

   
50

55

60

65

70

75

80

85

90

95

Number of Processors

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Homogeneous vs Heterogeneous
Real Tasks

Homogeneous System

Heterogeneous System
   (Thread Queueing)

Figure 4.13: Execution results of the real-world test application on a homogeneous system vs a
heterogeneous system with the self-aware runtime utilizing thread queuing.

84



4.4.2 Task mapping/resource efficiency performance

What has been an unanswered question up until now is how accurate are threads being mapped

throughout the system relative to the best known solution. For a heterogeneous system, the

solution space for mapping a thread is large and can vary between system configurations. To

answer this, a comparison to a homogeneous system that includes all processors whereby each are

configured with all optional co-processors. On the other hand, the heterogeneous system taken

from Section 4.4.1, will have varying configurations for each processor. Both of these systems

have a maximum number of 24 slave processors and the tests was executed by varying the

enabled processors from 6-24. Additionally, the base scheduler for the homogeneous system was

chosen as the identifying processor specialization is unnecessary: all processors perform

similarly. The self-aware runtime with thread queuing was utilized on the heterogeneous system.

Figure 4.13, shows the final result of executing the same test in section 4.4.1: an application

scheduling 25 real-world tasks across the system. While this test was meant to show how close in

performance the heterogeneous system gets towards the homogeneous system, it surpasses the

performance from 12-24 processors. This verifies that the runtime system maps tasks

appropriately on the heterogeneous system despite the platform not having as many resources as

the homogeneous system. A reason why it is able to perform marginally better is due to the

forward progress the self-aware scheduler makes. While the base scheduler will spin, waiting for

a processor to become available if all are busy, the self-aware scheduler with thread queuing will

continue to cycle through the submitted threads, considering only preferred processors instead of

the entire processor list for each. This is the reason why this difference becomes larger for larger

systems as the self-aware scheduler may only consider a subset of processors when mapping a

thread.
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Chapter 5

Conclusion

This thesis has explored new challenges for emerging FPGA-based heterogeneous multiprocessor

systems. FPGAs have the potential of striking a balance between generality and specialization for

driving computation in the next generation of software (and those applicable today). However,

management of such a platform has traditionally been hindered by design experts. The use of

CPUs within FPGA designs has made system bring up possible for non-experts, and allows them

to extend computation through special hardware, either through pre-compiled accelerator

libraries, high-level synthesis, or other future enablers. However, the problem of knowing when

and how to map to these heterogeneous resources is not always clear.

This thesis has shown that there is a need to have a runtime system that is cognizant of the

available hardware, the varying affinities between threads and heterogeneous processing

elements, and knows how and when to exploit this information to provide better scheduling

decisions. This is particularly true if the adoption of much larger heterogeneous systems,

especially those providing online reconfigurability, is to be realized as static scheduling decisions

determined offline will not suffice. Furthermore, greedily scheduling tasks to as many processors

available can also lead to poor thread mapping and thus longer execution times and higher energy

consumption.

To summarize, this thesis has investigated the following questions:

Can platform specific details be moved from the source code and be encapsulated under

platform neutral policies of a portable programming model to reinstate portability? Yes,

these details that describe when and how to use resources and procedures of when such resources
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do not exist were moved to a combination of a runtime kernel and a hardware programming

abstraction known as the polymorphic function library. Additionally, distinguishing processor

heterogeneity during thread creation and thread mapping are transparently managed by the

compilation flow and the self-aware runtime system.

Can the complexity of the software design process be reduced by enabling automatic

profiling during runtime? Yes, the complexity of the software design process has been

avoided through automatic identification of processor specialization of user created threads. As

discussed in the future works (Section 5.1), this requires further investigation but it has been

shown in this thesis that requiring the user to profile his/her source code can be avoided. The

polymorphic function library, on the other hand, does require a manual process of profiling.

However, it is our belief that through the distribution of a library, this effort can be reduced and

further enhanced through the community over time.

Can dynamic mapping occur at reasonable overhead costs with high accuracy of fitting task

placement? How best to determine task specialization for processors? Can some of this

information be determined offline? Yes, the overhead costs can be kept at a minimum and

achieve accurate task placement. Introducing thread queuing enabled the self-aware runtime

system to consider preferable processors for threads but continue to make forward progress for

other submitted threads. Additionally, some of the information needed to perform accurate task

placement can be retrieved offline. However, as this thesis highlighted with instruction

distribution, static information alone is insufficient for more complex tasks.

Can resource efficiency be increased despite increasing levels of system complexity, by

introducing additional self-awareness within the operating system? Resource efficiency was

increased through dynamically mapping threads to new hardware that offered an accelerated path

of execution. These performance gains were seen when the processor count increased. However,
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such utilization of resources can further improve with a programming model that naturally

supports heterogeneous systems. Introducing a task-based language would allow further

abstraction of user-written tasks, but would also enable the runtime to infer how to further divide

these tasks into subtasks for increase resource efficiency.

5.1 Future Work

This section discusses a few ideas of future work that have been mentioned throughout this thesis

and provides more details on the impact it may have in furthering this body of research.

5.1.1 Opcode Flagging and Instruction Distribution

Flagging instructions as part of the compilation process provides a lightweight alternative for

estimating performance on similar ISA processors, but falls short when including a mix of

processors that have dissimilar ISAs. Operations that are equivalent amongst them may be

implemented, executed, and completed differently. Furthermore, it was briefly shown in Section

4.3.1 that when considering a similar base ISA, deciding solely based on produced instructions by

the compiler will still be insufficient at times when those instructions do not equally contribute to

a task’s execution time. Additionally, a task may exhibit different phases that corresponds to

different behaviors during its runtime. For example, the beginning of its execution may involved

heavy local computation followed by many memory I/O requests. Too many memory accesses

could lead to dominating most of the task’s execution time. In that instance, identifying which

processor can provide a path of acceleration for the initial part of a task’s execution becomes

moot.

The MicroBlaze, and many modern day processors integrate hardware performance

counters, and some even provide the capture of instruction traces for finer-grained profiling data.

The MicroBlaze for instance, can be configured to count specific types of instructions, and can be
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stopped, resumed and reconfigured online. This can provide the runtime system presented in this

thesis to learn a task’s execution over time and modify the information that was generated offline

for better task placement. A metric that can be used is the instructions per cycle (IPC). This

metric may allow the comparison of dissimilar ISAs when deciding to map a thread onto a

processor. Integrating support for these performance counters was initially started but later

abandoned for unreliability and lacking vendor tool support.

5.1.2 Slave Processor Queues and Work Stealing

When presenting the results for this thesis, Chapter 4 introduced a variant of the runtime system

that included thread queues. This was a software implementation that tried to eliminate the host

processor from spinning until a certain amount of slave processors became available. As a result,

execution times approached that of a system with all the necessary hardware at each processor.

However, the software implementation brought high CPU context switching on the host which

stalled it from making further forward progress on scheduling other tasks onto the system.

Hardware queues would offer increased parallelism and scalability within the system as the host

processor can push to the queue(s), and slaves can simultaneously pull, distributively. This can

also enable future optimizations such as work/thread stealing at low runtime overhead costs. For

example, the host processor currently manages two lists for each task: a preferred and

non-preferred list of processors for this task. When scheduling a task, the runtime system checks

availability of the preferred processors only. If none are available, the task is enqueued. Instead of

this policy, non-preferred processors may be allowed to begin execution of said task. If the

preferred processor were to become available soon after, the task could be stolen or migrated onto

the preferred processor as long as the processor shares the same base ISA.
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5.1.3 Adoption of another programming model

Programs written for hthreads uses the Pthreads library. As a result, writing the application for a

multiprocessor system at a thread level still requires explicit memory management, and

inter-thread communication, otherwise known as inter-process communication (IPC). As

mentioned in Chapter 2, there is much research surrounding the area of easier methods of

describing computation for (heterogeneous) multiprocessor systems. Some even focus on

including optimization without the expense of losing portability. Adopting such languages and

tools within this body of work represents a step in enabling future developments on this platform.

Much of these languages and tools provide Pthreads backends, enabling the hthreads platform to

support more than one. As a result, users can take advantage of the already existing research in

these communities to quickly target existing or new applications on the hthread’s platform and

any other platforms the user’s tools of choice targets.
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